JP5473407B2 - Ceramic substrate, heat dissipation substrate, and electronic device - Google Patents

Ceramic substrate, heat dissipation substrate, and electronic device Download PDF

Info

Publication number
JP5473407B2
JP5473407B2 JP2009128939A JP2009128939A JP5473407B2 JP 5473407 B2 JP5473407 B2 JP 5473407B2 JP 2009128939 A JP2009128939 A JP 2009128939A JP 2009128939 A JP2009128939 A JP 2009128939A JP 5473407 B2 JP5473407 B2 JP 5473407B2
Authority
JP
Japan
Prior art keywords
ceramic
base plate
copper
heat dissipation
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009128939A
Other languages
Japanese (ja)
Other versions
JP2010030280A (en
Inventor
裕作 石峯
裕也 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009128939A priority Critical patent/JP5473407B2/en
Publication of JP2010030280A publication Critical patent/JP2010030280A/en
Application granted granted Critical
Publication of JP5473407B2 publication Critical patent/JP5473407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/55Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は放熱部材を配置するセラミック基に関する。また、このセラミック基に、絶縁ゲート・バイポーラ・トランジスタ(IGBT)素子、金属酸化膜形電界効果トランジスタ(MOSFET)素子,発光ダイオード(LED)素子,フリーホイーリングダイオード(FWD)素子,ジャイアント・トランジスター(GTR)素子等の半導体素子,昇華型サーマルプリンターヘッド素子,サーマルインクジェットプリンターヘッド素子等の各種電子部品が搭載される放熱基に関する。さらに、この放熱基に各種電子部品が搭載される電子装置に関する。 The present invention relates to a ceramic board to place the heat radiation member. Further, in the ceramic base plate, insulated gate bipolar transistor (IGBT) devices, metal-oxide field effect transistor (MOSFET) device, a light emitting diode (LED) element, a freewheeling diode (FWD) element, giant transistors the semiconductor device (GTR) devices such as a sublimation type thermal printer head element relates to heat dissipation board on which various electronic parts such as a thermal ink jet printer head element is mounted. Further, an electronic device which various electronic components are mounted on the heat radiating base plate.

近年、パワートランジスタモジュールまたはスイッチング電源モジュール等のパワーモジュールに代表される半導体装置等の電子装置の放熱基が知られている。この放熱基として、セラミック基板の一方の主面に回路部材として銅板を接合し、他方の主面に放熱性の良好な放熱部材として銅板を接合して構成された放熱基が用いられている。 Recently, heat radiation board of an electronic device such as a semiconductor device is known which is represented by a power module such as a power transistor module or a switching power supply. As the heat radiating base plate, and bonding a copper plate as a circuit member on one principal surface of the ceramic substrate and the heat radiating base plate which is formed by joining a copper plate is used as a good heat dissipation member of the heat radiation property on the other principal surface Yes.

例えば、特許文献1では、窒化アルミニウム基板と、窒化アルミニウム基板上に形成されたメタライズ層とを具備する窒化アルミニウム回路基板において、メタライズ層の形成領域を除く窒化アルミニウム基板の表面に、高さ1nm以上500nm以下の突起が形成されている窒化アルミニウム回路基板が提案されている。 For example, in Patent Document 1, in an aluminum nitride circuit board including an aluminum nitride substrate and a metallized layer formed on the aluminum nitride substrate, a height of 1 nm or more is formed on the surface of the aluminum nitride substrate excluding the formation region of the metallized layer. An aluminum nitride circuit board on which protrusions of 500 nm or less are formed has been proposed.

特許文献1には、図12に示すように、71はAlN焼結体からなるAlN基板であり、このAlN基板71の表面71a上にはメタライズ層72が形成されている。このメタライズ層72は、表面配線層73や素子搭載部74等として機能するAlN回路基板70が開示されている。   In Patent Document 1, as shown in FIG. 12, reference numeral 71 denotes an AlN substrate made of an AlN sintered body, and a metallized layer 72 is formed on the surface 71 a of the AlN substrate 71. As the metallized layer 72, an AlN circuit substrate 70 that functions as a surface wiring layer 73, an element mounting portion 74, or the like is disclosed.

AlN基板71の表面71aには、メタライズ層72の形成領域を除いて、図12の拡大図(図中の円内)に示すように、微小な突起75が形成されている。この突起75の形状は、例えば円錐形、円柱形、半球形等を基本とする形状とされている。   On the surface 71a of the AlN substrate 71, except for the formation region of the metallized layer 72, minute projections 75 are formed as shown in the enlarged view of FIG. The shape of the protrusion 75 is, for example, a shape based on a conical shape, a cylindrical shape, a hemispherical shape, or the like.

また、特許文献2には、図13に示すように、イオンビームエッチング処理により結晶粒表面に結晶粒径より小さな超微細な凹凸が形成されているセラミック表面に、金属膜を蒸着により形成するセラミック回路基板の製造方法が開示されている。   Further, in Patent Document 2, as shown in FIG. 13, a ceramic in which a metal film is formed by vapor deposition on a ceramic surface in which ultrafine irregularities smaller than the crystal grain size are formed on the crystal grain surface by an ion beam etching process. A circuit board manufacturing method is disclosed.

特開平9−17909号公報Japanese Patent Laid-Open No. 9-17909 特開平5−24959号公報Japanese Patent Laid-Open No. 5-24959

しかしながら、特許文献1に開示されたAlN回路基板70は、AlN基板の製造工程において、AlNからなる板状の成形体を積み重ねて焼成すると、加熱により助剤成分が成形体から一部脱離し、隣り合う焼結体同士がメタライズ層72の形成領域で焼成後に固着する。このため、得られた焼結体同士を引き離しにくい。   However, in the AlN circuit board 70 disclosed in Patent Document 1, in the manufacturing process of the AlN substrate, when the plate-like molded bodies made of AlN are stacked and baked, the auxiliary component is partially detached from the molded body by heating, Adjacent sintered bodies are fixed in the formation region of the metallized layer 72 after firing. For this reason, it is difficult to separate the obtained sintered bodies.

また、特許文献2に開示されたセラミック回路基板は、イオンビームエッチングをセラミック表面に照射しているので、セラミック表面に形成される凹凸は結晶粒径より小さい超微細なものとなる。このため、活性金属を添加したメタライズ組成物のペーストを塗布した後に加熱しても、セラミック表面では十分なアンカー効果が得られず、メタライズ層はセラミック基板に対して高い密着力を得にくい。   In addition, since the ceramic circuit board disclosed in Patent Document 2 irradiates the ceramic surface with ion beam etching, the irregularities formed on the ceramic surface are ultrafine than the crystal grain size. For this reason, even if it heats after apply | coating the paste of the metallized composition which added the active metal, sufficient anchor effect is not acquired on the ceramic surface, but a metallized layer is hard to obtain high adhesive force with respect to a ceramic substrate.

本発明は、上述のような課題を解決するために提案されたものであって、板状の成形体を積み重ねて焼成した後、得られた焼結体同士が固着しにくいものであり、メタライズ層を強固に密着させることができるセラミック基、放熱基および電子装置を提供するものである。 The present invention has been proposed in order to solve the above-described problems, and is obtained by stacking and firing plate-like molded bodies, and the obtained sintered bodies are difficult to adhere to each other. ceramic base plate can be firmly adhered layer, there is provided a heat radiating base plate and the electronic device.

本発明の一形態に係るセラミック基板は、少なくとも一方の主面に、突起を複数備えるセラミック基板であって、前記突起は、隣り合う山頂部と谷底部との高低差の最大値が、前記セラミック基板を構成する結晶の平均結晶粒径より大きい凹凸を有しており、前記突起の平均高さが16μm以上52μm以下であることを特徴とする。 The ceramic substrate according to an aspect of the present invention is a ceramic substrate including a plurality of protrusions on at least one main surface, and the protrusion has a maximum value of a difference in height between adjacent peak portions and valley bottom portions. It has a size I凹 convex than the average grain size of crystals constituting the substrate, wherein the average height of the protrusions is 16μm or more 52μm or less.

また、本発明の一形態に係る放熱基は、上記セラミック基板に放熱部材が接合されていることを特徴とする。 Further, heat radiation board according to an embodiment of the present invention is characterized in that the heat dissipation member to the ceramic base plate is bonded.

また、本発明の一形態に係る放熱基は、上記セラミック基と、このセラミック基板の突起が形成された面に形成された金属層と、この金属層上に配置された放熱部材とを有することを特徴とする。 Further, heat radiation board according to an embodiment of the present invention, and the ceramic board, a metal layer projections are formed on the formed surface of the ceramic board, a heat radiation member disposed on the metal layer It is characterized by having.

また、本発明の一形態に係る放熱基は、上記セラミック基板の両主面上に順次積層された活性金属層および銅を主成分とする結合層と、各結合層上に配置された銅または銅合金を主成分とする少なくとも1枚の銅板と、を有してなり、一方の主面上の銅板を回路部材として用い、他方の主面上の銅板を放熱部材として用いることを特徴とする。 Further, heat radiation board according to an embodiment of the present invention includes a binding layer mainly composed of the active metal layer and copper are sequentially laminated on both main surfaces of the ceramic board, it is disposed on each binding layer And at least one copper plate mainly composed of copper or a copper alloy, using the copper plate on one main surface as a circuit member and using the copper plate on the other main surface as a heat dissipation member. Features.

さらに、本発明の一形態に係る電子装置は、上記放熱基上に電子部品を設けたことを特徴とする。 Further, an electronic device according to an embodiment of the present invention is characterized by comprising an electronic component on the heat radiation board.

本発明の一形態に係るセラミック基によれば、焼成後に隣り合う焼結体同士を容易に引き離すことができる。さらに、金属を含むペーストを焼結体の表面に塗布し、加熱すると、高いアンカー効果が得られ、セラミック基に活性金属層等のメタライズ層として強固に密着させることができる。 According to the ceramic board according to an embodiment of the present invention, it can be released easily sintered body adjacent after firing. Further, a paste containing a metal is applied to the surface of the sintered body, when heated, provides high anchor effect can be firmly adhered as a metallized layer of the active metal layer such as a ceramic board.

また、本発明の一形態に係る放熱基および電子装置によれば、焼成後に隣り合う焼結体同士が容易に引き離され、機械的特性がほとんど損なわれていないセラミック基を用いているので、耐久性の高い放熱基および電子装置とすることができる。 Further, according to the heat radiating base plate and the electronic apparatus according to an embodiment of the present invention, sintered bodies adjacent after sintering is easily detached, because of the use of ceramic board mechanical properties little impaired it can be a high heat dissipation board and an electronic device durable.

本発明の一形態に係るセラミック基を示し、(a)は上側から平面視した場合の平面図、(b)は同図(a)のA−A’線における断面図、(c)は同図(a)のB−B’線における断面図、(d)は同図(b)のa部拡大図である。Shows the ceramic board according to an embodiment of the present invention, (a) is a plan view when viewed in plan from above, (b) is a cross-sectional view taken along line A-A 'in FIG. (A), (c) is Sectional drawing in the BB 'line | wire of the same figure (a), (d) is the a section enlarged view of the same figure (b). 本発明の一形態に係るセラミック基を示し、(a)は上側から平面視した場合の平面図、(b)は同図(a)のC−C’線における断面図、(c)は同図(a)のD−D’線における断面図、(d)は同図(b)のa部拡大図である。Shows the ceramic board according to an embodiment of the present invention, (a) is a plan view when viewed in plan from above, (b) is a cross-sectional view taken along line C-C 'of FIG. (A), (c) is Sectional drawing in the DD 'line | wire of the same figure (a), (d) is the a section enlarged view of the same figure (b). ラミック基板の一形態を示し、(a)は上側から平面視した場合の平面図、(b)は同図(a)のE−E’線における断面図、(c)は同図(a)のF−F’線における断面図、(d)は同図(b)のb部拡大図である。Shows an embodiment of a ceramic board, (a) is a plan view when viewed in plan from above, (b) is a cross-sectional view taken along line E-E 'of FIG. (A), (c) the drawing ( Sectional drawing in the FF 'line | wire of a), (d) is the b section enlarged view of the same figure (b). ラミック基板の一形態を示し、(a)は上側から平面視した場合の平面図、(b)は同図(a)のG−G’線における断面図、(c)は同図(a)のH−H’線における断面図、(d)は同図(b)のb部拡大図である。Shows an embodiment of a ceramic base plate, (a) is a plan view when viewed in plan from above, (b) is a cross-sectional view taken along line G-G 'in FIG. (A), (c) the drawing ( Sectional drawing in the HH 'line of a), (d) is the b section enlarged view of the same figure (b). 本発明の一形態に係るセラミック基を示し、(a)は上側から平面視した場合の平面図、(b)は同図(a)のI−I’線における断面図、(c)は同図(a)のJ−J’線における断面図、(d)は同図(b)のa部拡大図である。Shows the ceramic board according to an embodiment of the present invention, (a) is a plan view when viewed in plan from above, (b) is a cross-sectional view taken along line I-I 'in FIG. (A), (c) is Sectional drawing in the JJ 'line | wire of the figure (a), (d) is the a section enlarged view of the figure (b). 本発明の一形態に係るセラミック基を示し、(a)は上側から平面視した場合の平面図、(b)は同図(a)のK−K’線における断面図、(c)は同図(a)のL−L’線における断面図、(d)は同図(b)のa部拡大図である。Shows the ceramic board according to an embodiment of the present invention, (a) is a plan view when viewed in plan from above, (b) is a cross-sectional view taken along K-K 'line in FIG. (A), (c) is Sectional drawing in the LL 'line | wire of the same figure (a), (d) is the a section enlarged view of the same figure (b). 本発明の一形態に係る放熱基を示し、(a)は回路部材側から平面視した場合の平面図、(b)は同図(a)のM−M’線における断面図、(c)同図(b)のc部拡大図である。Shows the heat radiation board according to an embodiment of the present invention, (a) is a plan view when viewed in plan from the circuit member side, (b) is a cross-sectional view taken along M-M 'line of FIG. (A), (c FIG. 4B is an enlarged view of part c of FIG. 本発明の一形態に係る放熱基を示し、(a)は回路部材側から平面視した場合の平面図、(b)は同図(a)のN−N’線における断面図、(c)は同図(b)のd部拡大図である。Shows the heat radiation board according to an embodiment of the present invention, (a) is a plan view when viewed in plan from the circuit member side, (b) is a cross-sectional view taken along N-N 'line of FIG. (A), (c ) Is an enlarged view of a portion d in FIG. 本発明の一形態に係る放熱基を示し、(a)は回路部材側から平面視した場合の平面図、(b)は同図(a)のO−O’線における断面図、(c)は放熱部材側から平面視した場合の底面図である。Shows the heat radiation board according to an embodiment of the present invention, (a) is a plan view when viewed in plan from the circuit member side, (b) is a cross-sectional view taken along O-O 'line in FIG. (A), (c ) Is a bottom view in a plan view from the heat radiating member side. 回路部材が平面視で複数行、複数列に区分配置された放熱基を示し、(a)は回路部材側から平面視した場合の平面図、(b)は同図(a)に示す放熱基の反りを模式的に示す図、(c)は回路部材が平面視で1行、複数列に区分配置された放熱基を示し、(d)は同図(c)に示す放熱基の反りを模式的に示す図である。Multiline circuit member in plan view, shows a partitioned arranged radiating board in a plurality of rows, (a) is a plan view when viewed in plan from the circuit member side, (b) heat radiation shown in the diagram (a) shows a warp of the board schematically, (c) one line in a plan view circuit member, shows a heat radiating base plate is divided disposed in a plurality of columns, (d) the radiating groups shown in (c) It is a figure which shows the curvature of a board typically. 本発明の一形態に係る放熱基を示し、(a)は回路部材側から平面視した場合の平面図、(b)は同図(a)のP−P’線における断面図、(c)は放熱部材側から平面視した場合の底面図である。Shows the heat radiation board according to an embodiment of the present invention, (a) is a plan view when viewed in plan from the circuit member side, (b) is a cross-sectional view taken along P-P 'line of FIG. (A), (c ) Is a bottom view in a plan view from the heat radiating member side. 従来のセラミック回路基板の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional ceramic circuit board. 従来のセラミック回路基板の製造方法の実施に用いるセラミック基板の未研磨表面部分のインオンビームエッチング処理後の状態をあらわす概略断面図である。It is a schematic sectional drawing showing the state after the in-on-beam etching process of the unpolished surface part of the ceramic substrate used for implementation of the manufacturing method of the conventional ceramic circuit board.

以下、本発明を実施するための形態(以下、本実施形態という)について図面を参照しつつ詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a mode for carrying out the present invention (hereinafter referred to as the present embodiment) will be described in detail with reference to the drawings.

本実施形態のセラミック基は、セラミック基板を構成する結晶の平均結晶粒径より大きな高さの凸を有する突起を多数備えている。具体的には、例えば図1に示すように、基板であるセラミック基1の少なくとも第1面1aに、所定の複数方向へ繰り返し凹凸形状を形成した突起1cの多数(複数)が形成されている。第1面1aの背面側の第2面1bは平面状としている。 Ceramic base plate of the present embodiment comprises a large number of impact force that having a mean concave convex height greater than the grain size of crystals constituting the ceramic substrate. Specifically, for example, as shown in FIG. 1, at least on the first surface 1a of the ceramic base plate 1 is a substrate, a number of projections 1c forming the unevenness repeated in a predetermined plurality of directions (s) is formed Yes. The second surface 1b on the back side of the first surface 1a is planar.

また、図2に示すように、両方の主面である第1面1aおよび第2面1bに、表面が複数方向へ繰り返し凹凸形状をなしている突起1cの多数が形成されているセラミック基1としてもよい。 Further, as shown in FIG. 2, the first surface 1a and the second surface 1b is both major surfaces, ceramic base plate surface are a number of protrusions 1c which forms a concavo-convex shape repeating the plurality of directions are formed It may be 1.

また、図3に、少なくとも一方の主面である第1面1aに、表面が複数方向へ繰り返し凹凸形状をなしているディンプル1dの多数が形成された例を示している。なお、他方の主面である第2面1bは平面状である。 Further, in FIG. 3, the first surface 1a is at least one main face, surface shows an example in which a large number are formed dimples 1d are no irregularities repeatedly to multiple directions. In addition, the 2nd surface 1b which is the other main surface is planar.

また、図4に、両方の主面である第1面1aおよび第2面1bに、表面が複数方向へ繰り返し凹凸形状をなしているディンプル1dの多数が形成された例を示しているFurther, in FIG. 4, the first surface 1a and the second surface 1b is both major surfaces, the surface shows an example in which a large number are formed dimples 1d are no irregularities repeatedly to multiple directions.

図1〜に示すように、本実施形態のセラミック基板1によれば、少なくとも1つの面に、表面が複数方向へセラミック基板1を構成する結晶の平均結晶粒径より大きな高さの凹凸を有する突起1c数形成されていることから、焼成後に隣り合う焼結体同士を容易に引き離すことができる。さらに、金属を含むペーストを表面に塗布し、加熱すると、高いアンカー効果が得られ、セラミック基1に活性金属層等のメタライズ層を強固に密着させることができる。 As shown in FIG. 1-2, according to the ceramic base plate 1 of this embodiment, on at least one surface, the surface having an average grain size greater height than the crystals constituting the ceramic substrate 1 to the plurality of directions irregularities since the projection 1c is made large number forms having, it can be released easily sintered body adjacent after firing. Further, a paste containing a metal is applied to the surface, when heated, high anchor effect can be obtained, it can be firmly adhered to the metallized layer of the active metal layer such as a ceramic board 1.

なお、凹凸の高さと、セラミック基1の表面を含む断面を走査型電子顕微鏡で倍率2000倍で撮影し、長さ500μmにおける、隣り合う山頂部pと谷底部vとの高低差の最大値pvのことである。ここで、凹凸の大きさはセラミック基1を構成する結晶の平均結晶粒径よりも大きく、例えば、このセラミック基1を構成する結晶の平均結晶粒径は、0.5μm以上13μm以下であり、この平均結晶粒径はJIS R 1670−2006に準拠して求めることができる。 Note that the height of the unevenness, by photographing a cross-section including the surface of the ceramic base plate 1 at 2000 times magnification scanning electron microscopy, in the length 500 [mu] m, the height difference between the crest p and valley portions v adjacent it is the maximum value pv. The size of the irregularities is greater than the average grain size of crystals constituting the ceramic base plate 1, for example, the average crystal grain size of crystals constituting the ceramic base plate 1 is a 0.5μm or 13μm or less Yes, this average crystal grain size can be determined according to JIS R 1670-2006.

また、図1〜に示すように、特に、主面1a,1bの全面にわたって表面が複数方向へ繰り返し凹凸形状をなしている突起1cの多数が形成されることが好適である。 Further, as shown in FIG. 1-2, in particular, the main surface 1a, the surface over the entire surface of the 1b it is preferred that the number of repeated concavo-convex shape that not make collision force 1c plurality of directions is formed.

1cの各外形は、例えば半球状,円錐台状,円錐状または円柱状のいずれかであればよい。特に、図1〜に示すように、突起1cの表面が半球面状に形成されていることが好適である。このように、突起1cの表面が半球面状に形成されている場合、半球面状以外の形状に比べて、焼成後に残留応力が焼結体に残りにくいので、強度がほとんど低下しない。 Each external shape of the collision force 1c, for example hemispherical, frustoconical, or if either conical or cylindrical. In particular, as shown in FIG. 1-2, it is preferable that the surface of the impact force 1c is formed in a hemispherical shape. Thus, when the surface of the impact force 1c is formed in a semi-spherical shape, as compared with the shape other than hemispherical, residual stress after firing so hard remain in the sintered body, strength is hardly lowered.

また、突1cは、図1〜に示すように単独で存在していても、図示しないが、複数の突起1cが重なり合うようにして存在していてもよい、図5に示すように、突起1cが所定方向に等間隔に配置されているセラミック基1としてもよい。図5では、上記所定方向をセラミック基1の第1面1aにおける長手方向および幅方向としたが、所定方向はいずれか一方向でもよい。また、図6に示すように、突起1cが等間隔かつ千鳥状に並んで配置されているセラミック基1としてもよい。 Further, collision force. 1c, be present alone, as shown in FIG. 1-2, not shown, may be present as multiple protrusions 1c overlap, as shown in FIG. 5 it may be a ceramic board 1 projection 1c is arranged at equal intervals in a predetermined direction. In Figure 5, although the longitudinal direction and the width direction the predetermined direction on the first surface 1a of the ceramic base plate 1, the predetermined direction may be one direction. Further, as shown in Figure 6, it may be a ceramic board 1 projection 1c are arranged side by side at equal intervals and staggered.

図5,6に示すセラミック基1のように、突起1cが等間隔に配置されている場合には、突起1cは規則正しい配置となっている。このため、焼成後に隣り合う焼結体同士をさらに容易に引き離すことができる。 As in the ceramic base plate 1 shown in FIGS. 5 and 6, when the protrusion 1c are arranged at regular intervals, the protrusions 1c has a regular arrangement. Therefore, Ru can be pulled apart more easily sintered body adjacent after firing.

図1,2,4〜6に示すセラミック基板1の表面に、例えば、Ti,Zr,Hf,Nb等の活性金属を含むペーストを塗布し、加熱して得られる活性金属層を介在させることにより銅板等の金属板を接合することができる。 Figure 1, on the surface of the ceramic base plate 1 shown in 2,4 6, for example, Ti, Zr, Hf, applying a paste containing an active metal such as Nb, interposing the active metal layer obtained by heating Thus, a metal plate such as a copper plate can be joined.

このような方法で金属板を接合する場合、突起1cの高さhにより、焼成後に隣り合う焼結体同士の剥離の容易性および、セラミック基板1と活性金属層間に発生する空隙の大きさが異なる。つまり、高さhの値が小さいと、空隙が残りにくく、高さhの値が大きいと、焼結体同士を引き離しやすくなる。 When joining a metal plate in such a way, the height h of the collision force 1c, ease and the peeling of the sintered body adjacent after firing, the voids generated in the ceramic base plate 1 and the active metal interlayer size Is different. That is , when the value of the height h is small, voids hardly remain , and when the value of the height h is large, the sintered bodies are easily separated from each other.

このような観点から、本実施形態のセラミック基板1おける突起1c高さhの平均は、16μm以上52μm以下である。これにより、焼成後に隣り合う焼結体同士を容易に引き離すことができる。さらに、活性金属を含むペーストを焼結体の表面に塗布しても、隣り合う突起1c間に存在する空気は容易に抜けるため、セラミック基板1、活性金属
層間に空隙がほとんど残らない。
From this point of view, the average height h of the protrusions 1c which definitive in the ceramic base plate 1 of this embodiment, Ru der least 52μm or less 16 [mu] m. Thereby, the adjacent sintered bodies can be easily separated after firing. Furthermore, even by applying a paste containing an active metal on the surface of the sintered body, to escape easily the air present between the projections 1c adjacent, ceramic base plate 1, the gap hardly remains in the active metal layers.

なお、突起1cの高さhは、セラミック基1の断面を走査型電子顕微鏡で倍率2000倍で撮影し、長さ500μmにおいて測定すればよい。 The height h of the impact force. 1c, taken at 2000 × magnification cross-section of the ceramic base plate 1 with a scanning electron microscope may be measured in the length 500 [mu] m.

図1,2,4〜6に示すように、本実施形態のセラミック基1は、絶縁性を有するセラミックス、例えば、窒化珪素,酸化アルミニウム,窒化アルミニウム,酸化ジルコニウム,酸化ベリリウムおよび窒化硼素の1種以上を主成分とするセラミックスからなるので放熱特性に優れている。セラミック基1は、例えば、長さが30mm以上80mm以下、幅が10mm以上80mm以下であり、厚みは用途によって異なるが、熱抵抗を抑制し、耐久性を維持するという観点から、厚みは0.13mm以上0.64mm以下とすることが好適である。 Figure 1, as shown in 2,4 6, the ceramic base plate 1 of this embodiment, a ceramic having an insulating property, for example, silicon nitride, aluminum oxide, aluminum nitride, zirconium oxide, beryllium oxide and boron nitride 1 Because it is made of ceramics whose main component is more than seeds, it has excellent heat dissipation characteristics. Ceramic board 1, for example, is 30mm or more 80mm or less in length, width is not less 10mm or more 80mm or less, although the thickness varies depending on the application, to suppress the heat resistance, from the viewpoint of maintaining the durability, the thickness 0 It is preferable that the thickness is not less than 13 mm and not more than 0.64 mm.

また、本実施形態のセラミック基1によれば、少なくとも内部における主成分が窒化珪素であることが好適である。窒化珪素は高い熱伝導性と高い機械的特性とを兼ね備えているため、これら両方の特性が求められる場合には有効である。 Further, according to the ceramic base plate 1 of the present embodiment, it is preferable that the main component in at least the inside is silicon nitride. Since silicon nitride has both high thermal conductivity and high mechanical properties, it is effective when both of these properties are required.

特に、セラミック基1を構成する全成分100質量%のうち、窒化珪素が80質量%以上であることが好適である。その他の成分として、例えば、酸化エルビウム,酸化マグネシウム,酸化珪素,酸化モリブデンおよび酸化アルミニウムの少なくともいずれか1種が含まれる。機械的特性としては、3点曲げ強度が750MPa以上、ヤング率が300Gpa以上、ビッカース硬度(H)が13GPa以上、破壊靱性(K1C)が5MPam1/2以上であることが好ましい。機械的特性をこの範囲とすることでセラミック基1は、信頼性、即ち耐クリープ性やヒートサイクルに対する耐久性を向上させることができる。 In particular, of all components 100% by mass of the ceramic base plate 1, it is preferable that silicon nitride is 80% by mass or more. Examples of other components include at least one of erbium oxide, magnesium oxide, silicon oxide, molybdenum oxide, and aluminum oxide. As mechanical properties, it is preferable that the three-point bending strength is 750 MPa or more, the Young's modulus is 300 Gpa or more, the Vickers hardness (H v ) is 13 GPa or more, and the fracture toughness (K 1C ) is 5 MPam 1/2 or more. Ceramic base plate 1 the mechanical properties by this range can improve the durability against reliability, ie creep resistance and heat cycle.

但し、本実施形態における主成分とは、セラミック基1を構成する全成分100質量%のうち、50質量%以上を占める成分をいう。 However, the main component in this embodiment, of all components 100% by mass of the ceramic base plate 1, refers to a component accounting for at least 50 mass%.

図7に示すように、本実施形態の放熱基10は、セラミック基の両主面上に順次積層された活性金属層31,32および銅を主成分とする結合層41,42と、各結合層41,42上に配置された銅または銅合金を主成分とする少なくとも1枚の銅板と、を有している。一方の主面上の銅板を回路部材21として、他方の主面上の銅板を放熱部材22として用いる。この放熱基10は、焼成後に隣り合う焼結体同士が容易に引き離され、機械的特性がほとんど損なわれないセラミック基1を用いているので、耐久性の高い放熱基である。 As shown in FIG. 7, the heat radiating board 10 of the present embodiment, the binding layer 41 mainly composed of sequentially stacked active metal layers 31, 32 and copper on both principal surfaces of the ceramic base plate 1 And at least one copper plate mainly composed of copper or a copper alloy disposed on each of the bonding layers 41 and 42. The copper plate on one main surface is used as the circuit member 21, and the copper plate on the other main surface is used as the heat dissipation member 22. The radiating board 10 is a sintered body adjacent after sintering is easily detached, because of the use of ceramic board 1 mechanical properties is hardly impaired, a highly durable radiating board.

放熱基10を構成する回路部材21は、例えば、長さが5mm以上60mm以下,幅が5mm以上60mm以下である。厚みは回路部材21を流れる電流の大きさや回路部材21に搭載される電子部品(図示しない)の発熱量等によって決められ、例えば、0.5mm以上5mm以下である。 Circuit member 21 constituting the heat radiation board 10, for example, is 5mm or 60mm or less in length, width is 5mm or more 60mm or less. The thickness is determined by the magnitude of the current flowing through the circuit member 21, the amount of heat generated by an electronic component (not shown) mounted on the circuit member 21, and the thickness is, for example, 0.5 mm or more and 5 mm or less.

また、放熱基10を構成する放熱部材22は、発熱した電子部品(図示しない)から熱を逃がすという機能を有し、例えば、長さが5mm以上60mm以下,幅が5mm以上60mm以下,厚みが0.5mm以上5mm以下である。 Further, the heat radiating member 22 configuring the heat radiating base plate 10 has the function of dissipating heat from a heating electronic component (not shown), for example, is 5mm or 60mm or less in length, width 5mm or 60mm or less, the thickness Is 0.5 mm or more and 5 mm or less.

ここで、銅または銅合金を主成分とする銅板とは、回路部材21または放熱部材22に対して、主成分である銅または銅合金が90質量%以上含まれる銅板をいい、無酸素銅、タフピッチ銅、りん脱酸銅等の銅を用いるのがよい。特に、無酸素銅のうち、銅の含有率が99.995質量%以上の線形結晶無酸素、単結晶状高純度無酸素銅および真空溶解銅
のいずれかを用いることが好適である。なぜなら、銅の含有率が高いほど電気抵抗が低く、熱伝導率が高いため、回路特性(電子部品の発熱を抑制し、電力損失を少なくする特性)や放熱特性が優れるからである。また、銅の含有率が高いほど、降伏応力が低く、高温下で塑性変形しやすくなるため、結合層41および回路部材21,結合層42および放熱部材22の各接合強度が高くなり、より信頼性が高くなるからである。
Here, the copper plate containing copper or a copper alloy as a main component refers to a copper plate containing 90 mass% or more of copper or a copper alloy as a main component with respect to the circuit member 21 or the heat radiating member 22, and oxygen-free copper, It is preferable to use copper such as tough pitch copper or phosphorus deoxidized copper. In particular, among oxygen-free copper, it is preferable to use any of linear crystal oxygen-free, single-crystal high-purity oxygen-free copper, and vacuum-dissolved copper having a copper content of 99.995% by mass or more. This is because the higher the copper content, the lower the electrical resistance and the higher the thermal conductivity, so that the circuit characteristics (characteristics for suppressing the heat generation of electronic parts and reducing the power loss) and the heat radiation characteristics are excellent. In addition, the higher the copper content, the lower the yield stress and the easier the plastic deformation at high temperatures. Therefore, the bonding strength of the bonding layer 41, the circuit member 21, the bonding layer 42, and the heat dissipation member 22 increases, and more reliable. This is because the sex becomes higher.

なお、本実施形態における銅板とは、薄いシート状のもの、例えば銅箔であってもよい。   The copper plate in the present embodiment may be a thin sheet, for example, a copper foil.

セラミック基1の両主面上に形成される活性金属層31,32は、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等の4族元素のような活性金属を含むAg−Cu合金からなり、それぞれ回路部材21と結合層41,放熱部材22と結合層42を結合する。 Active metal layers 31 and 32 formed on both principal surfaces of the ceramic base plate 1 is, for example, titanium (Ti), zirconium (Zr), Ag containing active metals such as Group 4 element of hafnium (Hf) or the like It is made of a Cu alloy and bonds the circuit member 21 and the coupling layer 41, and the heat dissipation member 22 and the coupling layer 42, respectively.

図7に示すように、銅を主成分とする結合層41,42を備えることにより、結合層41,42の主成分である銅の拡散作用により、300℃以上500℃以下の低温で回路部材21および放熱部材22をそれぞれ結合層41,42に接合することができる。また、結合層41,42は変形しやすいため、低い荷重でも接合でき、冷却時に発生する熱応力に対しても変形によって緩和することができる。このため、残留応力を小さくすることができる。さらに、より厚みの大きな回路部材21または放熱部材22を接合しても反りが発生しにくく、放熱特性に優れた放熱基10を得ることができる。また、場合によっては電子部品(図示しない)を冷却するために通常用いられるヒートシンクも不要にすることができる。 As shown in FIG. 7, by providing the bonding layers 41 and 42 mainly composed of copper, the circuit member is formed at a low temperature of 300 ° C. or more and 500 ° C. or less by the diffusion action of copper which is the main component of the bonding layers 41 and 42. 21 and the heat radiating member 22 can be joined to the coupling layers 41 and 42, respectively. Further, since the bonding layers 41 and 42 are easily deformed, they can be joined even with a low load, and thermal stress generated during cooling can be relaxed by deformation. For this reason, a residual stress can be made small. Furthermore, a larger circuit member 21 or the warping be joined radiating member 22 hardly occurs in the thickness, it is possible to obtain an excellent heat radiation board 10 to heat dissipation characteristics. In some cases, a heat sink usually used for cooling an electronic component (not shown) can be eliminated.

銅を主成分とする結合層41,42とは、結合層41,42に対して、主成分である銅が90質量%以上含まれる層をいい、それぞれ回路部材21,放熱部材22を強固に結合する。これらの層は、無酸素銅,タフピッチ銅,りん脱酸銅等の銅であることがよい。特に、無酸素銅のうち、銅の含有率が99.995質量%以上の線形結晶無酸素銅、単結晶状高純度無酸素銅および真空溶解銅のいずれかを用いることが好適である。   The bonding layers 41 and 42 containing copper as a main component are layers containing 90% by mass or more of copper as a main component with respect to the bonding layers 41 and 42, and the circuit member 21 and the heat dissipation member 22 are strengthened respectively. Join. These layers are preferably copper such as oxygen-free copper, tough pitch copper, and phosphorus deoxidized copper. In particular, among oxygen-free copper, it is preferable to use any of linear crystalline oxygen-free copper, single-crystal high-purity oxygen-free copper, and vacuum-melted copper having a copper content of 99.995% by mass or more.

図8に示す本実施形態の放熱基10は、セラミック基の両主面上に順次積層された活性金属層31,32および銅を主成分とする結合層41,42と、各結合層41,42上に配置された銅または銅合金を主成分とする少なくとも1枚の銅板と、を有してなる。また、一方の前記主面上の銅板を回路部材21として、他方の前記主面上の銅板を放熱部材22として用い、回路部材21および放熱部材22の各端面21a,22aが結合層31,32の各端面31a,32bより内側にあることを特徴とする。 Radiating board 10 of the present embodiment shown in FIG. 8, a bonding layer 41 composed mainly of sequentially stacked active metal layers 31, 32 and copper on both principal surfaces of the ceramic base plate 1, each And at least one copper plate mainly composed of copper or a copper alloy disposed on the bonding layers 41 and. Further, the copper plate on one of the main surfaces is used as the circuit member 21, and the copper plate on the other main surface is used as the heat radiating member 22, and the end surfaces 21 a and 22 a of the circuit member 21 and the heat radiating member 22 are coupled layers 31 and 32. It is characterized by being inside the respective end faces 31a, 32b.

図8に示すように、回路部材21および放熱部材22の各端面21a,22aをそれぞれ結合層31,32の各端面31a,32aより内側にすることにより、回路部材21および放熱部材22の各端面21a,22aの近傍に、加熱接合後の冷却工程で発生する応力は結合層31,32内で緩和されやすくなる。このため、セラミック基1に発生する応力は減少し、より反りの小さい放熱基10とすることができる。特に、回路部材21の端面21a,結合層31の端面31a間の距離は0.2mm以上1mm以下,放熱部材22の端面22a,結合層32の端部32a間の距離は0.2mm以上1mm以下であることが好適である。 As shown in FIG. 8, the end surfaces 21 a and 22 a of the circuit member 21 and the heat radiating member 22 are located inside the end surfaces 31 a and 32 a of the coupling layers 31 and 32, respectively. In the vicinity of 21a and 22a, the stress generated in the cooling step after heat bonding is easily relaxed in the bonding layers 31 and 32. Therefore, stress generated in the ceramic base plate 1 is reduced, it can be less heat dissipation board 10 with more warped. In particular, the distance between the end surface 21a of the circuit member 21 and the end surface 31a of the coupling layer 31 is 0.2 mm or more and 1 mm or less, and the distance between the end surface 22a of the heat dissipation member 22 and the end portion 32a of the coupling layer 32 is 0.2 mm or more and 1 mm or less. It is preferable that

また、結合層31,32は、そのビッカース硬度(H)が0.5GPa以下であることが好ましい。結合層31,32のビッカース硬度(H)を0.5GPa以下とすることで、結合層31,32は容易に弾性変形するので、回路部材21および放熱部材22との接合強度を高くすることができる。特にビッカース硬度(H)は0.2GPa以上0
.5GPa以下であることがより好ましい。
The bonding layers 31 and 32 preferably have a Vickers hardness (H v ) of 0.5 GPa or less. By setting the Vickers hardness (H v ) of the bonding layers 31 and 32 to 0.5 GPa or less, the bonding layers 31 and 32 are easily elastically deformed, so that the bonding strength between the circuit member 21 and the heat dissipation member 22 is increased. Can do. In particular, the Vickers hardness (H v ) is 0.2 GPa or more and 0
. More preferably, it is 5 GPa or less.

なお、結合層31,32のビッカース硬度Hvは、JIS Z 2244−2003に準拠して測定すればよく、測定に用いる試験荷重は、結合層31,32の厚みに依存し、例えば、98mN(ミリニュートン)あるいは196mNとすればよい。   Note that the Vickers hardness Hv of the bonding layers 31 and 32 may be measured in accordance with JIS Z 2244-2003, and the test load used for the measurement depends on the thickness of the bonding layers 31 and 32, for example, 98 mN (mm Newton) or 196 mN.

図9に示すように、他の実施形態の放熱基10は、放熱基10は、セラミック基1と、セラミック基1の両主面上に順次積層された活性金属層31,32および銅を主成分とする結合層41,42と、各結合層41,42上に配置された銅または銅合金を主成分とする少なくとも1枚の銅板と、を有してなる。また、一方の前記主面上の銅板を回路部材21として、他方の前記主面上の銅板を放熱部材42として用い、回路部材21が平面視で複数行、複数列に区分配置されていることを特徴とする。 As shown in FIG. 9, the radiating board 10 in another embodiment, the heat radiating board 10 includes a ceramic base plate 1, the active metal layer 31 which are sequentially laminated on both main surfaces of the ceramic base plate 1 And bonding layers 41 and 42 mainly composed of copper, and at least one copper plate mainly composed of copper or a copper alloy disposed on each of the bonding layers 41 and 42. Moreover, the copper plate on one said main surface is used as the circuit member 21, the copper plate on the other said main surface is used as the heat radiating member 42, and the circuit member 21 is divided and arranged in a plurality of rows and a plurality of columns in plan view. It is characterized by.

セラミック基1は、図9に示すX方向の長さが30mm以上80mm以下、Y方向の長さが10mm以上80mm以下であり、厚みは用途によって異なるが、熱抵抗を抑制し、耐久性を維持するという観点から、厚みは0.13mm以上0.64mm以下とすることが好適である。このようなセラミック基1は、セラミック基1を構成する全成分100%のうち、窒化珪素が80質量%以上であることが好適である。その他の添加成分として、酸化エルビウム、酸化マグネシウム、酸化硅素、酸化モリブデンおよび酸化アルミニウムの少なくともいずれか1種が含まれる。機械的特性としては、3点曲げ強度が750MPa以上、ヤング率が300Gpa以上、ビッカース硬度(H)が13GPa以上、破壊靱性(K1C)が5MPam1/2以上であることが好ましい。機械的特性をこの範囲とすることでセラミック基1は、信頼性、即ち耐クリープ性やヒートサイクルに対する耐久性を向上させることができる。 Ceramic board 1, is 30mm or more 80mm or less length of the X direction shown in FIG. 9, the length of the Y-direction is at 10mm or more 80mm or less, the thickness varies depending on the application, but to suppress thermal resistance, durability From the viewpoint of maintaining the thickness, the thickness is preferably 0.13 mm or more and 0.64 mm or less. Such ceramic board 1, out of all components 100% constituting the ceramic base plate 1, it is preferable that silicon nitride is 80% by mass or more. As other additive components, at least one of erbium oxide, magnesium oxide, silicon oxide, molybdenum oxide, and aluminum oxide is included. As mechanical properties, it is preferable that the three-point bending strength is 750 MPa or more, the Young's modulus is 300 Gpa or more, the Vickers hardness (H v ) is 13 GPa or more, and the fracture toughness (K 1C ) is 5 MPam 1/2 or more. Ceramic base plate 1 the mechanical properties by this range can improve the durability against reliability, ie creep resistance and heat cycle.

なお、3点曲げ強度については、放熱基10から活性金属層31,32、結合層41,42,回路部材21および放熱部材22をエッチングにより除去した後、JIS R 1601−1995に準拠して測定すればよい。但し、セラミック基1の厚みが薄く、セラミック基1から切り出した試験片の厚みを3mmとすることができない場合、セラミック基1の厚みをそのまま試験片の厚みとしてもよい。 Note that the three-point bending strength, the active metal layer 31 from the heat radiating board 10, bonding layer 41, after which the circuit member 21 and the heat radiating member 22 is removed by etching, in compliance with JIS R 1601-1995 Just measure. However, a small thickness of the ceramic base plate 1, if it is not possible to the thickness of the test piece cut out from the ceramic base plate 1 and 3 mm, the thickness of the ceramic base plate 1 may be a thickness of intact specimens.

また、ヤング率についても、放熱基10から活性金属層31,32、結合層41,42,回路部材21および放熱部材22をエッチングにより除去した後、JIS R 1602−1995で規定される超音波パルス法に準拠して測定すればよい。
但し、セラミック基1の厚みが薄く、セラミック基1から切り出した試験片の厚みを10mmとすることができない場合、セラミック基1の厚みをそのまま試験片の厚みとしてもよい。
As for the Young's modulus, after the active metal layer 31 from the heat radiating board 10, bonding layer 41, the circuit member 21 and the heat radiating member 22 is removed by etching, ultrasonic defined by JIS R 1602-1995 Measurement may be performed in accordance with the pulse method.
However, a small thickness of the ceramic base plate 1, if it is not possible to the thickness of the test piece cut out from the ceramic base plate 1 and 10 mm, the thickness of the ceramic base plate 1 may be a thickness of intact specimens.

ビッカース硬度(H)および破壊靱性(K1C)については、それぞれJIS R 1610−2003,JIS R 1607−1995で規定される圧子圧入法(IF法)に準拠して測定すればよい。なお、セラミック基1の厚みが薄く、セラミミック基1より切り出した試験片の厚みを、それぞれJIS R 1610−2003,JIS R 1607−1995 圧子圧入法(IF法)で規定する0.5mm,3mmとすることができない場合には、セラミック基1の厚みをそのまま試験片の厚みとして評価してその結果が上記数値を満足することが好適である。ただし、そのままの厚みで評価して上記数値を満足することができないほどにセラミック基1の厚みが薄いときには、セラミック基1の厚みに応じて押し込み荷重を変更し、その結果を基に0.5mmおよび3mmのときのビッカース硬度(Hv)および破壊靱性(K1C)をシミュレーションにより推定すればよい。 The Vickers hardness (H v ) and fracture toughness (K 1C ) may be measured according to the indenter press-in method (IF method) defined by JIS R 1610-2003 and JIS R 1607-1995, respectively. Incidentally, 0.5 mm specified in small thickness of the ceramic base plate 1, the thickness of the test piece cut from Seramimikku board 1, respectively JIS R 1610-2003, JIS R 1607-1995 indentation method (IF method), If it is not possible to 3mm, the result was evaluated thickness of the ceramic base plate 1 as the thickness of the intact specimens it is preferable to satisfy the above values. However, when the thickness of the ceramic base plate 1 is thin enough not able to satisfy the above values and evaluated as it thickness, pushing to change the load in accordance with the thickness of the ceramic base plate 1, on the basis of the result 0 Vickers hardness (Hv) and fracture toughness (K 1C ) at .5 mm and 3 mm may be estimated by simulation.

また、電気的特性としては体積固有抵抗が、常温で1014Ω・cm以上、300℃で1012Ω・cm以上であることが好ましい。 The volume resistivity as electrical properties, room temperature at 10 14 Ω · cm or more and 300 ° C. at 10 12 Ω · cm or more.

このセラミック基1の両主面上に形成される活性金属層31,32は、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等の4族元素のような活性金属を含むAg−Cu合金からなり、それぞれ回路部材21と結合層41,放熱部材22と結合層42を結合する。 Active metal layers 31 and 32 formed on both principal surfaces of the ceramic base plate 1, for example, a titanium (Ti), zirconium (Zr), active metals such as Group 4 element such as hafnium (Hf) It consists of an Ag-Cu alloy, and couples the circuit member 21 and the coupling layer 41, and the heat dissipation member 22 and the coupling layer 42, respectively.

活性金属層31,32のO−O’線における1個当たりのX方向の長さは例えば12.4mm以上24.4mm以下、Y方向の長さは16.4mm以上20.4mm以下、厚みは10μm以上20μm以下である。   The length in the X direction per one of the OO ′ lines of the active metal layers 31 and 32 is, for example, 12.4 mm to 24.4 mm, the length in the Y direction is 16.4 mm to 20.4 mm, and the thickness is 10 μm or more and 20 μm or less.

回路部材21は、1個当たりのX方向の長さは10mm以上17mm以下、Y方向の長さは10mm以上20mm以下、厚みは回路部材21を流れる電流の大きさや回路部材21に搭載される電子部品(図示しない)の発熱量等によって決められ、例えば、0.5mm以上5mm以下である。   Each circuit member 21 has a length in the X direction of 10 mm or more and 17 mm or less, a length in the Y direction of 10 mm or more and 20 mm or less, and the thickness of the circuit member 21 is the magnitude of the current flowing through the circuit member 21 or the electronic components mounted on the circuit member 21. It is determined by the amount of heat generated by a component (not shown), and is, for example, not less than 0.5 mm and not more than 5 mm.

また、放熱部材22は、発熱した電子部品(図示しない)から熱を逃がすという機能を有し、例えば、1個当たりのX方向の長さは10mm以上17mm以下、Y方向の長さは10mm以上20mm以下、厚みは0.5mm以上5mm以下である。   The heat dissipation member 22 has a function of releasing heat from a heated electronic component (not shown). For example, the length in the X direction is 10 mm or more and 17 mm or less, and the length in the Y direction is 10 mm or more. The thickness is 20 mm or less and the thickness is 0.5 mm or more and 5 mm or less.

このように、回路部材21が平面視で複数行、複数列に配置されている場合には、同じ個数の回路部材が1行または1列に配置された放熱基板10に比べ、セラミック基板1の形状を正方形または正方形に近い長方形にすることができる。このため、放熱基10の製造工程で発生する放熱基10の反りを抑制することができる。 Thus, when the circuit member 21 are disposed a plurality of rows, a plurality of rows in plan view, than the heat radiating board 10 on which a circuit element having the same number are arranged in one row or column, ceramic board One shape can be a square or a rectangle close to a square. Therefore, it is possible to suppress warpage of the heat radiation board 10 generated in the manufacturing process of the heat radiating board 10.

放熱基板10の反りについて図10を用いて説明する。図10において、回路部材21が平面視で複数行、複数列に区分配置された放熱基板10を示す。図10(b),(d)に示すように、いずれの場合も放熱基板10の反りは実質的にセラミック基板1の反りで示すことができる。合計した体積が等しい回路部材21を平面視で1行、複数列に配置した放熱基10に比べ、回路部材21を複数行、複数列に配置した放熱基10は、セラミック基1の長手方向(X方向)の長さを短くすることができる。このため、反りの曲率半径(R)が同じである場合、図10(b)に示すセラミック基1に発生する反り(H)は、図10(d)に示すセラミック基1に発生する反り(H)より小さくすることができる。 The warpage of the heat radiation board 10 will be described with reference to FIG. 10. 10 illustrates a plurality of rows, the heat radiating board 10 which is divided disposed in a plurality of columns circuit member 21 in plan view. FIG. 10 (b), the can shown in (d), the warpage of the heat radiation board 10 in any case substantially ceramic base plate 1 warpage. Total 1 line volume equal circuit member 21 in plan view has, compared with the heat radiating base plate 10 arranged in a plurality of rows, a plurality of rows of the circuit member 21, the heat radiating base plate 10 arranged in a plurality of rows, the ceramic base plate 1 The length in the longitudinal direction (X direction) can be shortened. Therefore, if a warp of the radius of curvature (R) is the same, warping (H 1) that occur in the ceramic base plate 1 shown in FIG. 10 (b), occurs in the ceramic base plate 1 shown in FIG. 10 (d) The warpage (H 2 ) can be made smaller.

また、回路部材21は、放熱部材22より体積が大きいことが好ましい。これは、回路部材21,放熱部材22間の体積差により放熱基10に発生する反りの向きを制御することができるためであり、本実施形態の放熱基10では、回路部材21は放熱部材22よりその単位個数当たりの体積を大きくすることで、放熱部材22側に比較して回路部材21側の剛性が高くなる。このため、放熱基に発生する反りの向きを放熱部材22側に凸になるように制御することができ、放熱部材22とヒートシンク(不図示)との密着性を向上させることができる。これにより、放熱基10の放熱特性をさらに上げることができる。特に、両主面に形成する回路部材21,放熱部材22の個数が同一で、回路部材21および放熱部材22が対応する位置に形成してある場合、単位個数当たりの体積差は20mm以上であることがより好ましい。 The circuit member 21 preferably has a larger volume than the heat dissipation member 22. This is because it is possible to control the orientation of the warp generated in the heat radiating board 10 by the volume difference between the circuit member 21, the heat radiating member 22, the heat radiating board 10 of the present embodiment, circuit member 21 is heat radiation By making the volume per unit number larger than that of the member 22, the rigidity on the circuit member 21 side becomes higher than that on the heat radiating member 22 side. Therefore, the direction of the warp that occurs in the heat radiating board 1 0 can be controlled so as to be convex to the heat radiating member 22 side, it is possible to improve the adhesion between the heat dissipating member 22 sink (not shown) . Accordingly, the heat dissipation characteristics of the heat radiating board 10 can be further increased. In particular, when the number of circuit members 21 and heat radiating members 22 formed on both main surfaces is the same, and the circuit member 21 and the heat radiating members 22 are formed in corresponding positions, the volume difference per unit number is 20 mm 3 or more. More preferably.

さらに、回路部材21は、放熱部材22より硬度が高いことが好ましい。回路部材21,放熱部材22間の硬度差により放熱基10に発生する反りの向きを制御することができる。回路部材21は、放熱部材22よりその硬度を高くすることで、放熱部材21の剛
性が高くなる。このため、放熱基10に発生する反りの向きを放熱部材22側に凸になるように制御することができ、放熱部材22とヒートシンク(図示しない)との密着性を上げられる。これにより、放熱基10の放熱特性をさらに上げることができる。特に、回路部材21および放熱部材22のビッカース硬度(Hv)は、それぞれ0.7GPa以上1.2GPa以下、0.5GPa以上1.0GPa以下、その硬度差を0.2GPa以上とすることが好適である。
Furthermore, the circuit member 21 is preferably harder than the heat dissipation member 22. It is possible to control the orientation of the warp circuit member 21, generated in the heat radiating board 10 by the hardness difference between the heat radiating member 22. The circuit member 21 has higher rigidity than the heat dissipation member 22, thereby increasing the rigidity of the heat dissipation member 21. Therefore, the direction of the warp that occurs in the heat dissipation board 10 can be controlled so as to be convex to the heat radiating member 22 side, it raised the adhesion between the heat dissipating member 22 and the heat sink (not shown). Accordingly, the heat dissipation characteristics of the heat radiating board 10 can be further increased. In particular, the Vickers hardness (Hv) of the circuit member 21 and the heat dissipation member 22 is preferably 0.7 GPa or more and 1.2 GPa or less, 0.5 GPa or more and 1.0 GPa or less, and the hardness difference thereof is preferably 0.2 GPa or more. is there.

なお、回路部材21および放熱部材22の各体積は、3次元形状測定器、あるいは倍率を2〜10倍に設定して金属顕微鏡、画像計測器等を用いて測定でき、回路部材21および放熱部材22のビッカース硬度(Hv)は、JIS Z 2244−2003に準拠して測定すればよく、測定に用いる試験荷重は、回路部材21および放熱部材22の各厚みに依存し、例えば196mN(ミリニュートン)とすればよい。   In addition, each volume of the circuit member 21 and the heat radiating member 22 can be measured using a three-dimensional shape measuring instrument or a metal microscope, an image measuring instrument, etc. by setting the magnification to 2 to 10 times. The Vickers hardness (Hv) of 22 may be measured in accordance with JIS Z 2244-2003, and the test load used for the measurement depends on the thicknesses of the circuit member 21 and the heat radiating member 22, for example, 196 mN (millinewton) And it is sufficient.

放熱基板10は図11に示すような放熱基10としてもよい。この実施形態によれば、結合層41が部分的に複数の回路部材21にわたって形成されており、結合層41が複数の回路部材21を接続する配線として作用する。このため、ワイヤーによる配線が不要となり、配線が簡略化される。 Radiating board 10 may be a heat radiating board 10 as shown in FIG. 11. According to this embodiment, the coupling layer 41 is partially formed over the plurality of circuit members 21, and the coupling layer 41 functions as a wiring connecting the plurality of circuit members 21. For this reason, the wiring by a wire becomes unnecessary and wiring is simplified.

次に、本実施形態のセラミック基板1の製造方法の一例について説明する。 Next, an example of a method of manufacturing the ceramic base plate 1 of the present embodiment.

セラミック基1の主成分が窒化珪素である場合、窒化珪素質粉末のβ化率が40%以下であって、組成式Si6−ZAl8−Zにおける固溶量zが0.5以下である窒化珪素質粉末と、添加成分として酸化エルビウム、酸化マグネシウム、酸化硅素、酸化モリブデンおよび酸化アルミニウムの少なくともいずれか1種からなる粉末とを、ボールミル,バレルミル,回転ミル,振動ミル,ビーズミル,サンドミル,アジテーターミル等を用いて湿式混合し、粉砕してスラリーとする。 If the main component of the ceramic base plate 1 is a silicon nitride, a is β ratio of siliceous nitride powder below 40%, the composition formula Si 6-Z Al Z O Z N solid solution amount z of 8-Z is A ball nitride, a barrel mill, a rotary mill, a vibration mill, and a silicon nitride powder having a content of 0.5 or less and a powder comprising at least one of erbium oxide, magnesium oxide, silicon oxide, molybdenum oxide and aluminum oxide as an additive component , Bead-mixed using a bead mill, sand mill, agitator mill, etc., and pulverized into a slurry.

ここで、添加成分である酸化エルビウム、酸化マグネシウム、酸化硅素、酸化モリブデンおよび酸化アルミニウムの少なくともいずれか1種からなる粉末の合計は、窒化珪素質粉末とこれら添加成分の粉末の合計との総和を100体積%とした場合に、2〜20質量%になるようにすればよい。   Here, the total of the powder composed of at least one of erbium oxide, magnesium oxide, silicon oxide, molybdenum oxide and aluminum oxide, which are additive components, is the sum of the silicon nitride powder and the sum of the powders of these additive components. What is necessary is just to make it become 2-20 mass% when it is set as 100 volume%.

窒化珪素には、その結晶構造の違いにより、α型およびβ型という2種類の窒化珪素が存在する。α型は低温で、β型は高温で安定であり、1400℃以上でα型からβ型への相転移が不可逆的に起こる。   There are two types of silicon nitride, α-type and β-type, due to the difference in crystal structure of silicon nitride. The α type is stable at low temperatures, the β type is stable at high temperatures, and the phase transition from α type to β type occurs irreversibly at 1400 ° C. or higher.

ここで、β化率とは、X線回折法で得られたα(102)回折線とα(210)回折線との各ピーク強度の和をIα、β(101)回折線とβ(210)回折線との各ピーク強度の和をIβとした場合に、次の式によって算出される値である。 Here, the β conversion is the sum of the peak intensities of the α (102) diffraction line and the α (210) diffraction line obtained by the X-ray diffraction method, I α , β (101) diffraction line and β ( 210) This is a value calculated by the following equation, where I β is the sum of peak intensities with diffraction lines.

β化率={Iβ/(Iα+Iβ)}×100 (%) 窒化珪素質粉末のβ化率は、セラミックス基1の強度および破壊靱性に影響する。β化率が40%以下の窒化珪素質粉末を用いるのは、強度および破壊靱性をともに高くすることができるからである。特に、β化率が10%以下の窒化珪素質粉末を用いるのが好ましく、これにより、固溶量zを0.1以上にすることができる。 beta ratio = {I β / (I α + I β)} × 100 (%) β ratio of silicon nitride powder affects the strength and fracture toughness of the ceramic base plate 1. The reason why a silicon nitride powder having a β conversion ratio of 40% or less is used is that both strength and fracture toughness can be increased. In particular, it is preferable to use a silicon nitride-based powder having a β conversion rate of 10% or less, whereby the solid solution amount z can be made 0.1 or more.

窒化珪素質粉末の粉砕で用いるメディアは、窒化珪素,ジルコニア,アルミナ等の各種セラミックスからなるメディアを用いることができるが、不純物が混入しにくい材質、あるいは同じ材料組成の窒化珪素セラミックスからなるメディアが好適である。   The media used for pulverizing the silicon nitride-based powder can be media made of various ceramics such as silicon nitride, zirconia, and alumina. Is preferred.

なお、窒化珪素質粉末の粉砕は、粒度分布曲線の累積体積の総和を100%とした場合の累積体積が90%となる粒径(D90)が3μm以下となるまで粉砕することが、焼結性の向上および結晶組織の針状化の点から好ましい。粉砕によって得られる粒度分布は、メディアの外径,メディアの量,スラリーの粘度,粉砕時間等で調整することができる。スラリーの粘度を下げるには分散剤を添加することが好ましく、短時間で粉砕するには、予め累積体積50%となる粒径(D50)が1μm以下の粉末を用いることが好ましい。 Note that the silicon nitride powder is pulverized until the particle diameter (D 90 ) at which the cumulative volume is 90% when the total cumulative volume of the particle size distribution curve is 100% is 3 μm or less. This is preferable from the viewpoints of improvement in cohesion and acicularization of the crystal structure. The particle size distribution obtained by grinding can be adjusted by the outer diameter of the media, the amount of the media, the viscosity of the slurry, the grinding time, and the like. In order to reduce the viscosity of the slurry, it is preferable to add a dispersant, and in order to pulverize in a short time, it is preferable to use a powder having a particle size (D 50 ) of 1 μm or less that has a cumulative volume of 50% in advance.

そして、得られたスラリーを粒度200メッシュより細かいメッシュからなる篩を通した後に乾燥させて窒化珪素を主成分とする顆粒(以下、窒化珪素質顆粒という。)を得る。なお、スラリーの段階でパラフィンワックスやポリビニルアルコール(PVA),ポリエチレングリコール(PEG)等の有機バインダを粉末100質量%に対して1質量%以上10質量%以下で混合することが、成形性のために好ましい。乾燥は、スプレードライヤー等を用いた噴霧乾燥法により乾燥させてもよく、他の方法であってもよい。   The obtained slurry is passed through a sieve having a particle size smaller than 200 mesh and then dried to obtain granules containing silicon nitride as a main component (hereinafter referred to as silicon nitride granules). For moldability, it is possible to mix an organic binder such as paraffin wax, polyvinyl alcohol (PVA), or polyethylene glycol (PEG) at a slurry level of 1% by mass or more and 10% by mass or less with respect to 100% by mass of the powder. Is preferable. The drying may be performed by a spray drying method using a spray dryer or the like, or may be another method.

そして、窒化珪素質顆粒をロールコンパクション法等の粉末圧延法を用いてシート状に成形してセラミックシートとし、このセラミックシートを所定の長さに切断してセラミック成形体を得る。表面が複数方向へ繰り返し凹凸形状をなしている突起1cが形成されたセラミック基1を得る場合、予め粘度を所定以上とした上記スラリーをシリンジに注入し、このシリンジからスラリーをセラミック成形体の表面に所定量滴下して、乾燥すればよい。 Then, the silicon nitride granules are formed into a sheet by using a powder rolling method such as a roll compaction method to form a ceramic sheet, and the ceramic sheet is cut into a predetermined length to obtain a ceramic formed body . If the front surface to obtain a ceramic base plate 1 projecting 1c which forms a concavo-convex shape is formed repeatedly to multiple directions, by injecting the slurry with the viscosities in a predetermined amount or more to the syringe, the slurry of the ceramic molded body from the syringe A predetermined amount may be dropped on the surface of the substrate and dried.

ここで、突起1cの表面を半球面状にするには、セラミック成形体の表面に滴下するスラリーの粘度を10Pa・s以上にすればよい。 Here, in the surface of the collision caused 1c hemispherical shape may be the viscosity of the slurry to be dropped on the surface of the ceramic body than 10 Pa · s.

また、突起1cが等間隔に配置されたセラミック基1を得るには、複数のシリンジを等間隔に配置して、上記スラリーをセラミック成形体の表面に所定量滴下して、乾燥すればよい。 Further, in order to obtain a ceramic base plate 1 which collision caused 1c are arranged at equal intervals, by placing a plurality of syringes at equal intervals, by dropping a predetermined amount of the slurry on the surface of the ceramic molded body, if dried Good.

なお、突起1cの高さが16μm以上52μm以下であるセラミック基1を得るには、セラミック成形体における突起の高さを20μm以上65μm以下にすればよい。 Note that collision to the height of the raised 1c to obtain a ceramic base plate 1 is 16μm or more 52μm or less, it may be the height of the protrusions in the ceramic molded body to 20μm or 65μm or less.

このようにして得られた複数のセラミック成形体を焼成炉内で積層してから焼成炉内を窒素雰囲気として、1800℃以上2000℃以下で5〜40時間保持することで本実施形態のセラミック基1を得ることができる。 The ceramic substrate of the present embodiment is obtained by laminating a plurality of ceramic molded bodies thus obtained in a firing furnace and holding the inside of the firing furnace in a nitrogen atmosphere at 1800 ° C. or more and 2000 ° C. or less for 5 to 40 hours. The board 1 can be obtained.

次に、本実施形態の放熱基板10の製造方法について説明する。 Next, a method for manufacturing the radiator board 10 of the present embodiment.

本実施形態の放熱基は、例えば、長さが30mm以上80mm以下、幅が10mm以上80mmmm、厚さが0.2mm以上0.64mm以下のセラミック基1の両主面上に、チタン(Ti),ジルコニウム(Zr),ハフニウム(Hf)などの4族元素のような活性金属を含むAg−Cu合金のペーストを、スクリーン印刷,ロールコーター法,刷毛塗り等で塗布し、このペースト上に厚みが0.1mm以上0.6mm以下である銅、銅合金,アルミニウム,アルミニウム合金、モリブデン合金,タングステン合金および黄銅のいずれかからなる金属箔を積層した後、800℃以上900℃以下で加熱溶融して、活性金属層31,32および結合層41,42を形成する。 Radiating board 1 0 of the present embodiment, for example, is 30mm or more 80mm or less in length, width 10mm or more 80Mmmm, the thickness is 0.2mm or more 0.64mm on the following two main surfaces of the ceramic base plate 1, A paste of Ag—Cu alloy containing an active metal such as a group 4 element such as titanium (Ti), zirconium (Zr), hafnium (Hf) is applied by screen printing, roll coater method, brush coating, etc. After laminating a metal foil made of any one of copper, copper alloy, aluminum, aluminum alloy, molybdenum alloy, tungsten alloy and brass having a thickness of 0.1 mm or more and 0.6 mm or less, The active metal layers 31 and 32 and the bonding layers 41 and 42 are formed by heating and melting.

次に、結合層41,42がそれぞれ回路部材21,放熱部材22と接する面を研磨し、結合層41,42とそれぞれ結合する面が平坦な回路部材21,放熱部材22をたとえば3行2列や3行3列の行列状に配置した後、ネオン,アルゴン等の不活性ガス,水素および窒素のいずれかから選ばれる雰囲気中、300℃以上500℃以下に加熱し、30MP
a以上の圧力で、接合る。そして、銅や銅合金が酸化しない温度(50℃)まで加圧したまま冷却し、この温度に到達した後、加圧を終了し、放熱基10を得る。回路部材21の具体的な回路の形成方法としては、予めプレス加工やエッチング加工によりパターニングして回路を形成した銅板を用いたり、接合後にエッチング,レーザー等により銅板にパターニングしたりすればよい。
Next, the surfaces where the coupling layers 41 and 42 are in contact with the circuit member 21 and the heat radiating member 22 are polished, and the circuit members 21 and the heat radiating members 22 that are flat with the bonding layers 41 and 42 are bonded to, for example, 3 rows and 2 columns. And arranged in a matrix of 3 rows and 3 columns, and then heated to 300 ° C. or more and 500 ° C. or less in an atmosphere selected from an inert gas such as neon and argon, hydrogen and nitrogen, and 30 MP
at a pressure greater than or equal to a, it joined. The copper or copper alloy is cooled while pressurized to a temperature (50 ° C.) which is not oxidized, after reaching this temperature, exit pressure, to obtain a heat radiation board 10. As a specific method of forming the circuit of the circuit member 21, a copper plate that has been patterned by pressing or etching in advance to form a circuit may be used, or after bonding, patterning may be performed on the copper plate by etching, laser, or the like.

以上のような製造方法で得られた放熱基は、焼成後に隣り合う焼結体同士が容易に引き離され、機械的特性がほとんど損なわれていない本実施形態のセラミック基1を用いているので、耐久性の高い放熱基板10とすることができる。 The resulting heat dissipating base plate 1 0 in the above-described manufacturing method, a sintered body adjacent after sintering is easily detached, a ceramic base plate 1 of this embodiment mechanical properties little impaired since it has, it may be a high heat dissipation board 10 durable.

また、本実施形態の電子装置は放熱基板10上に各種の電子部品を配置したものであるが、特に耐久性の高い放熱基10における回路部材21上に電子部品を搭載したことから、耐久性の高い電子装置とすることができる。 Further, since the electronic apparatus of the present embodiment but is obtained by placing the various electronic components on the heat dissipation board 10, equipped with electronic components on the circuit member 21 in the high heat dissipation board 10 particularly durable, A highly durable electronic device can be obtained.

以上述べたように、本実施形態の放熱基10は、上述の通り耐久性が高いため、絶縁ゲート・バイポーラ・トランジスタ(IGBT)素子、金属酸化膜形電界効果トランジスタ(MOSFET)素子,発光ダイオード(LED)素子,フリーホイーリングダイオード(FWD)素子,ジャイアント・トランジスター(GTR)素子等の半導体素子,昇華型サーマルプリンターヘッド素子,サーマルインクジェットプリンターヘッド素子等の各種電子部品で発生した熱を長期間に亘って放熱効率をほとんど低下させずに用いることができる。 As described above, the heat radiating board 10 of this embodiment has a high street durability described above, insulated gate bipolar transistor (IGBT) devices, metal-oxide field effect transistor (MOSFET) device, a light emitting diode (LED) element, free wheeling diode (FWD) element, giant transistor (GTR) element and other semiconductor elements, sublimation type thermal printer head element, thermal ink jet printer head element, etc. The heat dissipation efficiency can be used with almost no decrease.

なお、本発明の実施形態は上述した形態に限定されるものではない。例えば、セラミック基板を構成する結晶の平均結晶粒径より大きな高さの凹凸を有する突起を複数備えたセラミック基について述べたが、窪みが存在してもよい。 In addition, embodiment of this invention is not limited to the form mentioned above. For example, although described ceramic board having a plurality of impact force that have a concavo-convex of the average crystal grain size greater height than the crystals constituting the ceramic substrate, there may be depressions only.

以下、セラミック基1の主成分が酸化アルミニウム、窒化珪素および窒化アルミニウムである場合について説明する。 Hereinafter, the case main component of the ceramic base plate 1 is an aluminum oxide, silicon nitride and aluminum nitride.

まず、酸化アルミニウム質粉末と、添加成分として酸化マグネシウム,酸化カルシウムおよび酸化珪素の各種粉末とをボールミルを用いて湿式混合し、粉砕してスラリーとした。   First, aluminum oxide powder and various powders of magnesium oxide, calcium oxide and silicon oxide as additive components were wet-mixed using a ball mill and pulverized into a slurry.

ここで、酸化マグネシウム,酸化カルシウムおよび酸化珪素の各種粉末は、酸化アルミニウム質粉末とこれら各種粉末の合計100質量%に対して、それぞれ0.15質量%,0.15質量%,0.2質量%とした。   Here, the various powders of magnesium oxide, calcium oxide and silicon oxide are 0.15% by mass, 0.15% by mass and 0.2% by mass with respect to 100% by mass in total of the aluminum oxide powder and these various powders, respectively. %.

また、別途、窒化珪素質粉末のβ化率が40%である窒化珪素質粉末と、添加成分として酸化エルビウム質粉末とをボールミルを用いて湿式混合し、粉砕してスラリーとした。   Separately, silicon nitride powder having a β-conversion ratio of silicon nitride powder of 40% and erbium oxide powder as an additive component were wet-mixed using a ball mill, and pulverized into a slurry.

ここで、酸化エルビウム質粉末は、窒化珪素質粉末と酸化エルビウム質粉末との合計100質量%に対して8質量%とした。   Here, the erbium oxide powder was 8% by mass with respect to 100% by mass in total of the silicon nitride powder and the erbium oxide powder.

また、別途、窒化アルミニウム質粉末と、添加成分として、酸化ネオジウム,酸化イッテルビウムおよび酸化カルシウムの各種粉末とをボールミルを用いて湿式混合し、粉砕してスラリーとした。   Separately, aluminum nitride powder and various powders of neodymium oxide, ytterbium oxide and calcium oxide as additive components were wet-mixed using a ball mill, and pulverized into a slurry.

ここで、酸化ネオジウム,酸化イッテルビウムおよび酸化カルシウムの各種粉末は、窒化アルミニウム質粉末とこれら各種粉末の合計100質量%に対して、それぞれ0.9質
量%,1質量%,0.9質量%とした。
Here, the various powders of neodymium oxide, ytterbium oxide, and calcium oxide are 0.9% by mass, 1% by mass, and 0.9% by mass, respectively, with respect to the total amount of aluminum nitride powder and 100% by mass of these various powders. did.

そして、得られた上記各スラリーを粒度250メッシュの篩を通した後に乾燥させてそれぞれ酸化アルミニウム,窒化珪素,窒化アルミニウムを主成分とする顆粒(以下、それぞれ酸化アルミニウム質顆粒、窒化珪素質顆粒、窒化アルミニウム質顆粒という。)を得た。   Then, each of the obtained slurries is passed through a sieve having a particle size of 250 mesh and dried to give granules mainly composed of aluminum oxide, silicon nitride, and aluminum nitride (hereinafter referred to as aluminum oxide granules, silicon nitride granules, (Referred to as aluminum nitride granules).

なお、スラリーの段階でポリビニルアルコール(PVA)およびポリエチレングリコール(PEG)を粉末100質量%に対し5質量%で混合した。   In the slurry stage, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) were mixed at 5% by mass with respect to 100% by mass of the powder.

そして、ロールコンパクション法により酸化アルミニウム質顆粒、窒化珪素質顆粒および窒化アルミニウム質顆粒をそれぞれシート状に成形してセラミックシートとし、このセラミックシートを所定の長さに切断して、それぞれ主成分が酸化アルミニウム、窒化珪素,窒化アルミニウムであるセラミック成形体を得た。   The aluminum oxide granule, silicon nitride granule and aluminum nitride granule are each formed into a sheet by roll compaction to form a ceramic sheet. The ceramic sheet is cut into a predetermined length, and the main components are oxidized. A ceramic molded body made of aluminum, silicon nitride, or aluminum nitride was obtained.

そして、複数方向へ繰り返し凹凸形状をなしている突起を備えた平板を一部のセラミック成形体に押圧することにより、表面が複数方向へ繰り返し凹凸形状をなしているディンプル1dが形成されたセラミック成形体を得た。   And the ceramic shaping | molding in which the dimple 1d which the surface has repeatedly formed uneven | corrugated shape in multiple directions was formed by pressing the flat plate provided with the protrusion which has uneven | corrugated shape repeatedly in multiple directions to some ceramic molded bodies. Got the body.

なお、ディンプル1dの形状が表1,2に示す半球状および円錐状の試料については、セラミック成形体を押圧する平板に備えられている突起は、それぞれ半球状、円錐状とした。   Note that for the hemispherical and conical samples whose dimples 1d have the shapes shown in Tables 1 and 2, the protrusions provided on the flat plate that presses the ceramic molded body were hemispherical and conical, respectively.

また、ディンプル1dが形成されたセラミック成形体の一部には、セラミック成形体の主成分と同じ成分を主成分とするスラリーを複数のシリンジに注入し、これらのシリンジからスラリーをセラミック成形体の表面に所定量滴下して、乾燥させ、表面が複数方向へ繰り返し凹凸形状をなしている突起1cも形成した。   In addition, in a part of the ceramic molded body on which the dimples 1d are formed, slurry containing the same component as the main component of the ceramic molded body is injected into a plurality of syringes, and the slurry is transferred from these syringes to the ceramic molded body. A predetermined amount was dropped on the surface and dried to form a protrusion 1c having a concavo-convex shape repeatedly in a plurality of directions.

また、残りのセラミック成形体には、セラミック成形体の主成分と同じ成分を主成分とするスラリーを複数のシリンジに注入し、これらのシリンジからスラリーをセラミック成形体の表面に所定量滴下して、乾燥させ、表面が複数方向へ繰り返し凹凸形状をなしている突起1cが形成されたセラミック成形体を得た。   Further, in the remaining ceramic molded body, slurry containing the same component as the main component of the ceramic molded body is injected into a plurality of syringes, and a predetermined amount of slurry is dropped from the syringes onto the surface of the ceramic molded body. The ceramic molded body in which the protrusions 1c whose surface has a concavo-convex shape repeatedly formed in a plurality of directions was formed.

ここで、突起1cの形状が表1,2に示す半球状および円錐状の試料については、セラミック成形体の表面に滴下するスラリーの粘度をそれぞれ10Pa・s,18Pa・sとした。   Here, for the hemispherical and conical samples whose protrusions 1c have the shapes shown in Tables 1 and 2, the viscosities of the slurry dropped on the surface of the ceramic molded body were 10 Pa · s and 18 Pa · s, respectively.

このようにして得られたセラミック成形体を表1,2に示す試料毎に分けて焼成した。   The ceramic molded body thus obtained was fired separately for each sample shown in Tables 1 and 2.

具体的には、酸化アルミニウムを主成分とするセラミック成形体については、このセラミック成形体を表1,2に示す試料No.毎に、10個ずつ焼成炉内で積層した後、焼成炉内の雰囲気を大気雰囲気、その雰囲気の圧力を常圧として、1600℃で6時間保持することによりセラミック基1を得た。 Specifically, for the ceramic molded body mainly composed of aluminum oxide, this ceramic molded body is shown in Sample Nos. 1 and 2 shown in Tables 1 and 2. Each, after stacking in a firing furnace by 10, the atmosphere air atmosphere in the firing furnace, the pressure of the atmosphere as a normal pressure to obtain a ceramic base plate 1 by holding 6 hours at 1600 ° C..

また、窒化珪素を主成分とするセラミック成形体については、このセラミック成形体を表1,2に示す試料No.毎に10個ずつ焼成炉内で積層した後、焼成炉内の雰囲気を大気雰囲気、その雰囲気の圧力を常圧として、1970℃で40時間保持することによりセラミック基1を得た。 Further, for the ceramic molded body mainly composed of silicon nitride, this ceramic molded body is shown in Sample Nos. 1 and 2 shown in Tables 1 and 2. After stacking in a firing furnace by 10 pieces for each, air atmosphere the atmosphere in the firing furnace, the pressure of the atmosphere as a normal pressure to obtain a ceramic base plate 1 by holding 40 hours at 1970 ° C..

また、窒化アルミニウムを主成分とするセラミック成形体については、このセラミック
成形体を表1,2に示す試料No.毎に10個ずつ焼成炉内で積層した後、焼成炉内の雰囲気を窒素雰囲気、その雰囲気の圧力を常圧として、1700℃で10時間保持することによりセラミック基1を得た。
Further, for the ceramic molded body mainly composed of aluminum nitride, this ceramic molded body is shown in Sample Nos. 1 and 2 shown in Tables 1 and 2. After stacking in a firing furnace by 10 per atmosphere of nitrogen atmosphere in the firing furnace, the pressure of the atmosphere as a normal pressure to obtain a ceramic base plate 1 by holding at 1700 ° C. 10 hours.

なお、焼成後、いずれの試料もセラミック基1同士が固着していたため、積層方向の中央部に位置するセラミック基1より50mm離れた地点から、圧力が0.15MPaの空気を固着したセラミック基1に5秒間吹きつけ、脱離するセラミック基1の個数を数えた。そして、10個のセラミック基1に対し、脱離したセラミック基1の個数の比率を脱離率として表1,2に示した。なお、試料No.3〜11,36〜44,69〜77は参考例である。 Incidentally, after firing, since all samples were fixed ceramic board 1 together, from a point distant 50mm from the ceramic base plate 1 located in the central portion in the lamination direction, the pressure is fixed air 0.15MPa ceramic blown to board 1 5 seconds, it was counted and the number of the ceramic base plate 1 that is eliminated. Then, with respect to 10 pieces of the ceramic base plate 1, as shown in Tables 1 and 2 the ratio of the desorbed number of ceramic base plate 1 as the desorption rate. Sample No. Reference numerals 3 to 11, 36 to 44, and 69 to 77 are reference examples.

Figure 0005473407
Figure 0005473407

Figure 0005473407
Figure 0005473407

表1,2で、凹凸の種類がディンプルであって、ディンプル間(あるディンプルの中心とその隣のディンプルの中心との距離)が「等」と示されている試料は、突起がセラミッ
ク基1の第1面1aにおける長手方向および幅方向で等間隔である。また、ディンプルどうしの間隔が「不等」と示されている試料は、突起がセラミック基1の第1面1aにおける長手方向および幅方向で等間隔ではない。ここで、等間隔とは、ディンプル間の間隔の差が1mm以下をいうものとする。
In Tables 1 and 2, and the type of irregularities a dimple, the sample between the dimples (distance of the center of a dimple and the center of its neighboring dimples) are shown as "equal", the projection ceramic board The first surface 1a is equally spaced in the longitudinal direction and the width direction. Further, the sample spacing of dimples each other is indicated as "unequal", the projection is irregularly spaced in the longitudinal direction and the width direction of the first surface 1a of the ceramic base plate 1. Here, the equal interval means that the difference between the dimples is 1 mm or less.

表1,2で、凹凸の種類が突起であって、その間隔が「等」と示されている試料は、セラミック基1の第1面1aにおける長手方向および幅方向で等間隔に配置されているシリンジを用いたもの、その間隔が「不等」と示されている試料は、セラミック基1の第1面1aにおける長手方向および幅方向で不等間隔に配置されているシリンジを用いたものである。なお、等間隔の定義は、凹凸の種類がディンプルの場合と同様に、突起間(ある突起の中心とその隣の突起の中心との距離が1mm以下をいうものとする。)
表1,2で、凹凸の種類がディンプルおよび突起であって、その間隔が「等」と示されている試料は、突起がセラミック基1の第1面1aにおける長手方向および幅方向で等間隔に形成されている平板と、セラミック基1の第1面1aにおける長手方向および幅方向で等間隔に配置されているシリンジとを用いたもの、その間隔が「不等」と示されている試料は、突起がセラミック基1の第1面1aにおける長手方向および幅方向で等間隔に形成されている平板と、セラミック基1の第1面1aにおける長手方向および幅方向で不等間隔に配置されているシリンジとを用いたものである。
In Tables 1 and 2, a kind of uneven protrusions, the sample to which the interval is indicated as "equal" are equally spaced in the longitudinal direction and the width direction of the first surface 1a of the ceramic base plate 1 and are those using a syringe, sample the interval is indicated as "unequal" is use a syringe disposed at irregular intervals in the longitudinal direction and the width direction of the first surface 1a of the ceramic base plate 1 It was. In addition, the definition of equal intervals is between protrusions (the distance between the center of one protrusion and the center of the adjacent protrusion is 1 mm or less) as in the case where the type of unevenness is dimple.
In Tables 1 and 2, a type of irregularities dimples and protrusions, samples the interval is indicated as "equal", the projection is in the longitudinal direction and the width direction of the first surface 1a of the ceramic base plate 1 equal a flat plate which is formed in the interval, one using a syringe disposed at equal intervals in the longitudinal direction and the width direction of the first surface 1a of the ceramic base plate 1, the interval is shown as "unequal" samples unequal projection and flat plate are formed at equal intervals in the longitudinal direction and the width direction of the first surface 1a of the ceramic base plate 1, in the longitudinal direction and the width direction of the first surface 1a of the ceramic base plate 1 which are A syringe disposed at intervals is used.

なお、焼成後、いずれの試料もセラミック基1同士が固着していたため、積層方向の中央部に位置するセラミック基1より50mm離れた地点から、圧力が0.15MPaの空気を固着したセラミック基1に5秒間吹きつけ、脱離するセラミック基1の個数を数えた。そして、10個のセラミック基1に対し、脱離したセラミック基1の個数の比率を脱離率として表1,2に示した。 Incidentally, after firing, since all samples were fixed ceramic board 1 together, from a point distant 50mm from the ceramic base plate 1 located in the central portion in the lamination direction, the pressure is fixed air 0.15MPa ceramic blown to board 1 5 seconds, it was counted and the number of the ceramic base plate 1 that is eliminated. Then, with respect to 10 pieces of the ceramic base plate 1, as shown in Tables 1 and 2 the ratio of the desorbed number of ceramic base plate 1 as the desorption rate.

また、セラミック基1を構成する結晶の平均結晶粒径,セラミック基1の熱伝導率および3点曲げ強度は、JIS R 1670−2006,JIS R 1611−1997で規定されるレーザフラッシュ法による2次元法,JIS R 1601−2008に準拠してそれぞれ測定した。但し、セラミック基1の厚みが薄く、セラミック基1から試験片を切り出してもその厚みを3mmとすることができなかったので、セラミック基1の厚みをそのまま試験片の厚みとして、3点曲げ強度を測定した。 Further, the average crystal grain size, bending the thermal conductivity and 3-point of the ceramic base plate 1 the intensity of the crystals constituting the ceramic base plate 1, according to JIS R 1670-2006, a laser flash method specified in JIS R 1611-1997 Measurements were made in accordance with a two-dimensional method and JIS R 1601-2008. However, a small thickness of the ceramic base plate 1, so could not be the thickness and 3mm cut out test pieces from the ceramic base plate 1, the thickness of the ceramic base plate 1 as the thickness of it is the test piece, 3 The point bending strength was measured.

また、走査型電子顕微鏡を用いてセラミック基1の表面を含む断面を倍率2000倍で撮影し、長さ500μmにおける、隣り合う山頂部pと谷底部vとの高低差の最大値pv,ディンプル1dの深さdおよび突起1cの高さhを測定した。ここで、ディンプル1dの深さdおよび突起1cの高さhは、それぞれ個数が10個の平均値である。 Further, scanning with the electron microscope taken at 2000 × magnification cross-section including the surface of the ceramic base plate 1, the length 500 [mu] m, the maximum value of the height difference between the crest p and valley portions v adjacent pv, dimples The depth d of 1d and the height h of the protrusion 1c were measured. Here, the depth d of the dimple 1d and the height h of the protrusion 1c are average values of 10 pieces, respectively.

次に、セラミック基1を850℃で熱処理することによって、セラミック基1の表面に付着した有機物や残留炭素を除去した。 Next, by heat-treating the ceramic base plate 1 at 850 ° C., to remove the organic materials and residual carbon adhering to the surface of the ceramic base plate 1.

熱処理されたセラミック基1のディンプルおよび/または突起が形成された面に、インジウム,チタンおよびモリブデンの各粉末が添加、混合された、銀および銅を主成分とする粉末にメチルセルロースおよびテルピネオールを添加、混練して得られるペーストをスクリーン印刷で塗布した後、135℃で乾燥させることによって、図7に示す金属層31,32を形成した。 Added to the dimples and / or projections of the ceramic base plate 1, which is heat treated is formed plane, indium, added each powder of titanium and molybdenum, are mixed, the cellulose and terpineol silver and copper powder as a main component The paste obtained by kneading was applied by screen printing and then dried at 135 ° C. to form the metal layers 31 and 32 shown in FIG.

そして、無酸素銅からなる銅箔を金属層31,32に接触配置して、真空雰囲気中、800℃で加熱することにより、回路部材21および放熱部材22がそれぞれ金属層31,32を介してセラミック基1に接合された、図7に示す放熱基10を得た。 Then, a copper foil made of oxygen-free copper is placed in contact with the metal layers 31 and 32 and heated at 800 ° C. in a vacuum atmosphere, so that the circuit member 21 and the heat radiating member 22 pass through the metal layers 31 and 32, respectively. It is bonded to the ceramic base plate 1, to obtain a heat radiation board 10 shown in FIG.

また、超音波探傷法により、を平面視した面積Sを測定し、放熱部材22がセラミック基1に接合している面の面積Sに対する比率(=S/S×100)を空隙率として計算した。 Further, the ultrasonic flaw detection method, the measured plan view the area S v, the ratio (= S v / S o × 100) to the area S o of the surface heat dissipation member 22 is bonded to the ceramic base plate 1 Calculated as porosity.

ここで、超音波探傷法の測定条件は、探傷周波数を50MHz,ゲインを30dB、スキャンピッチを100μmとした。   Here, the measurement conditions of the ultrasonic flaw detection method were a flaw detection frequency of 50 MHz, a gain of 30 dB, and a scan pitch of 100 μm.

表1,2に示す通り、試料No.1,2,12,13,23,24,34,35,45,46,56,57,67,68,78,79,89,90は、セラミック基板1を構成する結晶の平均結晶粒径より大きな高さの凹凸を有する突起を備えていないことから、脱離率が低く、焼成後に隣り合うセラミック基板1同士を容易に引き離せなかった。 As shown in Tables 1 and 2, Sample No. 1, 2 , 12, 13, 23, 24, 34, 35, 45, 46, 56, 57, 67, 68, 78, 79, 89, 90 are based on the average crystal grain size of the crystals constituting the ceramic substrate 1. since without a collision force that having a unevenness of greater height, low desorption rate, not easily pulled apart the ceramic base plate 1 adjacent after firing.

一方、試料No.14〜22,25〜33,47〜55,58〜66,80〜88,91〜99は、セラミック基板1を構成する結晶の平均結晶粒径より大きな高さの凹凸を有する突起を備えていることから、脱離率が高く、焼成後に隣り合うセラミック基板1同士を容易に引き離せた。 On the other hand, sample no . 1 4~22,25~33, 4 7~55,58~66, 8 0~88,91~99 is that having a unevenness of greater height than the average grain size of crystals constituting the ceramic substrate 1 since it is provided with a collision force, high desorption rate was easily pulled apart the ceramic base plate 1 adjacent after firing.

表1に示す通り、セラミック基1の主成分が酸化アルミニウムである試料No.14〜22,25〜33を比べると、特に、試料No.14〜17,18〜22,25〜28,30〜33は、突起の表面が半球面状に形成されていることから、焼成後に残留応力が焼結体に残りにくいため、3点曲げ強度が高く、好適であった。 As shown in Table 1, a sample composed mainly of ceramic base plate 1 is an aluminum oxide No. 14 to 22 and 25 to 33 are compared . 1 4~17,18~22,25~28,30~33, since from the surface of the collision force is formed in a semi-spherical shape, the residual stress after firing hardly remain in the sintered body, the three-point bending The strength was high and suitable.

また、表1,2に示す通り、セラミック基1の主成分が窒化アルミニウムである試料No.47〜55,58〜66を比べると、試料No.47〜50,52〜55,58〜60,62〜66は、突起の表面が半球面状に形成されていることから、焼成後に残留応力が焼結体に残りにくいため、3点曲げ強度が高く、好適であった。 Further, as shown in Table 1, a sample composed mainly of ceramic base plate 1 is an aluminum nitride No. Comparing 4 7~55,58~66 sample No. 4 7~50,52~55,58~60,62~66, since from the surface of the collision force is formed in a semi-spherical shape, the residual stress after firing hardly remain in the sintered body, the three-point bending The strength was high and suitable.

また、表2に示す通り、セラミック基1の主成分が窒化珪素である試料No.80〜88,91〜99を比べると、試料No.80〜83,85〜88,91〜94,96〜99は、突起の表面が半球面状に形成されていることから、焼成後に残留応力が焼結体に残りにくいため、3点曲げ強度が高く、好適であった。 Further, as shown in Table 2, a sample composed mainly of ceramic base plate 1 is a silicon nitride No. Comparing the 8 0~88,91~99, sample No. 8 0~83,85~88,91~94,96~99, since from the surface of the collision force is formed in a semi-spherical shape, the residual stress after firing hardly remain in the sintered body, the three-point bending The strength was high and suitable.

また、表1,2に示す通り、試料No.14〜16,18〜22,25〜27,29〜33,47〜49,51〜55,58〜60,62〜66,80〜82,84〜88,91〜93,95〜99は、突起が所定方向に等間隔に配置されていることから、脱離率がより高く、焼成後に隣り合うセラミック基板1同士をさらに容易に引き離せた。 Further, as shown in Table 1, samples No. 1 4~16,18~22,25~27,29~3 3, 47~49,51~55,58~60,62~66, 8 0~82,84~88,91~93,95~99 , since it is disposed at an equal interval in the collision outs predetermined direction, desorption ratio is higher, the more easily it pulled away the ceramic base plate 1 adjacent after firing.

また、表1に示す通り、セラミック基1の主成分が酸化アルミニウムであって、突起の高さのみが異なる試料No.15,16,19,20,21を比べると、試料No.16,19,20は、突起の高さが16μm以上52μm以下であることから、焼成後に隣り合うセラミック基板1同士を容易に引き離せるとともに、セラミック基1および金属層32間に発生する空隙も少なく、好適であった。 Further, as shown in Table 1, the main component of the ceramic base plate 1 is an aluminum oxide, a sample only the height of the protrusions is different from No. When comparing 15, 16, 19, 20, and 21, sample no. 16,19,20, since the height of the projection is 16μm or more 52μm or less easily with Hikihanaseru the ceramic base plate 1 adjacent after firing, generated between the ceramic base plate 1 and the metal layer 32 There were few voids, which was suitable.

また、表1,2に示す通り、セラミック基1の主成分が窒化アルミニウムまたは窒化珪素の場合も、突起の高さが16μm以上52μm以下の試料は、焼成後に隣り合うセラミック基板1同士を容易に引き離せるとともに、セラミック基1および金属層32間に発生する空隙も少なく、好適であった。 Further, as shown in Table 1, even when the main component of the ceramic base plate 1 is aluminum nitride or silicon nitride, collision height 16μm or 52μm following samples of causing the ceramic base plate 1 adjacent after firing together easily Hikihanaseru voids also less generated between the ceramic base plate 1 and the metal layer 32, it was suitable.

さらに、表2に示す通り、試料No.80〜88,91〜99は、セラミック基1の主成分が窒化珪素であることから、高い熱伝導性と高い機械的特性とを兼ね備えているこ
とがわかり、これら両方の特性が求められる場合には有効である。
Furthermore, as shown in Table 2, samples No. 8 0~88,91~99, since the main component of the ceramic base plate 1 is a silicon nitride, see that combines high thermal conductivity and high mechanical properties, properties of both is obtained It is effective in some cases.

1:セラミック基
10:放熱基
21:回路部材
22:放熱部材
31,32:活性金属層
41,42:結合層
1: Ceramic board 10: radiator board 21: circuit member 22: heat dissipation members 31 and 32: the active metal layer 41: bonding layer

Claims (9)

少なくとも一方の主面に、突起を複数備えるセラミック基板であって、前記突起は、隣り合う山頂部と谷底部との高低差の最大値が、前記セラミック基板を構成する結晶の平均結晶粒径より大きい凹凸を有しており、前記突起の平均高さが16μm以上52μm以下であることを特徴とするセラミック基板。 A ceramic substrate having a plurality of protrusions on at least one main surface, wherein the protrusion has a maximum height difference between adjacent peak and valley bottoms from an average crystal grain size of crystals constituting the ceramic substrate. It has a size I凹 convex, a ceramic substrate, wherein the average height of the protrusions is 16μm or more 52μm or less. 前記突起の表面が半球面状に形成されていることを特徴とする請求項1に記載のセラミック基板。   The ceramic substrate according to claim 1, wherein a surface of the protrusion is formed in a hemispherical shape. 前記突起が所定方向に等間隔に配置されていることを特徴とする請求項1または2に記載のセラミック基板。   3. The ceramic substrate according to claim 1, wherein the protrusions are arranged at equal intervals in a predetermined direction. 主成分が窒化珪素であることを特徴とする請求項1乃至3のいずれかに記載のセラミック基板。   4. The ceramic substrate according to claim 1, wherein the main component is silicon nitride. 請求項1乃至4のいずれかに記載のセラミック基板に、放熱部材が接合されていることを特徴とする放熱基板。   A heat dissipation substrate, wherein a heat dissipation member is joined to the ceramic substrate according to claim 1. 請求項1乃至4のいずれかに記載のセラミック基板と、該セラミック基板の突起が形成された面に形成された金属層と、該金属層上に配置された放熱部材とを有することを特徴とする放熱基板。   A ceramic substrate according to any one of claims 1 to 4, a metal layer formed on a surface of the ceramic substrate on which a protrusion is formed, and a heat dissipation member disposed on the metal layer. Heat dissipation board. 請求項1乃至4のいずれかに記載のセラミック基板の両主面上に順次積層された活性金属層および銅を主成分とする結合層と、各結合層上に配置された銅または銅合金を主成分とする少なくとも1枚の銅板と、を有してなり、一方の主面上の銅板を回路部材として用い、他方の主面上の銅板を放熱部材として用いることを特徴とする放熱基板。   An active metal layer and a bonding layer mainly composed of copper, which are sequentially laminated on both main surfaces of the ceramic substrate according to any one of claims 1 to 4, and copper or a copper alloy disposed on each bonding layer. And a copper plate on one main surface as a circuit member, and a copper plate on the other main surface as a heat radiating member. 前記回路部材は、平面視で複数行、複数列に配置されていることを特徴とする請求項7に記載の放熱基板。   The heat dissipation substrate according to claim 7, wherein the circuit members are arranged in a plurality of rows and a plurality of columns in a plan view. 請求項5乃至8のいずれかに記載の放熱基板上に電子部品を設けたことを特徴とする電子装置。   An electronic device comprising an electronic component on the heat dissipation substrate according to claim 5.
JP2009128939A 2008-06-27 2009-05-28 Ceramic substrate, heat dissipation substrate, and electronic device Active JP5473407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128939A JP5473407B2 (en) 2008-06-27 2009-05-28 Ceramic substrate, heat dissipation substrate, and electronic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008168147 2008-06-27
JP2008168147 2008-06-27
JP2009128939A JP5473407B2 (en) 2008-06-27 2009-05-28 Ceramic substrate, heat dissipation substrate, and electronic device

Publications (2)

Publication Number Publication Date
JP2010030280A JP2010030280A (en) 2010-02-12
JP5473407B2 true JP5473407B2 (en) 2014-04-16

Family

ID=41735342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128939A Active JP5473407B2 (en) 2008-06-27 2009-05-28 Ceramic substrate, heat dissipation substrate, and electronic device

Country Status (1)

Country Link
JP (1) JP5473407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11749875B2 (en) 2021-01-05 2023-09-05 Samsung Electro-Mechanics Co., Ltd. Chip antenna and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743752B2 (en) * 2011-06-29 2015-07-01 京セラ株式会社 Circuit board
JP6491058B2 (en) * 2015-07-29 2019-03-27 京セラ株式会社 Relay board and electronic device
US10882793B2 (en) * 2015-11-11 2021-01-05 Amotech Co., Ltd. Ferrite sheet production method and ferrite sheet using same
DE112018005713T5 (en) * 2017-10-30 2020-07-16 Mitsubishi Electric Corporation POWER SEMICONDUCTOR UNIT AND MANUFACTURING METHOD FOR A POWER SEMICONDUCTOR UNIT
JP7083256B2 (en) 2018-02-19 2022-06-10 富士電機株式会社 Semiconductor module and its manufacturing method
JP7204879B2 (en) * 2019-03-01 2023-01-16 京セラ株式会社 CERAMIC STRUCTURE AND SUPPORT MECHANISM INCLUDING THE CERAMIC STRUCTURE
DE102019216605A1 (en) * 2019-10-29 2021-04-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Form-fitting and / or force-fitting material composite
WO2023190141A1 (en) * 2022-03-31 2023-10-05 Agc株式会社 Heat dissipation member and semiconductor unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631536U (en) * 1979-08-15 1981-03-27
JPS5870519A (en) * 1981-10-21 1983-04-27 株式会社村田製作所 Method of producing ceramic electronic part
JPS61117152A (en) * 1984-11-08 1986-06-04 京セラ株式会社 Ceramic part and manufacture
JPS61136965A (en) * 1984-12-06 1986-06-24 京セラ株式会社 Manufacture of ceramic substrate for thin membrane
JP2000281438A (en) * 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd Zirconia sheet and its production
JP2003069217A (en) * 2001-08-22 2003-03-07 Kyocera Corp Method for manufacturing circuit board
JP2005289777A (en) * 2004-04-05 2005-10-20 Murata Mfg Co Ltd Method for manufacturing ceramic sintered compact for electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11749875B2 (en) 2021-01-05 2023-09-05 Samsung Electro-Mechanics Co., Ltd. Chip antenna and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010030280A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5473407B2 (en) Ceramic substrate, heat dissipation substrate, and electronic device
JP5562234B2 (en) Heat dissipation base and electronic device using the same
JP5665988B2 (en) Circuit board and electronic device
JP5326278B2 (en) Circuit board, semiconductor module using the same, and circuit board manufacturing method
JP5665769B2 (en) Silicon nitride substrate, circuit board and electronic device using the same
US20030044173A1 (en) Fluid heating heater
WO2011149065A1 (en) Circuit board and electronic device using the same
KR101472234B1 (en) Ceramic heat sink material for compression contact structure, semiconductor module using same, and method for producing semiconductor module
JP4744385B2 (en) Heat dissipation board and electronic device using the same
WO2011111746A1 (en) Ceramic sintered compact, circuit board using the same, electronic device and thermoelectric conversion module
JP5773330B2 (en) Ceramic sintered plate containing uniaxially oriented acicular Si3N4 particles
JP2011507276A (en) Ceramic substrate with thermal vias
JP5340069B2 (en) Carbon-metal composite and circuit member or heat dissipation member using the same
JP2010235335A (en) Ceramic sintered compact, heat dissipating substrate and electronic device
JP2009218322A (en) Silicon nitride substrate and method of manufacturing the same, and silicon nitride circuit substrate using the same, and semiconductor module
JP5743752B2 (en) Circuit board
JP5969325B2 (en) Channel member and electronic device using the same
JP5614127B2 (en) Power module substrate and manufacturing method thereof
JP5649489B2 (en) Heat dissipation board and electronic device using the same
JP2005101624A (en) Wiring board for power module
JP3652192B2 (en) Silicon nitride wiring board
KR101929613B1 (en) Ceramic circuit board and method of manufacturing the same
JP2000114425A (en) Wiring board for power module
JP5064202B2 (en) Manufacturing method of aluminum nitride base material for 3D circuit board and 3D circuit board
JP4584764B2 (en) Method for manufacturing ceramic-metal composite circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150