TWI281211B - Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer - Google Patents
Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer Download PDFInfo
- Publication number
- TWI281211B TWI281211B TW094142339A TW94142339A TWI281211B TW I281211 B TWI281211 B TW I281211B TW 094142339 A TW094142339 A TW 094142339A TW 94142339 A TW94142339 A TW 94142339A TW I281211 B TWI281211 B TW I281211B
- Authority
- TW
- Taiwan
- Prior art keywords
- chemical
- layer
- semiconductor wafer
- substrate
- metal layer
- Prior art date
Links
- 239000002184 metal Substances 0.000 title claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 37
- 239000000758 substrate Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000004065 semiconductor Substances 0.000 title claims description 16
- 238000004070 electrodeposition Methods 0.000 title abstract 5
- 238000004519 manufacturing process Methods 0.000 title description 4
- 238000007747 plating Methods 0.000 claims abstract description 28
- 238000009713 electroplating Methods 0.000 claims abstract description 15
- 230000004888 barrier function Effects 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 22
- 229910052802 copper Inorganic materials 0.000 claims description 22
- 238000000151 deposition Methods 0.000 claims description 22
- 230000007547 defect Effects 0.000 claims description 14
- 238000007772 electroless plating Methods 0.000 claims description 13
- 230000008021 deposition Effects 0.000 claims description 11
- 230000005611 electricity Effects 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 claims 13
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims 2
- 230000002950 deficient Effects 0.000 claims 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 claims 1
- 238000011049 filling Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 60
- 230000008569 process Effects 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000001465 metallisation Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000208340 Araliaceae Species 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 235000021438 curry Nutrition 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine group Chemical group NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/12—Semiconductors
- C25D7/123—Semiconductors first coated with a seed layer or a conductive layer
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/001—Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/10—Agitating of electrolytes; Moving of racks
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/02—Electroplating of selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/04—Electroplating with moving electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/2855—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
- H01L21/2885—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electroplating Methods And Accessories (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
1281211 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種形成積體電路元件的製造方法及裝置,特別是有 關於一種化學電鍍沉積金屬鍍層於半導體基底上的製造方法及裝置。 【先前技術】 傳統積體電路中的内連線係以溝槽(trench)及通孔(via hole)的形式呈 現。尤其在深次微米積體電路技術中,内連線溝槽及通孔乃利用鑲嵌 (damascene)或雙鑲篏(duai damascene)製程形成。逐步地,銅導線已取代銘 導線成為現今超大型積體線路(ULSI)金屬化製程(metamzati〇n)的主流。 隨著積體電路製程技術的演進,化學電鍍沉積(electr〇chemical deposition ’ ECD)金屬銅已成為鑲嵌或雙鑲嵌製程的標準步驟,因其具較大 的曰曰粒(亦即具較佳電子遷移阻抗)、較低的電阻率及較高的沉積速率。尤其 是’電艘製雜職合於小尺寸之做式金屬化餘,此乃由於其具有較 佳的鍍層成長速率控制能力及鍍層優越之導電特性。 /第1A-1D圖係顯示傳統之金屬化製程方法,藉由化學電鍍沉積製程, 以^/成内連線結構於具多層結構的基底上。整體而言,上述金屬化製程方 法=括以物理氣相沉積㈣sical vap〇r咖〇·加,,形成轉層於多 、、口 土底上以物理氣相沉積形成晶種層於阻障層上,以及電鍍導電 :屬:晶種層上。接著’例如以化學機械研磨(晴)平坦化該鍍層結構及 層、心構(例如介電層),以定義出導電内連線結構。 2〇:閱第iA圖’提供—彻基底lG—®案化之糊内連線層 20 ft/成於例如氧化梦的絕 上。介電層30可^ 者,一介電層30沉積於絕緣層乃 赤 為早—介電層或者衫層具低介電常數的介電材料所構 成。可視貫際需要加以調整介 ^ . 丨电層3〇的層數及厚度。接著,將介電> % 圖案化形成一通孔部合π这"电層30 及一溝槽部分34,由此構成包括通孔32及溝槽 0503-A30164TWF/Jamn Gwo ,1281211 • * • 34的巧嵌開口結構,亦即如第ia圖所示的結構。 〔閱第IB ® /儿積一阻障層42於介電層%上,包括順應性的披覆 γγ^Γ:2 *溝槽%的表面上。阻障層42的材f包括鈕(Ta)或氮化组 "接者,以物理氣相沉積法形成例如是銅的晶種層44於阻障層42上。 銅晶2 #可提供後續的電_金屬層較佳_著性。 叫茶閱第1C圖’形成電鍍銅層5〇於銅晶種層44上並填入雙鑲嵌式開 2,於是完成雙職内連線結構的金屬化製程。_,在實際化學電鐘 金屬^製財,常補層結構巾及界面處赶細㈣d)缺陷52及54。經 _刀析仔知’藉缺陷甚至深入到達阻障層42及晶種層44的介面,影塑元 件的可靠度,進而導致元件全面的失效。 曰 ^參嶋m圖,现學機械研磨_)平坦化露㈣驗銅層5〇表 面直至顯露出介電層30的表面。於平坦化過程中部分的電鐘銅金屬㈣、 晶種層44及阻障層42自介電層3〇的上表面移除,以形成具平坦表面的内 連線導電結構,例如雙鑲嵌内連線結構。 然、而’上述傳統的形成内連線結構於具多層結絲底上的方法,在金 屬層沉積時會產生許多_,例如缺_產生及較差的界面附著性。一妒 •㈣,於化學魏沉積金屬層中,常產生的缺陷例如微孔及螺旋缺陷,使又 传於次微紐高深寬狀内連、_口結構巾填人無缺陷之金屬膜產生困 難/此,在元件的製造過程中,確保形成減陷之金屬膜是極為重要的 議題。 有鑑於此,於習知製程上的因難處在於,當鍍件進入電鑛溶液時,益 法避免地會產生魏泡。當此微氣泡陷麵件表科,造紐麵過財 電流不均,致使缺陷形成於鍍膜介面,甚至導致整體膜厚的不均句。習知 降低微氣泡的生成的方法’係將鍍件以傾斜角度進入電錢溶液。美國^ 第6,582,578 EDordi等人揭示-種化學電鍍裝置,當錢件的表面於進入雷 鐘液時,以傾斜角度進入’避免於鍍件的表面與電鐘液間界面及基底固定 〇503-A30164TWF/Jamn Gwo 6 1281211 . 第2圖係根據本發明實施例之化學電鍍沉積(ECD)裝置系統300的平面 ^意圖。於第2圖中,化學電鍍沉積裝置系統獅包括—承載/卸載(badk^) 衣置 310 决速熱退火腔至(rapid thermal annealing diambei^360、-旋轉_ /月洗甩乾(spin rinse-dry ’ SRD)及邊角移除(edge bevel removal,EBR)腔室 3/40、-機械臂380以及一或多個化學電鍍反應槽32〇。一化學電鐘液供應 =統(未圖示)設置於鄰近化學電鍍積裝置系統並且連接至各個化學 電鍍反應槽32〇,以提供循環式化學電鍍液系統。化學電鐘沉積裝置系統 亦包括-控制裝置,包括—可程式之微處理器,個別的控制輸出及輪入 A號至化學電鍍沉積裝置系統3〇〇之各個裝置。 第3圖係顯示根據本發明實施例之化學電鐘反應裝置,具一鍍件 402 ’例如梦晶圓,鑲於基底基座彻上。化學電鐘反應裝置包括一基 底固定裝置4〇4固定於-旋轉軸4〇5上,提供基底固定裝置侧旋轉運動土。 雖然本發明以簡化之化學電鐘反應裝置舉例說明本發明之實施例,然並非 限定本發明之實施,其他化學電鍍反應裝置具有達成本發明所欲達成、之結 果亦包括在本發明的範疇内。 於化學電鍍過程中,鍍件術鑲於基底基座彻及基底固定裝置彻 上,然後浸入包括電鍍液的電鍍槽422中。整個電鍍液的循環、 競至414所示,藉由一祕物提供連續性的猶環電鐘液。二五而 論,電鍍液向上流向鍍件(陽極)402然向外擴張横向流過鍍件4犯 = 符號414所示。 電鍍液的循環方向自電鍍槽422液流至電鍍液儲存槽42〇,如芩a a。 410及411所示。電鍍液流出儲存槽42〇流經一過淚哭 員仃唬 w λ 以禾圖不)後流回幫浦 440 ’而完成整個循環步驟,如箭頭符號412所示。 一直流電源供應器(DC power supply) 45〇提供一負極輪出,夢 、 個接觸環(slip ring)、電梳(brush)及接觸(未圖示),電性連接至參或多 及正極輪出電性連接至電鍍槽422中的陽極401。於電鐵過:2。以 X 宁,電源供應 〇503-A30l64TWF/Jamn Gwo 1281211 把偏[於鐵件402產生相對陽極401負的電位降,致使一電荷流 ^自嶋竭 4G2 (雜㈣谢恤磁動方向舆電 ^相同與電子流動方向相反)。上述電荷流動導致電化學反應(即 u仏-〇〇於錢件表面,因而沉積一金屬層例如銅於鐘件砌上。電 鐘液中的離子濃度係由整個電概應,例如金屬陽崎化况+爛 的溶解而獲的平衡。 一般而言,電鑛液的組成包括猶銅(CuS〇4)、抑制劑或其他添加物。 劑例如是賤鏈的高好聚合物,包括聚衫元醇㈣ ^㈣二·Iyeihylene glyc〇1,pEG)、聚氧乙稀基-聚氧丙基共聚合物 〇y〇xyethylene-p〇lyoxypropylene copolymer) 0 處形成-單分子層(m〇n〇layer),以抑制化學電鑛反應沉積速率。此單分子 H引發且陷住表面生成的氣泡。並且,當基底基座彻進入電_似 %黑可避免地仍會在基底表面產生氣泡,即使於電錢槽+以層流師㈣ f式^無法將其移除。因此,湘改變基底基座柳的轉速或層流速度仍 無法’效地移除微小氣泡細丨⑽七。 於電舰程中’陷住在基絲_氣泡會使得電舰無法直接鱼基底 表面的晶種觸,致使於魏射產纽職陷甚至孔洞橋接。進^影 響金屬鐘相覆紐。上述制缺肢賴橋接的生成亦會限觀入開口 部分或溝槽部分的填充率,使得金屬鍍層或内連線中生成孔洞缺陷及孔洞 橋接’箱影響元件的可靠度、元件的不穩定性、及發生不可翻的元件 根據本發明實闕,於金屬·化學麵沉積時,藉由提供_穩定且 均勻的電流密度於陰極麵極之間’並且將基底基座傾斜_特定角度並旋 轉。在傾斜與旋轉基底基顧過程中,陷住於基底表面的氣泡能順=的隨 :電鍍液的流動移除。隨者基底基座的傾斜角度增加,氣泡的移除效率亦 隨之增加。然而,基底基座的傾斜會翁錢厚度的均勻性。本發明 0503-A30164TWF/Jamn Gwo 9 1281211 物戦她_成銅晶種層144於阻障層142上。銅晶種層i44的功用在 於提供後續麵靖較麵結晶減及_性。—般而言,銅日a日種層的厚 度範圍較佳者為大抵介於500_3000A。 予 夕月/閱第4C圖,形成一化學電鐘銅金屬層15〇於晶種層144上,並填 夕層内連線結射。化學電鍍步驟可藉由本發明實施财的各種電錢裳 置的樣態及變化實施。於化㈣賴程中,藉基底基座傾斜—特^角 度亚且旋轉,可提升氣泡的移除速率,進而有效地降低空孔缺關形成。 土底基座的傾斜角度|父佳者大抵為Q.5_3度。基底基座的旋轉速率範圍較佳 者為介於⑼-㈣释。本發明在餘裕度的允許條件下,犧牲了部分白^ 層均勻度’將基底基座的傾斜’以徹底移除氣泡。於上述條件下,金屬^ ,的平坦度大齡於1%_4%。更有甚者,金騎層上氣洞或内連線^ 斫缺陷數目可降低1-2個數量級。 接者μ*閱第4D目,以化學機械研磨(CMp)平坦化並移除多層内連 線結構上多餘的金躺並露出下層齡電層⑼,以定義—誠線導電沾 構。於化學機械研磨步驟中,多餘部分的金屬層15Q、銅晶種層⑷及啡 層142依序被移除,顯露出介電層.15〇的表面,而完成表面平坦之雙鎮嵌 内連線導電結構的製作。 ^ [本案特徵及效果] 本發明之—職與效果包括在化學紐製財,將基底基座傾斜一特 足角度亚且旋轉,以提升氣泡的移除速率,細有效地降低空孔缺陷的形 成。本發明在製程裕度的允許條件下,犧牲了些許鏡層均句度,將基底基 座的傾斜,_底雜缝。赴舰件下,金紐層的和度大抵介於 财/。。更有甚者,金屬上的孔洞或内連線的破斷缺陷數㈣ 個數量級。 ^ 雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任 何熟習此項技藝者,在獨離本發明之精神和範#可作更動與潤倚, 0503-A30164TWF/Jamn Gwo 11 1281211 因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for forming an integrated circuit component, and more particularly to a method and apparatus for chemically plating a metal plating layer on a semiconductor substrate. [Prior Art] The interconnections in the conventional integrated circuit are presented in the form of a trench and a via hole. Especially in deep sub-micron integrated circuit technology, interconnect trenches and vias are formed using damascene or duai damascene processes. Gradually, copper wires have replaced the Ming wire as the mainstream of today's ultra-large integrated circuit (ULSI) metallization process (metamzati〇n). With the evolution of integrated circuit process technology, electroplated deposition (ECD) metal copper has become a standard step in the inlay or dual damascene process because of its larger particles (ie, better electrons) Migration impedance), lower resistivity and higher deposition rate. In particular, the 'electricity ship's mixed work is combined with a small-sized metallization, which is due to its superior coating growth rate control capability and superior conductive properties of the coating. / 1A-1D shows a conventional metallization process by means of an electroless plating process to form an interconnect structure on a substrate having a multilayer structure. In general, the above metallization process method includes physical vapor deposition (4) sical vap〇r curry addition, forming a layer of transition, and forming a seed layer on the bottom of the soil by physical vapor deposition on the barrier layer. Upper, and electroplated conductive: genus: on the seed layer. The plating structure and the layer, the core structure (e.g., dielectric layer) are then planarized, e.g., by chemical mechanical polishing (clearing), to define a conductive interconnect structure. 2〇: Read the iA diagram ‘providing—the base lG—® case of the paste inner layer 20 ft / formed in the oxidative dream. The dielectric layer 30 can be formed by depositing a dielectric layer 30 on the insulating layer which is a late-dielectric layer or a dielectric material having a low dielectric constant. The visual consistency needs to be adjusted. The number and thickness of the layer 3丨. Next, the dielectric > % is patterned to form a via portion π which " electrical layer 30 and a trench portion 34, thereby comprising a via 32 and a trench 0503-A30164TWF/Jamn Gwo, 1281211 • * • The inlaid opening structure of 34, that is, the structure as shown in Fig. ia. [See IB ® / Child Product Block Layer 42 on the dielectric layer %, including compliant coating γγ^Γ: 2 * groove % on the surface. The material f of the barrier layer 42 includes a button (Ta) or a nitride group, and a seed layer 44 of, for example, copper is formed on the barrier layer 42 by physical vapor deposition. Copper crystal 2 # can provide a subsequent electrical_metal layer is better. It is called the 1C figure of the tea to form an electroplated copper layer 5 on the copper seed layer 44 and filled in the double damascene opening 2, thus completing the metallization process of the double-joined interconnect structure. _, in the actual chemical clock metal ^ wealth, often repair layer structure and interface at the fine (four) d) defects 52 and 54. Through the _ knives, it is known that the defect is even deep into the interface of the barrier layer 42 and the seed layer 44, thereby compensating for the reliability of the component, which leads to the overall failure of the component.曰 ^ 嶋 嶋 m diagram, now learning mechanical grinding _) flattening dew (four) copper layer 5 〇 surface until the surface of the dielectric layer 30 is exposed. Part of the electric clock copper metal (4), the seed layer 44 and the barrier layer 42 are removed from the upper surface of the dielectric layer 3〇 during the planarization process to form an interconnected conductive structure having a flat surface, such as in a dual damascene Connection structure. However, the above conventional method of forming an interconnect structure on a multi-layered wire base produces a lot of _, such as lack of generation and poor interfacial adhesion, when the metal layer is deposited.一妒(4), in the chemical deposits of the metal layer, often produced defects such as micropores and spiral defects, making it difficult to pass through the sub-micro-high-height wide and in-line, _ mouth structure to fill the metal film without defects / / In the manufacturing process of components, it is extremely important to ensure the formation of a recessed metal film. In view of this, the difficulty in the conventional process is that when the plated material enters the electric ore solution, it is avoided to generate Wei bubble. When the microbubble traps are in the table, the current is uneven, and the defects are formed in the coating interface, and even the unevenness of the overall film thickness is caused. Conventionally, a method of reducing the generation of microbubbles is to enter a plating solution into an electric money solution at an oblique angle. US ^ 6,582,578 EDordi et al. disclose a chemical plating device that enters at an oblique angle when the surface of the money member enters the lightning fluid. Avoiding the interface between the surface of the plated member and the battery and the substrate. 〇503-A30164TWF /Jamn Gwo 6 1281211. Figure 2 is a plan view of a chemical electroplating deposition (ECD) device system 300 in accordance with an embodiment of the present invention. In Fig. 2, the electroplating deposition apparatus system lion includes - carrying / unloading (badk ^) clothing 310 thermal annealing chamber to (rapid thermal annealing diambei ^ 360, - rotating _ / month washing dry (spin rinse- Dry 'SRD) and edge bevel removal (EBR) chamber 3/40, -mechanical arm 380 and one or more electroless plating tanks 32. A chemical clock supply = system (not shown Provided in a system adjacent to the electroless plating apparatus and connected to each of the electroless plating tanks 32 to provide a circulating electroplating liquid system. The chemical clock deposition apparatus system also includes a control device including a programmable microprocessor. Individual control outputs and respective devices that are numbered A to the electroplating deposition apparatus system 3. Fig. 3 shows a chemical electric clock reaction device according to an embodiment of the present invention, having a plated member 402' such as a dream wafer, The chemical electric clock reaction device includes a substrate fixing device 4〇4 fixed on the rotating shaft 4〇5 to provide the substrate fixing device side rotating moving soil. Although the present invention simplifies the chemical clock reaction Device example The embodiments of the present invention are not intended to limit the practice of the present invention, and other chemical electroplating reaction devices have the desired results achieved by the present invention, and are included in the scope of the present invention. The substrate pedestal and the substrate fixing device are completely immersed in the plating bath 422 including the plating solution. The circulation of the entire plating solution is shown in 414, and a continuous uterine ring clock liquid is provided by a secret. In other words, the plating solution flows upward to the plating member (anode) 402 and then expands outwardly through the plating member 4, as indicated by symbol 414. The circulation direction of the plating solution flows from the plating tank 422 to the plating solution storage tank 42〇, For example, 芩aa. 410 and 411. The plating solution flows out of the storage tank 42 and flows through a tearing cry 仃唬w λ to flow back to the pump 440' and completes the entire cycle step, as indicated by the arrow symbol 412. Shown. A DC power supply 45〇 provides a negative wheel, a dream, a slip ring, a brush and a contact (not shown), electrically connected to the ginseng or the positive and positive The battery is electrically connected to the anode 401 in the plating bath 422. After the electric iron: 2. Take X Ning, the power supply 〇503-A30l64TWF/Jamn Gwo 1281211 bias [the iron piece 402 produces a negative potential drop relative to the anode 401, causing a charge flow ^ self-exhaustion 4G2 (hetero (four) gratitude magnetic direction 舆 ^ The same is opposite to the direction of electron flow). The above-mentioned charge flow leads to an electrochemical reaction (ie, u仏-〇〇 on the surface of the money piece, thus depositing a metal layer such as copper on the bell. The ion concentration in the electric clock is determined by the entire electric energy, such as metal Yangqi In general, the composition of the electro-mineral liquid includes copper (CuS〇4), inhibitors or other additives. Agents such as high-strength polymers of hydrazine chains, including poly-shirts Non-alcohol (4) ^ (tetra) II Iyeihylene glyc〇 1, pEG), polyoxyethylene-polyoxypropyl copolymer 〇y〇xyethylene-p〇lyoxypropylene copolymer) 0 formation - monolayer (m〇n〇 Layer) to inhibit the deposition rate of chemical ore reaction. This single molecule H initiates and traps bubbles formed on the surface. Moreover, when the base pedestal enters the electricity, it can avoid the generation of air bubbles on the surface of the substrate, even if it is not removed by the laminator. Therefore, it is still impossible to remove the fine bubble (10) seven by changing the rotation speed or laminar flow velocity of the base pedestal. In the electric ship, the trapping in the base wire _ bubble will make the electric ship unable to directly touch the crystal surface of the fish base surface, causing the Wei shot production to be trapped or even the hole bridge. Into the shadow of the metal clock. The formation of the above-mentioned missing limb bridge will also limit the filling rate of the opening portion or the groove portion, so that the hole defect and the hole bridge in the metal plating or the interconnecting line can affect the reliability of the component and the instability of the component. In accordance with the present invention, in the case of metal/chemical surface deposition, a stable and uniform current density is provided between the cathode faces and the substrate base is tilted by a specific angle and rotated. During the tilting and rotating substrate reference, the bubbles trapped on the surface of the substrate can be removed by the flow of the plating solution. As the tilt angle of the base base increases, the efficiency of bubble removal increases. However, the inclination of the base base will be uniform in thickness. The present invention 0503-A30164TWF/Jamn Gwo 9 1281211 materializes her _ copper seed layer 144 on the barrier layer 142. The function of the copper seed layer i44 is to provide a subsequent surface crystallization reduction. In general, the thickness range of the copper day a day layer is preferably between 500_3000A. To the eve of the moon / see the 4C figure, a chemical electric clock copper metal layer 15 is formed on the seed layer 144, and the inner layer of the filling layer is formed. The electroplating step can be carried out by the manner and variation of various money-savings implemented by the present invention. In Yuhua (4), the tilting of the base pedestal--the angle of the base is rotated and the bubble removal rate can be increased, thereby effectively reducing the formation of voids. The inclination angle of the soil foundation pedestal | The father is mostly Q.5_3 degrees. The range of rotation rates of the substrate base is preferably between (9) and (iv). The present invention sacrifices part of the white layer uniformity 'the tilt of the base pedestal' to completely remove the air bubbles under the margin of the margin. Under the above conditions, the flatness of the metal is older than 1%_4%. What's more, the number of defects in the air holes or interconnects on the gold riding layer can be reduced by 1-2 orders of magnitude. The connector μ* reads the 4D mesh, planarizes by chemical mechanical polishing (CMp) and removes excess gold lying on the multilayer interconnect structure and exposes the underlying electrical layer (9) to define the conductive line of the honest line. In the chemical mechanical polishing step, the excess portion of the metal layer 15Q, the copper seed layer (4), and the brown layer 142 are sequentially removed to reveal a surface of the dielectric layer of 15 ,, and the surface is flat and double-embedded. Fabrication of wire conductive structures. ^ [Features and Effects of the Case] The functions and effects of the present invention include that the chemical base is made of a chemical, and the base base is tilted by a special angle and rotated to increase the removal rate of the bubble, and to effectively reduce the defect of the hole. form. The invention sacrifices a certain degree of mirror layer uniformity under the permission of the process margin, and the base base is inclined, and the bottom base is stitched. Under the ship, the sum of the gold and gold layers is mostly between the financial assets. . What's more, the number of broken defects in the holes or interconnects on the metal is (four) orders of magnitude. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and anyone skilled in the art can make a change and reliance on the spirit and scope of the present invention, 0503-A30164TWF/Jamn. Gwo 11 1281211 The scope of the invention is therefore defined by the scope of the appended claims.
12 0503-A30164TWF/Janm Gwo 1281211 【圖式簡單說明】 第1A-1D圖係顯 結構之基底上; 丁傳、、先之金屬化製程方法以形成内連線結構於具多層 學 第2圖係根據本發明實施例之化 意圖; 電鏡沉積(ECD)裝置系統的平面示 第3圖係顯示根據本夢 楚4Λ例之化學電链反應裝置;.以及 弟4A-4D圖係顯示金屬化夢 。 衣耘真入具夕層内連線結構各步驟的剖面示 【主要元件符號說明】 習知部分(第1Α〜1D圖) 1〇〜半導體基底; 25〜絕緣層; 32〜通孔部分; 42〜阻障層; 50〜電鍍銅金屬層; D〜螺旋缺陷。12 0503-A30164TWF/Janm Gwo 1281211 [Simple description of the diagram] The 1A-1D diagram is on the base of the display structure; Ding Chuan, the first metallization process to form the interconnect structure in the multi-layered second diagram The intention of the embodiment of the present invention; the plane of the electron microscope deposition (ECD) device system shows a chemical chain reaction device according to the example of the present invention; and the brother 4A-4D system shows the metallization dream. Cross-section of each step of the 耘 耘 内 【 【 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体~ barrier layer; 50 ~ electroplated copper metal layer; D ~ spiral defect.
20〜金屬内連線; 30〜介電層; 34〜溝槽部分; 44〜晶種層; 52及54〜孔洞缺陷; 本案部分(第2〜4D圖) 300〜化學電鍍沉積裝置系統; 320〜化學電鍍反應槽; 360〜快速熱退火腔室; 400〜化學電鍍反應裝置; 310〜承載/卸載裝置; 340〜方疋轉-清洗-思乾及邊角移除腔室· 3 80〜機械臂; 401〜陽極; 402〜錢件; 4G3〜基底基座; 4〇4〜基底固定裝置; 405〜旋轉軸; 箭頭符號410至414〜電鍵液的循環方向; 0503-A30164TWF/Jamn Gwo 13 1281211 422〜電鍍槽; Θ〜基底基座傾斜角, 120〜金屬内連線; 130〜介電層; 134〜溝槽部分; 144〜晶種層; 420〜儲存槽; 450〜直流電源供應為, 100〜半導體基底; 125〜絕緣層; 132〜通孔部分; 142〜阻障層; 150及150’〜電鍍銅金屬層。 14 0503-A30164TWF/Jamn Gwo20~metal interconnect; 30~ dielectric layer; 34~ trench portion; 44~ seed layer; 52 and 54~ hole defect; part of the case (2nd to 4D) 300~ chemical electroplating deposition system; 320 ~ chemical plating reaction tank; 360 ~ rapid thermal annealing chamber; 400 ~ chemical plating reaction device; 310 ~ load / unload device; 340 ~ square turn - cleaning - think dry and corner removal chamber · 3 80 ~ mechanical Arm; 401~anode; 402~money piece; 4G3~base base; 4〇4~base fixture; 405~rotation axis; arrow symbol 410 to 414~ key circulation direction; 0503-A30164TWF/Jamn Gwo 13 1281211 422 ~ plating bath; Θ ~ base base tilt angle, 120 ~ metal interconnect; 130 ~ dielectric layer; 134 ~ trench portion; 144 ~ seed layer; 420 ~ storage slot; 450 ~ DC power supply for, 100~ semiconductor substrate; 125~ insulating layer; 132~ via hole portion; 142~ barrier layer; 150 and 150'~ electroplated copper metal layer. 14 0503-A30164TWF/Jamn Gwo
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/092,594 US20060219566A1 (en) | 2005-03-29 | 2005-03-29 | Method for fabricating metal layer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200634929A TW200634929A (en) | 2006-10-01 |
TWI281211B true TWI281211B (en) | 2007-05-11 |
Family
ID=37069005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW094142339A TWI281211B (en) | 2005-03-29 | 2005-12-01 | Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer |
Country Status (2)
Country | Link |
---|---|
US (1) | US20060219566A1 (en) |
TW (1) | TWI281211B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI383071B (en) * | 2008-10-30 | 2013-01-21 | All Ring Tech Co Ltd | Electroplating apparatus for chips |
TWI410531B (en) * | 2010-05-07 | 2013-10-01 | Taiwan Semiconductor Mfg | Vertical plating equipment and plating method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110565134A (en) * | 2019-10-09 | 2019-12-13 | 深圳华络电子有限公司 | method for preparing electrode of inductance device |
CN112853441B (en) * | 2021-01-08 | 2022-04-08 | 上海戴丰科技有限公司 | Wafer horizontal electroplating device and cathode electroplating solution jet flow method |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2491925A (en) * | 1944-09-16 | 1949-12-20 | Lazaro Anton | Apparatus for electroplating |
US2446476A (en) * | 1944-12-09 | 1948-08-03 | William C Huebner | Apparatus for coating cylindrical surfaces |
US6391166B1 (en) * | 1998-02-12 | 2002-05-21 | Acm Research, Inc. | Plating apparatus and method |
US6402923B1 (en) * | 2000-03-27 | 2002-06-11 | Novellus Systems Inc | Method and apparatus for uniform electroplating of integrated circuits using a variable field shaping element |
US6258220B1 (en) * | 1998-11-30 | 2001-07-10 | Applied Materials, Inc. | Electro-chemical deposition system |
US6582578B1 (en) * | 1999-04-08 | 2003-06-24 | Applied Materials, Inc. | Method and associated apparatus for tilting a substrate upon entry for metal deposition |
US6399479B1 (en) * | 1999-08-30 | 2002-06-04 | Applied Materials, Inc. | Processes to improve electroplating fill |
US6610189B2 (en) * | 2001-01-03 | 2003-08-26 | Applied Materials, Inc. | Method and associated apparatus to mechanically enhance the deposition of a metal film within a feature |
US6551487B1 (en) * | 2001-05-31 | 2003-04-22 | Novellus Systems, Inc. | Methods and apparatus for controlled-angle wafer immersion |
JP3495033B1 (en) * | 2002-09-19 | 2004-02-09 | 東京エレクトロン株式会社 | Electroless plating apparatus and electroless plating method |
US20050164499A1 (en) * | 2002-09-27 | 2005-07-28 | Tokyo Electron Limited | Electroless plating method and apparatus |
JP3485561B1 (en) * | 2002-10-07 | 2004-01-13 | 東京エレクトロン株式会社 | Electroless plating method and electroless plating apparatus |
US20070153062A1 (en) * | 2005-12-30 | 2007-07-05 | Shie Jin S | Monolithic fabrication method and structure of array nozzles on thermal inkjet print head |
-
2005
- 2005-03-29 US US11/092,594 patent/US20060219566A1/en not_active Abandoned
- 2005-12-01 TW TW094142339A patent/TWI281211B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI383071B (en) * | 2008-10-30 | 2013-01-21 | All Ring Tech Co Ltd | Electroplating apparatus for chips |
TWI410531B (en) * | 2010-05-07 | 2013-10-01 | Taiwan Semiconductor Mfg | Vertical plating equipment and plating method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20060219566A1 (en) | 2006-10-05 |
TW200634929A (en) | 2006-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101105485B1 (en) | Process for through silicon via filling | |
TW584899B (en) | Planar metal electroprocessing | |
TW200837225A (en) | Apparatuses for electrochemical deposition, conductive layers on semiconductor wafer, and fabrication methods thereof | |
US8513124B1 (en) | Copper electroplating process for uniform across wafer deposition and void free filling on semi-noble metal coated wafers | |
TWI434963B (en) | Method of coating a surface of a substrate with a metal by electroplating | |
US20060283716A1 (en) | Method of direct plating of copper on a ruthenium alloy | |
TWI441956B (en) | Electrodeposition composition and method for coating a semiconductor substrate using the said composition | |
JP2006519503A (en) | Thin and flat film processing without defects | |
KR20210091823A (en) | Low-temperature copper-copper direct bonding | |
JP2009527912A (en) | Method and composition for direct copper plating and filling to form interconnects in the manufacture of semiconductor devices | |
TW444238B (en) | A method of making thin film | |
TWI513863B (en) | Copper-electroplating composition and process for filling a cavity in a semiconductor substrate using this composition | |
JP4163728B2 (en) | Electroplating method | |
KR20150056655A (en) | Electrolyte and process for electroplating copper onto a barrier layer | |
JP3967879B2 (en) | Copper plating solution and method for manufacturing semiconductor integrated circuit device using the same | |
TWI281211B (en) | Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer | |
JP2013524019A (en) | Seed layer deposition in microscale structures | |
TWI276151B (en) | Method and apparatus for electrochemical plating semiconductor wafers | |
JP2009249653A (en) | Electroplating method | |
TWI299370B (en) | Apparatus and method for electrochemically depositing a metal layer | |
TW201108353A (en) | Method for coating a semiconductor substrate by electrodeposition | |
TW200535281A (en) | Method and apparatus for fabricating metal layer | |
JP2008056968A (en) | Method of manufacturing copper wiring and electrolyte for copper plating | |
TWI314592B (en) | Copper plating of semiconductor devices using intermediate immersion step | |
JP2002322592A (en) | Method for manufacturing semiconductor device |