TWI281211B - Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer - Google Patents

Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer Download PDF

Info

Publication number
TWI281211B
TWI281211B TW094142339A TW94142339A TWI281211B TW I281211 B TWI281211 B TW I281211B TW 094142339 A TW094142339 A TW 094142339A TW 94142339 A TW94142339 A TW 94142339A TW I281211 B TWI281211 B TW I281211B
Authority
TW
Taiwan
Prior art keywords
chemical
layer
semiconductor wafer
substrate
metal layer
Prior art date
Application number
TW094142339A
Other languages
Chinese (zh)
Other versions
TW200634929A (en
Inventor
Hsi-Kuei Cheng
Hsien-Ping Feng
Ming-Yuan Cheng
Jung-Chih Tsao
Shih-Chi Lin
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW200634929A publication Critical patent/TW200634929A/en
Application granted granted Critical
Publication of TWI281211B publication Critical patent/TWI281211B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method for filling a structure using electrochemical deposition includes a barrier layer and a seed layer being deposited on one or more surfaces of the structure. Metal is electrochemically deposited to fill the structure in an electrochemical plating cell, wherein the electroplating surface of the substrate is tilled and rotated during electrochemical deposition.

Description

1281211 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種形成積體電路元件的製造方法及裝置,特別是有 關於一種化學電鍍沉積金屬鍍層於半導體基底上的製造方法及裝置。 【先前技術】 傳統積體電路中的内連線係以溝槽(trench)及通孔(via hole)的形式呈 現。尤其在深次微米積體電路技術中,内連線溝槽及通孔乃利用鑲嵌 (damascene)或雙鑲篏(duai damascene)製程形成。逐步地,銅導線已取代銘 導線成為現今超大型積體線路(ULSI)金屬化製程(metamzati〇n)的主流。 隨著積體電路製程技術的演進,化學電鍍沉積(electr〇chemical deposition ’ ECD)金屬銅已成為鑲嵌或雙鑲嵌製程的標準步驟,因其具較大 的曰曰粒(亦即具較佳電子遷移阻抗)、較低的電阻率及較高的沉積速率。尤其 是’電艘製雜職合於小尺寸之做式金屬化餘,此乃由於其具有較 佳的鍍層成長速率控制能力及鍍層優越之導電特性。 /第1A-1D圖係顯示傳統之金屬化製程方法,藉由化學電鍍沉積製程, 以^/成内連線結構於具多層結構的基底上。整體而言,上述金屬化製程方 法=括以物理氣相沉積㈣sical vap〇r咖〇·加,,形成轉層於多 、、口 土底上以物理氣相沉積形成晶種層於阻障層上,以及電鍍導電 :屬:晶種層上。接著’例如以化學機械研磨(晴)平坦化該鍍層結構及 層、心構(例如介電層),以定義出導電内連線結構。 2〇:閱第iA圖’提供—彻基底lG—®案化之糊内連線層 20 ft/成於例如氧化梦的絕 上。介電層30可^ 者,一介電層30沉積於絕緣層乃 赤 為早—介電層或者衫層具低介電常數的介電材料所構 成。可視貫際需要加以調整介 ^ . 丨电層3〇的層數及厚度。接著,將介電> % 圖案化形成一通孔部合π这"电層30 及一溝槽部分34,由此構成包括通孔32及溝槽 0503-A30164TWF/Jamn Gwo ,1281211 • * • 34的巧嵌開口結構,亦即如第ia圖所示的結構。 〔閱第IB ® /儿積一阻障層42於介電層%上,包括順應性的披覆 γγ^Γ:2 *溝槽%的表面上。阻障層42的材f包括鈕(Ta)或氮化组 "接者,以物理氣相沉積法形成例如是銅的晶種層44於阻障層42上。 銅晶2 #可提供後續的電_金屬層較佳_著性。 叫茶閱第1C圖’形成電鍍銅層5〇於銅晶種層44上並填入雙鑲嵌式開 2,於是完成雙職内連線結構的金屬化製程。_,在實際化學電鐘 金屬^製財,常補層結構巾及界面處赶細㈣d)缺陷52及54。經 _刀析仔知’藉缺陷甚至深入到達阻障層42及晶種層44的介面,影塑元 件的可靠度,進而導致元件全面的失效。 曰 ^參嶋m圖,现學機械研磨_)平坦化露㈣驗銅層5〇表 面直至顯露出介電層30的表面。於平坦化過程中部分的電鐘銅金屬㈣、 晶種層44及阻障層42自介電層3〇的上表面移除,以形成具平坦表面的内 連線導電結構,例如雙鑲嵌内連線結構。 然、而’上述傳統的形成内連線結構於具多層結絲底上的方法,在金 屬層沉積時會產生許多_,例如缺_產生及較差的界面附著性。一妒 •㈣,於化學魏沉積金屬層中,常產生的缺陷例如微孔及螺旋缺陷,使又 传於次微紐高深寬狀内連、_口結構巾填人無缺陷之金屬膜產生困 難/此,在元件的製造過程中,確保形成減陷之金屬膜是極為重要的 議題。 有鑑於此,於習知製程上的因難處在於,當鍍件進入電鑛溶液時,益 法避免地會產生魏泡。當此微氣泡陷麵件表科,造紐麵過財 電流不均,致使缺陷形成於鍍膜介面,甚至導致整體膜厚的不均句。習知 降低微氣泡的生成的方法’係將鍍件以傾斜角度進入電錢溶液。美國^ 第6,582,578 EDordi等人揭示-種化學電鍍裝置,當錢件的表面於進入雷 鐘液時,以傾斜角度進入’避免於鍍件的表面與電鐘液間界面及基底固定 〇503-A30164TWF/Jamn Gwo 6 1281211 . 第2圖係根據本發明實施例之化學電鍍沉積(ECD)裝置系統300的平面 ^意圖。於第2圖中,化學電鍍沉積裝置系統獅包括—承載/卸載(badk^) 衣置 310 决速熱退火腔至(rapid thermal annealing diambei^360、-旋轉_ /月洗甩乾(spin rinse-dry ’ SRD)及邊角移除(edge bevel removal,EBR)腔室 3/40、-機械臂380以及一或多個化學電鍍反應槽32〇。一化學電鐘液供應 =統(未圖示)設置於鄰近化學電鍍積裝置系統並且連接至各個化學 電鍍反應槽32〇,以提供循環式化學電鍍液系統。化學電鐘沉積裝置系統 亦包括-控制裝置,包括—可程式之微處理器,個別的控制輸出及輪入 A號至化學電鍍沉積裝置系統3〇〇之各個裝置。 第3圖係顯示根據本發明實施例之化學電鐘反應裝置,具一鍍件 402 ’例如梦晶圓,鑲於基底基座彻上。化學電鐘反應裝置包括一基 底固定裝置4〇4固定於-旋轉軸4〇5上,提供基底固定裝置侧旋轉運動土。 雖然本發明以簡化之化學電鐘反應裝置舉例說明本發明之實施例,然並非 限定本發明之實施,其他化學電鍍反應裝置具有達成本發明所欲達成、之結 果亦包括在本發明的範疇内。 於化學電鍍過程中,鍍件術鑲於基底基座彻及基底固定裝置彻 上,然後浸入包括電鍍液的電鍍槽422中。整個電鍍液的循環、 競至414所示,藉由一祕物提供連續性的猶環電鐘液。二五而 論,電鍍液向上流向鍍件(陽極)402然向外擴張横向流過鍍件4犯 = 符號414所示。 電鍍液的循環方向自電鍍槽422液流至電鍍液儲存槽42〇,如芩a a。 410及411所示。電鍍液流出儲存槽42〇流經一過淚哭 員仃唬 w λ 以禾圖不)後流回幫浦 440 ’而完成整個循環步驟,如箭頭符號412所示。 一直流電源供應器(DC power supply) 45〇提供一負極輪出,夢 、 個接觸環(slip ring)、電梳(brush)及接觸(未圖示),電性連接至參或多 及正極輪出電性連接至電鍍槽422中的陽極401。於電鐵過:2。以 X 宁,電源供應 〇503-A30l64TWF/Jamn Gwo 1281211 把偏[於鐵件402產生相對陽極401負的電位降,致使一電荷流 ^自嶋竭 4G2 (雜㈣谢恤磁動方向舆電 ^相同與電子流動方向相反)。上述電荷流動導致電化學反應(即 u仏-〇〇於錢件表面,因而沉積一金屬層例如銅於鐘件砌上。電 鐘液中的離子濃度係由整個電概應,例如金屬陽崎化况+爛 的溶解而獲的平衡。 一般而言,電鑛液的組成包括猶銅(CuS〇4)、抑制劑或其他添加物。 劑例如是賤鏈的高好聚合物,包括聚衫元醇㈣ ^㈣二·Iyeihylene glyc〇1,pEG)、聚氧乙稀基-聚氧丙基共聚合物 〇y〇xyethylene-p〇lyoxypropylene copolymer) 0 處形成-單分子層(m〇n〇layer),以抑制化學電鑛反應沉積速率。此單分子 H引發且陷住表面生成的氣泡。並且,當基底基座彻進入電_似 %黑可避免地仍會在基底表面產生氣泡,即使於電錢槽+以層流師㈣ f式^無法將其移除。因此,湘改變基底基座柳的轉速或層流速度仍 無法’效地移除微小氣泡細丨⑽七。 於電舰程中’陷住在基絲_氣泡會使得電舰無法直接鱼基底 表面的晶種觸,致使於魏射產纽職陷甚至孔洞橋接。進^影 響金屬鐘相覆紐。上述制缺肢賴橋接的生成亦會限觀入開口 部分或溝槽部分的填充率,使得金屬鍍層或内連線中生成孔洞缺陷及孔洞 橋接’箱影響元件的可靠度、元件的不穩定性、及發生不可翻的元件 根據本發明實闕,於金屬·化學麵沉積時,藉由提供_穩定且 均勻的電流密度於陰極麵極之間’並且將基底基座傾斜_特定角度並旋 轉。在傾斜與旋轉基底基顧過程中,陷住於基底表面的氣泡能順=的隨 :電鍍液的流動移除。隨者基底基座的傾斜角度增加,氣泡的移除效率亦 隨之增加。然而,基底基座的傾斜會翁錢厚度的均勻性。本發明 0503-A30164TWF/Jamn Gwo 9 1281211 物戦她_成銅晶種層144於阻障層142上。銅晶種層i44的功用在 於提供後續麵靖較麵結晶減及_性。—般而言,銅日a日種層的厚 度範圍較佳者為大抵介於500_3000A。 予 夕月/閱第4C圖,形成一化學電鐘銅金屬層15〇於晶種層144上,並填 夕層内連線結射。化學電鍍步驟可藉由本發明實施财的各種電錢裳 置的樣態及變化實施。於化㈣賴程中,藉基底基座傾斜—特^角 度亚且旋轉,可提升氣泡的移除速率,進而有效地降低空孔缺關形成。 土底基座的傾斜角度|父佳者大抵為Q.5_3度。基底基座的旋轉速率範圍較佳 者為介於⑼-㈣释。本發明在餘裕度的允許條件下,犧牲了部分白^ 層均勻度’將基底基座的傾斜’以徹底移除氣泡。於上述條件下,金屬^ ,的平坦度大齡於1%_4%。更有甚者,金騎層上氣洞或内連線^ 斫缺陷數目可降低1-2個數量級。 接者μ*閱第4D目,以化學機械研磨(CMp)平坦化並移除多層内連 線結構上多餘的金躺並露出下層齡電層⑼,以定義—誠線導電沾 構。於化學機械研磨步驟中,多餘部分的金屬層15Q、銅晶種層⑷及啡 層142依序被移除,顯露出介電層.15〇的表面,而完成表面平坦之雙鎮嵌 内連線導電結構的製作。 ^ [本案特徵及效果] 本發明之—職與效果包括在化學紐製財,將基底基座傾斜一特 足角度亚且旋轉,以提升氣泡的移除速率,細有效地降低空孔缺陷的形 成。本發明在製程裕度的允許條件下,犧牲了些許鏡層均句度,將基底基 座的傾斜,_底雜缝。赴舰件下,金紐層的和度大抵介於 财/。。更有甚者,金屬上的孔洞或内連線的破斷缺陷數㈣ 個數量級。 ^ 雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任 何熟習此項技藝者,在獨離本發明之精神和範#可作更動與潤倚, 0503-A30164TWF/Jamn Gwo 11 1281211 因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for forming an integrated circuit component, and more particularly to a method and apparatus for chemically plating a metal plating layer on a semiconductor substrate. [Prior Art] The interconnections in the conventional integrated circuit are presented in the form of a trench and a via hole. Especially in deep sub-micron integrated circuit technology, interconnect trenches and vias are formed using damascene or duai damascene processes. Gradually, copper wires have replaced the Ming wire as the mainstream of today's ultra-large integrated circuit (ULSI) metallization process (metamzati〇n). With the evolution of integrated circuit process technology, electroplated deposition (ECD) metal copper has become a standard step in the inlay or dual damascene process because of its larger particles (ie, better electrons) Migration impedance), lower resistivity and higher deposition rate. In particular, the 'electricity ship's mixed work is combined with a small-sized metallization, which is due to its superior coating growth rate control capability and superior conductive properties of the coating. / 1A-1D shows a conventional metallization process by means of an electroless plating process to form an interconnect structure on a substrate having a multilayer structure. In general, the above metallization process method includes physical vapor deposition (4) sical vap〇r curry addition, forming a layer of transition, and forming a seed layer on the bottom of the soil by physical vapor deposition on the barrier layer. Upper, and electroplated conductive: genus: on the seed layer. The plating structure and the layer, the core structure (e.g., dielectric layer) are then planarized, e.g., by chemical mechanical polishing (clearing), to define a conductive interconnect structure. 2〇: Read the iA diagram ‘providing—the base lG—® case of the paste inner layer 20 ft / formed in the oxidative dream. The dielectric layer 30 can be formed by depositing a dielectric layer 30 on the insulating layer which is a late-dielectric layer or a dielectric material having a low dielectric constant. The visual consistency needs to be adjusted. The number and thickness of the layer 3丨. Next, the dielectric > % is patterned to form a via portion π which " electrical layer 30 and a trench portion 34, thereby comprising a via 32 and a trench 0503-A30164TWF/Jamn Gwo, 1281211 • * • The inlaid opening structure of 34, that is, the structure as shown in Fig. ia. [See IB ® / Child Product Block Layer 42 on the dielectric layer %, including compliant coating γγ^Γ: 2 * groove % on the surface. The material f of the barrier layer 42 includes a button (Ta) or a nitride group, and a seed layer 44 of, for example, copper is formed on the barrier layer 42 by physical vapor deposition. Copper crystal 2 # can provide a subsequent electrical_metal layer is better. It is called the 1C figure of the tea to form an electroplated copper layer 5 on the copper seed layer 44 and filled in the double damascene opening 2, thus completing the metallization process of the double-joined interconnect structure. _, in the actual chemical clock metal ^ wealth, often repair layer structure and interface at the fine (four) d) defects 52 and 54. Through the _ knives, it is known that the defect is even deep into the interface of the barrier layer 42 and the seed layer 44, thereby compensating for the reliability of the component, which leads to the overall failure of the component.曰 ^ 嶋 嶋 m diagram, now learning mechanical grinding _) flattening dew (four) copper layer 5 〇 surface until the surface of the dielectric layer 30 is exposed. Part of the electric clock copper metal (4), the seed layer 44 and the barrier layer 42 are removed from the upper surface of the dielectric layer 3〇 during the planarization process to form an interconnected conductive structure having a flat surface, such as in a dual damascene Connection structure. However, the above conventional method of forming an interconnect structure on a multi-layered wire base produces a lot of _, such as lack of generation and poor interfacial adhesion, when the metal layer is deposited.一妒(4), in the chemical deposits of the metal layer, often produced defects such as micropores and spiral defects, making it difficult to pass through the sub-micro-high-height wide and in-line, _ mouth structure to fill the metal film without defects / / In the manufacturing process of components, it is extremely important to ensure the formation of a recessed metal film. In view of this, the difficulty in the conventional process is that when the plated material enters the electric ore solution, it is avoided to generate Wei bubble. When the microbubble traps are in the table, the current is uneven, and the defects are formed in the coating interface, and even the unevenness of the overall film thickness is caused. Conventionally, a method of reducing the generation of microbubbles is to enter a plating solution into an electric money solution at an oblique angle. US ^ 6,582,578 EDordi et al. disclose a chemical plating device that enters at an oblique angle when the surface of the money member enters the lightning fluid. Avoiding the interface between the surface of the plated member and the battery and the substrate. 〇503-A30164TWF /Jamn Gwo 6 1281211. Figure 2 is a plan view of a chemical electroplating deposition (ECD) device system 300 in accordance with an embodiment of the present invention. In Fig. 2, the electroplating deposition apparatus system lion includes - carrying / unloading (badk ^) clothing 310 thermal annealing chamber to (rapid thermal annealing diambei ^ 360, - rotating _ / month washing dry (spin rinse- Dry 'SRD) and edge bevel removal (EBR) chamber 3/40, -mechanical arm 380 and one or more electroless plating tanks 32. A chemical clock supply = system (not shown Provided in a system adjacent to the electroless plating apparatus and connected to each of the electroless plating tanks 32 to provide a circulating electroplating liquid system. The chemical clock deposition apparatus system also includes a control device including a programmable microprocessor. Individual control outputs and respective devices that are numbered A to the electroplating deposition apparatus system 3. Fig. 3 shows a chemical electric clock reaction device according to an embodiment of the present invention, having a plated member 402' such as a dream wafer, The chemical electric clock reaction device includes a substrate fixing device 4〇4 fixed on the rotating shaft 4〇5 to provide the substrate fixing device side rotating moving soil. Although the present invention simplifies the chemical clock reaction Device example The embodiments of the present invention are not intended to limit the practice of the present invention, and other chemical electroplating reaction devices have the desired results achieved by the present invention, and are included in the scope of the present invention. The substrate pedestal and the substrate fixing device are completely immersed in the plating bath 422 including the plating solution. The circulation of the entire plating solution is shown in 414, and a continuous uterine ring clock liquid is provided by a secret. In other words, the plating solution flows upward to the plating member (anode) 402 and then expands outwardly through the plating member 4, as indicated by symbol 414. The circulation direction of the plating solution flows from the plating tank 422 to the plating solution storage tank 42〇, For example, 芩aa. 410 and 411. The plating solution flows out of the storage tank 42 and flows through a tearing cry 仃唬w λ to flow back to the pump 440' and completes the entire cycle step, as indicated by the arrow symbol 412. Shown. A DC power supply 45〇 provides a negative wheel, a dream, a slip ring, a brush and a contact (not shown), electrically connected to the ginseng or the positive and positive The battery is electrically connected to the anode 401 in the plating bath 422. After the electric iron: 2. Take X Ning, the power supply 〇503-A30l64TWF/Jamn Gwo 1281211 bias [the iron piece 402 produces a negative potential drop relative to the anode 401, causing a charge flow ^ self-exhaustion 4G2 (hetero (four) gratitude magnetic direction 舆 ^ The same is opposite to the direction of electron flow). The above-mentioned charge flow leads to an electrochemical reaction (ie, u仏-〇〇 on the surface of the money piece, thus depositing a metal layer such as copper on the bell. The ion concentration in the electric clock is determined by the entire electric energy, such as metal Yangqi In general, the composition of the electro-mineral liquid includes copper (CuS〇4), inhibitors or other additives. Agents such as high-strength polymers of hydrazine chains, including poly-shirts Non-alcohol (4) ^ (tetra) II Iyeihylene glyc〇 1, pEG), polyoxyethylene-polyoxypropyl copolymer 〇y〇xyethylene-p〇lyoxypropylene copolymer) 0 formation - monolayer (m〇n〇 Layer) to inhibit the deposition rate of chemical ore reaction. This single molecule H initiates and traps bubbles formed on the surface. Moreover, when the base pedestal enters the electricity, it can avoid the generation of air bubbles on the surface of the substrate, even if it is not removed by the laminator. Therefore, it is still impossible to remove the fine bubble (10) seven by changing the rotation speed or laminar flow velocity of the base pedestal. In the electric ship, the trapping in the base wire _ bubble will make the electric ship unable to directly touch the crystal surface of the fish base surface, causing the Wei shot production to be trapped or even the hole bridge. Into the shadow of the metal clock. The formation of the above-mentioned missing limb bridge will also limit the filling rate of the opening portion or the groove portion, so that the hole defect and the hole bridge in the metal plating or the interconnecting line can affect the reliability of the component and the instability of the component. In accordance with the present invention, in the case of metal/chemical surface deposition, a stable and uniform current density is provided between the cathode faces and the substrate base is tilted by a specific angle and rotated. During the tilting and rotating substrate reference, the bubbles trapped on the surface of the substrate can be removed by the flow of the plating solution. As the tilt angle of the base base increases, the efficiency of bubble removal increases. However, the inclination of the base base will be uniform in thickness. The present invention 0503-A30164TWF/Jamn Gwo 9 1281211 materializes her _ copper seed layer 144 on the barrier layer 142. The function of the copper seed layer i44 is to provide a subsequent surface crystallization reduction. In general, the thickness range of the copper day a day layer is preferably between 500_3000A. To the eve of the moon / see the 4C figure, a chemical electric clock copper metal layer 15 is formed on the seed layer 144, and the inner layer of the filling layer is formed. The electroplating step can be carried out by the manner and variation of various money-savings implemented by the present invention. In Yuhua (4), the tilting of the base pedestal--the angle of the base is rotated and the bubble removal rate can be increased, thereby effectively reducing the formation of voids. The inclination angle of the soil foundation pedestal | The father is mostly Q.5_3 degrees. The range of rotation rates of the substrate base is preferably between (9) and (iv). The present invention sacrifices part of the white layer uniformity 'the tilt of the base pedestal' to completely remove the air bubbles under the margin of the margin. Under the above conditions, the flatness of the metal is older than 1%_4%. What's more, the number of defects in the air holes or interconnects on the gold riding layer can be reduced by 1-2 orders of magnitude. The connector μ* reads the 4D mesh, planarizes by chemical mechanical polishing (CMp) and removes excess gold lying on the multilayer interconnect structure and exposes the underlying electrical layer (9) to define the conductive line of the honest line. In the chemical mechanical polishing step, the excess portion of the metal layer 15Q, the copper seed layer (4), and the brown layer 142 are sequentially removed to reveal a surface of the dielectric layer of 15 ,, and the surface is flat and double-embedded. Fabrication of wire conductive structures. ^ [Features and Effects of the Case] The functions and effects of the present invention include that the chemical base is made of a chemical, and the base base is tilted by a special angle and rotated to increase the removal rate of the bubble, and to effectively reduce the defect of the hole. form. The invention sacrifices a certain degree of mirror layer uniformity under the permission of the process margin, and the base base is inclined, and the bottom base is stitched. Under the ship, the sum of the gold and gold layers is mostly between the financial assets. . What's more, the number of broken defects in the holes or interconnects on the metal is (four) orders of magnitude. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and anyone skilled in the art can make a change and reliance on the spirit and scope of the present invention, 0503-A30164TWF/Jamn. Gwo 11 1281211 The scope of the invention is therefore defined by the scope of the appended claims.

12 0503-A30164TWF/Janm Gwo 1281211 【圖式簡單說明】 第1A-1D圖係顯 結構之基底上; 丁傳、、先之金屬化製程方法以形成内連線結構於具多層 學 第2圖係根據本發明實施例之化 意圖; 電鏡沉積(ECD)裝置系統的平面示 第3圖係顯示根據本夢 楚4Λ例之化學電链反應裝置;.以及 弟4A-4D圖係顯示金屬化夢 。 衣耘真入具夕層内連線結構各步驟的剖面示 【主要元件符號說明】 習知部分(第1Α〜1D圖) 1〇〜半導體基底; 25〜絕緣層; 32〜通孔部分; 42〜阻障層; 50〜電鍍銅金屬層; D〜螺旋缺陷。12 0503-A30164TWF/Janm Gwo 1281211 [Simple description of the diagram] The 1A-1D diagram is on the base of the display structure; Ding Chuan, the first metallization process to form the interconnect structure in the multi-layered second diagram The intention of the embodiment of the present invention; the plane of the electron microscope deposition (ECD) device system shows a chemical chain reaction device according to the example of the present invention; and the brother 4A-4D system shows the metallization dream. Cross-section of each step of the 耘 耘 内 【 【 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体~ barrier layer; 50 ~ electroplated copper metal layer; D ~ spiral defect.

20〜金屬内連線; 30〜介電層; 34〜溝槽部分; 44〜晶種層; 52及54〜孔洞缺陷; 本案部分(第2〜4D圖) 300〜化學電鍍沉積裝置系統; 320〜化學電鍍反應槽; 360〜快速熱退火腔室; 400〜化學電鍍反應裝置; 310〜承載/卸載裝置; 340〜方疋轉-清洗-思乾及邊角移除腔室· 3 80〜機械臂; 401〜陽極; 402〜錢件; 4G3〜基底基座; 4〇4〜基底固定裝置; 405〜旋轉軸; 箭頭符號410至414〜電鍵液的循環方向; 0503-A30164TWF/Jamn Gwo 13 1281211 422〜電鍍槽; Θ〜基底基座傾斜角, 120〜金屬内連線; 130〜介電層; 134〜溝槽部分; 144〜晶種層; 420〜儲存槽; 450〜直流電源供應為, 100〜半導體基底; 125〜絕緣層; 132〜通孔部分; 142〜阻障層; 150及150’〜電鍍銅金屬層。 14 0503-A30164TWF/Jamn Gwo20~metal interconnect; 30~ dielectric layer; 34~ trench portion; 44~ seed layer; 52 and 54~ hole defect; part of the case (2nd to 4D) 300~ chemical electroplating deposition system; 320 ~ chemical plating reaction tank; 360 ~ rapid thermal annealing chamber; 400 ~ chemical plating reaction device; 310 ~ load / unload device; 340 ~ square turn - cleaning - think dry and corner removal chamber · 3 80 ~ mechanical Arm; 401~anode; 402~money piece; 4G3~base base; 4〇4~base fixture; 405~rotation axis; arrow symbol 410 to 414~ key circulation direction; 0503-A30164TWF/Jamn Gwo 13 1281211 422 ~ plating bath; Θ ~ base base tilt angle, 120 ~ metal interconnect; 130 ~ dielectric layer; 134 ~ trench portion; 144 ~ seed layer; 420 ~ storage slot; 450 ~ DC power supply for, 100~ semiconductor substrate; 125~ insulating layer; 132~ via hole portion; 142~ barrier layer; 150 and 150'~ electroplated copper metal layer. 14 0503-A30164TWF/Jamn Gwo

Claims (1)

修正日期:95.12.18 i^/j u-v-V; ί \ 12812¾¾142339號申請專利範圍修正本 十、申請專利範圍: 1. 一種化學電鍍沉積法,包括: 提供一基底;以及 於一化學電鍍槽中進行化學電鍍沉積一金屬層於該基底上, 其中該基底具有一電鍍面,於化學電鍍時,該電鍍面不平行於該 化學電鍍槽的表面,且傾斜一角度並旋轉; 其中該基底的該電鍍面的傾斜角度範圍大抵介於0.5-3度。Amendment date: 95.12.18 i^/j uvV; ί \ 128123⁄43⁄4142339 Patent application scope revision 10. Application scope: 1. An electroless plating deposition method comprising: providing a substrate; and performing chemistry in a chemical plating bath Electroplating depositing a metal layer on the substrate, wherein the substrate has an electroplating surface, the electroplating surface is not parallel to the surface of the electroless plating bath, and is inclined at an angle and rotated; wherein the plating surface of the substrate The range of tilt angles is generally between 0.5 and 3 degrees. 2. 如申請專利範圍第1項所述之化學電鍍沉積法,更包括沉 積一阻障層與一晶種層於該基底上。 3. 如申請專利範圍第2項所述之化學電鍍沉積法,其中沉積 的該阻障層包括濺鍍的鈕(Ta)、氮化鈕(TaN)、氮化鈦(TiN)或上述 之三元化合物組合。 4·如申請專利範圍第2項所述之化學電鍍沉積法,其中沉積 的該晶種層包括化學電鍍的銅或化學氣相沉積的銅。 5·如申請專利範圍第1項所述之化學電鍍沉積法,其中該金 屬層包括銅。 6.如申請專利範圍第1項所述之化學電鍍沉積法,其中該基 底的該電鍍面的旋轉速率範圍大抵介於150-600rpm。 7·—種利用化學電鍍沉積法形成積體電路元件的方法,包括: 提供一半導體基底,其上有一絕緣層; 提供一金屬内連線線路於該絕緣層中; 形成一介電層於該絕緣層上,該介電層中包括一溝槽開口與 一通孔開口,相對於該金屬内連線線路;以及 進行化學電鍍沉積一金屬層於該基底上,其中該基底具有一 電鍍面,於化學電鍍時,該電鍍面不平行於該化學電鍍槽的表面, 且傾斜一角度並旋轉; 0503-A30164TWF2 (20061020) 15 1281211 • 其中该基底的該電鍍面的傾斜角度範圍大抵介於0.5-3度。 ^ 4 °月專利範圍帛7項所述之利用化學電鍍沉積法形成積 體電路兀件的方法,其中沉積的該阻障層包括賴的組㈣、氮化 •组⑽)、氮化鈦(TlN)或上述之三元化合物組合。 • > 9·如巾請專利範圍第7項所述之利用化學電鍍沉積法形成積 體電路兀件的方法,其中沉積的該晶種層包括化學電鍍的銅或化 學氣相沉積的銅。 ―带如中請專利範圍第7項所述之利用化學電鍍沉積法形成積 鲁體电路兀件的方法’其中該基底的該電鍵面的旋轉速率範圍大抵 介於 150-600rpm。 一 11.-種半導體晶圓上無缺陷的化學電鍍金屬層,包括: 一半導體晶圓;以及 一化學電鍍金屬層於該半導體晶圓上, 其中該化學電鑛金屬層係以如中請專利範圍第7項所述之利 用化學電舰積法形成,且於化學電㈣,該半導體晶圓的表面 不平行於化學電鑛槽的表面,且傾斜一角度並旋轉; 、,其中該化學電鐘金屬層上的缺陷密度大抵低於%個/平方毫 -二如專:^圍第U項所述之半導體晶圓上無缺陷的化 子電鍍至屬層,其中該半導體晶圓包括一單晶矽晶圓。 …3八如專:範圍第U項所述之半導體晶圓上無缺陷的化 子電鑛至制,其中該半導體晶圓包括—阻障層舆—晶種層於盆 表面上。 岛M.如申請專利範圍第u項所述之半導體晶圓上無缺陷的化 :電鑛金屬層,其t沉積在半導體晶圓上的化學電錢金屬層包括 0503-A30164TWF2 (20061020) 16 1281211 灞» 15.如申請專利範圍第11項所述之半導體晶圓上無缺陷的化 學電鍍金屬層,其中該化學電鍍金屬層上的平坦度大抵介於 1%-4%。2. The electroless plating deposition method of claim 1, further comprising depositing a barrier layer and a seed layer on the substrate. 3. The electroless plating deposition method according to claim 2, wherein the barrier layer deposited comprises a sputtering button (Ta), a nitride button (TaN), titanium nitride (TiN) or the above three Combination of meta-compounds. 4. The electroless plating deposition method of claim 2, wherein the seed layer deposited comprises electrolessly plated copper or chemical vapor deposited copper. 5. The electroless plating deposition method of claim 1, wherein the metal layer comprises copper. 6. The electroless plating deposition method of claim 1, wherein the plating surface of the substrate has a rotation rate ranging from 150 to 600 rpm. 7. A method of forming an integrated circuit component by chemical electroplating, comprising: providing a semiconductor substrate having an insulating layer thereon; providing a metal interconnect line in the insulating layer; forming a dielectric layer thereon On the insulating layer, the dielectric layer includes a trench opening and a via opening opposite to the metal interconnect line; and chemically depositing a metal layer on the substrate, wherein the substrate has a plating surface, In electroless plating, the plated surface is not parallel to the surface of the electroless plating bath, and is inclined at an angle and rotated; 0503-A30164TWF2 (20061020) 15 1281211 • wherein the plating surface of the substrate has an inclination angle ranging from 0.5 to 3 degree. The method for forming an integrated circuit component by chemical electroplating deposition according to the above-mentioned patent application, wherein the barrier layer includes a group (4), a nitride group (10), and a titanium nitride ( TlN) or a combination of the above ternary compounds. • > 9. A method of forming an integrated circuit component by chemical electroplating as described in claim 7, wherein the seed layer deposited comprises electrolessly plated copper or chemical vapor deposited copper. The method of forming a build-up circuit component by chemical electroplating as described in claim 7 of the patent scope wherein the rotational speed of the key face of the substrate ranges from 150 to 600 rpm. A non-defective electroplated metal layer on a semiconductor wafer, comprising: a semiconductor wafer; and a chemically plated metal layer on the semiconductor wafer, wherein the chemical ore metal layer is patented as claimed The method described in the seventh item is formed by a chemical electric shipbuilding method, and in the chemical electricity (four), the surface of the semiconductor wafer is not parallel to the surface of the chemical electric ore tank, and is inclined at an angle and rotated; wherein, the chemical electricity The defect density on the metal layer of the clock is substantially less than %/square millimeter-two. For example, the defect-free susceptor plating on the semiconductor wafer described in item U is applied to the genus layer, wherein the semiconductor wafer includes a single Wafer wafers. ... 八八如专: The defect-free chemistries on the semiconductor wafer described in the scope U, wherein the semiconductor wafer comprises a barrier layer 晶 - a seed layer on the surface of the basin. Island M. No defect on the semiconductor wafer as described in the scope of claim 5: an electro-mineral metal layer, the chemical money metal layer deposited on the semiconductor wafer, including 0503-A30164TWF2 (20061020) 16 1281211 15.» 15. The non-defective electroplated metal layer on the semiconductor wafer of claim 11, wherein the flatness on the electroless metal layer is substantially between 1% and 4%. 0503-A30164TWF2 (20061020) 170503-A30164TWF2 (20061020) 17
TW094142339A 2005-03-29 2005-12-01 Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer TWI281211B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/092,594 US20060219566A1 (en) 2005-03-29 2005-03-29 Method for fabricating metal layer

Publications (2)

Publication Number Publication Date
TW200634929A TW200634929A (en) 2006-10-01
TWI281211B true TWI281211B (en) 2007-05-11

Family

ID=37069005

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094142339A TWI281211B (en) 2005-03-29 2005-12-01 Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer

Country Status (2)

Country Link
US (1) US20060219566A1 (en)
TW (1) TWI281211B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383071B (en) * 2008-10-30 2013-01-21 All Ring Tech Co Ltd Electroplating apparatus for chips
TWI410531B (en) * 2010-05-07 2013-10-01 Taiwan Semiconductor Mfg Vertical plating equipment and plating method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565134A (en) * 2019-10-09 2019-12-13 深圳华络电子有限公司 method for preparing electrode of inductance device
CN112853441B (en) * 2021-01-08 2022-04-08 上海戴丰科技有限公司 Wafer horizontal electroplating device and cathode electroplating solution jet flow method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2491925A (en) * 1944-09-16 1949-12-20 Lazaro Anton Apparatus for electroplating
US2446476A (en) * 1944-12-09 1948-08-03 William C Huebner Apparatus for coating cylindrical surfaces
US6391166B1 (en) * 1998-02-12 2002-05-21 Acm Research, Inc. Plating apparatus and method
US6402923B1 (en) * 2000-03-27 2002-06-11 Novellus Systems Inc Method and apparatus for uniform electroplating of integrated circuits using a variable field shaping element
US6258220B1 (en) * 1998-11-30 2001-07-10 Applied Materials, Inc. Electro-chemical deposition system
US6582578B1 (en) * 1999-04-08 2003-06-24 Applied Materials, Inc. Method and associated apparatus for tilting a substrate upon entry for metal deposition
US6399479B1 (en) * 1999-08-30 2002-06-04 Applied Materials, Inc. Processes to improve electroplating fill
US6610189B2 (en) * 2001-01-03 2003-08-26 Applied Materials, Inc. Method and associated apparatus to mechanically enhance the deposition of a metal film within a feature
US6551487B1 (en) * 2001-05-31 2003-04-22 Novellus Systems, Inc. Methods and apparatus for controlled-angle wafer immersion
JP3495033B1 (en) * 2002-09-19 2004-02-09 東京エレクトロン株式会社 Electroless plating apparatus and electroless plating method
US20050164499A1 (en) * 2002-09-27 2005-07-28 Tokyo Electron Limited Electroless plating method and apparatus
JP3485561B1 (en) * 2002-10-07 2004-01-13 東京エレクトロン株式会社 Electroless plating method and electroless plating apparatus
US20070153062A1 (en) * 2005-12-30 2007-07-05 Shie Jin S Monolithic fabrication method and structure of array nozzles on thermal inkjet print head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383071B (en) * 2008-10-30 2013-01-21 All Ring Tech Co Ltd Electroplating apparatus for chips
TWI410531B (en) * 2010-05-07 2013-10-01 Taiwan Semiconductor Mfg Vertical plating equipment and plating method thereof

Also Published As

Publication number Publication date
US20060219566A1 (en) 2006-10-05
TW200634929A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
KR101105485B1 (en) Process for through silicon via filling
TW584899B (en) Planar metal electroprocessing
TW200837225A (en) Apparatuses for electrochemical deposition, conductive layers on semiconductor wafer, and fabrication methods thereof
US8513124B1 (en) Copper electroplating process for uniform across wafer deposition and void free filling on semi-noble metal coated wafers
TWI434963B (en) Method of coating a surface of a substrate with a metal by electroplating
US20060283716A1 (en) Method of direct plating of copper on a ruthenium alloy
TWI441956B (en) Electrodeposition composition and method for coating a semiconductor substrate using the said composition
JP2006519503A (en) Thin and flat film processing without defects
KR20210091823A (en) Low-temperature copper-copper direct bonding
JP2009527912A (en) Method and composition for direct copper plating and filling to form interconnects in the manufacture of semiconductor devices
TW444238B (en) A method of making thin film
TWI513863B (en) Copper-electroplating composition and process for filling a cavity in a semiconductor substrate using this composition
JP4163728B2 (en) Electroplating method
KR20150056655A (en) Electrolyte and process for electroplating copper onto a barrier layer
JP3967879B2 (en) Copper plating solution and method for manufacturing semiconductor integrated circuit device using the same
TWI281211B (en) Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer
JP2013524019A (en) Seed layer deposition in microscale structures
TWI276151B (en) Method and apparatus for electrochemical plating semiconductor wafers
JP2009249653A (en) Electroplating method
TWI299370B (en) Apparatus and method for electrochemically depositing a metal layer
TW201108353A (en) Method for coating a semiconductor substrate by electrodeposition
TW200535281A (en) Method and apparatus for fabricating metal layer
JP2008056968A (en) Method of manufacturing copper wiring and electrolyte for copper plating
TWI314592B (en) Copper plating of semiconductor devices using intermediate immersion step
JP2002322592A (en) Method for manufacturing semiconductor device