TWI272313B - Copper alloy for electronic material - Google Patents

Copper alloy for electronic material Download PDF

Info

Publication number
TWI272313B
TWI272313B TW093114063A TW93114063A TWI272313B TW I272313 B TWI272313 B TW I272313B TW 093114063 A TW093114063 A TW 093114063A TW 93114063 A TW93114063 A TW 93114063A TW I272313 B TWI272313 B TW I272313B
Authority
TW
Taiwan
Prior art keywords
copper alloy
strength
ecalloy
mass
conductivity
Prior art date
Application number
TW093114063A
Other languages
Chinese (zh)
Other versions
TW200426233A (en
Inventor
Naohiko Era
Kazuhiko Fukamachi
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Publication of TW200426233A publication Critical patent/TW200426233A/en
Application granted granted Critical
Publication of TWI272313B publication Critical patent/TWI272313B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a copper alloy for electronic materials which has excellent electroconductivity as well as strength and bendability and can be suitably used for various electronic equipment parts, such as lead frames, terminals, connectors, switches and relays. The copper alloy for electronic materials with high strength and high bendability is a copper alloy having a composition consisting of, by mass, 1.0 to 4.8% Ni, 0.30 to 1.2% Si, 0.03 to 0.5%, in total, of either or both of Mn and Mg and the balance Cu with inevitable impurities. In this copper alloy, working and heat treatment in a manufacturing process are regulated to control the electroconductivity (EC) of a final product to a value within the range satisfying ECalloy+20 <= EC <= ECalloy+30, wherein, the electroconductivity of the final product is represented by EC(%IACS); [Ni] and [Si] represent the additive quantities (mass%) of Ni and Si in the alloy composition, respectively; and ECalloy is an electroconductivity in the case where Ni and Si are allowed to enter into solid solution in the alloy and is represented by ECalloy=150/(1.72+1.5[Ni]+4[Si]).

Description

1272313 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於一種電子材料用銅合金,該電子材料 用銅合金使用於導線架(lead fr繼)、端子、連接器、開 關、繼電器等各種電子機器零件時,纟有適合的強度、彎 曲加工性之同時並具有優良導電率。 【先前技術】 電子機器所使用的材料,隨著零件的小型化及高可靠 性的需求’期盼高強度、高電導性、以及财#性與耐熱性 等更為優良者。以往電子機器所使用之銅合金,廣泛地使 用稱為磷青銅、黃銅等固溶強化型,&lt;旦以高導電性的觀點 ,如Cu-Ni-Si系之科森(cors〇n)合金之析出硬化型銅合金 亦漸漸被使用。 析出硬化型銅合金中亦以Cu_N卜Si系合金,為具備高 強度同時並兼具較高導電率之合金系。其強化機構,為藉 由使Ni-Si系之金屬間化合物粒子由Cu基質(matHx)中析 出來提升強度。 近年來為了因應半導體設備的高積體化、小型化、或 高密度構裝,電子機器所使用的材料之板厚亦傾向於薄化 ,板厚變薄時為確保通電時充分的接觸壓力、資料傳達速 度、以及散熱特性,而要求高強度、冑導電化。而且隨著 設備之高積體化、小型化等,施加複雜彎曲加工之用途正 擴大中。因此,針對比以往更高強度且能忍受嚴苛之彎曲 1272313 加工、傳達貢料之充分的導電率、以及散熱特性之充分的 熱傳導率等要求正升高中。(例如,參照日本專利文獻1) 專利文獻1 ··特開2001-207229號公報 【發明内容】 於專利文獻1中,為了得到良好的強度、導電性及彎 曲加工性等,藉由調整Ni/Si = 3〜7,而形成強度、導電性 及彎曲加工性優異之電子材料用銅合金。 但是,為了既可確保析出硬化型銅合金之高強度、高 V電率還把確保良好的彎曲加工性,在製造步驟中設計 不損害彎曲加工性之步驟則更為重要。一般而$,硬化型 銅合金之製造步驟,係使用經由熔解鑄造、均質化退火 (annealing)壓延等既定步驟而製成之原料條,進行使構 成弟二相粒子之元素在銅基質中固溶之溶體化處理。溶體BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for electronic materials, which is used for a lead frame, a terminal, a connector, a switch, a relay, etc. When it comes to various electronic machine parts, it has suitable strength and bending workability and has excellent electrical conductivity. [Prior Art] The materials used in electronic equipment are expected to have higher strength, higher electrical conductivity, and higher quality and heat resistance as the parts are miniaturized and highly reliable. Conventionally, a copper alloy used in an electronic device is widely used as a solid solution strengthening type called phosphor bronze or brass, and &lt;a high conductivity is used, such as a Cu-Ni-Si-based cors〇n. Precipitation hardening copper alloys of alloys are also being used. In the precipitation hardening type copper alloy, a Cu_N-Si alloy is also used, and it is an alloy system which has high strength and high electrical conductivity. The strengthening mechanism is to increase the strength by separating the Ni-Si intermetallic compound particles from the Cu matrix (matHx). In recent years, in order to cope with the high integration, miniaturization, or high-density mounting of semiconductor devices, the thickness of materials used in electronic devices tends to be thinner. When the thickness is thin, sufficient contact pressure is ensured during energization. The data conveys speed and heat dissipation characteristics, and requires high strength and 胄 conductivity. In addition, the use of complex bending processing is expanding as the equipment is integrated and miniaturized. Therefore, it is demanding that it is stronger than ever and can withstand severe bending. 1272313 Processing, conveying sufficient electrical conductivity of the tribute, and sufficient thermal conductivity of heat dissipation characteristics are increasing. (Patent Document 1) Japanese Laid-Open Patent Publication No. 2001-207229 (Patent Document 1) In Patent Document 1, in order to obtain good strength, electrical conductivity, bending workability, etc., Ni/ is adjusted. Si = 3 to 7, and forms a copper alloy for an electronic material excellent in strength, electrical conductivity, and bending workability. However, in order to ensure high bending strength and high V electric rate of the precipitation hardening type copper alloy and to ensure good bending workability, it is more important to design a step which does not impair the bending workability in the manufacturing step. In general, the manufacturing step of the hardened copper alloy is carried out by using a raw material strip prepared by a predetermined step such as melt casting, annealing annealing, or the like, to effect solid solution of the elements constituting the second phase particles in the copper matrix. Solution treatment. Solution

之退火步驟替 延展性卻降低。亦即 ,藉由於退火後反覆進行丨以次以上的 可以發揮所期望之特性,但其順序及次 較佳為保持該合金系於固溶溫度下既 卻以增加析出率,但通常於再結晶溫 伴隨该溶體化之退火時,由於與溶體 之再結晶組織而使材料強度降 度而軛加1次以上的時效處理及壓 高時雖可期待高強度化,相反地, 設計高彎曲加工性在可以接受程度 1272313 之步驟%·,為了維持溶體化處理後之延展性 加工度為低加工度而形成高導電、高變曲加工性之?:終 為了確保良好的f曲加工性和導電率二。 析出之退火條件為過時效條件時,強度會 ^效 又基於使低加工度材料高強度化之目的 =:。 結晶粒微細化時,在粒只銘叙4 旨忒預先進行 〗結界移動抑制上發揮固定作 相拉子在伴隨時效之退火時會粗大化, ,Y日县說—、J· I j回導電率 二 賦予強化作用且亦可能成為彎曲加工性亞 化的起點。 丨心、 =發明欲解決之課題,係提供一種電子材料用銅合金 以电子材料用銅合金使用於導線架、端子、連接器 :、繼電器等各種電子機器零件時,能具有適合的強/ 考曲加工性之同時並具有優良導電率,。 又 ^發明人等經致力研究之結果,發現藉由調整製造步 驟之加工和熱處理來控制最終製品之導電率,可以得到且 有高強度且高·’曲加工性之電子材料用銅合金。 '、 亦即, ⑴-種高強度、高彎曲加工性電子材料用銅合金,豆 特徵為含有N1:1.。〜4.8質量%、以:。3〇〜12質量%4 Mg之至少1種或2種合計〇 〇3{5質量%、剩餘部份為 U與無法避免的雜質·’設最終製品之導電率A此(麗 、合金組成中h及Si之添加量(質量%)為[叫及[叫、直 等在合金中固溶時之導電率&amp; ECaU〇y,當·ιι〇Υ = 15〇/{1.72H.5[Nl]+4[s⑴時,係調整製造步驟之加工 1272313 和熱處理而將最終製品之導電率(E/C)控制於ECal 1〇y+2〇 $ECSECalloy + 30 之範圍。 (2)—種如上述(丨)所述之高強度、高彎曲加工性電子 材料用銅合金,係含有〇·〇〇3〜2.0質量%之擇自Sn、Ti、 Zr、A1、Co ' Cr、Fe、Zn、Ag 之 1 種或 2 種以上。 【實施方式】 以下說明本發明之限定理由。 1 · Μη 及 MgThe annealing step is less ductile. That is, the desired characteristics can be exhibited by repeating the ruthenium after annealing, but the order and the second order are preferably to maintain the precipitation rate of the alloy at the solution temperature, but usually recrystallize. When the temperature is accompanied by the recrystallization of the solution, the strength of the material is lowered by the recrystallization of the solution, and the yoke is added once or more. The aging treatment and the high pressure are expected to increase the strength. Conversely, the design is high in bending. The processability is in the step %1 of the acceptable degree of 12,723,313. In order to maintain the ductility of the solution after the solution treatment, the high workability and the high workability are formed. : Final To ensure good f-curability and conductivity. When the annealing condition of the precipitation is over-aging condition, the strength is effective and the purpose is to increase the strength of the low-workability material =:. When the crystal grain is refined, the grain is only inscribed in the fourth step, and the fixed phase phase puller is used to suppress the enchantment movement. The phase puller is coarsened during the annealing with the aging effect, and the Y-county says that the J·I j is electrically conductive. Rate 2 gives reinforcement and may also be the starting point for bending processability.丨心, = Invented to solve the problem, is to provide a copper alloy for electronic materials, copper alloy for electronic materials used in lead frames, terminals, connectors: relays and other electronic machine parts, can have a suitable strength / test It has good workability and excellent electrical conductivity. Further, as a result of intensive studies by the inventors, it has been found that by controlling the processing and heat treatment of the manufacturing steps to control the electrical conductivity of the final product, it is possible to obtain a copper alloy for electronic materials having high strength and high flexural properties. ', that is, (1) - a copper alloy for high-strength, high-bending workability electronic materials, characterized in that the beans contain N1:1. ~4.8% by mass to: 3〇~12质量%4 At least one of Mg or a total of 2 kinds 〇〇3{5 mass%, the remainder is U and unavoidable impurities·'Set the conductivity of the final product A (Li, alloy composition The amount of addition of h and Si (% by mass) is [called and [the conductivity of the solution when it is dissolved in the alloy &amp; ECaU〇y, when · ιι〇Υ = 15〇 / {1.72H.5 [Nl When +4[s(1), the processing step 1272313 of the manufacturing step is adjusted and the heat treatment is performed to control the conductivity (E/C) of the final product to the range of ECal 1〇y+2〇$ECSECalloy + 30. (2) The copper alloy for high-strength and high-bending workability electronic materials described in the above (丨) contains 〜·〇〇3 to 2.0% by mass selected from Sn, Ti, Zr, A1, Co' Cr, Fe, Zn, One or two or more types of Ag. [Embodiment] The reason for the limitation of the present invention will be described below. 1 · Μη and Mg

Mg係加工硬化能力高之元素,改善應力緩和特性及最 終強度效果大,但是添加量未滿〇 〇3%時無法得到其效果 ,另一方面,添加量若在0.50%以上時,因熔解鑄造時鑄 造表面之劣化等會造成鑄造性降低。又,Mn藉由固溶強化 可以顯著地改善合金強度,並可補強Ni及si之共同添加 所產生之強度提昇效果。Mn之添加量若未滿u⑽,無法 得到其效果,另—方面,添加量若在G.5G%以上時,導電 率會顯著降低。此蓉开音π天 牛狐此寻兀素共冋添加時,添加量若未滿 0. 03% ’無法得到其效果,另一 乃® 添加置若在0· 50%以 上’則導電率會顯著降低。因此, 干 口凡便Μη及Mg之1種或2 種之添加量為〇· 03〜0· 5質量%。 最-2製二LSi固溶於合金十時之導電率(Ecaii〇y)及其 取終製品之導電率(Ec)Mg-based elements with high work hardening ability have high effect on improving stress relaxation characteristics and final strength. However, when the addition amount is less than 3%, the effect cannot be obtained. On the other hand, if the addition amount is 0.50% or more, it is melt-casting. Deterioration of the casting surface or the like causes a decrease in castability. Further, Mn can significantly improve the strength of the alloy by solid solution strengthening, and can reinforce the strength-increasing effect of the co-addition of Ni and Si. If the amount of Mn added is less than (10), the effect cannot be obtained. On the other hand, if the amount of addition is more than G.5G%, the conductivity is remarkably lowered. If the addition amount is less than 0. 03% 'the effect cannot be obtained, the other is the addition of 0. 50% or more', the conductivity will be Significantly lower. Therefore, the amount of one or two of the dry mouth Μη and Mg is 〇· 03~0·5 mass%. Conductivity (Ecaii〇y) of the most -2 system 2 LSi solid solution in the alloy and its conductivity (Ec)

Ni及Si固溶於合金中之導電 此^ ^從 守电半(Ecal l〇y)雖因加熱條 件而有種種的不同,作Λ埶〜 个丨』仁加熱至元全固溶溫度並保持丨小時 1272313 以上、再急速冷卻後,可以達到ECau〇y = l5〇/ ( l-72 + l,5[Ni]+4[Si]}所表示之導電率。以該導電率為基 準,藉由控制加工及熱處理條件使最終製品之導電率(E/c) 在ECalloy + 20g ECS ECall〇y + 30,能夠在不致大幅損害彎 曲加工丨生下4求咼強度化。此時,關於隨著溶體化之退火 後的製Xe條件,為發揮特性以進卩i次以上的壓延及時效 為L C其順序及次數沒有限制,視需要可以去除應力伴 隨之退火步驟替代。該最終製品之導電率(E/c)為 loy + 20&gt; EC時,因藉由時效之析出並未充分進行而無 提门強度&amp;不佳。或是因以非常高的力口工度施加冷乾 ▲由於應力之積蓄或是析出粒子之斷裂等使導電率降低, 彎曲加工性亦顯著地惡化。 另一方面 ECall〇y+30 時, 大粒子使彎曲加 實施例 ’最終製品之導電率(E/C)為Ec &gt; 因為過時效而易使強度不足、或是生成粗 工性易惡化,故不佳。 在高頻炫解爐中炼製表1所示各組成之銅合金 勒,击I 、、人A! . — ,,,,·,7、似从〜Μ甘贫。其才 仃:軋、冷軋、溶體化處理、冷軋、時效處理、及視4 要之最終冷軋、去除應力退火等。具體而言,溶; 係以保持溫度在700〜90η。 化處天 900 C的乾圍内1分鐘以上進行,』 後直接進行水冷。接著 丁 - _〜6啊之各、、1$ Λ 度進行冷軋,及方 r申咬奎 ’皿又進仃日守效處理,但此時之最適條件俜£Ni and Si are solid-solubilized in the alloy. This is different from the E-blocking (Ecal l〇y) due to various heating conditions, and it is heated to the full solid solution temperature and kept. After 127 hour 1272313 or more, after rapid cooling, the conductivity expressed by ECau〇y = l5 〇 / ( l-72 + l, 5 [Ni] + 4 [Si]} can be achieved. By controlling the processing and heat treatment conditions, the electrical conductivity (E/c) of the final product is at ECalloy + 20g ECS ECall〇y + 30, which can be used to increase the strength without causing significant damage to the bending process. The Xe condition after the annealing of the solution is not limited in order to exhibit the characteristics of the calendering or more, and the order and the number of times are not limited, and the annealing step can be removed as needed. The conductivity of the final product is replaced. (E/c) is loy + 20&gt; EC, because the precipitation by aging is not fully carried out without the door strength &amp; poor or because of the very high force application of cold drying ▲ due to stress The accumulation or the breakage of the precipitated particles reduces the electrical conductivity, and the bending workability is also remarkable. On the other hand, when ECall〇y+30, the large particles make the bending plus the conductivity of the final product (E/C) as Ec &gt; because of overaging, the strength is insufficient, or the rough workability is deteriorated. Therefore, it is not good. In the high-frequency smelting furnace, the copper alloys of the various compositions shown in Table 1 are refining, and I, people A!., ,,,,,,,,,,,,,仃 仃: rolling, cold rolling, solution treatment, cold rolling, aging treatment, and final cold rolling, stress relief annealing, etc. Specifically, the solution; to maintain the temperature at 700~90η. In the dry circumference of the day 900 C, it is carried out for more than 1 minute, and then directly water-cooled. Then, Ding-_~6, each, and 1% of the temperature are cold-rolled, and the square r is called the Kui's dish. Effective treatment, but the optimum conditions at this time

攸申睛專利範圍第1 千係I 伴拄、w 、斤述式异出之數值,調整加工产、 保持〉皿度及保持時間。 又 1272313 又’一部分材料在施加最終冷軋後,進行去除應力退 火。強度係於拉伸試驗機測定拉伸強度,導電率係使用雙 電橋(double bridge)測定電阻。彎曲試驗係取寬度為 1〇_之試片,以與板厚同樣之彎曲半徑、負載重量5嘲進 γ亍w、考曲試驗。又,響满 弓曲试驗後之评饧,係使用光學顯微 ==二倍以上)觀察壓延平行方向(彎曲轴㈣延方向 以〇夺 ’良好品(未有裂痕及表面粗縫程度不大) 、表面粗糙及有裂痕者以X表示。攸 攸 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利 专利Also 1272313 and a part of the material is subjected to stress relief after the final cold rolling. The strength was measured by tensile tester using a tensile tester, and the electrical conductivity was measured using a double bridge. In the bending test, a test piece having a width of 1 〇 _ was taken, and the same bending radius and load weight as the thickness of the plate were used to mock the γ亍w and the test. Also, after the full bow test, the optical microscopy == twice or more) is used to observe the parallel direction of the calendering (the bending axis (four) is extended to capture the good product (no cracks and no rough surface) Large), rough surface and cracked are indicated by X.

11 1272313 表111 1272313 Table 1

No. 成分(質量» 導電率(%IACS) 拉伸強度 彎曲加工 Ni Si Mg Μη 副成分 EC ECall〇y (MPa) 性 1 2.5 0.5 0.15 - 47 20 710 〇 2 2.5 0.5 0.15 - 0.22Sn, 0.36Zn 46 20 700 〇 3 2.5 0.5 0.15 - O.lCr, 0.07Fe 41 20 720 〇 4 2.5 0.5 0.15 0.06 45 20 730 〇 5 2.5 0.5 0.15 0.13 43 20 750 〇 6 2.5 0.5 0.15 0.13 0.2C〇 43 20 750 〇 7 2.5 0.5 0.15 0.28 0.03Ti, 0.07Fe 40 20 770 〇 8 3.8 0. 85 0.13 - 39 14 830 〇 4r 9 3.8 0.85 0.13 - 0. lCr 39 14 840 〇 不 路 10 3.8 0.85 0.13 - 0. 06Sn, 0. 05Ag 39 14 860 〇 明 11 3.8 0.85 0.13 0. 08 38 14 850 〇 例 12 3.8 0.85 0.13 0.13 37 14 860 〇 13 3.8 0.85 0.13 0.04 0.04Ti, 0.05Zr, 0.03Fe 34 14 860 〇 14 3.8 0.85 0.13 0.28 0.1A1 34 14 860 〇 15 4.5 1.0 0.15 - 37 12 900 〇 16 4.5 1.0 0.15 - 0. 2Cr 37 12 900 〇 17 4.5 1.0 0.15 - 0. 08Zr, 0. ICo, 0. lCr 36 12 920 〇 18 4.5 1.0 0.15 0.13 35 12 940 〇 18 4.5 1.0 0.15 0.28 33 12 960 〇 20 4.5 1.0 0.15 0.13 0. lCr, 0.07Fe 32 12 980 〇 21 4.5 1.0 0.15 0.28 0.2A1, 0. lCr 32 12 970 〇 22 2.5 0.5 0.15 0.13 55 20 480 〇 23 2.5 0.5 0.15 0.13 52 20 690 X 24 2.5 0.5 0.15 0.13 55 20 510 〇 25 2.5 0.5 0.15 0.13 54 20 670 X 26 3.8 0.85 0.13 0. 08 28 14 780 X 比 27 0.9 0.2 0.15 - 44 39 510 〇 較 28 5 0.8 0.15 - 27 12 730 〇 例 29 2.5 1.9 0.15 - - 11 - - 30 3.8 0. 85 0.13 2 18 14 860 X 31 3.8 0.85 0.13 - l.OSn, 1.4A1, 0.3Zn 13 14 850 X 32 3.8 0.85 0.13 0.08 0.8Ti, 0.2Zr, l.lFe - 14 - - 33 4.5 1.0 0.15 - 0. 06Sn, 0. lCr, 0. 03Ag 34 12 610 XNo. Component (mass » Conductivity (%IACS) Tensile strength Bending processing Ni Si Mg Μη Subcomponent EC ECall〇y (MPa) Properties 1 2.5 0.5 0.15 - 47 20 710 〇2 2.5 0.5 0.15 - 0.22Sn, 0.36Zn 46 20 700 〇3 2.5 0.5 0.15 - O.lCr, 0.07Fe 41 20 720 〇4 2.5 0.5 0.15 0.06 45 20 730 〇5 2.5 0.5 0.15 0.13 43 20 750 〇6 2.5 0.5 0.15 0.13 0.2C〇43 20 750 〇7 2.5 0.5 0.15 0.28 0.03Ti, 0.07Fe 40 20 770 〇8 3.8 0. 85 0.13 - 39 14 830 〇4r 9 3.8 0.85 0.13 - 0. lCr 39 14 840 〇不路10 3.8 0.85 0.13 - 0. 06Sn, 0. 05Ag 39 14 860 〇明11 3.8 0.85 0.13 0. 08 38 14 850 Example 12 3.8 0.85 0.13 0.13 37 14 860 〇13 3.8 0.85 0.13 0.04 0.04Ti, 0.05Zr, 0.03Fe 34 14 860 〇14 3.8 0.85 0.13 0.28 0.1 A1 34 14 860 〇15 4.5 1.0 0.15 - 37 12 900 〇16 4.5 1.0 0.15 - 0. 2Cr 37 12 900 〇17 4.5 1.0 0.15 - 0. 08Zr, 0. ICo, 0. lCr 36 12 920 〇18 4.5 1.0 0.15 0.13 35 12 940 〇18 4.5 1.0 0.15 0.28 33 12 960 〇20 4.5 1.0 0.15 0.13 0. lCr, 0.07Fe 32 12 980 〇21 4.5 1.0 0.15 0.28 0.2A1, 0. lCr 32 12 970 〇22 2.5 0.5 0.15 0.13 55 20 480 〇23 2.5 0.5 0.15 0.13 52 20 690 X 24 2.5 0.5 0.15 0.13 55 20 510 〇25 2.5 0.5 0.15 0.13 54 20 670 X 26 3.8 0.85 0.13 0. 08 28 14 780 X Ratio 27 0.9 0.2 0.15 - 44 39 510 28 28 28 0.8 0.15 - 27 12 730 Example 29 2.5 1.9 0.15 - - 11 - - 30 3.8 0. 85 0.13 2 18 14 860 X 31 3.8 0.85 0.13 - l.OSn, 1.4A1, 0.3Zn 13 14 850 X 32 3.8 0.85 0.13 0.08 0.8Ti, 0.2Zr, l.lFe - 14 - - 33 4.5 1.0 0.15 - 0. 06Sn, 0 .lCr, 0. 03Ag 34 12 610 X

12 1272313 所不,於發明例No· 1〜21,可製得導電率(En 於本發明申i宙 守电手 曱%專利範圍中,強度、彎曲加工性皆具良好特 性之銅合金。 、 發明=一=面,比較例No. 22〜26,其合金組成雖然於本 &quot;例之範圍内,但因為製造步驟不適當而無法得到目標 較例No· 22之溶體化溫度較低使未固溶量增加 因此熱成處理後的導電率EC&gt;ECalloy + 30而使強度不足 曰 单马了再k鬲No. 22之強度而施加最終冷軋,但 是為了得到期望強度而需要高加工度,使延伸性降低、彎 曲加工十生亞/μ xr . 士 r心、化。No. 24因為時效退火前之冷軋加工度較高 才政’凰度亦為高溫,因此導致過度熱成退火而使最終 ^ N〇· 25雖然為了提高No· 24之強度而施加低加 工度的冷軋’纟因為時效前之冷軋造成結晶粒呈現壓延組 我扁平使考曲加工性惡化。No. 26在高溫施行溶體化 处後虽隹然施加冷軋及時效處理,但是因為時效時間較 紐相對於強度的提高時效處理後的導電率降低,而且於 高溫之溶體化處理時結晶粒徑粗大化,致使彎曲加工性變 差0 又,No. 27 因為 Ni、ς; μ 旦土r , ^ 的篁都少所以強度變差。比較 例No· 28因Ni較高而使導雷盘㈣¥ 门使导電率變差。No· 29因Si較高而 使熱軋中發生顯著的裂痕 衣辰向無法進行特性評價。比較例12 1272313 No, in the invention examples No. 1 to 21, it is possible to obtain a copper alloy having excellent properties in strength and bending workability in the patent range of the present invention. Invention = one = surface, Comparative Example No. 22 to 26, although the alloy composition is within the scope of the present example, the solution temperature of the target No. 22 cannot be obtained because the manufacturing steps are not appropriate. The amount of unsolidified solution is increased, so that the conductivity EC>Ecalloy+30 after the thermal treatment is insufficient, the strength is insufficient, and the final cold rolling is applied to the strength of the second layer, but high workability is required in order to obtain the desired strength. , to reduce the elongation, bending processing ten generations / μ xr. 士心,化. No. 24 because of the high degree of cold rolling before aging annealing, the gradual 'high phoenix is also high temperature, thus leading to excessive thermal annealing On the other hand, in order to improve the strength of the No. 24, the cold rolling of the low-workability is applied. The cold rolling of the crystal grains before the aging causes the crystal grains to be rolled, and the flatness deteriorates the testability. No. 26 Cold rolling is applied after the solution is dissolved at high temperature. Aging treatment, but the aging time is higher than the strength, and the electrical conductivity after the aging treatment is lowered, and the crystal grain size is coarsened at the time of the high-temperature solution treatment, resulting in deterioration of the bending workability, and No. 27 because Ni, ς; μ 旦 r r , ^ 篁 篁 少 ^ ^ ^ 。 。 r r r r r 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较However, the characteristic cracking of the cracks in the hot rolling was not possible.

No· 30因Μη的量較高传暮雷、玄弓^ 呵便導電率顯著降低。No. 31因副成分 的ϊ超過本發明範圍,故導雷玄 固艾导電率顯著降低。No. 32因副成 分的量超過本發明笳jfj,a # &amp; i 固在熱軋中發生顯著的裂痕而無法 13 1272313 進行特性評價。No· 33因溶體化處理不足而有粗大粒子殘 留,最終時效處理後強度及彎曲加工性皆惡化。 如以上之說明,經由調整製造步驟之加工及熱處理來 控制最終製品之導電率,可以得到具有高強度且高彎曲加 工性之電子材料用銅合金。 【圖式簡單說明】 無 14No. 30 Because the amount of Μη is higher, the conductivity is significantly lower. In No. 31, since the enthalpy of the subcomponent exceeds the range of the present invention, the conductivity of the lead smear solid is remarkably lowered. No. 32 because the amount of the subcomponent exceeded the present invention 笳jfj, a # &amp; i solid crack occurred in the hot rolling and could not be evaluated 13 1272313. No. 33 has coarse particles remaining due to insufficient solution treatment, and the strength and bending workability are deteriorated after the final aging treatment. As described above, by controlling the electrical conductivity of the final product by adjusting the processing and heat treatment of the manufacturing steps, a copper alloy for electronic materials having high strength and high bending workability can be obtained. [Simple description of the map] None 14

Claims (1)

號-年 8月修正) 修正頁 拾、申莆專油範圍: 1. -種高強度高彎曲加工性 材料進行加工、熱處理而成,其電子構件’係將銅合金 :I 〇〜4· 8質量%、Si · 〇 3〇 ,、特徵為該銅合金材料由Ni 種或2種合計〇 〇3〜〇 5質旦丨。·2質量%、Μη、Mg之至少1 免的雜質所構成;設電子::/°、剩餘部份為Cu與無法避 合金材料組成中…及以牛之導電率為ECUIACS)、銅 、复笨名人入士 η 1之添加量(質量%)為[Ni]及[Si] =1,0/ r 1 70 , v 電率為 ECalloy ,當 ECalloy 50/ { 1.72 + 1.5[Ni]+4[Si1 ι ^ 工4m 1」1時,係調整製造步驟之加 工和熱處理而將電子播杜+ $ 之導電率(EC)控制於ECalloy + 20 $EC$ECall〇y + 30 之範圍。 2. 如申請專利範圍第1 步1項之向強度高彎曲加工性之電 千構件,其中,該銅合金铋 &gt;材枓含有0· 003〜2. 0質量%之擇 自 Sn 、 Ti 、 Zr 、 Al 、 c〇 、 cr 、 p n 、Fe、Zn、Ag 之 1 種或 2 種 M卜。 拾壹、圖式:No. - Amendment in August) Corrected page picking and application of special oil range: 1. - High-strength and high-bending processing materials are processed and heat-treated. The electronic components are made of copper alloy: I 〇~4·8 The mass %, Si · 〇 3 〇, is characterized by the copper alloy material being Ni species or a total of two kinds of 〇〇3~〇5 denier. · 2% by mass, Μη, Mg, at least 1 impurity-free; set electron::/°, the remainder is Cu and the composition of the unavoidable alloy material...and the conductivity of the cow is the ICUIACS), copper, complex The addition amount (% by mass) of the strange celebrity η 1 is [Ni] and [Si] =1,0/ r 1 70 , v is ECalloy, when ECalloy 50/ { 1.72 + 1.5[Ni]+4[ When Si1 ι ^ 4m 1"1, the processing and heat treatment of the manufacturing steps are adjusted to control the conductivity (EC) of the electron broadcast + + to ECalloy + 20 $EC$ECall〇y + 30. 2. For example, in the first step of the patent application, the high-strength bending process of the electric component, wherein the copper alloy 铋&gt; material 0 contains 0·003~2. 0 mass% of the selection from Sn, Ti, One or two types of Zr, Al, c〇, cr, pn, Fe, Zn, Ag. Pick up, pattern:
TW093114063A 2003-05-30 2004-05-19 Copper alloy for electronic material TWI272313B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155521A JP4679040B2 (en) 2003-05-30 2003-05-30 Copper alloy for electronic materials

Publications (2)

Publication Number Publication Date
TW200426233A TW200426233A (en) 2004-12-01
TWI272313B true TWI272313B (en) 2007-02-01

Family

ID=34049868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093114063A TWI272313B (en) 2003-05-30 2004-05-19 Copper alloy for electronic material

Country Status (3)

Country Link
JP (1) JP4679040B2 (en)
KR (1) KR100592206B1 (en)
TW (1) TWI272313B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946014A (en) * 2008-02-18 2011-01-12 古河电气工业株式会社 Copper alloy material
JP6294766B2 (en) * 2014-05-30 2018-03-14 古河電気工業株式会社 Copper alloy material and method for producing the same

Also Published As

Publication number Publication date
JP2004353069A (en) 2004-12-16
TW200426233A (en) 2004-12-01
KR20040103409A (en) 2004-12-08
JP4679040B2 (en) 2011-04-27
KR100592206B1 (en) 2006-06-23

Similar Documents

Publication Publication Date Title
KR101570556B1 (en) Method for Producing Copper Alloy Material for Electrical/Electronic Component
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
KR101211984B1 (en) Cu-ni-si-based alloy for electronic material
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
TWI382097B (en) Cu-Ni-Si-Co-Cr alloy for electronic materials
JP5525247B2 (en) Copper alloy with high strength and excellent bending workability
WO2010064547A1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
KR101114116B1 (en) Copper Alloy Material for Electric and Electronic Apparatuses, and Electric and Electronic Components
WO2008038593A1 (en) Cu-Ni-Si ALLOY
WO2013018228A1 (en) Copper alloy
JP7038823B2 (en) Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
TWI272313B (en) Copper alloy for electronic material
JP4493083B2 (en) High-performance copper alloy for electronic equipment with excellent strength and conductivity and method for producing the same
JP4349631B2 (en) Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts
JP2004269962A (en) High strength copper alloy
KR101114147B1 (en) Copper alloy material for electric and electronic apparatuses, and electric and electronic components

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent