TWI263710B - Single crystal semiconductor manufacturing method - Google Patents

Single crystal semiconductor manufacturing method Download PDF

Info

Publication number
TWI263710B
TWI263710B TW93138720A TW93138720A TWI263710B TW I263710 B TWI263710 B TW I263710B TW 93138720 A TW93138720 A TW 93138720A TW 93138720 A TW93138720 A TW 93138720A TW I263710 B TWI263710 B TW I263710B
Authority
TW
Taiwan
Prior art keywords
crystal
seed
melt
seed crystal
diameter
Prior art date
Application number
TW93138720A
Other languages
Chinese (zh)
Other versions
TW200526821A (en
Inventor
Hiroshi Inagaki
Masahiro Shibata
Shigeki Kawashima
Nobuyuki Fukuda
Original Assignee
Komatsu Denshi Kinzoku Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Denshi Kinzoku Kk filed Critical Komatsu Denshi Kinzoku Kk
Publication of TW200526821A publication Critical patent/TW200526821A/en
Application granted granted Critical
Publication of TWI263710B publication Critical patent/TWI263710B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A single crystal semiconductor manufacturing method by which dislocation induction due to a sharp increase of the crystal diameter after the seed crystal is brought into contact with the melt is prevented by suppressing the variation in the temperature of the melt when a single crystal is pulled up with no dislocation without performing a necking process while using an impurity-added seed crystal, and the crystal is prevented from being thinned below a crystal diameter durable against the load. By keeping a magnetic field applied to the melt before the seed crystal is brought into contact with the melt, the variation in the temperature of the melt is suppressed when the single crystal starts to be pulled up, thereby preventing the crystal diameter from sharply increasing or decreasing.

Description

1263710 九、發明說明: 【發明所屬之技術領域】 本發明係啕闕於—種# s r 7广r h 種使用 C Z ( C z o c h r a 1 s k i )來制、△ 、〜晶矽等單結晶半導 氣迄, 干导體蚪,能以無錯位來製造大口 I之單結晶半導體之製造方法。 二、大 【先前技術】 單結晶石夕製造方法之一係CZ法。 以CZ法來成長單姓曰 早、·σ日日矽%,無法避免的問題之—, 種子…晶接觸到熔液時 有 錯位」。别述錯位,係在曰 刀之 兮说狄仏 裡卞、、、口日日接觸到炼液時,因i 誘發於種子結晶内之熱應力所產生。 口為1263710 IX. Description of the Invention: [Technical Field to Be Invented by the Invention] The present invention is a single crystal semi-conducting gas such as Δ, 矽, and 矽 使用 using CZ (C zochra 1 ski ). , dry conductor 蚪, a method for manufacturing a single-crystal semiconductor of large-mouth I without error. 2. Large [Prior Art] One of the methods for manufacturing single crystal Shi Xi is the CZ method. The CZ method is used to grow a single surname 早 early, σ 日日矽%, an unavoidable problem—the seed...the crystal is misaligned when it comes into contact with the melt.” In other words, when the sputum is said to be in contact with the refining liquid, the heat stress caused by i is induced in the seed crystal. Mouth

為了將此錯位穿读姓g L 》透到結晶外,需使結晶直徑 〜4_,,亦即使其縮 bfJ 3 W # 8 ® 表示形成結晶 〜4_=縮頸部21,使錯位穿透到結晶外部。 q可是’近年來有直徑3〇〇mffl以上大口徑 尚求,而要求順利地牽引大口徑大重 之 » . 里之早V、口日日石夕,當藉 由細頸處理,使縮頸部直徑縮小至 你U y一人 4_時,去除錯位之 物件直徑會太細,而無法避免在製 ^日守大口徑大重量之單 、、、口晶石夕鑄塊會掉落。 (先前技術1 ) 後述之專利文獻1中,記載右 _ 有使用添加有高濃度雜質 之石夕種子結晶,使大口徑大重量w 之早結晶矽鑄塊無須實 ^縮頸處理,而於無錯位之狀態 广竿弓I鑄塊之發明。 7〇54-6737-PF;Ahddub 5 1263710 【專利文獻 【發明内容】 【發明所欲解決 被取入單結 所影響,係業界 流的技術,有稱 施加磁場到炫液 長之方法。 可是,當於 結晶中心附近, 推測為以下原因 溫度變動被抑制 變動會變小,固 垂直移動到固液 皆很困難。 另外,採用 下,使用添加有 矽鑄塊,也會產 亦即’近年 會增大。 可是,當熔夺 炫液内之溫度變 轉移至肩工序之 1】日本特開200 1 -240493號公報 的課題】 晶矽之氧濃度,會被產生於熔液内之對流 眾所周知之事。抑制石英坩堝内產生之對 做「施加磁場牽引法」之技術。其係藉由 ’抑制熔液中之對流,以達成結晶穩定成 縮頸處理中施加強磁場時,錯位會移動到 而產生錯位無法穿透到側面之問題。其可 亦即,藉由磁場之抑制對流效果,熔液 斤、縮頸中之結晶直徑、牵引速度之 液界面形狀會變成穩定之上凸狀,錯位會 界面’所以,移動到結晶中心及無錯位化 _ 卜丨從隹+貫施縮頸處 高濃度雜質硼之矽種子結晶來牵引單結 生以下之問題。 來伴Ik著牵引結晶之大重量化,熔液量 (里*日大(特別是熔液量在150kg以上)時 動會變大,自# ± 種子、、、口日日接觸到熔液後 ^著溫度變動,έ士曰古 切 、、、〇日日直後會急速增大 7054-6737-PF;Ahddub 1263710 藉由異常成長,會有錯位被導入之問題。又,反之,# ’皿度變動’結晶直徑會細小化到能支撐被 士㈢由In order to permeate the misplaced g L " into the crystal, it is necessary to make the crystal diameter ~4_, even if it shrinks bfJ 3 W # 8 ® to form a crystal ~4_= constricted neck 21, so that the misalignment penetrates into the crystal external. q However, in recent years, there are large diameters of 3 〇〇mffl or more, and it is required to smoothly pull large calibers. » In the early V, the mouth is day and night, when the neck is treated by the neck, the neck is narrowed. When the diameter of the part is reduced to 4 _ for one person, the diameter of the object to be removed will be too thin, and it is impossible to avoid the single-piece, large-caliber, large-weight, and slab-shaped cast blocks falling. (Prior Art 1) Patent Document 1 which will be described later describes that the right _ seed crystal having a high concentration of impurities is added, so that the early crystallization of the large diameter and large weight w is not required to be necked, but not The state of the misplaced state of the invention. 7〇54-6737-PF; Ahddub 5 1263710 [Patent Document [Explanation] [The invention is intended to solve the problem of being taken into a single junction, which is an industry-flowing technique, and has a method of applying a magnetic field to a long liquid. However, in the vicinity of the crystal center, it is presumed that the temperature fluctuation is suppressed, the fluctuation is small, and it is difficult to move the solid vertically to the solid solution. In addition, the use of 矽 ingots is also used, which means that it will increase in recent years. However, when the temperature in the squirting liquid is transferred to the shoulder process, the problem of the enthalpy in the melt is well known. The technique of suppressing the generation of the inside of the quartz crucible is a technique of applying a magnetic field pulling method. This is caused by the suppression of convection in the melt to achieve crystal stabilization. When a strong magnetic field is applied during the necking process, the misalignment moves to the point where the misalignment cannot penetrate to the side. That is, by suppressing the convection effect by the magnetic field, the shape of the liquid interface of the crystal powder, the crystal diameter in the necking, and the pulling speed will become stable and convex, and the misalignment will interface 'so, move to the crystallization center and no Dislocation _ Di 丨 丨 贯 贯 贯 贯 贯 贯 贯 贯 贯 贯 贯 贯 贯 缩 缩 缩 缩 缩 缩 缩 缩 缩 高 高 高 高 高 高With Ik, the heavy weight of the traction crystal, the amount of melt (in the case of *days (especially when the amount of melt is more than 150kg) will become larger, since #± seeds,,,,,,,,,,,,,,,,, ^The temperature changes, the gentleman 曰古切,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The change 'crystal diameter will be reduced to support the person (3)

Arr, y 丁 以卞、、、口日日之古 ^而、負荷)以T。因此,會產生需重新實施自使種子結晶 接觸到熔液工序開始之製程的問題。 本發明係鑑於上述問題,提供一種使用添加有雜 :晶,於無錯位之狀態下,牵引單結晶時,藉由抑制 液之溫度變動’避免因為種子結晶 增大所導致之導入錯位,同時,避免結晶直:: 耐負何以下之單結晶半導體之製造方法。 【用於解決課題的手段】 本發明之第!發明係一種單結晶半導體之製造方法, 添加有雜質之種子結晶接觸到坩堝内之熔液,藉由牵引 子結晶來製造單結晶半導體,其特徵在於包含:施加磁 :於溶液之工序;使熔液接觸到種子結晶之工序;以及在 種子結晶接觸到炼液德, 導體之工序。 w員處理而牵引單結晶半 社 u之第2發明係如中請專利範圍第i項所述之單 、、、口晶半導體之制十>、丄 法’/、特徵在於:在使熔液接觸到種 于〜晶之前,施加磁場到熔液。 ::明之第3發明係如申請專利範圍第】項所述之單 :曰曰半導體之製造方法,其特徵在於:磁場強度係15〇。高 斯以上。 本發明之第4潑^日a & ‘ + 係如申請專利範圍第1項所述之單 7054-6737-PF;Ahddub 7 1263710 結晶半導體之製、生 作為雜質之爛的法’其特徵在於:添加到種子結晶而 本發明之第:…系1以…—以上。 結晶半導體之製、生發明係如申請專利範圍第1項所述之單 液後之最小沾曰古方法’其特徵在於:種子結晶接觸到炫 ^ 日日直徑係以上。 本發明係藉由 到熔液,在開如卷 子結晶接觸到熔液前開始施加磁場 而避免結晶直結晶之時點,抑制炫液之溫度變動 ,Α 心、速增大或結晶直徑變細小。 自方也加磁場 溫度變動被抑制之:Γ始,到獲得對流被抑制及溶液内 溶液後,大概4〇分=止,會有時間延€。施加磁場到 好在種子社 $ ’就能獲得上述效果。因此,最 熔液,以使加上上、"既疋時間"先施加磁場到 能獲得上述效果。 少於接觸到熔液之時點 :場係於種子結晶接觸料液後持續施加,至少 於轉:至肩工序為止之間,持續施加磁場。 而要 ‘使用本發明時,炫^液内之、、w疮热去、l 日拉雄 烙履内之/皿度變動被抑制,種子钍 曰曰接觸到炫液後,直到轉移到平行工序為止 子- y ι <間,能避务 因為結晶直徑急增所導致的錯位導入現象。 又,能避免結晶直徑因為溫度變動而έ ^ 引結晶以下之直徑。 I”、到能支撐牵 藉由本發明就無須縮頸工序,所以 觸到溶液以後,在直徑逐漸變大之同時 轉移到平行工序,也可以如第9圖所示 可以種子結 牵引 結晶 亦 晶接 即, 在接觸熔液後, 8 7054-6737-PF;Ahddub 1263710 ; 疋直彳k ,再貫;5也結日日成長部2 2 (例如長度約5 0 m m)之 牽引,於確認熔液溫度適當後,再轉移到平行工序。 必須添加於種子結晶之雜質硼B濃度,最好係 lel8at〇ms/cc以上。其原因在於:在牽引後,使用$光來 砰彳貝種子結晶與接觸熔液後新形成結晶的界面部分時,當 添加lel8atoms/CC以上雜質硼b到種子結晶時,沒有發現 錯位導入。 【實施方式】 以下,參照圖面來說明實施形態之裝置。 第1圖係表示本發明實施形態之單結晶牽引裝置之示 意圖。 如第1圖所示,實施形態之單結晶牵引裝置i,係具備 作為單結晶牽引用容器之cz爐(腔體)2。第1圖之單結晶 牽引裝置卜係適合於製造大直徑(例如300mm)、大重量之 早結晶碎每塊。 於CZ爐2内’設有將熔融多結晶矽原料所成之熔液 加以收容之石英坩堝3。而且’為了牵引直徑3〇〇_單結曰曰e 夕30 〇 △斤左右之多結晶石夕係被裝填到石英掛禍3内。石 英坩堝3之外側以碳㈣丨丨覆蓋。於石英料3外側側面 設有加熱㈣石英料3内之多結晶發原料的圓筒狀主加 熱器9。於石英_ 3底部’設有輔助加熱石英掛禍底面, 防止石英坩堝3底部熔液5固化之圓環狀底部加熱器19。 主加熱器9及底部加熱器19之輸出(功率^係獨立控 7〇54-6737-PF;Ahddub 9 1263710 底立獨立δ周整對於熔液5之加熱量。例如’主加熱器9及 σ戸力U 南L *5^ in 戶_ σ 之各輸出係被控制,以使檢出熔液5之溫 …字檢出溫度當作反饋’使熔液5溫度達到目標溫度。 且,於實施形態中,雖然藉由主加熱器9及底部加 ::夕卜部加熱熔液5,但是,加熱機構並不侷限於加 也可採用其他加熱機構。例如,也可採用電磁加熱 凌或雷射照射加熱法。 於主加熱器9與CZ爐2内壁間,設有保温筒13。 引站:石英掛偷方設有牵弓I機構4。牵引機構4係由牽 引輛4a及牽引軸4a前端之種曰 係蕤i 2 卞…日日央頭4c。種子結晶14 ’、精由種子結晶夾頭k來把持。 I# ^ ^ ^ ; 牽引軸4a係例如 軸體或繩索,以軸體牽引或以繩索捲揚。 多結晶石夕(S i)係於石英掛墙^ 之溫度穩定化時,牽引機構4會動作:加f熔融。當熔液5 石夕鑄塊)會自溶液5被牽引出。,:早結晶發(單結晶 被牽引軸4a前端種子結晶夾頭4c夾:軸4a下降’而 入熔液5中。使種子結晶14浸入 子結晶14會浸 上升。對應被種子結晶夾頭4C失持 <,牽引軸4a會 、之種子結晶1 4的卜斗 早、,、口日日矽會成長。牽引時,石英坩堝 、升, ω 1旋轉速度旋轉。又,牵引機構心之曰由方疋轉軸1 0而以 轉軸1 0相同或相反的方向,以 牵引轴4a係以與旋 旋轉速度旌鳇 又,旋轉軸10可垂直方向驅動 二叙轉。 動到任意位置。 石英掛禍3上下移 藉由切斷CZ爐2内部與外部士 ^ 。大氣之聯繫,cz爐2内倍 7054-6737-PF;Ahddub 1263710 維持真空狀態(例如 ' 7 „ Γ7 , ‘ r左右)。亦即,供給惰性 :7到CZ爐2中,口爐2以幫浦自排氣 :體-Arr, y Ding, 卞, ,, 口日古古, and load) to T. Therefore, there is a problem that the process of bringing the seed crystals into contact with the start of the melt process is re-implemented. The present invention has been made in view of the above problems, and provides an introduction misalignment caused by an increase in seed crystal crystallization by suppressing temperature fluctuation of a liquid when a single crystal is pulled in a state where no impurity is added in a state of no misalignment. Avoid crystal straightening:: A method of manufacturing a single crystal semiconductor that is resistant to or less than the following. [Means for Solving the Problem] The present invention! The invention relates to a method for producing a single crystal semiconductor, wherein a seed crystal which is added with impurities is in contact with a molten metal in a crucible, and a single crystal semiconductor is produced by crystallization of a drag, characterized in that: a process of applying magnetic: in a solution; The step of contacting the liquid with the seed crystal; and the step of contacting the seed crystal with the smelting liquid and the conductor. The second invention of the single crystal, which is described in the item i of the patent scope, is described in the item i of the patent range i, and the method of the invention is: The liquid is applied to the melt before it is contacted with the crystal. The invention according to the third aspect of the invention is the method of manufacturing a semiconductor according to the invention, characterized in that the magnetic field strength is 15 Å. Above Goss. The fourth splashing date a & '+ of the present invention is a single method of 7054-6737-PF as described in claim 1 of the patent application; Ahddub 7 1263710 is a method of producing a crystalline semiconductor, and the method of producing impurities as impurities is characterized in that : Addition to seed crystallization and the present invention: ... is 1 to ... - above. The method of producing a crystalline semiconductor and the invention of the invention are as follows: the minimum method of coating the liquid after the single liquid described in the first paragraph of the patent application is characterized in that the seed crystal is in contact with the dahdron diameter system or more. In the present invention, by applying a magnetic field to the molten metal before the contact with the molten crystal, the temperature of the bright liquid is prevented from occurring, and the temperature fluctuation of the bright liquid is suppressed, and the core, the speed is increased, or the crystal diameter is reduced. The self-added magnetic field temperature fluctuation is suppressed: at the beginning, after the convection is suppressed and the solution in the solution is obtained, about 4 minutes = stop, there will be a time delay. The above effect can be obtained by applying a magnetic field to the seed agency $ ’. Therefore, the most molten liquid, so that the upper, "times" is applied first, the magnetic field can be applied first to obtain the above effect. Less than the time when the melt is contacted: the field is continuously applied after the seed crystal contacts the liquid, and at least until the rotation: to the shoulder process, the magnetic field is continuously applied. However, when using the present invention, the change in the inside of the dazzling liquid, the heat of the sore, and the change in the degree of the dish in the l-day pulling machine are suppressed, and the seed cockroaches are exposed to the glare liquid until they are transferred to the parallel process.为止子- y ι < between, can avoid the phenomenon of misplacement caused by a sharp increase in crystal diameter. Further, it is possible to avoid the diameter of the crystal which is smaller than the crystal diameter due to temperature fluctuation. I", to support the support by the present invention, there is no need to shrink the neck process, so after touching the solution, the diameter is gradually increased and the process is shifted to the parallel process, and the seed knot can be pulled and crystallized as shown in Fig. 9. That is, after contact with the melt, 8 7054-6737-PF; Ahddub 1263710; 疋 straight k, and then; 5 also knot the daily growth of 2 2 (for example, length of about 50 mm) traction, confirm the melt After the temperature is appropriate, transfer to the parallel process. The concentration of boron B, which must be added to the seed crystal, is preferably above 8 8 〇ms/cc. The reason is that after the traction, the light is used to crystallize and contact the mussel seed. When the interface portion of the crystal is newly formed after the melt, when the boron b to the seed crystal is added to the seed crystal, the dislocation introduction is not found. [Embodiment] Hereinafter, the apparatus of the embodiment will be described with reference to the drawings. A schematic diagram of a single crystal pulling device according to an embodiment of the present invention. As shown in Fig. 1, the single crystal pulling device i of the embodiment is provided with a cz furnace (cavity) 2 as a single crystal pulling container. The single crystal traction device is suitable for the manufacture of large-diameter (for example, 300 mm), large-grain, early crystallized pieces. In the CZ furnace 2, a quartz crucible is provided which contains a molten metal obtained by melting polycrystalline germanium raw materials. And 'to draw the diameter of 3 〇〇 _ single knot 曰曰 e 夕 30 〇 △ 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千The outer side of the material 3 is provided with a cylindrical main heater 9 for heating the polycrystalline hair material in the quartz material 3. The bottom of the quartz _ 3 is provided with an auxiliary heating quartz bottom surface to prevent the bottom of the quartz crucible 3 from solidifying. The annular bottom heater 19. The output of the main heater 9 and the bottom heater 19 (power ^ system independent control 7 〇 54-6737-PF; Ahddub 9 1263710 bottom independent δ circumference for the heating of the melt 5 For example, the main output of the main heater 9 and the σ戸力U South L *5^ in the household _ σ are controlled so that the temperature of the detected melt 5 is detected as the feedback 'make the melt 5 The temperature reaches the target temperature. Moreover, in the embodiment, the main heater 9 and the bottom are added: The heating portion 5 is heated, but the heating mechanism is not limited to being applied, and other heating mechanisms may be employed. For example, electromagnetic heating or laser irradiation heating may be employed. Between the main heater 9 and the inner wall of the CZ furnace 2, There is a heat preservation tube 13. The introduction station: the quartz hanging stalking side is provided with a bowing I mechanism 4. The traction mechanism 4 is made up of the traction vehicle 4a and the seed end system of the front end of the traction shaft 4a 蕤i 2 卞...Sunday head 4c. Seed crystallization 14 ', fine is controlled by the seed crystal chuck k. I# ^ ^ ^ ; The traction shaft 4a is, for example, a shaft body or a rope, which is pulled by a shaft body or hoisted by a rope. When the temperature of the quartz crystal wall is stabilized, the traction mechanism 4 operates: f is melted. When the melt 5, the stone slab is pulled out from the solution 5. :: Early crystallized hair (single crystal is pulled by the front end seed crystal chuck 4c of the traction shaft 4a: the shaft 4a is lowered) into the melt 5. The seed crystal 14 is immersed in the sub-crystal 14 and will be immersed and raised. Corresponding to the seed crystal collet 4C Loss of holdings, the traction shaft 4a will be seed crystals 1 4 early, and the mouth will grow day by day. When pulling, the quartz 坩埚, liter, ω 1 rotation speed rotation. The rotation axis 4a is rotated in the same direction or opposite direction to the rotation axis 10, and the rotation axis 4a is driven in the vertical direction. The rotation axis 10 can be driven in the vertical direction. The movement is to any position. 3 Move up and down by cutting off the inside of the CZ furnace 2 and the outside of the atmosphere. The connection between the atmosphere and the cz furnace 2 is 7054-6737-PF; Ahddub 1263710 maintains the vacuum state (for example, '7 „ Γ7, 'r or so). , supply inertness: 7 to CZ furnace 2, furnace 2 to pump self-exhaust: body -

爐2内係減壓到既定壓力。 〃猎此,CZ 種“;單、。30牵引工序中(1批次),於CZ爐2内备產+ ::發物質。於此’供給氬氣7到CZM2内,使:二生種 -、氬氣7同時排出cz捧 …又物質 中各工序而分別設定 之供給流量係们抵次 隨著單結晶梦之㈣,炼液5會減 減少’炫液5與石英掛堝 者以5之 瑪…的氧溶Wjt 會改變,自石英掛 石夕中之氧濃产八Γ 此變化會影響被牵引單結晶 …ΤΙ。於此,為了防止上述現象,也可以將 夕…曰石夕原料或單結晶石夕原料於 了以將 給到炫液5逐漸少的石英掛瑪3内。 丨中,追加供 於石英坩堝3上方,為w处 錐座形的遮熱8(氣體整^晶⑪周圍’設有略成倒圓 所支撐。遮埶板8 4机3。遮熱板8係被保溫筒13 巡”、、扳8,係使自上方供认 體氣體的氬氣7,被導5ί & ° Ζ爐2内而作為載 饭導引到熔液表面5a巾土 ^ 熔液表面5a被導引到熔液表 、,且,通過 係與自熔液5蒸發之氣俨 3周緣部。而且’氬氣7’ 出。因此,能使液面上之氣體::以爐2下部之排氣口排 丄 < 氣體流读穩仝儿 , 蒸發出之氧氣保持在穩定狀態。‘V ’也能使自熔液5 :遮熱板8,係使種子結晶"與 = 受W3、溶液+加= 南溫部所產生的轉射熱所影響。又 U 9專的 遮熱板8,係能防止爐 7054-6737-PF/Ahddub 1263710 内產生之雜質(例如矽氧化 乳儿初)專附著於單結晶矽, 止妨礙單結晶矽培養的因素。 犯随 σθ 遮熱板8下端與熔液表面ς 間之間隙G,可藉由上升下降旌4表面5a I「降%轉軸1 〇,改變石英 之上下位置來調整。又,也可以# ^ ^ 坩堝3 調整間隙G。 〜由上下移動升降裝置來 於CZ爐之外侧周圍,今古 σ有知加磁場(橫磁場)到石英 禍3内熔液5之磁鐵20。 、 二第2圖係表示種子結晶接觸到炫液5時,種子結晶^ 前端面與熔液5(接觸面)間之溫度差ΔΤΓ〇,及種子結晶 14中最高解析剪斷應力MRSS(Mpa)間之關係。所謂種子= 晶14中最高解析剪斷應力MRSS(Mpa),係接觸到熔液5時 轭加在種子結晶14上之熱應力最高值,其表示因為熱衝擊 而導入錯位到種子結晶14中之指標。第2圖係晝出藉由熱 傳解析計算(FEMAG)算出之溫度差,及藉由熱傳解析計 算(FEMAG)算出之最高解析剪斷應力MRSS。 如第2圖所示,當溫度差△ τ愈小時,種子結晶14中 最南解析男斷應力MRSS會愈小,因熱衝擊所導致之錯位較 不易導入種子結晶1 4中。 另外,本發明人之先前發明(日本特願2002-204 1 78號) 中’開示有添加到種子結晶1 4中之雜質(例如爛Β)濃度C、 種子結晶14尺寸(直徑D)、臨界解析剪斷應力(CRSS ; Mpa) 與容許溫度差△ Tc間之關係。 亦即,使種子結晶1 4尺寸(直徑D ) ( mm )為橫軸,接觸 熔液時之種子結晶1 4前端溫度與熔液5 (接觸面)溫度間之 7054-6737-PF;Ahddub 12 1263710 谷許溫度差△ 了c為縱軸,直徑J)與容許溫度差A 間之對 應關係以特性l1,L2,L3表示。如特性U,L2,U所示,皆 種 子結晶直徑D與容許溫度差△ Tc之間約略成反比關係。亦 即’隨著種子結晶直徑D變大,施加在接觸熔液時之種子 …as 1 4上之熱衝擊應力會變大,對應於此,有必要減少容 許)皿度差△ T c。 卜 於此’所謂容許溫度差△ T c,係不會使錯位導入種子 結晶1 4之上限溫度差。 特性L1,L2,L3,係表示種子結晶1 4機械強度指標之一 的$界解析剪斷應力(CRSS; Mpa)大小之不同。所謂臨界解 析男斷應力(CRSS),係當超過應力時,錯位會導入種子結 晶14之臨η界應力。於圖中,特性L1係臨界解析剪斷應力 )為最j (5MPa)、特性L2係臨界解析剪斷應力(CKSS) 比特性L1大小(1 〇 μ p a)、特性[3择碎凡站4 & 竹丨王bd係L界解析男斷應力(CRSS) 為最大小(15MPa)。 臨界解析剪斷應力(CRSS) 之雜質種類、濃度C而改變。 預設為硼B。 ,係因為添加到種子結晶1 4 於本實施形態中,雜質種類 對應添加到種子結晶u 心雜貝/辰度C變高,臨界解析 剪斷應力(CRSS)也會變大。添加 j ^里卞、、、σ晶 14之雜質濃度 C對應Cl,C2,C3逐漸變高,特性 、 0 ^ , f 文勹以,以,七3。而且於第 3圖中,雖然雜質濃度c以3種央冲本.e 裡术代表,但是,也以對應 雜質濃度C之更多階段或連續性 〜 或連續性改變。 而特性有更多階段 7054-6737-PF;Ahddub 13 1263710 因此’當種子結晶Η直徑D為例如D’ 負濃度c為C1,C2,C3,特 $應雜 哞、、w痄兰Λ π 爻馮l],L2,L3,所以,容 σ /里又差ATc會變大。又,當容許、、w 時,對應種子姓曰i 4亩/ m a c糸例如△ Tc〇 uuu I, 為di,d2,d3,特性會改變為 ,,L3,所以,雜質濃度C為C1,C2,㈡。 雖然說明過雜質種類為棚B之情形,但是,於删^之 ::Ge或銦In等各種雜質添加到種子結晶 可獲侍相同關係。 也 因此,添加既定濃度C到種子結晶14中, 曰 直徑為gjj: $ # n 種子、,、。晶 1 4 罝位為既尺值D時之容許溫度差Λτ。, ^ ^ Τ 1 ΤΟ το θ乐d圖所不之 、 ,2’ U來求得,當調整各加熱9 19 f + 接觸熔液時之種子社曰14 ^ ^ 9’ 19電力’以使 ' 才種子結晶14與熔液5之溫度差Δτ為六社、 子結晶14。 "^處《能防止錯位導入種 添加有5el8atoms/cc雜曾棚士 曰η占 貝硼Β而直徑7mm之矽種子鈐 曰曰 中,谷許溫度差△ T c為1 〇 〇 t,& 口 兩丄 L §調整各加埶琴 電力,以使接觸熔液時之種子結晶14與 / ’ T係容許温度差△TcdOQOc)以下盔/ /皿度差△ 魷处夢〜 、…、須實施縮頸處理, 就此%疋而無錯位化。 第4圖係表示施加到炫液 少鄉Μ〜 戍5之磁場對上述溫度差ΔΤ 衫響的貫驗結果。於此實驗中The furnace 2 is depressurized to a predetermined pressure. 〃 此 ,, CZ species "; single, . 30 traction process (1 batch), prepared in the CZ furnace 2 + :: hair substance. This 'supply argon 7 to CZM2, so: two species -, argon 7 at the same time discharge cz holding ... and the material in each process and set the supply flow rate respectively with the single crystal dream (four), refining 5 will reduce the reduction of 'Hyun 5 and quartz hanging to 5 The oxygen-soluble Wjt of the ... will change, and the oxygen will be produced from the quartz in the evening. This change will affect the single crystal that is being pulled... ΤΙ. Here, in order to prevent the above phenomenon, it is also possible to Or a single crystal stone material is used in the quartz hangma 3 which will be gradually added to the glaze liquid 5. In the sputum, it is additionally supplied to the top of the quartz crucible 3, and is a cone-shaped heat shield 8 at w (gas tempering) 11 surrounding 'with a slightly rounded support. Concealer 8 4 machine 3. The heat shield 8 is insulated by the barrel 13 patrol", and the argon 7 is supplied to the body gas from above. 5 ί & ° inside the crucible 2 as a rice guide to the molten metal surface 5a. The molten metal surface 5a is guided to the molten metal table, and the vapor is evaporated by the self-melting liquid 5 3 peripheral part. And 'argon 7' out. Therefore, the gas on the liquid surface can be drained from the exhaust port in the lower part of the furnace 2. The gas flow is read and stabilized, and the evaporated oxygen is kept in a stable state. 'V' can also make the self-fluxing 5: heat shield 8, which makes the seed crystal " and = is affected by the heat of rotation generated by W3, solution + plus = south temperature. The hot plate 8 can prevent the impurities generated in the furnace 7054-6737-PF/Ahddub 1263710 (for example, the beginning of oxidized nipples) from adhering to the single crystal 矽, and hinder the cultivation of the single crystal 矽 。. The gap G between the lower end and the surface of the melt can be adjusted by raising and lowering the surface 5a I of the surface 4a "lowering the shaft 1 〇 and changing the upper and lower positions of the quartz. Alternatively, the gap G can be adjusted by # ^ ^ 坩埚3. By moving the lifting device up and down around the outside of the CZ furnace, it is known that the magnetic field (transverse magnetic field) is added to the magnet 20 of the molten metal 5 in the quartz accident 3. The second picture shows that the seed crystal is in contact with the bright liquid 5 When the seed crystals ^ the temperature difference ΔΤΓ〇 between the front end surface and the melt 5 (contact surface), and the seed crystal 14 The highest analytical shear stress MRSS (Mpa). The so-called seed = the highest analytical shear stress MRSS (Mpa) in the crystal 14 is the highest thermal stress applied to the seed crystal 14 when it contacts the melt 5, Indicates the index of misplacement into the seed crystal 14 due to thermal shock. Figure 2 shows the temperature difference calculated by heat transfer analysis (FEMAG) and the highest analytical shear calculated by heat transfer analysis (FEMAG). The breaking stress MRSS. As shown in Fig. 2, when the temperature difference Δ τ is smaller, the southmost analytical male fracture stress MRSS in the seed crystal 14 is smaller, and the misalignment due to thermal shock is less likely to be introduced into the seed crystal 14 . In addition, in the prior invention of the present inventors (Japanese Patent Application No. 2002-204 1 78), the concentration of impurities (e.g., rotten sputum) added to the seed crystal 14 is shown, the size of the seed crystal 14 (diameter D), and the criticality. Analyze the relationship between the shear stress (CRSS; Mpa) and the allowable temperature difference Δ Tc . That is, the seed crystal size 14 (diameter D) (mm) is the horizontal axis, and the temperature of the front end of the seed crystal 14 4 when contacting the melt is 7054-6737-PF between the temperature of the melt 5 (contact surface); Ahddub 12 1263710 The temperature difference Δ is c is the vertical axis, and the correspondence between the diameter J) and the allowable temperature difference A is expressed by the characteristics l1, L2, L3. As shown by the characteristics U, L2, U, the relationship between the seed crystal diameter D and the allowable temperature difference ΔTc is approximately inversely proportional. That is, as the seed crystal diameter D becomes larger, the thermal shock stress applied to the seed ... as 1 4 when the molten metal is contacted becomes larger, and accordingly, it is necessary to reduce the tolerance Δ T c . Here, the so-called allowable temperature difference Δ T c is such that the misalignment is not introduced into the upper limit temperature difference of the seed crystal 14 . The characteristics L1, L2, and L3 represent the difference in the size of the $boundary shear stress (CRSS; Mpa) which is one of the mechanical strength indexes of the seed crystal. The so-called critical analysis of male fracture stress (CRSS) is that when the stress is exceeded, the misalignment introduces the η boundary stress of the seed crystal 14 . In the figure, the characteristic L1 system critical analysis shear stress) is the most j (5 MPa), the characteristic L2 system critical analytical shear stress (CKSS) is the characteristic L1 size (1 〇μ pa), and the characteristic [3 chooses the broken station 4 & The B-line B-line analysis of the male squash stress (CRSS) is the smallest (15 MPa). The critical analysis shear stress (CRSS) is changed by the impurity type and concentration C. The default is boron B. Since it is added to the seed crystal 1 4 in the present embodiment, the impurity type is added to the seed crystal, and the core analysis is higher, and the critical analysis shear stress (CRSS) is also increased. Adding the impurity concentration of j ^ 卞 , , , σ crystal 14 C corresponds to Cl, C2, C3 gradually becomes higher, the characteristic, 0 ^ , f 勹 , , ,, 七 。. Further, in Fig. 3, although the impurity concentration c is represented by three kinds of central punches, it is also changed by more stages or continuity of the corresponding impurity concentration C or continuity. And the characteristics have more stages 7054-6737-PF; Ahddub 13 1263710 so 'when the seed crystal Η diameter D is for example D' negative concentration c is C1, C2, C3, special $ should be mixed, w痄兰Λ π 爻Feng l], L2, L3, so, the tolerance σ / inside the difference ATc will become larger. Also, when allowed, w, the corresponding seed surname 曰i 4 mu / mac 糸 such as Δ Tc 〇 uuu I, di, d2, d3, the characteristics will change to, L3, so the impurity concentration C is C1, C2 (2). Although the case where the impurity type is the shed B has been described, it is possible to obtain the same relationship by adding various impurities such as ::Ge or indium In to the seed crystal. Therefore, a predetermined concentration C is added to the seed crystal 14, and the diameter of the crucible is gjj: $ # n seed, ,,. The crystal 1 4 罝 position is the allowable temperature difference Λτ when the metric value D is obtained. , ^ ^ Τ 1 ΤΟ το θ music d figure not, 2' U to find, when adjusting each heating 9 19 f + contact the melt when the seed 曰 14 ^ ^ 9 ' 19 power 'to make ' The temperature difference Δτ between the seed crystal 14 and the melt 5 is Liushe and the sub-crystal 14 . "^"" can prevent the introduction of misplaced species with 5el8atoms/cc miscellaneous sheds 曰 占 贝 占 Β Β Β Β Β Β Β 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ; mouth two 丄 L § adjust each additional piano power, so that when contacting the melt, the seed crystal 14 and / 'T system allowable temperature difference △ TcdOQOc) below the helmet / / dish degree difference △ 鱿 dream ~, ..., must The necking treatment is carried out, and this is not a misalignment. Fig. 4 is a graph showing the results of the above-mentioned temperature difference ΔΤ 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 。 。 。 。 。 。 。 。 。 。 。 。 In this experiment

烛併靡Ώ 使用添加有5el8at〇mS/CC 雜貝獨B而直徑7丽之石夕種子^^ ] 1nn〇r, , 丁、、、口日日14(容許溫度差△ Tc為 l〇〇C),矽種子結晶14接觸炫 &〆夜3時之對底部加熱器1 9 之投入電力(Kw)及對主加熱器9之於 &八電力(Kw)實施種種 7054-6737-Pp;Ahddub 1263710 測試(1)〜(6),當以磁鐵20施加磁 場到㈣5(鄉試⑷〜(6))時,強度3_⑽㈣)磁 試⑴〜(3))時,調查錯位是入^加磁場到炫液5(測 S Ψ , 等入矽種子結晶1 4。於第4 化者,# v γ ~ # 于、,·ο日曰14而單結晶矽係有錯位 化者軚纪X付號;對於錯位盔導 曰放焱&纽/ 伹…導入矽種子結晶14而單結 曰日矽係無錯位化者,標記〇 ^ ^ θ r. 於只驗中,裝填300Kg 徑3GGram之單結晶石夕。又,於實驗中, 35κΤ底部加熱器19之電力固定在各值(,、1〇Kw、 二,以閉回路控制系統控制投入主加熱器9之電力,以 L::) 5。中之種子結晶“接觸的液面為目標溫度(例如 如第4圖所示’當不施加磁場到炫液5(測試⑴〜⑶) 時’僅有㈣對底部加熱器19之投人電力為仙),調整 對主加熱器9之投人電力為138(Kw)時之測試⑻,其溫度 差為容許溫度差以下之95 6 (。〇,而確認為無 錯位化’此外的使投入底部加熱器19之電…Kw以上 (l〇Kw、35KW)之測試(1)〜(2)中,溫度差(m rc、ι〇32 C )超過容許溫度差△ Tc,而確認出有錯位化。 相對於此,於施加磁場到熔液5之情形下(測試(4)〜 ⑹)’無論對底部加熱器19及主加熱器9之投入電力(投 入電力比率)為何’都能獲得容許溫度差△ Tc(i〇〇t>c )以下 之溫度差(92.2Ϊ、82.5〇C、78.5。〇,在上述全部測試中, 都能確認無錯位化。特別是使對主加熱器9之投入電力為 比OKw還要高之值(10Kw、35Kw)的測試中,相對於未施加 7054-6737-PF;Ahddub 15 1263710 磁場而有錯位化者’當施加磁場時,就能確認其無錯位化。 ,且’於第2圖中’第4圖實現無錯位化之點則標記。符 號5有錯位化之點則標記X符號。 如上所述’藉由施加磁場到熔液5,無論對加熱器之投 入電力為何,都能很容易實現無錯位化之理由,說明如下。 亦即,藉由施加磁場到㈣5,料5内之對流被抑 制口此’熔液5内之熱傳被抑制,熔液5第^圖中橫向 溫度差變大’炼液5中之接觸種子結曰曰曰14部分(接觸面;溫 f會降低。藉此’為了維持炫液5該接觸面之目標温度, 投入主加熱器9之電力會轉而上升。當投入主加熱器9之 電力上升時’藉由輻射熱增大,種子結晶14溫度會上升, 種子結晶14溫度會接近熔液5(比種子結晶14溫度還要高) 之溫度’溫度差△ τ會縮小。因此’種子結晶14中之最高 解析剪斷應力MRSS(MPa),亦即伴隨接觸炫液之熱應力最大 值會變小,錯位更難導入。 、而且,施加在熔液5上之磁場強度最好為15〇〇(Gauss) 以上。其原因在於:磁場強度為1〇〇〇〜15〇〇(Gauss)時,熔 液5中的溫度變動會變得激烈而出現不穩定部位,會有結 晶直徑變動之問題’於100()(Gauss)以下時,抑制對流的: 果很小,所以,結晶直徑之控制性报差。 於本實施例中,使磁場自種子結晶14接觸溶液5以前 就施加。 5以前就施加磁 時點,能抑制溶 其原因在於··自種子結晶1 4接觸溶液 場到熔液5,藉此,於開始牵引單結晶石夕之 7054-6737-PF;Ahddub 16 1263710 液 題 之溫度變動,避免結晶粒徑急增或結晶直徑變小的靡Ώ 靡Ώ 靡Ώ 靡Ώ 靡Ώ 靡Ώ 靡Ώ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C), 矽 seed crystal 14 contact Hyun & 3 nights to the bottom heater 1 9 input power (Kw) and the main heater 9 to & eight power (Kw) implementation of various 7054-6737-Pp ; Ahddub 1263710 Test (1) ~ (6), when the magnetic field is applied by magnet 20 to (4) 5 (township test (4) ~ (6)), the strength of 3_(10) (four)) magnetic test (1) ~ (3)), the investigation of the misplacement is the input magnetic field To the bright liquid 5 (measured S Ψ, etc. into the seed crystal 1 4. In the 4th, # v γ ~ #于,, · ο日曰14 and the single crystal 矽 system has a misplaced person 軚纪X付号For misplaced helmets, 曰 amp amp 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 矽 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ In addition, in the experiment, the electric power of the 35κΤ bottom heater 19 is fixed at each value (, 1, 〇 Kw, and two, and the power of the main heater 9 is controlled by the closed loop control system to L::) 5 . Seed knot "The liquid level of contact is the target temperature (for example, as shown in Fig. 4 'When no magnetic field is applied to the scent 5 (test (1) to (3)), only (four) the input power to the bottom heater 19 is sensible) In the test (8) when the input electric power of the main heater 9 is 138 (Kw), the temperature difference is 95 6 or less below the allowable temperature difference (.〇, and it is confirmed that there is no misalignment'. In the tests (1) to (2) of Kw or higher (l〇Kw, 35KW), the temperature difference (m rc, ι 32 C ) exceeded the allowable temperature difference Δ Tc, and it was confirmed that there was a misalignment. In the case where a magnetic field is applied to the melt 5 (tests (4) to (6))', regardless of the input power (input power ratio) to the bottom heater 19 and the main heater 9, the allowable temperature difference ΔTc can be obtained ( I〇〇t>c) The following temperature difference (92.2 Ϊ, 82.5 〇C, 78.5. 〇, in all the above tests, it was confirmed that there was no misalignment. In particular, the input power to the main heater 9 was made to be OKw. In the test of higher value (10Kw, 35Kw), there is misalignment compared to the magnetic field of 7504-6737-PF and Ahddub 15 1263710. 'When a magnetic field is applied, it can be confirmed that it is not misaligned. And 'in Figure 2', Figure 4 shows the point where the error-free bit is achieved. If the symbol 5 has a misalignment, the X symbol is marked. By applying a magnetic field to the melt 5, the reason why the power is not distorted can be easily realized regardless of the input power to the heater, as explained below. That is, by applying a magnetic field to (4) 5, the convection in the material 5 is suppressed, and the heat transfer in the melt 5 is suppressed, and the lateral temperature difference in the melt 5 is increased. The contact seed in the refining liquid 5 The knot portion 14 (contact surface; the temperature f will decrease. By this, in order to maintain the target temperature of the contact surface of the liquid 5, the power input to the main heater 9 will rise and rise. When the power is supplied to the main heater 9 When rising, 'by increasing radiant heat, the temperature of seed crystal 14 will rise, and the temperature of seed crystal 14 will be close to the temperature of melt 5 (higher than the temperature of seed crystal 14). The temperature difference Δ τ will shrink. Therefore, 'seed crystal 14 The highest analytical shear stress MRSS (MPa) in the middle, that is, the maximum thermal stress accompanying the contact liquid is small, and the misalignment is more difficult to introduce. Moreover, the magnetic field strength applied to the melt 5 is preferably 15〇〇. (Gauss) or more. The reason is that when the magnetic field strength is 1 〇〇〇 to 15 〇〇 (Gauss), the temperature fluctuation in the melt 5 becomes intense and unstable portions occur, and there is a problem that the crystal diameter changes. When the value is below 100 () (Gauss), the convection is suppressed: the result is small, so In the present embodiment, the magnetic field is applied from the seed crystal 14 before it contacts the solution 5. 5 The magnetic time point is applied before, and the reason for suppressing the dissolution is that the seed crystal is in contact with the solution field. Go to the melt 5, thereby starting to pull the single crystal crystallization of 7054-6737-PF; Ahddub 16 1263710 liquid temperature change, avoiding a sharp increase in crystal grain size or a smaller crystal diameter

自施加磁場到熔液5開始,到獲得對流被抑制,熔夜 内之溫度變動被抑制的效果為止,有時間延遲。施加二5 到熔液5後’大概經過4。分鐘,就有上述效果。因此I :加上此時間延遲’在種子結晶接觸溶液的既定時間前取 方也加磁場到溶液5,以# 5 /卜+從:Z丄《, π』〜狀3以使至少在種子結晶接觸 效果。 從守有該 磁場在種子結晶接觸、溶液後,肖續施加 轉移到平许tμ 乱 主夕&力口到 多至】千仃工序為止。最好持續施加磁 成結束為止。 0直到直胴部形 (實施例1) 於實施例1中,使用添加有5el 直徑7mm之矽種子結晶14(容 “雜質硼δ而 W谷卉,皿度差△ Tc係1〇〇t; 自種子結晶14接觸炫液5的超過4 义 以磁鐵20施加磁場到熔液 、’里之剛,開始 為止(…晶直胴部形成結束為止),持:::結束 3 0 0 0 (Gauss)之磁場向^ 、、 、場強度 * 向磁% )。亦即,在曰 觸熔液前施加之磁場強产,在^ 丁、、、口日日14接 強度相同。 成長岭施加之磁場 在種子結晶14接觸熔液5之 之電力固定為35Kw。 叙入底#加熱器19 而且使投入主加熱器9之雷力以^ 控制,以使溶液5中之鱼種子έ士電力以閉回路控制系統來 ”種子結晶Η的接觸面成為目標溫 7054-6737-PF;Ahddub 1263710There is a time delay from the application of the magnetic field to the start of the melt 5 until the effect that the convection is suppressed and the temperature fluctuation in the night is suppressed. After applying two 5 to the melt 5, 'about 4'. In minutes, there is the above effect. Therefore I: plus this time delay 'take the magnetic field to the solution 5 before the seed crystallization contact solution for a given time, to #5 / 卜 + from: Z 丄 ", π" ~ shape 3 to make at least the seed crystallize Contact effect. After holding the magnetic field in the seed crystal contact, the solution is continuously transferred to the flat tμ chaos and the force is up to the millenium process. It is best to continue applying the magnetization until the end. 0 until the straight shape (Example 1) In Example 1, the use of 5el diameter 7mm of 矽 seed crystal 14 (capacity "impurity boron δ and W Gu Hui, dish degree difference Δ Tc system 1 〇〇 t; More than 4 from the seed crystal 14 in contact with the scent 5, the magnet 20 is applied with a magnetic field to the melt, and the inside of the melt is started (before the formation of the crystal straight portion is completed), and the ::: end 3 0 0 0 (Gauss ) The magnetic field is ^, , , field strength * magnetic %). That is, the magnetic field applied before the contact with the melt is strong, and the strength of the connection is the same on the day of the day. The electric power of the seed crystal 14 contacting the molten metal 5 is fixed at 35 Kw. The bottom of the heater #19 is also controlled, and the lightning force applied to the main heater 9 is controlled so that the fish seed gentleman power in the solution 5 is closed. The control system comes to "the contact surface of the seed crystal Η becomes the target temperature 7054-6737-PF; Ahddub 1263710

度(、例如 1 Ο X n 〇r, N 及投入 因此,投入底部加熱器1 9之電力(Κν/) ^ 加熱器9之電力(Kw),分別與第4圖所示之測試 u與炫成為35(Kw)及112(Kw),接觸炫液時之種子結晶 之值(9 /之皿度差ΔΤ成為容許溫度差ATcdoot:)以下 i 2 · 2 C ) 9能抑制錯位導入種子結晶^ 4。 能牽::結晶14接觸到熔液5後’無須實施縮頸處理,就 :結晶石夕。種子結晶接觸炼液後,單結晶石夕之牵引 曰持績’控制投入主加埶 熱器 刀…斋9之電力,以使投入底部加 之 9之電力(KW)與接觸熔液時相同地維持電力35(Kw) 月形下,熔液5的溫度成為目標溫度。 結果,無須實施縮頸處理,能在無錯位之情形下培養 早結晶秒。 觸:由本““列’因為無須縮頸處理,使種子結晶1 4接 g -液5纟’可以在直徑逐漸擴大之同時,牵引結晶,亦 Ρ轉移到平行工序,也可 一 如弟9圖所示,接觸熔液後以 ▲概-定直徑牽引結晶成長部22(例如長度約5〇龍),在確 涊熔液溫度適當後,再轉移 主十灯工序。結晶成長部2 2之 直徑(最小結晶直徑)最好係4mm以上。 特別是當使用本實施例時,於種子結晶“接觸溶液5 之時點,溶液5内之溫度變動被抑制,所以,種子結晶14 接觸熔液後,能避免於轉移至 付秒至千仃工序為止間結晶粒徑| 增而導致導入錯位。又,也可、成名m^ 可避免因為結晶粒徑之溫度變 動,結晶粒徑細小到能支擇牽引結晶之直徑以下。 第7圖係表示石夕結晶直徑與耐負荷間之關係之曲線 7054-6737-PF;Ahddub 18 1263710 圖。對應石夕單結晶之直徑(轉移至平行工序為止間之最細直 徑),可決定出耐負荷。當使用本實施例時,矽單結晶直徑 不會細小到種子結晶1 4直徑以下,能維持種子結晶14直 徑’所以’對應要牽引的矽單結晶重量(口徑)而設定種子 結晶1 4直徑時,能不破斷地確實牽引大口徑、大重量的石夕 單結晶。 又,當使用本實施例時,於種子結晶接觸熔液時及之 後,在投入底部加熱器1 9之電力不變之情形下,能實現被 牽引出之單結晶矽的無錯位化,所以,加熱器之調整作業 變得簡易,作業者的負擔會減輕。又,當使用本實施例時, 於種子結晶接觸熔液時及之後,在投入底部加熱器丨9之電 力維持一定準位以上(35Kw)之情形下,能實現被牽引出之 單結晶矽的無錯位化,所以,能避免因為種子結晶接觸熔 液後,投入底部加熱器19電力上升,所導致的被牽引單結 晶矽直徑大幅改變之現象。 而且’當種子結晶丨4接觸熔液5時,可使遮熱板8藉 由升降裝置而上升,更多輻射熱會施加到種子結晶5上, 使溫度差△ T更加縮小。 、又’最好藉由使添加到種子結晶14之雜質濃度,與溶 液5中之雜質濃度之差值在一定準位以下,能避免因為熱 衝擊所致的錯位’同時,也能避免種子結晶丄4與熔液$接 面處之格子不整合所致的錯位(不配合錯位)。 、耸从、加到熔液5側之雜質種類及雜質濃度係依客戶之半 、體農置廠商才曰定之規格來決定。具體說來,雜質蝴B係Degree (for example, 1 Ο X n 〇r, N and input, therefore, the power of the bottom heater 19 (Κν/) ^ the power of the heater 9 (Kw), respectively, and the test u and dazzle shown in Fig. 4 When it is 35 (Kw) and 112 (Kw), the value of the seed crystal when it is exposed to the liquid (9 / the difference in the degree of Δ Τ becomes the allowable temperature difference ATcdoot :) below i 2 · 2 C ) 9 can suppress the misplacement of seed crystals ^ 4. Can hold: After the crystal 14 contacts the melt 5, it is not necessary to carry out the necking treatment: After the seed crystals are in contact with the refining liquid, the single crystal Shi Xizhi's traction performance is controlled to control the input of the main heat pump knife...the power of the 9th, so that the power (KW) at the bottom of the input is maintained in the same manner as when the molten metal is contacted. Power 35 (Kw) Under the moon shape, the temperature of the melt 5 becomes the target temperature. As a result, it is possible to culture the early crystallization seconds without the misalignment without performing the necking treatment. Touch: From the "column" because there is no need to shrink the neck, so that the seed crystals 14 4 g - liquid 5 纟 ' can be gradually expanded in diameter while pulling the crystal, also transferred to the parallel process, can also be like the brother 9 As shown in the figure, after contacting the molten metal, the crystal growth portion 22 (for example, a length of about 5 〇 dragons) is pulled by a ▲------, and the main ten-light process is transferred after the temperature of the molten metal is determined to be appropriate. The diameter (minimum crystal diameter) of the crystal growth portion 2 2 is preferably 4 mm or more. In particular, when the present embodiment is used, the temperature fluctuation in the solution 5 is suppressed at the time of the seed crystal "contacting the solution 5, so that the seed crystal 14 can be prevented from being transferred to the second to the thousandth process after contacting the melt. The intergranular particle size is increased to cause misalignment, and the m^ can be avoided because the temperature of the crystal grain is small, and the crystal grain size is small enough to be able to support the diameter of the pulled crystal. The relationship between crystal diameter and load resistance is 7054-6737-PF; Ahddub 18 1263710. Corresponding to the diameter of the single crystal of Shixi (the finest diameter until the parallel process), the load resistance can be determined. In the embodiment, the diameter of the single crystal of the crucible is not as small as the diameter of the seed crystal by 14 or less, and the diameter of the seed crystal 14 can be maintained, so that the weight of the monocrystal to be pulled (caliber) is set, and the diameter of the seed crystal is set to be 14 It is true that the large-diameter, large-weight Shixi single crystal is pulled off. Moreover, when the present embodiment is used, the power of the bottom heater 19 is applied when the seed crystal is in contact with the melt and after. In the case of the change, the misalignment of the single crystal enthalpy that is pulled out can be realized, so that the adjustment work of the heater is simplified, and the burden on the operator is reduced. Moreover, when the present embodiment is used, the seed crystal is in contact. At the time of the melt and after the power supplied to the bottom heater 丨9 is maintained at a certain level or higher (35 Kw), the misalignment of the single crystal ruthenium which is pulled out can be realized, so that the contact crystallization of the seeds can be avoided. After the liquid is introduced, the electric power of the bottom heater 19 is increased, and the diameter of the pulled single crystal crucible is largely changed. Moreover, when the seed crystal crucible 4 contacts the molten metal 5, the heat shield 8 can be raised by the lifting device. More radiant heat is applied to the seed crystal 5 to further reduce the temperature difference Δ T. Further, it is preferable to make the difference between the impurity concentration added to the seed crystal 14 and the impurity concentration in the solution 5 a certain standard. Below the position, it can avoid the misalignment caused by thermal shock. At the same time, it can avoid the misalignment caused by the unconformity of the lattice at the junction of the seed crystal 丄4 and the melt$ (does not cooperate with the misalignment). Type and the impurity concentration of the impurity based solution of the melt 5 by customer side half body opposed agricultural companies only said prescribed specifications determined. Specifically, the impurity B based butterfly

7〇S4~6737-PF;Ahddub 1Q 1263710 5el4〜2el9atoms/cc範圍内之既定濃度;雜賀 lel4〜8el8atoms/cc範圍内之既定濃度;雜 2el7〜lel9atoms/cc範圍内之既定濃度;雜 5el8〜le20atoms/cc範圍内之既定濃度。 於抑制格子不整合所致之錯位時,最好對應 之雜質種類及雜質濃度,預先使用調整過雜質種 /辰度之種子結晶1 4 ’以使種子結晶1 4與單結晶石夕 中之格子不整合率為O.Oi %以下。 而且,本實施例中,雖然使種子結晶丨4接觸 施加之磁場強度,與單結晶成長時施加之磁場強 但是,也可以使種子結晶14接觸熔液前所施加 度,比單結晶成長時施加之磁場強度還要大。 又,本實施例1中,預設使用直徑石夕單 '余 做過說明,但是,當使用直徑4mm以上矽種子結 樣地在無須實施縮頸處理下,就能培養單結晶石夕 重量超過2 0 0公斤而直徑300mm的單結晶;g夕時, 晶1 4直桂最好在5mm以上。 (實施例2) 又,也可以以第5圖所示之單結晶牽引裝置工 圖所示之單結晶牽引裝置1。 於第5圖所示裝置中,省略底部加熱器19之 加熱器9沿著石英坩堝3上下方向,分割成上下 熱器9a,9b。加熱器9a,9b可調整對於石英坩禍 量,亦即輸出可獨立調整。實施形態之裝置中, 燐 P係 質Sb係 質 A s係 容液5側 類及雜質 之接合部 溶液前所 度相同, 之磁場強 #晶1 4而 晶時,同 。在牽引 矽種子結 取代第1 配設,主 2段之加 3之加熱 雖然使加 7054-6737-PF;Ahddub 20 !26371〇 ’、’、器9分割成2段’也可以分割成 以上構成之多重加熱器也與實施例1相同,當自 結晶14接觸溶液5之前即施加磁場到炫液5時,與每種子 二相R地’無須實施縮頸處理而且無錯位,就能不破斷:例 男、牽引大口徑、大重量的矽單結晶。 確 (貫施例3) 於上述實施例中,預設單結晶牽引裝置丨具 熱态而做過說明。可是,當單結晶牽引裝X !具有—加 =時,亦即於第i圖中,即使於底部加熱器19、二: 有主加熱器9之單一加熱器之構成時,當自種子“ 接觸溶液5之前即施加磁場到溶液5時,相同地二:; 貫施縮頸處理而且無錯位,就能不破斷地確實牵引二、 技、大重量的矽單結晶。 口 於上述實施例中,雖然針對雜質使用观B之實施例, 但是’在添㈣以外之鎵Ga或錮In等各種雜質到種子 結晶時,同樣地,能抑制因為熱衝擊所致之錯位導入種子 結晶中,能使單結晶矽無錯位地培養。 弟6圖係表示使各種元素添加到種子結晶14時,抑制 因為熱衝擊所致之錯位導入種子結晶中之濃度範圍。亦 即’當雜質為爛B時’可添加以上。其原因 ^ 牽引後在以X光砰價種子結晶14與接觸熔液後新 形成結晶之界面部分時’當添加lel8at〇mS/cc以上雜質硼 B到種子結晶14時,不會發現錯位導入種子結晶14。又, 當雜質為鎵Ga時’可添加5el9at〇ms/cc以上;當雜質為 7054-6737-PF;Ahddub 1263710 銦I η時,可添加1 e 1 6 a t o in s / c c以上;當雜質為燐p時, 可添加 lei 9a toms/cc以上;當雜質為神 As時,可添加 5el9atoms/cc 以上,當雜質為録 §b 時,可添加 lel9atoms/cc 以上;當雜質為鍺 Ge 時,可添加 5el9atoms/cc以上;當雜質為氮N時,可添加5el3atoms/cc 以上;當雜質為碳C時,可添加8el6atoms/cc以上。 又,於上述說明中,當添加高濃度雜質到種子結晶i 4 時,與施加磁場到熔液5相組合,無須實施縮頸處理,能 於無錯位之狀態下,牽引大直徑、大重量之單結晶石夕鑄塊, 但是’藉由添加高濃度雜質,能防止因熱衝擊所致的錯位, 所以,可不施加磁場到熔液5而僅添加高濃度雜質到種子 結晶1 4。 而且,於上述說明中,種子結晶1 4之尺寸,雖然說明 過舉直徑D為例,求取容許溫度差△ Tc之情形,但是,於 此之外,也可以將種子結晶1 4前端面面積等當作種子結晶 14之尺寸,來求取容許溫度差atc。 【圖式簡單說明】 第1圖係表示本發明實施形態之單結晶牽引裝置之示 意圖。 第2圖係表示種子結晶與熔液之溫度差與最高解析剪 斷應力間之關係之曲線圖。 第3圖係表示種子結晶直徑與種子結晶中雜質濃度與 谷許溫度差間之關係之曲線圖。 7054-6737-PF;Ahddub 22 1263710 第4圖係表示為了比較施加與不施加磁場於熔液而實 施實驗之結果圖表。 第5圖係表示與第1圖不同之單結晶牽引裝置之示意 圖。 第6圖係表示添加到種子結晶的各種元素與未導入熱 衝擊錯位之濃度範圍間之關係的圖表。 第7圖係表示石夕結晶直徑與耐負荷間之關係之曲線圖。 第8圖係表示緩衝頸部之示意圖。 第9圖係表示接觸熔液後之結晶成長部示意圖。 要元件符號說明】 1〜單結晶牵引裝置; 2〜CZ爐; 3〜石英坩堝; 4〜牵引機構 4a〜牽引軸; 4 c〜結晶種 5〜熔液; 7〜氬氣; 8〜遮熱板; 9〜主加熱器; 9a、9b〜加熱器; 1 0〜旋轉軸; 11〜碳坩堝; 1 3〜保溫筒 14〜種子結晶; 1 9〜底部加熱器 2 0〜磁鐵; 2 1〜縮頸部; 22〜結晶成長部。 7054-6737-PF;Ahddub 237〇S4~6737-PF; Ahddub 1Q 1263710 5el4~2el9atoms/cc within the specified concentration; the specified concentration in the range of heterozygous lel4~8el8atoms/cc; the established concentration in the range of 2el7~lel9atoms/cc; heterozygous 5el8~le20atoms The established concentration in the /cc range. In order to suppress the misalignment caused by the unconformity of the lattice, it is preferable to use the seed crystal 1 4 ' adjusted for the impurity species/initial in advance to make the seed crystal 14 4 and the lattice of the single crystal stone in the evening. The unconformity rate is below O.Oi%. Further, in the present embodiment, although the seed crystal enthalpy 4 is brought into contact with the applied magnetic field strength and is stronger than the magnetic field applied when the single crystal grows, the degree of application of the seed crystal 14 before the molten metal is contacted may be applied when the single crystal grows. The magnetic field strength is even greater. In addition, in the first embodiment, the diameter of the stone is used as a preset, but when the diameter of the seed is more than 4 mm, the seeding of the seed can be cultivated without the need of the necking treatment. A single crystal of 200 kg and a diameter of 300 mm; in the case of g, the crystal 1 4 is preferably more than 5 mm. (Example 2) Further, the single crystal pulling device 1 shown in the single crystal pulling device shown in Fig. 5 may be used. In the apparatus shown in Fig. 5, the heater 9 omitting the bottom heater 19 is divided into the upper and lower heat exchangers 9a, 9b along the vertical direction of the quartz crucible 3. The heaters 9a, 9b can be adjusted for quartz failure, i.e., the output can be independently adjusted. In the apparatus of the embodiment, the 燐P system Sb system A s is the same as the junction between the impurity side 5 and the impurity before the solution, and the magnetic field is strong and the crystal is the same. In the traction 矽 seed knot instead of the first arrangement, the heating of the main 2 section plus 3 can add 7054-6737-PF; Ahddub 20 ! 26371 〇 ', ', and the device 9 is divided into 2 segments' can also be divided into the above composition The multiple heaters are also the same as in the first embodiment. When the magnetic field is applied to the blaze 5 before the crystallization 14 is contacted with the solution 5, the two-phase R-seeds per seed are not required to be necked and have no misalignment, so that they are not broken: For example, a male, a large diameter, large weight single crystal. Indeed (Example 3) In the above embodiment, the preset single crystal pulling device cookware has been described as being hot. However, when the single crystal pulling device X has - plus =, that is, in the i-th picture, even when the bottom heater 19, two: the single heater having the main heater 9 is constituted, when the seed is "contacted" When the magnetic field is applied to the solution 5 before the solution 5, the same two:: through the necking treatment and without the misalignment, the second crystal of the technique and the weight can be reliably pulled without breaking. In the above embodiment, Although the example of the observation B is used for the impurity, when the various impurities such as gallium Ga or strontium other than the addition of the fourth (four) are crystallized into the seed, similarly, the misalignment due to thermal shock can be suppressed from being introduced into the seed crystal, and the single crystal can be The crystal enthalpy is cultured without dislocation. The figure 6 shows the concentration range in which the dislocation into the seed crystal due to thermal shock is suppressed when various elements are added to the seed crystal 14. That is, when the impurity is bad B, it can be added. The reason is as follows: After the traction, after the X-ray valence seed crystal 14 and the interface portion of the newly formed crystal after the contact with the melt, 'when adding the impurity boron B to the seed crystal 14 above the lime 8 〇mS/cc, no dislocation is found. Import seed Crystal 14. In addition, when the impurity is gallium Ga, 'add 5el9at 〇ms/cc or more; when the impurity is 7054-6737-PF; Ahddub 1263710 indium I η, add 1 e 1 6 ato in s / cc or more; When the impurity is 燐p, lei 9a toms/cc or more may be added; when the impurity is God As, 5el9atoms/cc or more may be added, and when the impurity is recorded as §b, le9atoms/cc may be added; when the impurity is 锗Ge 5el9atoms/cc or more may be added when the impurity is nitrogen N; 8el3 atoms/cc or more may be added when the impurity is carbon C. Also, in the above description, when adding high concentration impurities When the seed crystals i 4 , combined with the application of a magnetic field to the melt 5, it is not necessary to carry out the necking treatment, and the large-diameter, large-weight single crystal stone ingot can be pulled in a state of no misalignment, but 'by adding high Concentration impurities can prevent misalignment due to thermal shock. Therefore, it is possible to add only high-concentration impurities to the seed crystals 14 without applying a magnetic field to the melt 5. Further, in the above description, the size of the seed crystals 14 is described. Take the diameter D as an example to find the allowable temperature In the case of the degree difference ΔTc, the allowable temperature difference atc may be obtained by taking the front end surface area of the seed crystal 14 or the like as the size of the seed crystal 14. [Simplified illustration] Fig. 1 A schematic diagram showing a single crystal pulling device according to an embodiment of the present invention. Fig. 2 is a graph showing a relationship between a temperature difference between a seed crystal and a melt and a highest analytical shear stress. Fig. 3 is a view showing a seed crystal diameter and a seed. A graph showing the relationship between the impurity concentration in the crystal and the temperature difference between the valleys. 7054-6737-PF; Ahddub 22 1263710 Fig. 4 is a graph showing the results of experiments performed to compare the application and non-application of a magnetic field to the melt. Fig. 5 is a schematic view showing a single crystal pulling device different from Fig. 1. Fig. 6 is a graph showing the relationship between the various elements added to the seed crystals and the concentration range in which the thermal shock misalignment is not introduced. Fig. 7 is a graph showing the relationship between the diameter of the crystal and the load resistance. Figure 8 is a schematic view showing the cushion neck. Fig. 9 is a view showing a crystal growth portion after contact with a melt. To the symbol description of the component] 1 ~ single crystal pulling device; 2 ~ CZ furnace; 3 ~ quartz crucible; 4 ~ traction mechanism 4a ~ traction shaft; 4 c ~ crystal species 5 ~ melt; 7 ~ argon; 9; main heater; 9a, 9b~ heater; 1 0~ rotating shaft; 11~ carbon 坩埚; 1 3~ insulating cylinder 14~ seed crystal; 1 9~ bottom heater 2 0~ magnet; 2 1~ Constricted neck; 22~ crystal growth section. 7054-6737-PF; Ahddub 23

Claims (1)

1263710 十、申請專利3: 1·-種單結晶半導體之製造方法,使添加有 子結晶接觸到掛禍内之熔液,藉由牽引種子結晶來製種 結晶半導體, 表义單 其特徵在於包含: 施加磁場於溶液之工序; 使溶液接觸到種子結晶之工序;以及 而牵引單 在種子結晶接觸到溶液後,不實施縮_ g 結晶半導體之工序。 2.如申請專利範圍第1項所述之單結晶半導體之製1 二其中,在使溶液接觸到種子結晶之前,⑯加磁場: 製造 製造 ,係 3.如申請專利範圍第1項所 不丄貝尸π迅之早結晶半導體之 方法,其中,磁場強度係15〇〇高斯以上。 、4·如申請專利範圍帛!項所述之單結晶半導體之 方法,其巾’添加到種子結晶而作為雜質之硼的濃度 lel8atoms/cc 以上 〇 5 ·如申请專利範圍第1項所述之單結晶半導體之製造 方法,其中,種子結晶接觸到熔液後之最小結晶直徑係 以上。 7054-6737-PF;Ahddub 241263710 X. Patent application 3: 1·- A method for manufacturing a single-crystal semiconductor, in which a seed crystal is added to contact with a molten liquid in a disaster, and a crystal semiconductor is produced by pulverizing seed crystal, and the expression is characterized by inclusion : a step of applying a magnetic field to the solution; a step of bringing the solution into contact with the seed crystal; and a step of drawing the crystallized semiconductor after the seed crystal is contacted with the solution. 2. The method of manufacturing a single-crystal semiconductor according to claim 1, wherein the magnetic field is applied before the solution is brought into contact with the seed crystal, and the manufacturing process is performed, as in the first item of the patent application. The method of crystallizing a semiconductor early in the smear, wherein the magnetic field strength is 15 〇〇 Gauss or more. 4) If you apply for a patent scope! The method for producing a single-crystal semiconductor according to the above-mentioned item, wherein the method of producing a single-crystal semiconductor according to the first aspect of the invention is the method for producing a single-crystal semiconductor according to the first aspect of the invention. The minimum crystal diameter of the seed crystal after contact with the melt is above. 7054-6737-PF; Ahddub 24
TW93138720A 2004-02-09 2004-12-14 Single crystal semiconductor manufacturing method TWI263710B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032666A JP2007223814A (en) 2004-02-09 2004-02-09 Single crystal semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
TW200526821A TW200526821A (en) 2005-08-16
TWI263710B true TWI263710B (en) 2006-10-11

Family

ID=34836101

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93138720A TWI263710B (en) 2004-02-09 2004-12-14 Single crystal semiconductor manufacturing method

Country Status (3)

Country Link
JP (1) JP2007223814A (en)
TW (1) TWI263710B (en)
WO (1) WO2005075715A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239265B2 (en) * 2007-09-07 2013-07-17 株式会社Sumco Seed crystal for pulling silicon single crystal and method for producing silicon single crystal using the seed crystal
JP2010275137A (en) * 2009-05-27 2010-12-09 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal
JP5488597B2 (en) * 2009-06-18 2014-05-14 株式会社Sumco Method for producing silicon single crystal
JP5823947B2 (en) 2012-12-27 2015-11-25 トヨタ自動車株式会社 Method for producing SiC single crystal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3050120B2 (en) * 1996-03-13 2000-06-12 住友金属工業株式会社 Single crystal pulling seed crystal and single crystal pulling method using the seed crystal
DE60138443D1 (en) * 2000-02-25 2009-06-04 Shinetsu Handotai Kk METHOD FOR PRODUCING SILICON INGREDIENTS

Also Published As

Publication number Publication date
WO2005075715A1 (en) 2005-08-18
JP2007223814A (en) 2007-09-06
TW200526821A (en) 2005-08-16

Similar Documents

Publication Publication Date Title
CN103938270B (en) Growth method of gallium heavily doped low-dislocation germanium single crystal
CN108779577A (en) The manufacturing method of monocrystalline silicon
JP2009091233A (en) Method for growing silicon ingot
JP2008508187A (en) Method for growing a single crystal from a melt
KR101022933B1 (en) Apparatus and Method for manufacturing semiconductor single crystal using selective magnetic shielding
TWI263710B (en) Single crystal semiconductor manufacturing method
JP2015182944A (en) Production method of sapphire single crystal
JP4982034B2 (en) Method for producing silicon single crystal
JP2008266090A (en) Silicon crystal material and method for manufacturing fz (floating-zone) silicon single crystal using the material
CN110730831A (en) Method for producing silicon single crystal, method for producing epitaxial silicon wafer, silicon single crystal, and epitaxial silicon wafer
US20090293802A1 (en) Method of growing silicon single crystals
TWI301858B (en)
JP2009292663A (en) Method for growing silicon single crystal
JP2525300B2 (en) Method for producing silicon single crystal
US6153009A (en) Method for producing a silicon single crystal and the silicon single crystal produced thereby
JP5489064B2 (en) Method for growing silicon single crystal
CN205241851U (en) Single crystal furnace heating system
JP7310339B2 (en) Method for growing lithium niobate single crystal
CN106567125A (en) Method for improving metallurgical-method polycrystalline silicon growth interface
CN206219710U (en) A kind of EFG technique long crystal furnace
JP2003246695A (en) Method for producing highly doped silicon single crystal
JP2010265150A (en) Method for producing sapphire single crystal and method for producing seed crystal
JPH0367994B2 (en)
JP2007284323A (en) Manufacturing device and manufacturing method for semiconductor single crystal
JP2011251892A (en) InP SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME