WO2005075715A1 - Single crystal semiconductor manufacturing method - Google Patents

Single crystal semiconductor manufacturing method Download PDF

Info

Publication number
WO2005075715A1
WO2005075715A1 PCT/JP2005/001939 JP2005001939W WO2005075715A1 WO 2005075715 A1 WO2005075715 A1 WO 2005075715A1 JP 2005001939 W JP2005001939 W JP 2005001939W WO 2005075715 A1 WO2005075715 A1 WO 2005075715A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
crystal
seed crystal
diameter
single crystal
Prior art date
Application number
PCT/JP2005/001939
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Inagaki
Masahiro Shibata
Shigeki Kawashima
Nobuyuki Fukuda
Original Assignee
Komatsu Denshi Kinzoku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Denshi Kinzoku Kabushiki Kaisha filed Critical Komatsu Denshi Kinzoku Kabushiki Kaisha
Publication of WO2005075715A1 publication Critical patent/WO2005075715A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for manufacturing a single-crystal semiconductor such as single-crystal silicon using a CZ method (Czochralski method), in which a large-diameter and heavy-weight single-crystal semiconductor is manufactured without dislocations. It is about how you can do it.
  • CZ method Czochralski method
  • One of the methods for producing single crystal silicon is the CZ method.
  • Dislocation that occurs at the solid-liquid interface of the seed crystal when the seed crystal lands on the melt. This dislocation occurs due to thermal stress induced in the seed crystal when the seed crystal immerses in the melt.
  • FIG. 8 shows a state in which a dash neck 21 having a crystal diameter of 3 to 4 mm is formed and dislocations are extracted outside the crystal.
  • Patent Document 1 discloses that a large-diameter, heavy-weight single-crystal silicon ingot is formed in a dislocation-free state without necking using a silicon seed crystal to which boron B is added as a high concentration impurity. The invention of lifting is described.
  • Patent Document 1 JP 2001-240493 A
  • the concentration of oxygen taken into single-crystal silicon is affected by convection generated in the melt.
  • convection generated in the melt are known to those skilled in the art.
  • a technique for suppressing the generation of convection in a quartz crucible there is a technique called a magnetic field application pulling method. In this method, convection in the melt is suppressed by applying a magnetic field to the melt, and stable crystal growth is performed.
  • the present invention has been made in view of such circumstances, and when pulling a single crystal without dislocations using a seed crystal to which impurities are added, by suppressing the temperature fluctuation of the melt, It is an object of the present invention to avoid dislocation introduction due to a sudden increase in crystal diameter after crystal immersion and to avoid a crystal diameter smaller than the withstand load.
  • the first invention is a first invention
  • a single crystal semiconductor manufacturing method of manufacturing a single crystal semiconductor by dipping a seed crystal to which impurities are added into a melt in a crucible and pulling up the seed crystal, a magnetic field is applied to the melt. Process and A step of immersing the seed crystal in the melt;
  • the second invention is based on the first invention
  • Magnetic field strength should be 1500 Gauss or more
  • boron is added to the seed crystal at a concentration of at least 8 atoms / cc as boron impurities.
  • the minimum crystal diameter after the seed crystal has immersed in the melt must be 4 mm or more.
  • the force before the seed crystal is immersed in the melt is applied to the melt by applying a magnetic field to suppress the temperature fluctuation of the melt at the start of the single crystal pulling, thereby increasing the crystal diameter rapidly. This is to prevent the crystal diameter from becoming thin.
  • a magnetic field is continuously applied after the seed crystal liquid is applied, and it is necessary to apply the magnetic field at least until a transition to the shoulder process.
  • the temperature fluctuation in the melt is suppressed, and dislocation introduction due to a sudden increase in the crystal diameter after the seed crystal deposition until the transition to the shoulder process is avoided.
  • the process may be immediately shifted to a so-called shoulder process in which the crystal is pulled up while gradually increasing its diameter, As shown in Fig. 9, after deposition, the crystal growth part 22 (for example, about 50 mm in length) was pulled up with a substantially constant diameter, and after confirming that the melt temperature was appropriate, the process was shifted to the shoulder process. Is also good.
  • the concentration of impurity boron B to be added to the seed crystal is lel8atoms / cc or more (the fourth invention). This is because the interface between the seed crystal and the newly formed crystal after landing was evaluated by X-rays after pulling up.When impurity boron B was added to the seed crystal at lel8 atoms / cc or more, dislocation was introduced. It is a cara that is not seen.
  • FIG. 1 is a view showing a single crystal bow I raising apparatus according to an embodiment.
  • FIG. 2 is a graph showing the relationship between the temperature difference between a seed crystal and a melt and the maximum decomposition shear stress.
  • FIG. 3 is a graph showing the relationship between the seed crystal diameter, the impurity concentration in the seed crystal, and the allowable temperature difference.
  • Fig. 4 is a table showing the results of experiments performed to compare the case where a magnetic field was applied to the melt with the case where a magnetic field was not applied.
  • FIG. 5 is a view showing a single crystal pulling apparatus different from FIG. 1.
  • FIG. 6 is a table showing a relationship between various elements added to a seed crystal and a concentration range in which heat shock dislocation is not introduced.
  • FIG. 7 is a graph showing a relationship between a silicon crystal diameter and a withstand load.
  • FIG. 8 is a view showing a dash neck portion.
  • FIG. 9 is a view showing a crystal growth part after liquid landing.
  • FIG. 1 is a side view of the configuration of the embodiment.
  • the single crystal pulling apparatus 1 of the embodiment includes a CZ furnace (chamber) 2 as a single crystal pulling container.
  • the single crystal pulling apparatus 1 of FIG. 1 is an apparatus suitable for producing a large-diameter (for example, 300 mm in diameter) and heavy single-crystal silicon ingot.
  • a quartz crucible 3 for melting a polycrystalline silicon raw material and storing the melt as a melt 5 is provided.
  • a quartz crucible 3 for melting a polycrystalline silicon raw material and storing the melt as a melt 5 is provided.
  • a cylindrical main heater 9 that heats and melts the polycrystalline silicon raw material in the quartz crucible 3 is provided outside and laterally of the quartz crucible 3.
  • an annular bottom heater 19 is provided to supplementally heat the bottom of the quartz crucible 3 to prevent the melt 5 at the bottom of the quartz crucible 3 from solidifying.
  • the outputs (power; kW) of the main heater 9 and the bottom heater 19 are independently controlled, and the heating amount for the melt 5 is independently adjusted.
  • the output of the main heater 9 and the bottom heater 19 is controlled such that the temperature of the melt 5 is detected, and the detected temperature is used as a feedback amount so that the temperature of the melt 5 reaches the target temperature.
  • any heating means other than the heater may be used as the heating means for heating the melt 5 from the outside by the heaters 9 and 19.
  • a method by electromagnetic heating or heating by laser irradiation may be employed.
  • a heat retaining cylinder 13 is provided between the main heater 9 and the inner wall of the CZ furnace 2.
  • the pulling mechanism 4 includes a pulling shaft 4a and a seed chuck 4c at the tip of the pulling shaft 4a.
  • the seed crystal 14 is gripped by the seed chuck 4c.
  • the pulling shaft 4a is, for example, a shaft or a wire, and is pulled up by the shaft or wound up by the wire.
  • Polycrystalline silicon (Si) is heated and melted in quartz crucible 3.
  • the pulling mechanism 4 operates to pull single crystal silicon (single crystal silicon ingot) from the melt 5. That is, the pulling shaft 4a is lowered, and the seed crystal 14 held by the seed chuck 4c at the tip of the pulling shaft 4a is immersed in the melt 5. After the seed crystal 14 is adapted to the melt 5, the pulling shaft 4a is raised. Single crystal silicon grows as the seed crystal 14 held by the seed chuck 4c rises.
  • the quartz crucible 3 is To rotate at a rotation speed of ⁇ 1.
  • the pulling shaft 4a of the pulling mechanism 4 is in the opposite direction to the rotating shaft 10, and rotates at the rotation speed ⁇ 2 in the same direction.
  • the rotating shaft 10 can be driven in the vertical direction, and the quartz crucible 3 can be moved up and down to an arbitrary position.
  • the inside of the furnace 2 is maintained at a vacuum (for example, about 20 Torr). That is, the CZ furnace 2 is supplied with an argon gas 7 as an inert gas, and the exhaust locus of the CZ furnace 2 is also exhausted by the pump. Thereby, the pressure in the furnace 2 is reduced to a predetermined pressure.
  • a vacuum for example, about 20 Torr
  • the argon gas 7 is supplied to the CZ furnace 2 and exhausted together with the evaporant to the outside of the CZ furnace 2 to remove the evaporant from the CZ furnace 2 to make the CZ furnace 2 clean.
  • the supply flow rate of the argon gas 7 is set for each process in one batch.
  • the melt 5 decreases as the single crystal silicon is pulled up. As the melt 5 decreases, the contact area between the melt 5 and the quartz crucible 3 changes, and the amount of oxygen dissolved from the quartz crucible 3 changes. This change affects the oxygen concentration distribution in the single crystal silicon to be pulled. Therefore, in order to prevent this, a polycrystalline silicon material or a single crystal silicon material may be additionally supplied into the quartz crucible 3 in which the melt 5 has been reduced after or during the pulling.
  • a heat shielding plate 8 (gas rectifying cylinder) having a substantially inverted truncated cone shape is provided above the quartz crucible 3 and around the single crystal silicon.
  • the heat shield plate 8 is supported by the heat retaining cylinder 13.
  • the heat shield plate 8 guides the argon gas 7 as a carrier gas supplied from above into the CZ furnace 2 to the center of the melt surface 5a, and further passes through the melt surface 5a to form a peripheral portion of the melt surface 5a. Lead to. Then, the argon gas 7 is exhausted from the melt 5 together with the gas evaporated from the melt 5 and the exhaust port provided at the lower part of the CZ furnace 2. For this reason, the gas flow velocity on the liquid surface can be stabilized, and the oxygen evaporated from the melt 5 can be kept in a stable state.
  • the heat shield plate 8 heat-insulates and shields the seed crystal 14 and single crystal silicon grown by the seed crystal 14 from radiant heat generated in a high-temperature portion such as the quartz crucible 3, the melt 5, and the main heater 9. Cover up.
  • the heat shield plate 8 prevents impurities (for example, silicon oxide) generated in the furnace from adhering to the single crystal silicon and hindering the growth of the single crystal.
  • the size of the gap G between the lower end of the heat shield plate 8 and the melt surface 5a raises and lowers the rotating shaft 10 and the quartz It can be adjusted by changing the vertical position of the crucible 3. Alternatively, the gap G may be adjusted by moving the heat shield plate 8 up and down by a lifting device.
  • a magnet 20 for applying a magnetic field (transverse magnetic field) to the melt 5 in the quartz crucible 3 is provided outside and around the CZ furnace 2!
  • FIG. 2 shows the temperature difference ⁇ (° C.) between the tip surface of seed crystal 14 and melt 5 (liquid contact surface) when seed crystal 14 is immersed in melt 5, It shows the relationship between the maximum decomposition shear stress and MRSS (MPa).
  • the maximum decomposition shear stress MRSS (MPa) in the seed crystal 14 is the maximum value of the thermal stress applied to the seed crystal 14 when the melt is immersed in the melt 5, and dislocation due to heat shock is introduced into the seed crystal 14. It shows the index to be used.
  • Figure 2 plots the temperature difference ⁇ calculated by the heat transfer analysis calculation (FEMAG) and the maximum decomposition shear stress MRSS calculated by the stress analysis (FEMAG).
  • FIG. 3 shows the allowable temperature between the temperature of the tip of the seed crystal 14 and the temperature of the melt 5 (liquid contact surface) at the time of liquid landing, with the diameter D (mm) of the seed crystal 14 taken on the horizontal axis.
  • the difference ATc is plotted on the vertical axis, and the correspondence between the diameter D and the allowable temperature difference ATc is shown by characteristics Ll, L2, and L3.
  • characteristics Ll, L2, and L3 As shown by the characteristics Ll, L2, and L3, a substantially inverse relationship is established between the seed crystal diameter D and the allowable temperature difference ATc. That is, as the seed crystal diameter D increases, the thermal shock stress applied to the seed crystal 14 at the time of liquid contact increases, and the allowable temperature difference ATc needs to be reduced accordingly.
  • the allowable temperature difference ATc is an upper limit temperature difference at which dislocations are not introduced into seed crystal 14.
  • the characteristics Ll, L2, and L3 indicate the difference in the magnitude of the critical decomposition shear stress (CRSS; MPa), which is one of the indexes of the mechanical strength of the seed crystal 14.
  • Critical decomposition shear stress (CRSS) is the critical stress beyond which dislocations are introduced into the seed crystal 14.
  • the characteristic L1 has the smallest critical decomposition shear stress (CRSS) (5 MPa)
  • the characteristic L2 is the characteristic.
  • L beams also have a large critical decomposition shear stress (CRSS) (lOMPa)
  • characteristic L3 has the highest critical decomposition shear stress (CRSS) ⁇ (15MPa).
  • the critical decomposition shear stress varies depending on the type and concentration C of impurities added to the seed crystal 14.
  • boron B is assumed as the type of impurity.
  • FIG. 3 shows the case where the impurity concentration C is three types as a representative, but as the impurity concentration C changes in more steps and continuously, the characteristics become multi-step or It changes continuously.
  • the impurity concentration C changes to LI, L2, and L3 as the impurity concentration C increases to Cl, C2, and C3. growing.
  • the allowable temperature difference ATc is, for example, the same value ATcO, the diameter D of the seed crystal 14 changes to L1, L2, L3 as the diameter D1, D2, D3 increases, so that the impurity concentration C is changed to Cl, C2, C3. It should just be big.
  • the allowable temperature difference ATc when the seed crystal 14 is added with the predetermined concentration C and the size (diameter) of the seed crystal 14 is the predetermined value D is calculated using the characteristics Ll and L2 shown in FIG.
  • FIG. 4 shows the results of an experiment in which the effect of the magnetic field force applied to the melt 5 on the temperature difference ⁇ was examined.
  • impurity boron B force 5el8atoms / cc added diameter 7mm Allowable temperature difference ATc is 100 ° C.
  • the power input to the bottom heater 19 (Kw) when the silicon seed crystal 14 is immersed in the melt 5 and the power input to the main heater 9 (Kw).
  • Kw) was varied (1)-(6), and a magnetic field of 3000 (Gauss) was applied to the melt 5 by the magnet 20 (test (4)-(6)).
  • test (1)-(3) it was examined whether or not a force for introducing dislocations into the silicon seed crystal 14 was determined.
  • FIG. 4 the ones in which dislocations are introduced into the seed crystal 14 and single-crystal silicon are dislocated are indicated by X, and those in which no dislocations are introduced into the seed crystal 14 and single-crystal silicon is dislocated. Is marked with a triangle.
  • 300 kg of polycrystalline silicon was charged and single crystal silicon having a diameter of 300 mm was pulled up.
  • the electric power supplied to the bottom heater 19 was fixed to each value (0 Kw, 10 Kw, 35 Kw), and the liquid contact surface of the melt 5 on which the seed crystal 14 was contacted was set to the target temperature (for example, 1340 ° C.). ),
  • the power supplied to the main heater 9 was controlled by a closed loop control system.
  • the strength of the magnetic field applied to the melt 5 is preferably 1500 (Gauss) or more. This is because, when the magnetic field strength is 1000 to 1500 (Gauss), an unstable part where the temperature fluctuation becomes large in the melt 5 appears, and there is a possibility that a problem that the diameter of the crystal fluctuates may occur. Below Gauss), the effect of suppressing the convection is small, and the controllability of the crystal diameter is poor.
  • a magnetic field is applied before the seed crystal 14 lands on the melt 5.
  • the magnetic field is continuously applied after the seed crystal liquid is applied, and it is necessary to apply the magnetic field at least until the transition to the shoulder process. It is desirable to continue applying a magnetic field until the formation of the straight body is completed.
  • Example 1 a 7 mm-diameter silicide was added with impurity boron B power of 5el8atoms / cc. Con seed crystal 14 was used (allowable temperature difference ⁇ Tc was 100 ° C.).
  • the power supplied to the bottom heater 19 is fixed at 35 Kw.
  • the electric power supplied to the main heater 9 is adjusted by a closed loop control system so that the surface temperature at which the seed crystal 14 of the melt 5 lands is at the target temperature (for example, 1340 ° C). Controlled. Therefore, the input power (Kw) to the bottom heater 19 and the input power (Kw) to the main heater 9 become 35 (Kw) and 112 (Kw), respectively, as in the test (4) shown in FIG.
  • the temperature difference ⁇ T between the seed crystal 14 and the melt 5 at the time of the liquid becomes a value (92.2 ° C) or less of the allowable temperature difference ⁇ Tc (100 ° C), and the dislocation into the seed crystal 14 The introduction was suppressed.
  • single crystal silicon could be grown without dislocations without performing necking.
  • the process may be immediately shifted to a so-called shoulder process in which the crystal is pulled up while gradually increasing its diameter. Then, as shown in Fig. 9, the crystal growth part 22 (e.g., about 50 mm in length) was pulled up with a substantially constant diameter after liquid contact, and after confirming that the melt temperature was appropriate, the process shifted to the shoulder process. You may. It is desirable that the diameter (minimum crystal diameter) of the crystal growth part 22 be 4 mm or more.
  • the temperature fluctuation in the melt 5 is suppressed, so that after the seed crystal immersion, the process proceeds to the shoulder process.
  • the crystal diameter was raised to a value smaller than the (load-bearing) diameter capable of supporting the crystal by raising the crystal diameter due to temperature fluctuation.
  • FIG. 7 is a graph showing the relationship between the diameter of a silicon single crystal and the withstand load.
  • the load capacity is determined according to the diameter of the silicon single crystal (the diameter that becomes the narrowest before the transition to the shoulder process).
  • the diameter of the silicon single crystal is maintained at the diameter of the seed crystal 14 which does not become thinner than the diameter of the seed crystal 14, so that the weight (diameter) of the silicon single crystal to be pulled is reduced. If the diameter of the seed crystal 14 is set accordingly, a large-diameter and heavy silicon single crystal can be reliably pulled without breaking.
  • non-dislocation of single crystal silicon that can be pulled up can be realized while the power applied to the bottom heater 19 is unchanged during and after the seed crystal liquid landing, and the heater Adjustment work is simplified, and the burden on the operator is reduced.
  • the power applied to the bottom heater 19 is maintained at a high value (35 Kw) which is equal to or higher than a certain level at the time of the seed crystal landing liquid and thereafter, while the single crystal silicon is pulled up. Since the dislocation-free dislocation is realized, it is possible to avoid a large change in the diameter of the single crystal silicon to be pulled up by increasing the power supplied to the bottom heater 19 after the seed crystal liquid is deposited.
  • the heat shield plate 8 is raised by the above-described elevating device so that more radiant heat is applied to the seed crystal 5, The difference ⁇ may be further reduced.
  • the type and concentration of impurities to be added to the melt 5 side are determined by specifications specified by the semiconductor device maker as the customer. Specifically, for impurity B, a predetermined concentration within the range of 5el4-2el9atoms / cc, for impurity P, a predetermined concentration of lel4-8el8atoms / cc, and for impurity Sb, 2el7-el9atoms. If it is a predetermined concentration within the range of / cc and impurity As, it is a predetermined concentration within the range of 5el8-le20atoms / cc.
  • the impurity species and impurities on the melt 5 side should be adjusted so that the lattice mismatch rate at the junction between the seed crystal 14 and the single crystal silicon is 0.01% or less. It is desirable to use a seed crystal 14 in which the impurity seed and the addition concentration are adjusted in advance according to the concentration.
  • the strength of the magnetic field applied before the seed crystal 14 lands is the same as the strength of the magnetic field applied during the growth of the single crystal.
  • the intensity of the magnetic field applied to the substrate may be greater than the intensity of the magnetic field applied during single crystal growth.
  • single crystal pulling apparatus 1 shown in FIG. 5 may be used instead of single crystal pulling apparatus 1 in FIG. 5
  • the arrangement of the bottom heater 19 is omitted, and the main heater 9 is divided into two upper and lower heaters 9 a and 9 b along the vertical direction of the quartz crucible 3.
  • the heaters 9a and 9b can independently adjust the heating amount of the quartz crucible 3, that is, the output.
  • the heater 9 may be divided into three or more forces that are divided into two stages.
  • the single crystal pulling apparatus 1 is provided with a single heater, that is, in the case of FIG.
  • the magnetic field is applied to melt 5, and in the same way, it breaks without dislocation without necking treatment.
  • the single crystal silicon having a large diameter and a large weight can be surely pulled up without performing.
  • FIG. 6 shows a concentration range in which when various elements are added to the seed crystal 14, introduction of dislocations into the seed crystal due to heat shock is suppressed. That is, in the case of impurity B, lel8 atoms / cc or more may be added. This was evaluated by X-ray evaluation of the interface between the seed crystal 14 after pulling and the newly formed crystal after contact with liquid, and found that when boron B was added to the seed crystal 14 by lei 8 atoms / cc or more. Is the force that did not show the introduction of dislocations.
  • impurity Ga it can be added by adding 5el9atoms / cc or more. If it is In, it can be added by adding lel6 atoms / cc or more.If it is impurity P, it can be added by lel9atoms / cc or more. If the impurity is As, it should be added with 5el9atoms / cc or more.If the impurity is Sb, it should be added with lel9atoms / cc or more.If it is Ge, the impurity should be 5el9atoms / cc or more. If it is impurity N, it should be added at 5el3atoms / cc or more. If it is impurity C, it should be added at 8el6atoms / cc or more.
  • the addition of a high concentration of impurities to the seed crystal 14 and the application of a magnetic field to the melt 5 are performed in a dislocation-free state without performing necking treatment.
  • a large-diameter, heavy-weight single crystal silicon ingot is pulled up.By adding a high concentration of impurities to the seed crystal 14, dislocation due to heat shock can be prevented. It is also possible to implement only adding impurities to seed crystal 14 at a high concentration without applying voltage.
  • the allowable temperature difference is taken as an example of the diameter D as the size of the seed crystal 14.
  • the force described in the case of obtaining ⁇ Tc may be obtained using the area of the tip surface of the seed crystal 14 and the like as the size of the seed crystal 14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A single crystal semiconductor manufacturing method by which dislocation induction due to a sharp increase of the crystal diameter after the seed crystal is brought into contact with the melt is prevented by suppressing the variation in the temperature of the melt when a single crystal is pulled up with no dislocation without performing a necking process while using an impurity-added seed crystal, and the crystal is prevented from being thinned below a crystal diameter durable against the load. By keeping a magnetic field applied to the melt before the seed crystal is brought into contact with the melt, the variation in the temperature of the melt is suppressed when the single crystal starts to be pulled up, thereby preventing the crystal diameter from sharply increasing or decreasing.

Description

明 細 書  Specification
単結晶半導体の製造方法  Method for manufacturing single crystal semiconductor
技術分野  Technical field
[0001] 本発明は、 CZ法 (チヨクラルスキー法)を用いて単結晶シリコンなどの単結晶半導 体を製造するに際して、大口径、大重量の単結晶半導体を無転位で製造することが できる方法に関するものである。  [0001] The present invention relates to a method for manufacturing a single-crystal semiconductor such as single-crystal silicon using a CZ method (Czochralski method), in which a large-diameter and heavy-weight single-crystal semiconductor is manufactured without dislocations. It is about how you can do it.
背景技術  Background art
[0002] 単結晶シリコンの製造方法の 1つに CZ法がある。  [0002] One of the methods for producing single crystal silicon is the CZ method.
[0003] CZ法で単結晶シリコンを成長させる際に避けられない問題の 1つに、種結晶が融 液に着液する際に種結晶の固液界面部分に発生する「転位」がある。この転位は、 種結晶が融液に着液したとき種結晶内に誘起される熱応力に起因して発生する。  [0003] One of the problems that cannot be avoided when growing single-crystal silicon by the CZ method is "dislocation" that occurs at the solid-liquid interface of the seed crystal when the seed crystal lands on the melt. This dislocation occurs due to thermal stress induced in the seed crystal when the seed crystal immerses in the melt.
[0004] この転位を結晶の外に抜くためには、結晶直径を 3— 4mmまで細く絞る、いわゆる ダッシュネックが必要である。図 8に、結晶直径が 3— 4mmのダッシュネック部 21を形 成して転位を結晶の外に抜 、た様子を図示する。  [0004] In order to pull out this dislocation outside the crystal, a so-called dash neck, which narrows the crystal diameter to 3-4 mm, is required. FIG. 8 shows a state in which a dash neck 21 having a crystal diameter of 3 to 4 mm is formed and dislocations are extracted outside the crystal.
[0005] ところが近年、直径 300mm以上の大径のシリコンゥヱーハ製造の要請があり、大径 で大重量の単結晶シリコンインゴットを、問題なく引き上げられることが要求されており 、ネッキング処理によってネッキング部の径を 3— 4mm程度に細く絞ったとすると、転 位は除去されるものの径が細すぎて大径、大重量の単結晶シリコンインゴットを結晶 落下等の不具合なく製造することは不可能になるおそれがある。  [0005] In recent years, however, there has been a demand for the manufacture of large-diameter silicon wafers having a diameter of 300 mm or more, and it has been required that a large-diameter and heavy-weight single-crystal silicon ingot can be pulled up without any problem. If the diameter is reduced to about 3-4 mm, dislocations will be removed, but the diameter will be too small and it may not be possible to manufacture large-diameter, heavy-weight single-crystal silicon ingots without problems such as crystal falling. is there.
[0006] (従来技術 1)  [0006] (Prior art 1)
後掲する特許文献 1には、高濃度に不純物としてボロン Bが添加されたシリコン種 結晶を用いて、大径、大重量の単結晶シリコンインゴットを、ネッキング処理を行わず に無転位の状態で引き上げるという発明が記載されている。  Patent Document 1 described below discloses that a large-diameter, heavy-weight single-crystal silicon ingot is formed in a dislocation-free state without necking using a silicon seed crystal to which boron B is added as a high concentration impurity. The invention of lifting is described.
特許文献 1:特開 2001— 240493号公報  Patent Document 1: JP 2001-240493 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 単結晶シリコンに取り込まれる酸素濃度は、融液内で発生する対流に影響されるこ とが、当業者の間で知られている。石英るつぼ内での対流の発生を抑制する技術と して、磁場印加引上げ法と呼ばれる技術がある。これは融液に磁場を印加することに よって融液中の対流を抑制して、安定した結晶成長を行うという方法である。 [0007] The concentration of oxygen taken into single-crystal silicon is affected by convection generated in the melt. Are known to those skilled in the art. As a technique for suppressing the generation of convection in a quartz crucible, there is a technique called a magnetic field application pulling method. In this method, convection in the melt is suppressed by applying a magnetic field to the melt, and stable crystal growth is performed.
[0008] しかし、ネッキング処理中に強磁場を印加すると、転位は結晶中心近傍に移動し、 転位が側面には抜けないという問題が発生する。これはつぎのことが原因と推定され る。すなわち、磁場の対流抑制効果により融液の温度変動が抑制されるため、ネツキ ング中の結晶直径、引上げ速度の変動は小さぐ固液界面形状は安定した上凸形 状となり、転位は固液界面に垂直方向に移動するので、結晶中心に移動し、無転位 化が困難となる。  [0008] However, when a strong magnetic field is applied during the necking process, the dislocation moves to the vicinity of the crystal center, and a problem occurs that the dislocation does not escape to the side surface. This is presumed to be due to the following. That is, since the temperature fluctuation of the melt is suppressed by the effect of suppressing the convection of the magnetic field, the fluctuation of the crystal diameter and the pulling speed during netting is small, the solid-liquid interface shape becomes a stable upward convex shape, and the dislocation is solid-liquid. Since it moves in the direction perpendicular to the interface, it moves to the center of the crystal, making it difficult to eliminate dislocations.
[0009] 一方、上記従来技術 1を採用して、ネッキング処理を行わずに高濃度に不純物ポロ ン Bが添加されたシリコン種結晶を用いて単結晶シリコンインゴットを引き上げたとして も、つぎのような不具合が発生するおそれがある。  [0009] On the other hand, even if the single crystal silicon ingot is pulled up by using the silicon seed crystal doped with the impurity boron B at a high concentration without performing the necking process by employing the above-mentioned conventional technology 1, the following problem occurs. Trouble may occur.
[0010] すなわち、近年、引き上げ結晶の大重量ィ匕に伴い融液量が増大している。  [0010] That is, in recent years, the amount of the melt has been increasing due to the large weight of the pulled crystal.
[0011] しかし、融液量が増大 (特に融液量が 150kg以上)すると、融液内の温度変動が大 きくなり、種結晶を着液した直後から肩工程に移行するまでの間に、温度変動に伴い 結晶径が急激に増大し、異常成長により転位が導入される不具合が発生する。また 、逆に温度変動によって結晶径が、引き上げられる単結晶を支えることができる径( 耐荷重)以下に細くなつてしまう。このため種結晶を融液に着液する工程力 やり直 すなどの不具合が発生する。  [0011] However, when the amount of the melt increases (especially, when the amount of the melt is 150 kg or more), the temperature fluctuation in the melt becomes large, and the time from when the seed crystal is immersed to when the process shifts to the shoulder process. The crystal diameter sharply increases with temperature fluctuations, and the occurrence of dislocations due to abnormal growth occurs. Conversely, temperature fluctuations cause the crystal diameter to be smaller than the diameter (withstand load) that can support the single crystal to be pulled. As a result, problems such as a reworking of the process power for immersing the seed crystal in the melt occur.
[0012] 本発明は、こうした実状に鑑みてなされたものであり、不純物が添加された種結晶 を用いて無転位で単結晶を引き上げるに際して、融液の温度変動を抑制することに より、種結晶着液後の結晶径急増による転位導入を回避するとともに、耐荷重以下の 結晶径に細くなることを回避することを、解決課題とするものである。  [0012] The present invention has been made in view of such circumstances, and when pulling a single crystal without dislocations using a seed crystal to which impurities are added, by suppressing the temperature fluctuation of the melt, It is an object of the present invention to avoid dislocation introduction due to a sudden increase in crystal diameter after crystal immersion and to avoid a crystal diameter smaller than the withstand load.
課題を解決するための手段  Means for solving the problem
[0013] 第 1発明は、 [0013] The first invention is
るつぼ内の融液に、不純物が添加された種結晶を着液させ、前記種結晶を引き上 げることにより単結晶半導体を製造する単結晶半導体の製造方法において、 融液に磁場を印加する工程と、 種結晶を融液に着液させる工程と、 In a single crystal semiconductor manufacturing method of manufacturing a single crystal semiconductor by dipping a seed crystal to which impurities are added into a melt in a crucible and pulling up the seed crystal, a magnetic field is applied to the melt. Process and A step of immersing the seed crystal in the melt;
種結晶が融液に着液した後に、ネッキング処理を行うことなく単結晶半導体を引き 上げる工程と  A step of pulling up the single crystal semiconductor without performing necking after the seed crystal is immersed in the melt;
を含む単結晶半導体の製造方法であることを特徴とする。  And a method for manufacturing a single crystal semiconductor including:
[0014] 第 2発明は、第 1発明において、  [0014] The second invention is based on the first invention,
種結晶を融液に着液させる前に、融液に磁場を印加すること  Before applying the seed crystal to the melt, apply a magnetic field to the melt
を特徴とする。  It is characterized by.
[0015] 第 3発明は、第 1発明において、 [0015] In a third aspect, in the first aspect,
磁場の強度は、 1500ガウス以上であること  Magnetic field strength should be 1500 Gauss or more
を特徴とする。  It is characterized by.
[0016] 第 4発明は、第 1発明において、 [0016] In a fourth aspect, in the first aspect,
不純物としてボロン B力 lel8atoms/cc以上の濃度で種結晶に添加されること を特徴とする。  It is characterized in that boron is added to the seed crystal at a concentration of at least 8 atoms / cc as boron impurities.
[0017] 第 5発明は、第 1発明において、 [0017] In a fifth aspect, in the first aspect,
種結晶が融液に着液した後の最小結晶径は、 4mm以上であること  The minimum crystal diameter after the seed crystal has immersed in the melt must be 4 mm or more.
を特徴とする。  It is characterized by.
[0018] 本発明は、種結晶が融液に着液する前力 融液に磁場を印加することで、単結晶 引き上げ開始の時点で融液の温度変動を抑制して結晶径が急増したり結晶径が細 くなることを回避するものである。  According to the present invention, the force before the seed crystal is immersed in the melt is applied to the melt by applying a magnetic field to suppress the temperature fluctuation of the melt at the start of the single crystal pulling, thereby increasing the crystal diameter rapidly. This is to prevent the crystal diameter from becoming thin.
[0019] 融液に磁場を印加し始めてから、対流が抑制され融液内の温度変動が抑制される という効果が得られるまでに、タイムラグがある。融液に磁場を印加後、概ね 40分程 度で、その効果が得られる。したがって、このタイムラグを加味して、少なくとも融液着 液の時点で、その効果が得られるように、種結晶着液の所定時間前に融液に磁場を 印加しておくのが望ましい。  [0019] There is a time lag from the start of applying a magnetic field to the melt until the effect of suppressing convection and suppressing temperature fluctuation in the melt is obtained. The effect can be obtained approximately 40 minutes after applying a magnetic field to the melt. Therefore, considering this time lag, it is desirable to apply a magnetic field to the melt a predetermined time before the seed crystal landing liquid so that the effect can be obtained at least at the time of the melt landing.
[0020] 磁場は、種結晶着液後に引き続き印加し続けられ、少なくとも肩工程に移行するま での間は、印加しておく必要がある。  [0020] A magnetic field is continuously applied after the seed crystal liquid is applied, and it is necessary to apply the magnetic field at least until a transition to the shoulder process.
[0021] 本発明によれば、融液内の温度変動が抑制され、種結晶着液後、肩工程に移行す るまでの間で結晶径が急増してしまうことによる転位導入が回避される。 [0022] また、結晶径が温度変動によって結晶径が引き上げ結晶を支えられる (耐荷重)径 以下に細くなることが回避される。 [0021] According to the present invention, the temperature fluctuation in the melt is suppressed, and dislocation introduction due to a sudden increase in the crystal diameter after the seed crystal deposition until the transition to the shoulder process is avoided. . [0022] Further, it is possible to prevent the crystal diameter from being reduced to a diameter (withstand load) capable of supporting the crystal by raising the crystal diameter due to temperature fluctuation.
[0023] 本発明により、ダッシュネックは不要となるため、種結晶を融液に着液した後は、直 ぐに直径を次第に拡大させながら結晶を引き上げる、いわゆる肩工程に移行してもよ いし、図 9に示すように、着液後に概ね一定直径で結晶成長部 22 (例えば長さ約 50 mm)の引上げを実施し、融液温度が適正であることを確認した後に肩工程に移行し てもよい。  According to the present invention, since a dash neck is not required, after the seed crystal is immersed in the melt, the process may be immediately shifted to a so-called shoulder process in which the crystal is pulled up while gradually increasing its diameter, As shown in Fig. 9, after deposition, the crystal growth part 22 (for example, about 50 mm in length) was pulled up with a substantially constant diameter, and after confirming that the melt temperature was appropriate, the process was shifted to the shoulder process. Is also good.
[0024] 種結晶に添加すべき不純物ボロン Bの濃度は、 lel8atoms/cc以上であることが望 ましい (第 4発明)。これは、引上げ後に、種結晶と着液後に新たに形成した結晶との 界面部分を X線で評価したところ、種結晶に不純物ボロン Bを lel8atoms/cc以上添 カロした場合には、転位の導入がみられなカゝつたカゝらである。  [0024] It is desirable that the concentration of impurity boron B to be added to the seed crystal is lel8atoms / cc or more (the fourth invention). This is because the interface between the seed crystal and the newly formed crystal after landing was evaluated by X-rays after pulling up.When impurity boron B was added to the seed crystal at lel8 atoms / cc or more, dislocation was introduced. It is a cara that is not seen.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]図 1は実施形態の単結晶弓 I上げ装置を示す図である。 FIG. 1 is a view showing a single crystal bow I raising apparatus according to an embodiment.
[図 2]図 2は種結晶と融液との温度差と、最高分解せん断応力との関係を示したダラ フである。  FIG. 2 is a graph showing the relationship between the temperature difference between a seed crystal and a melt and the maximum decomposition shear stress.
[図 3]図 3は種結晶直径と種結晶中の不純物濃度と許容温度差との関係を示したダラ フである。  FIG. 3 is a graph showing the relationship between the seed crystal diameter, the impurity concentration in the seed crystal, and the allowable temperature difference.
[図 4]図 4は融液に磁場を印加した場合とそうでな 、場合とを比較するために行った 実験結果を示した表である。  [Fig. 4] Fig. 4 is a table showing the results of experiments performed to compare the case where a magnetic field was applied to the melt with the case where a magnetic field was not applied.
[図 5]図 5は図 1とは異なる単結晶引上げ装置を示す図である。  FIG. 5 is a view showing a single crystal pulling apparatus different from FIG. 1.
[図 6]図 6は、種結晶に添加される各種元素と熱ショック転位が導入されない濃度範 囲との関係を示した表である。  FIG. 6 is a table showing a relationship between various elements added to a seed crystal and a concentration range in which heat shock dislocation is not introduced.
[図 7]図 7は、シリコン結晶径と耐荷重との関係を示したグラフである。  FIG. 7 is a graph showing a relationship between a silicon crystal diameter and a withstand load.
[図 8]図 8は、ダッシュネック部を示す図である。  FIG. 8 is a view showing a dash neck portion.
[図 9]図 9は、着液後の結晶成長部を示す図である。  FIG. 9 is a view showing a crystal growth part after liquid landing.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下図面を参照して実施形態の装置について説明する。 Hereinafter, an apparatus according to an embodiment will be described with reference to the drawings.
[0027] 図 1は実施形態の構成を側面からみた図である。 [0028] 同図 1に示すように、実施形態の単結晶引上げ装置 1は、単結晶引上げ用容器とし ての CZ炉 (チャンバ) 2を備えている。図 1の単結晶引上げ装置 1は、大径 (たとえば 直径 300mm)、大重量の単結晶シリコンインゴットを製造するに好適な装置である。 FIG. 1 is a side view of the configuration of the embodiment. As shown in FIG. 1, the single crystal pulling apparatus 1 of the embodiment includes a CZ furnace (chamber) 2 as a single crystal pulling container. The single crystal pulling apparatus 1 of FIG. 1 is an apparatus suitable for producing a large-diameter (for example, 300 mm in diameter) and heavy single-crystal silicon ingot.
[0029] CZ炉 2内には、多結晶シリコンの原料を溶融して融液 5として収容する石英るつぼ 3が設けられている。なお、直径 300mmの単結晶シリコンを引き上げるためには、 30 Okg程度の多結晶シリコンが石英るつぼ 3内にチャージされる。石英るつぼ 3は、その 外側が黒鉛るつぼ 11によって覆われて ヽる。石英るつぼ 3の外側にあって側方には 、石英るつぼ 3内の多結晶シリコン原料を加熱して溶融する、円筒形状のメインヒータ 9が設けられている。石英るつぼ 3の底部には、石英るつぼ底面を補助的に加熱して 、石英るつぼ 3の底部の融液 5の固化を防止する、円環形状のボトムヒータ 19が設け られている。メインヒータ 9、ボトムヒータ 19はそれらの出力(パワー; kW)は独立して 制御され、融液 5に対する加熱量が独立して調整される。たとえば、融液 5の温度が 検出され、検出温度をフィードバック量とし融液 5の温度が目標温度になるように、メ インヒータ 9、ボトムヒータ 19の各出力が制御される。  [0029] In the CZ furnace 2, a quartz crucible 3 for melting a polycrystalline silicon raw material and storing the melt as a melt 5 is provided. In order to pull up single crystal silicon having a diameter of 300 mm, about 30 Okg of polycrystalline silicon is charged into the quartz crucible 3. The outside of the quartz crucible 3 is covered with a graphite crucible 11. A cylindrical main heater 9 that heats and melts the polycrystalline silicon raw material in the quartz crucible 3 is provided outside and laterally of the quartz crucible 3. At the bottom of the quartz crucible 3, an annular bottom heater 19 is provided to supplementally heat the bottom of the quartz crucible 3 to prevent the melt 5 at the bottom of the quartz crucible 3 from solidifying. The outputs (power; kW) of the main heater 9 and the bottom heater 19 are independently controlled, and the heating amount for the melt 5 is independently adjusted. For example, the output of the main heater 9 and the bottom heater 19 is controlled such that the temperature of the melt 5 is detected, and the detected temperature is used as a feedback amount so that the temperature of the melt 5 reaches the target temperature.
[0030] なお実施形態ではヒータ 9、 19によって融液 5を外部より加熱している力 加熱手段 としてはヒータに限定されるものではなぐいかなる加熱手段を使用してもよい。たとえ ば電磁加熱による方法、レーザ照射による加熱を採用してもよい。  In the embodiment, any heating means other than the heater may be used as the heating means for heating the melt 5 from the outside by the heaters 9 and 19. For example, a method by electromagnetic heating or heating by laser irradiation may be employed.
[0031] メインヒータ 9と CZ炉 2の内壁との間には、保温筒 13が設けられている。  [0031] A heat retaining cylinder 13 is provided between the main heater 9 and the inner wall of the CZ furnace 2.
[0032] 石英るつぼ 3の上方には引上げ機構 4が設けられている。引上げ機構 4は、引上げ 軸 4aと引上げ軸 4aの先端のシードチャック 4cを含む。シードチャック 4cによって種結 晶 14が把持される。ここで、引上げ軸 4aは、たとえばシャフトやワイヤであり、シャフト での引き上げやワイヤでの巻き上げが行われる。  [0032] Above the quartz crucible 3, a pulling mechanism 4 is provided. The pulling mechanism 4 includes a pulling shaft 4a and a seed chuck 4c at the tip of the pulling shaft 4a. The seed crystal 14 is gripped by the seed chuck 4c. Here, the pulling shaft 4a is, for example, a shaft or a wire, and is pulled up by the shaft or wound up by the wire.
[0033] 石英るつぼ 3内で多結晶シリコン (Si)が加熱され溶融される。融液 5の温度が安定 化すると、引上げ機構 4が動作し融液 5から単結晶シリコン (単結晶シリコンインゴット )が引き上げられる。すなわち引上げ軸 4aが降下され引上げ軸 4aの先端のシードチ ャック 4cに把持された種結晶 14が融液 5に浸漬される。種結晶 14を融液 5になじま せた後引上げ軸 4aが上昇する。シードチャック 4cに把持された種結晶 14が上昇す るに応じて単結晶シリコンが成長する。引上げの際、石英るつぼ 3は回転軸 10によつ て回転速度 ω 1で回転する。また引上げ機構 4の引上げ軸 4aは回転軸 10と逆方向 にある 、は同方向に回転速度 ω 2で回転する。 [0033] Polycrystalline silicon (Si) is heated and melted in quartz crucible 3. When the temperature of the melt 5 is stabilized, the pulling mechanism 4 operates to pull single crystal silicon (single crystal silicon ingot) from the melt 5. That is, the pulling shaft 4a is lowered, and the seed crystal 14 held by the seed chuck 4c at the tip of the pulling shaft 4a is immersed in the melt 5. After the seed crystal 14 is adapted to the melt 5, the pulling shaft 4a is raised. Single crystal silicon grows as the seed crystal 14 held by the seed chuck 4c rises. At the time of pulling up, the quartz crucible 3 is To rotate at a rotation speed of ω1. The pulling shaft 4a of the pulling mechanism 4 is in the opposite direction to the rotating shaft 10, and rotates at the rotation speed ω2 in the same direction.
[0034] また回転軸 10は鉛直方向に駆動することができ、石英るつぼ 3を上下動させ任意 の位置に移動させることができる。  The rotating shaft 10 can be driven in the vertical direction, and the quartz crucible 3 can be moved up and down to an arbitrary position.
[0035] CZ炉 2内と外気を遮断することで炉 2内は真空 (たとえば 20Torr程度)に維持され る。すなわち CZ炉 2には不活性ガスとしてのアルゴンガス 7が供給され、 CZ炉 2の排 気ロカもポンプによって排気される。これにより炉 2内は所定の圧力に減圧される。  By shutting off the inside of the CZ furnace 2 from the outside air, the inside of the furnace 2 is maintained at a vacuum (for example, about 20 Torr). That is, the CZ furnace 2 is supplied with an argon gas 7 as an inert gas, and the exhaust locus of the CZ furnace 2 is also exhausted by the pump. Thereby, the pressure in the furnace 2 is reduced to a predetermined pressure.
[0036] 単結晶引上げのプロセス(1バッチ)の間で、 CZ炉 2内には種々の蒸発物が発生す る。そこで CZ炉 2にアルゴンガス 7を供給して CZ炉 2外に蒸発物とともに排気して CZ 炉 2内から蒸発物を除去しクリーンにしている。アルゴンガス 7の供給流量は 1バッチ 中の各工程ごとに設定する。  Various evaporants are generated in the CZ furnace 2 during the single crystal pulling process (one batch). Therefore, the argon gas 7 is supplied to the CZ furnace 2 and exhausted together with the evaporant to the outside of the CZ furnace 2 to remove the evaporant from the CZ furnace 2 to make the CZ furnace 2 clean. The supply flow rate of the argon gas 7 is set for each process in one batch.
[0037] 単結晶シリコンの引上げに伴い融液 5が減少する。融液 5の減少に伴い融液 5と石 英るつぼ 3との接触面積が変化し石英るつぼ 3からの酸素溶解量が変化する。この変 ィ匕が、引き上げられる単結晶シリコン中の酸素濃度分布に影響を与える。そこで、こ れを防止するために、融液 5が減少した石英るつぼ 3内に多結晶シリコン原料または 単結晶シリコン原料を引上げ後あるいは引上げ中に追加供給してもよ 、。  [0037] The melt 5 decreases as the single crystal silicon is pulled up. As the melt 5 decreases, the contact area between the melt 5 and the quartz crucible 3 changes, and the amount of oxygen dissolved from the quartz crucible 3 changes. This change affects the oxygen concentration distribution in the single crystal silicon to be pulled. Therefore, in order to prevent this, a polycrystalline silicon material or a single crystal silicon material may be additionally supplied into the quartz crucible 3 in which the melt 5 has been reduced after or during the pulling.
[0038] 石英るつぼ 3の上方にあって、単結晶シリコンの周囲には、略逆円錐台形状の熱遮 蔽板 8 (ガス整流筒)が設けられている。熱遮蔽板 8は、保温筒 13に支持されている。 熱遮蔽板 8は、 CZ炉 2内に上方より供給されるキャリアガスとしてのアルゴンガス 7を、 融液表面 5aの中央に導き、さらに融液表面 5aを通過させて融液表面 5aの周縁部に 導く。そして、アルゴンガス 7は、融液 5から蒸発したガスとともに、 CZ炉 2の下部に設 けた排気口力も排出される。このため液面上のガス流速を安定ィ匕することができ、融 液 5から蒸発する酸素を安定な状態に保つことができる。  [0038] Above the quartz crucible 3 and around the single crystal silicon, a heat shielding plate 8 (gas rectifying cylinder) having a substantially inverted truncated cone shape is provided. The heat shield plate 8 is supported by the heat retaining cylinder 13. The heat shield plate 8 guides the argon gas 7 as a carrier gas supplied from above into the CZ furnace 2 to the center of the melt surface 5a, and further passes through the melt surface 5a to form a peripheral portion of the melt surface 5a. Lead to. Then, the argon gas 7 is exhausted from the melt 5 together with the gas evaporated from the melt 5 and the exhaust port provided at the lower part of the CZ furnace 2. For this reason, the gas flow velocity on the liquid surface can be stabilized, and the oxygen evaporated from the melt 5 can be kept in a stable state.
[0039] また熱遮蔽板 8は、種結晶 14および種結晶 14により成長される単結晶シリコンを、 石英るつぼ 3、融液 5、メインヒータ 9などの高温部で発生する輻射熱から、断熱、遮 蔽する。また熱遮蔽板 8は、単結晶シリコンに、炉内で発生した不純物(たとえばシリ コン酸ィ匕物)等が付着して、単結晶育成を阻害することを防止する。熱遮蔽板 8の下 端と融液表面 5aとの間隙のギャップ Gの大きさは、回転軸 10を上昇下降させ、石英 るつぼ 3の上下方向位置を変化させることで調整することができる。また熱遮蔽板 8を 昇降装置により上下方向に移動させてギャップ Gを調整してもよ 、。 Further, the heat shield plate 8 heat-insulates and shields the seed crystal 14 and single crystal silicon grown by the seed crystal 14 from radiant heat generated in a high-temperature portion such as the quartz crucible 3, the melt 5, and the main heater 9. Cover up. The heat shield plate 8 prevents impurities (for example, silicon oxide) generated in the furnace from adhering to the single crystal silicon and hindering the growth of the single crystal. The size of the gap G between the lower end of the heat shield plate 8 and the melt surface 5a raises and lowers the rotating shaft 10 and the quartz It can be adjusted by changing the vertical position of the crucible 3. Alternatively, the gap G may be adjusted by moving the heat shield plate 8 up and down by a lifting device.
[0040] CZ炉 2の外側にあって周囲には、石英るつぼ 3内の融液 5に磁場 (横磁場)を印加 する磁石 20が設けられて!/、る。  [0040] A magnet 20 for applying a magnetic field (transverse magnetic field) to the melt 5 in the quartz crucible 3 is provided outside and around the CZ furnace 2!
[0041] 図 2は、種結晶 14が融液 5に着液する際の種結晶 14の先端面と融液 5 (着液面)と の温度差 ΔΤ(° C)と、種結晶 14中の最高分解せん断応力 MRSS (MPa)との関係 を示している。ここで種結晶 14中の最高分解せん断応力 MRSS (MPa)とは、融液 5 への着液時に種結晶 14に加わる熱応力の最高値であり、種結晶 14中に熱ショック による転位が導入される指標を示すものである。図 2は、伝熱解析計算 (FEMAG)に より算出した温度差 ΔΤと、応力解析 (FEMAG)により算出した最高分解せん断応力 MRSSをプロットしたものである。  FIG. 2 shows the temperature difference ΔΤ (° C.) between the tip surface of seed crystal 14 and melt 5 (liquid contact surface) when seed crystal 14 is immersed in melt 5, It shows the relationship between the maximum decomposition shear stress and MRSS (MPa). Here, the maximum decomposition shear stress MRSS (MPa) in the seed crystal 14 is the maximum value of the thermal stress applied to the seed crystal 14 when the melt is immersed in the melt 5, and dislocation due to heat shock is introduced into the seed crystal 14. It shows the index to be used. Figure 2 plots the temperature difference ΔΤ calculated by the heat transfer analysis calculation (FEMAG) and the maximum decomposition shear stress MRSS calculated by the stress analysis (FEMAG).
[0042] 同図 2に示すように、温度差 ΔΤが小さくなるほど、種結晶 14中の最高分解せん断 応力 MRSSが小さくなり、種結晶 14中に熱ショックによる転位が導入されに《なる。  As shown in FIG. 2, as the temperature difference ΔΤ becomes smaller, the maximum decomposition shear stress MRSS in the seed crystal 14 becomes smaller, and dislocation due to a thermal shock is introduced into the seed crystal 14.
[0043] 一方、本出願人の先願(特願 2002— 204178号)では、種結晶 14に添加される不 純物(たとえばボロン B)の濃度 Cと、種結晶 14のサイズ (直径 D)と、臨界分解せん断 応力(CRSS ;MPa)と、許容温度差 ATcとの関係を開示した。  On the other hand, in the earlier application (Japanese Patent Application No. 2002-204178) of the present applicant, the concentration C of the impurity (for example, boron B) added to the seed crystal 14 and the size (diameter D) of the seed crystal 14 The relationship between the critical decomposition shear stress (CRSS; MPa) and the allowable temperature difference ATc was disclosed.
[0044] すなわち、図 3は、種結晶 14の直径 D (mm)を横軸にとり、着液する際の種結晶 14 の先端の温度と融液 5 (着液面)の温度との許容温度差 ATcを縦軸にとり、直径 Dと 許容温度差 ATcの間の対応関係を特性 Ll、 L2、 L3にて示している。特性 Ll、 L2、 L3に示すように、種結晶直径 Dと許容温度差 ATcとの間にはほぼ反比例の関係が 成立する。つまり種結晶直径 Dが大きくなるに伴い、着液時に種結晶 14に印加され る熱衝撃応力は大きくなり、それに応じて許容温度差 ATcを小さくする必要がある。  That is, FIG. 3 shows the allowable temperature between the temperature of the tip of the seed crystal 14 and the temperature of the melt 5 (liquid contact surface) at the time of liquid landing, with the diameter D (mm) of the seed crystal 14 taken on the horizontal axis. The difference ATc is plotted on the vertical axis, and the correspondence between the diameter D and the allowable temperature difference ATc is shown by characteristics Ll, L2, and L3. As shown by the characteristics Ll, L2, and L3, a substantially inverse relationship is established between the seed crystal diameter D and the allowable temperature difference ATc. That is, as the seed crystal diameter D increases, the thermal shock stress applied to the seed crystal 14 at the time of liquid contact increases, and the allowable temperature difference ATc needs to be reduced accordingly.
[0045] ここで許容温度差 ATcとは、種結晶 14中に転位が導入されない上限の温度差の ことである。  Here, the allowable temperature difference ATc is an upper limit temperature difference at which dislocations are not introduced into seed crystal 14.
[0046] 特性 Ll、 L2、 L3は、種結晶 14の機械的強度の指標の一つである臨界分解せん断 応力(CRSS; MPa)の大きさの違 、を示して 、る。臨界分解せん断応力(CRSS)と は、この応力を超えると種結晶 14に転位が導入される臨界的な応力のことである。図 中で特性 L1が臨界分解せん断応力(CRSS)が最も小さく (5MPa)、特性 L2が特性 Lはりも臨界分解せん断応力(CRSS)が大きく(lOMPa)、特性 L3が臨界分解せん 断応力(CRSS)が最も大き ヽ( 15MPa)。 The characteristics Ll, L2, and L3 indicate the difference in the magnitude of the critical decomposition shear stress (CRSS; MPa), which is one of the indexes of the mechanical strength of the seed crystal 14. Critical decomposition shear stress (CRSS) is the critical stress beyond which dislocations are introduced into the seed crystal 14. In the figure, the characteristic L1 has the smallest critical decomposition shear stress (CRSS) (5 MPa), and the characteristic L2 is the characteristic. L beams also have a large critical decomposition shear stress (CRSS) (lOMPa), and characteristic L3 has the highest critical decomposition shear stress (CRSS) ヽ (15MPa).
[0047] 臨界分解せん断応力(CRSS)は、種結晶 14に添加される不純物の種類、濃度 C によって変化する。本実施形態では不純物の種類としてボロン Bを想定して 、る。  [0047] The critical decomposition shear stress (CRSS) varies depending on the type and concentration C of impurities added to the seed crystal 14. In the present embodiment, boron B is assumed as the type of impurity.
[0048] 種結晶 14に添加される不純物の濃度 Cが高くなるに応じて臨界分解せん断応力( CRSS)が大きくなる。種結晶 14に添加される不純物の濃度 Cが Cl、 C2、 C3と高くな るに応じて特性が Ll、 L2、 L3と変化する。なお図 3では不純物の濃度 Cが 3種類の 場合を代表して示しているが、不純物の濃度 Cが、より多段階に、また連続的に変化 するに応じて、特性は多段階に、あるいは連続的に変化する。  [0048] As the concentration C of the impurity added to the seed crystal 14 increases, the critical decomposition shear stress (CRSS) increases. As the concentration C of the impurity added to the seed crystal 14 increases to Cl, C2, and C3, the characteristics change to L1, L2, and L3. Note that FIG. 3 shows the case where the impurity concentration C is three types as a representative, but as the impurity concentration C changes in more steps and continuously, the characteristics become multi-step or It changes continuously.
[0049] このため種結晶 14の直径 Dがたとえば同じ値び 3であれば不純物濃度 Cが Cl、 C2、 C3と高くなるに応じて LI、 L2、 L3と変化するので、許容温度差 ATcは大きくな る。また許容温度差 ATcがたとえば同じ値 ATcOであれば種結晶 14の直径 Dが D1 、 D2、 D3と大きくなるに応じて Ll、 L2、 L3と変化するので、不純物濃度 Cを Cl、 C2、 C3と大きくすればよい。  [0049] Therefore, if the diameter D of the seed crystal 14 is, for example, equal to 3, the impurity concentration C changes to LI, L2, and L3 as the impurity concentration C increases to Cl, C2, and C3. growing. If the allowable temperature difference ATc is, for example, the same value ATcO, the diameter D of the seed crystal 14 changes to L1, L2, L3 as the diameter D1, D2, D3 increases, so that the impurity concentration C is changed to Cl, C2, C3. It should just be big.
[0050] 不純物の種類がボロン Bの場合について説明した力 ボロン B以外のゲルマニウム Ge、インジウム In等の各種不純物を種結晶 14に添加する場合にも同様の関係が成 立し得る。  [0050] The force described in the case where the type of impurity is boron B The same relationship can be established when various impurities other than boron B, such as germanium Ge and indium In, are added to the seed crystal 14.
[0051] したがって、種結晶 14に所定の濃度 C添加されており、種結晶 14のサイズ (直径) が所定値 Dになっている場合の許容温度差 ATcを、図 3に示す特性 Ll、 L2、 L3から 、求めることができ、着液時の種結晶 14と融液 5との温度差 ΔΤが、この許容温度差 ATc以下になるように、各ヒータ 9、 19の電力を調整すれば、ネッキング処理を行うこ となく種結晶 14への転位の導入を防ぐことができる。  [0051] Accordingly, the allowable temperature difference ATc when the seed crystal 14 is added with the predetermined concentration C and the size (diameter) of the seed crystal 14 is the predetermined value D is calculated using the characteristics Ll and L2 shown in FIG. By adjusting the power of each of the heaters 9 and 19 so that the temperature difference ΔΤ between the seed crystal 14 and the melt 5 at the time of immersion is equal to or less than the allowable temperature difference ATc, It is possible to prevent dislocations from being introduced into the seed crystal 14 without performing necking.
[0052] 不純物ボロン B力 5el8atoms/cc添カ卩された直径 7mmのシリコン種結晶 14では、 許容温度差 ATcは 100° Cとなり、着液時の種結晶 14と融液 5との温度差 ΔΤが、こ の許容温度差 ATc (100° C)以下になるように、各ヒータ 9、 19の電力を調整できれ ば、ネッキング処理を行うことなぐ安定して無転位化が可能である。  [0052] Impurity boron B force 5el8atoms / cc added silicon seed crystal 14 with a diameter of 7mm, the allowable temperature difference ATc is 100 ° C, and the temperature difference between seed crystal 14 and melt 5 at the time of liquid contact Δ 液However, if the power of each of the heaters 9 and 19 can be adjusted so as to be equal to or smaller than the allowable temperature difference ATc (100 ° C.), dislocation-free operation can be stably performed without performing necking.
[0053] 図 4は、融液 5に印加される磁場力 上記温度差 ΔΤに与える影響を調べた実験結 果を示している。実験では、不純物ボロン B力 5el8atoms/cc添加された直径 7mm のシリコン種結晶 14を用い (許容温度差 ATcは 100° C)、シリコン種結晶 14が融液 5に着液する際のボトムヒータ 19への投入電力(Kw)、メインヒータ 9への投入電力( Kw)を種々変化させたテスト(1)一 (6)を行 、、磁石 20によって磁場強度 3000 ( Gauss)の磁場を融液 5に印加した場合 (テスト (4)一 (6) )と、磁場を印加しな 、場合 ( テスト(1)一(3) )とで、シリコン種結晶 14に転位が導入される力否かを調べた。図 4 では、種結晶 14中に転位が導入され単結晶シリコンが有転位ィ匕したものについては 、 X印を、種結晶 14中に転位が導入されず単結晶シリコンが無転位ィ匕したものにつ いては、〇印を付している。実験では、 300kgの多結晶シリコンをチャージし、直径 3 00mmの単結晶シリコンを引き上げた。また、実験では、ボトムヒータ 19に投入される 電力を各値(0Kw、 10Kw、 35Kw)に固定し、融液 5のうち種結晶 14が着液する着 液面が、目標温度 (たとえば 1340° C)となるように、メインヒータ 9に投入される電力 を、クローズドループの制御系で制御した。 FIG. 4 shows the results of an experiment in which the effect of the magnetic field force applied to the melt 5 on the temperature difference ΔΤ was examined. In the experiment, impurity boron B force 5el8atoms / cc added diameter 7mm (Allowable temperature difference ATc is 100 ° C.), the power input to the bottom heater 19 (Kw) when the silicon seed crystal 14 is immersed in the melt 5, and the power input to the main heater 9 (Kw). Kw) was varied (1)-(6), and a magnetic field of 3000 (Gauss) was applied to the melt 5 by the magnet 20 (test (4)-(6)). In the case where no magnetic field was applied (test (1)-(3)), it was examined whether or not a force for introducing dislocations into the silicon seed crystal 14 was determined. In FIG. 4, the ones in which dislocations are introduced into the seed crystal 14 and single-crystal silicon are dislocated are indicated by X, and those in which no dislocations are introduced into the seed crystal 14 and single-crystal silicon is dislocated. Is marked with a triangle. In the experiment, 300 kg of polycrystalline silicon was charged and single crystal silicon having a diameter of 300 mm was pulled up. In the experiment, the electric power supplied to the bottom heater 19 was fixed to each value (0 Kw, 10 Kw, 35 Kw), and the liquid contact surface of the melt 5 on which the seed crystal 14 was contacted was set to the target temperature (for example, 1340 ° C.). ), The power supplied to the main heater 9 was controlled by a closed loop control system.
[0054] 同図 4に示すように、融液 5に磁場を印加しない場合には (テスト(1)一(3) )、ボトム ヒータ 19への投入電力を 0 (Kw)に、メインヒータ 9への投入電力を 138 (Kw)に調整 したテスト (3)のみが許容温度差 Δ Tc (100° C)以下の温度差 95. 6 (° C)となってお り、無転位ィ匕が確認された力 それ以外のボトムヒータ 9への投入電力を OKwよりも 高い値にした(10Kw、 35Kw)テスト(1)、 (2)については、許容温度差 ATcを越え た温度差(111. 1° C、 103. 2° C)となってしまい、有転位ィ匕されることが確認された As shown in FIG. 4, when no magnetic field is applied to the melt 5 (test (1) -one (3)), the power supplied to the bottom heater 19 is reduced to 0 (Kw), Only the test (3) in which the input power to the power supply was adjusted to 138 (Kw) had a temperature difference of 95.6 (° C) below the allowable temperature difference ΔTc (100 ° C). Confirmed force Other than that, the power input to the bottom heater 9 was set to a higher value than OKw (10Kw, 35Kw). For tests (1) and (2), the temperature difference (111.1) exceeding the allowable temperature difference ATc ° C, 103.2 ° C).
[0055] これに対して、融液 5に磁場を印加した場合には (テスト (4)一(6) )、ボトムヒータ 1 9、メインヒータ 9への投入電力(投入電力比率)如何にかかわらず、許容温度差 ΔΤ c (100° C)以下の温度差が得られ(92、 2° C、 82. 5° C、 78. 5° C)が得られ、全て のテスト水準での無転位ィ匕が確認された。特に、ボトムヒータ 9への投入電力を OKw よりも高い値にした(10Kw、 35Kw)テストでは、磁場を印加しない場合には有転位 化されているのに対して、磁場を印加した場合には無転位ィ匕されるという差異が確認 された。なお、図 2には、図 4で無転位ィ匕が実現されている点(〇印)と、有転位化し て ヽる点( X印)を、プロットして示して 、る。 [0055] On the other hand, when a magnetic field is applied to the melt 5 (test (4) -1 (6)), regardless of the input power (input power ratio) to the bottom heater 19 and the main heater 9 Temperature difference less than the permissible temperature difference ΔΤ c (100 ° C) (92, 2 ° C, 82.5 ° C, 78.5 ° C), and no dislocations at all test levels. A dagger was confirmed. In particular, in the test in which the power supplied to the bottom heater 9 was set to a value higher than OKw (10 Kw, 35 Kw), dislocations were observed when no magnetic field was applied, whereas no dislocation was observed when a magnetic field was applied. The difference of dislocation was confirmed. Note that FIG. 2 is a plot showing a point where the dislocation-free transfer is realized in FIG. 4 (marked with 〇) and a point where the dislocation is formed (marked with X).
[0056] 以上のような、融液 5に磁場を印加することによりヒータ投入電力如何にかかわらず 無転位化が容易に実現される理由は、以下のように説明される。 By applying a magnetic field to the melt 5 as described above, regardless of the heater input power The reason why dislocation-free is easily realized is explained as follows.
[0057] すなわち、融液 5に磁場が印加されることにより、融液 5内の対流が抑制される。こ のため融液 5内で熱伝達が抑制され、融液 5の図 1中の横方向の温度差が大きくなり 、融液 5のうち種結晶 14が着液する部分 (着液面)の温度が低下する。これにより融 液 5の当該着液面の目標温度を維持するためにメインヒータ 9への投入電力が上昇 に転じる。メインヒータ 9への投入電力が上昇すると輻射熱増大により種結晶 14の温 度が上昇し、種結晶 14の温度が融液 5 (種結晶 14よりも温度が高い)の温度に近づ き、温度差 Δ Τが縮小する。このため種結晶 14中の最高分解せん断応力 MRSS (M Pa)、つまり着液に伴う熱応力最大値力 、さくなり、転位が、より導入されに《なる。  That is, by applying a magnetic field to the melt 5, convection in the melt 5 is suppressed. As a result, heat transfer in the melt 5 is suppressed, the temperature difference in the lateral direction of the melt 5 in FIG. 1 increases, and the portion of the melt 5 where the seed crystal 14 lands (the immersion surface) The temperature drops. As a result, the power input to the main heater 9 starts to increase in order to maintain the target temperature of the liquid landing surface of the melt 5. When the power supplied to the main heater 9 increases, the temperature of the seed crystal 14 increases due to the increase in radiant heat, and the temperature of the seed crystal 14 approaches the temperature of the melt 5 (which is higher than the temperature of the seed crystal 14). The difference Δ 縮小 is reduced. For this reason, the maximum decomposition shear stress MRSS (M Pa) in the seed crystal 14, that is, the maximum value of the thermal stress associated with the liquid landing, is reduced, and dislocations are more introduced.
[0058] なお、融液 5に印加される磁場の強度としては 1500 (Gauss)以上であることが望ま しい。これは、磁場強度が 1000から 1500 (Gauss)では、融液 5中で温度変動が激し くなる不安定な部位が出現し、結晶の直径変動が生じるという不具合が生じるおそれ があり、 1000 (Gauss)以下では、対流抑制効果が小さいため、結晶直径の制御性が 劣るからである。  [0058] The strength of the magnetic field applied to the melt 5 is preferably 1500 (Gauss) or more. This is because, when the magnetic field strength is 1000 to 1500 (Gauss), an unstable part where the temperature fluctuation becomes large in the melt 5 appears, and there is a possibility that a problem that the diameter of the crystal fluctuates may occur. Below Gauss), the effect of suppressing the convection is small, and the controllability of the crystal diameter is poor.
[0059] 本実施例では、磁場を種結晶 14が融液 5に着液する前から印加して 、る。  In this embodiment, a magnetic field is applied before the seed crystal 14 lands on the melt 5.
[0060] これは、種結晶 14が融液 5に着液する前から融液 5に磁場を印加することで、単結 晶シリコンの引き上げ開始の時点で融液 5の温度変動を抑制して結晶径が急増した り結晶径が細くなることを回避するものである。 [0060] This is because a magnetic field is applied to the melt 5 before the seed crystal 14 lands on the melt 5, thereby suppressing temperature fluctuation of the melt 5 at the time of starting pulling of the single crystal silicon. It is intended to avoid a sudden increase in crystal diameter or a decrease in crystal diameter.
[0061] 融液 5に磁場を印加し始めてから、対流が抑制され融液 5内の温度変動が抑制さ れるという効果が得られるまでに、タイムラグがある。融液 5に磁場を印加後、概ね 40 分程度で、その効果が得られる。したがって、このタイムラグを加味して、少なくとも融 液着液の時点で、その効果が得られるように、種結晶着液の所定時間前に融液 5に 磁場を印加しておくのが望ましい。 There is a time lag from when the magnetic field is applied to the melt 5 to when the effect of suppressing the convection and suppressing the temperature fluctuation in the melt 5 is obtained. The effect can be obtained approximately 40 minutes after applying a magnetic field to the melt 5. Therefore, considering this time lag, it is desirable to apply a magnetic field to the melt 5 a predetermined time before the seed crystal landing liquid so that the effect can be obtained at least at the time of the melt landing liquid.
[0062] 磁場は、種結晶着液後に引き続き印加し続けられ、少なくとも肩工程に移行するま での間は、印加しておく必要がある。直胴部の形成が終了するまで磁場を印加し続 けておくことが望ましい。 [0062] The magnetic field is continuously applied after the seed crystal liquid is applied, and it is necessary to apply the magnetic field at least until the transition to the shoulder process. It is desirable to continue applying a magnetic field until the formation of the straight body is completed.
(実施例 1)  (Example 1)
この実施例 1では、不純物ボロン B力 5el8atoms/cc添カ卩された直径 7mmのシリ コン種結晶 14を用いた (許容温度差 Δ Tcは 100° C)。 In Example 1, a 7 mm-diameter silicide was added with impurity boron B power of 5el8atoms / cc. Con seed crystal 14 was used (allowable temperature difference ΔTc was 100 ° C.).
[0063] 種結晶 14が融液 5に着液する 40分以上前から、磁石 20によって融液 5への磁場 の印加を開始し、以後、シリコン単結晶の成長が終了するまで (シリコン単結晶の直 胴部の形成が終了するまで)、磁場強度 3000 (Gauss)の磁場 (横磁場)を印加し続 けた。つまり種結晶 14が着液する前に印加する磁場の強さは、単結晶成長時に印加 する磁場の強さと同じである。  [0063] At least 40 minutes before the seed crystal 14 lands on the melt 5, the application of a magnetic field to the melt 5 is started by the magnet 20 until the growth of the silicon single crystal is completed. The magnetic field (transverse magnetic field) with a magnetic field strength of 3000 (Gauss) was continued to be applied until the formation of the straight body portion was completed. That is, the strength of the magnetic field applied before the seed crystal 14 lands is the same as the strength of the magnetic field applied during single crystal growth.
[0064] 、種結晶 14が融液 5に着液する際には、ボトムヒータ 19に投入される電力を 35Kw に固定し 7こ。  When the seed crystal 14 lands on the melt 5, the power supplied to the bottom heater 19 is fixed at 35 Kw.
[0065] そして、融液 5のうち種結晶 14が着液する着液面力 目標温度 (たとえば 1340° C) となるように、メインヒータ 9に投入される電力を、クローズドループの制御系で制御し た。このためボトムヒータ 19への投入電力(Kw)、メインヒータ 9への投入電力(Kw) はそれぞれ、図 4に示すテスト(4)と同様に、 35 (Kw)、 112 (Kw)になり、着液時の 種結晶 14と融液 5との温度差 Δ Tが、この許容温度差 Δ Tc ( 100° C)以下の値(92. 2° C)になり、種結晶 14中への転位の導入が抑制された。  [0065] Then, the electric power supplied to the main heater 9 is adjusted by a closed loop control system so that the surface temperature at which the seed crystal 14 of the melt 5 lands is at the target temperature (for example, 1340 ° C). Controlled. Therefore, the input power (Kw) to the bottom heater 19 and the input power (Kw) to the main heater 9 become 35 (Kw) and 112 (Kw), respectively, as in the test (4) shown in FIG. The temperature difference ΔT between the seed crystal 14 and the melt 5 at the time of the liquid becomes a value (92.2 ° C) or less of the allowable temperature difference ΔTc (100 ° C), and the dislocation into the seed crystal 14 The introduction was suppressed.
[0066] 種結晶 14が融液 5に着液した後は、ネッキング処理を行うことなぐ単結晶シリコン を引き上げた。種結晶着液後、単結晶シリコンの引き上げ中も引き続き、ボトムヒータ 19への投入電力(Kw)を、着液時と同じ電力 35 (Kw)に維持したまま融液 5の温度 が目標温度となるように、メインヒータ 9に投入される電力を制御した。  [0066] After the seed crystal 14 was immersed in the melt 5, single-crystal silicon was pulled up without performing necking. After the seed crystal is immersed, the temperature of the melt 5 reaches the target temperature while the power (Kw) applied to the bottom heater 19 is maintained at the same power 35 (Kw) as when the single crystal silicon is immersed while pulling the single crystal silicon. Thus, the power supplied to the main heater 9 was controlled.
[0067] この結果、ネッキング処理を行うことなく無転位で単結晶シリコンを育成することがで きた。  As a result, single crystal silicon could be grown without dislocations without performing necking.
[0068] 本実施例により、ダッシュネックは不要となるため、種結晶 14を融液 5に着液した後 は、直ぐに直径を次第に拡大させながら結晶を引き上げる、いわゆる肩工程に移行 してもよいし、図 9に示すように、着液後に概ね一定直径で結晶成長部 22 (例えば長 さ約 50mm)の引上げを実施し、融液温度が適正であることを確認した後に肩工程に 移行してもよい。結晶成長部 22の直径 (最小結晶径)は、 4mm以上であることが望ま しい。  [0068] According to the present embodiment, since a dash neck is not required, after the seed crystal 14 is immersed in the melt 5, the process may be immediately shifted to a so-called shoulder process in which the crystal is pulled up while gradually increasing its diameter. Then, as shown in Fig. 9, the crystal growth part 22 (e.g., about 50 mm in length) was pulled up with a substantially constant diameter after liquid contact, and after confirming that the melt temperature was appropriate, the process shifted to the shoulder process. You may. It is desirable that the diameter (minimum crystal diameter) of the crystal growth part 22 be 4 mm or more.
[0069] 特に本実施例によれば、種結晶 14が融液 5に着液された時点で、融液 5内の温度 変動が抑制されているため、種結晶着液後、肩工程に移行するまでの間で結晶径が 急増してしまうことによる転位導入が回避された。また、結晶径が温度変動によって 結晶径が引き上げ結晶を支えられる (耐荷重)径以下に細くなることが回避された。 [0069] In particular, according to the present embodiment, when the seed crystal 14 is immersed in the melt 5, the temperature fluctuation in the melt 5 is suppressed, so that after the seed crystal immersion, the process proceeds to the shoulder process. Until the crystal diameter The introduction of dislocations due to the sudden increase was avoided. Further, it was avoided that the crystal diameter was raised to a value smaller than the (load-bearing) diameter capable of supporting the crystal by raising the crystal diameter due to temperature fluctuation.
[0070] 図 7は、シリコン単結晶の径と耐荷重との関係を示したグラフである。シリコン単結晶 の径 (肩工程に移行するまでの間で最も細くなつている径)に応じて、耐荷重が定ま る。本実施例によれば、シリコン単結晶の径カ 種結晶 14の径以下に細くなることが なぐ種結晶 14の径のまま維持されるため、引き上げようとするシリコン単結晶の重量 (口径)に応じて種結晶 14の径を設定すれば、破断することなく確実に、大口径、大 重量のシリコン単結晶を引き上げることができる。  FIG. 7 is a graph showing the relationship between the diameter of a silicon single crystal and the withstand load. The load capacity is determined according to the diameter of the silicon single crystal (the diameter that becomes the narrowest before the transition to the shoulder process). According to the present embodiment, the diameter of the silicon single crystal is maintained at the diameter of the seed crystal 14 which does not become thinner than the diameter of the seed crystal 14, so that the weight (diameter) of the silicon single crystal to be pulled is reduced. If the diameter of the seed crystal 14 is set accordingly, a large-diameter and heavy silicon single crystal can be reliably pulled without breaking.
[0071] また、本実施例によれば、種結晶着液の際とその後でボトムヒータ 19への投入電力 を不変のままで、引き上げられる単結晶シリコンの無転位ィ匕が実現されるため、ヒータ の調整作業が簡易なものとなり、オペレータにかかる負担が軽減される。また、本実 施例によれば、種結晶着液の際とその後でボトムヒータ 19への投入電力がー定レべ ル以上の高い値(35Kw)に維持されたままで、引き上げられる単結晶シリコンの無 転位ィ匕が実現されるため、種結晶着液後にボトムヒータ 19に投入される電力を上昇 させることで引き上げられる単結晶シリコンの直径が大きく変化することを回避するこ とがでさる。  Further, according to the present embodiment, non-dislocation of single crystal silicon that can be pulled up can be realized while the power applied to the bottom heater 19 is unchanged during and after the seed crystal liquid landing, and the heater Adjustment work is simplified, and the burden on the operator is reduced. In addition, according to the present embodiment, the power applied to the bottom heater 19 is maintained at a high value (35 Kw) which is equal to or higher than a certain level at the time of the seed crystal landing liquid and thereafter, while the single crystal silicon is pulled up. Since the dislocation-free dislocation is realized, it is possible to avoid a large change in the diameter of the single crystal silicon to be pulled up by increasing the power supplied to the bottom heater 19 after the seed crystal liquid is deposited.
[0072] なお、種結晶 14が融液 5に着液する際には、上述した昇降装置によって熱遮蔽板 8を上昇させて、種結晶 5に、より多くの輻射熱が加わるようにして、温度差 Δ Τを、よ り縮小させてもよい。  When the seed crystal 14 lands on the melt 5, the heat shield plate 8 is raised by the above-described elevating device so that more radiant heat is applied to the seed crystal 5, The difference ΔΤ may be further reduced.
[0073] また、種結晶 14に添加される不純物の濃度と、融液 5中の不純物の濃度との差を 一定レベル以下にすることで、熱ショックによる転位のみならず、種結晶 14と融液 5と の接合面での格子不整合による転位 (ミスフィット転位)の導入を回避するようにする ことが望ましい。  [0073] Further, by keeping the difference between the concentration of the impurity added to seed crystal 14 and the concentration of the impurity in melt 5 at a certain level or less, not only dislocation due to heat shock but also the melting of seed crystal 14 is suppressed. It is desirable to avoid the introduction of dislocations (misfit dislocations) due to lattice mismatch at the joint surface with liquid 5.
[0074] 融液 5側に添加する不純物種、不純物濃度は客先である半導体デバイスメーカが 指定するスペックで決まる。具体的には、不純物 Bであれば、 5el4-2el9atoms/cc の範囲内の所定濃度、不純物 Pであれば、 lel4— 8el8atoms/ccの範囲内の所定 濃度、不純物 Sbであれば、 2el7— lel9atoms/ccの範囲内の所定濃度、不純物 As であれば、 5el8— le20atoms/ccの範囲内内の所定濃度である。 [0075] 格子不整合による転位を抑制するには、種結晶 14と単結晶シリコンとの接合部に おける格子不整合率が 0. 01%以下となるよう、融液 5側の不純物種、不純物濃度に 応じて、予め不純物種、添加濃度を調整した種結晶 14を使用することが望ましい。 [0074] The type and concentration of impurities to be added to the melt 5 side are determined by specifications specified by the semiconductor device maker as the customer. Specifically, for impurity B, a predetermined concentration within the range of 5el4-2el9atoms / cc, for impurity P, a predetermined concentration of lel4-8el8atoms / cc, and for impurity Sb, 2el7-el9atoms. If it is a predetermined concentration within the range of / cc and impurity As, it is a predetermined concentration within the range of 5el8-le20atoms / cc. [0075] In order to suppress dislocation due to lattice mismatch, the impurity species and impurities on the melt 5 side should be adjusted so that the lattice mismatch rate at the junction between the seed crystal 14 and the single crystal silicon is 0.01% or less. It is desirable to use a seed crystal 14 in which the impurity seed and the addition concentration are adjusted in advance according to the concentration.
[0076] なお、本実施例では、種結晶 14が着液する前に印加する磁場の強さを、単結晶成 長時に印加する磁場の強さと同じとしている力 種結晶 14が着液する前に印加する 磁場の強さを、単結晶成長時に印加する磁場の強さよりも大きくしてもよい。  In the present embodiment, the strength of the magnetic field applied before the seed crystal 14 lands is the same as the strength of the magnetic field applied during the growth of the single crystal. The intensity of the magnetic field applied to the substrate may be greater than the intensity of the magnetic field applied during single crystal growth.
[0077] また、本実施例 1では、直径 7mmのシリコン種結晶 14を用いた場合を想定して説 明したが、直径 4mm以上のシリコン種結晶であれば、同様にして、ネッキング処理を 行うことなく無転位で単結晶シリコンを育成することができる。重量 200kgを越す直径 300mmの単結晶シリコンを引き上げるには、シリコン種結晶 14の直径は、 5mm以 上が望ましい。  Further, in the first embodiment, the description has been made on the assumption that the silicon seed crystal 14 having a diameter of 7 mm is used. However, if the silicon seed crystal has a diameter of 4 mm or more, the necking process is similarly performed. Single crystal silicon can be grown without dislocations without dislocation. In order to pull a single crystal silicon having a diameter of 300 mm exceeding a weight of 200 kg, the diameter of the silicon seed crystal 14 is desirably 5 mm or more.
[0078] (実施例 2)  (Example 2)
また図 1の単結晶引上げ装置 1に代えて図 5に示す単結晶引上げ装置 1を使用し てもよい。  Further, single crystal pulling apparatus 1 shown in FIG. 5 may be used instead of single crystal pulling apparatus 1 in FIG.
[0079] 図 5に示す装置では、ボトムヒータ 19の配設が省略され、メインヒータ 9が石英るつ ぼ 3の上下方向に沿って、上下 2段のヒータ 9a、 9bに分割されている。ヒータ 9a、 9b は、石英るつぼ 3に対する加熱量、つまり出力を独立して調整することができる。実施 形態装置では、ヒータ 9を 2段に分割している力 3以上に分割してもよい。  In the apparatus shown in FIG. 5, the arrangement of the bottom heater 19 is omitted, and the main heater 9 is divided into two upper and lower heaters 9 a and 9 b along the vertical direction of the quartz crucible 3. The heaters 9a and 9b can independently adjust the heating amount of the quartz crucible 3, that is, the output. In the embodiment device, the heater 9 may be divided into three or more forces that are divided into two stages.
[0080] このような構成のマルチヒータであっても実施例 1と同様に、種結晶 14が融液 5に 着液する前から融液 5に磁場を印加すれば、実施例 1と同様に、ネッキング処理を行 うことなく無転位で、破断することなく確実に、大口径、大重量の単結晶シリコンを引 さ上げることがでさる。  [0080] Even in the multi-heater having such a configuration, similarly to the first embodiment, if a magnetic field is applied to the melt 5 before the seed crystal 14 lands on the melt 5, the same as in the first embodiment. In addition, large-diameter and heavy single-crystal silicon can be reliably pulled up without dislocation and without breaking without necking.
[0081] (実施例 3)  (Example 3)
上述した実施例では、単結晶引き上げ装置 1にマルチヒータが備えられた場合を想 定して説明した。しかし、単結晶引き上げ装置 1にシングルヒータが備えられている場 合、つまり図 1において、ボトムヒータ 19の配設が省略されたメインヒータ 9のみのシン ダルヒータの構成とした場合においても、種結晶 14が融液 5に着液する前力も磁場 を融液 5に印加することで、同様にして、ネッキング処理を行うことなく無転位で、破断 することなく確実に、大口径、大重量の単結晶シリコンを引き上げることができる。 In the above-described embodiment, the description has been made on the assumption that the single crystal pulling apparatus 1 is provided with a multi-heater. However, when the single crystal pulling apparatus 1 is provided with a single heater, that is, in the case of FIG. Similarly, before applying liquid to melt 5, the magnetic field is applied to melt 5, and in the same way, it breaks without dislocation without necking treatment. The single crystal silicon having a large diameter and a large weight can be surely pulled up without performing.
[0082] 上述した実施例では、不純物の種類がボロン Bの場合について説明した力 ボロン B以外のガリウム Ga、インジウム In等の各種不純物を種結晶 14に添加する場合にも 、同様にして、熱ショックによる種結晶中への転位導入が抑制され、単結晶シリコンを 無転位で育成することができる。  [0082] In the above-described embodiment, even when various impurities such as gallium Ga and indium In other than boron B are added to the seed crystal 14, the same applies to the case where the kind of impurity is boron B. The introduction of dislocations into the seed crystal due to shock is suppressed, and single crystal silicon can be grown without dislocations.
[0083] 図 6は、各種元素を種結晶 14に添カ卩した場合に、熱ショックによる種結晶中への転 位導入が抑制される濃度範囲を示している。すなわち、不純物 Bであれば、 lel8 atoms/cc以上添加すればよい。これは、引上げ後に、種結晶 14と着液後に新たに形 成した結晶との界面部分を X線で評価したところ、種結晶 14に不純物ボロン Bを lei 8atoms/cc以上添カ卩した場合には、転位の導入がみられな力 た力もである。また、 不純物 Gaであれば、 5el9atoms/cc以上添カ卩すればよぐ不純物 Inであれば、 lel6 atoms/cc以上添加すればよぐ不純物 Pであれば、 lel9atoms/cc以上添加すれば よぐ不純物 Asであれば、 5el9atoms/cc以上添カ卩すればよぐ不純物 Sbであれば、 lel9atoms/cc以上添カ卩すればよぐ不純物 Geであれば、 5el9atoms/cc以上添カロ すればよぐ不純物 Nであれば、 5el3atoms/cc以上添カ卩すればよぐ不純物 Cであ れば、 8el6atoms/cc以上添カ卩すればよい。  FIG. 6 shows a concentration range in which when various elements are added to the seed crystal 14, introduction of dislocations into the seed crystal due to heat shock is suppressed. That is, in the case of impurity B, lel8 atoms / cc or more may be added. This was evaluated by X-ray evaluation of the interface between the seed crystal 14 after pulling and the newly formed crystal after contact with liquid, and found that when boron B was added to the seed crystal 14 by lei 8 atoms / cc or more. Is the force that did not show the introduction of dislocations. In addition, if it is impurity Ga, it can be added by adding 5el9atoms / cc or more.If it is In, it can be added by adding lel6 atoms / cc or more.If it is impurity P, it can be added by lel9atoms / cc or more. If the impurity is As, it should be added with 5el9atoms / cc or more.If the impurity is Sb, it should be added with lel9atoms / cc or more.If it is Ge, the impurity should be 5el9atoms / cc or more. If it is impurity N, it should be added at 5el3atoms / cc or more. If it is impurity C, it should be added at 8el6atoms / cc or more.
[0084] また、上述した説明では、種結晶 14に不純物を高濃度に添加することと、融液 5に 磁場を印加することとを組み合わせて、ネッキング処理を行うことなぐ無転位の状態 で、大径、大重量の単結晶シリコンインゴットを引き上げるようにしている力 種結晶 1 4に不純物を高濃度に添加することで、熱ショックによる転位を防止することができる ため、融液 5に磁場を印加することなく種結晶 14に不純物を高濃度に添加するのみ の実施も可能である。  In the above description, the addition of a high concentration of impurities to the seed crystal 14 and the application of a magnetic field to the melt 5 are performed in a dislocation-free state without performing necking treatment. A large-diameter, heavy-weight single crystal silicon ingot is pulled up.By adding a high concentration of impurities to the seed crystal 14, dislocation due to heat shock can be prevented. It is also possible to implement only adding impurities to seed crystal 14 at a high concentration without applying voltage.
[0085] なお、上述した説明では、種結晶 14のサイズとして、直径 Dを例にとり許容温度差  [0085] In the above description, the allowable temperature difference is taken as an example of the diameter D as the size of the seed crystal 14.
Δ Tcを求める場合について説明した力 それ以外の種結晶 14の先端面の面積等を 種結晶 14のサイズとして、許容温度差 Δ Tcを求めるようにしてもよ 、。  The force described in the case of obtaining ΔTc The other allowable temperature difference ΔTc may be obtained using the area of the tip surface of the seed crystal 14 and the like as the size of the seed crystal 14.

Claims

請求の範囲 The scope of the claims
[1] るつぼ内の融液に、不純物が添加された種結晶を着液させ、前記種結晶を引き上げ ることにより単結晶半導体を製造する単結晶半導体の製造方法において、  [1] A method for manufacturing a single crystal semiconductor, in which a seed crystal to which an impurity is added is immersed in a melt in a crucible and a single crystal semiconductor is manufactured by pulling up the seed crystal,
融液に磁場を印加する工程と、  Applying a magnetic field to the melt;
種結晶を融液に着液させる工程と、  A step of immersing the seed crystal in the melt;
種結晶が融液に着液した後に、ネッキング処理を行うことなく単結晶半導体を引き 上げる工程と  A step of pulling up the single crystal semiconductor without performing necking after the seed crystal is immersed in the melt;
を含む単結晶半導体の製造方法。  A method for producing a single crystal semiconductor, comprising:
[2] 種結晶を融液に着液させる前に、融液に磁場を印加すること  [2] Before applying the seed crystal to the melt, apply a magnetic field to the melt.
を特徴とする請求項 1記載の単結晶半導体の製造方法。  2. The method for producing a single crystal semiconductor according to claim 1, wherein:
[3] 磁場の強度は、 1500ガウス以上であること [3] The strength of the magnetic field must be greater than 1500 Gauss
を特徴とする請求項 1単結晶半導体の製造方法。  The method for producing a single crystal semiconductor according to claim 1.
[4] 不純物としてボロン B力 lel8atoms/cc以上の濃度で種結晶に添加されること を特徴とする請求項 1単結晶半導体の製造方法。 [4] The method for producing a single crystal semiconductor according to [1], wherein the impurity is added to the seed crystal at a concentration of boron B force of lel8 atoms / cc or more.
[5] 種結晶が融液に着液した後の最小結晶径は、 4mm以上であること [5] The minimum crystal diameter after the seed crystal has immersed in the melt must be 4 mm or more.
を特徴とする請求項 1記載の単結晶半導体の製造方法。  2. The method for producing a single crystal semiconductor according to claim 1, wherein:
PCT/JP2005/001939 2004-02-09 2005-02-09 Single crystal semiconductor manufacturing method WO2005075715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-032666 2004-02-09
JP2004032666A JP2007223814A (en) 2004-02-09 2004-02-09 Single crystal semiconductor manufacturing method

Publications (1)

Publication Number Publication Date
WO2005075715A1 true WO2005075715A1 (en) 2005-08-18

Family

ID=34836101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001939 WO2005075715A1 (en) 2004-02-09 2005-02-09 Single crystal semiconductor manufacturing method

Country Status (3)

Country Link
JP (1) JP2007223814A (en)
TW (1) TWI263710B (en)
WO (1) WO2005075715A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884683A (en) * 2012-12-27 2015-09-02 丰田自动车株式会社 Method for producing SiC single crystal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239265B2 (en) * 2007-09-07 2013-07-17 株式会社Sumco Seed crystal for pulling silicon single crystal and method for producing silicon single crystal using the seed crystal
JP2010275137A (en) * 2009-05-27 2010-12-09 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal
KR101422711B1 (en) 2009-06-18 2014-07-23 가부시키가이샤 사무코 Silicon monocrystal and production method for same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249492A (en) * 1996-03-13 1997-09-22 Sumitomo Sitix Corp Seed crystal for pulling up single crystal and pulling-up of single crystal using the same
WO2001063026A1 (en) * 2000-02-25 2001-08-30 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249492A (en) * 1996-03-13 1997-09-22 Sumitomo Sitix Corp Seed crystal for pulling up single crystal and pulling-up of single crystal using the same
WO2001063026A1 (en) * 2000-02-25 2001-08-30 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884683A (en) * 2012-12-27 2015-09-02 丰田自动车株式会社 Method for producing SiC single crystal
CN104884683B (en) * 2012-12-27 2017-05-03 丰田自动车株式会社 Method for producing SiC single crystal

Also Published As

Publication number Publication date
TWI263710B (en) 2006-10-11
TW200526821A (en) 2005-08-16
JP2007223814A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP3969766B2 (en) Method for removing dislocations at the neck of a silicon single crystal
JP4791073B2 (en) Silicon wafer manufacturing method
US6899760B2 (en) Silicon single crystal growing furnace supplemented with low melting point dopant feeding instrument and the low melting point dopant feeding method thereof
JP4780705B2 (en) Single crystal semiconductor manufacturing apparatus and manufacturing method
CN106715765B (en) Method for producing single crystal and method for producing silicon wafer
US8840721B2 (en) Method of manufacturing silicon single crystal
US7374614B2 (en) Method for manufacturing single crystal semiconductor
KR100899767B1 (en) Single crystal semiconductor manufacturing apparatus and method, and single crystal ingot
EP1115918B1 (en) Enhanced n-type silicon material for epitaxial wafer substrate and method of making same
US7235128B2 (en) Process for producing single-crystal semiconductor and apparatus for producing single-crystal semiconductor
US20030047130A1 (en) Process for eliminating neck dislocations during czochralski crystal growth
US7767020B2 (en) Method for manufacturing single crystal semiconductor
WO2005075715A1 (en) Single crystal semiconductor manufacturing method
JP6897764B2 (en) A method for manufacturing a silicon single crystal and a method for manufacturing an epitaxial silicon wafer.
WO2007013148A1 (en) Silicon single crystal pulling apparatus and method thereof
JPH11189488A (en) Pulling of single crystal and apparatus therefor
EP1614774A1 (en) Process for producing single crystal
JP2010248013A (en) Production method of silicon single crystal
JPH09278581A (en) Apparatus for producing single crystal and production of single crystal
JP7424282B2 (en) Method for manufacturing single crystal silicon ingot
CN113005509A (en) Method for manufacturing silicon single crystal ingot
JP4273820B2 (en) Single crystal pulling method
CN113272479A (en) Controlling dopant concentration in silicon melt to enhance ingot quality

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP