JP2525300B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal

Info

Publication number
JP2525300B2
JP2525300B2 JP3230934A JP23093491A JP2525300B2 JP 2525300 B2 JP2525300 B2 JP 2525300B2 JP 3230934 A JP3230934 A JP 3230934A JP 23093491 A JP23093491 A JP 23093491A JP 2525300 B2 JP2525300 B2 JP 2525300B2
Authority
JP
Japan
Prior art keywords
seed
single crystal
silicon single
diameter
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3230934A
Other languages
Japanese (ja)
Other versions
JPH0543379A (en
Inventor
清隆 高野
栄一 飯野
泉 布施川
浩利 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP3230934A priority Critical patent/JP2525300B2/en
Publication of JPH0543379A publication Critical patent/JPH0543379A/en
Application granted granted Critical
Publication of JP2525300B2 publication Critical patent/JP2525300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチョクラルスキー法にお
けるシリコン単結晶の製造方法に関する。さらに詳しく
は、種結晶からシリコン単結晶棒の肩部の間の種絞り部
分の成長方法を改善して、大重量のシリコン単結晶を容
易に引上げることを可能にしたチョクラルスキー法によ
るシリコン単結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon single crystal in the Czochralski method. More specifically, silicon by the Czochralski method has been improved by improving the growth method of the seed drawn portion between the seed crystal and the shoulder portion of the silicon single crystal rod, and enabling the pulling of a large-weight silicon single crystal easily. The present invention relates to a method for producing a single crystal.

【0002】[0002]

【従来の技術】チョクラルスキー法によるシリコン単結
晶の製造方法は、種結晶をシリコン溶融液に接触させ、
次いで特定直径の種絞りを行って種絞り部分を引上げ、
種絞り部分の単結晶を無転位化し、その後目的とするシ
リコン棒の直径まで結晶を太らせ、無転位のシリコン単
結晶棒の引上げを行なうという方法である。
2. Description of the Related Art A method for producing a silicon single crystal by the Czochralski method is to bring a seed crystal into contact with a silicon melt,
Next, perform seed drawing of a specific diameter and pull up the seed drawing part,
This is a method in which the single crystal in the seed drawn portion is made dislocation-free, and then the crystal is thickened to the intended diameter of the silicon rod, and the dislocation-free silicon single crystal rod is pulled up.

【0003】一般に、結晶の転位は成長界面に対して垂
直方向に成長する傾向があるため、成長界面の形状が下
に凸の場合に転位が抜けやすいと言われている(F.SHIM
URA, Semiconductor Silicon Crystal Technology, Aca
demic Press Inc.P.140)。したがって、最初に無転位の
種絞り部分を引上げるためには、界面形状を下に凸にす
る必要性から、種絞り部分の成長速度すなわち引上げ速
度を遅くしなければならなかった。
Generally, since crystal dislocations tend to grow in a direction perpendicular to the growth interface, it is said that dislocations are likely to escape when the growth interface is convex downward (F.SHIM).
URA, Semiconductor Silicon Crystal Technology, Aca
demic Press Inc. P.140). Therefore, in order to first pull up the dislocation-free seed drawn portion, it is necessary to slow down the growth rate of the seed drawn portion, that is, the pulling speed, because the interface shape needs to be convex downward.

【0004】また、例えば結晶方位が(100)の場合
には、種絞り部分の直径は出来るだけ細く、又、成長速
度を遅くすることが無転位化しやすい条件であると言わ
れている(W.Zulehner and D.Huber, Czochralski-Grow
n Silicon. Crystals 8:Silicon Chemical Etcing P.
7 Springer-Verlag,Berlin and New York,1981)。した
がって、種絞り部分の直径は出来るだけ細く、又、この
部分の成長引上げ速度を遅くしなければならなかった。
Further, when the crystal orientation is (100), for example, it is said that the diameter of the seed-thinned portion is as thin as possible, and that the slowing down of the growth rate is a condition for making dislocation-free (W). .Zulehner and D.Huber, Czochralski-Grow
n Silicon. Crystals 8: Silicon Chemical Etcing P.
7 Springer-Verlag, Berlin and New York, 1981). Therefore, it was necessary to make the diameter of the seed-thinned portion as small as possible and slow the growth pulling rate of this portion.

【0005】このような従来の知見から、従来の方法に
おいては、種絞り部分をいかに細くし、また遅く引上げ
るかの点が注目され、Dashネック法と呼ばれる従来
の方法では、種結晶をシリコン融液に接触させた際の熱
ショックにより導入された転位を充分に細くした種絞り
部分から結晶外に抜けさせて無転位の結晶を成長させる
ため、通常、直径3mm以下の種絞り部分による単結晶
シリコンの引上げを行っていた。
From such conventional knowledge, it has been noted that the conventional method is such that the seed drawing portion is thinned and pulled up slowly. In the conventional method called the Dash neck method, the seed crystal is made into silicon. In order to grow dislocation-free crystals by allowing dislocations introduced by heat shock when brought into contact with the melt to escape to the outside of the crystal from the sufficiently narrowed seed-throttled portion, it is usually necessary to use a seed-throttled portion with a diameter of 3 mm or less. The crystalline silicon was being pulled up.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
方法において行われている細い種絞り直径は、大重量の
シリコン単結晶を引上げる際には、その強度が必ずしも
充分でないという問題点があった。
However, the diameter of the thin seed diaphragm used in the conventional method is not sufficient for pulling a large weight silicon single crystal. .

【0007】近年、産業界ではシリコン単結晶の大口径
化が要請されているが、従来のDashネック法による
細い種絞り部分は、せいぜい直径150mm(6イン
チ)、全長100cmまでのシリコン単結晶の引上げに
しか強度的に対応できない。例えば、直径200mm
(8インチ)などの大口径のシリコン単結晶の引上げに
おいては、その大重量化に加えて、シリコン単結晶棒の
結晶成長速度が遅く、種絞り部分が高温、高応力の状態
に長時間保たれるため、種絞り部分に転位が発生しかつ
この部分でますます結晶が切断される可能性が大きくな
り、引上げ過程におけるシリコン単結晶落下という重大
な事故につながる危険性がある。
In recent years, there has been a demand in the industry for a larger diameter silicon single crystal, but the thin seed-thinned portion by the conventional Dash neck method is a silicon single crystal with a diameter of at most 150 mm (6 inches) and a total length of 100 cm. Only pulling up can deal with strength. For example, 200mm diameter
When pulling a silicon single crystal with a large diameter (8 inches) or the like, in addition to increasing the weight, the crystal growth rate of the silicon single crystal rod is slow, and the seed drawing part is kept at high temperature and high stress for a long time. Because of the sagging, dislocations are generated in the seed drawing portion and the crystal is more likely to be cut in this portion, which may lead to a serious accident such as dropping of a silicon single crystal in the pulling process.

【0008】したがって、従来の方法では、重量が増大
した特定の全長の大口径のシリコン単結晶を、種結晶か
ら延びた種絞り部分だけで保持しながら引上げることは
困難であり、落下の危険性が増大し、また、これを防止
するためには、シリコン単結晶を保持するための特別の
結晶支持装置を新たに設けたり、また、シリコン単結晶
を特殊な形状で引上げるなどの必要性があった。本発明
は、チョクラルスキー法により製造されるシリコン単結
晶が、大口径化かつ大重量化になる産業界の傾向に伴
い、単結晶引上げの際の結晶落下の危険性が増大してい
るという現状を前提にして、このような結晶落下による
重大事故を防止するという産業界の要請に応えることを
その目的とするものである。
Therefore, according to the conventional method, it is difficult to pull up a large-diameter silicon single crystal having a large overall length and a specific length while only holding the seed drawn portion extending from the seed crystal, and there is a risk of falling. In order to prevent this, it is necessary to newly install a special crystal support device for holding the silicon single crystal, and to pull up the silicon single crystal with a special shape. was there. According to the present invention, a silicon single crystal produced by the Czochralski method has an increasing risk of a crystal falling at the time of pulling a single crystal along with the tendency of the industry to have a large diameter and a large weight. Based on the current situation, its purpose is to meet the demand of industry to prevent such a serious accident due to crystal falling.

【0009】[0009]

【課題を解決するための手段】本発明は、上記問題点を
解決するために鋭意研究された結果生み出されたもので
あり、従来法の常識とは全くことなる発想に基づき、種
絞り部分の直径を4.5mm以上にするとともに、種絞
り時の引上げ速度を4mm/min以上にしてシリコン
単結晶を引上げて製造することによって、上記の問題点
を全て解決することに成功したチョクラルスキー法によ
る転位の低いまたは実質的に無転位のシリコン単結晶の
製造方法を提供するものである。
The present invention was created as a result of intensive studies to solve the above problems, and based on an idea completely different from the common sense of the conventional method, with a diameter above 4.5 mm, Taneshibo
The Czochralski method has succeeded in solving all of the above problems by producing a silicon single crystal by increasing the pulling rate at 4 mm / min or more to produce a low dislocation or substantially no dislocation. A method for producing a silicon single crystal is provided.

【0010】すなわち、本発明は、チョクラルスキー法
によるシリコン単結晶の引上げにおいて、シリコン単結
晶成長の際の種絞り部分の直径が4.5mm以上10m
m以下の範囲になるように種絞りを行うとともに種絞り
時の引上げ速度を4mm/min以上とすることを特徴
とするチョクラルスキー法によるシリコン単結晶の製造
方法である。
That is, according to the present invention, in pulling a silicon single crystal by the Czochralski method, the diameter of the seed narrowing portion during the growth of the silicon single crystal is 4.5 mm or more and 10 m.
iris seed performs species aperture so that the range of m
The pulling speed at that time is 4 mm / min or more, which is a method for producing a silicon single crystal by the Czochralski method.

【0011】また、チョクラルスキー法によるシリコン
単結晶の引上げにおいて、シリコン単結晶成長の際の種
絞り部分の直径が、4.5mm以上10mm以下の範囲
にあって、該種絞りを行なう際の種絞り部分を4mm/
minから6mm/minの範囲で引上げることを特徴
とするシリコン単結晶の製造方法である。
In the pulling of a silicon single crystal by the Czochralski method, the diameter of the seed drawing portion during the growth of the silicon single crystal is in the range of 4.5 mm or more and 10 mm or less and the seed drawing is performed. 4 mm for seed aperture
It is a method for producing a silicon single crystal, which is characterized by pulling in the range of from min to 6 mm / min.

【0012】[0012]

【実施例】以下、本発明を添付図面を参照しながら詳細
に説明する。図1において、本発明の種絞り部分2と
は、種結晶1とシリコン単結晶棒3の肩部の間に位置す
るくびれた部分を言い、本発明に規定する直径5を、
4.5mm以上10mm以下の範囲に絞り込むために、
種結晶の引上げを開始する。そして、本発明に規定する
所定の直径に絞り込んだ後、該直径を保持しつつ、種絞
り部分を特定の引き上げ速度で成長させ種絞りを行なっ
た後、所望の口径を有するシリコン単結晶棒3を所望の
全長に成長させて引上げる。
The present invention will be described in detail below with reference to the accompanying drawings. In FIG. 1, the seed drawing portion 2 of the present invention refers to a constricted portion located between the seed crystal 1 and the shoulder portion of the silicon single crystal ingot 3, and has a diameter 5 defined in the present invention,
To narrow down the range from 4.5 mm to 10 mm,
Start pulling the seed crystal. Then, after narrowing down to a predetermined diameter prescribed in the present invention, while maintaining the diameter, the seed narrowing portion is grown at a specific pulling rate to perform seed narrowing, and then a silicon single crystal ingot 3 having a desired diameter is obtained. Are grown to the desired full length and pulled up.

【0013】本発明に規定する種絞り部分の直径を得る
ためには、種結晶を溶融シリコンから徐々に引上げて本
発明に規定する所定の直径値までの絞り込みを行うが、
通常、所定の直径値までの引上げ速度は2mm/min
以下の低速で行ない、かつ、その後はスムーズに4mm
/min程度の高速に移行できる温度条件例えば単結晶
棒引上げの温度1420℃よりも約10℃高い固液界面
の温度条件で絞りを行ない、所定の直径値に達するまで
絞り込みを行なう。種絞り部分の直径値は、通常、スケ
ールを使用した目視で行なうか、さらに精度を必要とす
る時はCCDカメラによって測定する。
In order to obtain the diameter of the seed drawing portion specified in the present invention, the seed crystal is gradually pulled up from the molten silicon and narrowed down to a predetermined diameter value specified in the present invention.
Normally, the pulling speed up to the specified diameter value is 2 mm / min.
Perform at the following low speed, and then smoothly 4 mm
/ Min The temperature is controlled so that it can be transferred at a high speed, for example, the temperature of the solid-liquid interface which is higher by 10 ° C than the single crystal rod pulling temperature of 1420 ° C, and the narrowing is performed until a predetermined diameter value is reached. The diameter value of the seed diaphragm portion is usually measured by visual observation using a scale, or when further accuracy is required, measured by a CCD camera.

【0014】また、所定の最小直径値を有する種絞り部
分を得るために、一定の大きさ以上の種結晶を用いても
良い。例えば、最小直径5mmの種絞り部分を確実に得
るためには、絞り込むまでの引上げ速度などの条件など
にもよるが、15mm角以上あるいは15mmφ以上の
種結晶が使用される。
Further, in order to obtain a seed diaphragm portion having a predetermined minimum diameter value, a seed crystal having a certain size or more may be used. For example, in order to reliably obtain a seed-thinned portion having a minimum diameter of 5 mm, a seed crystal of 15 mm square or more or 15 mmφ or more is used, although it depends on conditions such as the pulling speed until the narrowing.

【0015】種絞り部分の所定の直径に対応して、該直
径を維持しつつ、適宜任意の引上げ速度が決定され、転
位化率の低いあるいは実質的に無転位のシリコン単結晶
を製造することができる。図2は、本発明者によって明
らかにされた知見であり、特定の種絞り部分の最小直径
におけるシリコン単結晶の無転位化率と種絞り部分の成
長速度(引上げ速度)の関係を表わすグラフであるが、
種絞り部分の最小直径値が4mm以下の場合において
は、該成長速度に関係無く無転位のシリコン単結晶が製
造されるが、4.5mm以上になると、成長速度に比例
して無転位化率が増大する知見を示唆するものである。
例えば、種絞り部分の最小直径値が4.5mmから10
mmの場合には、種絞り部分の引上げ速度を4mm/m
inで行うと実質的に無転位のシリコン単結晶が製造さ
れ、大重量、大口径のシリコン単結晶を種絞り部分での
落下の危険性なしに、また、他の結晶支持装置を用いる
ことなしに、従来のシリコン単結晶棒の形状を保持しな
がら引上げることができる。
To produce a silicon single crystal having a low dislocation rate or a substantially dislocation-free state in which a desired pulling rate is appropriately determined while maintaining the diameter corresponding to a predetermined diameter of the seed drawn portion. You can FIG. 2 is a graph clarified by the present inventor and is a graph showing the relationship between the dislocation-free rate of the silicon single crystal and the growth rate (pulling rate) of the seed-thinned portion at the minimum diameter of the specific seed-thinned portion. But
When the minimum diameter value of the seed drawn portion is 4 mm or less, dislocation-free silicon single crystal is produced regardless of the growth rate, but when it is 4.5 mm or more, the dislocation-free rate is proportional to the growth rate. Suggests a finding that
For example, the minimum diameter value of the seed narrowing portion is 4.5 mm to 10
In case of mm, the pulling speed of the seed throttle part is 4 mm / m
In-process produces a substantially dislocation-free silicon single crystal, without the risk of dropping a large-weight, large-diameter silicon single crystal at the seed drawing part, and without using another crystal support device. In addition, it is possible to pull up while maintaining the shape of the conventional silicon single crystal ingot.

【0016】このように、種絞り部分の引上げ速度(成
長速度)は、4.5mm以上の最小直径値によって適宜
決定されるが、その好ましい下限値は、シリコン単結晶
の所望の無転位化率との関係から本発明の効果を損わな
い範囲で適宜決定され、その上限値についても、同様に
決定される。成長速度は、所望の無転位化率を有するシ
リコン単結晶を製造する目的からは無転位化率が達成可
能な成長速度よりも大きい必要はなく、また、絞り切れ
が頻繁に発生しない範囲で選ばれる。
As described above, the pulling rate (growth rate) of the seed drawn portion is appropriately determined by the minimum diameter value of 4.5 mm or more, and the preferable lower limit value is the desired dislocation-free rate of the silicon single crystal. From this relationship, it is appropriately determined within a range that does not impair the effects of the present invention, and the upper limit value is similarly determined. The growth rate does not need to be higher than the achievable growth rate for the purpose of producing a silicon single crystal having a desired dislocation-free rate, and is selected within a range in which narrowing does not occur frequently. Be done.

【0017】例えば、種絞り部分の最小直径が4.5m
mの場合においては、種絞り部分の成長速度は、無転位
化率の点から4mm/min以上の引上げ速度で行い、
絞り切れの発生を減少させるという観点から、6mm/
min以下で引上げられることが本発明の好ましい実施
態様である。
For example, the minimum diameter of the seed diaphragm is 4.5 m.
In the case of m, the growth rate of the seed drawn portion is 4 mm / min or more from the viewpoint of dislocation-free rate,
From the viewpoint of reducing the occurrence of squeezing, 6 mm /
It is a preferred embodiment of the present invention to be pulled up at a value of min or less.

【0018】転位化率の低いあるいは実質的に無転位の
シリコン単結晶を結晶落下することなしに安全に引上げ
ることが可能な所定の最小直径値を有する種絞り部分の
引上げ速度は、結晶方位や前記した種結晶の大きさ、絞
り込みまで引上げ時間、その他の条件などによって決定
される。なお、種絞り部分の直径が10mmを越えると
無転位のシリコン単結晶の製造が困難となる。
The pulling rate of the seed-thinned portion having a predetermined minimum diameter value that can safely pull up a silicon single crystal having a low dislocation rate or substantially no dislocation is the crystal orientation. And the size of the seed crystal, the pulling time until narrowing down, and other conditions. It should be noted that if the diameter of the seed drawn portion exceeds 10 mm, it becomes difficult to manufacture a dislocation-free silicon single crystal.

【0019】通常、種絞り部分の全長は、30mmから
200mmまで成長させるが、本発明においての好まし
い範囲は50mmから200mmである。
Normally, the total length of the seed drawn portion is grown from 30 mm to 200 mm, but the preferred range in the present invention is 50 mm to 200 mm.

【0020】種絞り部分の引上げが終了し、引続いて行
なわれる所望の口径及び全長を有するシリコン単結晶棒
の引上げ成長は、本発明の効果を損わない範囲で安全に
落下することなく単結晶引上げを行うための任意の引上
げ速度、結晶及びるつぼ回転速度、その他の条件を備え
たチョクラルスキー法により行なわれ、シリコン単結晶
棒が製造される。
The pulling growth of the silicon single crystal ingot having the desired diameter and the entire length after the pulling up of the seed drawn portion is completed, and the pulling up growth of the silicon single crystal rod can be performed safely without falling within a range not impairing the effect of the present invention. A silicon single crystal ingot is manufactured by the Czochralski method provided with an arbitrary pulling rate for pulling the crystal, a rotation speed of the crystal and the crucible, and other conditions.

【0021】[実施例1]種結晶方位(100)の太さ
15mm角の種結晶を、るつぼ内のシリコン溶融液上に
10分間放置し、種結晶の温度が充分に上昇した後、種
結晶をシリコン溶融液中に浸漬した。種結晶をフュージ
ョンリングが見えるまで溶融液に充分になじませた後、
種結晶の引上げを行い成長させた。この際の初期の成長
速度は2mm/minまでの範囲で行い、15mm角の
種結晶から種絞り部分の目標直径値5mmφまで直径を
細くして絞り込みを行った。そして、この種絞り部分の
直径を維持しながら、成長速度4mm/min以上で引
上げを行い、種絞り部分を成長させた。以上の種絞り工
程に引続いて、種絞り部分の直径5mmφにより、結晶
の直径が208mmまでの大口径シリコン単結晶棒の引
上げを、50cmまで成長させ、次いで丸めを行ない、
直径208mmまでの無転位シリコン単結晶を引き上げ
て製造することができた。
[Example 1] A seed crystal having a seed crystal orientation (100) and a thickness of 15 mm square was left for 10 minutes on the silicon melt in a crucible, and the temperature of the seed crystal was sufficiently raised. Was immersed in a silicon melt. After soaking the seed crystal into the melt until the fusion ring is visible,
The seed crystal was pulled up and grown. At this time, the initial growth rate was within the range of 2 mm / min, and the diameter was reduced from the seed crystal of 15 mm square to the target diameter value of 5 mmφ of the seed narrowing portion. Then, while maintaining the diameter of the seed drawn portion, the seed drawn portion was grown by pulling up at a growth rate of 4 mm / min or more. Subsequent to the seed drawing step described above, the diameter of the seed drawing portion of 5 mmφ pulls up a large-diameter silicon single crystal ingot with a crystal diameter of up to 208 mm, grows up to 50 cm, and then rounds,
A dislocation-free silicon single crystal having a diameter of up to 208 mm could be pulled and manufactured.

【0022】[実施例2]結晶方位(111)の種結晶
について、実施例1と全く同様にして、口径208mm
のシリコン単結晶棒の引上げを行ない、無転位シリコン
単結晶をチョクラルスキー法において製造した。
[Example 2] A seed crystal having a crystal orientation (111) was produced in exactly the same manner as in Example 1 and had a diameter of 208 mm.
The silicon single crystal ingot was pulled up and a dislocation-free silicon single crystal was manufactured by the Czochralski method.

【0023】[0023]

【発明の効果】本発明によれば、従来法に比べ、引上げ
成長時における落下の危険性を防止して、さらに大重量
シリコン単結晶を製造することができる。また、本発明
によれば、大口径のシリコン単結晶を従来と同程度の結
晶全長での引上げが可能となり、歩留り、生産性の向上
を図ることが出来る。本発明によれば、転位密度が低い
あるいは実質的に無転位のシリコン単結晶を製造するこ
とができる。さらに、特別な結晶保持装置が必要ないた
め、引上げ装置のコストアップを避けることができる。
また、従来のように結晶落下を防止するために特殊形状
のシリコン単結晶を引上げる必要がないため、引上げが
極めて容易にでき、さらに特殊形状に起因する結晶乱れ
がないシリコン単結晶が製造できる。
According to the present invention, compared to the conventional method, the risk of falling during pulling growth can be prevented and a larger weight silicon single crystal can be manufactured. Further, according to the present invention, it is possible to pull a large-diameter silicon single crystal over the same length as the conventional one, and it is possible to improve the yield and the productivity. According to the present invention, a silicon single crystal having low dislocation density or substantially no dislocation can be manufactured. Furthermore, since no special crystal holding device is required, it is possible to avoid an increase in the cost of the pulling device.
In addition, since it is not necessary to pull up a silicon single crystal having a special shape in order to prevent crystal falling as in the conventional case, pulling can be performed very easily, and a silicon single crystal free from crystal disorder due to the special shape can be manufactured. .

【0024】本発明は、チョクラルスキー法により製造
されるシリコン単結晶が、大口径化かつ大重量化になる
産業界の傾向に伴い、単結晶引上げの際の結晶落下の危
険性が増大しているという現状に鑑みて、このような結
晶落下による重大事故を防止するという産業界の要請に
応えた画期的な発明である。
In the present invention, the risk of crystal falling during pulling up of a single crystal increases with the tendency of the industry that the silicon single crystal produced by the Czochralski method becomes larger in diameter and heavier. In view of the current situation, it is an epoch-making invention that meets the demand of the industrial world to prevent such a serious accident due to crystal falling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の種絞り部分を示すシリコン単結晶の外
観図である。
FIG. 1 is an external view of a silicon single crystal showing a seed diaphragm portion of the present invention.

【図2】種絞り部分の成長速度とシリコン単結晶の無転
位化率の関係を種絞り部分の直径値について示したグラ
フである。
FIG. 2 is a graph showing the relationship between the growth rate of the seed-thinned portion and the dislocation-free rate of the silicon single crystal with respect to the diameter value of the seed-thinned portion.

【符号の説明】[Explanation of symbols]

1 種結晶 2 種絞り部分 3 シリコン単結晶 4 種結晶径 5 種絞り部分の直径 1 seed crystal 2 seed drawing part 3 silicon single crystal 4 seed crystal diameter 5 diameter of seed drawing part

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チョクラルスキー法によるシリコン単結
晶の引上げにおいて、シリコン単結晶成長の際の種絞り
部分の直径が4.5mm以上10mm以下の範囲になる
ように種絞りを行うとともに種絞り時の引上げ速度を4
mm/min以上とすることを特徴とするシリコン単結
晶の製造方法。
1. A pulling of the silicon single crystal by the Czochralski method, when the diaphragm type with a diameter of the seed diaphragm portion during silicon single crystal growth performed seeds aperture to be in the range of 4.5mm or more 10mm or less Pulling speed of 4
A method for producing a silicon single crystal, which is characterized in that it is set to mm / min or more .
【請求項2】 直径が4.5mm以上10mm以下であ
る種絞り部分の引上げ速度が、4mm/minから6m
m/minの範囲にある請求項1に記載のシリコン単結
晶の製造方法。
2. The pulling speed of the seed drawing portion having a diameter of 4.5 mm or more and 10 mm or less is 4 mm / min to 6 m.
The method for producing a silicon single crystal according to claim 1, which is in the range of m / min.
【請求項3】 直径が4.5mm以上10mm以下であ
る種絞り部分の全長が、30mmから200mmの範囲
にある請求項1又は請求項2に記載のシリコン単結晶の
製造方法。
3. The method for producing a silicon single crystal according to claim 1, wherein the seed-throttled portion having a diameter of 4.5 mm or more and 10 mm or less has a total length in the range of 30 mm to 200 mm.
JP3230934A 1991-08-19 1991-08-19 Method for producing silicon single crystal Expired - Fee Related JP2525300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3230934A JP2525300B2 (en) 1991-08-19 1991-08-19 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3230934A JP2525300B2 (en) 1991-08-19 1991-08-19 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH0543379A JPH0543379A (en) 1993-02-23
JP2525300B2 true JP2525300B2 (en) 1996-08-14

Family

ID=16915588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3230934A Expired - Fee Related JP2525300B2 (en) 1991-08-19 1991-08-19 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP2525300B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578284A (en) * 1995-06-07 1996-11-26 Memc Electronic Materials, Inc. Silicon single crystal having eliminated dislocation in its neck
JP2973917B2 (en) * 1996-03-15 1999-11-08 住友金属工業株式会社 Single crystal pulling method
JP2937115B2 (en) * 1996-03-15 1999-08-23 住友金属工業株式会社 Single crystal pulling method
JPH1178063A (en) * 1997-09-12 1999-03-23 Canon Inc Ink-jet recording apparatus
JPH1160379A (en) * 1997-06-10 1999-03-02 Nippon Steel Corp Production of non-dislocation silicon single crystal
US5885344A (en) * 1997-08-08 1999-03-23 Memc Electronic Materials, Inc. Non-dash neck method for single crystal silicon growth
JP4857920B2 (en) * 2006-06-07 2012-01-18 株式会社Sumco Method for producing silicon single crystal
JP2009298641A (en) * 2008-06-12 2009-12-24 Sumco Corp Silicon single crystal and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288191A (en) * 1986-06-06 1987-12-15 Kyushu Denshi Kinzoku Kk Method for growing single crystal and device therefor
JPH04260688A (en) * 1991-02-14 1992-09-16 Shin Etsu Handotai Co Ltd Automatic control of growth of neck part of single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288191A (en) * 1986-06-06 1987-12-15 Kyushu Denshi Kinzoku Kk Method for growing single crystal and device therefor
JPH04260688A (en) * 1991-02-14 1992-09-16 Shin Etsu Handotai Co Ltd Automatic control of growth of neck part of single crystal

Also Published As

Publication number Publication date
JPH0543379A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JPS63252991A (en) Cz single crystal having holding part for preventing falling down
JP4151580B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer
JP4142332B2 (en) Single crystal silicon manufacturing method, single crystal silicon wafer manufacturing method, single crystal silicon manufacturing seed crystal, single crystal silicon ingot, and single crystal silicon wafer
JP3841863B2 (en) Method of pulling silicon single crystal
JP3552278B2 (en) Method for producing silicon single crystal
JP2525300B2 (en) Method for producing silicon single crystal
JP2937115B2 (en) Single crystal pulling method
JP2973917B2 (en) Single crystal pulling method
JP4521933B2 (en) Method for growing silicon single crystal
JP7255011B2 (en) Method for pulling a silicon single crystal by the Czochralski method
JP3050120B2 (en) Single crystal pulling seed crystal and single crystal pulling method using the seed crystal
JP2848067B2 (en) Seed crystal of silicon single crystal
US6755910B2 (en) Method for pulling single crystal
JP3016126B2 (en) Single crystal pulling method
JPH04104988A (en) Growth of single crystal
JP4013324B2 (en) Single crystal growth method
JP4224906B2 (en) Pulling method of silicon single crystal
US5820672A (en) OISF control in czochralski-grown crystals
US5968260A (en) Method for fabricating a single-crystal semiconductor
JP3726847B2 (en) Method for producing silicon single crystal and seed crystal
JPH0367994B2 (en)
JP2005041740A (en) Manufacturing method of silicon wafer, and silicon wafer
JPH07300388A (en) Production of silicon single crystal
JP3473477B2 (en) Method for producing silicon single crystal
JP2833432B2 (en) Silicon single crystal growth method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees