TWI259575B - Circuit board, electronic device, electro-optic device, and electronic machine - Google Patents

Circuit board, electronic device, electro-optic device, and electronic machine Download PDF

Info

Publication number
TWI259575B
TWI259575B TW092106057A TW92106057A TWI259575B TW I259575 B TWI259575 B TW I259575B TW 092106057 A TW092106057 A TW 092106057A TW 92106057 A TW92106057 A TW 92106057A TW I259575 B TWI259575 B TW I259575B
Authority
TW
Taiwan
Prior art keywords
substrate
film
wiring
disposed
polymer
Prior art date
Application number
TW092106057A
Other languages
Chinese (zh)
Other versions
TW200306661A (en
Inventor
Takashi Miyazawa
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of TW200306661A publication Critical patent/TW200306661A/en
Application granted granted Critical
Publication of TWI259575B publication Critical patent/TWI259575B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0187Dielectric layers with regions of different dielectrics in the same layer, e.g. in a printed capacitor for locally changing the dielectric properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Abstract

The purpose of the present invention is to reduce the parasitic capacitance generated in the conductive portion for stabilizing the performance. The solution is to allocate a structural member 18 with a low permittivity less than 4 on the substrate 15, and to dispose a functional film 140 divided by the structural member 18 with a low permittivity.

Description

1259575 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係有關光電裝置或半導體裝置等之電子裝置, 可適用於電子裝置之配線基板,適用於顯示裝置之光電 裝置電子機器。 【先前技術】 顯示裝置例如有具備液晶元件、有機電激發光(以下 稱爲有機EL )元件之液晶顯示元件或有機EL顯示裝置等 之光電裝置。特別是有機EL顯示裝置因高亮度、自行發 光、可直流低電壓驅動、高速應答等,因此顯示性能優異 。而且顯示裝置可薄型化、輕量化、低耗電化(參照例如 專利文獻1 )。 [專利文獻1]國際公開第WO9 8/3 6406號公報。 【實施方式】 [發明欲解決之問題] 光電裝置會因配線間所產生之寄生電容,而造成資料 改寫動作產生錯誤已爲人知。此配線間電容係取決於配線 長度等,隨著配線變長而增加,因此例如以光電裝置作爲 顯示裝置時,會成爲阻礙形成大畫面化的原因。 近年,記憶體等之半導體裝置要求高度集成化’同時 動作高速化,因而配線等之導電部分間所產生之電容成爲 問題。 -5- (2) 1259575 本發明係有鑑於上述問題點而完成者,本發明之目的 係提供性能之安定化的配線基板,可達成大畫面,且經長 時間亦可穩定地動作之光電裝置,及使用這些之電子機器 [解決問題的方法] 爲了達到上述目的,本發明之第1之配線基板,其特 徵係含有含配線之基體;配置於基體上面具有4以下之介 電率的構件;該上面設置未形成該構件的區域。 通常矽氧化膜之介電率爲4.2以下,因此該構件具有 低介電率。依據本發明之配線基板時,配置具有4以下之 介電率的構件,例如在該上面設置未形成該構件的區域設 置光電材料,其上方形成電極聚合物等之導電性部位時, 可降低因導電性部位與該配線所產生之寄生容量。 本發明之第2配線基板,其特徵係含有含絕緣基板與 配線之基體;被配置於基體上面之構件;該基體上面設置 未形成該構件之區域,該配線係配置於該絕緣基板與其上 面之間,該構件之介電率低於該絕緣基板之介電率。 該絕緣基板用於顯示裝置等時,理想爲以玻璃或石英 等作爲該絕緣基板使用,這種情形時,該構件之介電率爲 4以下爲佳。 上述配線基板中,該構件之介電率爲3以下,更理想 爲2.5以下。在基體面上可設置多個該區域。 上述配線基板中,例如該基體含有主動元件時,寄生 -6 - (3) 1259575 容量降低’可藉由更高頻率或高速之驅動信號使主動元件 作動。主動元件例如有電晶體等半導體元件或ΜίΜ等雙端 子元件等。 上述配線基板中,該構件例如爲含有氧化矽玻璃、烷 基矽氧院聚合物、院基倍半砂氧院聚合物、氫化烷基倍半 矽氧烷聚合物、聚芳基醚中之任一種之旋塗式玻璃膜、鑽 石膜及氟化非晶質碳膜等。 其中該構件可由多孔質材料所構成。 具體而言爲氣溶膠、將多孔質氧化矽、氟化鎂之微粒 子分散的凝膠、氟系聚合物、多孔性聚合物及所定之材料 中含有微粒子者。 本發明之電子裝置,其特徵爲對應於上述記載之配線 基板之該區域,配置功能膜。 上述電子裝置中,該功能膜間配置較低介電率之該構 件,因此,可降低該功能膜間產生之寄生容量。 上述電子裝置中,其功能膜上方配置電極等之導電膜 時,該配線與該電極藉由該構件而產生距離,因此可降低 該配線與該電極間產生之寄生容量。特別是該配線供給信 號時,可減少信號之延遲、聲音不準確等之問題。導電膜 之形成材料例如有機導電材料、無機導電材料(金屬等) 及含有這些之混合物等。 上述電子裝置中,不限定爲其功能膜之周圍全部配置 該構件者。 本發明之第1之光電裝置,其特徵爲含有:含有絕緣 (4) 1259575 基板與配線之基體;配置於該基體上面之多個像素電極; 配置於該像素電極上方之對向電極;含有被配置於該各個 多個像素電極與該對向電極之間之光電材料的功能膜;設 置於該功能膜之周圍,且配置於該對向電極與該上面之間 的構件;該構件之介電率低於該絕緣基板之介電率。 上述光電裝置中,該絕緣基板使用玻璃或石英等較佳 。這種情形時,該構件之介電率爲4以下爲佳。 本發明之第2之光電裝置,其特徵爲含有:含有配線 之基體;被配置於該基體上面之多個像素電極;配置於該 像素電極上方之對向電極;含有被配置於該各個多個像素 電極與該對向電極之間之光電材料的功能膜;設置於該功 能膜之周圍,且配置於該對向電極與該上面之間的構件; 該構件之介電率爲4以下。 上述光電裝置中,該構件之介電率理想爲3以下或2.5 以下。 上述光電材料例如可爲用於有機EL元件之材料、液晶 元件、電泳元件或釋放電子元件之材料。 上述光電裝置中,該基體係進一步含有與該像素電極 連接之主動元件,該配線可含有將信號供給該主動元件之 信號配線。 該主動元件例如有電晶體等半導體元件或MIM等雙 端子元件等。 上述光電裝置中,該構件係含有氧化矽玻璃、烷基矽 氧烷聚合物、烷基倍半矽氧烷聚合物、氫化烷基倍半矽氧 -8 - (5) 1259575 烷聚合物、聚芳基醚中任〜種之旋塗式玻璃膜、鑽石膜及 氟化非晶質碳膜等。 該構件可由多孔質材料所構成。 具體而言’該構件爲氣溶膠、將多孔質氧化矽、氟化 錶之微粒子分散的凝膠、氟系聚合物、多孔性聚合物及所 定之材料中含有微粒子者等。 上述光:電裝置中’該構件與主動元件之間可設置抑制 物質穿透之阻隔層。 該構件作爲低介電率之材料使用時,低介電率材料一 般爲多孔質材料,或低密度材料,因此,金屬或氧等之物 質容易穿透,因穿透之物質有時會產生主動元件劣化或配 線等腐蝕等之問題。對此該構件與主動元件之間設置該阻 隔層,可抑制造成劣化或腐蝕等重要原因之物質穿透。 該構件之至少一部分以防止物質通過之保護層覆蓋。 物質谷易穿透上述構件,因此,該構件之至少一部分 以該保護膜覆蓋,可抑制物質經由該構件擴散。藉此可降 低光電裝置內部之配線或主動元件腐蝕或劣化。低介電率 材料一般而言其大部分機械性較脆弱,該構件上設置保護 膜具有補強機械特性的效果。 本發明之電子機器,其特徵係具備以上述電子裝置作 爲顯示機構者。 依據本發明之電子機器係降低寄生容量,例如對於高 頻或高速輸入信號具有遵循性良好,穩定之顯示動作。 -9 - (6) 1259575 實施方式 [發明之實施形態] 以下詳細說明本發明。 圖1係本發明之光電裝置及基板之斷面結構之槪念圖 ’符號1 0爲光電裝置,符號11爲配線基板。配線基板11係 由含有設置於基材15上之薄膜電晶體(TFT : Thin Film Transistor,以下稱爲TFT)等之主動元件16與絕緣層之多 層配線型所構成。光電裝置1 〇係在配線基板1 1上設置含有 功能膜之發光層之多個發光區域丨7者,其發光狀態係經由 主動元件1 6控制。多個發光區域丨7之界面設置作爲絕緣層 之分隔構件(觸排)1 8。 本發明之光電裝置1〇,其特徵係低介電率材料形成分 隔構件1 8。以低介電率材料形成分隔構件丨8可降低配線等 之導電性部位間所產生之寄生容量。 低介電率材料之介電率(比介電率)爲4以下,理想 爲3以下,更理想爲2 · 5以下。特別是低介電率材料爲高空 隙率之多孔質(porous )所構成,可得到上述低介電率之 低介電率材料。 Μ低介電率材料形成分隔構件i 8的方法例如使用各種 _佈法或CVD法(化學氣相沉積法)等形成層後,藉由蝕刻 或硏磨等圖案化可得到所定形狀之分隔構件丨8。 低介電率材料例如有含有氧化矽玻璃、烷基矽氧烷聚 合物、院基倍半矽氧烷聚合物、氫化烷基倍半矽氧烷聚合 物、聚芳基醚中任〜種之旋塗式玻璃膜、鑽石膜及氟化非 -10- (7) 1259575 晶質碳膜等。 低介電率材料例如可使用氣溶膠、將多孔質氧化矽、 氟化鎂之微粒子分散的凝膠、氟系聚合物、多孔性聚合物 及所定之材料中含有微粒子者等。 氣溶膠例如可使用氧化矽氣溶膠或以氧化鋁爲基礎物 之氣溶膠。氣溶膠係使矽醇鹽之溶膠凝膠反應所形成之濕 潤凝膠,藉由超臨界乾燥所得之具有均勻超微細結構之多 孔質體。氧化矽氣溶膠係占有體積90%以上之孔隙,剩餘 部分爲由凝結成樹枝狀之數十奈米之微細Si〇2粒子所構成 之材料。改變孔隙率可調整介電率。 氧化矽氣溶膠係經由溶膠-凝膠法製造濕潤凝膠之步 驟;使濕潤凝膠熟化之步驟;及以超臨界乾燥法乾燥濕潤 凝膠得到氣溶膠之超臨界乾燥步驟製得氧化矽氣溶膠。超 臨界乾燥法係適用於以超臨界流體取代由固相及液相所成 之果凍狀凝膠物質中之液體,並去除,在凝膠不收縮的狀 態,使凝膠物乾燥的方法,可得具高孔隙率之氣溶膠。 形成上述旋施玻璃膜時,也可使用上述超臨界乾燥法 。使用超臨界乾燥法可提高被覆性或膜質。 以氧化矽氣溶膠形成分隔構件1 8時,藉由旋轉塗覆等 於基材上塗布濕潤凝膠後,進行超臨界乾燥,也可於濕潤 凝膠中混合合成樹脂(有機物)。此時之合成樹脂其熱改質 溫度高於超臨界流體之臨界溫度之合成樹脂。超臨界流n 例如使用醇時,其熱改質溫度高於醇之臨界溫度之合成棱f 脂例如有羥丙基纖維素(HPC)、聚乙烯基丁縮醛(PVB)、乙 -11 - (8) 1259575 基纖維素(EC)等(又,PVB及EC可溶於醇而不溶於水)。使 用醚作爲溶劑時,理想爲選擇氯系聚乙烯等作爲樹脂,另 外使用C〇2作爲溶劑時,選擇HPC等較佳。 多孔質氧化矽(具有多孔性之Si〇2膜)係利用電漿 CVD法(電漿化學氣相成長法)形成,可使用SiH4& N2〇 之反應氣體。此3丨〇2膜上形成具有多孔性之Si〇2膜。此 Si〇2膜係利用常壓CVD法(常壓化學氣相成長法)形成, 使用含有TEOS (四乙氧基矽烷)與氧(〇2 )與低濃度之 〇3 (臭氧)之反應氣體。此處低濃度之 〇3係指比上述 TEOS之氧化所需之濃度更低之濃度之〇3。 氟系聚合物或包含其之材料例如有全氟烷基-聚醚、 全氟烷基胺,或全氟烷基聚醚-全氟烷基胺之混合薄膜等 〇 另外可爲於預定之聚合物粘結劑中混合可溶性或分散 性之氟碳化合物者。 聚合物粘結劑例如有聚乙烯醇、聚丙烯酸、聚乙烯基 吡咯烷酮、聚乙烯基磺酸鈉鹽、聚乙烯基甲基醚、聚乙二 醇、聚α三氟甲基丙烯酸、聚乙烯基甲基醚-馬來酸酐共 聚物、聚乙二醇-丙二醇共聚物、聚甲基丙烯酸等。 另外氟碳化合物例如有全氟辛酸-銨鹽、全氟辛酸-四 甲基銨鹽、C7及CIO之全氟烷磺酸銨鹽、C7及CIO之全氟 烷磺酸四甲基銨鹽、氟化烷基四級銨碘化物、全氟己二酸 及全氟己二酸之四級銨鹽等。 低介電率材料係使用微粒子,可形成微粒子間或微粒 12- 1259575 Ο) 內之微孔隙之空隙。微粒子可使用無機微粒子或有機微粒 子。無機微粒子以非晶性爲佳。無機微粒係由金屬之氧化 物、氮化物、硫化物或鹵化物所成者爲佳,由金屬氧化物 或金屬鹵化物所成者更佳,而由金屬氧化物或金屬氟化物 所成者最佳。金屬原子理想爲Na、K、Mg、Ca、Ba、A1、 Zn、Fe、Cu ' Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb 、T a ' Ag、Si、B、Bi、Mo、Ce、Cd' Be、Pb 及 Ni,更理 想爲Mg、Ca、B及Si。也可使用含有2種金屬之無機化合 物。特別理想之無機化合物爲二氧化矽,即爲氧化矽。 例如藉由使形成粒子之氧化矽分子產生交聯,可形成 無機微粒子內之微孔隙。使氧化矽分子產生交聯時,體積 會縮小,粒子成爲多孔質。藉由溶膠-凝膠法(日本特開昭 5 3 - 1 1 2732號、特公昭57-9051號等各公報記載)或析出法 (APLIED OPTICS,27,3356頁( 1 9 8 8)記載)可直接合成具微 孔隙之(多孔質)無機微粒子分散物。另外,以乾燥沉澱法 製得之粉粒體進行機械式粉碎也可製得分散物。也可使用 市售之多孔質無機微粒子(例如二氧化矽溶膠)。具有微孔 隙之無機微粒可分散於適當介質之狀態來使用。分散介質 理想爲水、醇(例如甲醇、乙醇、異丙醇)及酮(例如甲基乙 基酮'甲基異丁基酮)。 例如係藉由使形成粒子之聚合物交聯以形成有機微粒 子內之微孔隙。聚合物產生交聯時,體積縮小,粒子成爲 多孔質。爲使形成粒子之聚合物產生交聯時’合成聚合物 之單體之20莫耳%以上爲多官能單體較佳。多官能單體之 -13- (10) 1259575 比例理想爲30至80莫耳%,最佳爲35至50莫耳%。多官能 單體例如有包括二烯類(例如丁二烯、戊二烯)、多元醇與 丙烯酸之酯(例如二丙烯酸乙二醇酯、二丙烯酸1,4 —環己 院酯、/、丙燒酸二季戊四醇酯)、多元醇與甲基丙烯酸之 酯(例如二甲基丙烯酸乙二醇酯、四甲基丙烯酸1,2,4一 己烷酯、四甲基丙烯酸季戊四醇酯)、二乙烯基化合物(例 如二乙烯基環己烷、1,4_二乙烯基苯)、二乙烯基硕、雙 丙烯醯胺類(例如伸甲基雙丙烯醯胺)及雙甲基丙烯醯胺類 。可藉由堆積至少2個以上之微粒子形成粒子間之微孔隙 〇 也可使用具有微小空孔及微粒狀無機物之材料作爲低 介電率材料。此情況下,藉由塗覆形成上述材料層後,進 行活化氣體處理,使氣體由層中脫離形成微細空孔。 或者可混雜2種以上之超微粒子(例如MgF2及Si〇2)。此 時藉由矽酸乙酯熱分解所產生之SiO2黏結超微粒子。矽酸 乙酯熱分解係藉由乙基部份之燃燒,產生二氧化碳及水蒸 汽。二氧化碳及水蒸汽由層中脫離,可於超微粒子間產生 間隙。 或者含有由多孔質氧化矽所構成之無機微粉末與粘結 劑可形成層,或藉由堆積2個以上由含氟聚合物所構成之 微粒子,在微粒子間也可形成產生孔隙的層。 低介電率材料可使用分子結構等級’且可提高孔隙率 之物質,例如具有網枝狀聚合物等之支鏈結構之聚合物。 分隔構件1 8與主動元件1 6之間理想爲設置可防止金屬 -14- (11) 1259575 通過之阻隔層20。以低介電率材料所形成之分隔構件1 8因 大部分由多孔質所構成,因此’金屬等之物質容易通過’ 通過分隔構件18之金屬侵入主動元件16時,有時因化學反 應使主動元件16產生劣化。分隔構件18與主動元件16之間 設置上述阻隔層2 0可抑制主動元件1 6劣化,抑制元件性能 降低。 阻隔層20之形成材料可使用例如陶瓷或含有氮化矽、 氧化氮化矽、氧化矽等之矽的化合物,另外也可使用具有 放熱效果之材料,例如鋁之氮化物、矽之碳化物、硼之氮 化物、硼之碟化物等。阻隔層20具有金屬阻隔及放熱效果 ,因此可降低由低介電率材料所構成之分隔構件1 8之熱收 縮所產生之影響。 例如可使用含有稀土元素之1種(選自Ce(鈽)、Yb(鏡) 、Sm(釤)、Er(餌)、Y(釔)、La(鑭)、Gd(釓)、Dy(鏑)、Nd( 銨)中之至少1個元素)及氮、矽、鋁及氧的材料。 也可形成氮化鈦、氮化钽等具有導電性之層。 形成具有導電性之阻隔層20時,爲了防止實效性之配 線電阻上升,而決定阻隔層之厚度或形狀。 由上述材料所構成之分隔構件1 8之至少一部分以可防 止液體或氣體、或金屬等之物質通過之保護膜21覆蓋較佳 。以低介電率材料所形成之分隔構件1 8因物質易侵入,因 此,在製造過程等中,物質侵入有時造成分隔構件1 8之介 電率性能降低。分隔構件1 8之至少一部分以上述保護膜2 1 覆蓋可保持分隔構件1 8之低介電率性,確實使配線低容量 -15- (12) 1259575 化。一般而言,低介電率材料之機械性脆弱,但是上述保 護膜2 1具有補強機械性的效果。可抑制經由分隔構件i 8之 物質擴散,因此可避免通過分隔構件1 8之物質影響其他之 區域。 保護膜2 1之形成材料例如有陶瓷或含有氮化矽、氧化 氮化矽、氧化矽等。在分隔構件1 8之角上形成膜時,除了 無機旋施玻璃系、有機旋施玻璃系、PSG ( phosphate glass )外,可使用高柔軟性之無機聚合物或有機聚合物等。 形成旋施玻璃系之膜時,可使用上述超臨界乾燥法。 使用超臨界乾燥法可提高被覆性及膜質。 由上述材料所構成之保護膜2 1可使用各旋轉塗佈、浸 漬塗佈、分散塗佈法、回流法等各種塗佈法來形成。保護 膜2 1可爲單層結構或多層結構。 也可形成保護膜21取代上述阻隔層20。換言之,包括 面向主動元件16側,以阻隔層20覆蓋分隔構件18可省略阻 隔層20。此時可使用上述阻隔層20之形成材料形成保護膜 2卜 如上述本發明之光電裝置1 0係以低介電率材料形成分 隔構件1 8,試圖降低導電性部位間所產生之寄生容量,提 高動作之速度。動作高速度化時,必須考慮寄生容量及降 低配線之阻抗,且需要配線結構之整體設計。本發明之配 線基板11也包括將低介電率材料用於分隔構件以外之其他 部份的情形。 其次說明將本發明之光電裝置及配線基板用於使用有 -16 - (13) 1259575 機EL元件之主動矩陣型之顯示裝置的實施形態例。參照之 各圖中,層或構件爲了可在圖面上看淸楚之大小尺寸來形 成層或構件,因此有時比例與實際物品不同。 圖2係表示本發明之實施形態例之有機EL顯示裝置之 構成的模式圖,此有機EL顯示裝置100係採用使用TFT主 動元件之主動型之驅動方式。 顯不裝置100係在基材121上依序層合含有TFT主動元 件之主動元件部146、含有發光層、電洞輸送層及電子輸 送層等之功能膜之有機EL元件140、陰極154及封裝部147 等之結構所構成。 基材1 2 1在本例中可使用玻璃基板。此外可使用矽基 板、石英基板、陶瓷基板、金屬基板、塑膠基板、塑膠膜 基板等光電裝置或配線基板使用之公知的各種基材。 基材121上發光區域之多個像素區域102以矩陣狀排列 ,彩色顯示時,例如與紅色、綠色、藍色各色對應之像素 區域102以所定排列狀排列。 各像素區域102上被配置像素電極141,其附近被配置 信號線1 3 2 '共同供電線1 3 3、掃描線1 3 1及無圖式之其他 像素電極用掃描線等。像素區域1 02之平面形狀除了圖示 之矩形外,也可爲圓形、長圓形等之其他形狀。例如以噴 墨法等之液相製程形成構成有機EL元件之發光層、電洞 輸送層及電子輸送層等之電荷輸送層時,爲了在像素電極 上方均勻形成上述層,理想爲無角之圓形或具有長圓等形 狀之像素電極較理想。 -17- (14) 1259575 戈寸衣p卩147係阻止水或氧侵入,防止陰極154或有機 EL元件140之氧化,包括被塗佈於基材ι21上之封裝樹脂 及被貼合於基材121上之封裝基板(方裝罐)148等。封裝 樹脂之材料例如可使用熱硬化樹脂或紫外線硬化樹脂等, 特別理想爲使用硬化樹脂之一種的環氧樹脂。封裝基板 1 4 8係由玻璃或金屬所構成’基材1 2 1與封裝基板1 4 8係經 由密封劑黏貼。基材1 2 1之內側配置乾燥劑,兩者間所形 成之空間形成塡充N2氣體之N2氣體塡充層丨49。 圖3係顯示裝置1〇〇之電路結構。 圖3中,基材121上配設多條掃描線131、與這些掃描 線1 3 1交叉之方向延伸之多條信號線1 3 2、與這些信號線 1 3 2並排延伸之多條共同供電線1 3 3。對應於掃描線1 3 1及 信號線1 32之各交叉點,形成上述像素區域1 〇2。 信號線1 32係與具備例如移位寄存器、位準移相器、 視頻線路、類比開關之資料側驅動電路1 03連接。掃描線 1 3 1連接具備移位寄存器、位準移相器之掃描側驅動電路 104 ° 像素區域102上設置經由掃描線131,掃描信號被供給 閘極之切換用之第1之TFT 142 ;經由此TFT 142保持由信號 線132所供給之圖像信號之保持容量145 ;以保持容量145 保持之圖像信號被供給閘極之驅動用之第2之TFT143電連 接於共同供電線133時,由共同供電線133流入驅動電流之 像素電極141 (陽極);像素電極141與對向電極154 (陰 極)之間所夾之有機EL元件140。 -18- (15) 1259575 有機EL元件140係含有光電材料之有機EL材料的層 (功能膜),有機EL裝置係由含有像素電極14 1、陰極 1 5 4及有機EL元件140等所構成。 像素區域102係當掃描線13 1被驅動,第1之TFT142成 爲on時,此時之信號線132之電位保持在保持容量145, 配合該保持容量145之狀態,決定第2之TFT 143之導通狀 態。配合轉換器TFT 1 43之導通狀態之電流量係經由共同 供電線1 3 3供給有機EL元件1 40。依據此時供給之電流量 決定有機EL元件140之發光強度。 構成爲由與設置有TFT22之基板2相反之處取出所發出 光(頂部發射型)時,基板2亦可爲不透明者,於此情況下 ,可使用於鋁氧等陶瓷、不銹鋼等金屬片材上施加表面氧 化等絕緣處理所得物、熱固性樹脂、熱塑性樹脂等。 圖4(a) 、(b)係表示有機EL裝置之像素區域 1 02之斷面結構的模式圖,(a )爲頂端放射型,(b ) 爲背面放射型。 圖4 ( a )中,頂端放射型之有機El裝置係由設置 TFT143之基材121另一側放射有機EL元件140之發光光 的構成。因此可透明或不透明。 不透明之基材例如有在氧化鋁等之陶瓷、不鏽鋼等之 金屬板上實施表面氧化等之絕緣處理者,其他尙有熱硬化 樹脂、熱可塑性樹脂等。像素電極丨4 1以金屬膜等具有反 射性的膜所構成爲佳。圖4 ( a )及(b )中,本例係以像 素電極141爲陽極,以對向電極154爲陰極,但是陽極與陰 -19- (16) 1259575 極可互換。 圖4 ( b )中,背面放射型之有機EL裝置係由設置 TFT143之基材121側放射有機EL元件140之發光光的構 成。因此基材121可使用透明或不透明之基材。透明或 不透明之基材例如可使用玻璃基板、石英基板、樹脂 基板(塑膠基板、塑膠膜基板)等,特別理想爲使用 廉價之鈉鈣玻璃。使用鈉鈣玻璃時,此玻璃上塗佈氧 化矽,具有保護對弱鹼耐性較差之鈉鈣玻璃,同時也 具有提高基板之平坦性的效果。基材上配置濾光膜或 含有發光物質之顏色變換膜’或介電體反射膜,以控 制放射光的波長。 符號281係設置於像素區域102之界面的分隔構件(觸 排)。分隔構件281具有在形成有機EL兀件140時’防止 相鄰之有機EL元件1 40之材料彼此混合等的功能。此圖之 分隔構件2 8 1具有頂邊長度小於底邊的圓錐結構’但是也 可爲頂邊長度大於或等於底邊的結構。 背面放射型之有機EL裝置係由設置TFT143之基材 1 2 1側放射發光層之發光光的構成’因此提高光放射效率 ,避免在有機EL元件140之正下方配置TFT 143,可將 TFT 143配置於分隔構件281之下。 圖5係表示分隔構件2 8 1之平面結構之形態例。 分隔構件2 8 1係位於多個像素區域1 〇 2之界面,對應於 多個像素區域1 0 2之排列,且具有開口。 圖5 ( a )中,分隔構件28 1係設置成與矩陣狀排列之 -20- (17) 1259575 多個像素區域1 02對應之格子狀。圖5 ( b )中’分隔構件 2 8 1係設置成與長條狀排列之多個像素區域1 0 2對應之長條 狀。本例中,分隔構件2 8 1係由圖5 ( a )所示之格子狀之 平面結構所構成。像素區域102之排列及分隔構件281之平 面形狀不限於這些形狀,例如可爲配合每行挪移之排列’ 所謂的5排列之像素區域的形狀。也可配合圖2所示之像 素電極154之形狀決定分隔構件281的形狀。例如像素電極 爲無角之圓形或具有長圓等形狀時,分隔構件281也可爲 無角之形狀。 圖6係頂端放射型之有機EL裝置之斷面結構放大 圖。 圖6中,有機EL裝置具有基材121;由銦錫氧化物 (ITO )等之透明電極材料所構成之像素電極141 (陽 極);由像素電極1 4 1可傳輸電洞之電洞傳輸層2 8 5 ;含 有光電物質之一之有機EL物質之發光層286 (有機EL 層);設置於發光層286之上面之電子傳輸層287;設置 於電子傳輸層287之上面之陰極154 (對向電極);形成 於基材121上之TFT142、TFT143。陰極154係覆蓋元件 整體,與像素電極1 4 1成對,具有將電子注入有機EL 元件140之功能。此陰極154可爲單層結構或多層結構。 陰極154之形成材料例如有鋁(A1 )、鎂(Mg )、金( A u )、銀(A g )、鈣(c a )、氟化鋰等。這些材料可 單獨使用’或可作爲這些之單體材料之層合膜或合金 使用。 -21 - (18) 1259575 TFT142、TFT143在本例中,兩者皆形成η通道型 。TFT142、TFT143兩者不限於形成η通道型TFT,兩 者或其中之一也可使用P通道型TFT。 TFT142、TFT143例如經由以 Si〇2爲主之底層保護 層201設置於基材121之表面,由底層保護層201之上層 所形成之矽等所構成之半導體膜204、205 ;覆蓋半導體 膜204、205,並設置於底層保護層201之上層之閘極絕 緣膜220 ;閘極絕緣層220之上面,其中設置於與半導體 膜204、205逆向之部分之閘電極229、230 ;覆蓋閘電極 229、230並設置於閘極絕緣膜220之上層之第1層間絕緣 層250 ;經由穿過閘極絕緣膜220及第1層間絕緣膜250之 開孔之通孔,與半導體膜204、205連接之源電極262、 263 ;挾著閘電極229、230,設置於源電極262、263之 反向位置,經由穿過閘極絕緣層220及第1層間絕緣膜 25 0之開孔之通孔,與半導體膜204、205連接之漏電極 2 65、2 66 ;設置於第1層間絕緣膜250之上層覆蓋源電極 262、263及漏電極265、266之第2層間絕緣膜270。 若爲頂端放射型時,第2層間絕緣膜270爲平坦膜 爲佳。藉此可抑制光之亂反射。 第2層間絕緣膜270之上面配置像素電極141,而像 素電極1 4 1與漏電極2 6 6係經由設置於第2層間絕緣膜2 7 0 之通孔275來連接。 第1層間絕緣膜250與第2層間絕緣膜270之材質彼此 不同時,如圖示設置於第1層間絕緣膜2 5 0之通孔與設 -22- (19) 1259575 置於第2層間絕緣膜270之通孔27 5兩者彼此不重疊爲佳 〇 半導體膜204、205中,挾著閘極絕緣膜220,與閘 電極229、230重疊之區域爲通道區域246、247。半導體 膜204、205中,通道區域246、247之源極側設置源極區 域2 3 3、23 6,而通道區域246、247之漏極側設置漏極區 域2 34、23 5。其中源極區域233、236爲經由穿過閘極絕 緣膜220及第1層間絕緣膜250之開孔之通孔,連接於源 電極262、263。漏極區域234、23 5爲經由穿過閘極絕緣 膜2 20及第1層間絕緣膜250之開孔之通孔,連接於與源 電極262、263同一層所構成之漏電極265、266。像素電 極141係經由漏電極266連接於半導體膜205之漏電極區 域 2 3 5。 第2層間絕緣膜270之表面除了設置有機EL裝置以外 的部份與陰極1 54之間設置如前述氧化矽氣溶膠等之低介 電率材料所形成作爲第3絕緣層之分隔構件28 1。分隔構件 2 8 1係由低介電率材料所形成,因此可抑制寄生容量。 分隔構件281與第2層間絕緣膜270之間可設置由氮化 矽、氧化氮化矽、或氮化鈦、氮化鉅等所構成之阻隔層 271。此阻隔層271具有可防止通過分隔構件281之金屬( 例如可動離子)侵入TFT 142、TFT 143的功能。 分隔構件28 1之側面及上面係以無機聚合物或有機聚 合物等所構成之保護膜27 2覆蓋。保護膜27 2可防止液體或 氣體、或金屬等之物質侵入分隔構件2 8 1內。利用此保護 -23- (20) 1259575 膜272可抑制經由分隔構件281之物質擴散。分隔構件281 中,以保護膜272被覆區域不限於如圖示者,例如分隔構 件281之全面可以保護膜272覆蓋。 其次參照圖7〜圖11說明本發明之光電裝置之製造方 法(包括配線基板之製造方法)用於製造具備上述有機 EL裝置之顯示裝置之步驟的實施例。此處說明包含前述 之TFT 142、TFT 143之有機EL裝置,同時製造N型及P型 之驅動電路用之TFT之步驟。 如圖7 ( a )所示,對於基材1 2 1必要時,可以TE〇S ( 四乙氧基矽烷)或氧氣體等爲原料,利用電漿CVD法形 成由厚度約200〜500nm之氧化矽膜所構成之底層保護層 20 1。除氧化矽膜外,也可設置氮化矽膜或氧化矽氮化膜 之底層保護層。 其次將基材121之溫度設定爲約350 □,底層保護層之 表面上使用電漿CVD法或ICVD法形成由厚度約30〜70nm 之非晶矽膜所構成之半導體膜200。半導體膜200不限定爲 非晶砂膜,只要含有微結晶半導體膜等之非晶質結構之半 導體膜即可。也可爲含有非晶矽鍺膜等之非晶質結構之化 合物半導體膜。 接著對於此半導體膜200進行雷射退火或急速加熱法 (燈退火法或熱退火法等)等之結晶化步驟,使半導體膜 200轉變成多晶矽膜。雷射退火法係使用例如準分子雷射 ,光束長度爲4〇〇mm之直線光束,其輸出強度例如爲 200ml/cm2。也可使用Yag雷射之第2高次諧波或第3高次 -24- (21) 1259575 諧波。對於相當於直線光束短方向之雷射強度峰値之90% 的部分,進行直線光束掃描,使各區域重疊掃描。 其次如圖7 ( b )所示,藉由使用微影法等之形成圖案 去除半導體膜(多晶矽膜)200之不需要的部份,形成對 應於TFT之各形成區域之島狀之半導體膜202、203、204 、205 〇 接著以TEOS或氧氣體等爲原料,利用電漿CVD法形 成半導體膜200,以覆蓋由厚度約60〜150nm之氧化矽膜 或氮化矽膜(氧化矽氮化膜)所構成之閘絕緣膜220。閘 絕緣膜220可爲單層結構或多層結構。不限於電漿CVD法 ,也可使用熱氧化法等其他方法。利用熱氧化法形成閘絕 緣膜220時,也進行半導體膜200之結晶化,可使這些半導 體膜轉變成多晶矽膜。 如圖7 ( c )所示,閘絕緣膜220之全面上形成摻雜矽 、氧化矽膜或包含鋁、鉅、鉬、鈦、鎢等金屬之閘電極形 成用導電膜221。此導電膜221之表面形成圖案用光罩222 ,此狀態下形成圖案,如圖7 ( d )所示,在形成P型之驅 動電路用電晶體之側形成聞電極2 2 3。此時N型之像素電極 用電晶體及N型之驅動電路用電晶體之側,其閘電極形成 用導電膜221係以形成圖案用光罩222覆蓋,因此閘電極形 成用導電膜221未形成圖案。閘電極可爲單層之導電膜或 爲層合結構。1259575 (1) Field of the Invention The present invention relates to an electronic device such as an optoelectronic device or a semiconductor device, which can be applied to a wiring board of an electronic device and to an optoelectronic device electronic device of the display device. [Prior Art] The display device includes, for example, a liquid crystal display device including a liquid crystal element, an organic electroluminescence (hereinafter referred to as an organic EL) element, or an organic EL display device. In particular, the organic EL display device is excellent in display performance due to high luminance, self-luminescence, DC low voltage driving, high-speed response, and the like. Further, the display device can be made thinner, lighter, and lower in power consumption (see, for example, Patent Document 1). [Patent Document 1] International Publication No. WO9 8/3 6406. [Embodiment] [Problem to be Solved by the Invention] It is known that an optoelectronic device causes an error in data rewriting due to parasitic capacitance generated in a wiring closet. This inter-wiring capacitance is increased depending on the length of the wiring and the like as the wiring lengthens. Therefore, for example, when a photovoltaic device is used as the display device, it is a cause of hindering the formation of a large screen. In recent years, semiconductor devices such as memories have been required to be highly integrated. At the same time, the operation speed is increased, and thus the capacitance generated between the conductive portions of the wiring or the like becomes a problem. -5- (2) 1259575 The present invention has been made in view of the above problems, and an object of the present invention is to provide a photovoltaic substrate having a stable performance, and a photovoltaic device which can achieve a large screen and can stably operate over a long period of time. And an electronic device using the same [method for solving the problem] In order to achieve the above object, a wiring board according to a first aspect of the present invention includes a substrate including a wiring; and a member having a dielectric constant of 4 or less disposed on a surface of the substrate; The upper portion is provided with an area where the member is not formed. Usually, the dielectric film of the tantalum oxide film is 4. 2 or less, so the member has a low dielectric constant. According to the wiring board of the present invention, a member having a dielectric constant of 4 or less is disposed. For example, when a photovoltaic material is provided in a region where the member is not formed, and a conductive portion such as an electrode polymer is formed thereon, the cause can be reduced. The conductive portion and the parasitic capacitance generated by the wiring. A second wiring board according to the present invention includes a substrate including an insulating substrate and wiring, a member disposed on the upper surface of the substrate, and a region on which the member is not formed, and the wiring is disposed on the insulating substrate and the substrate. The dielectric constant of the member is lower than the dielectric constant of the insulating substrate. When the insulating substrate is used for a display device or the like, it is preferable to use glass, quartz or the like as the insulating substrate. In this case, the dielectric constant of the member is preferably 4 or less. In the above wiring board, the dielectric constant of the member is 3 or less, more preferably 2. 5 or less. A plurality of such areas may be provided on the base surface. In the above wiring board, for example, when the substrate contains an active element, the parasitic -6 - (3) 1259575 has a reduced capacity 'the active element can be activated by a higher frequency or high speed driving signal. The active element is, for example, a semiconductor element such as a transistor or a double terminal element such as ΜίΜ. In the above wiring board, the member is, for example, a cerium oxide-containing glass, an alkyl oxy-oxygen polymer, a courtyard sesquioxide compound, a hydrogenated alkyl sesquioxane polymer, or a polyaryl ether. A spin-on glass film, a diamond film, a fluorinated amorphous carbon film, and the like. Wherein the member may be composed of a porous material. Specifically, it is an aerosol, a gel in which fine particles of porous cerium oxide or magnesium fluoride are dispersed, a fluorine-based polymer, a porous polymer, and a fine particle in a predetermined material. The electronic device of the present invention is characterized in that a functional film is disposed corresponding to the region of the wiring substrate described above. In the above electronic device, the member having a lower dielectric constant is disposed between the functional films, so that the parasitic capacitance generated between the functional films can be reduced. In the above electronic device, when a conductive film such as an electrode is disposed above the functional film, the wiring and the electrode are separated by the member, so that the parasitic capacitance generated between the wiring and the electrode can be reduced. In particular, when the wiring is supplied with a signal, problems such as signal delay and inaccurate sound can be reduced. The material for forming the conductive film is, for example, an organic conductive material, an inorganic conductive material (metal or the like), a mixture containing the same, and the like. In the above electronic device, it is not limited to the case where all of the members are disposed around the functional film. A photovoltaic device according to a first aspect of the present invention, comprising: a substrate comprising an insulating (4) 1259575 substrate and wiring; a plurality of pixel electrodes disposed on the substrate; a counter electrode disposed above the pixel electrode; a functional film disposed on the photovoltaic material between the plurality of pixel electrodes and the opposite electrode; a member disposed around the functional film and disposed between the opposite electrode and the upper surface; dielectric of the member The rate is lower than the dielectric ratio of the insulating substrate. In the above photovoltaic device, it is preferable to use glass or quartz as the insulating substrate. In this case, the dielectric constant of the member is preferably 4 or less. A photovoltaic device according to a second aspect of the present invention, comprising: a substrate including a wiring; a plurality of pixel electrodes disposed on the substrate; a counter electrode disposed above the pixel electrode; and a plurality of a functional film of a photovoltaic material between the pixel electrode and the counter electrode; a member disposed around the functional film and disposed between the counter electrode and the upper surface; the dielectric constant of the member is 4 or less. In the above photovoltaic device, the dielectric constant of the member is desirably 3 or less or 2. 5 below. The above photoelectric material may be, for example, a material for an organic EL element, a liquid crystal element, an electrophoretic element, or a material for releasing an electronic element. In the above photovoltaic device, the base system further includes an active device connected to the pixel electrode, and the wiring may include a signal wiring for supplying a signal to the active device. The active device has, for example, a semiconductor element such as a transistor or a two-terminal element such as MIM. In the above photovoltaic device, the member contains yttria glass, an alkyl siloxane polymer, an alkyl sesquioxane polymer, a hydrogenated alkyl sesquiterpoxy-8 - (5) 1259575 alkyl polymer, and a poly Any of spin coating glass films, diamond films, and fluorinated amorphous carbon films of the aryl ether. The member may be composed of a porous material. Specifically, the member is an aerosol, a gel in which porous cerium oxide or a fluorinated fine particle is dispersed, a fluorine-based polymer, a porous polymer, and a fine particle in a predetermined material. In the above light: in the electric device, a barrier layer for suppressing the penetration of the substance may be disposed between the member and the active member. When the member is used as a material having a low dielectric constant, the low dielectric material is generally a porous material or a low-density material, and therefore, a substance such as metal or oxygen is easily penetrated, and a substance that penetrates sometimes generates an active material. Problems such as deterioration of components or corrosion such as wiring. By providing the barrier layer between the member and the active member, it is possible to suppress penetration of a substance which causes an important cause such as deterioration or corrosion. At least a portion of the member is covered with a protective layer that prevents material from passing therethrough. The substance valley easily penetrates the above member, and therefore, at least a part of the member is covered with the protective film, and the diffusion of the substance through the member can be suppressed. Thereby, the wiring or active components inside the photovoltaic device can be reduced or deteriorated. Low dielectric constant materials are generally most fragile mechanically, and the protective film on the member has the effect of reinforcing mechanical properties. The electronic device of the present invention is characterized in that the electronic device is used as a display means. The electronic device according to the present invention reduces parasitic capacitance, for example, has a good compliance and stable display action for high frequency or high speed input signals. -9 - (6) 1259575 Embodiments of the Invention The present invention will be described in detail below. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a cross-sectional structure of a photovoltaic device and a substrate of the present invention. The symbol 10 is a photovoltaic device, and the reference numeral 11 is a wiring substrate. The wiring board 11 is composed of a multi-layer wiring type including an active device 16 such as a thin film transistor (TFT) which is provided on the substrate 15, and an insulating layer. The photovoltaic device 1 is provided with a plurality of light-emitting regions 含有7 including a light-emitting layer of a functional film on the wiring substrate 1, and its light-emitting state is controlled by an active device 16. The interface of the plurality of light-emitting regions 丨7 is provided as a partition member (banking) 18 of the insulating layer. The photovoltaic device of the present invention is characterized in that the low dielectric material forms the spacer member 18. Forming the partition member 8 with a low dielectric material can reduce the parasitic capacitance generated between the conductive portions of the wiring or the like. The dielectric constant (specific dielectric ratio) of the low dielectric material is 4 or less, preferably 3 or less, more preferably 2 or less. In particular, the low dielectric constant material is composed of a porous material having a high porosity, and the low dielectric constant low dielectric constant material can be obtained. The method of forming the spacer member i 8 by using a low dielectric constant material, for example, by forming a layer using various methods such as CVD or CVD (chemical vapor deposition), and then forming a spacer of a predetermined shape by patterning such as etching or honing.丨 8. The low dielectric material may be, for example, a cerium oxide glass, an alkyl siloxane polymer, a sesquiterpene alkane polymer, a hydrogenated alkylsesquioxanes polymer, or a polyaryl ether. Spin-on glass film, diamond film and fluorinated non--10-(7) 1259575 crystalline carbon film. As the low dielectric constant material, for example, an aerosol, a gel in which fine particles of porous cerium oxide or magnesium fluoride are dispersed, a fluorine-based polymer, a porous polymer, and fine particles in a predetermined material can be used. For the aerosol, for example, a cerium oxide aerosol or an alumina-based aerosol can be used. The aerosol is a porous gel obtained by reacting a sol-gel of a cerium salt by a supercritical drying to obtain a porous body having a uniform ultrafine structure. The cerium oxide aerosol occupies more than 90% by volume of the pores, and the remainder is a material composed of tens of nanometers of fine Si 〇 2 particles condensed into dendrites. Changing the porosity adjusts the dielectric. a cerium oxide aerosol is a step of producing a wet gel by a sol-gel method; a step of curing the wet gel; and a supercritical drying step of drying the wet gel by a supercritical drying method to obtain a cerium oxide aerosol . The supercritical drying method is applied to a method in which a liquid in a jelly-like gel material formed by a solid phase and a liquid phase is replaced by a supercritical fluid, and the gel is dried in a state where the gel does not shrink, and the method can be dried. A high porosity aerosol is obtained. When the above-mentioned spin-on glass film is formed, the above-described supercritical drying method can also be used. The supercritical drying method can improve the coating property or the film quality. When the partition member 18 is formed of cerium oxide aerosol, the wet gel is applied onto the substrate by spin coating, and then supercritical drying is carried out, and the synthetic resin (organic matter) may be mixed in the wet gel. The synthetic resin at this time is a synthetic resin whose thermal reforming temperature is higher than the critical temperature of the supercritical fluid. For example, when the alcohol is used, the supercritical fluid n has a thermal reforming temperature higher than the critical temperature of the alcohol, such as hydroxypropylcellulose (HPC), polyvinyl butyral (PVB), and B-11. (8) 1259575 Cellulose (EC), etc. (Also, PVB and EC are soluble in alcohol and insoluble in water). When ether is used as the solvent, it is preferred to select a chlorine-based polyethylene or the like as the resin, and when C〇2 is used as the solvent, HPC or the like is preferably selected. The porous cerium oxide (having a porous Si〇2 film) is formed by a plasma CVD method (plasma chemical vapor phase growth method), and a reaction gas of SiH4 & N2 。 can be used. A porous Si 2 film was formed on the 3 丨〇 2 film. The Si〇2 film is formed by an atmospheric pressure CVD method (atmospheric pressure chemical vapor growth method) using a reaction gas containing TEOS (tetraethoxysilane) and oxygen (〇2) and a low concentration of ruthenium 3 (ozone). . Here, the low concentration of 〇3 means 〇3 which is lower than the concentration required for the oxidation of TEOS described above. The fluorine-based polymer or a material containing the same may be, for example, a perfluoroalkyl-polyether, a perfluoroalkylamine, or a perfluoroalkylpolyether-perfluoroalkylamine mixed film, etc., or may be a predetermined polymerization. A soluble or dispersible fluorocarbon compound is mixed in the binder. The polymer binder is, for example, polyvinyl alcohol, polyacrylic acid, polyvinyl pyrrolidone, sodium polyvinyl sulfonate, polyvinyl methyl ether, polyethylene glycol, poly alpha trifluoromethacrylic acid, polyvinyl Methyl ether-maleic anhydride copolymer, polyethylene glycol-propylene glycol copolymer, polymethacrylic acid, and the like. Further, the fluorocarbon compound is, for example, perfluorooctanoic acid-ammonium salt, perfluorooctanoic acid-tetramethylammonium salt, C7 and CIO perfluoroalkanesulfonate ammonium salt, C7 and CIO perfluoroalkanesulfonic acid tetramethylammonium salt, fluorinated alkyl group. A quaternary ammonium salt of quaternary ammonium iodide, perfluoroadipate and perfluoroadipate. Low dielectric materials use microparticles to form voids in the micropores between the microparticles or within the microparticles 12-1259575. The fine particles may use inorganic fine particles or organic fine particles. The inorganic fine particles are preferably amorphous. The inorganic fine particles are preferably composed of an oxide, a nitride, a sulfide or a halide of a metal, preferably a metal oxide or a metal halide, and most preferably a metal oxide or a metal fluoride. good. The metal atom is desirably Na, K, Mg, Ca, Ba, A1, Zn, Fe, Cu 'Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, T a 'Ag, Si, B , Bi, Mo, Ce, Cd' Be, Pb and Ni are more preferably Mg, Ca, B and Si. Inorganic compounds containing two metals can also be used. A particularly desirable inorganic compound is cerium oxide, which is cerium oxide. For example, micropores in the inorganic fine particles can be formed by crosslinking the cerium oxide molecules forming the particles. When the cerium oxide molecules are crosslinked, the volume is reduced and the particles become porous. The sol-gel method (described in Japanese Unexamined-Japanese-Patent No. 5 3 - 1 1 2732, JP-A-57-9051, etc.) or the precipitation method (APLIED OPTICS, 27, 3356 (1 9 8 8)) The (porous) inorganic fine particle dispersion having micropores can be directly synthesized. Further, the powder obtained by the dry precipitation method can be mechanically pulverized to obtain a dispersion. Commercially available porous inorganic fine particles (e.g., cerium oxide sol) can also be used. The inorganic fine particles having microvoids can be used in a state of being dispersed in a suitable medium. The dispersion medium is desirably water, an alcohol (e.g., methanol, ethanol, isopropanol) and a ketone (e.g., methyl ethyl ketone 'methyl isobutyl ketone). For example, the microparticles in the organic microparticles are formed by crosslinking the polymer forming the particles. When the polymer is crosslinked, the volume is reduced and the particles become porous. In order to cause cross-linking of the polymer forming the particles, it is preferred that the monomer of the synthetic polymer is 20 mol% or more as a polyfunctional monomer. The ratio of -13-(10) 1259575 of the polyfunctional monomer is desirably from 30 to 80 mol%, most preferably from 35 to 50 mol%. The polyfunctional monomer includes, for example, a diene (e.g., butadiene, pentadiene), an ester of a polyhydric alcohol and an acrylic acid (e.g., ethylene glycol diacrylate, 1,4-cyclohexyl methacrylate, /, C). An acid ester of dioctaerythritol succinate, a polyol and a methacrylic acid ester (for example, ethylene glycol dimethacrylate, 1,2,4-monohexane tetramethacrylate, pentaerythritol tetramethacrylate), divinyl Compounds (e.g., divinylcyclohexane, 1,4-divinylbenzene), divinylsulphate, bisacrylamides (e.g., methyl bis acrylamide), and bis methacrylamide. Microparticles between the particles can be formed by depositing at least two or more fine particles. A material having fine pores and particulate inorganic substances can also be used as the low dielectric material. In this case, after the above-mentioned material layer is formed by coating, an activation gas treatment is performed to separate the gas from the layer to form fine pores. Alternatively, two or more kinds of ultrafine particles (for example, MgF2 and Si〇2) may be mixed. At this time, the SiO2 generated by the thermal decomposition of ethyl citrate bonds the ultrafine particles. The thermal decomposition of ethyl phthalate produces carbon dioxide and water vapor by combustion of the ethyl moiety. Carbon dioxide and water vapor are separated from the layer, creating a gap between the ultrafine particles. Alternatively, the inorganic fine powder composed of porous cerium oxide and the binder may form a layer, or two or more fine particles composed of a fluoropolymer may be deposited, and a pore-generating layer may be formed between the fine particles. The low dielectric material may use a substance having a molecular structure grade 'and an increase in porosity, such as a polymer having a branched structure such as a net dendrimer. It is desirable to provide a barrier layer 20 between the partition member 18 and the active element 16 to prevent the metal -14-(11) 1259575 from passing therethrough. Since the partition member 18 formed of a low dielectric material is mostly composed of a porous material, a substance such as metal easily passes through the metal which enters the active element 16 through the metal of the partition member 18, and sometimes is actively activated by a chemical reaction. Element 16 is degraded. Providing the above-described barrier layer 20 between the partition member 18 and the active element 16 suppresses degradation of the active element 16 and suppresses degradation of element performance. The material for forming the barrier layer 20 may be, for example, a ceramic or a compound containing tantalum nitride, tantalum oxynitride, tantalum oxide or the like, or a material having an exothermic effect such as a nitride of aluminum or a carbide of tantalum. Boron nitride, boron dish, etc. The barrier layer 20 has a metal barrier and an exothermic effect, thereby reducing the influence of heat shrinkage of the partition member 18 composed of a low dielectric material. For example, one type containing a rare earth element (selected from Ce (钸), Yb (mirror), Sm (钐), Er (bait), Y (钇), La (镧), Gd (釓), Dy (镝) can be used. ), a material of at least one of Nd (ammonium), and a material of nitrogen, helium, aluminum, and oxygen. A layer having conductivity such as titanium nitride or tantalum nitride can also be formed. When the conductive barrier layer 20 is formed, the thickness or shape of the barrier layer is determined in order to prevent the effective wiring resistance from rising. At least a part of the partition member 18 composed of the above materials is preferably covered with a protective film 21 which can prevent a substance such as a liquid or a gas or a metal from passing therethrough. The partition member 18 formed of a low dielectric material is easily invaded by a substance, and therefore, in the manufacturing process or the like, the intrusion of the substance sometimes causes a decrease in the dielectric property of the partition member 18. At least a portion of the partition member 18 is covered with the protective film 2 1 to maintain the low dielectric property of the partition member 18, and the wiring has a low capacity of -15-(12) 1259575. In general, the low dielectric constant material is mechanically weak, but the above protective film 21 has an effect of reinforcing mechanical properties. The diffusion of the substance via the partition member i 8 can be suppressed, so that it is possible to prevent the other material from being affected by the substance of the partition member 18. The material for forming the protective film 21 is, for example, ceramic or contains tantalum nitride, tantalum oxynitride, tantalum oxide or the like. When a film is formed on the corner of the partition member 18, a highly flexible inorganic polymer or an organic polymer or the like can be used in addition to the inorganic spin-on glass system, the organic spin-on glass system, and the PSG (phosphor glass). When the film of the spin-on glass system is formed, the above-described supercritical drying method can be used. The supercritical drying method can improve the coating property and the film quality. The protective film 21 composed of the above materials can be formed by various coating methods such as spin coating, dipping coating, dispersion coating, and reflow. The protective film 21 may be a single layer structure or a multilayer structure. A protective film 21 may be formed instead of the above-described barrier layer 20. In other words, including the side facing the active element 16 and covering the partition member 18 with the barrier layer 20, the barrier layer 20 can be omitted. At this time, the protective film 2 can be formed using the forming material of the barrier layer 20 described above. The photovoltaic device 10 of the present invention is formed by forming the partition member 18 with a low dielectric material to reduce the parasitic capacitance generated between the conductive portions. Improve the speed of the action. When the operation speed is high, the parasitic capacitance and the impedance of the wiring must be considered, and the overall design of the wiring structure is required. The wiring substrate 11 of the present invention also includes a case where a low dielectric material is used for the other portions than the partition member. Next, an embodiment of an active matrix type display device using the EL device having the -16 - (13) 1259575 EL element will be described. In the drawings, the layers or members are formed into layers or members in order to be able to see the size of the elements on the drawing, and thus the ratio is sometimes different from the actual items. Fig. 2 is a schematic view showing the configuration of an organic EL display device according to an embodiment of the present invention. The organic EL display device 100 is an active type driving method using a TFT active element. The display device 100 sequentially laminates the active device portion 146 including the TFT active device, the organic EL device 140 including the functional film such as the light-emitting layer, the hole transport layer, and the electron transport layer, the cathode 154, and the package on the substrate 121. The structure of the department 147 and the like. Substrate 1 2 1 A glass substrate can be used in this example. Further, various known substrates used for photovoltaic devices such as a ruthenium substrate, a quartz substrate, a ceramic substrate, a metal substrate, a plastic substrate, and a plastic film substrate, or a wiring substrate can be used. The plurality of pixel regions 102 on the light-emitting region of the substrate 121 are arranged in a matrix, and in the case of color display, for example, the pixel regions 102 corresponding to the respective colors of red, green, and blue are arranged in a predetermined arrangement. The pixel electrode 141 is disposed in each of the pixel regions 102, and a signal line 1 3 2 'common power supply line 133, a scanning line 133, and other pixel electrode scanning lines having no pattern are disposed in the vicinity thereof. The planar shape of the pixel region 102 may be other shapes such as a circle or an oblong shape in addition to the rectangular shape shown. For example, when a charge transport layer constituting a light-emitting layer, a hole transport layer, and an electron transport layer of an organic EL element is formed by a liquid phase process such as an inkjet method, in order to uniformly form the layer above the pixel electrode, it is preferably a circle without a corner. A pixel electrode having a shape or a shape such as an oblong shape is preferable. -17- (14) 1259575 戈衣衣p卩147 prevents water or oxygen from intruding and prevents oxidation of the cathode 154 or the organic EL element 140, including the encapsulating resin applied to the substrate ι21 and being bonded to the substrate. A package substrate (square can) 148 or the like on 121. As the material of the encapsulating resin, for example, a thermosetting resin or an ultraviolet curing resin can be used, and an epoxy resin which is one of hardening resins is particularly preferable. The package substrate 148 is made of glass or metal. The substrate 1 2 1 and the package substrate 148 are adhered by a sealant. A desiccant is disposed on the inner side of the substrate 1 2 1 , and a space formed therebetween forms an N 2 gas filling layer 49 filled with N 2 gas. Fig. 3 is a view showing the circuit configuration of the device 1. In FIG. 3, a plurality of scanning lines 131 are disposed on the substrate 121, and a plurality of signal lines 132 extending in a direction intersecting the scanning lines 133, and a plurality of lines extending side by side with the signal lines 133 Wire 1 3 3. The pixel area 1 〇 2 is formed corresponding to each intersection of the scanning line 1 31 and the signal line 1 32. The signal line 1 32 is connected to a data side drive circuit 103 having, for example, a shift register, a level shifter, a video line, and an analog switch. The scanning line 133 is connected to the scanning side driving circuit 104 having a shift register and a level shifter. The pixel region 102 is provided with a first TFT 142 through which the scanning signal is supplied to the gate via the scanning line 131. The TFT 142 holds the holding capacity 145 of the image signal supplied from the signal line 132; when the image signal held by the holding capacity 145 is electrically connected to the common power supply line 133 by the second TFT 143 for driving the supply of the gate, The common power supply line 133 flows into the pixel electrode 141 (anode) of the drive current, and the organic EL element 140 sandwiched between the pixel electrode 141 and the counter electrode 154 (cathode). -18- (15) 1259575 The organic EL device 140 is a layer (functional film) of an organic EL material containing a photovoltaic material, and the organic EL device is composed of a pixel electrode 14 1 , a cathode 154 , an organic EL device 140, and the like. In the pixel region 102, when the scanning line 13 1 is driven and the first TFT 142 is turned on, the potential of the signal line 132 is maintained at the holding capacity 145, and the conduction of the second TFT 143 is determined in accordance with the state of the holding capacity 145. status. The amount of current in accordance with the on state of the converter TFT 1 43 is supplied to the organic EL element 1400 via the common power supply line 13 3 . The luminous intensity of the organic EL element 140 is determined in accordance with the amount of current supplied at this time. When the emitted light (top emission type) is taken out from the opposite side to the substrate 2 on which the TFT 22 is provided, the substrate 2 may be opaque. In this case, it can be used for a metal sheet such as ceramics such as aluminum oxide or stainless steel. An insulating treatment such as surface oxidation or the like, a thermosetting resin, a thermoplastic resin or the like is applied thereto. 4(a) and 4(b) are schematic diagrams showing the cross-sectional structure of the pixel region 102 of the organic EL device, wherein (a) is a tip end type and (b) is a back side type. In Fig. 4 (a), the top emission type organic EL device has a configuration in which the light emitted from the organic EL element 140 is radiated from the other side of the substrate 121 on which the TFT 143 is provided. It can therefore be transparent or opaque. The opaque substrate may be an insulating treatment such as surface oxidation or the like on a ceramic such as alumina or a metal plate such as stainless steel, and the like may be a thermosetting resin or a thermoplastic resin. The pixel electrode 丨4 1 is preferably formed of a reflective film such as a metal film. In Figs. 4(a) and (b), in this example, the pixel electrode 141 is used as the anode and the counter electrode 154 is used as the cathode, but the anode is interchangeable with the cathode -19-(16) 1259575. In the back emission type organic EL device of Fig. 4 (b), the light emitted from the organic EL element 140 is radiated from the side of the substrate 121 on which the TFT 143 is provided. Therefore, the substrate 121 can use a transparent or opaque substrate. For the transparent or opaque substrate, for example, a glass substrate, a quartz substrate, a resin substrate (plastic substrate, plastic film substrate), or the like can be used, and it is particularly preferable to use inexpensive soda lime glass. When soda-lime glass is used, the cerium oxide is coated on the glass to protect the soda-lime glass which is less resistant to weak alkali, and also has an effect of improving the flatness of the substrate. A filter film or a color conversion film ‘or a dielectric reflection film containing a luminescent substance is disposed on the substrate to control the wavelength of the emitted light. Symbol 281 is a partition member (arrangement) provided at the interface of the pixel region 102. The partition member 281 has a function of preventing the materials of the adjacent organic EL elements 140 from being mixed with each other or the like when the organic EL element 140 is formed. The partition member 281 of this figure has a conical structure whose top side length is smaller than the bottom side, but may also have a structure in which the top side length is greater than or equal to the bottom side. The back-radiation type organic EL device is configured by the light-emitting light of the radiation-emitting layer on the substrate 1 211 side of the TFT 143. Therefore, the light emission efficiency is improved, and the TFT 143 is prevented from being disposed directly under the organic EL element 140, and the TFT 143 can be disposed. It is disposed under the partition member 281. Fig. 5 is a view showing an example of a configuration of a planar structure of the partition member 281. The partition member 281 is located at the interface of the plurality of pixel regions 1 〇 2, corresponds to the arrangement of the plurality of pixel regions 110, and has an opening. In Fig. 5(a), the partition member 28 1 is arranged in a lattice shape corresponding to a plurality of pixel regions 102 of -20-(17) 1259575 arranged in a matrix. The spacer member 281 in Fig. 5(b) is provided in a strip shape corresponding to a plurality of pixel regions 1 0 2 arranged in a long strip shape. In this example, the partition member 281 is composed of a lattice-like planar structure as shown in Fig. 5(a). The arrangement of the pixel regions 102 and the planar shape of the partition member 281 are not limited to these shapes, and may be, for example, a shape of a pixel region of a so-called five arrangement in which the arrangement of each row is shifted. The shape of the partition member 281 can also be determined in accordance with the shape of the pixel electrode 154 shown in Fig. 2 . For example, when the pixel electrode has a shape without a corner or a long circle, the partition member 281 may have a shape without a corner. Fig. 6 is an enlarged sectional view showing the structure of the top-radiation type organic EL device. In Fig. 6, the organic EL device has a substrate 121; a pixel electrode 141 (anode) composed of a transparent electrode material such as indium tin oxide (ITO); and a hole transport layer capable of transmitting a hole by the pixel electrode 14 1 2 8 5 ; a light-emitting layer 286 (organic EL layer) of an organic EL material containing one of the photoelectric substances; an electron transport layer 287 disposed on the upper surface of the light-emitting layer 286; and a cathode 154 disposed on the upper surface of the electron transport layer 287 (opposite) Electrode); TFT 142 and TFT 143 formed on the substrate 121. The cathode 154 covers the entire element and is paired with the pixel electrode 141, and has a function of injecting electrons into the organic EL element 140. This cathode 154 can be a single layer structure or a multilayer structure. The material for forming the cathode 154 is, for example, aluminum (A1), magnesium (Mg), gold (A u ), silver (A g ), calcium (ca), lithium fluoride or the like. These materials may be used singly or as a laminate film or alloy of these monomer materials. -21 - (18) 1259575 TFT142 and TFT143 In this example, both form an n-channel type. Both of the TFT 142 and the TFT 143 are not limited to forming an n-channel type TFT, and a P-channel type TFT can also be used for either or both of them. The TFT 142 and the TFT 143 are provided on the surface of the substrate 121 via the underlying protective layer 201 mainly composed of Si 〇 2, and the semiconductor films 204 and 205 formed of ruthenium or the like formed by the upper layer of the underlying protective layer 201; the semiconductor film 204 is covered, 205, and is disposed on the gate insulating film 220 of the upper layer of the underlying protective layer 201; above the gate insulating layer 220, wherein the gate electrodes 229, 230 are disposed opposite to the semiconductor films 204, 205; the gate electrode 229 is covered, And a first interlayer insulating layer 250 disposed on the upper layer of the gate insulating film 220; and a source connected to the semiconductor films 204 and 205 via via holes penetrating through the gate insulating film 220 and the first interlayer insulating film 250; The electrodes 262 and 263 are disposed opposite to the source electrodes 262 and 263, and pass through the vias through the gate insulating layer 220 and the opening of the first interlayer insulating film 25 0, and the semiconductor. The drain electrodes 2 65 and 2 66 to which the films 204 and 205 are connected are provided, and the second interlayer insulating film 270 which covers the source electrodes 262 and 263 and the drain electrodes 265 and 266 is provided on the first interlayer insulating film 250. In the case of the top emission type, the second interlayer insulating film 270 is preferably a flat film. Thereby, the disordered reflection of light can be suppressed. The pixel electrode 141 is disposed on the upper surface of the second interlayer insulating film 270, and the pixel electrode 141 and the drain electrode 266 are connected via a via hole 275 provided in the second interlayer insulating film 270. When the materials of the first interlayer insulating film 250 and the second interlayer insulating film 270 are different from each other, the through holes and the -22-(19) 1259575 are placed in the second interlayer insulation as shown in the figure. The via holes 27 5 of the film 270 do not overlap each other in the preferred semiconductor films 204 and 205, next to the gate insulating film 220, and the regions overlapping the gate electrodes 229 and 230 are the channel regions 246 and 247. In the semiconductor films 204, 205, the source regions 2 3 3, 23 6 are disposed on the source sides of the channel regions 246, 247, and the drain regions 2 34, 23 5 are disposed on the drain sides of the channel regions 246, 247. The source regions 233 and 236 are connected to the source electrodes 262 and 263 via via holes penetrating the openings of the gate insulating film 220 and the first interlayer insulating film 250. The drain regions 234 and 235 are via holes penetrating through the openings of the gate insulating film 208 and the first interlayer insulating film 250, and are connected to the drain electrodes 265 and 266 formed in the same layer as the source electrodes 262 and 263. The pixel electrode 141 is connected to the drain electrode region 2 3 5 of the semiconductor film 205 via the drain electrode 266. A surface of the second interlayer insulating film 270 is formed as a third insulating layer spacer member 28 1 between a portion other than the organic EL device and the cathode 1 54 and a low dielectric material such as the above-described cerium oxide aerosol. The partition member 281 is formed of a low dielectric material, so that the parasitic capacity can be suppressed. A barrier layer 271 made of tantalum nitride, hafnium oxynitride, or titanium nitride, nitrided or the like may be disposed between the partition member 281 and the second interlayer insulating film 270. This barrier layer 271 has a function of preventing metal (for example, movable ions) passing through the partition member 281 from intruding into the TFT 142 and the TFT 143. The side surface and the upper surface of the partition member 28 1 are covered with a protective film 272 composed of an inorganic polymer or an organic polymer or the like. The protective film 27 2 prevents substances such as liquid or gas or metal from intruding into the partition member 281. With this protection -23-(20) 1259575 film 272 can suppress the diffusion of substances through the partition member 281. In the partition member 281, the area covered with the protective film 272 is not limited to the one shown, for example, the entire surface of the partition member 281 may be covered by the protective film 272. Next, an embodiment of a method for manufacturing a photovoltaic device according to the present invention (including a method of manufacturing a wiring substrate) for manufacturing a display device including the above-described organic EL device will be described with reference to Figs. Here, a description will be given of a step of manufacturing an organic EL device including the TFT 142 and the TFT 143 described above and simultaneously manufacturing TFTs for N-type and P-type driving circuits. As shown in Fig. 7 (a), for the substrate 1 2 1 , if necessary, TE 〇 S (tetraethoxy decane) or oxygen gas may be used as a raw material to form an oxide having a thickness of about 200 to 500 nm by a plasma CVD method. The underlying protective layer 20 1 composed of a ruthenium film. In addition to the hafnium oxide film, an underlying protective layer of a tantalum nitride film or a hafnium oxide nitride film may be provided. Next, the temperature of the substrate 121 is set to about 350 Å, and a semiconductor film 200 composed of an amorphous germanium film having a thickness of about 30 to 70 nm is formed on the surface of the underlying protective layer by a plasma CVD method or an ICVD method. The semiconductor film 200 is not limited to an amorphous sand film, and may be a semiconductor film having an amorphous structure such as a microcrystalline semiconductor film. A compound semiconductor film containing an amorphous structure such as an amorphous germanium film may also be used. Next, the semiconductor film 200 is subjected to a crystallization step such as laser annealing or rapid heating (lamp annealing or thermal annealing) to convert the semiconductor film 200 into a polycrystalline germanium film. The laser annealing method uses, for example, a quasi-molecular laser beam having a beam length of 4 mm and an output intensity of, for example, 200 ml/cm2. You can also use the 2nd harmonic of the Yag laser or the 3rd highest -24- (21) 1259575 harmonic. For a portion corresponding to 90% of the peak intensity of the laser beam in the short direction of the straight beam, a straight beam is scanned to superimpose each region. Next, as shown in Fig. 7 (b), an unnecessary portion of the semiconductor film (polysilicon film) 200 is removed by patterning using a lithography method or the like to form an island-shaped semiconductor film 202 corresponding to each of the formation regions of the TFT. 203, 204, 205 〇 Next, a semiconductor film 200 is formed by plasma CVD using TEOS or an oxygen gas as a raw material to cover a yttrium oxide film or a tantalum nitride film (yttrium oxide nitride film) having a thickness of about 60 to 150 nm. The gate insulating film 220 is formed. The gate insulating film 220 may be a single layer structure or a multilayer structure. It is not limited to the plasma CVD method, and other methods such as thermal oxidation may be used. When the gate insulating film 220 is formed by the thermal oxidation method, the semiconductor film 200 is also crystallized, and these semiconductor films can be converted into a polycrystalline germanium film. As shown in Fig. 7 (c), the gate insulating film 220 is formed with a conductive film 221 for forming a gate electrode doped with yttrium, yttrium oxide or a metal such as aluminum, giant, molybdenum, titanium or tungsten. The surface of the conductive film 221 is formed with a mask 222 for patterning, and a pattern is formed in this state. As shown in Fig. 7 (d), the electrode 2 2 3 is formed on the side of the transistor for forming a P-type driving circuit. At this time, the N-type pixel electrode transistor and the N-type drive circuit transistor are on the side, and the gate electrode formation conductive film 221 is covered with the pattern mask 222, so that the gate electrode formation conductive film 221 is not formed. pattern. The gate electrode may be a single layer of a conductive film or a laminated structure.

如圖7 ( e )所示,以殘留於p型之驅動電路用電晶體 之閘電極223與N型之像素電極用電晶體所形成之區域及N -25- (22) 1259575 型之驅動電路用電晶體所形成之區域之閘電極形成用導電 膜221作爲光罩,注入p型雜質元素(本例爲硼)離子。摻 雜量爲例如約lx 1015cm·2。結果在閘電極223上,自行整 合形成雜質濃度例如1 X 1 020cm_2之高濃度之源•漏區域 224、225。以閘電極223覆蓋,未被導入雜質之部份成爲 通道區域226。 如圖8(a)所示,形成完全覆蓋P型之驅動電路用電 晶體之側,且覆蓋N型之像素電極用TFT 10及N型之驅動電 路用電晶體之側之閘電極形成區域之光阻光罩等所構成之 圖案用光罩227。 如圖8 ( b )所示,使用圖案用光罩227,使閘電極形 成用導電膜221形成圖案,形成N型之像素電極用電晶體及 N型之驅動電路用電晶體之閘電極228、229、230。 接著留下圖案用光罩227,注入η型雜質元素(本例 爲磷)離子。摻雜量爲例如lx 101 5cm_2。結果雜質自行整 合被導入圖案用光罩227上,在半導體膜20 3、204、205中 形成高濃度之源·漏區域231、23 2、23 3、234、2 3 5、236 。半導體膜203、204、205中,未導入高濃度之磷的區域 大於以閘電極228、229、230覆蓋之區域。換言之,半導 體膜203、204、205中,與閘電極228、229、230相反側之 區域的兩側與高濃度之源·漏區域231、23 2、2 3 3、234、 2 3 5、236之間形成未被導入高濃度之磷的區域(後述之低 濃度之源•漏區域)。 接著去除圖案用光罩227,此狀態下注入η型雜質元 -26- (23) 1259575 素(本例爲磷)離子。摻雜量爲例如lx 1013cm·2。結果如 圖8 ( c )所示,半導體膜203、204、205中,閘電極228、 229、230上被導入低濃度之雜質,自行整合形成低濃度之 源·漏區域 237、238、239、240' 241、242。與閘電極 228 、229、230重疊之區域未導入雜質,形成通道區域245、 246 、 247 ° 如圖8 ( d )所示,閘電極228、229、230之表面側形 成第1層間絕緣層250,使用微影法等形成圖案,在所定之 源電極位置、漏電極位置形成通孔。第1層間絕緣層250可 使用例如氧化矽氮化膜或氧化矽膜等含矽之絕緣膜。可爲 單層或層合膜。在含有氫之氣氛中,進行熱處理使半導體 膜之不成對鍵結產生氫末端(氫化)。也可使用以電獎激 發之氫進行氫化。 接著其上使用鋁膜、鉻膜或鉅膜等金屬膜形成成爲源 電極、漏電極之導電膜25 1。此導電膜25 1之厚度例如爲 200nm〜300nm。導電膜可爲單層或層合膜。 接著在源電極、漏電極之位置形成圖案用光罩252, 同時進行圖案化,形成如圖8 ( e )所示之源電極260、261 、262、263 及漏電極 264、265、266 〇 如圖9 ( a )所示,形成由氮化矽所構成之第2層間絕 緣膜270。此第2層間絕緣膜270之厚度例如爲1〜2μιη。第2 層間絕緣膜2 7 0之形成材料例如可使用氧化砂膜或有機樹 脂等光可穿透之材料。有機樹脂可使用例如有丙烯酸、聚 醯亞胺、聚醯胺、BCB (苯並環丁烯)聚合物等。 -27- (24) 1259575 如圖9 ( b )所示’以蝕刻除去第2層間絕緣膜270,形 成可達漏電極266之通孔275。 如圖9 ( c )所示’例如形成由ITO或摻雜氟所成之 Si〇2、Zn〇或聚苯胺等之透明電極材料所構成之膜,並且 埋入通孔275內,形成以電連接源·漏區域235、236之像 素電極141。此像素電極141成爲有機EL元件之陽極。 如圖10 ( a )所示,形成阻隔層271。形成阻隔層271 之位置係後來形成分隔構件2 8 1之位置,與第2層間絕緣膜 270之像素電極141相鄰之位置。阻隔層271之材料可使用 例如氮化砂、氧化氮化砂、氮化駄、氮化鉬等。阻隔層 27 1之形成方法配合材料可適當選擇,例如可使用C VD法 、塗佈法、濺鍍法、蒸鍍法等。阻隔層271例如在第2層間 絕緣膜270極像素電極141之全面形成材料膜,然後該材料 膜可錯由微影法等可形成圖案。阻隔層2 7 1之開口部係對 應設置於像素電極141之形成位置。阻隔層271之一部分可 與像素電極141之周緣部重疊。 如圖9 ( b )所示,使用氧化矽氣溶膠、多孔質氧化矽 等之低介電率材料,在阻隔層27 1上形成分隔構件28 1。例 如使用氧化矽氣溶膠時,如前述經由溶膠-凝膠法製造濕 潤凝膠之步驟;使濕潤凝膠熟化之步驟;及以超臨界乾燥 法乾燥濕潤凝膠得到氣溶膠之超臨界乾燥步驟,在基材 1 2 1上形成氧化矽氣溶膠之層,然後,藉由蝕刻或硏磨等 形成圖案,可得到所定形狀之分隔構件28 1。形成圖案使 分隔構件281之底面在阻隔層271內較佳。 -28- (25) 1259575 如圖10(c)所示,使用無機聚合物或有機聚合物等 之材料形成保護膜272。此時形成保護膜272,以保護膜 27 2覆蓋分隔構件281之側面及上面。 可以僅局部塗佈分隔構件28 1或元件之全面形成被膜 後,以微影法等進行圖案化也可形成保護膜272。藉由此 保護膜2 7 2可補強分隔構件2 8 1之機械特性,同時也可在之 後的步驟防止物質侵入分隔構件281內。分隔構件281之底 面比阻隔層27 1窄時,分隔構件28 1之牆面全部被保護膜 272及阻隔層271覆蓋,有效防止物質侵入分隔構件281內 或經由分隔構件28 1之物質擴散。其次說明電洞輸送層之 形成材料等液狀材料配置於分隔構件28 1之開口位置時, 對於液狀材料具有斥液性或親液性之材質也可用於保護膜 272。或電漿處理等之表面處理對於液體材料具有所要之 親和性。藉由抑制保護膜對該液體材料之親和性,可容易 配置液體材料,或可提高該材料所形成之膜的平坦性。 如圖11 ( a)所示,形成電洞輸送層2 8 5覆蓋像素電極 141。電洞輸送層285之形成步驟係使用噴墨裝置吐出液滴 ’使形成材料吐出至像素電極141上。然後進行乾燥處理 及熱處理,在像素電極141上形成電洞輸送層285。使用噴 墨方式形成層係例如將噴墨頭之吐出噴嘴Η 1向著像素電 極1 4 1配置,由噴嘴Η 1吐出材料。像素電極1 4 1之周圍形 成像素電極1 4 1,使噴嘴Η 1與基材1 2 1在相對移動的狀態 下’將控制噴嘴Η 1每一滴之液量之材料吐出至像素電極 141 上。 -29- (26) 1259575 噴墨方式之吐出技術例如有帶電控制方式、加壓振動 方式、電氣機械轉換方式、電熱轉換方式、靜電吸引方式 等。靜電控制方式係以帶電電極將電荷賦予材料,以偏向 電極控制材料之行進方向,然後由噴嘴吐出者。加壓振動 方式係以30kg/cm之超局壓施加於材料,使噴嘴前端側吐 出材料,未施加控制電壓時,材料直行由噴嘴吐出,施加 控制電壓時’材料間產生靜電排斥,材料飛散未由噴嘴吐 出。電氣機械轉換方式係利用壓電元件接受脈衝電氣信號 產生變形的特性,利用壓電元件變形將壓力經由可撓物質 方也加於3丁存材料之空間,由此空間將材料押出,由噴嘴吐 出。電熱轉換方式係利用設置於貯存材料之空間內的加熱 器’使材料急速汽化產生氣泡,以氣泡之壓力將空間內的 材料吐出。靜電吸引方式係將微小壓力施加於貯存材料之 空間內,在噴嘴上形成材料之彎月面,此狀態下施加靜電 吸引取出材料。其他也可使用利用電場使流體產生粘性變 化的方式或以放電火花產生飛散之方式等的技術。 液滴吐出形成電洞輸送層285或下述之發光層286、電 子輸送層287時,使用電漿處理等預先進行像素電極丨41之 表面的親液性處理、分隔構件281之表面(保護膜272表面 )的潑液化處理較佳。 包括此電洞輸送層之形成步驟,在以下之步驟爲無水 及無氧氣氛較佳。例如可在氮氣氛,氬氣氛等惰性氣體氣 氛下進行。 電洞傳輸層2 8 5之形成材料無特別限定,可使用公知 -30- (27) 1259575 物,例如有吡唑啉衍生物、芳基胺衍生物、芪衍生物、三 苯二胺衍生物等。具體而言,例如有日本特開昭63_7〇257 號公報、63-175860號公報、特開平2-135359號公報、特開 平2- 1 3 5 3 6 1號公報、特開平2-2099 8 8號公報、特開平3_ 37992號公報、特開平3- 1 52 1 84號公報所記載者等,較理想 者爲三苯二胺衍生物,較佳者爲4,4,-雙(N(3 -甲基苯基 )-N-苯基胺基)聯苯。 也可形成電洞注入層取代電洞傳輸層,也可形成電洞 注入層及電洞傳輸層。此時電洞注入層之形成材料例如可 使用銅酞菁(CuPc)或聚四氫苯硫基苯撐之聚苯乙烯、1 ,1-雙(4- N, N -二甲苯基胺苯基)環己烷、三(8-羥 基喹啉酚)鋁等,特別理想爲使用銅酞菁(CuPc )。形成 電洞注入層及電洞傳輸層兩者時,例如在形成電洞傳輸層 前’在像素電極側先形成電洞注入層,其上再形成電洞傳 輸層較佳。如此形成電洞注入層及電洞傳輸層,可抑制驅 動電壓之上升’可延長驅動壽命(半減期)。 如圖11 ( b )所示’電洞傳輸層285上形成發光層286 。發光層2 8 6之形成步驟係與電洞傳輸層2 8 5相同,使用例 如噴墨裝置吐出液滴’使形成材料吐出至像素電極1 4丨上 。然後進行乾燥處理及熱處理,在像素電極1 4 1上形成發 光層286 °彩色對應時’以所定排形成與列如與藍色、紅 色及綠色各色對應之發光層286。 發光層2 8 6之形成材料無特別限定,可使用低分子之 有機發光色素或高分子發光體、換言之,可使用由各種螢 -31 - (28) 1259575 光物質或燐光物質所構成之發光物質。發光物質之共軛系 高分子中’含有伸芳基乙烯基結構者特別理想。低分子發 光體可使用例如萘衍生物、蒽衍生物、茈衍生物、聚甲川 系、咕噸系、香豆素系、花青系等之色素類、8_羥基喹啉 及其衍生物之金屬錯合物、芳香胺、四苯基環戊二烯衍生 物等,或日本特開昭5 7- 5 1 7 8 1、59- 1 94393號公報等所記載 之公知物。 如圖11 (c)所示,發光層286上形成電子傳輸層287 。電子傳輸層287之形成步驟係與電洞傳輸層285及發光層 2 8 6相同,使用例如噴墨裝置吐出液滴,使形成材料吐出 至像素電極1 4 1上。然後進行乾燥處理及熱處理,在像素 電極141上形成電子傳輸層287。 電子傳輸層287之形成材料無特別限定,例如有二噁 唑衍生物、蒽醌基二甲烷及其衍生物、苯醌及其衍生物、 萘醌及其衍生物、蒽醌及其衍生物、四氰基蒽醌基二甲院 及其衍生物、芴衍生物、二苯基二氰基乙烯及其衍生物、 二吩醌衍生物、8-羥基喹啉酚及其衍生物之金屬錯合物等 。具體而言,與先前之電洞傳輸層之形成材料相同,例如 有日本特開昭63-70257號公報、63- 1 75 860號公報、特開平 2-13 5 3 59號公報、特開平2-135361號公報、特開平2_ 2099 8 8號公報、特開平3- 37992號公報、特開平3· 1 52 1 84號 公報所記載者等,特別理想者爲2- ( 4-聯苯基)( 4_第 三丁基苯基)-1,3,4-二噁唑、苯醌、蒽醌、三(8^奎啉 酚)鋁。 -32- (29) 1259575 漿電洞傳輸層2 8 5之形成材料或電子傳輸層2 87之形成 材料與發光層286之形成材料混合,也可作爲發光層材料 使用。此時電洞傳輸層之形成材料或電子傳輸層之形成材 料之使用量係因使用之化合物的種類等而異,但是可在不 影響充分之成膜性與發光特性之量的範圍內,可適當決定 其使用量。通常,對於發光層形成材料時,使用1〜40重 量%,更理想爲2〜30重量%。 如圖11 (d)所示,在基材121之表面整體上或形成長 條之陰極154(對向電極)。陰極154係以 Al、Mg、Li、 Ca等之單體材料之單層結構或層合結構。或Mg: Ag( 10 :1合金)之合金材料之單層結構,或含有由合金材料所 構成之層合結構。具體而言例如有Li2〇(0.5nm ) /A1或 LiF ( 0.5nm) /Al、MgF2/Al之層合膜。例如接近發光層側 形成功函數較低之材料爲佳,可使用例如Ca、Ba等,又 因材料不同有時下層形成薄的LiF等較佳。上部側(封裝 側)可使用功函數較高之材料,例如A1。 陰極154例如可使用蒸鍍法、濺鍍法、CVD法等來形 成,特別是以蒸鍍法形成可防止因熱損傷發光層286。 陰極154之上部使用以蒸鍍法、濺鍍法、CVD法等所 形成之 A1膜、Ag膜等較佳。其厚度例如爲100〜lOOOnm ,更理想爲200〜500nm。陰極154上可設置Si〇2、SiN等 之保護膜防止氧化。 利用上述步驟完成有機EL裝置及N型及P型之驅動 電路用之TFT。然後藉由封裝樹脂封裝有機EL裝置所形 -33- (30) 1259575 成之基材1 2 1與封裝基版1 46 (參照圖6 )。封裝步驟係在 氮、氬、氨等之惰性氣體氣氛在進行較佳。若在大氣中封 裝時,若在陰極154產生針孔等之缺陷時,水或氧等可能 由此缺陷部分侵入陰極154,使陰極154氧化。 陰極154與基材121之配線連接,同時電路元件部146 (參照圖6 )之配線與設置於基材1 2 1或外部之驅動1C (驅 動電路),可得到本實施形態之顯示裝置1 00。 圖12係表示有機EL裝置之其他的型態例。 圖12所示之有機EL裝置係與上述例不同,具有遮斷 氣體或金屬離子侵入之封裝層(第1封裝層300、第2封裝 層301、第3封裝層302中之至少一層)。 第1封裝層300係在第1層間絕緣膜250與第2層間絕 緣膜270之間,覆蓋源電極262、263及漏電極265、266 。厚度例如爲50〜5OOnm。構成第1封裝層300之材料例 如可使用陶瓷、或氮化矽、氧化氮化矽、氧化矽等之 材料。第1封裝層300係防止水分或由發光層286 (EL層 )等之鹼金屬(鈉)侵入TFT 142、TFT 143。 構成第1封裝層300之材料例如可使用具有上述鹼 金屬之封裝效果及放熱效果的材料。這種材料例如有 含有選自B(硼)、C(碳)、N(氮)中之至少1種的元素,與 選自 A1(鋁)、Si(矽)、P(磷)中之至少1種的元素的絕緣 膜。例如可使用鋁之氮化物、矽之碳化物、硼之氮化 物、硼之磷化物等。也可使用含有Si、Al、N、〇、μ 之絕緣膜(但是Μ爲稀土元素中之至少1種,較理想爲 -34- (31) 1259575As shown in Fig. 7(e), the region formed by the gate electrode 223 of the p-type driver circuit transistor and the N-type pixel electrode transistor and the driving circuit of the N-25-(22) 1259575 type are shown. The gate electrode forming conductive film 221 in the region formed by the transistor is used as a photomask, and a p-type impurity element (in this example, boron) ions is implanted. The amount of the dopant is, for example, about lx 1015 cm·2. As a result, on the gate electrode 223, the source/drain regions 224 and 225 having a high concentration of impurities such as 1 X 1 020 cm 2 are formed by themselves. The portion covered with the gate electrode 223 and not introduced with impurities becomes the channel region 226. As shown in FIG. 8(a), the side of the transistor for completely covering the P-type driving circuit is formed, and the gate electrode forming region on the side of the N-type pixel electrode TFT 10 and the N-type driving circuit transistor is formed. A mask 227 for pattern formed by a photoresist mask or the like. As shown in FIG. 8(b), the pattern electrode mask 227 is used to form the gate electrode formation conductive film 221, and an N-type pixel electrode transistor and an N-type driver circuit transistor gate electrode 228 are formed. 229, 230. Next, the pattern mask 227 is left to inject an n-type impurity element (in this example, phosphorus) ions. The doping amount is, for example, lx 101 5 cm 2 . As a result, the impurities are self-aligned and introduced into the pattern mask 227, and high-concentration source/drain regions 231, 23 2, 23 3, 234, 2 3 5, and 236 are formed in the semiconductor films 20 3 , 204 , and 205 . Among the semiconductor films 203, 204, and 205, a region where high concentration of phosphorus is not introduced is larger than a region covered by the gate electrodes 228, 229, and 230. In other words, in the semiconductor films 203, 204, and 205, both sides of the region on the opposite side to the gate electrodes 228, 229, and 230 and the high-concentration source/drain regions 231, 23 2, 2 3 3, 234, 2 3 5, 236 A region where a high concentration of phosphorus is not introduced (a source/drain region of a low concentration to be described later) is formed between them. Next, the pattern mask 227 is removed, and in this state, an n-type impurity element -26-(23) 1259575 (in this case, a phosphorus) ion is implanted. The doping amount is, for example, lx 1013 cm·2. As a result, as shown in FIG. 8(c), in the semiconductor films 203, 204, and 205, the gate electrodes 228, 229, and 230 are introduced with low-concentration impurities, and self-integrated to form low-concentration source/drain regions 237, 238, and 239. 240' 241, 242. The region overlapping the gate electrodes 228, 229, and 230 is not introduced with impurities, and the channel regions 245, 246, and 247 are formed. As shown in FIG. 8(d), the surface of the gate electrodes 228, 229, and 230 forms the first interlayer insulating layer 250. A pattern is formed by a lithography method or the like, and a through hole is formed at a predetermined source electrode position and a drain electrode position. As the first interlayer insulating layer 250, an insulating film containing germanium such as a hafnium oxide nitride film or a hafnium oxide film can be used. It can be a single layer or a laminated film. In an atmosphere containing hydrogen, heat treatment is performed to cause unpaired bonding of the semiconductor film to generate a hydrogen terminal (hydrogenation). Hydrogenation with a hydrogen-excited hydrogen can also be used. Next, a conductive film 25 1 serving as a source electrode and a drain electrode is formed using a metal film such as an aluminum film, a chromium film or a giant film. The thickness of the conductive film 25 1 is, for example, 200 nm to 300 nm. The conductive film may be a single layer or a laminated film. Then, a pattern mask 252 is formed at the position of the source electrode and the drain electrode, and patterned at the same time to form source electrodes 260, 261, 262, and 263 and drain electrodes 264, 265, and 266 as shown in FIG. 8(e). As shown in Fig. 9 (a), a second interlayer insulating film 270 made of tantalum nitride is formed. The thickness of the second interlayer insulating film 270 is, for example, 1 to 2 μm. As the material for forming the second interlayer insulating film 270, for example, a light-permeable material such as an oxidized sand film or an organic resin can be used. As the organic resin, for example, acrylic acid, polyimine, polyamine, BCB (benzocyclobutene) polymer or the like can be used. -27-(24) 1259575 The second interlayer insulating film 270 is removed by etching as shown in Fig. 9(b) to form a via hole 275 which can reach the drain electrode 266. As shown in FIG. 9(c), for example, a film made of a transparent electrode material of Si〇2, Zn〇 or polyaniline formed of ITO or fluorine-doped is formed, and is buried in the through hole 275 to form electricity. The pixel electrodes 141 of the source/drain regions 235 and 236 are connected. This pixel electrode 141 serves as an anode of the organic EL element. As shown in FIG. 10(a), a barrier layer 271 is formed. The position at which the barrier layer 271 is formed is a position where the spacer member 281 is formed later, and is adjacent to the pixel electrode 141 of the second interlayer insulating film 270. As the material of the barrier layer 271, for example, silicon nitride, cerium oxide oxide, tantalum nitride, molybdenum nitride or the like can be used. The method of forming the barrier layer 27 1 can be appropriately selected, and for example, a C VD method, a coating method, a sputtering method, a vapor deposition method, or the like can be used. The barrier layer 271 is formed, for example, on the entire surface of the second interlayer insulating film 270 and the pixel electrode 141, and then the material film can be patterned by lithography or the like. The opening portion of the barrier layer 271 is disposed at a position where the pixel electrode 141 is formed. A portion of the barrier layer 271 may overlap with a peripheral portion of the pixel electrode 141. As shown in Fig. 9 (b), a partition member 28 1 is formed on the barrier layer 27 1 using a low dielectric material such as cerium oxide aerosol or porous cerium oxide. For example, when a cerium oxide aerosol is used, a step of producing a wet gel by a sol-gel method as described above; a step of curing the wet gel; and a supercritical drying step of drying the wet gel by a supercritical drying method to obtain an aerosol, A layer of cerium oxide aerosol is formed on the substrate 1 21, and then a pattern is formed by etching or honing to obtain a partition member 28 1 of a predetermined shape. The pattern is formed such that the bottom surface of the partition member 281 is preferably in the barrier layer 271. -28-(25) 1259575 As shown in Fig. 10 (c), a protective film 272 is formed using a material such as an inorganic polymer or an organic polymer. At this time, the protective film 272 is formed, and the protective film 27 2 covers the side surface and the upper surface of the partition member 281. The protective film 272 may be formed by merely patterning the entire surface of the partition member 28 1 or the element, and then patterning by a lithography method or the like. By this, the protective film 272 can reinforce the mechanical properties of the partition member 281, and at the same time, it can prevent the substance from intruding into the partition member 281 in the subsequent steps. When the bottom surface of the partition member 281 is narrower than the barrier layer 27 1 , the wall surface of the partition member 28 1 is entirely covered by the protective film 272 and the barrier layer 271, and the substance is prevented from intruding into the partition member 281 or diffusing through the partition member 28 1 . Next, when a liquid material such as a material for forming a hole transport layer is disposed at an opening position of the partition member 28 1 , a material having liquid repellency or lyophilic property to the liquid material may be used for the protective film 272 . The surface treatment of plasma treatment or the like has a desired affinity for the liquid material. By suppressing the affinity of the protective film to the liquid material, the liquid material can be easily disposed, or the flatness of the film formed by the material can be improved. As shown in Fig. 11 (a), a hole transport layer 285 is formed to cover the pixel electrode 141. The hole transport layer 285 is formed by ejecting droplets using an ink jet device to eject the formation material onto the pixel electrode 141. Then, drying treatment and heat treatment are performed to form a hole transport layer 285 on the pixel electrode 141. The formation of the layer by the ink jet method is performed, for example, by disposing the discharge nozzle Η 1 of the ink jet head toward the pixel electrode 141, and discharging the material from the nozzle Η1. The pixel electrode 141 is formed around the pixel electrode 141, and the material of the liquid amount of each droplet of the nozzle Η1 is discharged onto the pixel electrode 141 by the nozzle Η1 and the substrate 221 in a relative movement state. -29- (26) 1259575 The ejection technology of the inkjet method includes, for example, a charging control method, a pressurized vibration method, an electromechanical conversion method, an electrothermal conversion method, and an electrostatic attraction method. The electrostatic control method uses a charged electrode to impart a charge to the material to deflect the direction of travel of the electrode control material and then spit out from the nozzle. The pressure vibration method is applied to the material at a super-pressure of 30 kg/cm, and the material is discharged from the tip end side of the nozzle. When no control voltage is applied, the material is discharged straight from the nozzle, and when a control voltage is applied, "electrostatic repulsion occurs between the materials, and the material is not scattered. Spit out from the nozzle. The electromechanical conversion method uses a piezoelectric element to receive a characteristic of deformation of a pulsed electrical signal, and the deformation of the piezoelectric element applies pressure to the space of the 3 storable material via the flexible material, thereby ejecting the material from the space and spitting it out from the nozzle. . The electrothermal conversion method uses a heater set in a space of a storage material to rapidly vaporize a material to generate bubbles, and discharges the material in the space by the pressure of the bubbles. The electrostatic attraction method applies a small pressure to the space of the storage material to form a meniscus of the material on the nozzle, and electrostatic attraction is applied to take out the material in this state. Other techniques such as a method of causing a viscous change of a fluid by an electric field or a method of generating a scattering by a discharge spark may be used. When the droplets are ejected to form the hole transport layer 285 or the light-emitting layer 286 and the electron transport layer 287 described later, the surface of the pixel electrode 41 is subjected to lyophilic treatment using a plasma treatment or the like, and the surface of the partition member 281 (protective film) The 272 surface) is preferably liquefied. The step of forming the hole transport layer is preferably a waterless and oxygen-free atmosphere in the following steps. For example, it can be carried out under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere. The material for forming the hole transport layer 285 is not particularly limited, and known -30-(27) 1259575 can be used, for example, a pyrazoline derivative, an arylamine derivative, an anthracene derivative, or a triphenylenediamine derivative. Wait. Specifically, for example, Japanese Laid-Open Patent Publication No. SHO-63-75-257, No. 63-175860, JP-A No. 2-135359, JP-A-2-135 It is preferable to use a triphenylenediamine derivative, preferably 4,4,-bis (N(3), as described in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. -Methylphenyl)-N-phenylamino)biphenyl. A hole injection layer may be formed instead of the hole transport layer, and a hole injection layer and a hole transport layer may be formed. At this time, a material for forming the hole injection layer can be, for example, copper phthalocyanine (CuPc) or polytetrahydrophenylthiophenyl polystyrene, 1,1-bis(4-N,N-dimethylphenylamine phenyl group). As the cyclohexane, tris(8-hydroxyquinolol) aluminum or the like, copper phthalocyanine (CuPc) is particularly preferably used. When both the hole injection layer and the hole transport layer are formed, for example, a hole injection layer is formed on the pixel electrode side before forming the hole transport layer, and a hole transport layer is preferably formed thereon. By forming the hole injection layer and the hole transport layer in this manner, the increase in the driving voltage can be suppressed, and the driving life (half the period) can be extended. A light-emitting layer 286 is formed on the hole transport layer 285 as shown in Fig. 11(b). The formation step of the light-emitting layer 286 is the same as that of the hole transport layer 285, and the formation material is ejected onto the pixel electrode 14 4 using, for example, an ink-jet device discharge droplet. Then, drying treatment and heat treatment are performed to form a light-emitting layer 286 corresponding to each of the blue, red, and green colors in a predetermined row when the light-emitting layer 286 ° color corresponding is formed on the pixel electrode 14 1 . The material for forming the light-emitting layer 2 8 6 is not particularly limited, and a low-molecular organic light-emitting pigment or a polymer light-emitting body can be used. In other words, a light-emitting substance composed of various light-emitting materials or fluorescent materials can be used. . It is particularly preferable that the conjugated polymer of the luminescent substance contains a aryl vinyl structure. As the low molecular light-emitting body, for example, a pigment such as a naphthalene derivative, an anthracene derivative, an anthracene derivative, a polymethine, a xanthene, a coumarin, or a cyanine, or a hydroxyquinoline or a derivative thereof can be used. A metal complex, an aromatic amine, a tetraphenylcyclopentadiene derivative, or the like, or a known product described in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. 5-7-51, No. 59-119393. As shown in FIG. 11(c), an electron transport layer 287 is formed on the light-emitting layer 286. The electron transport layer 287 is formed in the same manner as the hole transport layer 285 and the light-emitting layer 286. The liquid droplets are ejected by, for example, an ink jet device, and the forming material is discharged onto the pixel electrode 141. Then, drying treatment and heat treatment are performed to form an electron transport layer 287 on the pixel electrode 141. The material for forming the electron transport layer 287 is not particularly limited, and examples thereof include a dioxin derivative, decyl dimethane and a derivative thereof, benzoquinone and a derivative thereof, naphthoquinone and a derivative thereof, an anthracene and a derivative thereof, Metal complexation of tetracyanomethyl dimethyl ketone and its derivatives, anthracene derivatives, diphenyldicyanoethylene and its derivatives, bis-quinone derivatives, 8-hydroxyquinolol and its derivatives Things and so on. Specifically, it is the same as the material for forming the previous hole transport layer, and for example, Japanese Laid-Open Patent Publication No. SHO63-70257, No. 63-1750860, Japanese Patent Publication No. Hei 2-13 5 3 59, and JP-A No. 2 In particular, 2-(4-biphenyl) is particularly preferred in the Japanese Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. (4_T-butylphenyl)-1,3,4-dioxazole, benzoquinone, anthracene, tris(8^quinolinol) aluminum. -32- (29) 1259575 The formation of the slurry hole transport layer 285 or the formation of the electron transport layer 2 87 The material is mixed with the material forming the light-emitting layer 286, and can also be used as a light-emitting layer material. In this case, the amount of the material for forming the hole transport layer or the material for forming the electron transport layer varies depending on the type of the compound to be used, etc., but may be within a range that does not affect the sufficient film formability and light-emitting property. The amount of use is appropriately determined. Usually, when the material for forming the light-emitting layer is used, it is used in an amount of 1 to 40% by weight, more preferably 2 to 30% by weight. As shown in Fig. 11 (d), a long cathode 154 (opposing electrode) is formed on the entire surface of the substrate 121. The cathode 154 is a single layer structure or a laminated structure of a monomer material of Al, Mg, Li, Ca or the like. Or a single layer structure of an alloy material of Mg: Ag (10:1 alloy) or a laminated structure composed of an alloy material. Specifically, for example, a laminated film of Li 2 〇 (0.5 nm ) / A1 or LiF (0.5 nm) / Al, MgF 2 / Al is used. For example, a material having a lower success function close to the side of the light-emitting layer is preferable, and for example, Ca, Ba, or the like may be used, and a thin layer of LiF may be preferably formed in the lower layer depending on the material. A material with a higher work function, such as A1, can be used on the upper side (package side). The cathode 154 can be formed, for example, by a vapor deposition method, a sputtering method, a CVD method, or the like, and is formed by a vapor deposition method to prevent damage to the light-emitting layer 286 due to heat. An A1 film, an Ag film, or the like formed by a vapor deposition method, a sputtering method, a CVD method, or the like is preferably used for the upper portion of the cathode 154. The thickness thereof is, for example, 100 to 100 nm, more preferably 200 to 500 nm. A protective film of Si〇2, SiN or the like may be provided on the cathode 154 to prevent oxidation. The TFT for the organic EL device and the N-type and P-type driving circuits is completed by the above steps. Then, the substrate 1 21 and the package substrate 1 46 (see Fig. 6) were formed by encapsulating an organic EL device. The encapsulating step is preferably carried out in an inert gas atmosphere of nitrogen, argon, ammonia or the like. When it is sealed in the atmosphere, if a defect such as a pinhole is generated in the cathode 154, water, oxygen, or the like may intrude into the cathode 154 due to the defective portion, and the cathode 154 may be oxidized. The cathode 154 is connected to the wiring of the substrate 121, and the wiring of the circuit element portion 146 (see FIG. 6) and the driving 1C (driving circuit) provided on the substrate 1 21 or the outside can be used to obtain the display device 100 of the present embodiment. . Fig. 12 is a view showing another example of the organic EL device. The organic EL device shown in Fig. 12 differs from the above-described example in that it has an encapsulation layer (at least one of the first encapsulation layer 300, the second encapsulation layer 301, and the third encapsulation layer 302) that blocks gas or metal ions from entering. The first encapsulation layer 300 is interposed between the first interlayer insulating film 250 and the second interlayer insulating film 270, and covers the source electrodes 262 and 263 and the drain electrodes 265 and 266. The thickness is, for example, 50 to 5 nm. As the material constituting the first encapsulating layer 300, for example, a material such as ceramic or tantalum nitride, niobium oxynitride or hafnium oxide can be used. The first encapsulating layer 300 prevents moisture or intrusion of the alkali metal (sodium) such as the light-emitting layer 286 (EL layer) into the TFT 142 or the TFT 143. As the material constituting the first encapsulating layer 300, for example, a material having the above-described alkali metal encapsulating effect and heat releasing effect can be used. Such a material has, for example, an element containing at least one selected from the group consisting of B (boron), C (carbon), and N (nitrogen), and at least one selected from the group consisting of A1 (aluminum), Si (bismuth), and P (phosphorus). An insulating film of one type of element. For example, a nitride of aluminum, a carbide of ruthenium, a nitride of boron, a phosphide of boron, or the like can be used. An insulating film containing Si, Al, N, yttrium, and μ may also be used (but yttrium is at least one of rare earth elements, and more preferably -34-(31) 1259575

Ce(鈽)、Yb(鏡)、Sm(釤)、Er(餌)、Y(釔)、La(鑭)、Gd( 釓)、D y (鏑)、N d (銨)中之至少1個元素)。 第2封裝層301係形成於第2層間絕緣膜270與像素電 極141之間,膜厚例如爲50〜500nm。構成第2封裝層301 之材料例如可使用陶瓷、或氮化矽、氧化氮化矽、氧 化矽等之材料。第2封裝層301係防止水分或由發光層 286 CEL層)等之鹼金屬(鈉)侵入TFT142、TFT143 〇 構成第2封裝層301之材料例如可使用上述第1封裝層 所使用的材料。也具有上述鹼金屬之封裝效果及放熱效果 〇 形成第2封裝層301可省略上述阻隔層271。 第3封裝層302係覆蓋陰極154,膜厚例如爲50〜 5OOnm。構成第3封裝層302之材料例如可使用陶瓷、或 氮化矽、氧化氮化矽、氧化矽等之材料。第3封裝層 3 0 2係防止外部水分侵入。構成第3封裝層3 0 2之材料例 如可使用上述第1封裝層所使用的材料。也具有上述鹼 金屬之封裝效果及放熱效果。圖18之有機EL裝置係頂 部放射型,第3封裝層302係以良好之光穿透之材質及 厚度所形成者爲佳。 取代上述封裝層或可另外形成提高光放射效率之低折 射率層。低折射率層爲光穿透率低於基材1 2 1的層,例如 由前述之有氧化矽氣溶膠所構成。 基材1 2 1之材料玻璃的折射率爲1. 5 4、石英玻璃之折 -35- (32) 1259575 射率爲1.45。 低折射率層可使用具有多孔性之SiCh膜或聚合物等之 其他材料。可將乾燥劑或化學吸附劑分散於構成低折射率 層之材料中。藉此可將封裝效果賦予低折射率層。 圖1 3係表示有機EL裝置之其他的型態例。 上述各例中,切換用之TFT 142係具有所謂的單閘結 構,但是本發明不受此限。換言之,如圖1 3所示,也可爲 以無圖示之閘線電連接2個閘電極3 1 0、3 1 1之雙閘結構, 或三閘結構等多閘結構(含有具直行連接之2個以上之多 區域之半導體膜的結構)。多閘結構可降低off電流値, 有助於畫面之大型化。 圖14 ( a )及(b )係表示有機EL顯示裝置之電路的 其他例。 圖1 4 ( a )及(b )所示之電路係藉由控制電流,控制 E L元件之通電,所謂電流程式方式的電路。圖1 4 ( a )係 採用所謂的電流鏡電路。採用此電路可維持EL元件之一 定的導通狀態,使EL層安定發光。有助於構成大畫面之 顯示裝置。 發光層60之形成材料使用高分子發光材料時,可使用 側鏈具發光基之高分子,理想爲主鏈上含有共軛系結構者 ,特別理想爲聚噻吩、聚對伸芳基、聚伸芳基伸乙烯基、 聚荀及其衍生物。其中聚伸芳基伸乙烯基及其衍生物較佳 。聚伸芳基伸乙烯基及其衍生物理想爲下述化學式(1)所 示之重覆單元係占總重覆單元之50莫耳%以上之聚合物。 -36- (33) 1259575 依重覆單元之結構而異,但是化學式(1)所示之重覆單元 更理想爲總重覆單元之70%以上。 -Ar-CR = CR,- (1) (式中Ar爲伸芳基或雜環化合物基,R、R,係各自獨 立選自氫、碳數1至20之有機基、全氟烷基、胺基所成群 之基團) 該高分子發光材料也可含有以化學式(1)表示之重 覆單位以外之重覆單位,例如芳香族化合物或其衍生物、 雜環化合物基或其衍生物及這些組合所得之基等。以化學 式(1)表示之重覆單位或其他重覆單位可以具有醚基、 酯基、醯胺基、醯亞胺基等之非共軛之單位連接,或重覆 單位含有這些非共軛部分。 聚芳基乙烯基類例如有如式(2 )所示之PPV (聚( 對苯乙烯基))、M〇-PPV (聚(2,5-二甲氧基-1’心苯 乙烯基))、CN-PPV (聚(2,5-雙己氧基-1,4-伸苯基· (1-氰基乙烯基)))、MEH-PPV(聚〔2-甲氧基-5-(2’-乙氧基己基)〕對苯乙烯基)等之PPV衍生物等。 -37- (34)1259575At least 1 of Ce (钸), Yb (mirror), Sm (钐), Er (bait), Y (钇), La (镧), Gd (釓), D y (镝), N d (ammonium) Elements). The second encapsulating layer 301 is formed between the second interlayer insulating film 270 and the pixel electrode 141, and has a film thickness of, for example, 50 to 500 nm. As the material constituting the second encapsulating layer 301, for example, a material such as ceramic or tantalum nitride, niobium oxynitride, or cerium oxide can be used. The second encapsulating layer 301 prevents the entry of the alkali metal (sodium) such as the light-emitting layer 286 CEL layer into the TFT 142 or the TFT 143. For the material constituting the second encapsulating layer 301, for example, a material used for the first encapsulating layer can be used. The encapsulating effect and the heat releasing effect of the above alkali metal are also obtained. 上述 The formation of the second encapsulating layer 301 can omit the above-mentioned barrier layer 271. The third encapsulation layer 302 covers the cathode 154, and has a film thickness of, for example, 50 to 500 nm. As the material constituting the third encapsulating layer 302, for example, ceramic or a material such as tantalum nitride, niobium oxynitride, or cerium oxide can be used. The third encapsulating layer 3 0 2 prevents external moisture from entering. As the material constituting the third encapsulating layer 306, for example, a material used for the first encapsulating layer can be used. It also has the above-mentioned alkali metal encapsulation effect and heat release effect. The organic EL device of Fig. 18 is a top radiating type, and the third encapsulating layer 302 is preferably formed of a material and a thickness which is excellent in light penetration. Instead of the above encapsulation layer, a low refractive index layer which enhances light emission efficiency may be additionally formed. The low refractive index layer is a layer having a light transmittance lower than that of the substrate 1 21, and is composed, for example, of the above-described cerium oxide aerosol. The refractive index of the material of the substrate 1 2 1 is 1. 5 4, the folding of the quartz glass -35- (32) 1259575 The transmittance is 1.45. As the low refractive index layer, other materials such as a porous SiCh film or a polymer can be used. A desiccant or a chemical adsorbent may be dispersed in the material constituting the low refractive index layer. Thereby, the encapsulation effect can be imparted to the low refractive index layer. Fig. 1 is a view showing another example of the organic EL device. In each of the above examples, the switching TFT 142 has a so-called single gate structure, but the present invention is not limited thereto. In other words, as shown in FIG. 13 , a double gate structure in which two gate electrodes 3 1 0 and 3 1 1 are electrically connected by a gate line not shown, or a multi-gate structure such as a three-gate structure (including a straight connection) The structure of a semiconductor film of two or more regions). The multi-gate structure reduces the off current 値 and contributes to the enlargement of the screen. Fig. 14 (a) and (b) show other examples of the circuit of the organic EL display device. The circuit shown in Figure 1 4 (a) and (b) controls the current flow to control the energization of the E L element, a so-called current-program circuit. Figure 1 4 (a) uses a so-called current mirror circuit. With this circuit, a certain conduction state of the EL element can be maintained, and the EL layer can be stably illuminated. A display device that contributes to a large screen. When a polymer light-emitting material is used as the material for forming the light-emitting layer 60, a polymer having a side chain having a light-emitting group may be used, and it is preferable to have a conjugated structure in the main chain, and particularly preferably a polythiophene, a poly-p-aryl group, and a polycondensation. Aryl extended vinyl, polyfluorene and its derivatives. Among them, a poly(aryl) vinyl group and a derivative thereof are preferred. The poly(aryl)vinylene group and the derivative thereof are preferably those having a repeating unit of the following formula (1) in an amount of 50 mol% or more of the total repeating unit. -36- (33) 1259575 Depending on the structure of the repeating unit, the repeating unit shown in the chemical formula (1) is more preferably 70% or more of the total repeating unit. -Ar-CR = CR, - (1) (wherein Ar is an exoaryl or heterocyclic compound group, and R and R are each independently selected from hydrogen, an organic group having 1 to 20 carbon atoms, a perfluoroalkyl group, The group in which the amine group is grouped) The polymer light-emitting material may further contain a repeating unit other than the repeating unit represented by the chemical formula (1), for example, an aromatic compound or a derivative thereof, a heterocyclic compound group or a derivative thereof And the basis of these combinations. The repeating unit represented by the chemical formula (1) or other repeating unit may have a non-conjugated unit linkage of an ether group, an ester group, a decylamino group, a quinone imine group or the like, or a repeat unit containing these non-conjugated portions. . The polyarylvinyl group is, for example, PPV (poly(p-styryl)), M〇-PPV (poly(2,5-dimethoxy-1'-heart styrene)) represented by the formula (2). , CN-PPV (poly(2,5-bishexyloxy-1,4-phenylene (1-cyanovinyl))), MEH-PPV (poly[2-methoxy-5-() A PPV derivative such as 2'-ethoxyhexyl)]p-styryl). -37- (34)1259575

Ηΐ3〇6〇 0〇6^13Ηΐ3〇6〇 0〇6^13

CN OCaHia OCaHia 〇N-PPVCN OCaHia OCaHia 〇N-PPV

-38- (35) 1259575 上述材料外,例如有聚(對苯)、聚烷基芴等,理想 爲如化學式(3)所示之聚烷基芴(具體而言如化學式(4 )所示之聚烷基芴系共聚物)。 -39- (36)1259575-38- (35) 1259575 In addition to the above materials, for example, poly(p-phenylene), polyalkylhydrazine, etc., are preferably a polyalkylhydrazine represented by the chemical formula (3) (specifically, as shown in the chemical formula (4) Polyalkyl fluorene copolymer). -39- (36)1259575

PAFPAF

-40- (37)1259575-40- (37)1259575

-s 41 (38) 1259575 前述高分子發光材料理想爲無規、嵌段或接枝共聚物 或具有這些之中間結構之高分子,例如具有嵌段性之無規 共聚物。從得到較高之發光之量子收率之高分子發光材料 的觀點,具有嵌段性之無規共聚物或嵌段或接枝共聚物優 於無規共聚物。此處形成之機EL元件係利用薄膜之發光 ,因此,該高分子發光材料可使用固體狀態下,具有良好 之發光量子收率者。 上述材料中,形成發光層時之溫度下,將液狀之材料 或對於所要之溶媒具有良好溶解性之材料,可用於形成使 用噴墨法等之液體材料之發光層。該溶媒例如有氯仿、二 氯甲烷、二氯乙烷、四氫呋喃基、甲苯、二甲苯等。雖因 高分子發光材料之結構或分子量而異,通常在這些溶媒中 可溶解0.1 wt%以上。 前述高分子發光材料之分子量以聚苯乙烯換算理想爲 1〇3〜107,也可使用分子量103以下之低聚物。 採用配合所要之高分子發光材料之合成法,可得到該 所要之高分子發光材料。例如有由伸芳基與兩個醛基鍵結 β二醛化合物、伸芳基與兩個鹵化甲基鍵結之化合物與三 苯膦所得之二鱗鹽之Wittig反應。其他合成法例如有伸芳 S與兩個鹵化甲基鍵結之化合物之去鹵化氫法。另外,以 _聚合伸芳基與兩個鹵化甲基鍵結之化合物之锍鹽所得之 中間體,再藉由熱處理得到該高分子發光材料之锍鹽分解 法。 具體說明前述高分子發光材料之一例之伸芳基乙烯基 -42- (39) 1259575 系共聚物之合成法。例如以Wittig反應得到高分子發光材 料時,例如首先將雙(鹵化甲基)化合物、更具體係例如 將2,5-二辛氧基-對二甲苯二溴在N,N-二甲基甲醯胺溶 媒中,與三苯膦反應合成鳞鹽,此鱗鹽與二醛化合物,更 具體係例如對苯二甲醛例如在乙醇中,藉由使用乙醇鋰縮 合之wmlg反應,得到含有苯乙烯基與2,5-二辛氧基-對 苯乙烯基之高分子發光材料。此時爲了得到共聚物,可使 兩種以上之二鳞鹽及/或兩種以上之二醛化合物產生反應-s 41 (38) 1259575 The above polymer light-emitting material is preferably a random, block or graft copolymer or a polymer having an intermediate structure of these, for example, a random copolymer having a block property. From the viewpoint of obtaining a polymer light-emitting material having a higher quantum yield of luminescence, a random copolymer having a block property or a block or graft copolymer is preferable to a random copolymer. The EL element formed here is formed by the light emission of the film. Therefore, the polymer light-emitting material can be used in a solid state and has a good luminescence quantum yield. Among the above materials, a material having a good solubility in a liquid material or a desired solvent at a temperature at which the light-emitting layer is formed can be used to form a light-emitting layer using a liquid material such as an inkjet method. The solvent is, for example, chloroform, methylene chloride, dichloroethane, tetrahydrofuranyl, toluene or xylene. Although it varies depending on the structure or molecular weight of the polymer light-emitting material, it is usually soluble in 0.1% by weight or more in these solvents. The molecular weight of the polymer light-emitting material is preferably from 1 to 3 to 107 in terms of polystyrene, and an oligomer having a molecular weight of 103 or less can also be used. The desired polymer luminescent material can be obtained by a synthesis method in combination with a desired polymer luminescent material. For example, there is a Wittig reaction of a diquaternary salt obtained from a aryl group and a two aldehyde group-bonded β-dialdehyde compound, a compound having an extended aryl group and two halogenated methyl groups, and triphenylphosphine. Other synthetic methods are, for example, the dehydrohalogenation method of a compound in which a aryl group S and two halogenated methyl groups are bonded. Further, an intermediate obtained by hydrating a sulfonium salt of a compound in which a aryl group is bonded to two halogenated methyl groups, and a sulfonium salt decomposition method of the polymer luminescent material are obtained by heat treatment. A method for synthesizing a arylvinyl-42-(39) 1259575-based copolymer which is an example of the above polymer light-emitting material will be specifically described. For example, when a polymer light-emitting material is obtained by a Wittig reaction, for example, a bis(halogenated methyl) compound, a more system such as 2,5-dioctyloxy-p-xylene dibromide in N,N-dimethyl group is first introduced. In a decylamine solvent, a scaly salt is synthesized by reacting with triphenylphosphine, and the squama salt and the dialdehyde compound are further subjected to a system such as terephthalic acid, for example, in ethanol, by using wmlg condensation of lithium ethoxide to obtain a styryl group. A polymer luminescent material with 2,5-dioctyloxy-p-styrene. In this case, in order to obtain a copolymer, two or more kinds of scale salts and/or two or more kinds of dialdehyde compounds may be reacted.

這些高分子發光材料作爲發光層之形成材料使用時, 其純度會影響發光特性,因此,合成後利用再度沉澱純化 、以色譜儀等分離等之純化處理較佳。 在高分子發光材料爲溶解性較低之材料時,例如塗佈 對應之先質後,如化學式(5 )所示加熱硬化,有時可得 到發光層。例如聚苯乙烯爲構成高分子發光材料時,將對 應之先質之鏡鹽配置於成爲發光層之部位後,加熱處理使 锍基脫離,得到具有發光層功能之聚苯乙烯。 可形成發光層之低分子材料爲顯示可見光域之發光物 -43- (40) 1259575 質時,基本上可使用。其中具有芳香族系之取代基之材料 較佳。例如有喹啉酚鋁錯合物(Alq;)或二苯乙烯基聯苯 、化學式(6)所示之BeBq2或Zn ( OXZ) 2等以往所用者 ,此外例如有吡唑啉二聚物、喹嗪羧酸、苯並吡喃鑰全氯 酸酯、苯並吡喃喹嗪、紅熒烯、菲繞啉銪錯合物等。 由上述代表之高分子材料及低分子材料適當選擇顯示 藍色、綠色、紅色發光之材料,配置於所定位置時可顯示 彩色。配置於所定位置時可使用光罩蒸鍍法、印刷法、或 噴墨法等。When these polymer light-emitting materials are used as a material for forming a light-emitting layer, the purity thereof affects the light-emitting property. Therefore, it is preferable to carry out purification treatment by reprecipitation purification, separation by a chromatograph or the like after the synthesis. When the polymer light-emitting material is a material having low solubility, for example, after coating a corresponding precursor, it is heat-cured as shown in the chemical formula (5), and a light-emitting layer may be obtained. For example, when polystyrene is used as a polymer light-emitting material, a mirror salt of a corresponding precursor is placed in a portion to be a light-emitting layer, and then heat-treated to remove the sulfhydryl group to obtain a polystyrene having a function as a light-emitting layer. The low molecular material which can form the light-emitting layer can be basically used when the light-emitting material of the visible light region is -43-(40) 1259575. A material having an aromatic substituent is preferred. For example, there are conventionally used quinolinol aluminum complex (Alq;) or distyrylbiphenyl, BeBq2 or Zn (OXZ) 2 represented by the chemical formula (6), and, for example, a pyrazoline dimer, Quinazine carboxylic acid, benzopyranyl perchlorate, benzopyranazine, rubrene, phenanthroline ruthenium complex, and the like. The blue, green, and red light-emitting materials are appropriately selected from the above-mentioned polymer materials and low-molecular materials, and color can be displayed when placed at a predetermined position. A photomask vapor deposition method, a printing method, an inkjet method, or the like can be used when it is placed at a predetermined position.

將客分散於以發光層爲媒介功能之主中,可形成所謂 的主/客型發光層。 主/客型發光層中,決定該發光層之發光色基本上是 客材料,因此可依據發光色選擇客材料。一般可使用產生 高效率之螢光的材料。基本上,具有比參與客材料之發光 -44- (41) 1259575 之激發狀態之位準更高之能量位準之材料適合作爲主材料 。有時也需要載體之移動度較高之材料,此時也可由上述 高分子發光體來選擇。 顯示藍色發光之客材料,例如有葷苯類、二苯乙基聯 苯類等,顯示綠色發光之客材料,例如有喹吖酮、紅熒烯 等,顯示紅色發光之客材料,例如有若丹明類之螢光色素 〇 主材料可配合客材料來選擇。例如形成主材料及客材 料分別爲Zn ( OXZ ) 2及葷苯之發光層,可得到顯示藍色 發光之發光層。 客材料也可使用燐光材料。例如可使用化學式(7 ) 所不之 Ir(PPV) 3、Pt(thpy) 2、PtOEP 等。The so-called main/guest type luminescent layer can be formed by dispersing the guest in the main function of the luminescent layer. In the main/guest type luminescent layer, it is determined that the luminescent color of the luminescent layer is substantially a guest material, so that the guest material can be selected depending on the luminescent color. Materials that produce high efficiency fluorescent light can generally be used. Basically, a material having a higher energy level than that of the excitation state of the guest material - 44 - (41) 1259575 is suitable as the main material. A material having a high degree of mobility of the carrier is sometimes required, and in this case, it can also be selected from the above polymer light-emitting body. A blue light-emitting guest material, for example, a phthalic acid, a diphenylethylbiphenyl or the like, which exhibits a green light-emitting material, such as quinacridone, rubrene, etc., which exhibits a red light-emitting material, for example, Rhodamine-based fluorochrome enamel master materials can be selected in conjunction with guest materials. For example, a light-emitting layer in which a main material and a guest material are respectively Zn (OXZ) 2 and anthracene is used, and a light-emitting layer exhibiting blue light emission can be obtained. Twilight materials can also be used for guest materials. For example, Ir(PPV) 3, Pt(thpy) 2, PtOEP, etc., which are not in the chemical formula (7), can be used.

Et/\Et Pt〇EP ···⑺ 以前述化學式(7 )所示之燐光物質爲客材料時,主 材料可使用化學式(8 )所示之CBP、DCTA、TCPB或 A1 q 3 等。 藉由共蒸鍍法、或塗佈主材料與客材料或其先質液狀 物的方法形成主/客型發光層。 -45- (42) 1259575Et/\Et Pt〇EP (7) When the luminescent material represented by the above chemical formula (7) is used as a guest material, CBP, DCTA, TCPB or A1 q 3 represented by the chemical formula (8) can be used as the main material. The main/guer type luminescent layer is formed by a co-evaporation method or a method of coating a host material and a guest material or a precursor liquid thereof. -45- (42) 1259575

…⑻ 上述例中,形成發光層之下層之電洞傳輸層,形成上 層之電子傳輸層,氮本發明不受此限,例如可僅形成電洞 傳輸層或電子傳輸層其中之一,或形成電洞注入層取代電 洞傳輸層,也可單獨形成發光層。 電洞注入層、電洞傳輸層、發光層、電子傳輸層外, 例如可在發光層之對向電極側形成封孔層,延長發光層之 壽命。這種封孔層之形成材料例如可使用化學式(9 )所 示之BCP或化學式(1〇)所示之BAlq,考慮長壽命時, B A1 q較佳。(8) In the above example, the hole transport layer under the light-emitting layer is formed to form an upper electron transport layer, and the present invention is not limited thereto, and for example, only one of the hole transport layer or the electron transport layer may be formed or formed. The hole injection layer replaces the hole transport layer, and the light-emitting layer can also be formed separately. Outside the hole injection layer, the hole transport layer, the light-emitting layer, and the electron transport layer, for example, a plugging layer may be formed on the opposite electrode side of the light-emitting layer to extend the life of the light-emitting layer. The material for forming the plugging layer can be, for example, BCP represented by the chemical formula (9) or BAlq represented by the chemical formula (1), and B A1 q is preferable in consideration of long life.

…⑼ -46- (43) 1259575...(9) -46- (43) 1259575

很明顯’上述製作之光電裝置可以主動方式或被動方 式驅動。 圖15〜20係本發明之電子機器的實施例。 本例之電子機器係具備上述有機EL顯示裝置等之本發 明之光電裝置之顯示機構。 圖1 5爲顯示電視圖像或電腦之文字或圖像之顯示裝置 的例子。圖15中,符號1〇〇〇係表示使用本發明之光電裝置 之顯示裝置本體。顯示裝置本體10〇〇係使用上述之機此顯 示裝置,可應用於大畫面。 圖16係表示車用之導航裝置之一例。圖16中,符號 1010係表示導航裝置本體,符號1011係表示使用本發明之 光電裝置之顯示部(顯示機構)。 圖17係表示攜帶型之圖像記錄裝置(攝影機)之一例 。圖17中,符號1 020係表示記錄裝置置本體,符號1〇21係 -47 - (44) 1259575 表示使用本發明之光電裝置之顯示部。 圖18係表不行動電話一例。圖18中,符號1〇3〇係表示 行動電話本體,符號1 〇 3 1則表示使用本發明之有機E L顯示 裝置之顯示部(顯示機構)。 圖19係表示文字處理機、個人電腦等之資訊處理裝置 一例。圖19中,符號1〇4〇係表示資訊處理裝置、符號1〇41 係表示資訊處理裝置本體、符號1〇4 2係表示鍵盤等輸入部 分、符號1 043係表示使用本發明之有機EL顯示裝置之顯示 部。 圖20係表不腕錶型電子機器一例。圖2〇中,符號1〇5〇 係表示手錶本體,符號1051係表示使用本發明之有機以顯 示裝置之顯示部。 圖15〜圖20所示之電子機器因具備本發明之光電裝置 之顯示裝置,因此可達成耐久性及品質優異之顯示。 以上參照附圖說明本發明之理想的實施例,但是本發 明並不限定於上述之實施例。上述例中,各構成要件之各 形狀或組合等係其中一例,只要不超過本發明之技術特徵 的範圍內,可依據設計要求等,進行種種變更。It is obvious that the optoelectronic device produced above can be driven in an active or passive manner. 15 to 20 are embodiments of the electronic apparatus of the present invention. The electronic device of the present embodiment includes the display means of the photovoltaic device of the present invention such as the above-described organic EL display device. Fig. 15 is an example of a display device for displaying a text or image of a television image or a computer. In Fig. 15, reference numeral 1 denotes a display device body using the photovoltaic device of the present invention. The display device body 10 can be applied to a large screen by using the above-described display device. Fig. 16 is a view showing an example of a navigation device for a vehicle. In Fig. 16, reference numeral 1010 denotes a navigation device body, and reference numeral 1011 denotes a display portion (display mechanism) using the photovoltaic device of the present invention. Fig. 17 is a view showing an example of a portable image recording apparatus (camera). In Fig. 17, reference numeral 1 020 denotes a recording device mounting body, and reference numeral 1 〇 21 is a -47 - (44) 1259575 indicating a display portion using the photovoltaic device of the present invention. Figure 18 is an example of a non-action phone. In Fig. 18, reference numeral 1〇3 denotes a mobile phone body, and reference numeral 1 〇 3 1 denotes a display portion (display mechanism) using the organic EL display device of the present invention. Fig. 19 shows an example of an information processing device such as a word processor or a personal computer. In Fig. 19, reference numeral 1〇4 denotes an information processing device, symbol 1〇41 denotes an information processing device body, symbol 1〇4 2 denotes an input portion such as a keyboard, and symbol 1 043 denotes an organic EL display using the present invention. The display portion of the device. Fig. 20 is an example of a watch type electronic device. In Fig. 2, reference numeral 1〇5 denotes a watch body, and reference numeral 1051 denotes a display portion using the organic display device of the present invention. Since the electronic device shown in Figs. 15 to 20 is provided with the display device of the photovoltaic device of the present invention, it is possible to achieve display with excellent durability and quality. The preferred embodiments of the present invention have been described above with reference to the drawings, but the present invention is not limited to the embodiments described above. In the above-described examples, each of the shapes, combinations, and the like of the respective constituent elements is an example, and various modifications may be made depending on design requirements and the like as long as they do not exceed the technical features of the present invention.

L發明之效果L 依據本發明之基板及其製造方法,例如可降低因導電 性部位產生之寄生容量等’實現性能穩定之基板。 依據本發明之電子裝置及其製造方法,可有效發揮功 能膜之性能’可適用於高速之動作,因此能實現大畫面化 ,且長期作動穩定之光電裝置。 -48 - (45) (45)1259575According to the substrate of the present invention and the method for producing the same, for example, it is possible to reduce the parasitic capacity due to the conductive portion and the like. According to the electronic device and the method of manufacturing the same of the present invention, the performance of the functional film can be effectively utilized. The present invention can be applied to a high-speed operation, and thus can realize a large-screen operation and a stable photoelectric device for long-term operation. -48 - (45) (45)1259575

Mi衣據本發明之電子機器時,因具備本發明之電子裝 置之顯示機構,因此,遵循性良好,顯示穩定。 【圖式簡單說明】 [_1]係本發明之光電裝置及基板之斷面結構之槪念 圖。 [圖2]係表示本發明之實施形態例之有機EL顯示裝置 之構成的模式圖 [圖3]係顯示主動矩陣型之有機El顯示裝置之電路之 一例的電路圖。 [圖4]像素區域(有機El裝置)之斷面結構的模式圖 ’ (a )爲頂端放射型,(b )爲背面放射型。 [圖5]係表示分隔構件之平面結構之形態例。 [圖6]係頂端放射型之像素區域(有機EL裝置)之 斷面結構放大圖。 [圖7]係說明本發明之光電裝置之製造方法用於製造 具備有機EL元件之顯示裝置之步驟之實施例的說明圖。 [圖8]係說明本發明之光電裝置之製造方法用於製造 具備有機E L元件之顯示裝置之步驟之實施例的說明圖。 [圖9]係說明本發明之光電裝置之製造方法用於製造 具備有機EL元件之顯示裝置之步驟之實施例的說明圖。 [圖10]係說明本發明之光電裝置之製造方法用於製造 具備有機EL兀件之威不裝置之步驟之實施例的說明圖。 [圖11]係說明本發明之光電裝置之製造方法用於製造 -49- (46) (46)1259575 具備有機EL元件之顯示裝置之步驟之實施例的說明圖。 [圖1 2 ]係表示有機£ l裝置之其他的型態例。 [圖13]係表示有機El裝置之其他的型態例。 [圖14]係表示有機El顯示裝置之電路的其他例的圖。 [圖1 5]係本發明之電子機器的實施例的圖。 [圖16]係本發明之電子機器之其他實施例的圖。 [圖17]係本發明之電子機器之其他實施例的圖。 [圖18]係本發明之電子機器之其他實施例的圖。 [圖19]係本發明之電子機器之其他實施例的圖。 [圖20]係本發明之電子機器之其他實施例的圖。 [符號說明] 10,100…有機EL顯示裝置(光電裝置) 11配線基板 15 1,12卜··基材 16’ 142,143…TFT (主動元件) 17,102…發光區域 18, 281…分隔構件 20, 27 1…阻隔層 21,27 2…保護膜 140…有機EL元件(功能膜) -50-According to the electronic device of the present invention, the Mi clothing has the display means of the electronic device of the present invention, so that the compliance is good and the display is stable. [Simple description of the drawing] [_1] is a commemorative view of the cross-sectional structure of the photovoltaic device and the substrate of the present invention. Fig. 2 is a schematic view showing a configuration of an organic EL display device according to an embodiment of the present invention. Fig. 3 is a circuit diagram showing an example of a circuit of an active matrix type organic EL display device. Fig. 4 is a schematic view showing a cross-sectional structure of a pixel region (organic El device). (a) is a tip end radiation type, and (b) is a back side radiation type. Fig. 5 is a view showing an example of a form of a planar structure of a partition member. Fig. 6 is an enlarged cross-sectional view showing a pixel region (organic EL device) of a top emission type. Fig. 7 is an explanatory view for explaining an embodiment of a method of manufacturing a photovoltaic device of the present invention for producing a display device having an organic EL element. Fig. 8 is an explanatory view for explaining an embodiment of a method of manufacturing a photovoltaic device of the present invention for producing a display device having an organic EL element. Fig. 9 is an explanatory view showing an embodiment of a method for producing a photovoltaic device of the present invention for producing a display device having an organic EL device. Fig. 10 is an explanatory view showing an embodiment of a method of manufacturing a photovoltaic device of the present invention for producing a device having an organic EL element. [Fig. 11] is an explanatory view for explaining an embodiment of a method of manufacturing a photovoltaic device of the present invention for producing a display device having an organic EL element of -49-(46) (46)1259575. [Fig. 1 2] shows other types of examples of the organic device. Fig. 13 is a view showing another example of the configuration of the organic EL device. Fig. 14 is a view showing another example of the circuit of the organic EL display device. Fig. 15 is a view showing an embodiment of an electronic apparatus of the present invention. Fig. 16 is a view showing another embodiment of the electronic apparatus of the present invention. Fig. 17 is a view showing another embodiment of the electronic apparatus of the present invention. Fig. 18 is a view showing another embodiment of the electronic apparatus of the present invention. Fig. 19 is a view showing another embodiment of the electronic apparatus of the present invention. Fig. 20 is a view showing another embodiment of the electronic apparatus of the present invention. [Description of Symbols] 10,100...Organic EL display device (optoelectronic device) 11 Wiring board 15 1,12 ··Substrate 16' 142,143...TFT (active device) 17,102...Light-emitting area 18, 281...separated Member 20, 27 1... Barrier layer 21, 27 2... Protective film 140... Organic EL element (functional film) -50-

Claims (1)

1259575 遵 j 拾、申請專利範圍 第92 1 06057號專利申請案 中文申請專利範圍修正本 民國94年4月4 日修正1259575 Compliance with the application for patents No. 92 1 06057 Patent application Chinese patent application amendments Amendment of April 4, 1994 1. 一種配線基板,其特徵係含有:含基板與配線之基 體’及配置於基體上面具有4以下之介電率的構件,該配 線係被配置於該基板與該上面之間,該上面設置未形成該 構件的區域。 2. —種配線基板,其特徵係含有:含絕緣基板與配線 之基體;及被配置於該基體上面之構件;該上面設置未形 成該構件之區域,該配線係被配置於該絕緣基板與該上面 之間,該構件之介電率低於該絕緣基板之介電率。 3. 如申請專利範圍第1或2項之配線基板,其中該構件 之至少一部分係以保護膜覆蓋。A wiring board comprising: a substrate including a substrate and a wiring; and a member having a dielectric constant of 4 or less disposed on the surface of the substrate, wherein the wiring is disposed between the substrate and the upper surface, and the upper surface is disposed The area where the member is not formed. 2. A wiring board comprising: a substrate including an insulating substrate and wiring; and a member disposed on the substrate; the upper surface is provided with a region where the member is not formed, and the wiring is disposed on the insulating substrate Between the upper surfaces, the dielectric constant of the member is lower than the dielectric constant of the insulating substrate. 3. The wiring substrate of claim 1 or 2, wherein at least a portion of the member is covered with a protective film. 4. 如申請專利範圍第3項之配線基板,其中該保護膜 係抑制物質透過。 5 .如申請專利範圍第1或2項之配線基板,其中該構件 之介電率爲3以下。 6. 如申請專利範圍第1或2項之配線基板,其中該構件 之介電率爲2.5以下。 7. 如申請專利範圍第1或2項之配線基板,其中該基體 含有主動元件。 8. 如申請專利範圍第7項之配線基板,其中該主動元 件與該構件之間至少設置抑制物質穿透之阻隔層。 (2) 1259575 9.如申請專利範圍第1或2項之配線基板,其中該構件 係含有至少一種含有氧化矽玻璃、烷基矽氧烷聚合物、院 基倍半矽氧烷聚合物、氫化烷基倍半矽氧烷聚合物、聚芳 基醚中任一種之旋塗式玻璃膜、鑽石膜及氟化非晶質碳膜 10·如申請專利範圍第1或2項之配線基板,其中該構 件係由多孔質材料所構成。4. The wiring board according to item 3 of the patent application, wherein the protective film is a suppressing substance. 5. The wiring board of claim 1 or 2, wherein the member has a dielectric constant of 3 or less. 6. The wiring board of claim 1 or 2, wherein the member has a dielectric constant of 2.5 or less. 7. The wiring substrate of claim 1 or 2, wherein the substrate comprises an active component. 8. The wiring substrate of claim 7, wherein at least a barrier layer for inhibiting the penetration of the substance is disposed between the active element and the member. (2) 1259575. The wiring substrate of claim 1 or 2, wherein the component comprises at least one of cerium oxide-containing glass, an alkyl siloxane polymer, a sesquiterpene alkane polymer, and hydrogenation. A spin-on glass film, a diamond film, and a fluorinated amorphous carbon film of any one of an alkyl sesquioxane polymer and a polyaryl ether. The wiring substrate of claim 1 or 2, wherein This member is composed of a porous material. 1 1 ·如申請專利範圍第1或2項之配線基板,其中該構 件係含有氣溶膠、將多孔質氧化矽、氟化鎂之微粒子分散 的凝膠、氟系聚合物、多孔性聚合物及所定之材料中含有 微粒子者中之至少一種者。 1 2· —種電子裝置,其特徵爲對應於如申請專利範圍 第1〜1 1項中任一項之配線基板之該區域,配置功能膜。1 1 . The wiring board according to claim 1 or 2, wherein the member contains an aerosol, a gel dispersing porous yttria, magnesium fluoride fine particles, a fluorine-based polymer, a porous polymer, and At least one of the materials contained in the material. An electronic device characterized in that the functional film is disposed in accordance with the region of the wiring substrate according to any one of claims 1 to 11. 1 3 . —種光電裝置,其特徵爲具備:含有絕緣基板與 配線之基體;配置於該基體上面之多個像素電極;配置於 該像素電極上方之對向電極;含有配置於該各個多個像素 電極與該對向電極之間之光電材料的功能膜;設置於該功 能膜之周圍,且配置於該對向電極與其上面之間的構件; 該構件之介電率低於該絕緣基板之介電率。 14.一種光電裝置,其特徵爲具備:含有配線之基體 ;配置於該基體上面之多個像素電極;配置於該像素電極 上方之對向電極;含有配置於該各個多個像素電極與該對 向電極之間之光電材料的功能膜;設置於該功能膜之周圍 ,且配置於該對向電極與其上面之間的構件;該構件之介 -2- (3) 1259575 電率爲4以下。 1 5 .如申請專利範圍第丨3或丨4項之光電裝置,其中該 光電材料爲有機電激發光材料。 1 6.如申請專利範圍第丨3或丨4項之光電裝置,其中該 基體係進一步含有與該像素電極連接之主動元件,該配線 含有將信號供給該主動元件之信號配線。An optical device comprising: a substrate including an insulating substrate and a wiring; a plurality of pixel electrodes disposed on the substrate; a counter electrode disposed above the pixel electrode; and a plurality of a functional film of a photovoltaic material between the pixel electrode and the opposite electrode; a member disposed around the functional film and disposed between the opposite electrode and the upper surface thereof; the dielectric constant of the member is lower than that of the insulating substrate Dielectric rate. An optoelectronic device comprising: a substrate including a wiring; a plurality of pixel electrodes disposed on the substrate; a counter electrode disposed above the pixel electrode; and a plurality of pixel electrodes disposed on the plurality of pixel electrodes a functional film of a photovoltaic material between the electrodes; a member disposed around the functional film and disposed between the opposite electrode and the upper surface thereof; the dielectric of the member is -2 (3) 1259575 and 4 or less. The photoelectric device of claim 3, wherein the photovoltaic material is an organic electroluminescent material. 1 6. The optoelectronic device of claim 3, wherein the base system further comprises an active component coupled to the pixel electrode, the wiring comprising signal wiring for supplying a signal to the active component. 1 7 .如申請專利範圍第丨3或丨4項之光電裝置,其中該 構件係含有至少一種含有氧化矽玻璃、烷基矽氧烷聚合物 、院基倍半砂氧烷聚合物、氫化烷基倍半矽氧烷聚合物、 聚芳基醚中任一種之旋塗式玻璃膜、鑽石膜及氟化非晶質 碳膜。 18·如申請專利範圍第13或14項之光電裝置,其中該 構件係由多孔質材料所構成。17. The optoelectronic device of claim 3, wherein the component comprises at least one of cerium oxide-containing glass, an alkyl siloxane polymer, a sesquioxanes polymer, and a hydrogenated alkane. A spin-on glass film, a diamond film, and a fluorinated amorphous carbon film of any one of a sesquioxane polymer and a polyaryl ether. 18. The photovoltaic device of claim 13 or 14, wherein the member is comprised of a porous material. 1 9 ·如申請專利範圍第丨3或14項之光電裝置,其中該 構件係含有氣溶膠、將多孔質氧化矽、氟化鎂之微粒子分 散的凝膠、氟系聚合物、多孔性聚合物及所定之材料中含 有微粒子者中之至少一種者。 2 0.如申請專利範圍第1 6項之光電裝置,其中該構件 與主動元件之間設置抑制物質穿透之阻隔層。 2 1 ·如申請專利範圍第1 3或1 4項之光電裝置,其中該 構件之至少一部分以防止物質通過之保護層覆蓋。 2 2 · —種電子機器,其特徵係具備如申請專利範圍第 1 3〜2 1項中任一項之光電裝置之顯示裝置。1 9 . The photovoltaic device according to claim 3 or 14, wherein the member is an aerosol, a gel dispersing porous yttria, magnesium fluoride microparticles, a fluorine polymer, a porous polymer And at least one of the particles containing the specified particles. A photovoltaic device according to claim 16 wherein a barrier layer for inhibiting the penetration of the substance is disposed between the member and the active member. 2 1 . The photovoltaic device of claim 13 or claim 14, wherein at least a portion of the member is covered with a protective layer that prevents passage of the substance. 2 2 - An electronic device characterized by having a display device of the photovoltaic device according to any one of claims 1 to 2 of the patent application.
TW092106057A 2002-03-20 2003-03-19 Circuit board, electronic device, electro-optic device, and electronic machine TWI259575B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002079509 2002-03-20
JP2003070531A JP4015044B2 (en) 2002-03-20 2003-03-14 WIRING BOARD, ELECTRONIC DEVICE, AND ELECTRONIC DEVICE

Publications (2)

Publication Number Publication Date
TW200306661A TW200306661A (en) 2003-11-16
TWI259575B true TWI259575B (en) 2006-08-01

Family

ID=28043810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092106057A TWI259575B (en) 2002-03-20 2003-03-19 Circuit board, electronic device, electro-optic device, and electronic machine

Country Status (4)

Country Link
JP (1) JP4015044B2 (en)
KR (1) KR100574261B1 (en)
CN (1) CN1285242C (en)
TW (1) TWI259575B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146208B1 (en) * 2003-11-14 2012-05-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and method for manufacturing the same
KR20050113045A (en) * 2004-05-28 2005-12-01 삼성에스디아이 주식회사 Organic light emitting display device and the method for fabricating of the same
JP4876415B2 (en) * 2005-03-29 2012-02-15 セイコーエプソン株式会社 Organic EL device manufacturing method, device manufacturing method
KR101143006B1 (en) * 2005-10-28 2012-05-08 삼성전자주식회사 Organic light emitting diode display and method for manufacturing thereof
KR100777744B1 (en) * 2006-10-27 2007-11-19 삼성에스디아이 주식회사 Flat panel display apparatus
EP2100288B1 (en) * 2006-11-28 2016-09-07 Philips Lighting Holding B.V. Electronic device using movement of particles
KR101338739B1 (en) * 2006-12-29 2013-12-06 엘지디스플레이 주식회사 Thin film transistor substrate in liquid crystal display device and method of manufacturing the same
EP2165366B8 (en) * 2007-07-04 2018-12-26 Beijing Xiaomi Mobile Software Co., Ltd. A method for forming a patterned layer on a substrate
WO2012073795A1 (en) * 2010-11-30 2012-06-07 シャープ株式会社 Display device, method for driving same, and electronic apparatus
KR101874048B1 (en) * 2011-01-14 2018-07-06 삼성디스플레이 주식회사 Organic light emitting display device
KR102059014B1 (en) 2013-05-28 2019-12-26 삼성디스플레이 주식회사 Light emitting display device and method of fabricating the same
WO2015111715A1 (en) 2014-01-24 2015-07-30 トッパン・フォームズ株式会社 Wiring board
CN104218190B (en) 2014-08-26 2017-02-15 京东方科技集团股份有限公司 Organic electroluminescence light-emitting device and manufacturing method thereof and display device
CN104409647A (en) * 2014-11-14 2015-03-11 京东方科技集团股份有限公司 Pixel unit and preparation method thereof, luminescent device and display device
CN106848024A (en) * 2017-02-20 2017-06-13 深圳市华星光电技术有限公司 Luminescent device and display device
CN111183709B (en) * 2017-09-12 2023-12-01 株式会社半导体能源研究所 Light-emitting element, light-emitting device, electronic apparatus, and lighting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3541625B2 (en) * 1997-07-02 2004-07-14 セイコーエプソン株式会社 Display device and active matrix substrate
JP3580092B2 (en) * 1997-08-21 2004-10-20 セイコーエプソン株式会社 Active matrix display
JP2000331991A (en) * 1999-03-15 2000-11-30 Sony Corp Manufacture of semiconductor device
JP4683696B2 (en) * 1999-07-09 2011-05-18 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2001284297A (en) * 2000-03-31 2001-10-12 Sony Corp Polishing device, polishing method and manufacturing method of semiconductor device
JP4889872B2 (en) * 2000-04-17 2012-03-07 株式会社半導体エネルギー研究所 Light emitting device and electric appliance using the same
JP2002026122A (en) * 2000-07-04 2002-01-25 Sony Corp Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
TW200306661A (en) 2003-11-16
KR20030079684A (en) 2003-10-10
JP2004004610A (en) 2004-01-08
KR100574261B1 (en) 2006-04-27
CN1446028A (en) 2003-10-01
CN1285242C (en) 2006-11-15
JP4015044B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
TWI273859B (en) Manufacturing method for laminated film, electro-optical device, manufacturing method for electro-optical device, manufacturing method for organic electroluminescent device, and electronic apparatus
JP4182467B2 (en) Circuit board, electro-optical device and electronic apparatus
US7696519B2 (en) Wiring substrate, electronic device, electro-optical device, and electronic apparatus
JP4872288B2 (en) Organic EL device and manufacturing method thereof
TWI228381B (en) Manufacturing method for organic electroluminescence device, and electronic device therewith
TWI259575B (en) Circuit board, electronic device, electro-optic device, and electronic machine
TWI338186B (en)
JP4945986B2 (en) Method for manufacturing organic electroluminescence device
JP2003142262A (en) Photoelectric device, film-shaped member, laminated film, film with low refractive index, multi-layered laminated film, and electronic device
JP2007115465A (en) Organic electroluminescence element
JP4736676B2 (en) Active matrix driving type organic electroluminescence display device
JP4656074B2 (en) Electro-optical device and method of manufacturing electro-optical device
JP4015045B2 (en) WIRING BOARD, ELECTRONIC DEVICE, AND ELECTRONIC DEVICE
JP2008071608A (en) Manufacturing method of organic electroluminescent element
JP2007095518A (en) Organic electroluminescent display
JP2003323138A (en) Circuit substrate, electro-optical device and electronic apparatus
JP2006113598A (en) Circuit board, electro-optical device, and electronic device
JP2012079486A (en) Organic el element and manufacturing method therefor
JP2006309254A (en) Wiring board, electronic device and electronic apparatus
JP5678455B2 (en) Method for manufacturing organic EL element and method for manufacturing organic EL panel
JP2011187364A (en) Organic electroluminescent element and method of manufacturing the same
JP2006318723A (en) Method of manufacturing organic laminated element, organic lamination element, electron device, and electronic apparatus
JP2011141981A (en) Organic electroluminescent element and method of manufacturing the same
JP2006065325A (en) Circuit substrate, electro-optical device and electronic appliance

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent