TWI244771B - A solid state light-emitting device with high extra efficiency and a method of manufacturing the device - Google Patents

A solid state light-emitting device with high extra efficiency and a method of manufacturing the device Download PDF

Info

Publication number
TWI244771B
TWI244771B TW93109937A TW93109937A TWI244771B TW I244771 B TWI244771 B TW I244771B TW 93109937 A TW93109937 A TW 93109937A TW 93109937 A TW93109937 A TW 93109937A TW I244771 B TWI244771 B TW I244771B
Authority
TW
Taiwan
Prior art keywords
light
item
state light
emitting element
patent application
Prior art date
Application number
TW93109937A
Other languages
Chinese (zh)
Other versions
TW200534500A (en
Inventor
Ho-Shang Lee
Alexander Birman
Original Assignee
Global Fiberoptocs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Fiberoptocs Inc filed Critical Global Fiberoptocs Inc
Priority to TW93109937A priority Critical patent/TWI244771B/en
Publication of TW200534500A publication Critical patent/TW200534500A/en
Application granted granted Critical
Publication of TWI244771B publication Critical patent/TWI244771B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

Epitaxial-structure containing solid state light-emitting device infuses current into the active layer to generate light irradiating outwards. This invention utilizes the waveguide layer to trap light generated by the active unit to proceed in major waveguide state and utilizes the a plurality of photon crystal regions corresponding to the current infusion region or the non-current infusion region to extract light irradiating outwards, by means of which the photoelectric effect, photo radiation and light extraction radiation effect can be enhanced by a few times as compared with that of the current LED. The transparent and electrically conductive ITO layer formed on the surface of epitaxial structure can be used as the current-diffusing layer and to simultaneously lower interface reflection. The efficacy of the invention lies in the enhancement of light-emitting efficiency and outward radiation luminance of the solid state light-emitting device.

Description

1244771 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種固態發光元件及其製造方法,特 別是指一種高亮度之固態發光元件及其製造方法。 【先前技術】 最近十年間’發光二極體(Light Emitting Diode,LED) 10 15 特別是高亮度發光二極體(hb-led)技術的急速進展,打 開了應用LED作為一般日常照明使用的一扇大門。且由於 LED在效率、使用壽命、輸出亮度等方面的亮麗表現,使鲁 得LED已普遍應用於例如交通號誌燈、剎車燈、行動電話 、戶外號遠等等各個領域。因此,LED技術的發展將會衝 擊下一個十年間的照明市場。 LED π度表現的重點主要在於其内部量子效應以及向 外輻射效率。在提昇内部量子效應方面,例如以分子束磊 晶(Molecular Beam Epitaxy,MBE )、有機金屬化學蒸鍍(1244771 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to a solid-state light-emitting element and a manufacturing method thereof, and particularly to a high-brightness solid-state light-emitting element and a manufacturing method thereof. [Previous technology] The rapid development of 'Light Emitting Diode (LED) 10 15 especially high-brightness light emitting diode (hb-led) technology in the past ten years has opened up the application of LED as a general daily lighting application. The door. And because of the bright performance of LEDs in terms of efficiency, service life, output brightness, etc., Ruder LEDs have been widely used in various fields such as traffic lights, brake lights, mobile phones, outdoor numbers and so on. Therefore, the development of LED technology will impact the lighting market in the next decade. The focus of LED π-degree performance is mainly its internal quantum effect and its outward radiation efficiency. In terms of improving internal quantum effects, for example, molecular beam epitaxy (Molecular Beam Epitaxy, MBE), organic metal chemical vapor deposition (

Metal-Organic Chemical Vap〇r Deposition,MOCVD)等方 式易於製出具有能隙的複合量子井(multiple Quantum Wells ’ MQWs) η*以幾乎使内部量子效應達到⑽%。 反觀提昇向外輻射效率上,則缺乏相關的改良進步, 而需要進-步的研究。由於此一部份牽涉到發光晶體與跟 外界相接觸的透光環氧樹脂構造,因此提昇向外輕射效 的困難處在於發光的晶體具有高折射係數,以Ga_As材 二彳=㈣為Η,而外界(即空氣)的折射係數為 .,哀讀月曰的折射係數為15,因此造成對空氣的臨界角 20 1244771 5 10 15 20 為1 7。’對環氧樹脂的臨界角則為26。,因此,若僅考成單 一界面時,光線僅能由此臨界角内射出,因此,造成在單 界面射入空氣中的向外輪射效率僅2 2%,射入環氧樹脂 的向外輻射效率僅4%,其餘光線則再反射回作動層或其他 界面而形成浪費。 雖然,例如美國專利第5779924號專利案以 方式提昇咖產生光的向外㈣效率,美國專= 6323063號專利案以反轉之截頭金字塔結構改變晶片的幾何 構造提昇LED產生光的向外輻射效率,美國專利第 55749號專利案及美國專利帛2〇〇3/〇141 %號專利案以光 子晶體結構提昇向外輻射效率,但是至今仍無法完全適用 於各式LED。 因此,如何提高發光二極體的向外輻射效率是業 斷努力的目標之一。 〃 【發明内容】 因此’本發明之目的’是在提供一種高亮度的固態發 凡件及其製造方法,以提昇I態元件向外輻射出 ( 射效率。 於是,本發明之-種高亮度固態發光元件,包括一作 動單元…第-結構單元,及—第二結構單元。 該作動單元,可以光電效應產生光。 該第一結構單元與該作動單元相連結,是限制捕集該 /動早70所產生的光在該第一結構單元與該作 行於一第一方向行進。 十 ❿ 6 1244771 该第二結構單元與該第一結構單元相連結,是汲取限 制捕集於該作動單元與該第一結構單元内行進的光,使光 以異於該第一方向向外射出。 此外,本發明之一種製造固態發光元件的方法,是先 5 製造一半導體基體,該半導體基體包含一作動單元,及至 少一與該作動單元相連結的結構單元,該作動單元當注入 電流時以光電效應產生光。 再於該結構單元上形成一由至少一由至少一孔洞形成 之陣列的光子晶體,該光子晶體是在半導體基體表面刻印 10 出特徵尺寸態樣不大於300nm的圖像形成。 再者,本發明之一種產生光的方法,是導引一電流至 一作動單元,使該作動單元以光電效應產生光;再以一第 一結構單元限制捕集該作動單元所產生的光在該第一結構 單元與該作動單元内平行於一第一方向行進;最後以一第 15 二結構單元汲取限制捕集於該作動單元與該第一結構單元 内行進的光,使光以異於該第一方向且相反於該作動單元 向外射出。 本發明之功效在於提供一種高亮度的固態發光元件及 其製造方法,以提昇固態元件向外輻射出光的輻射效率。 20 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之較佳實施例的詳細說明中,將可清楚 的明白。 參閱圖1,本發明咼凴度固態發光元件之一較佳實施例 1244771 ,疋包含一基板100、一形成於該基板100上的第一結構單 元2、一位於該第一結構單元2中的作動單元1,及一與該 第一結構單元2相連結的第二結構單元3。 該作動單元1與第一結構單元2是由分別依序自基板 100向上蠢晶成長的蟲晶結構層形成,在本例中是依序自該 基板100上磊晶布拉格反射鏡133 (DBR)、緩衝層(buffer layer ) 132、披覆層(ciadding layer ) 131、波導層( waveguide layer) 123、作動單元(active layer) 1 ' 波導層 (waveguide layer) 122、披覆層(cladding layer) 124、接 ίο 15 觸層(contact layer) 128、超薄金屬層(Uhra_thin 脱⑷ layer ) 125、銦錫氧化物(IT〇 )層126,及金屬電極( metal electrode ) 127 〇 基板100的材料可為例如黃光或紅光led所使用的Metal-Organic Chemical Vapor Deposition (MOCVD) and other methods are easy to produce multiple quantum wells (MQWs) η * with an energy gap so that the internal quantum effect reaches almost ⑽%. On the other hand, the improvement of external radiation efficiency lacks related improvements and requires further research. Since this part involves the structure of the light-transmitting epoxy resin that the light-emitting crystal is in contact with the outside world, the difficulty in improving the light-emitting effect outwards is that the light-emitting crystal has a high refractive index, with Ga_As material 彳 = ㈣ as Η , And the refractive index of the outside world (that is, the air) is. The refractive index of the month is 15, so the critical angle to the air 20 1244771 5 10 15 20 is 17. The critical angle to the epoxy resin is 26. Therefore, if only a single interface is considered, the light can only be emitted from this critical angle. Therefore, the external round-shot efficiency of the single-interface interface into the air is only 22%, and the external radiation of the epoxy resin The efficiency is only 4%, and the remaining light is reflected back to the actuator layer or other interfaces to form waste. Although, for example, U.S. Patent No. 5,799,924 improves the outward emission efficiency of the light generated by the coffee, U.S. Patent No. 6323063 changes the geometry of the wafer with an inverted truncated pyramid structure to enhance the outward radiation of the light generated by the LED. Efficiency, U.S. Patent No. 55749 and U.S. Patent No. 2003/0141% increase the efficiency of outward radiation with a photonic crystal structure, but so far it is still not completely applicable to various types of LEDs. Therefore, how to improve the outward radiation efficiency of light-emitting diodes is one of the goals of the effort.发明 [Summary of the Invention] Therefore, the 'object of the present invention' is to provide a high-brightness solid-state heating element and a method for manufacturing the same, so as to improve the radiation efficiency of the I-state element. Therefore, the present invention-a high-brightness The solid-state light-emitting element includes an actuating unit, a first structural unit, and a second structural unit. The actuating unit can generate light by a photoelectric effect. The first structural unit is connected to the actuating unit to limit capturing of the The light generated by the early 70 travels in a first direction between the first structural unit and the operation. Tokushima 6 1244771 The second structural unit is connected to the first structural unit to extract and limit capture to the operating unit. And the light traveling in the first structural unit, so that the light is emitted outward in a direction different from the first direction. In addition, in a method for manufacturing a solid-state light-emitting element according to the present invention, first, a semiconductor substrate is manufactured, and the semiconductor substrate includes a semiconductor substrate. An actuating unit and at least one structural unit connected to the actuating unit, the actuating unit generates light with a photoelectric effect when an electric current is injected, and is further formed on the structural unit. A photonic crystal formed by at least one array formed by at least one hole, the photonic crystal is formed by engraving 10 images with a characteristic size of not more than 300 nm on the surface of a semiconductor substrate. Furthermore, a method for generating light of the present invention, It is to direct an electric current to an actuating unit, so that the actuating unit generates light with the photoelectric effect; and a first structural unit is used to limit trapping the light generated by the actuating unit in the first structural unit and the actuating unit in parallel to Travel in a first direction; finally, use a 15th and second structural unit to extract light that is restricted to travel within the actuating unit and the first structural unit, so that the light is outwardly different from the first direction and opposite to the actuating unit The function of the present invention is to provide a high-brightness solid-state light-emitting element and a manufacturing method thereof to improve the radiation efficiency of the solid-state element radiating light outward. [Embodiment] The foregoing and other technical contents, features, and effects of the present invention It will be clearly understood in the following detailed description of the preferred embodiment with reference to the drawings. Referring to FIG. A preferred embodiment of a solid-state light-emitting element is 1244771, which includes a substrate 100, a first structural unit 2 formed on the substrate 100, an actuating unit 1 located in the first structural unit 2, and a first and second structural units. A second structural unit 3 is connected to a structural unit 2. The actuating unit 1 and the first structural unit 2 are formed by a worm-crystal structure layer that grows up from a substrate 100 in sequence. An epitaxial Bragg mirror 133 (DBR), a buffer layer 132, a ciadding layer 131, a waveguide layer 123, an active layer 1 ', and a waveguide layer ( waveguide layer) 122, cladding layer 124, 15 contact layer 128, ultra-thin metal layer 125, indium tin oxide (IT0) layer 126, and metal The electrode (metal electrode) 127. The material of the substrate 100 may be, for example, a yellow light or a red light.

GaAs,UV光、綠光或藍光所使用的單晶藍寶石基板、GaN 及Sic等。 作動單元1可以光電效應產生光。該作動單元丨之磊 曰曰結構可以是異質結構(heterostructure )、複合量子井、或 疋複合量子點(muhi_quantum d〇ts,MqDs ),而可得到最 佳的内部產生光的量子效應。 電洞和電子在作動單元"吉合產生的光,大部分被》: 導層122、123限制捕集在作動單元1、波導層122、12h ,行於第-方向行進。該波導層122、123的折射係數高力 該厚度超過5Gnm的披覆層124、⑶。未被限制搜捕到自 光則如習知的LED —般射出㈣元件本身至外界或是被7 20 1244771 件之半導體結構本身再吸收。該波導層122、123是以單一 杈態或少數幾個較低階的模態限制光來回行進,因此其厚 度約在30nm至250nm之間。 接觸層128提供給超薄金屬層125作為過渡性層體使 用,該超薄金屬層125上連結銦錫氧化物層126,超薄金屬 層125與銦錫氧化物層126是用來增加電流擴散的面積。 該銦錫氧化物層126是透明、可導電的,且折射係數約為 1.8,並具有抗反射的鍍層,可以降低對空氣界面的 反射或是封裝後對環氧樹脂界面的反射。一般說來,由於 在半導體磊晶·空氣界面的Fresnei反射係數較半導體材料本 身為高,而會造成例如以GaN材料為基底的17%的損失, 以GaAs材料為基底的3〇%損失,因此該銦錫氧化物層126 扮演著影響光線射出的重要角色。當然,其他折射率與鋼 錫氧化物相近且透明可導電之物質均可使用來取代此銦錫 氧化物層以降低Fresnel反射。 為了使光在空氣與其他層體間界面的反射最小,該銦 錫氧化物層126的厚度須控制等於λ/4χ叫。nm,λ是產生 光的波長,nit。表示銦錫氧化物層之折射率,例如產生的光 波長是64〇nm,該銦錫氧化物層的厚度是89nm,產生的光 縣是47〇nm時,該銦錫氧化物層的厚度是65nm,且為了 涵蓋UV光至紅外光的範圍’銦錫氧化物層的厚度必須限制 在30nm到300nm之間。 電流經由金屬電極127擴散至作動單元】使電子躍遷 產生光子,為了減少光子在基板1〇〇反側的損耗,安置該 1244771 朝向金屬電極127的布拉格反射鏡(DBR) 133以反射光, 當然此布拉袼反射鏡133在不影響發光效率的狀況下可被 省略。 緩衝層132形成在布拉袼反射鏡133與披覆層131之 5 間。 在此要特別說明的是,上述部分磊晶結構均可為Ν· type或是P-type,但在作動單元i上方的結構必須與下方的 結構呈層體N-type與P-type對應形成。同時,在不影響發 光效率的前提下,上述例如緩衝層132、布拉格反射鏡133 0 、披覆層124、131、銦錫氧化物層126、超薄金屬層125 4,都可以使其退化甚至省略,甚或波導層122、在作 動單元1之折射率與可發出之光的波長限制條件下,亦可 以省略而由外界空氣而達到限制捕集光的效果。 該第二結構單元3連結於第一結構單元2上,藉此汲 5 取光、改進元件的發光效果。該第二結構單元3包含一光 子晶體,該光子晶體結構具有包含多數向下形成至披覆層 124的孔洞201,且該些孔洞2〇1並形成二維陣列的圖像排 列。该複數孔洞201 —般可以化學蝕刻方式形成,深度亦 可控制在到達波導層122,亦可如圖1中虛線203到達更接 〇 近基板1〇〇下方之作動單元1或波導層123。若作動單元1 發出的是可見光,每一孔洞2〇1的直徑是5〇nm至3〇〇nm, 光子晶體的晶格常數(即自其中一孔洞之中心至其相鄰之 一孔洞的中心)則是80至500nm,此晶袼常數會隨著產生 光的波長及光子晶體的帶寬程級(level )增加而增加。 10 1244771 關於孔洞形成的位置有二種,其一是如圖2所示,金 屬電極127之對應下方亦有光子晶體之多數孔洞2〇ι形成 時,電流可經由金屬冑極127、爹因錫氧化物層126擴散至整 個光子晶體區域,因此電流是由金屬電極127注入經過作 5 動單疋1到達接近基板100的另一電極127 ;另一種是如圖 3所示,金屬電極127下方無對應孔洞2〇1,光子產生區域 與電流向下擴散導引區域分肖,因此電流未流過第一結構 單元2之部分第二結構單元3的光子晶體區域,原因是光 子晶體區域具有孔洞201的部分電阻較高因此電流以其他 1〇 路徑流通,如此可避免在光子晶體區域中的載體(電洞或 電子)因為位於或接近孔洞表面的缺陷或損耗而漏失。無 論孔洞201分布態樣為何,由捕集到的光子所引發的電場 強度自作動單元i向披覆層124逐步衰減,進而與該光子 晶體相互作用。而在預定之光子晶體的晶格常數與孔洞直 15 徑相互配合下,該作動單元1產生的光215會由表面射出 〇 圖1所示之孔洞201是晶圓表面向下形成,而當採用 晶圓連結技術(wafer b〇nding)時,該些孔洞2〇1須深入披 覆層131或是波導層123,或是經由作動單元i至波導層 '〇 122與披覆層124°晶圓連結技術是反轉晶圓將蟲晶結構最 上層之接觸層124 (例如銦錫氧化物層126被省略時)再連 結至一新的基板上,而若新基板的能隙較作動單元1寬, 作動單元1產生的光則不會被新基板吸收,而可由作動單 兀1兩側向外射出’舉例來說’卩GaAS為初始基板,能隙 5 10 15 20 1244771 較大的GaP基板則可作為新基板。 圖4、5、6、7是光子晶體結構、金屬電極丨27與孔洞 201的關聯示意圖。圖4所示之晶圓300可以切割成多數晶 片310,每一晶片310的表面圖像則由圖5所表示,备一曰 日日 片310的邊長在50至500μηι之間,金屬電極127之連線 312將晶片31〇表面縱向橫向地分隔成多數柵袼316,每一 柵格316圍覆相對應之一光子晶體單體315,圖6是一栅袼 316的放大圖式,形成柵袼316之連線3丨2的寬度是1至 1〇〇μΠ1,每一光子晶體單體315由二橫向與二縱向的連線 312所圍覆,因此,一晶片31()可具有多數光子晶體單體 315,光子晶體單體315之邊長界於i至1〇〇μηι之間,在每 一光子晶體單it 315中的複數孔洞2G1分布態樣則由圖7 戶斤表示。 在曰b片3 10内部,光子晶體單體的幾何形狀與電極連 線312的,又置有多種對應配置方式,而可得到元件本身最 ^光電表現。如圖8所示,此例是光子晶體單體以六角形 °又置的{列子,〆、角形可以使產生的光與光子晶體單體相 互作用而付到最佳的射出效率,每一六角形的光子晶體單 體被電極連線312所圍n「闰Q 士 W国覆(圖8中白色的區域),並於一晶 月310成'、角开》開口狀的週期排列的陣歹,J (每一連線312 所成的六角形開口均斟Α^ α 勹子應圍覆一光子晶體單體),圖中由虛 線3 18所圈示出的丄 角形開口(即一連線3丨2與其所圍覆 的光子晶體單體)均盥 工^ ^ J 一另一六角形虛線318圈示之區域構 造相同,且與前^ 則边圖/、、圖7之具體結構近似,在此不再 12 1244771 贅^。由理論計算可知,當在金屬電極127下方無孔洞洲 的實施例的最佳表現狀況下,每兩相鄰之六角形開口之連 線3 12寬度是六角形開口的w倍。 圖9是表示適合於此種電極連線312形成六角形狀包 覆光子晶體單體時,複數孔洞2〇1均成三角形陣列排列, 以得到最佳的汲取光向外射出的效果。當然,其他形狀的 設置方式亦可以適用於本發明中。 對可見光與UV光而言,低階能帶的光子晶體的晶格常 數與孔洞直揑是屬於100nm的數量級,製造出光子晶體陣籲 列是具有挑戰性的目標,低生產量時,電子束印刷( electron beam lith〇graphy )可以用來製造光子晶體但是此 方式較慢。在本發明中,奈米刻印技術(刪。-—— technology)用來取代鑽孔或是化學蝕刻出光子晶體之孔洞 201以符3靈產所需。奈米標示技術的特點有:適合特徵尺 寸的戳印裝置、相配合之光阻或是uv樹脂等材料,及可以 適當的控制溫度、壓力的戳印設備。 圖10是說明以奈米刻印技術及相關蝕刻製造本發明高鲁 π度發光一極體的過程。如上述指出,光子晶體單體的複 數孔洞201的尺寸極小,因此必須使用奈米刻印技術成型, ’而此方式首先是利用電子束印刷或是光印屈J (0ptical lithography)製造一模具(m〇ld),在此,電子束印刷適合 用來製造具有多數奈米級圓柱狀突起的正模5丨(p〇shive mold)或是具有奈米級凹陷之孔洞的負模(negative m〇ld) ,負模用於複製用於刻印時的多數正模51,舉例來說,先 13 再以此負模轉印製 5 10 15 20 成型出多數 1244771 以電子束印刷或是光印刷製造一負模 造出多數實際用於刻印過程的正模51 步驟41是先在基板1〇()上 磁留-^ 斤猫晶方式形成第一結 構早凡 2,再;^v 笛 ^一 L·^. Ljt σσ -. 丹於第-結構早$ 2之最上層 (10 ® 5 9 ώΑ J.-L Ϊ I 乂 阻屬 5 2。 Ρ曰52的材料可以使用典型 〃子材料 pmmA、uv 接著以步驟42將正模51壓在該阻層52上 然後以步驟43,移開正模51,使阻層52 對應於正模51的刻紋53, 再以步驟44,㈣該具有栽53之阻層52 —預定厚 度,由於刻紋53相對凹陷而較薄,所以移除足夠厚度之阻 層後即可使得阻層52具有敎53_域完全魏刻移除 ’而使得第-結構單元最上層對應此區域的部分裸露。 最後進行步驟45,自該第—結構單元最上層裸露之區 域繼續向下刻出預定深度,即製㈣複數孔洞加 整個製造。 v驟44 45中,|虫刻可以i〇n_assisted化學姓刻、反應 物理濺鑛或其他方式進行,由於此等㈣過程以為業界所 周知,故在此不再多加贅述。 由上述說明可知,本發明主要是以作動單元1以最高 的量子效應產生光’並以第—結構單& 2將光限制捕集其 中,再以第二結構單元3之光子晶體的孔洞加設置,將 光高效率地汲取出來而向外界傳播,而可較傳統的發光元 14 1244771 件例如LED提高數倍的發光亮度,·同時本發明亦提供一製 造方法以精確且可量產地製造出該第二結構單元3之孔洞 2〇1,而符合市場的需求,確實達到本發明之創作目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明書内容所作之簡單的等效變化與修飾,皆 應仍屬本發明專利涵蓋之範圍内。 【囷式簡單說明】 圖1是一剖視圖,說明本發明一種高亮度固態發光元 件之一較佳實施例; 圖2是一剖視圖,輔助說明圖丨之固態發光元件的電 極與孔洞的一配置態樣; 圖3是一剖視圖,輔助說明圖丨之固態發光元件的電 極與孔洞的另一配置態樣; 圖4是一示意圖,說明一具有多數固態發光元件之晶 片的晶圓; 圖5是圖4之一放大示意圖,說明其中之一晶片,其 電極之連線與光子晶體的相對關係; 圖6是圖5之一放大示意圖,說明其中之一電極之連 線所形成之栅格與光子晶體單體的態樣; 圖7是圖6之-放大示意圖,說明其中之一概格内光 子晶體單體之複數孔洞的態樣; 圖8疋一類似於圖5之放大示意圖,說明一電極之連 線與光子晶體單體是以六角形週期性陣列分布; 15 1244771 圖9是圖8之一放大示意圖,說明其中之一六角形開 口孔洞的分布態樣;及 圖10是一流程示意圖,說明製造如圖1所示之固態發 光元件的第二結構單元的過程。GaAs, single crystal sapphire substrates used for UV, green or blue light, GaN and Sic. The actuation unit 1 can generate light by a photoelectric effect. The operating unit 丨 Zhi Lei said the structure can be a heterostructure, a composite quantum well, or a 疋 composite quantum dot (muhi_quantum dots, MqDs), and the best internal quantum effect of light can be obtained. Most of the light generated by holes and electrons in the actuating unit " Geely " is restricted by: the guide layers 122, 123 are trapped in the actuating unit 1, the waveguide layers 122, 12h, and travel in the-direction. The waveguide layers 122 and 123 have high refractive indexes and the cladding layers 124 and ⑶ with a thickness exceeding 5 Gnm. Unrestricted search for self-light will emit the plutonium element itself to the outside world like a conventional LED—or it will be reabsorbed by the 7 20 1244771 semiconductor structure itself. The waveguide layers 122, 123 restrict the light to travel back and forth in a single branch state or a few lower order modes, so their thickness is between about 30nm and 250nm. The contact layer 128 is provided to the ultra-thin metal layer 125 as a transition layer. The ultra-thin metal layer 125 is connected to the indium tin oxide layer 126. The ultra-thin metal layer 125 and the indium tin oxide layer 126 are used to increase current diffusion. Area. The indium tin oxide layer 126 is transparent, electrically conductive, has a refractive index of about 1.8, and has an anti-reflection coating, which can reduce reflection on the air interface or reflection on the epoxy resin interface after encapsulation. Generally speaking, the Fresnei reflection coefficient at the semiconductor epitaxial-air interface is higher than that of the semiconductor material itself, which causes a loss of 17% based on the GaN material and 30% loss based on the GaAs material, so The indium tin oxide layer 126 plays an important role in affecting light emission. Of course, other transparent and conductive materials with similar refractive index to steel tin oxide can be used instead of this indium tin oxide layer to reduce Fresnel reflection. In order to minimize the reflection of light at the interface between air and other layers, the thickness of the indium tin oxide layer 126 must be controlled to be equal to λ / 4χ. nm, λ is the wavelength at which light is generated, nit. It indicates the refractive index of the indium tin oxide layer. For example, the wavelength of light generated is 64nm, the thickness of the indium tin oxide layer is 89nm, and the thickness of the indium tin oxide layer is 47nm. The thickness of the indium tin oxide layer is 65nm, and in order to cover the range from UV light to infrared light, the thickness of the indium tin oxide layer must be limited to 30nm to 300nm. The current diffuses to the actuating unit through the metal electrode 127.] The electron transition generates photons. In order to reduce the photon loss on the opposite side of the substrate 100, the 1244471 Bragg reflector (DBR) 133 facing the metal electrode 127 is placed to reflect light. Of course, this The Bragg reflector 133 can be omitted without affecting the luminous efficiency. The buffer layer 132 is formed between the Bragg reflector 133 and the cover layer 131. It should be particularly noted here that the above partial epitaxial structure can be N · type or P-type, but the structure above the actuating unit i must be formed in a layered body N-type and P-type corresponding to the structure below . At the same time, without affecting the luminous efficiency, the above-mentioned buffer layer 132, Bragg reflector 133 0, cladding layers 124, 131, indium tin oxide layer 126, and ultra-thin metal layer 125 4 can all cause degradation or even Omitting, or even the waveguide layer 122, under the conditions of the refractive index of the operating unit 1 and the wavelength limitation of the light that can be emitted, can also be omitted and the effect of limiting light collection can be achieved by the outside air. The second structural unit 3 is connected to the first structural unit 2 so as to absorb light and improve the light-emitting effect of the element. The second structural unit 3 includes a photonic crystal, and the photonic crystal structure has a plurality of holes 201 formed down to the cladding layer 124, and the holes 201 are formed into a two-dimensional image array. The plurality of holes 201 can generally be formed by chemical etching, and the depth can also be controlled to reach the waveguide layer 122, or as shown by the dashed line 203 in FIG. 1 to reach the operating unit 1 or the waveguide layer 123 below the substrate 100. If the active unit 1 emits visible light, the diameter of each hole 201 is 50nm to 300nm, and the lattice constant of the photonic crystal (that is, from the center of one hole to the center of an adjacent hole) ) Is from 80 to 500 nm, and this crystalline constant will increase with the wavelength of the generated light and the bandwidth level of the photonic crystal. 10 1244771 There are two kinds of positions for hole formation. One is as shown in FIG. 2. When the majority of holes 2o are formed by the photonic crystal below the corresponding metal electrode 127, the current can pass through the metal electrode 127 and Dain tin. The oxide layer 126 diffuses to the entire photonic crystal region, so the current is injected from the metal electrode 127 through a single action 1 to reach another electrode 127 close to the substrate 100; the other is shown in FIG. Corresponding to the hole 201, the photon generation region is separated from the current downward diffusion guide region, so the current does not flow through the photonic crystal region of the second structural unit 3, which is part of the first structural unit 2, because the photonic crystal region has the hole 201 Part of the resistance is higher so that current flows through other 10 paths, so that the carrier (hole or electron) in the photonic crystal region can be prevented from being lost due to defects or losses located on or near the hole surface. Regardless of the distribution pattern of the holes 201, the intensity of the electric field caused by the captured photons gradually decreases from the actuating unit i to the coating layer 124, and then interacts with the photonic crystal. When the lattice constant of the predetermined photonic crystal and the diameter of the hole 15 are matched, the light 215 generated by the actuating unit 1 will be emitted from the surface. The hole 201 shown in FIG. 1 is formed downward from the wafer surface. In wafer bonding technology, the holes 201 must be penetrated into the coating layer 131 or the waveguide layer 123, or via the actuating unit i to the waveguide layer '〇122 and the coating layer 124 ° wafer. The connection technology is to invert the wafer and connect the top contact layer 124 of the worm structure (for example, when the indium tin oxide layer 126 is omitted) to a new substrate, and if the new substrate has a wider energy gap than the operating unit 1 The light generated by the actuating unit 1 will not be absorbed by the new substrate, but can be emitted outward from both sides of the actuating unit 1. For example, ASGaAS is the initial substrate, and the larger GaP substrate with energy gap 5 10 15 20 1244771 can As a new substrate. Figures 4, 5, 6, and 7 are schematic diagrams of the correlation of the photonic crystal structure, the metal electrode 27, and the hole 201. The wafer 300 shown in FIG. 4 can be cut into a plurality of wafers 310. The surface image of each wafer 310 is shown in FIG. 5. The side length of the Japanese-Japanese wafer 310 is between 50 and 500 μηι, and the metal electrode 127 is provided. The connecting line 312 divides the surface of the wafer 31 vertically and horizontally into a plurality of grids 316, and each grid 316 surrounds a corresponding photonic crystal unit 315. FIG. 6 is an enlarged view of a grid 316 to form a grid. The width of the 3316 line 3 丨 2 is 1 to 100 μΠ1, and each photonic crystal unit 315 is surrounded by two horizontal and two vertical lines 312. Therefore, a wafer 31 () can have most photons The length of the edge of the crystal monomer 315 and the photonic crystal monomer 315 is between i and 100 μm. The distribution pattern of the plurality of holes 2G1 in each photonic crystal single it 315 is shown in FIG. 7. Inside the b-plate 3 10, the geometry of the photonic crystal monomer and the electrode connection 312 are arranged in a variety of corresponding ways, and the most photoelectric performance of the element itself can be obtained. As shown in FIG. 8, this example is a photonic crystal monomer with hexagonal angles {列子, 〆, 角, can make the generated light interact with the photonic crystal monomer to give the best output efficiency, each six The horn-shaped photonic crystal monomer is surrounded by the electrode connection line 312, “闰 Q 士 W country cover (white area in FIG. 8), and is arrayed in a periodic array of 310”, “angle open”, and arranged in an array. , J (the hexagonal openings formed by each connection 312 are considered A ^ α, the cricket should be surrounded by a photonic crystal monomer), the angled opening shown by the dotted line 3 18 in the figure (that is, a connection 3 丨 2 and the photonic crystal unit it surrounds) are all ^ ^ J-the structure of the area shown by the 318 circle of another hexagonal dotted line is the same, and is similar to the specific structure of the previous ^ side figure /, and FIG. 7, 12 1244771 is no longer necessary here. From theoretical calculations, it can be known from the theoretical calculations that under the best performance of the embodiment where there is no hole under the metal electrode 127, the line 3 12 width of each two adjacent hexagonal openings is hexagonal. W times the opening. Fig. 9 shows a case where such electrode connection 312 is suitable for forming a hexagonal-shaped photonic crystal unit. The plurality of holes 201 are arranged in a triangular array to obtain the best effect of the outgoing light. Of course, other shapes of the arrangement can also be applied in the present invention. For visible light and UV light, low order The lattice constant of the energy band photonic crystal and the pinching of the holes are in the order of 100nm. It is a challenging goal to create a photonic crystal array. At low throughput, electron beam lithography can be used. This method is slower to make photonic crystals. In the present invention, nano-engraving technology (deleted .--- technology) is used instead of drilling or chemically etching holes 201 of photonic crystals to meet the needs of 3 spiritual production. The characteristics of the nano-marking technology include: a stamping device suitable for the characteristic size, a matching photoresist or UV resin, and a stamping device that can appropriately control the temperature and pressure. Figure 10 illustrates the nano-marking technology. And the related etching process for manufacturing the high-Lu π light-emitting monopolar body of the present invention. As indicated above, the size of the plurality of holes 201 of the photonic crystal monomer is extremely small, so nano-etching must be used. Technical molding, 'and this method first uses electron beam printing or photolithography J (0ptical lithography) to make a mold (mold). Here, electron beam printing is suitable for manufacturing cylindrical protrusions with most nanometer grades. The positive mold 5 丨 (negative mold) with holes in the nano-level depression (negative mold). The negative mold is used to copy most of the positive molds 51 used for marking. For example, first 13 Then use this negative mold to transfer 5 10 15 20 to form a majority of 1244471. Use electron beam printing or light printing to make a negative mold. Create a positive mold that is actually used for the engraving process. 51 Step 41 is first on the substrate 10 (). The first structure on the magnetic stay- ^ cat cat crystal to form the early structure 2, then; ^ v flute ^ a L · ^. Ljt σσ-. Dan Yudi-the top of the structure early $ 2 (10 ® 5 9 FREE Α J .-L Ϊ I 乂 阻 属 5 2. For the material of P 52, a typical ladle material pmmA, uv can be used. Then, in step 42, the positive mode 51 is pressed on the resistive layer 52, and then in step 43, the positive mode 51 is removed, so that the resistive layer 52 corresponds to the positive mode 51. The engraved pattern 53 is followed by step 44. The resist layer 52 having a thickness of 53 is set to a predetermined thickness. Since the engraved pattern 53 is relatively concave and thin, the resist layer 52 can be made to have 敎 53 after removing a sufficient thickness of the resist layer. _Domain is completely removed by Wei, so that the uppermost part of the -th structural unit corresponds to this part of the region. Finally, step 45 is performed, and the predetermined depth is continued to be etched downward from the uppermost bare area of the first structural unit, that is, a plurality of holes are added and the entire manufacturing is performed. In v 44 44, the insect engraving can be performed by ino_assisted chemical surname engraving, physical splatter reaction, or other methods. Since these processes are well known in the industry, they will not be repeated here. It can be known from the above description that the present invention mainly uses the actuating unit 1 to generate light with the highest quantum effect, and traps the light in the first structural unit & 2, and then adds the holes of the photonic crystal of the second structural unit 3 It can be set to extract light efficiently and propagate it to the outside world. It can increase the luminous brightness several times compared with the traditional light emitting element 14 1244771 such as LED. At the same time, the present invention also provides a manufacturing method to manufacture accurately and mass-produced The holes 201 of the second structural unit 3 are produced, which meets the needs of the market, and indeed achieves the creative purpose of the present invention. However, the above are only the preferred embodiments of the present invention. When the scope of implementation of the present invention cannot be limited by this, that is, the simple equivalent changes and modifications made according to the scope of the patent application and the content of the invention specification, All should still fall within the scope of the invention patent. [Brief description of the formula] FIG. 1 is a cross-sectional view illustrating a preferred embodiment of a high-brightness solid-state light-emitting element of the present invention; FIG. 2 is a cross-sectional view to assist in explaining an arrangement state of electrodes and holes of the solid-state light-emitting element of FIG. Fig. 3 is a cross-sectional view to help explain another configuration of the electrodes and holes of the solid-state light-emitting element of Fig. 丨 Fig. 4 is a schematic diagram illustrating a wafer having a plurality of solid-state light-emitting elements; Fig. 5 is a diagram 4 is an enlarged schematic diagram illustrating the relative relationship between the electrode connection of one of the wafers and the photonic crystal; FIG. 6 is an enlarged schematic diagram of FIG. 5 illustrating the grid and the photonic crystal formed by the connection of one of the electrodes Fig. 7 is an enlarged schematic diagram of Fig. 6 illustrating the state of a plurality of holes of a photonic crystal monomer in one of the outlines; Fig. 8 is an enlarged schematic diagram similar to Fig. 5 illustrating the connection of an electrode Line and photonic crystal monomers are distributed in a hexagonal periodic array; 15 1244771 Figure 9 is an enlarged schematic diagram of Figure 8 illustrating the distribution of one of the hexagonal opening holes; and Figure 10 A flow diagram illustrating a process of manufacturing the solid-state light-emitting element shown in FIG 1 of a second structural unit.

16 1244771 【圖式之主要元件代表符號說明】 100 基板 300 晶圓 1 作動層 310 晶片 2 第一結構單元 316 栅格 3 第二結構單元 315 光子晶體單體 122 、 123 波導層 318 虛線 124 、 131 披覆層 41 步驟 125 金屬層 42 步驟 126 銦錫氧化物層 43 步驟 127 金屬電極 44 步驟 128 接觸層 45 步驟 312 連線 51 正模 133 布拉格反射鏡 52 阻層 132 緩衝層 53 刻紋 201 孔洞 215 光 1716 1244771 [Description of the main components of the diagram] 100 substrate 300 wafer 1 active layer 310 wafer 2 first structural unit 316 grid 3 second structural unit 315 photonic crystal unit 122, 123 waveguide layer 318 dashed line 124, 131 Cover layer 41 step 125 metal layer 42 step 126 indium tin oxide layer 43 step 127 metal electrode 44 step 128 contact layer 45 step 312 connection 51 positive mode 133 Bragg reflector 52 resist layer 132 buffer layer 53 engraved 201 hole 215 Light 17

Claims (1)

1244771 拾、申請專利範圍: 1 · 一種高亮度固態發光元件,包括· 一作動單元’可以光電:應產生光; 兮作叙^作動早70相連結之第一結構單元,是限制捕集 該作動單元所產生的氺+ ^ i > μ 吐 j尤在该第一結構單元與該作動單元内 平仃於一弟一方向行進;及 一與该第一结爐g - 、早兀相連結之第二結構單元,是汲取 限制捕集於該作會j I& /、該第一結構單元内行進的光,使 光以異於該第一方向向外射出。 2 _根據申請專利範圚笛 —* 弟1項所述高亮度固態發光元件,其中 ’邊第一結構單开县 〇〇 w立丄 疋以一早光波模態限制捕集該作動單元 的光在忒第一結構單元與該作動單元内平行於一第 一方向行進。 3. 根據申請專利範圍裳 111第1項所述高亮度固態發光元件,其中 ’該第一結構輩畀a 疋至〉、一低階光波模態限制捕集該作動 早元所產生的弁&1244771 The scope of patent application: 1 · A high-brightness solid-state light-emitting element, including: · an actuating unit 'can be photoelectric: light should be generated; the first structural unit connected to the operation early 70 is to limit the capture of the operation氺 + ^ i > μ generated by the unit travels in the same direction between the first structural unit and the actuating unit in the direction of one brother; and one connected to the first furnace g-and Zao Wu The second structural unit is configured to extract and limit the light traveling in the first session of the conference j I & /, so that the light is emitted outward in a direction different from the first direction. 2 _According to the patent application Fan Lidi— * The high-brightness solid-state light-emitting element described in item 1, wherein the side structure of the first side is single Kaixian 〇〇 立 立 丄 疋 captures the light in the operating unit with an early light wave mode. The first structural unit travels parallel to a first direction within the actuating unit. 3. According to the high-brightness solid-state light-emitting element described in the first item of the patent application Sang 111, where 'the first structure generation 畀 a 疋 to>', a low-order light wave mode restricts the trapping of 弁 & 尤在違第一結構單元與該作動單元内平行於 一第一方向行進。 4·根據申請專利笳圍楚、= 專巳W第1項所述高亮度固態發光元件,其中 ’該第:結構單元更具有至少一波導層。 象申明專利範圍帛4項所述高亮度固態發光元件,其中 ’ 〇玄波導層的厚度界於3〇nm至25〇nm之間。 6 ·根據申請真免|w ) 乾圍第4項所述高亮度固態發光元件,其中 ,$亥第~社播?s - π 、、°苒早疋更具有一形成在該波導層上的透明導電 層,是可透光且可導電。 18 1244771 7·根據申請專利範圍第4項所述高亮度固態發光元件,其中 ,該第一結構單元更具有至少一與該波導層連結之披覆層 ’且5亥披覆層之折射率較該波導層低。 8·根據申請專利範圍第7項所述高亮度固態發光元件,其中 ,該第一結構單元更具有至少一與該坡覆層連結之銦錫氧 化物層。 9·根據申請專利範圍第8項所述高亮度固態發光元件,其中 ,該錮錫氧化物層之折射率約為1.8,且是該高亮度固態發 光元件接觸外界之界面。 I 〇·根據申請專利範圍第8項所述高亮度固態發光元件,其中 ’該錮錫氧化物層的厚度界於3〇ηιη至300nm之間。 II ·根據申請專利範圍第8項所述高亮度固態發光元件,其中 ’當該作動單元產生的光波長是 640nm,該銦錫氧化物層 的厚度是約89nm。 12·根據申請專利範圍第8項所述高亮度固態發光元件,其中 ^ °亥作動單元產生的光波長是47Onm,該銦錫氧化物層 的厚度是約65nm。 _ 13·根據申請專利範圍第8項所述高亮度固態發光元件,其中 ’ 5亥作動單元產生的光波長是λ nm時,該銦錫氧化物層 的厚度是λ/4χ nit。nm,該nit。表示銦錫氧化物層之折射率 〇 14·根據申請專利範圍第8項所述高亮度固態發光元件,其中 亥第一結構單元更具有一位於該彼覆層與銦錫氧化物層 之間的金屬層。 19 1244771 15. 16. 17. 18. 19. 20. 21. 22. 根據申請專利範圍第1項所述高亮度固態發光元件,其中 ’ 6亥第二結構單元更具有複數光子晶體單體。 根據申請專利範圍第15項所述高亮度固態發光元件,其 中’該每一光子晶體單體包括一由至少一孔洞所形成的孔 洞陣列。 根據申請專利範圍第16項所述高亮度固態發光元件,其 中’該第二結構單元更包含至少一薄層,且該孔洞陣列形 成於該薄層中。 根據申請專利範圍第17項所述高亮度固態發光元件,其 中,5亥孔洞陣列是一二維陣列。 根據申請專利範圍第18項所述高亮度固態發光元件,其 中,该第二結構單元更包含至少一可供電流流至該作動單 兀*的電極層。 根據申請專利範圍帛19項所述高亮度固態發光元件,其 中’該電極層形成栅格狀的圖像。 根據申請專利範圍帛2G項所述高亮度固態發光元件,其 中’該第二結構單元更包含形成複數陣列排列的複數孔洞 ’每-陣列是位於該其中之一柵格開口中,而可沒取限制 捕集於該作動單元盘該第一 έ-t J-jtiL 〇〇 ^ 平/、/弟、、、口構早兀内行進的光,使光以 異於該第一方向且相反於該作動單元向外射出。 根據申請專利範圍第19項所述高亮度固態發光元件, 中,該電極層形成複數六角形堆積狀的圖像。 根據申请專利範圍第22項所述高意许 <回冗度固態發光元件, 中’ 5亥第一結構年元更包含形成趨盤卩击 风後數陣列排列的複數孔 20 23. 1244771 母陣列疋位於S亥其中之一六角形開D中,而可没取限 制捕集於該作動單元與該第一結構單元内行進的光,使光 以異於該第一方向且相反於該作動單元向外射出。 24.根據申請專利範圍帛22項所述高亮度固態發光元件,其 中,該每兩相鄰之六角形開口的距離是該六角形開口邊長 的倍。 25·根據中請專利範圍第22項所述高亮度固態發光元件,其 中,該複數陣列形成一三角形排列圖像,且每一光子晶體 單體形成六角形以對應於該一六角形開口。 26·根射請專利範圍帛⑼或22項所述高亮度固態發光元件 ,其中’該電極層是由複數長條形成該網狀態樣,且該每 一長條之寬度是1至ι〇〇μηι。 27·根據申請專利範圍帛19項所述高亮度固態發光元件,其 中/發光一極體包含複數半導體晶片,且該電極層形成 至少-電極層網,該電極層網包覆該一半導體晶片上的至 少一光子晶體單體。 28·根據申請專利範圍帛27項所述高亮度固態發光元件,其 中 電極層、、,罔包含複數栅格單體,每一栅格單體包覆一 光子晶體單體。 29.根據申吻專利觀圍帛28項所述高亮度固態發光元件,盆 中’該每-栅格單體成正方形,及/或矩^ ,、 3 0 ·根據申請專利範圍楚 _弟28項所述高亮度固態發光元件,豆 中’在該一栅格單體中的每—光子晶體單體的尺寸是ι ^ ΙΟΟμηι 〇 21 1244771 9·根據申明專利靶圍第38項所述製造固態發光元件的方法 -中疋於.亥半V體基體上形成一阻擋層,再於該阻擋 層上壓印形成預定態樣之刻紋,然後敍刻該阻播層至預定 厚度而使該阻撞層具有預定圖像,同時使該半導體基體表 面部份對應於該阻播層之刻紋的區域曝露。 攸根據申請專利範圍帛39項所述製造固態發光元件的方法 其中’壓印時是以正模壓印出多數較突出之耐米尺度的 柱體形成該刻紋。 41. 根據申請專利範圍第40項所述製造固態發光元件的方法 ,其_,該柱體是一圓柱。 42. 根Π請專利範園·4°項所述製造固態發光元件的方法 數壓印時是先製造-負模’再以該負模模寫形成複 数負模。 43. —種產生光的方法,包含·· 產生光. 1至作動單70 ’使該作動單元以光電效應 在該Γ:二結構單元限制捕集該作動單元所產生的光 :及、、4早π與該作動單元内平行於—第—方向行進 -結取限制捕集於該作動單元與該第 該作動單- / 使光以異於該第一方向且相反於 4作動早7C向外射出。 44·根據申請專利 第-結構單元θ 項所述產生光的方法,其中,該 疋以至少一低階模態限制捕集光在該第一結 23 1244771 構單元與該作動單元内平行於一第一方向行進。 45. 根據申請專利範圍第43項所述產生光的方法,其中,該 第一結構單元是包含至少一可限制捕集光的波導層。 46. 根據申請專利範圍第43項所述產生光的方法,其中,該 第二結構單元是以至少一光子晶體導引射出光。 47·根據申請專利範圍第46項所述產生光的方法,其中,該 電流是以預定路徑流經該光子晶體結構至該作動層。 48.根據申請專利範圍第46項所述產生光的方法,其中,該 電流是藉著形成複數柵格單體的電極網導流,且電極網之籲 每一柵格單體對應地環覆該一光子晶體單體。Especially, the first structural unit and the actuating unit travel parallel to a first direction. 4. According to the patent application, the high-brightness solid-state light-emitting device according to item 1 in the first paragraph, wherein the ': th: structural unit further has at least one waveguide layer. The high-brightness solid-state light-emitting element described in item 4 of the declared patent, wherein the thickness boundary of the ’Oxuan waveguide layer is between 30 nm and 25 nm. 6 · According to the application for exemption | w) The high-brightness solid-state light-emitting element described in item 4 of Qianwei, in which, $ 海 第 ~ 社 播? s-π, and ° 苒 early 疋 have a transparent conductive layer formed on the waveguide layer, which is transparent and conductive. 18 1244771 7. The high-brightness solid-state light-emitting element according to item 4 of the scope of the patent application, wherein the first structural unit further has at least one coating layer connected to the waveguide layer, and the refractive index of the coating layer is higher than that of the coating layer. The waveguide layer is low. 8. The high-brightness solid-state light-emitting device according to item 7 in the scope of the patent application, wherein the first structural unit further has at least one indium tin oxide layer connected to the slope coating. 9. The high-brightness solid-state light-emitting device according to item 8 of the scope of the patent application, wherein the refractive index of the hafnium tin oxide layer is about 1.8, and is the interface where the high-brightness solid-state light-emitting device contacts the outside world. I. The high-brightness solid-state light-emitting element according to item 8 in the scope of the patent application, wherein the thickness boundary of the rhenium tin oxide layer is between 30 nm and 300 nm. II. The high-brightness solid-state light-emitting element according to item 8 of the scope of the patent application, wherein when the wavelength of light generated by the actuation unit is 640 nm, the thickness of the indium tin oxide layer is about 89 nm. 12. The high-brightness solid-state light-emitting element according to item 8 in the scope of the patent application, wherein the light wavelength generated by the actuator unit is 47 nm, and the thickness of the indium tin oxide layer is approximately 65 nm. -13. According to the high-brightness solid-state light-emitting element described in item 8 of the scope of the patent application, wherein the thickness of the indium tin oxide layer is λ / 4χ nit when the wavelength of the light generated by the ‘5th-axis actuator unit is λ nm. nm, the nit. Represents the refractive index of the indium tin oxide layer.14. According to the high-brightness solid-state light-emitting element described in item 8 of the scope of the patent application, the first structural unit has a Metal layer. 19 1244771 15. 16. 17. 18. 19. 20. 21. 22. The high-brightness solid-state light-emitting element according to item 1 of the scope of the patent application, wherein the second structural unit of '60H has a plurality of photonic crystal monomers. According to the high-brightness solid-state light-emitting device according to item 15 of the scope of the patent application, wherein each of the photonic crystal monomers includes an array of holes formed by at least one hole. According to the high-brightness solid-state light-emitting device according to item 16 of the patent application scope, wherein the second structural unit further includes at least one thin layer, and the hole array is formed in the thin layer. The high-brightness solid-state light-emitting element according to item 17 of the scope of the patent application, wherein the array of holes is a two-dimensional array. According to the high-brightness solid-state light-emitting element according to item 18 of the scope of the patent application, wherein the second structural unit further includes at least one electrode layer through which an electric current can flow to the operating unit *. The high-brightness solid-state light-emitting element according to item 19 of the application scope, wherein the electrode layer forms a grid-like image. According to the high-brightness solid-state light-emitting element described in the scope of application patent (2G), wherein the second structural unit further includes a plurality of holes forming a plurality of arrays, and each array is located in one of the grid openings, and is not required. Limiting the light traveling in the first unit-t J-jtiL 〇〇 ^ /// ,,, and the mouth structure to travel early, so that the light is different from the first direction and opposite to the The actuating unit shoots out. According to the high-brightness solid-state light-emitting element according to item 19 of the scope of the patent application, the electrode layer forms a plurality of hexagonal stacked images. According to the highly promising < redundant solid-state light-emitting element described in Item 22 of the scope of the application for patent, the first structural year of the '50th Haier includes a plurality of holes 20 which form a number array array after the wind hits the wind 20 23. 1244771 female The array 疋 is located in one of the hexagonal openings D of the sea, and the light traveling in the actuating unit and the first structural unit may not be restricted, so that the light is different from the first direction and opposite to the actuating The unit shoots out. 24. The high-brightness solid-state light-emitting element according to item 22 of the scope of the patent application, wherein the distance between each two adjacent hexagonal openings is twice the length of the sides of the hexagonal openings. 25. The high-brightness solid-state light-emitting element according to item 22 of the Chinese Patent Application, wherein the plurality of arrays form a triangular array image, and each photonic crystal cell forms a hexagon to correspond to the one hexagonal opening. 26. The high-brightness solid-state light-emitting element according to the scope of patent claim 帛 ⑼ or 22, wherein 'the electrode layer is formed by a plurality of strips of the mesh state, and the width of each strip is 1 to ι〇〇 μηι. 27. The high-brightness solid-state light-emitting element according to item 19 of the application, wherein the / light-emitting monopole includes a plurality of semiconductor wafers, and the electrode layer forms at least an electrode layer network, and the electrode layer network covers the semiconductor wafer. At least one photonic crystal monomer. 28. The high-brightness solid-state light-emitting element according to item 27 of the application patent scope, wherein the electrode layers,, and 罔 include a plurality of grid cells, and each grid cell is coated with a photonic crystal cell. 29. According to the high-brightness solid-state light-emitting element described in item 28 of the patent application, the basin's grid cells are square and / or rectangular ^, 3 0 · According to the scope of the patent application Chu_ 弟 28 The high-brightness solid-state light-emitting element described in item 1, the size of each photonic crystal monomer in the grid cell is ι ^ ΙΟΟμηι 〇 21 1244771 Method for light-emitting element-Zhongli forms a barrier layer on a V-substrate, and then imprints a predetermined pattern on the barrier layer, and then scribes the barrier layer to a predetermined thickness to make the barrier layer The impact layer has a predetermined image, and at the same time, an area of the semiconductor substrate surface portion corresponding to the engraved portion of the retardation layer is exposed. The method for manufacturing a solid-state light-emitting element according to 39 items in the scope of the patent application, wherein 'the embossing is performed by imprinting most prominent pillars with a meter-resistant dimension in a positive mold. 41. According to the method for manufacturing a solid-state light-emitting element according to item 40 of the scope of the patent application, the cylinder is a cylinder. 42. The method for manufacturing a solid-state light-emitting element according to the item 4 ° of the patent is requested. In digital imprinting, first manufacturing-negative mode 'is used to write a complex negative mode. 43. —A method for generating light, including generating light. 1 to the action sheet 70 'Make the actuation unit with a photoelectric effect on the Γ: two structural units limit the capture of light generated by the actuation unit: and, 4 As early as π and within the actuating unit, travel in parallel to the-direction-the limit of capture is captured on the actuating unit and the first acting single-/ make the light different from the first direction and opposite to 4 acting as early as 7C outward Shoot out. 44. The method for generating light according to item θ of the structural unit of the patent application, wherein the chirp restricts trapping light in at least a low-order mode at the first junction 23 1244771 and the actuating unit are parallel to a Travel in the first direction. 45. The method for generating light according to item 43 of the scope of the patent application, wherein the first structural unit includes at least one waveguide layer capable of limiting light collection. 46. The method for generating light according to item 43 of the scope of the patent application, wherein the second structural unit is guided by at least one photonic crystal to emit light. 47. The method of generating light according to item 46 of the scope of the patent application, wherein the current flows through the photonic crystal structure to the actuation layer in a predetermined path. 48. The method of generating light according to item 46 of the scope of the patent application, wherein the current is guided by an electrode network forming a plurality of grid cells, and each grid cell is correspondingly surrounded by the electrode network. The one photonic crystal monomer. 24twenty four
TW93109937A 2004-04-09 2004-04-09 A solid state light-emitting device with high extra efficiency and a method of manufacturing the device TWI244771B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93109937A TWI244771B (en) 2004-04-09 2004-04-09 A solid state light-emitting device with high extra efficiency and a method of manufacturing the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93109937A TWI244771B (en) 2004-04-09 2004-04-09 A solid state light-emitting device with high extra efficiency and a method of manufacturing the device

Publications (2)

Publication Number Publication Date
TW200534500A TW200534500A (en) 2005-10-16
TWI244771B true TWI244771B (en) 2005-12-01

Family

ID=37154888

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93109937A TWI244771B (en) 2004-04-09 2004-04-09 A solid state light-emitting device with high extra efficiency and a method of manufacturing the device

Country Status (1)

Country Link
TW (1) TWI244771B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479678B (en) * 2008-11-26 2015-04-01 Lg Innotek Co Ltd Light emitting device
TWI713212B (en) * 2017-12-29 2020-12-11 美商亮銳公司 Light emitting diodes and method of forming the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721454B1 (en) 2005-11-10 2007-05-23 서울옵토디바이스주식회사 Light emitting device for ac power operation having photonic crystal structure and method of fbbricating the same
CN112038459A (en) * 2020-09-14 2020-12-04 扬州乾照光电有限公司 Photonic crystal LED structure and manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479678B (en) * 2008-11-26 2015-04-01 Lg Innotek Co Ltd Light emitting device
TWI713212B (en) * 2017-12-29 2020-12-11 美商亮銳公司 Light emitting diodes and method of forming the same
US11355549B2 (en) 2017-12-29 2022-06-07 Lumileds Llc High density interconnect for segmented LEDs
US11742378B2 (en) 2017-12-29 2023-08-29 Lumileds Llc High density interconnect for segmented LEDs

Also Published As

Publication number Publication date
TW200534500A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
US7732822B2 (en) Light emitting device and method of manufacturing the same
TW461120B (en) A light emitting device having a finely-patterned reflective contact
CN101969092B (en) Metal substrate photonic quasi-crystal HB-LED (High-Brightness Light Emitting Diode) chip in vertical structure as well as manufacturing method and application thereof
CN1229871C (en) Micro-LED arrays with enhanced light extraction
US9190557B2 (en) Ultraviolet semiconductor light-emitting device and fabrication method
CN101523623B (en) Light emitting device including arrayed emitters defined by a photonic crystal
JP2009502043A (en) Blue light-emitting diode with uneven high refractive index surface for improved light extraction efficiency
KR20090106301A (en) group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
CN1858918A (en) Full angle reflector structure GaN base light emitting diode and producing method
KR101228130B1 (en) Semiconductor light-emitting element, manufacturing method, and light-emiting device
TW201312767A (en) Textured optoelectronic devices and associated methods of manufacture
TW201214771A (en) Light emitting device, light emitting device package, and lighting device
JP2011060966A (en) Light-emitting device
CN103165775A (en) Ultraviolet light-emitting diode with high reflection film and manufacturing method of ultraviolet light-emitting diode
CN103097113B (en) Manufacture the method for metallic mold for nano-imprint, utilize the method that the metallic mold for nano-imprint manufactured thus manufactures light emitting diode and the light emitting diode manufactured thus
KR101233768B1 (en) Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
TW201034252A (en) Light emitting device
TW200425537A (en) Semiconductor light emitting device and the manufacturing method thereof
TWI244771B (en) A solid state light-emitting device with high extra efficiency and a method of manufacturing the device
KR20080093556A (en) Nitride light emitting device and method of making the same
TW200529464A (en) Gallium nitride based light-emitting diode structure and manufacturing method thereof
CN109037267B (en) Metal photonic crystal coupling enhanced nano-LED array and manufacturing method thereof
CN103137822B (en) Ultraviolet light-emitting diode structure
TW201006003A (en) A LED that can increase light extraction yield
Kuo et al. Enhanced Performance of Vertical GaN-Based LEDs With Highly Reflective $ P $-ohmic Contact and Periodic Indium–Zinc–Oxide Nano-Wells

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent