TW200425537A - Semiconductor light emitting device and the manufacturing method thereof - Google Patents

Semiconductor light emitting device and the manufacturing method thereof Download PDF

Info

Publication number
TW200425537A
TW200425537A TW92132791A TW92132791A TW200425537A TW 200425537 A TW200425537 A TW 200425537A TW 92132791 A TW92132791 A TW 92132791A TW 92132791 A TW92132791 A TW 92132791A TW 200425537 A TW200425537 A TW 200425537A
Authority
TW
Taiwan
Prior art keywords
layer
light
semiconductor
main surface
contact area
Prior art date
Application number
TW92132791A
Other languages
Chinese (zh)
Other versions
TWI230472B (en
Inventor
Hitoshi Murofushi
Shiro Takeda
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Publication of TW200425537A publication Critical patent/TW200425537A/en
Application granted granted Critical
Publication of TWI230472B publication Critical patent/TWI230472B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer

Abstract

The present invention provides a semiconductor light emitting device, wherein the surface of the n-type semiconductor layer 11 composed of AlGaInP for the light emitting semiconductor substrate 2 is configured with Au layer through the transition metal layer; employ the heat treatment at a temperature lower than the eutectic point of Ga and Au to let Au diffuse into the n-type semiconductor layer 11 through the transition metal layer 17 to form the ohmic contact area 4 in a depth of 20~1,000 angstroms and with small photo absorbability; removing the transition metal layer and Au layer; form the conductive photo reflection layer 5 formed with Al on the surfaces of the n-type semiconductor layer 11 and the ohmic contact area 4; and, employ the first and the second bonding metal layers 6, 7 to adhere the conductive support substrate 8 composed of Si doped with dopant with the photo reflection layer 5.

Description

200425537 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係有關於一種具有Ga系化合物半導體的半導 體發光元件,詳細地說是有關於一種能夠改善發光效率之 半導體發光元件。 【先前技術】 以往的典型的半導體發光元件是由:由具有導電性的 GaAs等所構成的支撐基板、η型包覆(clad )層、活性層 、口型包覆層、被連接到p型包覆層之一部分的陽極、以 及被連接到支撐基板的陰極所構成。此外,以下則將η型 包覆層、活性層以及Ρ型包覆層稱爲發光半導體領域。該 半導體發光元件,除了將在發光層中所產生的光經由ρ型 包覆層而放射到上面側外,也被放射到η型包覆層側,亦 即,下面側。由於半導體發光元件的光取出面爲上面側, 因此爲了要提高發光效率,重要的是要如何使從活性層放 射到下面側的光能夠反射到上面側。 爲了要使從活性層放射到下面側的光反射到上面側, 則已知有一在上述之基本構造之半導體發光元件的支撐基 板與發光半導體領域之間配置Bragg反射膜的構造。200425537 (1) (ii) Description of the invention [Technical field to which the invention belongs] The present invention relates to a semiconductor light-emitting device having a Ga-based compound semiconductor, and more particularly to a semiconductor light-emitting device capable of improving light-emitting efficiency. [Prior technology] A typical semiconductor light emitting device in the past is composed of a support substrate made of conductive GaAs or the like, an n-type clad layer, an active layer, a mouth-type cladding layer, and connected to a p-type An anode part of the cladding layer and a cathode connected to a supporting substrate are formed. In addition, the n-type cladding layer, active layer, and P-type cladding layer are hereinafter referred to as a light-emitting semiconductor field. This semiconductor light-emitting device emits light generated in the light-emitting layer to the upper surface side through the p-type cladding layer, and is also radiated to the n-type cladding layer side, that is, the lower surface side. Since the light extraction surface of the semiconductor light emitting element is the upper side, in order to improve the light emitting efficiency, it is important how to reflect the light emitted from the active layer to the lower side to the upper side. In order to reflect the light radiated from the active layer to the lower side to the upper side, a structure is known in which a Bragg reflective film is arranged between the support substrate of the semiconductor light-emitting element having the basic structure described above and the light-emitting semiconductor field.

Bragg反射膜與發光半導體同樣地具有可藉由一連串的磊 晶成長過程而形成的優點。但是Bragg反射膜並未針對波 長爲頻譜帶域之廣寬的光具有足夠的反射率。 而提高光反射率的其他的方法則已知有在上述基本構 -5- (2) 200425537 造的半導體發光元件中,在發光半導體領域的嘉晶成長過 程後除去GaAs等的支撐基板,將光透過性基板貼著在發 光半導體領域,更且,則在該光透過性基板的下面形成具 有光反射性之電極的方法。但是設有該光透過性基板與光 反射性電極的構造會有會因爲在發光半導體領域與光透過 性基板之界面的電阻而導致在陽極與陰極之間的順向電壓 變得比較大的缺點。The Bragg reflective film has the same advantage as a light-emitting semiconductor that can be formed through a series of epitaxial growth processes. However, the Bragg reflective film does not have sufficient reflectivity for light with a broad wavelength in the spectral band. As another method for improving the light reflectance, in the semiconductor light-emitting device made of the above-mentioned basic structure (-5- (2) 200425537), a support substrate such as GaAs is removed after the growth of the Jiajing in the light-emitting semiconductor field, and the light is removed. A transmissive substrate is attached to the light-emitting semiconductor field, and a method of forming a light-reflective electrode on the lower surface of the light-transmissive substrate. However, the structure provided with the light-transmitting substrate and the light-reflective electrode has the disadvantage that the forward voltage between the anode and the cathode becomes relatively large due to the resistance at the interface between the light-emitting semiconductor field and the light-transmitting substrate. .

用來解決上述缺點的方法則被揭露在本案申請人所提 出之日本特開2002 — 2 1 745 0公報(以下稱爲專利文獻1 )中。在該專利文獻1中則揭露一將AuGeGa合金層呈分 散地形成在發光半導體領域的下面側,以A1等的金屬反 射層來覆蓋A u G e G a合金層以及未被此所覆蓋之發光半導 體領域的下面,更且,則將導電性支撐基板貼著在反射層 。AiiGeGa合金層可針對例如AlGalnP等的發光半導體領 域比較良好地作歐阻接點。因此若根據該構造可以降低陽 極與陰極之間的順向電壓。 但是由於上述專利文獻1的AuGeGa合金層比較厚, 且含有Ge (鍺)而使得光吸收率較大。因此,由AuGeGa 合金層與光反射層所構成的複合層的反射率約爲3 0 %而比 較小。因此,藉由上述專利文獻1的技術很難得到具有高 的發光效率的半導體發光元件。又,AuGeGa合金層的表 面形態特性(Surface morphology),亦即,AuGeGa合金 層之表面的平坦性惡劣。因此無法容易且良好地將導電性 支撐基板與具有AuGeGa合金層的發光半導體領域貼在— -6 - (3) 200425537The method for solving the above disadvantages is disclosed in Japanese Patent Application Laid-Open No. 2002-2 745 0 (hereinafter referred to as Patent Document 1) filed by the applicant of the present case. This Patent Document 1 discloses that an AuGeGa alloy layer is dispersedly formed on the lower side of the light-emitting semiconductor field, and a metal reflective layer such as A1 is used to cover the Au G e G a alloy layer and light emission not covered by this. In the semiconductor field, a conductive support substrate is attached to the reflective layer. The AiiGeGa alloy layer can be used as a good European resistance contact for light emitting semiconductors such as AlGalnP. Therefore, according to this structure, the forward voltage between the anode and the cathode can be reduced. However, since the AuGeGa alloy layer of the aforementioned Patent Document 1 is relatively thick and contains Ge (germanium), the light absorption rate is large. Therefore, the reflectance of the composite layer composed of the AuGeGa alloy layer and the light reflection layer is about 30%, which is relatively small. Therefore, it is difficult to obtain a semiconductor light-emitting element having high light-emitting efficiency by the technique of the aforementioned Patent Document 1. In addition, the surface morphology of the AuGeGa alloy layer, that is, the flatness of the surface of the AuGeGa alloy layer is poor. Therefore, it is not possible to easily and well adhere the conductive support substrate to the field of light-emitting semiconductors having an AuGeGa alloy layer. -6-(3) 200425537

【發明內容】 在此,本發明之目的在於提供一可提高發光效率或減 小順向電壓之半導體發光元件。SUMMARY OF THE INVENTION Here, an object of the present invention is to provide a semiconductor light emitting device which can improve light emitting efficiency or reduce forward voltage.

請參照表示實施形態之圖面的符號來說明達成上述目 的之本發明。此外,申請專利範圍以及此處的參考符號只 是爲了幫助理解本發明而加的,並非用來限定本發明。 本發明之半導體發光元件,其特徵在於: 具備有:The present invention which achieves the above-mentioned objects will be described with reference to the drawings showing the embodiments. In addition, the scope of patent applications and the reference signs herein are added only to help understand the present invention, and are not intended to limit the present invention. The semiconductor light emitting device of the present invention is characterized by:

具有用於取出光之其中一個的主面(15)與在該其中 一個主面之相反側的另一個主面(1 6 ),且在上述其中一 個主面(15)與上述另一個的主面(16)之間具有用於發 光之多個的化合物半導體層,而且露出在上述多個的化合 物半導體層內之上述另一個主面(16)的化合物半導體層 (1 1 )是由含有鎵(Ga )的化合物半導體所形成的半導體 基板(2 ); 被連接到上述半導體基板(2 )之其中一個主面(1 5 )的電極(3 ); 與露出在上述半導體基板(2)之上述另一個的主面 (1 6 )的化合物半導體層(丨丨)的至少一部分呈歐阻接點 ,且由金屬材料與鎵(Ga )的混合層所構成的歐阻接點領 域(4 )及; 用於覆室露出於上述半導體基板(2)之上述另一個 (4) (4)200425537 主面(1 6 )的化合物半導體層(n )與上述歐阻接點領域 (4)之其中一者或兩者,且具有導電性的光反射層(5) 〇 此外上述歐阻接點領域(4 )是由Ga與Au的混合層 所構成。 此外’上述歐阻接點領域(4 )的厚度爲2 〇〜丨〇 〇 〇入 〇 露出於上述半導體基板(2)之上述另一個主面的化 合物半導體層(11)是一由將導電型決定雜質添加在選自 由 AlxGayIni-x-yP’ 在此,X、y 爲滿足 〇$x<i、〇<ySi ,0<x + y ‘ 1的數値而構成的第i的化合物半導體,由 AlxGayIn]-x-yAs’ 在此 X、y 爲滿足 〇$χ<ι、〇<y‘l、 0<x + y ‘ 1的數値所構成的第2的化合物半導體、以及 AlxGayIn】-x-yN ’ 在此 ’ X、y 爲滿足 〇$χ<ι、〇<y$ 1、 0<x + yS 1的數値所構成的第3的化合物半導體之其中一 者內而成者。 上述光反射層(5 )是一反射率較上述歐阻接點領域 (4 )爲大的金屬層。 上述金屬層爲銘層。 更具有被結合在上述光反射層(5 )的導電性支撐基 板(8 )。 上述導電性支撐基板(8 )是含有雜質的矽支撐基板 ,更且具有被連接到上述矽支撐基板的其他的電極(9 ) -8- (5) 200425537 上述歐阻接點領域(4 )只設在上述半導體基板(2 ) 之另一個主面(1 6 )的一部分,上述光反射層(5 )則覆 蓋上述歐阻接點領域(4 )與上述半導體基板(2 )之上述 另一個主面(1 6 )中之未形成有上述歐阻接點領域(4 ) 的部分等兩者。 上述半導體基板(2)具備有:Having one main surface (15) for taking out one of the light and the other main surface (1 6) on the opposite side of the one main surface, and one of the main surface (15) and the other main surface There are a plurality of compound semiconductor layers for emitting light between the surfaces (16), and the compound semiconductor layer (1 1) of the other main surface (16) is exposed in the plurality of compound semiconductor layers. A semiconductor substrate (2) formed of a compound semiconductor of (Ga); an electrode (3) connected to one of the principal surfaces (1 5) of the semiconductor substrate (2); and the above exposed on the semiconductor substrate (2) At least a part of the compound semiconductor layer (丨 丨) on the other main surface (16) is a European resistance contact, and the European resistance contact area (4) composed of a mixed layer of a metal material and gallium (Ga) and The compound semiconductor layer (n) used for covering the chamber to be exposed on the other (4) (4) 200425537 main surface (1 6) of the semiconductor substrate (2) and one of the above-mentioned European resistance contact areas (4) Or both, and has a conductive light reflecting layer (5). The Euro-resistance contact area (4) is composed of a mixed layer of Ga and Au. In addition, the thickness of the above-mentioned European resistance contact area (4) is 200-1000mm, and the compound semiconductor layer (11) exposed on the other main surface of the semiconductor substrate (2) is a conductive type It is determined that the impurity is added to an i-th compound semiconductor selected from the group consisting of AlxGayIni-x-yP ', where X and y are numbers satisfying $$ x < i, 〇 < ySi, 0 < x + y' 1, AlxGayIn] -x-yAs 'where X and y are numbers 2 that satisfy 〇 $ χ < ι, 〇 < y'l, 0 < x + y' 1, and AlxGayIn] -x-yN 'Here' X and y are formed in one of the third compound semiconductors composed of a number satisfying 〇 $ χ < ι, 〇 < y $ 1, 0 < x + yS 1 By. The light reflecting layer (5) is a metal layer having a reflectivity larger than that of the above-mentioned European resistance contact area (4). The above-mentioned metal layer is a Ming layer. It further has a conductive support substrate (8) bonded to the light reflecting layer (5). The conductive support substrate (8) is a silicon support substrate containing impurities, and has other electrodes (9) connected to the silicon support substrate (9) -8- (5) 200425537 The above-mentioned European resistance contact area (4) only It is provided on a part of the other main surface (16) of the semiconductor substrate (2), and the light reflecting layer (5) covers the above-mentioned European resistance contact area (4) and the other main surface of the semiconductor substrate (2) In the surface (1 6), there are not both the part of the above-mentioned European resistance contact area (4) and the like. The semiconductor substrate (2) includes:

由第1導電型的G a系化合物半導體所構成的第1導 電型半導體層(!〗); 由被配置在上述第1導電型半導體領域(n )上的 Ga系化合物半導體所構成的活性層(丨2 )及; 被配置在上述活性層(1 2 )上而由與第1導電型呈相 反的第2導電型的G a系化合物半導體所構成的第2導電 型半導體層(13 )。 半導體發光元件之製造方法,其特徵在於:A first conductivity type semiconductor layer (!) Composed of a Ga type compound semiconductor of a first conductivity type; an active layer composed of a Ga type compound semiconductor disposed on the above-mentioned first conductivity type semiconductor field (n) (2) and; a second conductive type semiconductor layer (13) that is disposed on the active layer (12) and is made of a Ga-based compound semiconductor of a second conductive type that is opposite to the first conductive type. A method for manufacturing a semiconductor light-emitting element is characterized by:

準備好具有用於取出光之其中一'個的主面(15)與在 該其中一個主面之相反側的另一個主面(1 6 ),且在上述 其中一個主面(15)與上述另一個的主面之間具有 用於發光之多個的化合物半導體層,而且露出在上述多個 的化合物半導體層內之上述另一個主面6 )的化合物半 導體層(1 1 )是由含有鎵(Ga )的化合物半導體所形成的 半導體基板(2 )的過程; 在上述半導體基板(2)之上述另一個主面(16)之 至少一部分形成含有過渡金屬之輔助層(17)的過程; 在上述輔助層(17)之上形成含有可經由上述輔助層 -9- (6) (6)(200425537 (U)而拚散到上述半導體基板(2)之含有上述鎵之金 屬材料的層(1 8 )的過程; 針對具有上述輔助層以及含有上述金屬材料之層(i 8 )的上述半導體基板(2 )實施溫度較構成含有上述鎵之 化合物半導體層(1 1 )的元素與上述金屬材料的共晶點爲 低的加熱處理,且經由上述輔助層(1 7 )將上述金屬材料 導入到含有上述鎵的化合物半導體層(11),而形成由構 成含有上述鎵之化合物半導體層(11)的元素與上述金屬 材料的混合層所構成之歐阻接點領域(4 )的過程; 除去上述輔助層(1 7 )以及含有上述金屬材料的層( 18 )的過程及; 形成可覆蓋露出於上述半導體基板(2 )之上述另一 個主面(1 6 )的化合物半導體層(1 1 )與上述歐阻接點領 域(4 )之其中一者或兩者而具有導電性的光反射層(5 ) 〇 將上述輔助層(1 7 )以及含有上述金屬材料的層(i 8 )形成爲只覆蓋上述半導體基板(2)之上述另一個主面 (1 6 )的—部分。 將上述光反射層(5 )形成爲可覆蓋上述歐阻接點領 域(4)與上述半導體基板(2)之上述另一個主面(16) 之未形成有上述歐阻接點領域(4 )的部分等兩者。 露出於上述半導體基板(2)之上述另一個主面的化 合物半導體層(11)是一由將導電型決定雜質添加在選自 由 AlxGayIni— x_yp,在此,x' y 爲滿足 〇$χ&lt;;ι、(xyg;! -10- (7) 200425537 ,〇&lt;X + y $ 1的數値而構成的第1的化合物半 AlxGayIii】-x-yAs,在此 X、y 爲滿足 〇Sx&lt;l 0&lt;x + y € 1的數値所構成的第2的化合物半導 AlxGayIni-x-yN,在此,X、y 爲滿足 〇Sx&lt;l 〇&lt;x + y S 1的數値所構成的第3的化合物半導 者內而形成者。 露出於上述半導體基板(2)之上述另一 的化合物半導體層(1 1 )是一將導電型決定身 AlxGayln! - x - yP,在此,X、y 爲滿足 0&lt;χ&lt;1 ' 〇&lt;x + y S 1的數値所構成的化合物半導體而成 的値爲0.4或較此爲大,且上述導電型決定亲 l〇l8cm_ 3或較此爲大。 上述輔助層係選自 含有選自 Cr、Ti、Ni、Sc、V、Mn、Fe Zn、Be之至少其中一者的層;Have one main surface (15) for taking out one of the light and the other main surface (1 6) on the opposite side of the one main surface, and one of the main surfaces (15) and the above There is a plurality of compound semiconductor layers for emitting light between the other main surfaces, and the other main surface 6) exposed in the plurality of compound semiconductor layers is a compound semiconductor layer (1 1) containing gallium. (Ga) a process of forming a semiconductor substrate (2) of a compound semiconductor; a process of forming an auxiliary layer (17) containing a transition metal on at least a part of the other main surface (16) of the semiconductor substrate (2); On the auxiliary layer (17), a layer (1) containing a metal material containing the gallium which can be scattered to the semiconductor substrate (2) through the auxiliary layer-9- (6) (6) (200425537 (U)) is formed. 8) process; the temperature of the semiconductor substrate (2) having the auxiliary layer and the metal material-containing layer (i8) is lower than that of the element constituting the compound semiconductor layer (1 1) containing the gallium and the metal material. Eutectic point is Low heat treatment, and the metal material is introduced into the compound semiconductor layer (11) containing gallium through the auxiliary layer (17) to form the element and the metal constituting the compound semiconductor layer (11) containing gallium The process of the European resistance contact field (4) composed of the mixed layer of materials; the process of removing the auxiliary layer (17) and the layer (18) containing the metal material; and forming a semiconductor substrate (2) that can be covered and exposed ) One or both of the compound semiconductor layer (1 1) on the other main surface (1 6) and the European resistance contact area (4), and a light reflecting layer (5) having conductivity. The auxiliary layer (1 7) and the layer (i 8) containing the metal material are formed so as to cover only a part of the other main surface (1 6) of the semiconductor substrate (2). The light reflection layer (5) is formed It can cover both the above-mentioned European resistance contact area (4) and the other main surface (16) of the semiconductor substrate (2) where the above-mentioned European resistance contact area (4) is not formed. Above the semiconductor substrate (2) The compound semiconductor layer (11) on the other main surface is a conductive type-determining impurity that is selected from the group consisting of AlxGayIni- x_yp, where x 'y satisfies 〇 $ χ &lt;; ι, (xyg ;! -10- ( 7) 200425537, the first compound half AlxGayIii formed by the number of X <y + y $ 1] -x-yAs, where X and y are numbers satisfying 0Sx <l 0 &lt; x + y € 1 The second compound semiconducting AlxGayIni-x-yN constituted by 値, where X and y are in the third compound semiconductor consisting of the number 値 satisfying the number 値 Sx &lt; l 〇 &lt; x + y S 1 And the former. The other compound semiconductor layer (1 1) exposed on the semiconductor substrate (2) is an AlxGayln!-X-yP which determines the conductivity type. Here, X and y satisfy 0 &lt; χ &lt; 1 '〇 &lt; The compound semiconductor composed of the number 値 of x + y S 1 is 0.4 or larger, and the conductivity type determined above is 1018 cm_ 3 or larger. The auxiliary layer is selected from a layer containing at least one selected from the group consisting of Cr, Ti, Ni, Sc, V, Mn, Fe Zn, and Be;

Au層與Cu層與Au層的複合層;Composite layer of Au layer, Cu layer and Au layer;

Cr層與Ni層與Au層的複合層及;Composite layers of Cr layer, Ni layer and Au layer;

Cr層與AuSi層與Αχι層的複合層之其中 上述金屬材料的層(18)選自 金(An)層;A composite layer of the Cr layer, the AuSi layer, and the Aχι layer, wherein the layer (18) of the metal material is selected from the gold (An) layer;

Au層與Cr層與Au層的複合層;Composite layer of Au layer, Cr layer and Au layer;

Cr層與Ni層與Au層的複合層及;Composite layers of Cr layer, Ni layer and Au layer;

Cr層與AiaSi層與Au層的複合層之其中 本發明之歐阻接點領域4的光吸收率較J 導體,由 、〇&lt;y $ 1、 體、以及 、〇 &lt;y $ 1、 體之其中一 主面(16 ) 维質添加在由 0&lt;y $ 1、 者,且上述X i質的濃度爲 、C 〇、C u、 一者。 —者。 义往由 -11 - (8)The composite layer of the Cr layer, the AiaSi layer, and the Au layer, among which the light absorptivity of the European resistance contact field 4 of the present invention is higher than that of the J conductor, and is composed of 0, y $ 1, body, and 0, y $ 1, One of the main surface (16) dimensions of the body is added to 0 &lt; y $ 1, and the concentration of the above-mentioned xi mass is one of C0, Cu, and one. -By. Righteousness -11-(8)

GnAeGa所構成的歐阻接點領域爲低。因此可以抑制在歐 阻接點領域4中的光吸收,而能夠讓在半導體基板2中所 產生,且朝半導體基板2之另一主面16方向放射的光的 大部分在歐阻接點領域4與Ga系化合物半導體層1 1的界 面產生反射。又,當歐阻接點領域4形成薄時,則在半導 體基板2中所產生,且朝半導體基板2的另一個主面16 方向所放射的光的一部分會通過歐阻接點領域4,之後會 在反射層5中被反射而回到半導體基板2之其中一個主面 15而成爲有效的光輸出。因此,半導體發光元件的輸出 光量會增加,而能夠提高發光效率。 又,根據本發明之最佳的實施形態,當將歐阻接點領 域4設在半導體基板2之另一個主面1 6的一部分時,則 若輸出光量可以與以往相同時,光是歐阻接點領域4與光 反射層5的界面的反射量增加就可以讓歐阻接點領域4的 面積增加。換言之,即使是增加歐阻接點領域4的面積, 也可以使輸出光量與以往相同。如此般,當增加歐阻接點 領域4的面積時,則在發光時的電流通路的電阻會變小, 而順向電壓會降低,電力損失會變小,而提高發光效率。 根據本發明之最佳的實施形態,當具有光透過性的歐 阻接點領域4形成爲較薄的2 0〜1 Ο Ο Ο A時,則在歐阻接點 領域4的光吸收會變小,而歐阻接點領域4與光反射層5 之複合部分的反射率會變大。 又,若根據本發明之製造方法,藉由輔助層1 7的作 用可以良好且容易地且生產性良好地形成所希望的歐阻接 -12- (9) (9)200425537 點領域4。亦即,由於過渡金屬具有可將構成化合物半導 體的元素作固相分解的作用以及淸潔半導體表面的功能, 因此若是經由含有過渡金屬的輔助層1 7來加熱半導體層 與金屬材料層時,可在比較的低溫下(共晶溫度以下)讓 半導體材料與金屬材料作固相擴散。而由該低溫的固相擴 散所形成的歐阻接點領域4具有比較薄的厚度,且未含有 會防礙光吸收的歐阻接點領域4。 【實施方式】 實施發明之最佳形態 第1實施形態 接著請參照圖1〜圖9來說0月本發明之第1實施形態 之半導體發光元件1,亦即,發光二極體及其製造方法。 本發明之半導體發光元件1,如圖1槪略所示般,是 由作爲發光半導體領域的發光半導體基板2,作爲第1電 極的陽極3,根據本發明的歐阻接點(ohmic contact )領 域4、光反射層5、第1以及第2的接合金屬層6、7、作 爲導電性支撐基板的矽支撐基板8、作爲第2電極的陰極 9以及電流阻擋(block)層10所構成。 發光半導體基板2是由依序讓作爲第1導電型半導體 層的n型半導體層1】、活性層! 2、作爲第2導電型半導 體層的Ρ型半導體層1 3,由ρ型化合物半導體所構成的 電流擴散層1 4作磊晶成長而成者。發光半導體基板2具 有位在光取出側的其中一個主面1 5與和此呈相反側的另 -13- (10) (10)200425537 一個主面1 6。在活性層1 2所產生的光則經由p型半導體 層1 3與電流擴散層1 4而從其中一個主面1 5被取出。 也稱爲包覆(clad )層的η型半導體層1 1是一將η 型雜質(例如Si )摻雜在由化學式AlxGayIni - x — yP, 在此,x、y 爲滿足 0‘χ&lt;1、0&lt;ySl、0&lt;x + ySl 的數 値而構成的Ga系化合物半導體而成者。在此,A1的比例 X最好是0.1 5〜0.45,更好是0.2〜0.4。又,Ga的比例最 好是0.15〜0.35,更好是0.4〜0.6。η型半導體層11的η型 雜質的濃度最好是在5x10 17 3以上。包含在該η型半 導體層1 1中的Ga則對於歐阻接點領域4的形成有所貢獻 。η型半導體層1 1如周知般具有較活性層1 2爲大的帶間 隙(band gap)。厂 此外,在圖1的η型半導體層1 1的位置設有由可以 以AlxGayIn]— x_yP來表示之3- 5族化合物半導體所構成 的η型接觸層,而在該η型接觸層與活性層1 2之間則可 以設置η型包覆層,亦即,η型半導體層。當設有η型接 觸層與η型包覆層等兩者時,則可將該些合起來稱爲第1 導電型半導體層。在設有上述η型接觸層時,則可將η型 包覆層的材料設成有別於η型接觸層。 被配置在η型半導體層1 1之上的活性層1 2也稱爲發 光層,是一由化學式爲AlxGayIn^x-yP,在此;X、y爲〇 S 1、0$ 1、x + yS 1的數値而構成的p型的3- 5族化合物半導體。此外,X最好是〇 · 1以上。在本實施 形態中雖然故意未將導電型雜質摻雜到活性層1 2,但也 -14 - (11) (11)200425537 可以以較P型半導體層1 3爲低的濃度來摻雜p型雜質, 而以較η型半導體層U爲低的濃度來摻雜η型雜質。圖 1雖然是表示單一的活性層1 2,但也可以將此設成周知的 多重量子阱(MQW: Multi— Quantum - Well)構造、或 單一量子阱(S Q W : S i n g 1 e - Q u a n t U m — W e 11 )構造。 被形成在活性層1 2之上的p型半導體層1 3也稱爲p 型包覆層,是由化學式爲AlxGayIni- x - yP,在此,X、y 爲滿足OSxSl、OSySl、〇€ χ + y S 1的數値的P型的3 一 5族化合物半導體所構成。p型包覆層13的p型雜質( 例如Zn)的濃度則決定在例如5xl0]7cm — 3以上。p型半 導體層1 3如周知般具有較活性層1 2爲大的帶間隙(band gap ) 〇 被配置在Ρ型半導體層1 3之上的電流擴散層則具有 可提高流到發光半導體基板2之順向電流之分佈之均一性 的作用,可與陽極3產生歐阻接點的作用、以及將在活性 層1 2中所產生的光導出到元件之外部的作用。例如是由 Gap、或〇&amp;“11卜3或AlxGa】-xAs等的ρ型的3 - 5族化 合物半導體所構成。該電流擴散層1 4的ρ型雜質濃度則 設定成較P型半導體層1 3爲高。此外,更在電流擴散層 14之上可以設置ρ型接觸層。 被配置在電流擴散層1 4的中央上部的電流阻擋( block )層10是由絕緣層所構成。該電流阻擋層1〇是用 於防止順向電流集中流到發光半導體基板2的中央部。 陽極3例如是由Cr層與Au層的複合層所構成,係 -15- (12) (12)200425537 被配置在電丨;IL·擴政層1 4與電流阻擋層1 〇之上而與電流擴 散層1 4作歐阻接點。又,陽極3則爲了要讓順向電流均 勻地流動’而形成爲從相對於基板2的主面1 5呈垂直的 方向來看爲網格或格子狀。此外,可將陽極3設爲光透過 性電極。 本發明之歐阻接點領域4則被分散配置在發光半導體 基板2的另一主面16。亦即,從發光半導體基板2的另 一主面1 6來看,如呈島狀地埋入到^型半導體層η般地 形成各歐阻接點領域4。因此,各歐阻接點領域4與位在 該些之間之η型半導體層等兩者露出於發光半導體基 板2的另一主面1ό〇 各歐阻接點領域4實質上是由只有Ga與Au的混合 層或合金層所構成,而與n型半導體層11以及光反射層 5作歐阻接點。由GaAu混合層所構成的各歐阻接點領域 4最好是形成爲20〜1 000 A的厚度。當歐阻接點領域4的 厚度較20 A爲薄時,則無法良好地取得歐阻接點,而當 其厚度超過1 〇〇〇 A時,則歐阻接點領域4的透光性會變 差。 由AuGa混合層所構成的歐阻接點領域4的光吸收率 較上述專利文獻1的AuGeGa合金層的光吸收率爲小,而 由AiiGa合金層所構成的歐阻接點領域4的透光率則較上 述專利文獻1的AuGeGa合金層的透光率爲大。亦即,由 於上述專利文獻1的AuGeGa合金層含有可以阻礙光透過 的Ge,且具有2000 A以上的厚度,因此,在上述專利文 -16- (13) (13)200425537 獻1的歐阻接點領域中,則由歐阻接點領域吸收大多數的 光,而幾乎沒有透過歐阻接點領域的光。相較於此,本實 施形態的歐阻接點領域4,由於是由未含有Ge的AuGa 混合層所構成,且具有20〜1 000 A的比較薄的厚度,因此 ,透光率較以往的AuGeGa爲大。 歐阻接點領域4的表面以及η型半導體層1 1的表面 則爲光反射層5所覆蓋。光反射層5的表面的反射率則較 歐阻接點領域4與η型半導體層1 1之界面的反射率。從 活性層1 2被放射到發光半導體基板2之另一主面1 6側的 光的一部分則在歐阻接點領域4之相互間的η型半導體層 11與光反射層5的界面產生反射而回到發光半導體基板2 的另一主面1 5側,而光的另外一部分則在η型半導體層 1 1與歐阻接點領域4的界面產生反射而回到發光半導體 基板2之其中一個主面1 5側,光的又一其他的一部分則 在通過歐阻接點領域4後在歐阻接點領域4與光反射層5 的界面產生反射而回到發光半導體基板2的其中一個主面 1 5側。在本實施形態中,歐阻接點領域4與光反射層5 的複合層相對於從活性層1 2放射到歐阻接點領域4側的 光的光反射層,亦即,η型半導體層1 1與歐阻接點領域4 之界面的光反射率和歐阻接點領域4與光反射層5之界面 的光反射率的合計的光反射率約60%。由於上述的專利文 獻1的AuGeGa所構成的歐阻接點領域與光反射層的複合 層的光反射率大約是3 0%,因此,本發明之歐阻接點領域 4與光反射層5之複合層的光反射率會大幅地被改善。本 -17- (14) (14)200425537 發明之光反射率的改善可藉由歐阻接點領域4未含有Ge ,而實質上只由AuGa來構成、以及歐阻接點領域4極薄 到20〜1 000 A來達成。 第1的接合金屬層6是由All來構成,而被形成在光 反射層5的整個下面。第2的接合金屬層7是由All所構 成,而被形成在具有導電性的矽支撐基板8的其中一個表 面。第1以及第2的接合金屬層6、7藉由熱壓著法而互 相被結合。 作爲導電性支撐基板的矽支撐基板8是一將雜質導入 到矽中者,具有發光半導體基板2的機械式支撐功能,作 爲散熱體的功能以及作爲電流通路的功能。 陰極9被形成在矽支撐塞板8的整個下面。當取代矽 支撐基板8而改設金屬支撐基板時,由於其成爲陰極,因 此可以省略圖1 ·的陰極9。 在製造圖1的半導體發光元件1時,首先準備好圖3 的發光半導體基板2。圖3的發光半導體基板2例如藉由 周知的 MOCVD〔 Metal Organic Chemical V a ρ ο 1· Deposition〕法讓n型半導體層1 1、活性層1 2、p型半導 體層13、以及電流擴散層依序在GaAs基板(未圖示)上 作磊晶成長,之後藉由除去上述的G a A s基板而得到。 接著則藉由真空蒸鍍法依序在發光半導體基板2的另 —主面1 6 ’亦即η型半導體層1 1的表面上形成例如由C r 所構成的過渡金屬層與Αιι (金)層。接著,藉由周知的 光石印技術在金屬層上形成一定圖案的蝕刻光罩,使用該 -18- (15) (15)200425537 光罩藉由鈾刻除去金屬以及過渡金屬層成一定的圖案,而 得到如圖4所示的過渡金屬層1 7以及金屬1 8。藉此,發 光半導體基板2之另一主面16的一部分會露出。此外, 爲了將過渡金屬層17以及金屬形成爲圖4的圖案,乃在 發光半導體基板2的另一主面1 6形成具有開口的光阻層 ,而藉由真空蒸鍍在該開口之中以及光阻層之上形成過渡 金屬層1 7與金屬1 8,之後可以除去光阻層以及位於其上 之過渡金屬層17與金屬18。圖4的過渡金屬層17的厚 度爲10〜500 A,而金屬18的厚度爲200〜1000 0 A左右。 接著,針對圖4所示之伴隨著過渡金屬層1 7與金屬 18的發光半導體基板2實施一爲較n型半導體層11之中 的、Ga與金屬1 8的Au (金)的共晶點,亦即,共熔點( 3 4 5 °C )爲低的溫度,且藉由過渡金屬層1 7的幫助可將 Au (金)或與此類似的金屬擴散到^型半導體層1 1之溫 度(例如300 °C )的加熱處理(退火)。藉此,金屬18 的Αιι可經由過渡金屬層〗7擴散到過渡金屬層1 7而產生 由Ga與Au的混合層所構成的歐阻接點領域4。也可以將 該歐阻接點領域稱爲金屬1 8的Au或與此類似的金屬的 擴散層。 上述的加熱處理的溫度與時間則被決定在可將歐阻接 點領域4的厚度限制在20〜1 000 A的範圍內。又,熱處理 溫度則被決定成可得到具有薄且均勻的厚度,且具有低的 ® P且’且與n型半導體層n能夠良好地作歐阻接點之特 1生@歐I®接點領域4的任意的値。亦即,該熱處理溫度被 -19- (16) (16)200425537 決定成較Ga與An (金)之共晶點,亦即共熔點(345 1 )爲低的任意的溫度。 圖9的特性線A則表示歐阻接點領域4與光反射層5 的複合部分的反射率相對於根據本發明之熱處理溫度之變 化的變化情形,而特性線B則是表示AuGeGa歐阻接點領 域與光反射層的複合部分的反射率相較於在形成上述的專 利文獻之由AuGeGa所構成的歐阻接點領域時之熱處理溫 度之變化的變化情形。·在此的反射率的測量則是以波長 6 5 0 n m的紅色光來進行。 當爲特性線B所示之以往含有Ge的歐阻接點領域時 ,則在3 00 °C的熱處理下之反射率約30%,而當爲特性線 A所示之本發明之未含有G e的情形時,則在3 0 0 °C的熱 處理下的反射率約6 0 %。因此可知藉由本發明可將歐阻接 點領域4與光反射層5的複合部分的反射率提高3 0 %。若 根據圖9的特性線A,則熱處理溫度愈低,反射率會變得 愈高。但是當熱處理溫度過低時,則歐阻接點領域4與η 型半導體層1 1之間的接觸電阻會變大。爲了要將該接觸 電阻抑制在2 X 1 (Τ 4 Ω cm2以下,則最好將熱處理溫度設成 250〜34(TC,又,更好是 290〜3 3 0°C。 過渡金屬層17在熱處理時會將構成n型半導體層u 的AlGalnP分解成各元素,而具有容易讓各元素動作的作 用以及淸潔η型半導體層1 1之表面的作用。根據過渡金 屬層1 7的上述作用,藉由較Ga與au的共晶點爲低的溫 度的熱處理而使Αιι擴散到n型半導體層1丨,而將由Ga -20- (17) (17)圈425537 與Αιι的混合層或合金層所構成的歐阻接點領域4形成極 薄。 接著則藉著蝕刻來除去圖5之熱處理後的過渡金屬層 1 7以及金屬1 8,而得到圖6之伴隨著歐阻接點領域4的 發光半導體基板2。在較Αιι與Ga的共晶點爲低之溫度的 熱處理中所得到之由Au與Ga的混合層所構成之歐阻接 點領域4的表面形態特性(Morphology )會較藉由上述專 利文獻1之共晶點以上的熱處理而由AnGeGa所構成的歐 阻接點領域的表面形態特性(Morphology)大幅地被改善 。因此,圖6之含有歐阻接點領域4的發光半導體基板2 的另一主面1 6的平坦性良好。 接著則如圖7所示,藉由真空蒸鍍法來形成可以覆蓋 發光半導體基板2之另一主面16,亦即,η型半導體層 1 1的露出表面與歐阻接點領域4的表面等兩者而由厚度 1〜1 0 // m左右的Α1層所形成的光反射層5,而以紅外線 燈等實施短時間的熱處理。藉此,具有導電性的光反射層 5則與歐阻接點領域4作歐阻接合,且與n型半導體層j i 接合。由A1所構成的光反射層5由於與η型半導體層1 1 作Schottky接觸,因此,半導體發光元件1的順向電流 不會從η型半導體層11流向光反射層5。而與光反射層5 相鄰的歐阻接點領域4的表面形態特性(Morphology )良 好,因此,光反射層6的平坦性優良。 接著,則藉由A1的真空蒸鍍而在光反射層5之上形 成第1的接合金屬層6。 -21 - (18) (18)200425537 接著則準備好藉由真空蒸鍍將由Au所構成的第2的 接合金屬層7形成在圖8之由含有雜質的S i基板所構成 之導電性基板8的其中一個主面而成者,讓第丨以及第2 的金屬接合層6、7作加壓接觸而實施3 〇 (TC以下之溫度 的熱處理,藉著讓Αιι互相地擴散而將第丨及第2的金屬 接合層6、7貼在一起,而使發光半導體基板2與具有導 電性的矽支撐基板8呈一體化。 接著,如圖1所示,在發光半導體基板2之其中一個 表面1 5上形成電流阻擋層1 〇以及陽極3,而在導電性支 撐基板8的下面形成陰極9,遂完成半導體發光元件1。 本實施形態具有以下的效果。 (1 )由於歐阻接點領域4未含有光吸收性大的G e, 且被形成爲極薄,因此歐阻接點領域4與光反射層5之複 合層的光反射率具有高的値(例如60% )。因此,從活性 層1 2被放出到光反射層5側的大部分的光則回到發光半 導體基板2的其中一個基板1 5側,而使得發光效率變高 〇 (2 )由於歐阻接點領域4與光反射層5的複合層的 光反射率變大,因此當要得到一定的光輸出時,則歐阻接 點領域4的面積占發光半導體基板2之另一主面1 6的面 積的比例可以較以往增加。當歐阻接點領域4的面積增加 時,則半導體發光元件1的順向電阻會減小,且順向電壓 降以及電力損失會減低而提高發光效率。根據本實施形態 之紅色發光二極體的最大發光效率,在電流密度40A/cm2 -22- (19) (19)200425537 下爲471m/W (流明/瓦特)。 (3 )經由過渡金屬層1 7使Αιι從Au層1 8擴散到n 型半導體層1 1,很容易在較共晶點爲低的溫度下形$ _ AuGa所構成的歐阻接點領域4。 (4 )由於歐阻接點領域4的表面形態特性( Morphology)變好,因此能夠良好地將導電性的支撑基板 8貼在一起。 第2實施形態 接著請參照圖1 〇來說明第2實施形態之半導體發光 元件1 a。但是在圖1 0中之與圖1相同的部分,則附加相 同的參考號碼,且省略其說明。 在圖1 0之半導體發光元件1 a中的歐阻接點領域4則 被形成在發光半導體基板2的另一主面16的整體。ιρ使 歐阻接點領域4如此地形成,由於歐阻接點領域4與光反 射層5的複合層的反射率爲比較高的6 0 %,因此能夠得到 比較高的發光效率。又,相較於圖1,就歐阻接點領域4 的面積變大乙點就會使得順向電流通路的電阻變小,而減 少電力損失。 在圖1 0中,乃取代圖1的矽支撐基板8,而是將金 屬支撐基板8a熱壓接在光反射層5。因此,金屬支撐基 板8a具有發光半導體基板2的支撐功能與作爲陰極的功 能。 圖1 〇的歐阻接點領域4是以與圖1中以相同號碼所 -23- (20) (20)200425537 示者相同的方法而形成,且具有相同的組成以及厚度。因 此,即使是圖1 〇的半導體發光元件1 a,也可以得到與圖 1的半導體發光元件1相同的結果。 本發明並不限定於上述的實施形態,也例如可作以下 的變形。 (1 )當發光半導體基板2的機構強度足夠時,則可 以省略掉圖1的矽支撐基板8以及圖1 0的金屬支撐基板 8 a。此時,導電性光反射層5則當作陰極來使用。 (2 )在圖2中雖然將歐阻接點領域4之由平面所看 到的分佈圖案設爲四角形的島狀,但也可以變形爲圓形島 狀或格子狀等。 (3 )雖然歐阻接點領域4係與n型半導體層1 1接觸 ,但也可以取代此,而在η型半導體層1 1與光反射層5 之間設置由AlGalnP所構成的η型接觸層或η型緩衝層、 或兩者’而可以議歐阻接點領域4與其接觸。 (4 )即使歐阻接點領域4由A u G a以外的A u G e G a 等之其他的材料所構成時,則只要其具有透光性,藉著將 其厚度限制在20〜1 0 00 A,可使得歐阻接點領域4與光反 射層5的複合層的光反射率變得比較高,而能夠提高發光 效率。 (5 )將金屬18與Αιι以外的Ga產生合金化,而可 以作爲形成歐阻接點的材料。 產業上之可利用性 -24- (21) (21)200425537 如上所述般,本發明可以應用在半導體發光元件上。 【圖式簡單說明】 圖1爲表示根據本發明之第1實施形態之半導體發 光元件的斷面圖。 圖2爲圖1之半導體發光元件之A — A線斷面圖。 圖3爲用來說明圖1之半導體發光元件之製造過程之 發光半導體基板的斷面圖。 圖4爲表示在圖3的發光半導體基板設置過渡金屬層 與金屬時的斷面圖。 圖5爲表示在針對圖4所示之發光半導體基板實施熱 處理而形成歐阻接點領域時的斷面圖。 ' 圖6爲表示從圖5除去過渡金屬層與金屬時的斷面圖 〇 圖7爲表示在圖6之發光半導體基板設置光反射層與 第1的接合金屬層時的斷面圖。 圖8爲在圖7中貼上導電性的支撐基板時的斷面圖。 圖9爲在形成歐阻接點領域時的熱處理溫度與根據本 發明以及習知例之歐阻接點領域與光反射層之複合層的反 射率的關係的說明圖。 圖1 0爲與圖1同樣地表示本發明之第2實施形態之 半導體發光元件的斷面圖。 元件對照表 -25- (22)200425537 1 _·半導體發光元件 2 :發光半導體基板 3 :陽極 4 :歐阻接點領域 5 :光反射層 6 :第1的接合金屬層 7:第2的接合金屬層GnAeGa is a low-ohmic contact area. Therefore, it is possible to suppress light absorption in the European resistance contact area 4 and to allow most of the light generated in the semiconductor substrate 2 and radiated toward the other main surface 16 of the semiconductor substrate 2 to be in the European resistance contact area Reflection occurs at the interface between 4 and the Ga-based compound semiconductor layer 1 1. In addition, when the European resistance contact area 4 is formed thin, a part of the light generated in the semiconductor substrate 2 and emitted toward the other main surface 16 of the semiconductor substrate 2 passes through the European resistance contact area 4 and thereafter The light is reflected in the reflective layer 5 and returns to one of the principal surfaces 15 of the semiconductor substrate 2 to become an effective light output. Therefore, the amount of light output from the semiconductor light emitting element is increased, and the light emitting efficiency can be improved. In addition, according to a preferred embodiment of the present invention, when the European resistance contact area 4 is provided on a part of the other main surface 16 of the semiconductor substrate 2, if the output light amount can be the same as in the past, the light is European resistance. The increase in the reflection amount at the interface between the contact area 4 and the light reflecting layer 5 can increase the area of the European resistance contact area 4. In other words, even if the area of the ohmic contact area 4 is increased, the output light amount can be made the same as before. As such, when the area of the European resistance contact area 4 is increased, the resistance of the current path at the time of light emission will be reduced, the forward voltage will be reduced, the power loss will be reduced, and the light emission efficiency will be improved. According to a preferred embodiment of the present invention, when the light-transmissive Euro-resistance contact area 4 is formed to a thinner 20 to 100 μA, the light absorption in the Euro-resistance contact area 4 will change. Is small, and the reflectance of the composite part of the Euro contact area 4 and the light reflecting layer 5 becomes larger. In addition, according to the manufacturing method of the present invention, the desired European resistance can be formed easily, easily, and productively by the function of the auxiliary layer 17 -12- (9) (9) 200425537 Point field 4. That is, since the transition metal has the function of solid-phase decomposition of the elements constituting the compound semiconductor and the function of cleaning the semiconductor surface, if the semiconductor layer and the metal material layer are heated through the auxiliary layer 17 containing the transition metal, Under comparative low temperatures (below eutectic temperature), semiconductor materials and metal materials are allowed to diffuse in a solid phase. The European resistance contact area 4 formed by the low-temperature solid-phase diffusion has a relatively thin thickness, and does not include the European resistance contact area 4 which may hinder light absorption. [Embodiment] The Best Mode for Implementing the Invention The First Embodiment Next, referring to FIG. 1 to FIG. 9, the semiconductor light emitting element 1 according to the first embodiment of the present invention, that is, a light emitting diode and a manufacturing method thereof . As shown in FIG. 1, the semiconductor light-emitting element 1 of the present invention is composed of a light-emitting semiconductor substrate 2 as a light-emitting semiconductor field, an anode 3 as a first electrode, and an ohmic contact field according to the present invention. 4. The light reflection layer 5, the first and second bonding metal layers 6, 7, a silicon support substrate 8 as a conductive support substrate, a cathode 9 as a second electrode, and a current blocking layer 10 are formed. The light-emitting semiconductor substrate 2 is an active layer in which the n-type semiconductor layer 1 as the first conductive type semiconductor layer is sequentially given]! 2. The P-type semiconductor layer 13 as the second conductive type semiconductor layer is formed by epitaxial growth of a current diffusion layer 14 composed of a p-type compound semiconductor. The light-emitting semiconductor substrate 2 has one of the principal surfaces 15 on the light extraction side and the other of the principal surface 16 on the opposite side to this (10) (10) 200425537. The light generated in the active layer 12 is extracted from one of the main surfaces 15 through the p-type semiconductor layer 13 and the current diffusion layer 14. The n-type semiconductor layer 11 also called a clad layer is a doped n-type impurity (such as Si) in the chemical formula AlxGayIni-x — yP, where x and y satisfy 0′χ &lt; 1 Ga + compound semiconductor composed of 0 &lt; ySl and 0 &lt; x + ySl. Here, the ratio X of A1 is preferably 0.1 5 to 0.45, more preferably 0.2 to 0.4. The ratio of Ga is preferably 0.15 to 0.35, and more preferably 0.4 to 0.6. The n-type impurity concentration of the n-type semiconductor layer 11 is preferably 5x10 17 3 or more. Ga contained in the n-type semiconductor layer 11 contributes to the formation of the ohmic contact region 4. As is well known, the n-type semiconductor layer 11 has a larger band gap than the active layer 12. In addition, at the position of the n-type semiconductor layer 11 in FIG. 1, an n-type contact layer composed of a Group 3 to 5 compound semiconductor that can be expressed by AlxGayIn] -x_yP is provided. An n-type cladding layer may be disposed between the layers 12, that is, an n-type semiconductor layer. When both an n-type contact layer and an n-type cladding layer are provided, these can be collectively referred to as a first conductive semiconductor layer. When the n-type contact layer is provided, the material of the n-type cladding layer can be set to be different from that of the n-type contact layer. The active layer 12 arranged on the n-type semiconductor layer 11 is also called a light-emitting layer. It is a chemical formula of AlxGayIn ^ x-yP, here; X, y are 0S 1, 0 $ 1, x + yS 1 is a p-type Group 3 to 5 compound semiconductor. In addition, X is preferably 0.1 or more. In this embodiment, although the conductive type impurity is not intentionally doped into the active layer 12, the p-type semiconductor layer may be doped at a lower concentration than that of the P-type semiconductor layer 13-14-(11) (11) 200425537. Impurities, and the n-type impurities are doped at a lower concentration than the n-type semiconductor layer U. Although FIG. 1 shows a single active layer 12, this may be a well-known multiple quantum well (MQW: Multi-Quantum-Well) structure or a single quantum well (SQW: Sing 1 e-Q uant U m — W e 11) structure. The p-type semiconductor layer 13 formed on the active layer 12 is also referred to as a p-type cladding layer, and has a chemical formula of AlxGayIni- x-yP. Here, X and y satisfy OSxSl, OSySl, and 〇 € χ + y S 1 is composed of a P-type 3 to 5 compound semiconductor. The concentration of the p-type impurity (for example, Zn) in the p-type cladding layer 13 is determined to be, for example, 5 × 10] 7 cm −3 or more. As is well known, the p-type semiconductor layer 1 3 has a larger band gap than the active layer 12. The current diffusion layer disposed on the p-type semiconductor layer 1 3 has a current flowing to the light-emitting semiconductor substrate 2. The effect of the uniformity of the distribution of the forward current can produce the effect of the European resistance contact with the anode 3 and the effect of exporting the light generated in the active layer 12 to the outside of the element. For example, it is composed of a p-type group 3-5 compound semiconductor such as Gap or O &amp; "11b 3 or AlxGa] -xAs. The p-type impurity concentration of the current diffusion layer 14 is set to be higher than that of a p-type semiconductor. The layer 13 is high. In addition, a p-type contact layer may be provided on the current diffusion layer 14. The current block layer 10 disposed on the center upper portion of the current diffusion layer 14 is made of an insulating layer. The current blocking layer 10 is for preventing a forward current from flowing to the central portion of the light-emitting semiconductor substrate 2. The anode 3 is composed of, for example, a composite layer of a Cr layer and an Au layer, and is -15- (12) (12) 200425537 It is placed on the top of the IL spreading layer 14 and the current blocking layer 10 and as a Euro-resistance contact with the current spreading layer 14. In addition, the anode 3 is to make the forward current flow uniformly. It is formed in a grid or lattice shape when viewed from a direction perpendicular to the main surface 15 of the substrate 2. In addition, the anode 3 may be a light-transmitting electrode. The Euroblock contact area 4 of the present invention is dispersed. It is arranged on the other main surface 16 of the light-emitting semiconductor substrate 2. That is, from the other main surface of the light-emitting semiconductor substrate 2 From the perspective of FIG. 16, each of the European resistance contact areas 4 is formed like an island-shaped buried semiconductor layer η. Therefore, each of the European resistance contact areas 4 and the n-type semiconductor layer located therebetween are formed. The two are exposed on the other main surface 1 of the light-emitting semiconductor substrate 2. Each of the ohmic contact areas 4 is essentially composed of only a mixed layer or alloy layer of Ga and Au, and is reflected from the n-type semiconductor layer 11 and light. The layer 5 is used as a European resistance contact. Each of the European resistance contact areas 4 composed of a GaAu mixed layer is preferably formed to a thickness of 20 to 1 000 A. When the thickness of the European resistance contact area 4 is thinner than 20 A , It is not possible to obtain a good European resistance contact, and when the thickness exceeds 1000A, the light transmission of the European resistance contact area 4 becomes poor. The European resistance contact area composed of an AuGa mixed layer The light absorptivity of 4 is smaller than that of the AuGeGa alloy layer of the above-mentioned Patent Document 1, and the light transmittance of the European resistance contact field 4 composed of the AiiGa alloy layer is higher than that of the AuGeGa alloy layer of the above-mentioned Patent Document 1. The light transmittance is large. That is, since the AuGeGa alloy layer of the above-mentioned Patent Document 1 contains Ge that can block light transmission, and It has a thickness of 2000 A or more. Therefore, in the European resistance contact field of the aforementioned patent document -16- (13) (13) 200425537, the majority of light is absorbed by the European resistance contact field, and there is almost no transmission. Light in the European resistance contact field. Compared to this, the European resistance contact field 4 in this embodiment is composed of an AuGa mixed layer not containing Ge and has a relatively thin thickness of 20 to 1,000 A. Therefore, the light transmittance is larger than that of the conventional AuGeGa. The surface of the ohmic contact area 4 and the surface of the n-type semiconductor layer 11 are covered by the light reflection layer 5. The reflectance of the surface of the light reflecting layer 5 is lower than the reflectance at the interface between the ohmic contact area 4 and the n-type semiconductor layer 11. Part of the light radiated from the active layer 12 to the other main surface 16 side of the light-emitting semiconductor substrate 2 is reflected at the interface between the n-type semiconductor layer 11 and the light reflection layer 5 between the European resistance contact areas 4 And it returns to the other main surface 15 side of the light-emitting semiconductor substrate 2, and another part of the light is reflected at the interface between the n-type semiconductor layer 11 and the European resistance contact area 4 and returns to one of the light-emitting semiconductor substrate 2. On the main surface 15 side, another part of the light is reflected at the interface between the European resistance contact area 4 and the light reflecting layer 5 after passing through the European resistance contact area 4 and returns to one of the main surfaces of the light-emitting semiconductor substrate 2. 1 to 5 sides. In this embodiment, the composite layer of the European resistance contact area 4 and the light reflection layer 5 is a light reflection layer, that is, an n-type semiconductor layer, which radiates light from the active layer 12 to the European resistance contact area 4 side. The total light reflectance at the interface between 1 1 and the European resistance contact area 4 and the optical reflectance at the interface between the European resistance contact area 4 and the light reflecting layer 5 is about 60%. Since the light reflectance of the composite layer of the European resistance contact field and the light reflection layer composed of AuGeGa in the above-mentioned Patent Document 1 is about 30%, the European resistance contact field 4 and the light reflection layer 5 of the present invention The light reflectivity of the composite layer is greatly improved. This -17- (14) (14) 200425537 invention can improve the light reflectance by the fact that the European resistance contact area 4 does not contain Ge, but is essentially composed of AuGa, and the European resistance contact area 4 is extremely thin. 20 ~ 1 000 A to reach. The first bonding metal layer 6 is made of All and is formed on the entire lower surface of the light reflection layer 5. The second bonding metal layer 7 is made of All and is formed on one surface of a silicon support substrate 8 having conductivity. The first and second bonding metal layers 6, 7 are bonded to each other by a thermal compression method. The silicon support substrate 8 which is a conductive support substrate is one which introduces impurities into the silicon, and has a mechanical support function of the light-emitting semiconductor substrate 2, a function as a heat sink, and a function as a current path. The cathode 9 is formed under the entire silicon support plug plate 8. When the metal supporting substrate is replaced instead of the silicon supporting substrate 8, since it becomes a cathode, the cathode 9 of Fig. 1 can be omitted. When manufacturing the semiconductor light emitting element 1 of FIG. 1, the light emitting semiconductor substrate 2 of FIG. 3 is first prepared. The light-emitting semiconductor substrate 2 of FIG. 3 allows the n-type semiconductor layer 1 1, the active layer 1 2, the p-type semiconductor layer 13, and the current diffusion layer to be dependent on each other by a well-known MOCVD (Metal Organic Chemical V a ρ 1 · Deposition) method. Sequential epitaxial growth was performed on a GaAs substrate (not shown), and was then obtained by removing the above-mentioned GaAs substrate. Next, a vacuum metallization method is used to sequentially form, on the surface of the other main surface 16 ′ of the light-emitting semiconductor substrate 2, that is, the n-type semiconductor layer 11, a transition metal layer made of, for example, C r and Al (gold). Floor. Next, an etch mask with a certain pattern is formed on the metal layer by the well-known light lithography technique, and the -18- (15) (15) 200425537 mask is used to remove the metal and the transition metal layer into a certain pattern by uranium etching. The transition metal layer 17 and the metal 18 shown in FIG. 4 are obtained. Thereby, a part of the other main surface 16 of the light-emitting semiconductor substrate 2 is exposed. In addition, in order to form the transition metal layer 17 and the metal into the pattern shown in FIG. 4, a photoresist layer having an opening is formed on the other main surface 16 of the light-emitting semiconductor substrate 2, and the opening is formed by vacuum evaporation and A transition metal layer 17 and a metal 18 are formed on the photoresist layer, and then the photoresist layer and the transition metal layer 17 and the metal 18 thereon can be removed. The thickness of the transition metal layer 17 in FIG. 4 is 10 to 500 A, and the thickness of the metal 18 is about 200 to 1000 0 A. Next, for the light-emitting semiconductor substrate 2 accompanied by the transition metal layer 17 and the metal 18 shown in FIG. 4, a Au (gold) eutectic point of Ga and metal 18 among the n-type semiconductor layers 11 is implemented. That is, the eutectic point (345 ° C) is a low temperature, and the temperature of Au (gold) or a similar metal can be diffused to the ^ -type semiconductor layer 11 with the help of a transition metal layer 17 (Eg 300 ° C) heat treatment (annealing). As a result, the Al of the metal 18 can be diffused to the transition metal layer 17 through the transition metal layer 7 to generate a Euro contact area 4 composed of a mixed layer of Ga and Au. The field of the European resistance contact may also be referred to as Au of metal 18 or a diffusion layer of a metal similar thereto. The temperature and time of the above-mentioned heat treatment are determined so as to limit the thickness of the European resistance contact area 4 to a range of 20 to 1,000 A. In addition, the heat treatment temperature is determined so that a thin and uniform thickness can be obtained, which has a low ® P and 'and the n-type semiconductor layer n can be used as a special resistance of the European resistance contact @ 欧 I® contact Arbitrary badger of field 4. That is, the heat treatment temperature is determined by -19- (16) (16) 200425537 to an arbitrary temperature lower than the eutectic point of Ga and An (gold), that is, the eutectic point (345 1). The characteristic line A in FIG. 9 shows the change of the reflectance of the composite part of the European resistance contact area 4 and the light reflecting layer 5 with respect to the change in the heat treatment temperature according to the present invention, and the characteristic line B indicates AuGeGa European resistance connection. The change in the reflectance of the composite portion of the point area and the light reflection layer is compared with the change in the heat treatment temperature when the European resistance contact area made of AuGeGa in the aforementioned patent document is formed. -The reflectance is measured with red light with a wavelength of 650 nm. In the case of the conventional ohmic contact area containing Ge as shown in the characteristic line B, the reflectance is about 30% under a heat treatment at 300 ° C, and when G is not included in the invention shown in the characteristic line A In the case of e, the reflectance under heat treatment at 300 ° C is about 60%. Therefore, it can be seen that the reflectance of the composite portion of the Euro contact area 4 and the light reflecting layer 5 can be increased by 30% by the present invention. According to the characteristic line A of Fig. 9, the lower the heat treatment temperature, the higher the reflectance becomes. However, when the heat treatment temperature is too low, the contact resistance between the European resistance contact region 4 and the n-type semiconductor layer 11 will increase. In order to suppress the contact resistance to 2 X 1 (T 4 Ω cm2 or less, it is preferable to set the heat treatment temperature to 250 to 34 (TC, and more preferably 290 to 3 3 0 ° C. The transition metal layer 17 is at During the heat treatment, AlGalnP constituting the n-type semiconductor layer u is decomposed into various elements, and it has the effect of making each element easy to operate and the effect of cleaning the surface of the n-type semiconductor layer 11 1. According to the above-mentioned effect of the transition metal layer 17 By heat treatment at a temperature lower than the eutectic point of Ga and au, Aι is diffused to the n-type semiconductor layer 1 丨, and a mixed layer or alloy layer composed of Ga -20- (17) (17) circle 425537 and Aι The formed European resistance contact area 4 is extremely thin. Then, the heat-treated transition metal layer 17 and metal 18 in FIG. 5 are removed by etching, and the European resistance contact area 4 in FIG. 6 is obtained. Light-emitting semiconductor substrate 2. The surface morphology (Morphology) of the ohmic contact area 4 composed of a mixed layer of Au and Ga obtained in a heat treatment at a lower temperature than the eutectic point of Alm and Ga will be borrowed. Structured by AnGeGa by heat treatment above eutectic point of Patent Document 1 mentioned above The surface morphology (Morphology) of the ohmic contact area is greatly improved. Therefore, the flatness of the other main surface 16 of the light-emitting semiconductor substrate 2 containing the ohmic contact area 4 in FIG. 6 is good. As shown in FIG. 7, the other main surface 16 that can cover the light-emitting semiconductor substrate 2, that is, the exposed surface of the n-type semiconductor layer 11 and the surface of the ohmic contact region 4 are formed by a vacuum evaporation method. The light reflection layer 5 formed of the A1 layer having a thickness of about 1 to 10 // m is subjected to a short-time heat treatment with an infrared lamp, etc. Thereby, the light reflection layer 5 having conductivity is connected to the European resistance. Field 4 is a Euro-resistance junction and is bonded to the n-type semiconductor layer ji. Since the light reflection layer 5 composed of A1 is in Schottky contact with the n-type semiconductor layer 1 1, the forward current of the semiconductor light-emitting element 1 does not change from The n-type semiconductor layer 11 flows to the light reflection layer 5. The surface resistance (Morphology) of the ohmic contact region 4 adjacent to the light reflection layer 5 is good, and therefore, the flatness of the light reflection layer 6 is excellent. Shaped on the light reflecting layer 5 by vacuum evaporation of A1 It becomes the first bonding metal layer 6. -21-(18) (18) 200425537 Next, it is ready to form a second bonding metal layer 7 made of Au by vacuum deposition on S containing impurities in FIG. One of the main surfaces of the conductive substrate 8 composed of the i substrate is formed by subjecting the first and second metal bonding layers 6 and 7 to pressure contact to perform a heat treatment at a temperature of 30 ° C. or less. Atom diffuses to each other and sticks the first and second metal bonding layers 6 and 7 together, so that the light-emitting semiconductor substrate 2 and the conductive silicon support substrate 8 are integrated. Next, as shown in FIG. 1, a current blocking layer 10 and an anode 3 are formed on one surface 15 of the light-emitting semiconductor substrate 2, and a cathode 9 is formed under the conductive support substrate 8, thereby completing the semiconductor light-emitting element 1. This embodiment has the following effects. (1) Since the European resistance contact area 4 does not contain G e with high light absorption and is formed to be extremely thin, the light reflectance of the composite layer of the European resistance contact area 4 and the light reflection layer 5 has a high 値(E.g. 60%). Therefore, most of the light emitted from the active layer 12 to the light reflection layer 5 side is returned to one of the substrate 15 sides of the light-emitting semiconductor substrate 2 and the luminous efficiency is increased. (2) Due to the Euro-resistance contact field The light reflectance of the composite layer of 4 and the light reflecting layer 5 becomes larger, so when a certain light output is to be obtained, the area of the European resistance contact area 4 accounts for the area of the other main surface 16 of the light emitting semiconductor substrate 2 The ratio can be increased over the past. When the area of the European resistance contact area 4 is increased, the forward resistance of the semiconductor light-emitting element 1 will be reduced, and the forward voltage drop and power loss will be reduced to improve the luminous efficiency. The maximum luminous efficiency of the red light-emitting diode according to this embodiment is 471 m / W (lumens / watt) at a current density of 40 A / cm2 -22- (19) (19) 200425537. (3) Diffusion of Al from the Au layer 18 to the n-type semiconductor layer 11 through the transition metal layer 17 makes it easy to form a Euro contact field composed of $ _AuGa at a temperature lower than the eutectic point 4 . (4) Since the surface morphology (Morphology) of the Euro contact area 4 is improved, the conductive support substrates 8 can be stuck together well. Second Embodiment Next, a semiconductor light emitting element 1a according to a second embodiment will be described with reference to Fig. 10. However, in FIG. 10, the same parts as those in FIG. 1 are assigned the same reference numbers, and descriptions thereof are omitted. The ohmic contact area 4 in the semiconductor light emitting element 1 a of FIG. 10 is formed on the entire other main surface 16 of the light emitting semiconductor substrate 2. ιρ forms the European resistance contact area 4 in this way. Since the composite layer of the European resistance contact area 4 and the light reflection layer 5 has a relatively high reflectance of 60%, a relatively high luminous efficiency can be obtained. In addition, compared with Fig. 1, if the area of the European resistance contact area 4 becomes larger, the resistance of the forward current path becomes smaller and the power loss is reduced. In Fig. 10, instead of the silicon support substrate 8 of Fig. 1, a metal support substrate 8a is thermocompression bonded to the light reflection layer 5. Therefore, the metal supporting substrate 8a has a supporting function of the light emitting semiconductor substrate 2 and a function as a cathode. The European resistance contact area 4 in FIG. 10 is formed by the same method as that shown in FIG. 1 with the same number -23- (20) (20) 200425537, and has the same composition and thickness. Therefore, even with the semiconductor light emitting element 1a of FIG. 10, the same results as those of the semiconductor light emitting element 1 of FIG. 1 can be obtained. The present invention is not limited to the above-mentioned embodiments, and may be modified as follows, for example. (1) When the mechanical strength of the light-emitting semiconductor substrate 2 is sufficient, the silicon support substrate 8 of FIG. 1 and the metal support substrate 8 a of FIG. 10 may be omitted. In this case, the conductive light reflection layer 5 is used as a cathode. (2) In FIG. 2, although the distribution pattern seen from the plane of the European resistance contact area 4 is a rectangular island shape, it may be deformed into a circular island shape or a lattice shape. (3) Although the Euro 4 contact area is in contact with the n-type semiconductor layer 11, it may be replaced with an n-type contact made of AlGalnP between the n-type semiconductor layer 11 and the light reflection layer 5. Layer, or an n-type buffer layer, or both, and the resistance contact area 4 can be contacted therewith. (4) Even if the European resistance contact area 4 is composed of other materials such as Au G e G a other than Au G a, as long as it is transparent, its thickness is limited to 20 to 1 0 00 A, can make the light reflectance of the composite layer of the European resistance contact area 4 and the light reflection layer 5 relatively high, and can improve the light emitting efficiency. (5) The metal 18 is alloyed with Ga other than Al, and can be used as a material for forming a European resistance contact. Industrial Applicability -24- (21) (21) 200425537 As described above, the present invention can be applied to a semiconductor light emitting device. [Brief Description of the Drawings] Fig. 1 is a sectional view showing a semiconductor light emitting device according to a first embodiment of the present invention. FIG. 2 is a sectional view taken along the line A-A of the semiconductor light-emitting element of FIG. 1. FIG. FIG. 3 is a cross-sectional view of a light-emitting semiconductor substrate for explaining the manufacturing process of the semiconductor light-emitting element of FIG. 1. FIG. Fig. 4 is a sectional view showing a state where a transition metal layer and a metal are provided on the light-emitting semiconductor substrate of Fig. 3; Fig. 5 is a cross-sectional view showing a case where a Euro-resistance contact region is formed by subjecting the light-emitting semiconductor substrate shown in Fig. 4 to heat treatment. 'FIG. 6 is a cross-sectional view showing a state where the transition metal layer and the metal are removed from FIG. 5. FIG. 8 is a cross-sectional view when a conductive support substrate is attached in FIG. 7. Fig. 9 is an explanatory diagram showing the relationship between the heat treatment temperature when forming the resistance contact area and the reflectance of the composite layer between the resistance contact area and the light reflecting layer according to the present invention and the conventional example. Fig. 10 is a sectional view showing a semiconductor light emitting device according to a second embodiment of the present invention in the same manner as Fig. 1; Element comparison table-25- (22) 200425537 1 _ · Semiconductor light-emitting element 2: Light-emitting semiconductor substrate 3: Anode 4: European resistance contact area 5: Light reflecting layer 6: First bonding metal layer 7: Second bonding Metal layer

8 :矽支撐基板 9 :陰極8: silicon support substrate 9: cathode

1 〇 =電流阻擋層 1 1 : η型半導體層 12 :活性層 1 3 : ρ型半導體層 1 4 :電流擴散層 1 5 :其中一個的主面 1 6 :另一個的主面 1 7 :過渡金屬層 1 8 :金屬 -26 -1 〇 = current blocking layer 1 1: n-type semiconductor layer 12: active layer 1 3: p-type semiconductor layer 1 4: current diffusion layer 15: one of the main surfaces 16: the other of the main surfaces 17: transition Metal layer 18: metal-26-

Claims (1)

(1) (1)200425537 拾、申請專利範圍 1 · 一種半導體發光元件,其特徵在於: 具備有: 具有用於取出光之其中一個的主面(15)與在該其中 一個主面之相反側的另一個主面(1 6 ),且在上述其中一 個主面(15)與上述另一個的主面(16)之間具有用於發 光之多個的化合物半導體層,而且露出在上述多個的化合 物半導體層內之上述另一個主面(16)的化合物半導體層 (1 1 )是由含有鎵(Ga)的化合物半導體所形成的半導體 基板(2 ); 被連接到上述半導體基板(2)之其中一個主面(15 )的電極(3 ); 與露出在上述半導體基板(2)之上述另一個的主面 (1 6 )的化合物半導體層(1 1 )的至少一部分呈歐阻接黑占 ,且由金屬材料與鎵(G a )的混合層所構成的歐阻接點領 域(4 )及; 用於覆蓋露出於上述半導體基板(2)之上述另一個 主面(1 6 )的化合物半導體層(η )與上述歐阻接點領域 (4)之其中一者或兩者,且具有導電性的光反射層(5) 〇 2 ·如申請專利範圍第1項之半導體發光元件,其中 上述歐阻接點領域(4 )是由Ga與Au的混合層所構成。 3 ·如申請專利範圍第1項之半導體發光元件,其中 上述歐阻接點領域(4 )的厚度爲2 0〜1 0 0 0 A。 -27- (2) (2)200425537 4·如申請專利範圍第1項之半導體發光元件,露出 於上述半導體基板(2)之上述另一個主面的化合物半導 體層(11)是一由將導電型決定雜質添加在選自由 A 1 X G a y I η 丨-x _ y Ρ,在此,X、y 爲滿足 0 $ X &lt; 1、〇 &lt; y g 1、 〇&lt;x + y $ 1的數値而構成的第1的化合物半導體,由 A]xGayIn】-x-yAs,在此 x、y 爲滿足 0‘x&lt;l、0&lt;y$i、 0&lt;x + yS 1的數値所構成的第2的化合物半導體、以及由 AlxGayln] — x - yN,在此,X、y 爲滿足 0 S χ&lt;1、0&lt;y $ l、 〇&lt;x + yS;l的數値所構成的第3的化合物半導體之其中一 者內而成者。 5 .如申請專利範圍第1項之半導體發光元件,其中 上述光反射層(5 )是一反射率較上述歐阻接點領域(4 ) 爲大的金屬層。 6 ·如申請專利範圍第5項之半導體發光元件,其中. 上述金屬層爲鋁層。 7 ·如申請專利範圍第1項之半導體發光元件,更具 有被結合在上述光反射層(5 )的導電性支撐基板(8 )。 8 ·如申請專利範圍第7項之半導體發光元件,其中 上述導電性支撐基板(8 )是含有雜質的矽支撐基板,更 且具有被連接到上述矽支撐基板的其他的電極(9 )。 9 ·如申請專利範圍第1項之半導體發光元件,其中 上述歐阻接點領域(4 )只設在上述半導體基板(2 )之另 一個主面(1 6 )的一部分,上述光反射層(5 )則覆蓋上 述歐阻接點領域(4 )與上述半導體基板(2 )之上述另一 -28- (3) (3)200425537 個主面(1 6 )中之未形成有上述歐阻接點領域(4 )的部 分等兩者。 10·如申請專利範圍第1項之半導體發光元件,其中 上述半導體基板(2)具備有: 由第1導電型的Ga系化合物半導體所構成的第1導 電型半導體層(1 1 ); 由被配置在上述第1導電型半導體領域(U)上的 G a系化合物半導體所構成的活性層(1 2 )及; 被配置在上述活性層(1 2 )上而由與第1導電型呈相 反的第2導電型的Ga系化合物半導體所構成的第2導電 型半導體層(13 )。 11· 一種半導體發光元件之製造方法,其特徵在於·· 準備好具有用於取出光之其中一個的主面(1 5 )與在 該其中一個主面之相反側的另一個主面(,1 6 ),且在上述 其中一個主面(15)與上述另一個的主面(16)之間具有 用於發光之多個的化合物半導體層,而且露出在上述多個 的化合物半導體層內之上述另一個主面(16)的化合物半 導體層(Π )是由含有鎵(Ga )的化合物半導體所形成的 半導體基板(2 )的過程; 在上述半導體基板(2)之上述另一個主面(16)之 至少一部分形成含有過渡金屬之輔助層(1 7 )的過程; 在上述輔助層(1 7 )之上形成含有可經由上述輔助層 (17)而擴散到上述半導體基板(2)之含有上述鎵之金 屬材料的層(1 8 )的過程; -29- (4) 200425537 針對具有上述輔助層以及含有上述金屬材料之層(1 8 )的上述半導體基板(2 )實施溫度較構成含有上述鎵之 化合物半導體層(1 1 )的元素與上述金屬材料的共晶點爲 低的加熱處理,且經由上述輔助層(1 7 )將上述金屬材料 導入到含有上述鎵的化合物半導體層(1 1 ),而形成由構 成含有上述鎵之化合物半導體層(11)的元素與上述金屬 材料的混合層所構成之歐阻接點領域(4 )的過程;(1) (1) 200425537 Patent application scope 1 · A semiconductor light-emitting device, comprising: a main surface (15) having one of the main surfaces for extracting light and an opposite side of the main surface The other main surface (1 6), and a plurality of compound semiconductor layers for emitting light are provided between one of the main surfaces (15) and the other main surface (16), and are exposed on the plurality of The compound semiconductor layer (1 1) on the other main surface (16) in the compound semiconductor layer is a semiconductor substrate (2) formed of a compound semiconductor containing gallium (Ga); and is connected to the semiconductor substrate (2). At least a part of the electrode (3) on one of the main surfaces (15) and the compound semiconductor layer (1 1) exposed on the other main surface (1 6) of the other semiconductor substrate (2) is in European resistance black Occupy the European resistance contact area (4) composed of a mixed layer of metal material and gallium (G a); and for covering the other main surface (1 6) exposed on the semiconductor substrate (2) Compound semiconductor layer (η) One or both of the resistance contact areas (4) and a conductive light reflecting layer (5) 〇2. For example, the semiconductor light-emitting element of the first patent application scope, wherein the above-mentioned European resistance contact areas (4 ) Is composed of a mixed layer of Ga and Au. 3. The semiconductor light-emitting element according to item 1 of the patent application scope, wherein the thickness of the above-mentioned European resistance contact area (4) is 20 to 100 A. -27- (2) (2) 200425537 4. If the semiconductor light-emitting element of the first patent application scope, the compound semiconductor layer (11) exposed on the other main surface of the semiconductor substrate (2) is a conductive layer The type-determining impurity is added from the group consisting of A 1 XG ay I η -x _ y P, where X, y are 0 + X &lt; 1, 0 &lt; yg 1, 〇 &lt; x + y $ 1 The first compound semiconductor composed of numbers is composed of A] xGayIn] -x-yAs, where x and y are the numbers satisfying 0'x &lt; l, 0 &lt; y $ i, 0 &lt; x + yS 1 The second compound semiconductor and AlxGayln] — x-yN, where X and y are composed of numbers satisfying 0 S χ &lt; 1, 0 &lt; y $ l, 〇 &lt; x + yS; l It is one of the third compound semiconductors. 5. The semiconductor light-emitting device according to item 1 of the scope of patent application, wherein the light reflecting layer (5) is a metal layer having a reflectance larger than that of the above-mentioned Euro contact area (4). 6 · The semiconductor light-emitting device according to item 5 of the patent application, wherein the metal layer is an aluminum layer. 7 · If the semiconductor light-emitting device according to item 1 of the scope of patent application has a conductive support substrate (8) combined with the above-mentioned light reflection layer (5). 8. The semiconductor light-emitting element according to item 7 of the scope of patent application, wherein the conductive support substrate (8) is a silicon support substrate containing impurities, and further has other electrodes (9) connected to the silicon support substrate. 9. The semiconductor light-emitting element according to item 1 of the scope of patent application, wherein the above-mentioned European resistance contact area (4) is only provided on a part of the other main surface (1 6) of the semiconductor substrate (2), and the light-reflecting layer ( 5) The above-mentioned another -28- (3) (3) 200425537 main surface (1 6) which covers the above-mentioned European resistance contact area (4) and the semiconductor substrate (2) is not formed with the above-mentioned European resistance contact The part of the dot field (4) waits for both. 10. The semiconductor light emitting device according to item 1 of the patent application scope, wherein the semiconductor substrate (2) is provided with: a first conductive type semiconductor layer (1 1) composed of a first conductive type Ga-based compound semiconductor; An active layer (1 2) composed of a Ga-based compound semiconductor disposed on the above-mentioned first conductivity type semiconductor field (U); and is disposed on the above active layer (1 2) and is opposite to the first conductivity type A second conductivity type semiconductor layer (13) composed of a second conductivity type Ga-based compound semiconductor. 11. A method of manufacturing a semiconductor light-emitting element, characterized in that it is prepared to have one main surface (1 5) for taking out one of the light and the other main surface (, 1 on the opposite side of the one main surface) 6), and there is a plurality of compound semiconductor layers for emitting light between one of the main surfaces (15) and the other main surface (16), and the above is exposed in the plurality of compound semiconductor layers The compound semiconductor layer (Π) on the other main surface (16) is a process of a semiconductor substrate (2) formed of a compound semiconductor containing gallium (Ga); on the other main surface (16) of the semiconductor substrate (2), A process of forming at least a part of an auxiliary layer (17) containing a transition metal; forming on the above-mentioned auxiliary layer (17) a layer containing the above-mentioned auxiliary layer (17) which can be diffused to the semiconductor substrate (2) containing the above-mentioned The process of the layer (1 8) of the metal material of gallium; -29- (4) 200425537 The implementation temperature of the semiconductor substrate (2) having the auxiliary layer and the layer (1 8) containing the metal material is higher than that of the semiconductor substrate (2). The eutectic point of the element of the compound semiconductor layer (1 1) of the gallium and the metal material is low, and the metal material is introduced into the compound semiconductor layer (1) containing the gallium through the auxiliary layer (1 7). 1), and a process of forming a European resistance contact area (4) composed of a mixed layer of the element constituting the compound semiconductor layer (11) containing the above-mentioned gallium and the above-mentioned metal material; 除去上述輔助層(1 7 )以及含有上述金屬材料的層( 1 8 )的過程及; 形成可覆蓋露出於上述半導體基板(2 )之上述另一 個主面(1 6 )的化合物半導體層(1 1 )與上述歐阻接點領 域(1 2 3 4)之其.中一者或兩者而具有導電性的光反射層(5) -30- 1 2 ·如申請專利範圍第1 1項之半導體發光元件之製 造方法,將上述輔助層(17)以及含有上述金屬材料的層 2 形成爲只覆蓋上述半導體基板(2)之上述另一個 主面(1 6 )的一部分。 3 1 3 .如申請專利範圍第1 2項之半導體發光元件之製 造方法,將上述光反射層(1 5 )形成爲可覆蓋上述歐阻接 點領域(4 )與上述半導體基板(2 )之上述另一個主面( 1 6 )之未形成有上述歐阻接點領域(4 )的部分等兩者。 4 1 4 .如申請專利範圍第1 1項之半導體發光元件之製 造方法,露出於上述半導體基板(2)之上述另一個主面 的化合物半導體層(i)是一由將導電型決定雜質添加在 (5) (5)200425537 選自由AlxGayIn】—x— yP,在此,χ、y爲滿足〇$χ&lt;ι、 〇&lt;y $ 1、0&lt;x + y S 1的數値而構成的第1的化合物半導體 ’由 AlxGayIn〗-x-yAs’ 在此 X、y 爲滿足 0$χ&lt;1、 〇&lt;y S 1、0&lt;x + y $ 1的數値所構成的第2的化合物半導體 、以及由 AlxGayln^x-yN,在此,X、y 爲滿足 〇^χ&lt;1、 0&lt;y ^ 1、0&lt;x + y S 1的數値所構成的第3的化合物半導體 之其中一者內而形成者。 1 5 ·如申請專利範圍第1 1項之半導體發光元件之製 造方法,露出於上述半導體基板(2)之上述另一主面( 16)的化合物半導體層(11)是一將導電型決定雜質添加 在由 AlxGayllM-x-yP,在此,X、y 爲滿足 〇Sx&lt;l、〇&lt;y$ 1、0&lt;x + y S 1 0勺數値所構成的化合物半導體而成者,且上 述X的値爲〇·4或較此爲大,且上述導電型決定雜質的濃 度爲1018cm_3或較此爲大。 1 6 ·如申請專利範圍第1 1項之半導體發光元件之製 造方法,其中上述輔助層係選自 含有選自 Cr、Ti、Ni、S c、V、Μ η、F e、C ο、C u、 Zn、Be之至少其中一者的層; Au層與Cu層與AU層的複合層; Cr層與Ni層與Au層的複合層及; Cr層與AixSi層與Αιι層的複合層之其中一者。 1 7.如申請專利範圍第1 1項之半導體發光元件之製 造方法,含有上述金屬材料的層(18)選自 金(A u )層; -31 - (6) 1200425537 Au層與Cr層與Au層的複合層; Cr層與Ni層與AU餍的複合層及; Cr層與AuSi層與Au層的複合層之其中一者。 1 8 ·如申請專利範圍第1 1項之半導體發光元件 造方法,其中上述歐阻接點領域(4 )是由Ga與Au 金層所構成。 1 9 ·如申請專利範園第n項之半導體發光元件 造方法,其中上述歐阻接點領域(4 )的厚度爲20〜 A 〇 2 〇 .如申請專利範圍第1 1項之半導體發光元件 造方法,其中上述光反射層(5 )是一反射率較上述 接點領域(4)爲大的金屬層。 2 1 .如申請專利範圍第20項之半導體發光元件 造方法,其中上述金屬層爲鋁層。 22. 如申請專利範圍第1 1項之半導體發光元件 造方法,更具有將導電型支撐基板(8 )結合到上述 射層(5 )的過程。 23. 如申請專利範圍第22項之半導體發光元件之 方法,其中上述導電型支撐基板(8)是一含有雜質 支撐基板,更且,具有將電極(9 )連接到上述矽支 板的過程。 之製 的合 之製 1000 之製 歐阻 之製 之製 光反 製造 的矽 撐基 -32-A process of removing the auxiliary layer (1 7) and the layer (1 8) containing the metal material, and forming a compound semiconductor layer (1) that can cover the other main surface (1 6) exposed on the semiconductor substrate (2) 1) Light-reflective layer (5) -30- 1 2 which is conductive with one or both of the above European resistance contact areas (1 2 3 4) In the method for manufacturing a semiconductor light-emitting device, the auxiliary layer (17) and the layer 2 containing the metal material are formed so as to cover only a part of the other main surface (16) of the semiconductor substrate (2). 3 1 3. According to the method for manufacturing a semiconductor light-emitting device according to item 12 of the scope of patent application, the light reflection layer (1 5) is formed so as to cover the above-mentioned European resistance contact area (4) and the semiconductor substrate (2). The other main surface (1 6) is not formed with the part of the above-mentioned European resistance contact area (4). 4 1 4. According to the method for manufacturing a semiconductor light-emitting device according to item 11 of the scope of patent application, the compound semiconductor layer (i) exposed on the other main surface of the semiconductor substrate (2) is an impurity that is determined by the conductivity type (5) (5) 200425537 is selected from the group consisting of AlxGayIn] —x—yP, where χ and y are numbers 满足 that satisfy 〇 $ χ &lt; ι, 〇 &lt; y $ 1, 0 &lt; x + y S 1 The first compound semiconductor 'AlxGayIn〗 -x-yAs' where X and y are numbers 2 that satisfy 0 $ χ &lt; 1, 〇 &lt; y S 1, 0 &lt; x + y $ 1 And a third compound semiconductor consisting of AlxGayln ^ x-yN, where X and y are numbers satisfying 0 ^ χ &lt; 1, 0 &lt; y ^ 1, 0 &lt; x + y S 1 Formed within one of them. 1 5 · According to the method for manufacturing a semiconductor light-emitting device according to item 11 of the scope of patent application, the compound semiconductor layer (11) exposed on the other main surface (16) of the semiconductor substrate (2) is an impurity that determines the conductivity type Added to AlxGayllM-x-yP, where X and y are compound semiconductors composed of a number of 满足 Sx &lt; 1, 〇 & y $ 1, 0 &lt; x + y S 1 0, and The X in the above X is 0.4 or larger, and the conductivity type determining impurity concentration is 1018 cm_3 or larger. 16 · The method for manufacturing a semiconductor light-emitting device according to item 11 of the scope of patent application, wherein the auxiliary layer is selected from the group consisting of Cr, Ti, Ni, S c, V, M η, F e, C ο, C a layer of at least one of u, Zn, and Be; a composite layer of an Au layer, a Cu layer, and an AU layer; a composite layer of a Cr layer, a Ni layer, and an Au layer; and a composite layer of a Cr layer, an AixSi layer, and an Atom layer One of them. 1 7. According to the method for manufacturing a semiconductor light-emitting element according to item 11 of the scope of patent application, the layer (18) containing the above-mentioned metal material is selected from the gold (Au) layer; -31-(6) 1200425537 Au layer and Cr layer and One of a composite layer of an Au layer; a composite layer of a Cr layer, a Ni layer and AU 餍; and a composite layer of a Cr layer, an AuSi layer, and an Au layer. 18 · The method for manufacturing a semiconductor light emitting device according to item 11 of the patent application range, wherein the above-mentioned European resistance contact area (4) is composed of Ga and Au gold layers. 1 9 · The method for manufacturing a semiconductor light-emitting device according to item n of the patent application park, wherein the thickness of the above-mentioned European resistance contact area (4) is 20 to A 〇2 〇. The semiconductor light-emitting device according to item 11 of the patent application range The manufacturing method, wherein the light reflecting layer (5) is a metal layer having a reflectance larger than that of the contact area (4). 2 1. The method for manufacturing a semiconductor light emitting device according to claim 20, wherein the metal layer is an aluminum layer. 22. The method for manufacturing a semiconductor light-emitting element according to item 11 of the patent application scope further includes a process of bonding a conductive support substrate (8) to the above-mentioned radiation layer (5). 23. A method for applying a semiconductor light-emitting element according to claim 22, wherein the conductive support substrate (8) is a support substrate containing impurities and further has a process of connecting the electrode (9) to the silicon support plate. The system of the system The system of the system 1000 The system of the system of resistance The system of photoresistance made of silicon -32-
TW92132791A 2002-11-29 2003-11-21 Semiconductor light emitting device and the manufacturing method thereof TWI230472B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348416 2002-11-29

Publications (2)

Publication Number Publication Date
TW200425537A true TW200425537A (en) 2004-11-16
TWI230472B TWI230472B (en) 2005-04-01

Family

ID=32462916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92132791A TWI230472B (en) 2002-11-29 2003-11-21 Semiconductor light emitting device and the manufacturing method thereof

Country Status (4)

Country Link
JP (1) JPWO2004051758A1 (en)
CN (1) CN100521261C (en)
TW (1) TWI230472B (en)
WO (1) WO2004051758A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747436B (en) * 2019-09-27 2021-11-21 日商三菱電機股份有限公司 Optical semiconductor device and manufacturing method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420044C (en) * 2004-09-29 2008-09-17 晶元光电股份有限公司 Light emitting diode and making method thereof
KR100657941B1 (en) * 2004-12-31 2006-12-14 삼성전기주식회사 Semiconductor emitting eevice with approved and manufacturing method for the same
JP4935136B2 (en) * 2006-03-22 2012-05-23 パナソニック株式会社 Light emitting element
US7501295B2 (en) * 2006-05-25 2009-03-10 Philips Lumileds Lighting Company, Llc Method of fabricating a reflective electrode for a semiconductor light emitting device
CN100386899C (en) * 2006-05-26 2008-05-07 北京工业大学 Efficient full-bright all-reflection light-emitting-diode and making method
JP5346443B2 (en) 2007-04-16 2013-11-20 ローム株式会社 Semiconductor light emitting device and manufacturing method thereof
JP4770785B2 (en) * 2007-04-25 2011-09-14 日立電線株式会社 Light emitting diode
KR100992728B1 (en) * 2008-10-20 2010-11-05 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
KR101007113B1 (en) * 2008-11-25 2011-01-10 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
TWI412161B (en) * 2009-11-06 2013-10-11 Semileds Optoelectronics Co Light emitting diode device
CN102280552B (en) * 2010-06-14 2015-06-03 鸿富锦精密工业(深圳)有限公司 Light emitting diode crystal grain and manufacture method thereof
TWI437738B (en) 2010-10-06 2014-05-11 Huga Optotech Inc Semiconductor light emitting device
CN112652689B (en) * 2020-12-30 2022-09-02 深圳第三代半导体研究院 Light emitting diode and manufacturing method thereof
CN112614921A (en) * 2020-12-31 2021-04-06 深圳第三代半导体研究院 Light emitting diode and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940863A (en) * 1972-08-25 1974-04-17
JPH05251739A (en) * 1992-03-06 1993-09-28 Toshiba Corp Semiconductor light emitting device
JP4050444B2 (en) * 2000-05-30 2008-02-20 信越半導体株式会社 Light emitting device and manufacturing method thereof
JP2002217450A (en) * 2001-01-22 2002-08-02 Sanken Electric Co Ltd Semiconductor light-emitting device and method of manufacturing the same
JP2002261044A (en) * 2001-03-06 2002-09-13 Sony Corp Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747436B (en) * 2019-09-27 2021-11-21 日商三菱電機股份有限公司 Optical semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
TWI230472B (en) 2005-04-01
JPWO2004051758A1 (en) 2006-04-06
CN1717812A (en) 2006-01-04
CN100521261C (en) 2009-07-29
WO2004051758A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
TWI230473B (en) Semiconductor light emitting device and manufacturing method thereof
JP4655920B2 (en) Semiconductor light emitting device
US8735185B2 (en) Light emitting device and fabrication method thereof
TW577178B (en) High efficient reflective metal layer of light emitting diode
JP4907842B2 (en) Light emitting diode with planar omnidirectional reflector
TWI305425B (en)
JP2006128227A (en) Nitride semiconductor light emitting element
JP2002217450A (en) Semiconductor light-emitting device and method of manufacturing the same
TWI269467B (en) Light-emitting diode
JP5829453B2 (en) Semiconductor light emitting device
KR100910964B1 (en) Ohmic electrode and method for forming the same
KR20100099286A (en) Contact for a semiconductor light emitting device
US20050205886A1 (en) Gallium-containing light-emitting semiconductor device and method of fabrication
JP2007227939A (en) Light emitting element, and its manufacturing method
TW200425537A (en) Semiconductor light emitting device and the manufacturing method thereof
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
TW201230390A (en) Light-emitting diode, light-emitting diode lamp and illuminating device
JP2001144321A (en) Light-emitting device and manufacturing method therefor
CN1198339C (en) Structure of light-emitting diode and method for making the same
JP2005175462A (en) Semiconductor luminous element and manufacturing method of the same
KR20150103253A (en) Flip led chip and manufacturing method thereof
JP4803302B2 (en) Nitride semiconductor light emitting device
TWI322518B (en)
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR101805301B1 (en) Ultraviolet Light-Emitting Diode with p-type ohmic contact electrode pattern to enhance the light extraction

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees