1231636 狄、發明說明: 【發明所屬之技術領域】 本發明係有關於一種過電壓保護裝置,其尤指一種 扁平式過電壓保護裝置,係揭露一運用氡體故電原填, 透過同—平面之放電電極及一放電客間,且其為一種表 面黏著型態的呈元毪,並進一步將氣體放電技 術與金屬氧化物變阻器(Metal-Oxide Varistor,MOV)整 合在一起,形成一顆兼具兩種技術優點的微型過電壓保 護元件。 【先前技術】 按電子及電機成品遭遇的暫態型過電壓型態,基本 上可分為三大類··靜電、雷擊及交流電源的突波。靜電 是一種瞬間高電壓,停留時間為奈秒(ns)級;雷擊的特 色是高電流’停留時間是微秒(#s)級;交流電源的突波 停留時間最長,為毫秒(ms)級,也是這三種過電壓型態 中破壞能量最大的。 針對以上過電壓型態,現今工業上已有多種不同技 術方式的保護元件,多層次保護電子電機產品及使用者 的安全。以半導體製作的雪崩二極體,常使用在低電壓 的電子產品上防護靜電,其優點是反應速度快,缺點是 無法承受大電流,且漏電流及電容值偏大。閘流體 (Thyristor)是另一種以半導體技術製作的過電壓保護 兀件/可以承受一百安培以上的大電流,反應速度快, 但漏電流及電容值較大,通常使用於通信產品的雷擊保 護。金屬氧化物變阻器(M〇v)是一種廣泛使用的突波吸收 1231636 器,通常是以氧化鋅為主體,摻雜氧化鉍等其他氧化物 經冋溫燒結而成’反應速度快及耐面電流,但漏電流及 電谷值較大’而且經大電流多次衝擊後,其特性會衰變。 氣體放電管是密封的中空圓柱體結構,利用氣體分子在 高電壓下解離及撞擊其他氣體分子以傳遞電流的原理, 吸收突波。和其他保護元件比較,氣體放電管的财電流 能力最大,漏電流及電容值最低,但缺點是反應速度慢 而且啟動電壓較高,目前主要應用於雷擊及交流電源的 突波吸收。 以上依據不同技術的過電壓保護元件各有其優缺 點,沒有一種是完美理想的。工業上應用有時將兩種不 同技術的元件一起搭配使用,使其優缺點互補。外型上, 二極體、閘流體(Thyristor)及金屬氧化物變阻器(mov) 皆能提供扁平式產品,可以表面黏著型態固定在電路板 上,但反觀氣體放電管的圓柱體結構,卻不方便以表面 黏著方式固定在電路板上,而且高度太高,更不適合電 子產品輕薄短小的應用要求。 第一圖是習知技術的氣體放電管,包含兩個圓柱形的 主要電極第一放電電極102,及第二放電電極1〇4,,有 時會增加第三放電電極1〇6,,電極材料通常是由銅構成 的二電極表面有時會塗佈一層特殊材料100,以增加放電 效能4 °放電空間是由中空的絕緣圓柱體200,和300,所 構成’其材質通常是90%以上純度的氧化紹陶瓷。絕緣圓 柱體200’和3〇〇,的兩端,一般是以鎢或其金屬燒結一 層薄膜210’ ,作為絕緣體和電極結合的底材。絕緣體和 電極的結合,通常是使用銅_銀合金的薄片310,,在真 1231636 空爐中通入惰性氣體,升高溫度使銅一銀合金薄片熔化, 冷卻後即將惰性氣體密封在腔體41〇,内。使用的惰性^ 體一般是氬氣和氖氣,有時會添加氦氣或其他氣體二= 放電特性。 有些氣體放電管會在絕緣體的内壁以半導體材 佈一些線條109’來改進放電的反應速度。放電電極的= 距、電極的表面材質型態,以及氣體的種類和壓力a : 定氣體放電的重要因素。氣體放電管的電極間距A 、 〇·5-1·0毫米(_)。當兩個電極間的電壓 冋過頜疋值時,過電壓經由兩電極之間的氣體放 導’電極1〇2和1〇4’經由間距A,電極,和广 經由間距B,電極1〇4,和1〇6,也經由間距B。 現今工業上使用之氣體放電管的外形尺寸,1231636 D. Description of the invention: [Technical field to which the invention belongs] The present invention relates to an overvoltage protection device, and more particularly to a flat overvoltage protection device. The discharge electrode and a discharge guest, and it is a surface-adhesive type, and further integrates the gas discharge technology with a metal-Oxide Varistor (MOV) to form a combination of two This kind of technology has the advantages of miniature overvoltage protection element. [Previous technology] According to the transient overvoltage types encountered by electronic and motor products, they can be basically divided into three categories: static electricity, lightning strikes, and surges of AC power. Static electricity is an instantaneous high voltage with a residence time of nanoseconds (ns). Lightning strikes are characterized by high currents. The residence time is microseconds (#s). The surge stay time of AC power sources is the longest, which is milliseconds (ms). , Is also the largest destruction energy of these three types of overvoltage. In response to the above over-voltage types, there are many different protection methods in the industry today to protect the safety of electronic motor products and users at multiple levels. Avalanche diodes made of semiconductors are often used to protect static electricity on low-voltage electronic products. The advantages are fast response times, the disadvantage is that they cannot withstand large currents, and the leakage current and capacitance values are large. Thyristor is another overvoltage protection element made by semiconductor technology. It can withstand large currents of more than 100 amps and has a fast response speed, but the leakage current and capacitance are large. It is usually used for lightning protection of communication products. . Metal oxide varistor (Mov) is a widely used surge absorber 1231636, usually based on zinc oxide, doped with other oxides such as bismuth oxide and sintered at high temperature. 'Fast response speed and surface current resistance. However, the leakage current and the electric valley value are relatively large ', and its characteristics will decay after repeated impacts of large current. The gas discharge tube is a sealed hollow cylinder structure. It uses the principle that gas molecules dissociate under high voltage and impinge on other gas molecules to transmit current, and absorb surges. Compared with other protection components, the gas discharge tube has the largest current capacity, the lowest leakage current and the lowest capacitance value. However, its shortcomings are its slow response speed and high startup voltage. At present, it is mainly used for surge absorption of surges and AC power supplies. The above-mentioned overvoltage protection components based on different technologies have their own advantages and disadvantages, and none of them is perfect. Industrial applications sometimes use two different technology components together to complement their advantages and disadvantages. In appearance, diodes, thyristors, and metal oxide varistors (mov) can all provide flat products, which can be fixed on the circuit board by surface adhesion. However, the cylindrical structure of the gas discharge tube, however, It is inconvenient to be fixed on the circuit board by surface adhesion, and the height is too high, which is not suitable for the requirements of light, thin and short electronic products. The first figure is a conventional gas discharge tube, which includes two cylindrical main electrodes, a first discharge electrode 102, and a second discharge electrode 104, and sometimes a third discharge electrode 106 is added. The material is usually made of copper. The surface of the two electrodes is sometimes coated with a layer of special material 100 to increase the discharge efficiency. 4 The discharge space is made of hollow insulating cylinders 200 and 300. Its material is usually 90% or more. Pure oxide ceramics. Both ends of the insulating cylindrical bodies 200 'and 300' are generally sintered with tungsten or a metal film 210 'as a substrate for the insulator and the electrode. The combination of insulator and electrode is usually made of copper_silver alloy sheet 310. An inert gas is passed into the empty 1231636 empty furnace. The temperature is increased to melt the copper-silver alloy sheet. After cooling, the inert gas is sealed in the cavity 41. 〇, Within. The inert gas used is generally argon and neon, and sometimes helium or other gases are added. Two = discharge characteristics. Some gas discharge tubes have lines 109 'made of semiconductor material on the inner wall of the insulator to improve the reaction speed of the discharge. Discharge electrode distance, electrode surface material type, and gas type and pressure a: important factors for determining gas discharge. The electrode pitch A of the gas discharge tube is between 0.5 mm and 1.0 mm (_). When the voltage between the two electrodes exceeds the maxillary value, the overvoltage is conducted through the gas discharge between the two electrodes, 'electrode 102 and 104', via the distance A, the electrode, and the wide distance B, the electrode 10. 4, and 106, also via pitch B. The dimensions of gas discharge tubes used in industry today,
極的產品最小外形是5*5毫米(mm,直㈣長度),U 極的產品最小外形約為⑽8毫米(_,直鮮長度)了】 線二〇’i120,與13°,’以插件方式固定在 ,路板^仁疋尚度太高,整體尺寸太大,不適於 產品輕薄短小的應用要求。 、子 過雷何針對上述問題而提出_種新_扁平式之 電堅保濩裝置,不僅可改善習知之氣體放電管 ,不方便以_^ 3 5杰回之參點’長久以來一直是使用者殷切盼望的。 【發明内容】 護步^發^主要目的、’在於提供一種爲平式過電壓保 、’面型基板為載具,將至少兩個放電電極製 1231636 黏結於基板上,且在放電電極的前端及其附近區域製 作一個中空的放電空間,以氣體放電方式吸收突波,以 具備耐電流、低電容值及低漏電流等特性❶因其為一扁 平式產品,可以使用表面黏著方式固定在 符合電子產品輕薄短小之要求。 板上以 本發明之另一目的,在於提供一種反應速度快的扁 平式過電跑呆護裝i,其係以金屬氧化物變阻器⑽伽 材料製作基板’在基板的上下兩面製作電極, 與下方電轉分重疊,形絲少—個域板厚度為導通 路徑的變阻器。_在變阻器上方電極之上面製作一絕 緣層與氣體放電I置,將氣體放f與金屬氧化物變阻器 (MOV)兩種過雜贿麟,並輕合鮮麵形元件, 使其遇到兩速度㈣電壓脈衝時,反應快的變阻器先啟 動以壓制過電壓’讓反應速度慢的氣體放電裝置i足夠 時間反應,以疏導後續的大電流。 本毛明之再-目的,在於提供— 護裝置’其放電電極以薄膜方式製作在同一= 電極的間雜可_小,崎低啟動電壓 度,以期將氣體放電的技術,運用到高速度的靜電保g 【實施方式】 本發明係為1扁平式過電壓保護的裝置,基本上 以氣體放電方式,健好及電機成品,使其免 靜1擊以及交流電源突波等 其作法是將放”極製作在-卿面魏緣基結 1231636 構中空的放電空間,並以玻璃將惰性氣體密封。由於本 發明的創新,更可以金屬氧化物變阻器的材料為基板, 整合氣體放電技術與金屬氧化物變阻器成為並聯結構的 單一顆微型元件,以金屬氧化物變阻器改進氟體放電反 應速度慢的缺失,以及習知技術氣體放電管的胤柱體結 構,卻不方便以表面黏著方式固定在電路板上,高且高 度太高之缺點。 首先,請參閱第二A圖及第二B圖,其係為本發明 之放電電極配置及製作之示意圖;如圖所示,本發明至 少兩個放電電極之第一電極102、第二電極1〇4和第三電 極106,置放於同一平面,可以直接製作在基板2〇〇上; 该基板200係平面型態,可使用純度9〇%以上之氧化銘陶 瓷基板或平板玻璃。放電電極可以薄膜方法製造,在整 片基板200上先製作一層很薄的鉻或鈦當作黏結層,再 製作主要的電極材料銅、鎳或其他金屬;也可以在電極 材料上再製作一層抗氧化金屬,例如白金。金屬層製作 完成後,再塗佈光阻和曝光顯影,並蝕刻金屬膜製作出 預設的電極形狀及間距。 放電電極必須具備-定的厚度,至少要(微米㈤) 、上才犯夠承受過電壓的鬲電流及多次使用後的電極 損耗心加電極厚度比較經濟的方法是先以薄膜製程製 作出層很薄的電極後,再以化學電鑛方法加厚。以薄 膜製程製作,電極的間距可以作得非常小,職米(_) 或更小’最_於高速度高錢但能餘低的靜電保護。 1231636 本發明至少兩個放電電極之第一電極1〇2、第二電極 和第三電極106,也可以使用厚膜印刷方式製作。以 ' 網版或鋼版印刷方法將銀-鈀導電膠直接印製到基板2〇〇 上,經過高溫去除其中的溶劑和黏結劑並燒結銀〜鈀合金 印成為電極。故電極係直接黏結在基板上,其間距可以 做到250微米(//m),電極的厚度約為1〇—3〇微米(_)。 ‘ 該至少兩個放電電極之第一電極102、第二電極1〇4 和第三電極106配置在同一個平面上,因此當電極放電 時,電漿有可能沉積在電極之間,造成漏電流或短路現魯 象。通常放電電極間距愈小’疏導的能量愈大,重複工 作次數愈多,則電極之間漏電流或短路現象愈明顯。為 解決此一顧慮’得在兩電極之間製作一層耐溫的絕緣層 108,隔離相鄰的兩個電極,避免沉積下來的電漿直接連 接到電極。耐溫絕緣層108可以是聚亞醯胺 (Polyimide)、玻璃或其他氧化物,例如氧化銘、氧化石夕 等,以網版、鋼版印刷或曝光顯影及蝕刻方法製作,電 極放電的間距A和B則由絕緣層108的寬度決定。 _ 放電電極經過多次使用後會產生損耗,尤其是在陰 極端,因此電極必須具備一定的厚度。過電壓的能量愈 大,保護裝置重複工作的次數愈多,則電極厚度必須愈 厚。第三A圖及第三B圖係本發明另一製作電極之方法, 至少兩個放電電極之第一電極1〇2、第二電極104和第三 ~ 電極106,可以使用薄銅片,厚度約50-500微米("m), · 再加以電鍍耐氧化金屬,例如鍵鎳再鍍金。電極的形狀 和間距A和B的形成,可以兩種方式製作;其一是將整 10 1231636 片 >1虫刻^文片以勒結層600和基板200結合,再以化學 用預 '製作出預設的電極形狀與間距A和B。其二是使 對处庶f型的金屬薄片以黏結層6〇〇和基板200結合; 篦00的材料可為玻璃。該第一電極102、第二電極 度約2二電極106的前端得懸浮在基板200之上,其高 電昉等於黏結層600的高度,其目的在於避免電極放 :產生的電漿沉積在電極之間,而造成相鄰兩電極 間漏電流或短路。 以上有關於本發明放電電極配置及製作方法之實施 】所有的放電電極,直接製作在基板上,或是以黏結 層和基板結合。在相同製程下完成製作,尺寸可以精密 控制,電極間之間距A和B也可以製作的比習知技術的 氣體放電管小。 再者,請參閱第四A圖至第四C圖,其係為本發明 之中空放電空間結構和放電裝置之示意圖;如圖所示, 該放電電極製作完成後,接著在電極放電區域的上方製 作一層犧牲層300,再製作一層結構層400覆蓋在大部份 犧牲層的上方。然後去除犧牲層300,形成一個開口的中 空結構,最後再製作封口玻璃500,覆蓋整個結構層4〇〇 及其開口,形成密封良好的放電空間。犧牲層300可以 是耐溫的高份子,例如矽利康(Silicone)或聚亞醯胺 (Polyimide),以網版或鋼版印刷的方式,印製在放電電 極上面,包含所有放電電極的前端,再以攝氏 度烘烤以揮發溶劑。 烘烤後的犧牲層300變成半固態結構,可以在其上 1231636 面覆蓋結構層400。結構層400與封口玻璃500是相容性 . 高而且熱膨脹係數接近的玻璃材料,其主要成份是氧化 · 鉛和氧化硼。結構層400是玻璃粉末和溶劑及黏結劑均 勻攪拌而成的玻璃膏,先以網版或鋼版印刷的方式覆蓋 住大部份的犧牲層300,只留住前後兩端或至少一端未覆 蓋。然後將完成印製的半成品置入烤箱中,在攝氏 100〜200度溫度下揮發溶劑,再以攝氏300〜4〇〇度在含有 氧氣的氣氛下,將黏結劑氧化成二氧化碳和水蒸氣去 鲁 除,最後再升溫至玻璃的熔化點將玻璃顆粒、熔化連結, 熔化點通常是攝氏400〜600度,依玻璃的種類而異。冷 卻後的結構層400是固態的玻璃結構,但犧牲層3〇〇是 部份變質的高分子,可以化學的方式將犧牲層3〇〇經由 未被覆盍的兩端或一端開口去除。 這時由結構層400所構成,兩端或一端開口的中空 結構已經形成,再以封口玻璃500覆蓋住結構層4〇〇及 其兩端或一端開口。封口玻璃500的製作過程和結構層 鲁 400類似,先是印製玻璃膏,烘烤揮發溶劑;然後在含有 氧氣的氣氛下,以攝氏300〜400度去除黏結劑。之後將 其移入真空爐中,通入惰性氣體,控制適當的氣壓值, 並加溫至溶化點,使玻璃熔化連結,冷卻後密封整個放 電空間。封口玻璃500的熔化點必須略低於或等於結構 、 層400的熔化點。封口玻璃500在真空爐加溫熔化的過 程中,若不通入任何氣體,冷卻後的密封放電空間則成 為真空狀態。 12 1231636 邊至少兩個放電電極之第一電極1〇2、第二電極 2三電極106的後端延伸至基板200的邊緣,藉由相 端電極110、第二端電極120和第三端電極 /〇對外連接。端電極的材料常用的是含銀導電膠,塗佈 上預設的位置,經過加溫絲其中的溶劑和黏結 二二成―财、的導電膜’有時另外以紐方式鑛上錄 及知錫,以增加元件對電路板的黏結強度。 故^放電裝置之主要構造係包括:一平面型基板 2〇〇,至少兩個放電電極之第一電極1〇2、第二電極ι〇4 和第二電極106 ’其係黏結於該基板上,且彼此之間相距 -,當距離;-中空的放電空間41〇,包含所有放電電極 的刖端’係以結構層400形成至少一端開口之中空结構. 一封口玻璃500,其係置放於該結構層4〇〇之上方,且 該放電空間410密封;以及至少_端電極之第一端電 極no、第二端電極120和第三端電極13〇,係黏結於該 基板上,並個別與放電電極之第—電極1()2、第二電極 104和第三電極106的後端一對一連接。 再者’反應速度較慢是氣體放電的—項缺點,以一 個250伏特00的氣體放電管為例,在直流電時的啟動電 壓(DC Sparkover)為250伏特;但是在每微秒副伏特 (100V///S)電壓脈衝時’啟動電壓為仍伏特;在每微 秒1000伏特(1000V/#S)電壓脈衝時必須7〇〇伏特才能 啟動。工業上應用的氣體放電管的直流電啟動電壓,大 部份是介於75伏特至600伏特之間,少部份是1〇〇〇伏 特以上。 13 1231636 金屬氧化物變阻器(Metai_〇xide Varistor,MOV)的 , 反應速度快,屬於奈秒(ns)級,和氣體放電裝置並聯在 一起’可以彌補氣體放電反應速度慢的缺點。變阻器的 崩潰電壓可以設計略高於氣體放電的直流電啟動電壓,. 遇到直流或低速度的過電壓脈衝時,氣體放電啟動,但 k阻器不動作;若遇到高速度的過電壓脈衝時,變阻器 先啟動’讓氣體放電裝置有足夠的時間啟動。當氣體放 電啟動後,其電弧電壓非常低,約2〇伏特,遠低於變阻鲁 為的崩潰電壓’所以變阻器關閉,過電壓的後續電流由 氣體放電疏導。 變阻器的崩潰電壓也可以設計略低於氣體放電的直 流電啟動電壓,無論是直流電或是脈衝的過電壓時,總 疋變阻裔先啟動;但隨著電流增大,變阻器的電壓也隨 之增大;當變阻器的電壓增大超過氣體放電的直流電啟 動電壓後,氣體放電裝置啟動以疏導後續的高電流,變 阻器則關閉。氣體放電裝置和變阻器的並聯結構還有另 鲁 外項好處是萬一氣體放電裝置漏氣或破裂以致無法正 常工作時,變阻器還可以提供備位電路保護的功能。 故可將氣體放電技術與金屬氧化物變阻器(MOV)整 合在一起,形成一顆兼具兩種技術優點的微型過電壓保 護裴置。請參閱第五Λ圖至第五C圖,其係為本發明之· 放電裝置與變阻器結合之示意圖;如圖所示,其主要構 造包含一平面型基板200,係由變阻器材料燒結研磨而 成’厚度約〇. 5毫米(讓)。基板200的兩面分別印製至 14 1231636 少一個上電極14G、15G與至少—個下電極⑽、170。工 業上常用之金屬氧化物變阻器的材料 為主體,添加氧德、氧⑽和氧 I化鋅私末 勾攪拌後,經由攝氏麵度左右的高溫燒結而:末燒:: 後的氧化鋅晶粒大小約5〜3〇微米(//m),是 = 緣的氧⑽燒結後則析出在氧化鋅的晶界,厚 度=薄,約100奈米(nm)以下。一個The minimum shape of the pole product is 5 * 5 mm (mm, straight length), and the minimum shape of the U pole product is about 8 mm (_, straight length)] Line 20'i120, with 13 °, The method is fixed, the board is too high, and the overall size is too large, which is not suitable for light, thin and short applications. , Zi Guolei He raised for the above problems _ A kind of new _ Flat type electric sturdy device, not only can improve the conventional gas discharge tube, it is inconvenient to use _ ^ 3 5 points of jehui 'has been used for a long time Those eagerly looking forward. [Summary of the Invention] The main purpose of the protection step is to provide a flat-type overvoltage protection, and 'the surface substrate is a carrier, and at least two discharge electrode systems 1231636 are bonded to the substrate, and at the front end of the discharge electrode. A hollow discharge space is made in and around the area, and the surge is absorbed by the gas discharge method. It has characteristics such as current resistance, low capacitance value, and low leakage current. Because it is a flat product, it can be fixed on Requirements for thin, light and short electronic products. Another object of the present invention is to provide a flat over-current overrun protection device i, which has a fast response speed. The substrate is made of a metal oxide varistor ⑽ gamma material. The electrodes are made on the upper and lower sides of the substrate, and The electrical transfer points overlap, and the number of wires is small—a varistor with a plate thickness of the conduction path. _ Make an insulating layer and a gas discharge on the top electrode of the varistor, place the gas and the metal oxide varistor (MOV) two kinds of hybrids, and lightly close the fresh surface element to make it meet two speeds When a voltage pulse is applied, the fast-response varistor is activated first to suppress the overvoltage, so that the gas-discharge device i, which has a slow response speed, has enough time to react to divert the subsequent large current. The purpose of this Maoming-is to provide—protection device 'whose discharge electrodes are made in the same thin film. The electrode can be small and small, with a low starting voltage, in order to apply gas discharge technology to high-speed electrostatic protection. g [Embodiment] The present invention is a flat-type overvoltage protection device. It basically uses a gas discharge method, which is good and the finished motor product, to prevent static strike and AC power surge. The hollow discharge space of the Weiqing base junction 1231636 structure is fabricated, and the inert gas is sealed with glass. Due to the innovation of the present invention, the material of the metal oxide varistor can be used as a substrate, and the gas discharge technology and the metal oxide varistor are integrated It becomes a single micro-element with a parallel structure, and the lack of slow response of fluoride discharge with a metal oxide varistor, and the structure of a cymbal pillar of a conventional gas discharge tube are not convenient to be fixed on the circuit board by surface adhesion. High and too high. First, please refer to Figure 2A and Figure 2B, which are the discharge electrode configuration and manufacturing method of the present invention. As shown in the figure, the first electrode 102, the second electrode 104, and the third electrode 106 of the at least two discharge electrodes of the present invention are placed on the same plane and can be directly fabricated on the substrate 200; The substrate 200 is a flat type, and an oxide ceramic substrate or flat glass with a purity of more than 90% can be used. The discharge electrode can be manufactured by a thin film method. A thin layer of chromium or titanium is firstly made on the entire substrate 200 as a bonding layer. Then, the main electrode material is copper, nickel or other metals; another layer of anti-oxidation metal, such as platinum, can also be made on the electrode material. After the metal layer is completed, it is coated with photoresist and exposed to develop, and the metal film is etched. The discharge electrode must have a predetermined thickness. The discharge electrode must have a predetermined thickness, at least (micron ㈤). It must be capable of withstanding the overcurrent 承受 current and the electrode loss after repeated use. It is more economical to add the electrode thickness. The method is to first make a thin layer of electrode by the thin film process, and then thicken it by chemical electro-mineralization method. Using the thin film process, the electrode spacing can be made very small. _) Or less' most_ for high-speed, high-money, but low-level electrostatic protection. 1231636 The first electrode 102, the second electrode, and the third electrode 106 of the at least two discharge electrodes of the present invention can also be used thick It is produced by film printing method. The silver-palladium conductive adhesive is directly printed on the substrate 2000 by the screen printing method or the stencil printing method. The solvent and the binder are removed at high temperature and the silver-palladium alloy is printed as an electrode. The electrode system is directly bonded to the substrate, and the pitch can be 250 micrometers (// m), and the thickness of the electrodes is about 10-30 micrometers (_). 'The first electrode 102 and the first electrode of the at least two discharge electrodes The two electrodes 104 and the third electrode 106 are arranged on the same plane, so when the electrodes are discharged, the plasma may be deposited between the electrodes, causing leakage current or short circuits. The smaller the distance between the discharge electrodes, the more common The greater the energy, the more repeated work, the more obvious the leakage current or short circuit between the electrodes. To address this concern, a temperature-resistant insulating layer 108 must be made between the two electrodes to isolate the adjacent two electrodes and prevent the deposited plasma from directly connecting to the electrodes. The temperature-resistant insulating layer 108 may be polyimide, glass, or other oxides, such as oxide oxide, stone oxide, etc., and is produced by screen printing, stencil printing or exposure development and etching methods, and the distance between electrode discharges A And B are determined by the width of the insulating layer 108. _ The discharge electrode will be lost after being used for many times, especially at the negative pole, so the electrode must have a certain thickness. The greater the energy of the overvoltage and the more the protective device is repeatedly operated, the thicker the electrode must be. Figures 3A and 3B are another method of making electrodes of the present invention. The first electrode 102, the second electrode 104, and the third to the electrode 106 of at least two discharge electrodes can use thin copper sheets. Approx. 50-500 microns (" m), and then plated with oxidation-resistant metals, such as key nickel and gold. The shape of the electrodes and the formation of the distances A and B can be made in two ways; one is to combine the entire 10 1231636 pieces> 1 insect-cut engraved pieces with the junction layer 600 and the substrate 200, and then use chemical pre-fabrication The preset electrode shape and pitch A and B are obtained. The second is to combine the metal sheet of the 庶 f type with the bonding layer 600 and the substrate 200; the material of 篦 00 may be glass. The front ends of the first electrode 102 and the second electrode 106 are suspended above the substrate 200, and their high voltage is equal to the height of the bonding layer 600. The purpose is to avoid electrode deposition: the generated plasma is deposited on the electrode Between them, causing leakage current or short circuit between two adjacent electrodes. The above is the implementation of the discharge electrode configuration and manufacturing method of the present invention.] All discharge electrodes are directly fabricated on the substrate, or they are bonded to the substrate with an adhesive layer. The production is completed in the same process, and the size can be precisely controlled. The distance between the electrodes A and B can also be made smaller than that of a conventional gas discharge tube. Furthermore, please refer to FIGS. 4A to 4C, which are schematic diagrams of the hollow discharge space structure and the discharge device of the present invention. As shown in the figure, after the discharge electrode is manufactured, it is then above the electrode discharge area. A sacrificial layer 300 is made, and a structural layer 400 is made to cover most of the sacrificial layer. Then, the sacrificial layer 300 is removed to form an open hollow structure. Finally, a sealing glass 500 is fabricated to cover the entire structure layer 400 and its opening to form a well-sealed discharge space. The sacrificial layer 300 may be a high temperature resistant component, such as Silicone or Polyimide. It is printed on the discharge electrode by screen printing or stencil printing, and includes the front ends of all discharge electrodes. Bake at celsius to evaporate the solvent. The baked sacrificial layer 300 becomes a semi-solid structure, and the structure layer 400 can be covered on the 1231636 surface. The structural layer 400 is compatible with the sealing glass 500. A glass material having a high thermal expansion coefficient and a similar thermal expansion coefficient, the main components are oxide · lead and boron oxide. The structural layer 400 is a glass paste made of glass powder, solvent and adhesive uniformly stirred. First, most of the sacrificial layer 300 is covered by screen printing or stencil printing, leaving only the front and back ends or at least one end uncovered. . Then put the finished semi-finished product into the oven, evaporate the solvent at a temperature of 100 to 200 degrees Celsius, and then oxidize the adhesive to carbon dioxide and water vapor at 300 to 400 degrees Celsius in an atmosphere containing oxygen. In addition, finally, the temperature is raised to the melting point of the glass to connect the glass particles and melting. The melting point is usually 400 to 600 degrees Celsius, depending on the type of glass. The cooled structural layer 400 is a solid-state glass structure, but the sacrificial layer 300 is a partially deteriorated polymer. The sacrificial layer 300 can be chemically removed through the uncovered ends or openings. At this time, the structure layer 400 is formed, and a hollow structure with two ends or ends open has been formed. Then, the sealing layer 500 is used to cover the structure layer 400 and the ends or ends thereof are opened. The manufacturing process of the sealing glass 500 is similar to that of the structural layer 400. First, the glass paste is printed, and the volatile solvent is baked. Then, the adhesive is removed at 300 to 400 degrees Celsius in an atmosphere containing oxygen. Then move it into a vacuum furnace, pass in an inert gas, control the appropriate air pressure value, and heat it to the melting point to make the glass melt and join. After cooling, the entire discharge space is sealed. The melting point of the sealing glass 500 must be slightly lower than or equal to the melting point of the structure 400. When the sealing glass 500 is heated and melted in the vacuum furnace, the sealed discharge space after cooling will be in a vacuum state unless any gas is passed through. 12 1231636 The rear end of the first electrode 102, the second electrode 2 and the third electrode 106 of at least two discharge electrodes extends to the edge of the substrate 200, and the phase terminal electrode 110, the second terminal electrode 120, and the third terminal electrode / 〇 External connection. The material of the terminal electrode is usually a silver-containing conductive adhesive, which is coated on a predetermined position, and after passing through the solvent and the bonding in the heating wire, the "conducting film of wealth and wealth" is sometimes recorded in a new way. Tin to increase the bonding strength of the component to the circuit board. Therefore, the main structure of the discharge device includes: a planar substrate 200, a first electrode 102, a second electrode ι04, and a second electrode 106 ′ of at least two discharge electrodes, which are adhered to the substrate , And the distance between each other-, when the distance;-a hollow discharge space 41〇, including the end of all the discharge electrodes' structure with the structure layer 400 to form at least one open hollow structure. A mouth glass 500, which is placed in Above the structure layer 400, and the discharge space 410 is sealed; and at least the first terminal electrode no, the second terminal electrode 120, and the third terminal electrode 13 of the terminal electrode are bonded to the substrate and individually One-to-one connection with the rear ends of the first electrode 1 () 2, the second electrode 104, and the third electrode 106 of the discharge electrode. Furthermore, the slower response is caused by gas discharge—a disadvantage. Take a 250 volt 00 gas discharge tube as an example. The start-up voltage (DC Sparkover) at direct current is 250 volts; but at sub-volts per microsecond (100V /// S) During voltage pulses, the 'starting voltage is still volts; at 1000 volts per microsecond (1000V / # S) voltage pulses must be 700 volts to start. The DC start-up voltage of gas discharge tubes used in industry is mostly between 75 volts and 600 volts, and a small part is more than 1,000 volts. 13 1231636 Metal oxide varistors (Metai_〇xide Varistor, MOV), fast response speed, belongs to the nanosecond (ns) class, and connected in parallel with the gas discharge device ’can make up for the shortcomings of slow gas discharge reaction speed. The breakdown voltage of the varistor can be designed to be slightly higher than the DC starting voltage of the gas discharge. When the DC or low-speed overvoltage pulse is encountered, the gas discharge starts, but the k-resistor does not operate; if it encounters a high-speed overvoltage pulse , The varistor starts first, so that the gas discharge device has enough time to start. When the gas discharge is started, the arc voltage is very low, about 20 volts, which is much lower than the collapse voltage of the variable resistor, so the varistor is turned off, and the subsequent current of the overvoltage is channeled by the gas discharge. The breakdown voltage of the varistor can also be designed to be slightly lower than the DC starting voltage of the gas discharge. Whether it is a direct current or a pulsed overvoltage, the total varistor starts first; but as the current increases, the varistor voltage also increases. When the voltage of the varistor increases beyond the DC starting voltage of the gas discharge, the gas discharge device starts to divert subsequent high currents, and the varistor is turned off. The parallel structure of the gas discharge device and the varistor has another external benefit: in case the gas discharge device leaks or ruptures and cannot work normally, the varistor can also provide the function of standby circuit protection. Therefore, the gas discharge technology and the metal oxide varistor (MOV) can be integrated to form a miniature over-voltage protection device with the advantages of both technologies. Please refer to the fifth Λ to fifth C diagrams, which are schematic diagrams of a combination of a discharge device and a varistor according to the present invention; as shown in the figure, its main structure includes a planar substrate 200, which is sintered and ground from a varistor material 'Thickness is about 0.5 mm (let). The two sides of the substrate 200 are printed to 14 1231636 with at least one upper electrode 14G and 15G and at least one lower electrode ⑽ and 170, respectively. The material of metal oxide varistor commonly used in industry is the main body, after adding oxygen germanium, oxygen osmium and zinc oxide zinc oxide, and stirring, then sintering at high temperature around Celsius: The size is about 5 ~ 30 micrometers (// m). It is the edge of the osmium oxide that is precipitated at the grain boundaries of zinc oxide after sintering. The thickness is thin, about 100 nanometers (nm) or less. One
礙電壓約3〜4伏特⑺,因此氧化鋅變阻器的崩潰電S 由電流流經晶界數目❹少決定,也就是由氧化鋅晶粒 的大小和變阻器的厚度決定。 完成至少-個上電極140、15〇與至少—個下電極 ⑽、17G後即成為變阻器。上、下電極的製作可用銀_ 把導電膠’以網版或鋼版印刷方法印製在平面型基板· 上,再經由概9〇〇度左右的高溫燒結成為導電的厚膜 電極。上電極140和下電極no的前端重疊(長度木寬 度W1),上電極150和下電極160、170的前端:有重最 的區域(長度L1*寬度W2,長度L2*寬度W2),上電極& 下電極的電流經由重疊的區域形成至少一個以基板厚^ 為導通路徑的變阻器。上下兩個電極之間的電容值是由 重疊區域的面積和基板200的厚度Η決定,面積兪$ ., 厚度愈小,則電容值愈大。上下兩個電極之間的^潰電 ‘ 壓是由基板200的氧化鋅晶粒大小和基板厚度Η決定, 例如氧化鋅平均晶粒大小為1〇微米(//m),基板是 0· 5毫米(mm,500微米),則上電極140和下電極17〇之 15 I23l636 間的崩潰電壓約為150〜200伏特(V) [ 50個晶粒*(3-4) _ 伏特/晶界]。當上下兩電極間的電壓值超過額定的崩 >貝電壓後’電流即導通,隨著電流增大,兩電極之間的 電壓值也增大。 在變阻器的上平面覆蓋一絕緣層620後,就成為上 . 述之放電裝置實施例中的平面型絕緣基板200。絕緣層 620覆蓋在上電極14〇、15〇之上面,其材料可為玻璃或 其他氧化物。然後在絕緣層620的平面上,製作至少兩 鲁 個放電電極之第一電極102、第二電極1〇4和第三電極 106,再製作結構層4〇〇,然後覆蓋封口玻璃5〇〇,在真 空爐中通入惰性氣體,熔化封口玻璃形成密封的中空放 電空間410,即完成氣體放電裝置。端電極11〇、12〇和 130將變阻器和氣體放電兩個裝置連接在一起,形成並聯 的結構。端電極110連接放電電極102和變阻器的上電 極140、下電極160 ;端電極12〇則連接放電電極1〇4和 變阻器的下電極170。所以放電電極1〇2和1〇4組成的氣鲁 體放電裝置,與電極140和17G組成的變阻||形成並聯 的結構。 如以上說明,有關於本發明之扁平式過電壓保護裝 置;製作小尺寸且表面黏著型態的氣體放電裝置,並^ 一步整合氣體放電和金屬氧化物變阻器成為單顆的扁 · 式過電μ保護裝置,以金屬氧化物變阻器改進氣體放電. 反應速度慢的缺失。生產上比較經濟的做法是以整片面 板製作’面板大小約100* 100毫米(mm),上面佈置很 16 1231636 多顆相同的元件,製作完成後,再以鑽石刀片或雷射切 割方式,分離成單顆元件。 綜上所述,本發明係實為一具有新穎性、進步性及 可供產業利用者,應符合我國專利法所規定之專利申請 要件無疑,爰依法提出專利申請。 、惟以上所述者,僅為本發明之一較佳實施例而已, - 並非用來限定本發明實施之範圍,舉凡依本發明申請專 利範圍所述之形狀、構造、特徵及精神所為之變化與修 飾,均應包括於本發明之申請專利範圍内。 _ 【圖式簡單說明】 第 圖·習知技術之氣體放電管示意圖; ,二A圖:本發明之放電電極配置及製作之上視圖; ,二B圖:本發明之電極間絕緣層之示意圖; =^人圖:本發明之另一放電電極配置及製作之正視圖; 第二B圖:本發明之另一放電電極配置及製作之第三a圖 之正視截面圖; 第四A圖:本發明之中空放電空間製作之示意圖; 鲁 第四B圖··本發明之放電裝置之正視截面圖了 , 第四C圖··本發明之放電裝置之側視截面圖; 第五Α圖:本發明以金屬氧化物變阻器的材料製作基板 之上視圖; 土 第五B圖:本發明以金屬氧化物變阻器的材料製作基板 . 之第五A圖之正視截面圖; 第五C圖:本發明整合放電裝置與金屬氧化物變阻器之 正視截面圖, 17 1231636 【圖號簡單說明】 102’第一放電電極 104’第二放電電極 106’第三放電電極 109’半導性材料線條 100’特殊材料 200’中空絕緣圓柱體 210’金屬薄膜 300’中空絕緣圓柱體 310’金屬薄片 410’中空腔體 102第一放電電極 104第二放電電極 106第三放電電極 108電極間絕緣層 110第一端電極 120第二端電極 130第三端電極 140變阻器上電極 150變阻器上電極 160變阻器下電極 170變阻器下電極 200基板 300犧牲層 400結構層 410放電空間 500封口玻璃 600黏結層 620絕緣層 A 電極間距 B 電極間距 Η 基板厚度 W1寬度 W2寬度 L1長度 L2長度The blocking voltage is about 3 ~ 4 volts. Therefore, the breakdown current S of the zinc oxide varistor is determined by the small number of currents flowing through the grain boundaries, that is, the size of the zinc oxide crystal grains and the thickness of the varistor. After completing at least one upper electrode 140, 150 and at least one lower electrode ⑽, 17G, it becomes a rheostat. The upper and lower electrodes can be made of silver by printing conductive paste 'on a flat substrate by screen printing or stencil printing, and then sintering at a high temperature of about 900 degrees to form a conductive thick-film electrode. The front ends of the upper electrode 140 and the lower electrode overlap (length wood width W1), and the front ends of the upper electrode 150 and the lower electrodes 160 and 170: the area with the heaviest weight (length L1 * width W2, length L2 * width W2), upper electrode & The current of the lower electrode forms at least one varistor with the substrate thickness ^ as the conduction path through the overlapping area. The capacitance value between the upper and lower electrodes is determined by the area of the overlapping area and the thickness Η of the substrate 200. The area 兪 $. The smaller the thickness, the larger the capacitance value. The voltage between the upper and lower electrodes is determined by the size of the zinc oxide grains of the substrate 200 and the thickness of the substrate. For example, the average grain size of zinc oxide is 10 microns (// m), and the substrate is 0.5 Millimeters (mm, 500 microns), then the breakdown voltage between the upper electrode 140 and the lower electrode 15 of I23l636 is about 150 ~ 200 volts (V) [50 grains * (3-4) _ volts / grain boundary] . When the voltage value between the upper and lower electrodes exceeds the rated breakdown voltage, the current is turned on, and as the current increases, the voltage value between the two electrodes also increases. After the upper surface of the varistor is covered with an insulating layer 620, it becomes the planar insulating substrate 200 in the embodiment of the discharge device described above. The insulating layer 620 covers the upper electrodes 14 and 15 and may be made of glass or other oxides. Then, on the plane of the insulating layer 620, a first electrode 102, a second electrode 104, and a third electrode 106 of at least two discharge electrodes are fabricated, a structure layer 400 is fabricated, and then a sealing glass 500 is covered. Pass the inert gas in the vacuum furnace, and melt the sealing glass to form a sealed hollow discharge space 410, and the gas discharge device is completed. The terminal electrodes 110, 120, and 130 connect the varistor and the gas discharge device together to form a parallel structure. The terminal electrode 110 is connected to the discharge electrode 102 and the upper electrode 140 and the lower electrode 160 of the varistor; the terminal electrode 120 is connected to the discharge electrode 104 and the lower electrode 170 of the varistor. Therefore, a gas discharge device composed of the discharge electrodes 102 and 104 forms a parallel structure with the variable resistance || composed of the electrodes 140 and 17G. As explained above, there is a flat overvoltage protection device of the present invention; a small-sized and surface-adhered gas discharge device is manufactured, and a one-step integration of gas discharge and metal oxide varistor into a single flat-type overcharge μ Protective device to improve the gas discharge with metal oxide rheostat. The lack of slow response. A more economical method of production is to make a whole panel. The panel size is about 100 * 100 millimeters (mm), and there are 16 1231636 multiple identical components arranged on it. After the production is completed, it is separated by diamond blades or laser cutting methods. Into a single component. In summary, the present invention is a novel, progressive, and industrially available user who should meet the patent application requirements stipulated by China's Patent Law. No doubt, a patent application is filed in accordance with the law. However, the above is only a preferred embodiment of the present invention, and is not intended to limit the scope of implementation of the present invention, such as changes in shape, structure, characteristics, and spirit described in the scope of the patent application for the present invention. And modifications should be included in the scope of patent application of the present invention. _ [Brief description of the diagram] Figure 2. Schematic diagram of the gas discharge tube of the conventional technology; Figure 2A: Top view of the arrangement and fabrication of the discharge electrode of the present invention; Figure 2B: Schematic diagram of the insulation layer between the electrodes of the present invention ; = ^ Figure: a front view of another discharge electrode configuration and fabrication of the present invention; Figure B: a front sectional view of the third a picture of another discharge electrode configuration and manufacture of the present invention; the fourth A picture: Schematic drawing of the hollow discharge space of the present invention; Figure 4B. · Front sectional view of the discharge device of the present invention, Figure 4C. · Side sectional view of the discharge device of the present invention; Figure 5A: The present invention is a top view of a substrate made of a metal oxide varistor material; FIG. 5B of the present invention: a substrate of the present invention is made of a metal oxide varistor material. FIG. 5A is a front sectional view; FIG. 5C: the present invention Front sectional view of integrated discharge device and metal oxide rheostat, 17 1231636 [Simplified description of drawing number] 102 'first discharge electrode 104' second discharge electrode 106 'third discharge electrode 109' semi-conductive material line 100 ' Special material 200 'Hollow insulating cylinder 210' Metal film 300 'Hollow insulating cylinder 310' Metal sheet 410 'Hollow cavity 102 First discharge electrode 104 Second discharge electrode 106 Third discharge electrode 108 Inter-electrode insulation layer 110 First End electrode 120 Second end electrode 130 Third end electrode 140 Rheostat upper electrode 150 Rheostat upper electrode 160 Rheostat lower electrode 170 Rheostat lower electrode 200 substrate 300 sacrificial layer 400 structural layer 410 discharge space 500 sealing glass 600 adhesive layer 620 insulation layer A electrode Pitch B Pitch Η Substrate thickness W1 width W2 width L1 length L2 length
1818