JP3199088B2 - Discharge type surge absorber - Google Patents

Discharge type surge absorber

Info

Publication number
JP3199088B2
JP3199088B2 JP20676993A JP20676993A JP3199088B2 JP 3199088 B2 JP3199088 B2 JP 3199088B2 JP 20676993 A JP20676993 A JP 20676993A JP 20676993 A JP20676993 A JP 20676993A JP 3199088 B2 JP3199088 B2 JP 3199088B2
Authority
JP
Japan
Prior art keywords
surge
surge absorber
insulating tube
pair
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20676993A
Other languages
Japanese (ja)
Other versions
JPH0765930A (en
Inventor
功先 松沢
芳幸 田中
政利 阿部
三喜男 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP20676993A priority Critical patent/JP3199088B2/en
Publication of JPH0765930A publication Critical patent/JPH0765930A/en
Application granted granted Critical
Publication of JP3199088B2 publication Critical patent/JP3199088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電話機、ファクシミリ、
電話交換機、モデム等の通信機器用の電子部品に印加さ
れるサージ電圧の吸収機能に加えて、継続的な過電圧又
は過電流の電子部品への侵入時に電子部品やこの部品を
搭載するプリント基板の熱的損傷又は発火を防止する放
電型サージアブソーバに関する。更に詳しくは、管内部
にギャップ又はマイクロギャップを有する絶縁管の両端
を一対の対向電極で封止(hermetic seal)した放電型
サージアブソーバに関するものである。本明細書で、過
電圧又は過電流とは、サージ吸収素子の放電開始電圧を
上回る異常電圧とこれに伴う異常電流をいう。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a telephone, a facsimile,
In addition to the function of absorbing surge voltage applied to electronic components for telecommunications equipment such as telephone exchanges and modems, in the event of continuous overvoltage or overcurrent intrusion into electronic components, the electronic components and the printed circuit board on which these components are mounted The present invention relates to a discharge type surge absorber that prevents thermal damage or ignition. More specifically, the present invention relates to a discharge type surge absorber in which both ends of an insulating tube having a gap or a microgap inside the tube are hermetically sealed with a pair of counter electrodes. In this specification, an overvoltage or an overcurrent refers to an abnormal voltage exceeding the discharge starting voltage of the surge absorbing element and an abnormal current accompanying the abnormal voltage.

【0002】[0002]

【従来の技術】この種のサージアブソーバは電子部品の
一対の入力線路にこの電子部品に並列に接続され、電子
部品の使用電圧より高い電圧で動作するように構成され
る。即ち、サージアブソーバはその放電開始電圧より低
い電圧では抵抗値の高い抵抗体であるが、印加電圧がそ
の放電開始電圧以上のときには数10Ω以下の抵抗値の
低い抵抗体になる。電子部品に雷サージ等の数kV〜数
10kVのサージ電圧が瞬間的に印加されると、サージ
アブソーバが放電し、このサージ電圧を吸収して電子部
品を保護するようになっている。このため、電子部品を
含む回路に過電圧又は過電流が不慮の事故等により継続
して加わると、サージアブソーバには電流が流れ続け
る。この結果、サージアブソーバが発熱し周辺の電子機
器の発火の原因となる。
2. Description of the Related Art This type of surge absorber is connected to a pair of input lines of an electronic component in parallel with the electronic component, and is configured to operate at a voltage higher than the working voltage of the electronic component. That is, the surge absorber is a resistor having a high resistance value at a voltage lower than the discharge start voltage, but has a low resistance value of several tens Ω or less when the applied voltage is higher than the discharge start voltage. When a surge voltage of several kV to several tens of kV, such as a lightning surge, is momentarily applied to an electronic component, a surge absorber is discharged, and the surge voltage is absorbed to protect the electronic component. For this reason, when an overvoltage or an overcurrent is continuously applied to a circuit including an electronic component due to an accident or the like, a current continues to flow through the surge absorber. As a result, the surge absorber generates heat, which causes ignition of surrounding electronic devices.

【0003】通常、このような過電圧又は過電流が回路
に継続して侵入することは考えられないが、不慮の事故
を想定して最大限の安全対策を施していく考えが広まっ
てきている。例えば、米国のUL(Underwriter's Labo
ratories Inc.)では、このような継続的な過電圧又は
過電流の侵入時にサージアブソーバが通信機器に火災や
電撃の危険を与えてはならないように、サージアブソー
バに対して所定の安全規格を制定している。
Normally, it is unlikely that such an overvoltage or overcurrent will continuously enter the circuit, but the idea of taking maximum safety measures in anticipation of an accident has become widespread. For example, the UL (Underwriter's Labo
ratories Inc.) has established certain safety standards for surge absorbers so that surge absorbers should not pose a risk of fire or electric shock to communication equipment when such continuous overvoltage or overcurrent enters. ing.

【0004】従来、こうした安全規格に適合し、継続的
な過電圧又は過電流に起因した電子機器の発火を防止し
得るサージアブソーバとして、ヒューズや低融点金属部
材をサージアブソーバの表面に密着させ、このヒューズ
や低融点金属部材をサージアブソーバに直列に接続した
ものが開示されている(特開昭63−11022、特開
昭63−18923)。
Heretofore, as a surge absorber which conforms to such safety standards and can prevent ignition of electronic equipment due to continuous overvoltage or overcurrent, a fuse or a low melting point metal member is brought into close contact with the surface of the surge absorber. A fuse and a low melting point metal member connected in series to a surge absorber are disclosed (JP-A-63-11022 and JP-A-63-18923).

【0005】[0005]

【発明が解決しようとする課題】しかし、ヒューズや低
融点金属部材をサージアブソーバに直列に接続したサー
ジアブソーバは、過電圧又は過電流の侵入によりヒュー
ズや低融点金属部材が溶断すると、サージ吸収回路はオ
ープン状態になるため、次に到来するサージ電圧に備え
てサージアブソーバを新品と交換しなければならない煩
わしさがあった。本発明の目的は、雷サージのような瞬
間的なサージ電圧を吸収することに加えて、継続的な過
電圧又は過電流の侵入があった場合にはサージアブソー
バの異常発熱のみならず、電子部品やこの部品を搭載す
るプリント基板の熱的損傷、発火等を防止することがで
き、しかも次に到来するサージ電圧を吸収し得る放電型
サージアブソーバを提供することにある。本発明の別の
目的は、部品点数が少なくて済み、小型で、組立てが簡
単で量産性に優れた放電型サージアブソーバを提供する
ことにある。
However, a surge absorber in which a fuse or a low-melting metal member is connected in series to a surge absorber has a surge absorbing circuit when a fuse or a low-melting metal member blows due to intrusion of overvoltage or overcurrent. Because of the open state, the surge absorber has to be replaced with a new surge absorber in preparation for the next surge voltage. An object of the present invention is to not only absorb an instantaneous surge voltage such as a lightning surge, but also to not only generate abnormal surge of a surge absorber when continuous intrusion of an overvoltage or an overcurrent occurs, but also to produce electronic components. Another object of the present invention is to provide a discharge-type surge absorber that can prevent thermal damage, ignition, and the like of a printed circuit board on which this component is mounted, and that can absorb the next incoming surge voltage. Another object of the present invention is to provide a discharge type surge absorber which requires a small number of parts, is small in size, easy to assemble, and is excellent in mass productivity.

【0006】[0006]

【課題を解決するための手段】本発明者らは、不活性ガ
ス入りの放電型サージアブソーバの放電開始電圧と比べ
て空気入りの放電型サージアブソーバの放電開始電圧が
高く、しかも後者の放電開始電圧は、例えば電話回線と
配電線の混触等により生じる過電圧より高い点に着目
し、本発明に到達した。
Means for Solving the Problems The present inventors have found that the discharge start voltage of a pneumatic discharge type surge absorber is higher than the discharge start voltage of a discharge type surge absorber containing an inert gas. The present inventors arrived at the present invention by paying attention to a point that the voltage is higher than an overvoltage caused by, for example, contact between a telephone line and a distribution line.

【0007】即ち、図1に示すように、本発明は、導電
性皮膜21で被包した円柱状のセラミック素体22の周
面にマイクロギャップ23が形成され、このセラミック
素体22の両端に一対のキャップ電極24,25を有す
るサージ吸収素子20が絶縁管11内に収容され、この
絶縁管11の両端に一対の対向電極12,13が相対向
して封着され、これらの対向電極12,13が封着状態
でサージ吸収素子20を固定し、かつ一対のキャップ電
極24,25に電気的に接続され、対向電極12,13
と絶縁管11とにより形成される空間に不活性ガス14
が封入された放電型サージアブソーバ10の改良であ
る。 その特徴ある構成は一対の対向電極12,13のい
ずれか一方又は双方に孔15が形成され、この孔15が
アルミニウムの融点以下の融点を有する金属16で封止
され、上記対向電極12,13の発熱により上記金属1
6が溶融して孔15が開放されたときに絶縁管11内の
空間に空気が流入するように構成されたことにある。
[0007] That is, as shown in FIG. 1, the present invention is conductive
Around a cylindrical ceramic body 22 covered with a conductive film 21
Micro gap 23 is formed on the surface,
The body 22 has a pair of cap electrodes 24 and 25 at both ends.
The surge absorbing element 20 is accommodated in the insulating tube 11 and
A pair of opposing electrodes 12, 13 oppose each other at both ends of the insulating tube 11.
And the counter electrodes 12 and 13 are sealed.
To fix the surge absorbing element 20 and a pair of cap electrodes.
Are electrically connected to the poles 24 and 25,
Inert gas 14 in the space defined by
Is an improvement of the discharge type surge absorber 10 in which
You. Its characteristic configuration is a pair of opposing electrodes 12 and 13.
A hole 15 is formed in one or both of the holes, and this hole 15
Sealed with metal 16 having a melting point lower than that of aluminum
Then, the heat generated by the counter electrodes 12 and 13 causes the metal 1
6 is configured such that air flows into the space inside the insulating tube 11 when the hole 6 is melted and the hole 15 is opened.

【0008】以下、本発明を詳述する。本発明の放電型
サージアブソーバは、絶縁管内部にマイクロギャップを
有するマイクロギャップ式のサージアブソーバである。
Hereinafter, the present invention will be described in detail. Discharge type surge absorber of the present invention is a surge absorber of the micro-gap having a microgap inside insulation tube.

【0009】図1に示すように、マイクロギャップ式の
サージアブソーバ10は絶縁管11内部にサージ吸収素
子20が収容される。サージ吸収素子20は導電性皮膜
21で被包した円柱状のセラミック素体22の両端に一
対のキャップ電極24,25を冠着した後、セラミック
素体22の中央に円周方向にマイクロギャップ23を形
成して作られる。導電性皮膜21はスパッタリング法、
蒸着法、イオンプレーティング法、めっき法、CVD法
等の薄膜形成法によりセラミック素体22を被包するよ
うにセラミック素体22の表面に形成され、マイクロギ
ャップ23はレーザにより導電性皮膜21を分割するよ
うに形成される。マイクロギャップはレーザ光線の焦点
深度及び導電性皮膜の厚さから10〜200μmの幅に
形成される。サージアブソーバ10はこのサージ吸収素
子20を絶縁管11内に収容してセラミック素体22の
両端に一対の対向電極12,13を配置し、これらの対
向電極12,13をキャップ電極24,25に電気的に
接続し同時に絶縁管11内部に不活性ガス14を封入し
て作られる。収容されたサージ吸収素子20は一対の対
向電極12,13を絶縁管11の両端に封着するときに
対向電極12,13により固定される。
As shown in FIG. 1, a surge absorber 10 of a microgap type has a surge absorbing element 20 housed inside an insulating tube 11. The surge absorbing element 20 has a pair of cap electrodes 24 and 25 mounted on both ends of a cylindrical ceramic body 22 covered with a conductive film 21, and then a micro gap 23 is provided at the center of the ceramic body 22 in the circumferential direction. Formed. The conductive film 21 is formed by a sputtering method,
The ceramic gap 22 is formed on the surface of the ceramic body 22 so as to cover the ceramic body 22 by a thin film forming method such as a vapor deposition method, an ion plating method, a plating method, and a CVD method. It is formed so as to be divided. The micro gap is formed to have a width of 10 to 200 μm based on the depth of focus of the laser beam and the thickness of the conductive film. The surge absorber 10 accommodates the surge absorbing element 20 in the insulating tube 11 and arranges a pair of opposing electrodes 12 and 13 at both ends of a ceramic body 22. These opposing electrodes 12 and 13 are used as cap electrodes 24 and 25. It is made by electrically connecting and simultaneously filling an inert gas 14 inside the insulating tube 11. The housed surge absorbing element 20 is fixed by the opposing electrodes 12, 13 when the pair of opposing electrodes 12, 13 is sealed to both ends of the insulating tube 11.

【0010】本発明の絶縁管はガラス管、セラミック管
等である。ガラス管はホウケイ酸ガラスのような硬質ガ
ラス、又は鉛ガラス、ソーダ石灰ガラスのような軟質ガ
ラスから作られる。セラミック管はPLZT、透明アル
ミナのような可視光線を透過するセラミック焼結体から
作られたもののみならず、他の絶縁性のあるセラミック
管であればよい。
The insulating tube of the present invention is a glass tube, a ceramic tube or the like. The glass tube is made of hard glass, such as borosilicate glass, or soft glass, such as lead glass, soda-lime glass. The ceramic tube is not limited to one made of a ceramic sintered body that transmits visible light such as PLZT or transparent alumina, but may be any other insulating ceramic tube.

【0011】対向電極は封着時の絶縁管の熱収縮による
クラックの発生を防止するために絶縁管と熱膨張係数の
ほぼ等しい金属を用いる。従って対向電極は絶縁管の種
類より材質を選定する。絶縁管が軟質ガラス管である場
合には、対向電極に鉄52wt%−ニッケル42wt%
−クロム6wt%合金、鉄58wt%−ニッケル42w
t%合金(以下、42合金という)と銅のクラッド材等
が用いられ、絶縁管が硬質ガラス管である場合には、4
2合金等が用いられる。絶縁管がセラミック管である場
合には、対向電極に42合金と銅のクラッド材、コバー
ル(Kovar)等が用いられる。42合金と銅のクラッド
材は42合金の板材の片面又は両面に銅薄膜を密着さ
せ、高温で機械的に圧延するクラッド法(cladding)に
より作られる。クラッド材の銅薄膜を酸化させて銅表面
を亜酸化銅にすると封着時にガラスとのなじみが良くな
り好ましい。このクラッド材を円板に打抜いた後、絞り
加工して対向電極にする。
The counter electrode is made of a metal having substantially the same thermal expansion coefficient as that of the insulating tube in order to prevent the occurrence of cracks due to thermal contraction of the insulating tube during sealing. Therefore, the material of the counter electrode is selected based on the type of the insulating tube. When the insulating tube is a soft glass tube, the opposite electrode has 52 wt% of iron and 42 wt% of nickel.
-6 wt% chromium alloy, 58 wt% iron-42 w nickel
When a t% alloy (hereinafter, referred to as 42 alloy) and a copper clad material are used, and the insulating tube is a hard glass tube, 4% alloy is used.
Two alloys or the like are used. When the insulating tube is a ceramic tube, a cladding material of 42 alloy and copper, Kovar, or the like is used for the counter electrode. The 42 alloy and copper clad material is produced by a cladding method in which a copper thin film is adhered to one or both surfaces of a 42 alloy plate and mechanically rolled at a high temperature. It is preferable to oxidize the copper thin film of the clad material to convert the copper surface to cuprous oxide, because the affinity with glass at the time of sealing is improved. After punching this clad material into a disk, drawing is performed to form a counter electrode.

【0012】マイクロギャップ式のサージアブソーバの
対向電極を封着するときには 絶縁管の内部にアルゴン
ガス、ネオンガス、窒素ガス等の不活性ガスを充填す
る。また本発明の対向電極に形成される孔は1個に限ら
ず、複数個でもよい。また一方の対向電極のみでなく、
双方の対向電極に形成してもよい。更に本発明の孔を封
止する金属は、アルミニウムの融点以下の融点を有する
金属であって、この金属を例示すれば、アルミニウム、
鉛、錫又は亜鉛のいずれか或いはこれらの合金が挙げら
れる。
When sealing the counter electrode of the micro-gap type surge absorber, the inside of the insulating tube is filled with an inert gas such as an argon gas, a neon gas or a nitrogen gas. The number of holes formed in the counter electrode of the present invention is not limited to one, but may be plural. Also, not only one counter electrode,
It may be formed on both counter electrodes. Furthermore, the hole of the present invention is sealed.
The stopping metal has a melting point below the melting point of aluminum
A metal, for example, aluminum,
Lead, either or these alloys thereof et tin or zinc
It is.

【0013】[0013]

【作用】本発明のサージアブソーバ10が接続された線
路に継続して過電圧又は過電流が侵入すると、サージ吸
収素子20が抵抗体であるため発熱する。サージ吸収素
子20はキャップ電極24,25を介して対向電極1
2,13に接触しているため、これに伴ってこれに伴っ
て対向電極12,13も発熱する。この熱により対向電
極に形成された孔15を封止していた金属16が溶融す
る。この溶融により孔15が開放され、不活性ガス14
で満たされていた絶縁管11内に孔15を通って空気が
流入する。絶縁管11の内部に空気が入ると、放電維持
電圧が通常の過電圧より高くなり放電が停止する。
When overvoltage or overcurrent continuously enters the line to which the surge absorber 10 of the present invention is connected, heat is generated because the surge absorbing element 20 is a resistor . Surge absorber
The child 20 is connected to the opposing electrode 1 via the cap electrodes 24 and 25.
Since the electrodes 2 and 13 are in contact with each other, the counter electrodes 12 and 13 also generate heat. Metals 16 which has sealed the hole 15 formed on the counter electrode by the hot melts. The hole 15 is opened by this melting, and the inert gas 14 is opened.
Air flows through the hole 15 into the insulating tube 11 filled with the air. When air enters the inside of the insulating tube 11, the discharge maintaining voltage becomes higher than the normal overvoltage, and the discharge stops.

【0014】[0014]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。 <実施例> 図1に示すように、マイクロギャップ式のサージアブソ
ーバ10を次の方法により製造した。先ず絶縁管11内
に収容されるサージ吸収素子20を用意した。このサー
ジ吸収素子20の円柱状のセラミック素体22はムライ
ト焼結体からなり、この表面はスパッタリングによりT
iNからなる導電性皮膜21で被包される。このセラミ
ック素体22の両端にステンレス製のキャップ電極24
と25が冠着される。セラミック素体22の中央部にレ
ーザビームを照射して導電性皮膜21を円周方向にトリ
ミングして幅約30μmのマイクロギャップ23が形成
され、サージ吸収素子20が作製される。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. <Example> As shown in FIG. 1, a micro-gap surge absorber 10 was manufactured by the following method. First, the surge absorbing element 20 housed in the insulating tube 11 was prepared. The cylindrical ceramic body 22 of the surge absorbing element 20 is made of a mullite sintered body, and the surface thereof is formed by sputtering.
It is covered with a conductive film 21 made of iN. A stainless steel cap electrode 24 is provided on both ends of the ceramic body 22.
And 25 are crowned. The conductive film 21 is circumferentially trimmed by irradiating a laser beam to the center of the ceramic body 22 to form a micro gap 23 having a width of about 30 μm, and the surge absorbing element 20 is manufactured.

【0015】絶縁管11として低融点の鉛ガラス管を用
意し、このガラス管11をカーボンヒータを設けた封着
室(図示せず)に配置した。孔15が形成されていない
ハット状の対向電極13をガラス管11内に挿入し、次
いでガラス管11の内部にサージ吸収素子20を入れ、
対向電極13の凹部13aにキャップ電極25を挿入し
た。これによりサージ吸収素子20がガラス管11の中
心に配置され、続いて孔15が形成されたハット状の対
向電極12の凹部12aをサージ吸収素20のキャップ
電極24に被せ、対向電極12をガラス管11内に挿入
した。対向電極12,13は鉄52wt%−ニッケル4
2wt%−クロム6wt%合金により構成される。
A low melting point lead glass tube was prepared as the insulating tube 11, and this glass tube 11 was placed in a sealing chamber (not shown) provided with a carbon heater. A hat-shaped counter electrode 13 in which the hole 15 is not formed is inserted into the glass tube 11, and then the surge absorbing element 20 is placed inside the glass tube 11,
The cap electrode 25 was inserted into the recess 13a of the counter electrode 13. As a result, the surge absorbing element 20 is disposed at the center of the glass tube 11, and then the concave portion 12 a of the hat-shaped counter electrode 12 in which the hole 15 is formed is put on the cap electrode 24 of the surge absorbing element 20, and the counter electrode 12 is made of glass. It was inserted into the tube 11. The counter electrodes 12 and 13 are made of iron 52 wt% -nickel 4
It is composed of a 2 wt% -chromium 6 wt% alloy.

【0016】封着室を負圧にすることによりガラス管内
部の空気を抜いた後、代わりにアルゴンガスを封着室に
供給して240Torrの圧力でガラス管内にこのアル
ゴンガス14を導入した。この状態でカーボンヒータに
よりガラス管11及び対向電極12,13を740℃、
1分間加熱した。対向電極12,13がガラス管11に
封着した後、孔15の上にPb/Sn合金からなる金属
16を配置し、ガラス管11内にアルゴンガス14を満
たした状態で金属16が溶ける温度にカーボンヒータを
加熱し、孔15を金属16で封止して、サージアブソー
バ10を得た。このサージアブソーバ10は長さ8.0
mmで外径6.0mmの寸法を有した。
After the inside of the glass tube was evacuated by reducing the pressure in the sealing chamber, argon gas was supplied to the sealing chamber instead, and the argon gas 14 was introduced into the glass tube at a pressure of 240 Torr. In this state, the glass tube 11 and the counter electrodes 12 and 13 are heated to 740 ° C. by a carbon heater.
Heat for 1 minute. After the counter electrodes 12 and 13 is sealed to the glass tube 11, metal composed of P b / Sn alloy on the hole 15
16 are arranged, in the glass tube 11 by heating the carbon heater to the temperature metals 16 melts in a state filled with argon gas 14, sealing the hole 15 in the metallic 16, to obtain a surge absorber 10. This surge absorber 10 has a length of 8.0
mm and an outer diameter of 6.0 mm.

【0017】<比較例1> 孔15及び金属16のない対向電極12を用いた以外は
実施例と同一のサージアブソーバを用意した。図3に示
すようにこのサージアブソーバ1に(8×20)μse
c−600Aで初めて溶断するヒューズ2を直列に接続
し、たて1.0cm、よこ2.0cm、高さ0.5cm
の寸法を有するケース3に入れた。
[0017] except for using <Comparative Example 1> hole 15 counter electrode 12 without及beauty Metals 16 was prepared by the same surge absorber and examples. As shown in FIG. 3 , (8 × 20) μs
Fuse 2 which is blown for the first time at c-600A is connected in series, and the height is 1.0 cm, the width is 2.0 cm, and the height is 0.5 cm.
In case 3 having the following dimensions.

【0018】<比較例2> 孔15及び金属16のない対向電極12を用いた以外は
実施例と同一のサージアブソーバを用意した。
[0018] except for using <Comparative Example 2> hole 15 counter electrode 12 without及beauty Metals 16 was prepared by the same surge absorber and examples.

【0019】<比較試験と評価> (a) 過電圧印加試験 実施例のサージアブソーバ10と比較例1のヒューズ付
きサージアブソーバと比較例2のサージアブソーバにそ
れぞれ1Aで600Vの過電圧を印加した。その結果、
実施例のサージアブソーバ10では、対向電極12,1
3が過熱し、金属16が溶融した。孔15が開放され、
ガラス管11内に空気が入り込んで、約3秒で放電が止
んだ。比較例1のヒューズ付きサージアブソーバでは、
ヒューズ2が過熱により同様に約3秒で溶断し、サージ
アブソーバ1の放電が止んだ。比較例2のサージアブソ
ーバは放電が停止せず、対向電極が過熱し、接続してい
たプリント基板を発火させた。
<Comparative Test and Evaluation> (a) Overvoltage Application Test An overvoltage of 600 V at 1 A was applied to each of the surge absorber 10 of the embodiment, the surge absorber with a fuse of Comparative Example 1, and the surge absorber of Comparative Example 2. as a result,
In the surge absorber 10 of the embodiment, the counter electrodes 12, 1
3 to overheat, metallic 16 is melted. Hole 15 is opened,
Air entered the glass tube 11 and the discharge stopped in about 3 seconds. In the surge absorber with fuse of Comparative Example 1,
The fuse 2 was also blown in about 3 seconds due to overheating, and the discharge of the surge absorber 1 was stopped. In the surge absorber of Comparative Example 2, discharge did not stop, the counter electrode was overheated, and the connected printed circuit board was ignited.

【0020】(b) インパルスに対する応答試験 放電開始電圧Vs(V)とサージ応答電圧Vimp(V)を
それぞれ測定した。放電開始電圧の測定は試料数それぞ
れ20個で行い、サージ応答電圧は実施例のサージアブ
ソーバ10と比較例1,2のサージアブソーバに(1.
2×50)μsec−10kVの疑似サージをそれぞれ5
回ずつ繰返し印加し、その動作電圧を測定した。これら
の平均値を表1に示す。
(B) Impulse Response Test The discharge starting voltage Vs (V) and the surge response voltage Vimp (V) were measured. The measurement of the discharge starting voltage was performed on 20 samples each, and the surge response voltage was measured by the surge absorber 10 of the embodiment and the surge absorbers of Comparative Examples 1 and 2 (1.
2 × 50) μsec-10kV pseudo surge of 5
The operation voltage was measured repeatedly. Table 1 shows these average values.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、実施例のサージ
アブソーバ10は比較例1及び比較例2のサージアブソ
ーバと比較して同等の優れたサージ応答性を有すること
が判った。
As is evident from Table 1, the surge absorber 10 of the embodiment has the same excellent surge response as the surge absorbers of Comparative Examples 1 and 2.

【0023】[0023]

【発明の効果】以上述べたように、本発明によれば、雷
サージのような瞬間的なサージ電圧を吸収することに加
えて、継続的な過電圧又は過電流の侵入があった場合に
孔を封止していた金属が溶融して、絶縁管内に空気が
流入するため、放電維持電圧が上昇し、サージアブソー
バの異常発熱のみならず、電子部品及びこの部品を搭載
するプリント基板の熱的損傷、発火等を防止することが
できる。また本発明の放電型サージアブソーバは従来の
ようなヒューズを用いないため、部品点数を減少してコ
ストを削減でき、占有スペースが僅かで済み、組立が簡
便で量産性に優れる。特に絶縁管内に空気が流入した後
にも、サージに対する応答性は低下するが、次に到来す
るサージ電圧を吸収するサージアブソーバ本来の機能を
依然として有する。
As described above, according to the present invention, in addition to absorbing an instantaneous surge voltage such as a lightning surge, when an overvoltage or overcurrent is continuously introduced, Since the metal that sealed the holes melts and air flows into the insulating tube, the discharge sustaining voltage rises, causing not only abnormal heat generation of the surge absorber, but also heat of the electronic components and the printed circuit board on which the components are mounted. Damage, ignition, etc. can be prevented. Further, since the discharge type surge absorber according to the present invention does not use a fuse as in the related art, the number of parts can be reduced, the cost can be reduced, the occupied space is small, the assembly is simple, and the mass productivity is excellent. In particular, even after the air flows into the insulating tube, the response to the surge is reduced, but the surge absorber still has the original function of absorbing the next incoming surge voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のマイクロギャップ式のサージアブソー
バの中央縦断面図。
FIG. 1 is a central longitudinal sectional view of a micro-gap type surge absorber of the present invention.

【図2】(a)その孔の形成された一方の対向電極の正
面図。 (b)その孔の形成されない他方の対向電極の正面図。
FIG. 2A is a front view of one counter electrode in which the hole is formed. (B) Front view of the other counter electrode where the hole is not formed.

【図3】 従来例のヒューズ付きサージアブソーバの回路
構成図。
FIG. 3 is a circuit configuration diagram of a conventional surge absorber with a fuse.

【符号の説明】10 サージアブソーバ 11 絶縁管(ガラス管) 12,13 対向電極 14 不活性ガス 15 孔 16属 20 サージ吸収素子 21 導電性皮膜 22 セラミック素体 23 マイクロギャップ 24,25 キャップ電極[Reference Numerals] 10 surge absorber 11 insulating tube (glass tube) 12, 13 counter electrode 14 inert gas 15 hole 16 Metal 20 surge absorbing element 21 conductive film 22 ceramic body 23 microgap 24,25 cap electrodes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 政利 埼玉県秩父郡横瀬町大字横瀬2270番地 三菱マテリアル株式会社 セラミックス 研究所内 (72)発明者 原田 三喜男 埼玉県秩父郡横瀬町大字横瀬2270番地 三菱マテリアル株式会社 セラミックス 研究所内 (56)参考文献 特開 平3−214580(JP,A) 特開 平1−176689(JP,A) 特開 平1−235179(JP,A) 実開 昭50−69635(JP,U) 実開 昭55−20123(JP,U) 実開 平3−39292(JP,U) 実開 平3−39291(JP,U) 実公 平2−26150(JP,Y2) 実公 平4−39673(JP,Y2) 実公 平4−39674(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) H01T 1/00 - 4/20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masatoshi Abe 2270 Yokoze, Yokoze-machi, Chichibu-gun, Saitama Mitsubishi Materials Corporation Ceramics Research Laboratory (72) Mikio Harada 2270 Yokoze, Yokoze-cho, Yokoze-cho, Chichibu-gun, Saitama Mitsubishi Materials (56) References JP-A-3-214580 (JP, A) JP-A-1-176689 (JP, A) JP-A-1-235179 (JP, A) Jpn. JP, U) JP-A 55-20123 (JP, U) JP-A 3-39292 (JP, U) JP-A 3-39291 (JP, U) JP 2-26150 (JP, Y2) JP Hei 4-39673 (JP, Y2) Real public Hei 4-39674 (JP, Y2) (58) Fields surveyed (Int. Cl. 7 , DB name) H01T 1/00-4/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性皮膜(21)で被包した円柱状のセラ
ミック素体(22)の周面にマイクロギャップ(23)が形成さ
れ、前記セラミック素体(22)の両端に一対のキャップ電
極(24,25)を有するサージ吸収素子(20)が絶縁管(11))内
に収容され、前記絶縁管(11)の両端に一対の対向電極(1
2,13)が相対向して封着され、前記一対の対向電極(12,1
3)が封着状態で前記サージ吸収素子(20)を固定し、かつ
前記一対のキャップ電極(24,25)に電気的に接続され
前記対向電極(12,13)と前記絶縁管(11)とにより形成さ
れる空間に不活性ガス(14)が封入された放電型サージア
ブソーバにおいて、 前記一対の対向電極(12,13)のいずれか一方又は双方に
孔(15)が形成され、前記孔(15)がアルミニウムの融点以
下の融点を有する金属(16)で封止され、前記対向電極(1
2,13)の発熱により前記金属(16)が溶融して前記孔(15)
が開放されたときに前記絶縁管(11)内の空間に空気が流
入するように構成された ことを特徴とする放電型サージ
アブソーバ。
1. A micro gap (23) is formed on a peripheral surface of a cylindrical ceramic body (22) covered with a conductive film (21), and a pair of caps is provided at both ends of the ceramic body (22). A surge absorbing element (20) having electrodes (24, 25) is housed in an insulating tube (11)), and a pair of counter electrodes (1) is provided at both ends of the insulating tube (11).
2, 13) are opposed to each other and sealed, and the pair of counter electrodes (12, 1
3) fixes the surge absorbing element (20) in a sealed state, and is electrically connected to the pair of cap electrodes (24, 25) ,
It is formed by the counter electrodes (12, 13) and the insulating tube (11).
Discharge type surgers with inert gas (14)
In the absorber, one or both of the pair of counter electrodes (12, 13)
A hole (15) is formed, and the hole (15) is at or below the melting point of aluminum.
Sealed with a metal (16) having a lower melting point, the counter electrode (1
(13) The metal (16) melts due to the heat generated by the holes (15).
When air is released, air flows into the space inside the insulating tube (11).
A discharge type surge absorber characterized in that it is configured to be inserted .
【請求項2】 孔を封止する金属(16)がアルミニウム、
鉛、錫又は亜鉛のいずれか或いはこれらの合金である請
求項1記載の放電型サージアブソーバ。
2. The method according to claim 1, wherein the metal for sealing the hole is aluminum.
Lead, tin or any or claims 1 Symbol placement of discharge surge absorber is these alloys of zinc.
JP20676993A 1993-08-23 1993-08-23 Discharge type surge absorber Expired - Lifetime JP3199088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20676993A JP3199088B2 (en) 1993-08-23 1993-08-23 Discharge type surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20676993A JP3199088B2 (en) 1993-08-23 1993-08-23 Discharge type surge absorber

Publications (2)

Publication Number Publication Date
JPH0765930A JPH0765930A (en) 1995-03-10
JP3199088B2 true JP3199088B2 (en) 2001-08-13

Family

ID=16528789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20676993A Expired - Lifetime JP3199088B2 (en) 1993-08-23 1993-08-23 Discharge type surge absorber

Country Status (1)

Country Link
JP (1) JP3199088B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374653A (en) * 2015-12-04 2016-03-02 深圳市槟城电子有限公司 Gas discharge tube

Also Published As

Publication number Publication date
JPH0765930A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
JP2794346B2 (en) Surge absorber
US4355345A (en) High current draining capacity micro-lightning arrester
US3896343A (en) Heat-operated short-circuiting arrangements
EP3654464B1 (en) Gas discharge tube assemblies
EP0518386B1 (en) Lightning arrester insulator and method of making the same
US5559663A (en) Surge absorber
US20070127183A1 (en) Surge arrester
KR960004665B1 (en) Surge absorer for protecting telecommunication apparatus
KR960000923B1 (en) Surge absorber protection apparatus
JP3199088B2 (en) Discharge type surge absorber
US4175277A (en) Voltage surge protector
EP0198868B1 (en) Electrical components incorporating a temperature responsive device
JPH024478Y2 (en)
JP4544255B2 (en) Electronic component enclosure
US5475356A (en) Gas-tube arrester
JP3265874B2 (en) surge absorber
US4277812A (en) Excess voltage arrester
JPH0878133A (en) Serge absorber
JPH07320845A (en) Discharge type surge absorber
JP4192489B2 (en) surge absorber
JP3134912B2 (en) surge absorber
JPH05268726A (en) Surge absorber
JPH0722152A (en) Surge absorber and its manufacture
JPH071748Y2 (en) Substrate resistance and surge absorber with safety mechanism
KR870000712Y1 (en) Discharge tube of protector for comunication

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

EXPY Cancellation because of completion of term