JPH07320845A - Discharge type surge absorber - Google Patents

Discharge type surge absorber

Info

Publication number
JPH07320845A
JPH07320845A JP10685594A JP10685594A JPH07320845A JP H07320845 A JPH07320845 A JP H07320845A JP 10685594 A JP10685594 A JP 10685594A JP 10685594 A JP10685594 A JP 10685594A JP H07320845 A JPH07320845 A JP H07320845A
Authority
JP
Japan
Prior art keywords
glass tube
surge
discharge
surge absorber
ceramic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10685594A
Other languages
Japanese (ja)
Inventor
Fujio Ikeda
富士男 池田
Mikio Harada
三喜男 原田
Masatoshi Abe
政利 阿部
Yoshiyuki Tanaka
芳幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10685594A priority Critical patent/JPH07320845A/en
Publication of JPH07320845A publication Critical patent/JPH07320845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To quickly stop discharge between microgaps and prevent melting of a glass tube due to heat of the discharge, even if continuous overvoltage or overcurrent invaders creepsin. CONSTITUTION:A surge absorber 11 is so constituted that a surge absorption element 13 is stored in a glass tube 12 along with an inert gas 12a. The surge absorption element is provided with micro gaps 14b formed.in the circumferencial face of a ceramic element 14 covered with a conductive film 14a and cap electrodes 16, 17 engaged in the both ends of the ceramic element. Sealed electrodes 18, 19 which are opposed to each other and sealed in both ends of the glass tube fix the surge absorption element in its sealed state and are electrically connected to the cap electrodes. The conductive film is SnO2 and the inert gas is CO2 gas. Flange parts 16a, 17a extending toward the inside face of the glass tube are projectingly provided to the outside of the cap electrodes and the flange parts position the ceramic element in an approximate center to the radial direction of glass tube.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電話機、ファクシミリ、
電話交換機、モデム等の通信機器用の電子機器に印加さ
れるサージ電圧の吸収機能に加えて、継続的な過電圧又
は過電流の電子機器への侵入時に電子機器やこの機器を
搭載するプリント基板の熱的損傷又は発火を防止するサ
ージアブソーバに関する。更に詳しくは、マイクロギャ
ップを有するサージ吸収素子を不活性ガスとともにガラ
ス管に封止(hermetic seal)した放電型のサージアブ
ソーバに関するものである。本明細書で、過電圧又は過
電流とは、サージアブソーバの放電開始電圧を上回る異
常電圧とこれに伴う異常電流をいう。
The present invention relates to a telephone, a facsimile,
In addition to the function of absorbing surge voltage applied to electronic devices for communication equipment such as telephone exchanges and modems, the electronic device and the printed circuit board on which this device is mounted during continuous overvoltage or overcurrent intrusion into the electronic device. The present invention relates to a surge absorber that prevents thermal damage or ignition. More specifically, the present invention relates to a discharge type surge absorber in which a surge absorbing element having a micro gap is hermetically sealed in a glass tube together with an inert gas. In the present specification, the overvoltage or overcurrent refers to an abnormal voltage exceeding the discharge start voltage of the surge absorber and an abnormal current associated therewith.

【0002】[0002]

【従来の技術】図2に示すように、この種のサージアブ
ソーバ5dは電子機器5aの一対の入力線路5b,5c
にこの電子機器5aに並列に接続され、電子機器5aの
使用電圧より高い電圧で動作するように構成される。即
ち、サージアブソーバ5dはその放電開始電圧より低い
電圧では抵抗値の高い抵抗体であるが、印加電圧がその
放電開始電圧以上のときには数10Ω以下の抵抗値の低
い抵抗体になる。電子機器5aに雷サージ等の数kV〜
数10kVのサージ電圧が瞬間的に印加されると、サー
ジアブソーバ5dが放電し、このサージ電圧を吸収して
電子機器5aを保護するようになっている。また一対の
入力線路5b,5cのうち一方の入力線路5bにはサー
ジアブソーバ5dより電源側にヒューズ5eが接続され
る。このヒューズ5eは例えば電話回線と配電線の混触
等によりサージアブソーバ5dに過電圧又は過電流が継
続して加わったときに、溶断して回路を遮断するように
なっている。またサージアブソーバ5dは一対のリード
線5f,5gを介してはんだ付けにより基板(図示せ
ず)に取付けられる。
2. Description of the Related Art As shown in FIG. 2, a surge absorber 5d of this type includes a pair of input lines 5b and 5c of an electronic device 5a.
And is connected in parallel to the electronic device 5a and is configured to operate at a voltage higher than the operating voltage of the electronic device 5a. That is, the surge absorber 5d is a resistor having a high resistance value at a voltage lower than the discharge start voltage, but becomes a resistor having a low resistance value of several tens Ω or less when the applied voltage is equal to or higher than the discharge start voltage. Several kV of lightning surge to electronic device 5a
When a surge voltage of several tens of kV is instantaneously applied, the surge absorber 5d is discharged, and this surge voltage is absorbed to protect the electronic device 5a. A fuse 5e is connected to one of the pair of input lines 5b and 5c on the power supply side of the surge absorber 5d. The fuse 5e melts and cuts the circuit when an overvoltage or an overcurrent is continuously applied to the surge absorber 5d due to, for example, contact between a telephone line and a distribution line. The surge absorber 5d is attached to a substrate (not shown) by soldering via a pair of lead wires 5f and 5g.

【0003】しかし、上記サージアブソーバ5dにヒュ
ーズ5eを組合せたサージ吸収回路では、混触等が発生
してもヒューズ5eの溶断しない電流値が存在し、過電
圧かつヒューズ5eの溶断しない電流がサージアブソー
バ5dに継続して加わると、サージアブソーバ5dが発
熱し周辺の電子機器5aの発火の原因となる。
However, in the surge absorbing circuit in which the fuse 5e is combined with the surge absorber 5d, there is a current value at which the fuse 5e does not blow even if contact is generated, and an overvoltage and a current at which the fuse 5e does not blow are the surge absorber 5d. If the surge absorber 5d continues to be added to the surge absorber 5d, the surge absorber 5d generates heat and causes the surrounding electronic device 5a to ignite.

【0004】この点を解消するために、本出願人は図3
に示すように、SnO2からなる導電性皮膜4aで被包
した円柱状のセラミック素体4の周面にマイクロギャッ
プ4bが形成され、このセラミック素体4の両端に一対
のキャップ電極6,7を有するサージ吸収素子がCO2
からなる不活性ガス2aとともに鉛ガラスからなるガラ
ス管2内に収容され、このガラス管2の両端に一対の封
止電極8,9が相対向して封着され、更に一対の封止電
極8,9が封着状態でサージ吸収素子3を固定しかつ一
対のキャップ電極6,7に電気的に接続されたサージア
ブソーバ1を出願した(特願平6−22355)。
In order to solve this point, the present applicant has shown in FIG.
As shown in FIG. 3, a microgap 4b is formed on the peripheral surface of a cylindrical ceramic body 4 covered with a conductive film 4a made of SnO 2 , and a pair of cap electrodes 6, 7 is formed at both ends of the ceramic body 4. Of the surge absorbing element having CO 2
Is housed in a glass tube 2 made of lead glass together with an inert gas 2a made of, and a pair of sealing electrodes 8 and 9 are sealed at both ends of the glass tube 2 so as to face each other. , 9 fixed the surge absorbing element 3 in a sealed state and applied a surge absorber 1 electrically connected to the pair of cap electrodes 6 and 7 (Japanese Patent Application No. 6-22355).

【0005】このサージアブソーバ1では、雷サージの
ような瞬間的なサージ電圧を吸収することに加えて、継
続的な過電圧又は過電流の侵入があった場合にはSnO
2からなる導電性皮膜4aが熱損傷して、マイクロギャ
ップ4bの幅が広がると推定され、これにより放電維持
電圧が上昇し、サージアブソーバ1の異常発熱のみなら
ず、図示しない電子機器及びこの機器を搭載するプリン
ト基板の熱的損傷、発火等を防止することができる。特
に継続的な過電圧又は過電流により放電維持電圧が上昇
した後では、サージに対する応答性は低下するが、次に
到来するサージ電圧を吸収するサージアブソーバとして
の本来の機能を依然として有する。
In addition to absorbing a momentary surge voltage such as a lightning surge, the surge absorber 1 is SnO 2 when there is a continuous overvoltage or overcurrent intrusion.
It is presumed that the conductive film 4a made of 2 is thermally damaged and the width of the microgap 4b is widened. As a result, the discharge sustaining voltage rises, not only abnormal heat generation of the surge absorber 1 occurs, but also an electronic device (not shown) and this device. It is possible to prevent thermal damage, ignition, etc. of the printed circuit board on which is mounted. In particular, after the discharge sustaining voltage rises due to continuous overvoltage or overcurrent, the response to the surge decreases, but it still has the original function as a surge absorber that absorbs the next surge voltage.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記改善され
たサージアブソーバでは、サージ吸収素子をガラス管内
に封止するときにセラミック素体がガラス管の半径方向
に対して略中央に位置せずにガラス管内面に接近した場
合には、放電時にガラス管が熱溶融することがあった。
この原因は未だ十分解明されていないが、次のように考
えられる。即ち、マイクロギャップに発生した放電にて
マイクロギャップ付近が熱損傷し、損傷部分のセラミッ
ク素体が露出して、実質的にギャップの幅が拡大するこ
とによりマイクロギャップでの放電は停止するけれど
も、ガラス管内面にセラミック素体が接近した場合に
は、放電の熱で鉛ガラスからなるガラス管の内表面が溶
融することにより、鉛成分が融出して電気伝導度が大き
くなり、ガラス管内表面に電流が流れ続ける。この結
果、この続流でガラス管が溶けることがあった。
However, in the above-mentioned improved surge absorber, when the surge absorbing element is sealed in the glass tube, the ceramic body is not located substantially in the center in the radial direction of the glass tube. When approaching the inner surface of the glass tube, the glass tube sometimes melted by heat during discharge.
The cause has not been fully clarified yet, but it is considered as follows. That is, although the vicinity of the microgap is thermally damaged by the discharge generated in the microgap, the damaged ceramic body is exposed, and the width of the gap is substantially expanded, so that the discharge in the microgap is stopped. When the ceramic body approaches the inner surface of the glass tube, the inner surface of the glass tube made of lead glass is melted by the heat of discharge, and the lead component is melted out to increase the electrical conductivity and The current continues to flow. As a result, the glass tube may be melted by this continuous flow.

【0007】本発明の目的は、導電性皮膜の材質変更、
不活性ガスの変更及び僅かなキャップ電極の形状変更だ
けで、雷サージのような瞬間的なサージ電圧を吸収する
ことに加えて、継続的な過電圧又は過電流が侵入しても
マイクロギャップの放電を速やかに停止でき、かつこの
放電による熱でガラス管が溶けるのを防止できる放電型
サージアブソーバを提供することにある。
The object of the present invention is to change the material of the conductive film,
In addition to absorbing a momentary surge voltage such as lightning surge by changing the inert gas and slightly changing the shape of the cap electrode, even if a continuous overvoltage or overcurrent enters, the microgap discharge It is an object of the present invention to provide a discharge type surge absorber capable of quickly stopping the discharge and preventing the glass tube from melting due to the heat generated by this discharge.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成を、実施例に対応する図1を用いて説明
する。本発明は、導電性皮膜14aで被包した円柱状の
セラミック素体14の周面にマイクロギャップ14bが
形成され、セラミック素体14の両端に一対のキャップ
電極16,17を有するサージ吸収素子13が不活性ガ
ス12aとともにガラス管12内に収容され、このガラ
ス管12の両端に一対の封止電極18,19が相対向し
て封着され、一対の封止電極18,19が封着状態でサ
ージ吸収素子13を固定し、かつ一対のキャップ電極1
6,17に電気的に接続された放電型サージアブソーバ
の改良である。その特徴ある構成は、導電性皮膜14a
がSnO2であって不活性ガス12aがCO2ガスであ
り、キャップ電極16,17の外面にガラス管12の内
面に向って延びるフランジ部16a,17aが突設さ
れ、フランジ部16a,17aがセラミック素体14を
ガラス管12の半径方向に対して略中央に位置させるよ
うに構成されたところにある。
A configuration of the present invention for achieving the above object will be described with reference to FIG. 1 corresponding to an embodiment. According to the present invention, the surge absorbing element 13 has a micro-gap 14b formed on the peripheral surface of a cylindrical ceramic body 14 covered with a conductive film 14a, and a pair of cap electrodes 16 and 17 at both ends of the ceramic body 14. Are housed in the glass tube 12 together with the inert gas 12a, and a pair of sealing electrodes 18 and 19 are sealed at opposite ends of the glass tube 12 so that the pair of sealing electrodes 18 and 19 are sealed. The surge absorber 13 is fixed with the pair of cap electrodes 1
6 and 17 is an improvement of the discharge type surge absorber electrically connected. The characteristic structure is that the conductive film 14a
Is SnO 2 and the inert gas 12a is CO 2 gas, and flange portions 16a and 17a extending toward the inner surface of the glass tube 12 are provided on the outer surfaces of the cap electrodes 16 and 17 so that the flange portions 16a and 17a are The ceramic body 14 is located so as to be located substantially at the center of the glass tube 12 in the radial direction.

【0009】また、ガラス管12の内径をセラミック素
体14の外径の2〜3倍とすることが好ましい。
It is preferable that the inner diameter of the glass tube 12 is 2 to 3 times the outer diameter of the ceramic body 14.

【0010】[0010]

【作用】継続的な過電圧又は過電流がサージ吸収素子1
3に侵入すると、SnO2からなる導電性皮膜14aが
熱損傷して、マイクロギャップ14bの幅が広がると推
定され、これにより放電維持電圧が上昇するので、放電
が停止する。またマイクロギャップ14bがフランジ部
16a,17aによりガラス管12の内面から所定の距
離だけ離れているので、継続的な過電圧又は過電流が侵
入してマイクロギャップ14bにおける放電の熱により
ガラス管12が溶けることはない。
Function: Continuous surge voltage or surge current causes surge absorption element 1
It is presumed that, when Sn3 enters, the conductive film 14a made of SnO 2 is thermally damaged and the width of the microgap 14b is widened. As a result, the discharge sustaining voltage rises, so that the discharge is stopped. Further, since the microgap 14b is separated from the inner surface of the glass tube 12 by a predetermined distance due to the flange portions 16a and 17a, continuous overvoltage or overcurrent enters and the glass tube 12 is melted by the heat of discharge in the microgap 14b. There is no such thing.

【0011】[0011]

【実施例】次に、本発明の実施例を比較例とともに図面
に基づいて詳しく説明する。 <実施例>図1に示すように、マイクロギャップ式の放
電型サージアブソーバ11はガラス管12の内部にサー
ジ吸収素子13を収容することにより構成される。サー
ジ吸収素子13は導電性皮膜14aで被包した円柱状の
セラミック素体14の両端に一対のキャップ電極16,
17を冠着した後、セラミック素体14の中央に円周方
向にマイクロギャップ14bを形成して作られる。セラ
ミック素体14はこの例ではムライト焼結体であり、導
電性皮膜14aはスパッタリング法、蒸着法、イオンプ
レーティング法、めっき法、CVD法等の薄膜形成法に
よりセラミック素体14を被包するようにセラミック素
体14の表面に形成される。マイクロギャップ14bは
レーザにより導電性皮膜14aを分割するように形成さ
れる。マイクロギャップ14bはレーザ光線の焦点深度
及び導電性皮膜14aの厚さから10〜200μmの幅
に形成される。ガラス管12は鉛ガラスから作られる。
Embodiments of the present invention will now be described in detail with reference to the drawings together with comparative examples. <Embodiment> As shown in FIG. 1, a micro gap type discharge type surge absorber 11 is constructed by housing a surge absorbing element 13 inside a glass tube 12. The surge absorbing element 13 includes a pair of cap electrodes 16 on both ends of a cylindrical ceramic body 14 covered with a conductive film 14a.
After crowning 17, the micro-gap 14b is formed in the circumferential direction at the center of the ceramic body 14. The ceramic body 14 is a mullite sintered body in this example, and the conductive film 14a encloses the ceramic body 14 by a thin film forming method such as a sputtering method, a vapor deposition method, an ion plating method, a plating method, and a CVD method. Thus, it is formed on the surface of the ceramic body 14. The microgap 14b is formed by laser so as to divide the conductive film 14a. The microgap 14b is formed to have a width of 10 to 200 μm depending on the depth of focus of the laser beam and the thickness of the conductive film 14a. The glass tube 12 is made of lead glass.

【0012】サージアブソーバ11はこのサージ吸収素
子13をガラス管12内に収容してセラミック素体14
の両端に一対の封止電極18,19を配置し、これらの
封止電極18,19をキャップ電極16,17に電気的
に接続し同時にガラス管12内部に不活性ガス12aを
封入して作られる。収容されたサージ吸収素子13は一
対の封止電極18,19をガラス管12の両端に封着す
るときに封止電極18,19により固定される。18
a,19aはリード線である。
The surge absorber 11 accommodates the surge absorbing element 13 in the glass tube 12 and holds the ceramic body 14.
A pair of sealing electrodes 18 and 19 are arranged at both ends of the glass tube 12, the sealing electrodes 18 and 19 are electrically connected to the cap electrodes 16 and 17, and at the same time, the inert gas 12a is sealed inside the glass tube 12. To be The accommodated surge absorbing element 13 is fixed by the sealing electrodes 18 and 19 when the pair of sealing electrodes 18 and 19 are sealed to both ends of the glass tube 12. 18
Reference numerals a and 19a are lead wires.

【0013】本実施例の特徴ある構成は、導電性皮膜1
4aがSnO2であって不活性ガス12aがCO2ガスで
あり、キャップ電極16,17の外面全周にガラス管1
2の内面に向って延びるフランジ部16a,17aが突
設され、更にフランジ部16a,17aがセラミック素
体14をガラス管12の半径方向に対して略中央に位置
させるように構成されたところにある。フランジ部16
a,17aは厚さ0.15mmのステンレス鋼板等の導
電性及び耐熱性を有する板材をプレス加工することによ
りキャップ電極16,17とそれぞれ一体的に形成さ
れ、キャップ電極16,17はフランジ部16a,17
aとともにそれぞれ略ハット状に形成される。フランジ
部16a,17aの外径はそれぞれ2.4mmであり、
ガラス管12は外径5.1mm、内径2.7mm、長さ
9.6mmの円筒体であり、セラミック素体14の外径
は1.0mmである。またサージ吸収回路は前述した図
2に示されるものと同一であり、一方の入力線路5bに
接続されたヒューズ5eの定格電流はこの例では200
mAである。
The characteristic structure of this embodiment is that the conductive film 1 is used.
4a is SnO 2 and the inert gas 12a is CO 2 gas, and the glass tube 1 is provided around the entire outer surface of the cap electrodes 16 and 17.
2, flange portions 16a and 17a extending toward the inner surface of 2 are provided so as to project, and the flange portions 16a and 17a are arranged so that the ceramic element body 14 is positioned substantially at the center in the radial direction of the glass tube 12. is there. Flange 16
a and 17a are integrally formed with the cap electrodes 16 and 17 respectively by pressing a plate material having conductivity and heat resistance such as a stainless steel plate having a thickness of 0.15 mm, and the cap electrodes 16 and 17 are formed on the flange portion 16a. , 17
Each is formed in a substantially hat shape together with a. The outer diameter of each of the flange portions 16a and 17a is 2.4 mm,
The glass tube 12 is a cylindrical body having an outer diameter of 5.1 mm, an inner diameter of 2.7 mm, and a length of 9.6 mm, and the outer diameter of the ceramic body 14 is 1.0 mm. The surge absorbing circuit is the same as that shown in FIG. 2 described above, and the rated current of the fuse 5e connected to one of the input lines 5b is 200 in this example.
mA.

【0014】<比較例>図3に示すマイクロギャップ式
のサージアブソーバ1を比較例とした。このサージアブ
ソーバ1は、キャップ電極6,7の外面全周に実施例の
フランジ部を有しないこと、ガラス管2が外径3.1m
m、内径1.8mm、長さ7.5mmの円筒体であるこ
と及び封止電極8,9の寸法が上記寸法に合わせて小さ
くなることを除いて実施例と同一のものを用いた。
<Comparative Example> The microgap type surge absorber 1 shown in FIG. 3 was used as a comparative example. The surge absorber 1 does not have the flange portion of the embodiment on the entire outer circumference of the cap electrodes 6 and 7, and the glass tube 2 has an outer diameter of 3.1 m.
The same thing as the example was used except that it was a cylindrical body having m, an inner diameter of 1.8 mm, and a length of 7.5 mm, and the dimensions of the sealing electrodes 8 and 9 were reduced according to the above dimensions.

【0015】<比較試験と評価>実施例のサージアブソ
ーバ11と比較例のサージアブソーバ1にそれぞれ0.
25AでAC600Vの過電圧を30分印加した。その
結果、実施例のサージアブソーバ11では、10個のサ
ージアブソーバ11のうち全てのサージアブソーバ11
において約3秒後にマイクロギャップ14bにおける放
電が停止した。比較例のサージアブソーバ1では、10
個のサージアブソーバ1のうち8個において約3秒後に
放電が停止したが、残りの2個においては放電が停止し
なかった。放電が停止しなかったのは、マイクロギャッ
プ4bに発生した放電によりマイクロギャップ4b付近
で熱損傷し、損傷部分のセラミック素体4が露出するよ
うになり、実質的にマイクロギャップ4bの幅が拡大し
ここでの放電が停止しても、マイクロギャップ4bがガ
ラス管2内面に接近しているので、放電の熱によりガラ
ス管2内表面の鉛成分が融出して電気伝導度が大きくな
り、この溶融したガラス管2内表面を電流が流れ続ける
ためであると考えられる。
<Comparative Test and Evaluation> The surge absorber 11 of the example and the surge absorber 1 of the comparative example each had a resistance of 0.
An overvoltage of 600 V AC was applied at 25 A for 30 minutes. As a result, in the surge absorber 11 of the embodiment, all the surge absorbers 11 out of the 10 surge absorbers 11 are
In about 3 seconds, the discharge in the micro gap 14b stopped. In the surge absorber 1 of the comparative example, 10
The discharge of eight of the surge absorbers 1 stopped after about 3 seconds, but the discharge of the remaining two did not stop. The discharge did not stop because the discharge generated in the microgap 4b caused thermal damage in the vicinity of the microgap 4b, and the ceramic body 4 at the damaged portion was exposed, and the width of the microgap 4b was substantially expanded. However, even if the discharge is stopped here, since the microgap 4b is close to the inner surface of the glass tube 2, the lead component on the inner surface of the glass tube 2 is melted by the heat of the discharge to increase the electrical conductivity. It is considered that this is because electric current continues to flow on the inner surface of the molten glass tube 2.

【0016】なお、上記実施例ではセラミック素体とし
てムライト焼結体を挙げたが、これに限らずアルミナ、
ベリリア、ステアライト、フォルステライト、ジルコ
ン、普通磁器、ガラスセラミック、窒化ケイ素、窒化ア
ルミ、炭化ケイ素等の絶縁性セラミックスでもよい。ま
た、上記実施例ではガラス管の内径及びセラミック素体
の外径をそれぞれを2.7mm及び1.0mmとし、ガ
ラス管の内径をセラミック素体の外径の2.7倍とした
が、これは一例であってガラス管の内径をセラミック素
体の外径の2〜3倍であればよい。上記範囲に限定した
のは、ガラス管の内径をセラミック素体の外径の2倍未
満とするとマイクロギャップを挟む導電性皮膜間の放電
の熱によりガラス管が溶け、ガラス管の内径をセラミッ
ク素体の外径の3倍を越えるとサージアブソーバの実装
スペースが大きくなり好ましくないからである。更に、
上記実施例ではフランジ部をキャップ電極の外面全周に
設けたが、フランジ部の外面に等間隔に複数個のフラン
ジ部を放射状に設けてもよい。
Although the mullite sintered body was mentioned as the ceramic body in the above-mentioned embodiments, the present invention is not limited to this, and alumina,
Insulative ceramics such as beryllia, stearite, forsterite, zircon, ordinary porcelain, glass ceramic, silicon nitride, aluminum nitride and silicon carbide may be used. Further, in the above embodiment, the inner diameter of the glass tube and the outer diameter of the ceramic body were 2.7 mm and 1.0 mm, respectively, and the inner diameter of the glass tube was 2.7 times the outer diameter of the ceramic body. Is an example, and the inner diameter of the glass tube may be 2 to 3 times the outer diameter of the ceramic body. The above range is limited to that when the inner diameter of the glass tube is less than twice the outer diameter of the ceramic body, the glass tube is melted by the heat of discharge between the conductive coatings sandwiching the microgap, and the inner diameter of the glass tube is reduced. This is because if it exceeds 3 times the outer diameter of the body, the mounting space for the surge absorber becomes large, which is not preferable. Furthermore,
In the above embodiment, the flange portion is provided on the entire outer surface of the cap electrode, but a plurality of flange portions may be radially provided at equal intervals on the outer surface of the flange portion.

【0017】[0017]

【発明の効果】以上述べたように、本発明によれば、導
電性皮膜がSnO2であって、不活性ガスがCO2ガスで
あり、キャップ電極の外面にガラス管の内面に向って延
びるフランジ部24a,25aを突設し、更にフランジ
部がセラミック素体をガラス管の半径方向に対して略中
央に位置させるように構成したので、雷サージのような
瞬間的なサージ電圧を吸収することに加えて、継続的な
過電圧又は過電流の侵入があった場合には酸化スズ(S
nO2)からなる導電性皮膜が熱損傷して、マイクロギ
ャップの幅が広がると推定され、これにより放電維持電
圧が上昇するので、放電が停止する。
As described above, according to the present invention, the conductive film is SnO 2 , the inert gas is CO 2 gas, and the outer surface of the cap electrode extends toward the inner surface of the glass tube. The flange portions 24a and 25a are provided so as to project, and the flange portion is configured to position the ceramic body substantially in the center with respect to the radial direction of the glass tube, so that an instantaneous surge voltage such as a lightning surge is absorbed. In addition, tin oxide (S
It is presumed that the conductive film made of nO 2 ) is thermally damaged and the width of the microgap is widened. As a result, the discharge sustaining voltage rises and the discharge is stopped.

【0018】またマイクロギャップがフランジ部により
ガラス管の内面から所定の距離だけ離れているので、継
続的な過電圧又は過電流が侵入してマイクロギャップに
おける放電の熱によりガラス管が溶けることはない。更
に、導電性皮膜の材質変更、不活性ガスの変更及び僅か
なキャップ電極の形状変更だけで、上記効果が得られる
ので、製造コストの増大は僅かで済む。
Further, since the microgap is separated from the inner surface of the glass tube by a predetermined distance by the flange portion, continuous overvoltage or overcurrent does not enter and the glass tube is not melted by the heat of discharge in the microgap. Further, the above effect can be obtained by only changing the material of the conductive film, changing the inert gas, and slightly changing the shape of the cap electrode, so that the manufacturing cost can be slightly increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明一実施例の放電型サージアブソーバの中
央縦断面図。
FIG. 1 is a central longitudinal sectional view of a discharge type surge absorber according to an embodiment of the present invention.

【図2】実施例及び比較例のサージ吸収回路の構成図。FIG. 2 is a configuration diagram of surge absorption circuits according to an example and a comparative example.

【図3】従来例を示す図1に対応する中央縦断面図。FIG. 3 is a central longitudinal sectional view corresponding to FIG. 1 showing a conventional example.

【符号の説明】[Explanation of symbols]

11 放電型サージアブソーバ 12 ガラス管 12a 不活性ガス 13 サージ吸収素子 14 セラミック素体 14a 導電性皮膜 14b マイクロギャップ 16,17 キャップ電極 16a,17a フランジ部 18,19 封止電極 11 Discharge Surge Absorber 12 Glass Tube 12a Inert Gas 13 Surge Absorbing Element 14 Ceramic Element 14a Conductive Film 14b Micro Gap 16,17 Cap Electrode 16a, 17a Flange Part 18, 19 Sealing Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 政利 埼玉県秩父郡横瀬町大字横瀬2270番地 三 菱マテリアル株式会社セラミックス研究所 内 (72)発明者 田中 芳幸 埼玉県秩父郡横瀬町大字横瀬2270番地 三 菱マテリアル株式会社セラミックス研究所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatoshi Abe 2270, Yokose, Yokose-cho, Chichibu-gun, Saitama Inside Ceramics Laboratory, Sanryo Materials Co., Ltd. (72) Yoshiyuki Tanaka 2270 Yokoze, Yokose-cho, Chichibu-gun, Saitama Sanryo Materials Co., Ltd. Ceramics Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性皮膜(14a)で被包した円柱状のセ
ラミック素体(14)の周面にマイクロギャップ(14b)が形
成され、前記セラミック素体(14)の両端に一対のキャッ
プ電極(16,17)を有するサージ吸収素子(13)が不活性ガ
ス(12a)とともにガラス管(12)内に収容され、前記ガラ
ス管(12)の両端に一対の封止電極(18,19)が相対向して
封着され、前記一対の封止電極(18,19)が封着状態で前
記サージ吸収素子(13)を固定し、かつ前記一対のキャッ
プ電極(16,17)に電気的に接続された放電型サージアブ
ソーバにおいて、 前記導電性皮膜(14a)がSnO2であって前記不活性ガス
(12a)がCO2ガスであり、 前記キャップ電極(16,17)の外面に前記ガラス管(12)の
内面に向って延びるフランジ部(16a,17a)が突設され、 前記フランジ部(16a,17a)が前記セラミック素体(14)を
前記ガラス管(12)の半径方向に対して略中央に位置させ
るように構成されたことを特徴とする放電型サージアブ
ソーバ。
1. A microgap (14b) is formed on the peripheral surface of a cylindrical ceramic body (14) covered with a conductive film (14a), and a pair of caps are provided at both ends of the ceramic body (14). A surge absorbing element (13) having electrodes (16, 17) is housed in a glass tube (12) together with an inert gas (12a), and a pair of sealing electrodes (18, 19) is provided at both ends of the glass tube (12). ) Are sealed to face each other, the pair of sealing electrodes (18, 19) fix the surge absorbing element (13) in a sealed state, and the pair of cap electrodes (16, 17) are electrically connected to each other. Electrically connected to the discharge type surge absorber, the conductive film (14a) is SnO 2 and the inert gas is
(12a) is CO 2 gas, a flange portion (16a, 17a) extending toward the inner surface of the glass tube (12) is provided on the outer surface of the cap electrode (16, 17) in a protruding manner, and the flange portion (16a , 17a) is arranged so that the ceramic body (14) is located substantially at the center in the radial direction of the glass tube (12).
【請求項2】 ガラス管(11)の内径がセラミック素体(2
2)の外径の2〜3倍である請求項1記載の放電型サージ
アブソーバ。
2. The inner diameter of the glass tube (11) is a ceramic body (2
The discharge surge absorber according to claim 1, which has an outer diameter of 2 to 3 times.
JP10685594A 1994-05-20 1994-05-20 Discharge type surge absorber Pending JPH07320845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10685594A JPH07320845A (en) 1994-05-20 1994-05-20 Discharge type surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10685594A JPH07320845A (en) 1994-05-20 1994-05-20 Discharge type surge absorber

Publications (1)

Publication Number Publication Date
JPH07320845A true JPH07320845A (en) 1995-12-08

Family

ID=14444215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10685594A Pending JPH07320845A (en) 1994-05-20 1994-05-20 Discharge type surge absorber

Country Status (1)

Country Link
JP (1) JPH07320845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731490B2 (en) 2000-10-02 2004-05-04 Mitsubishi Materials Corporation Surge absorber and production method thereof
JP2007227388A (en) * 2007-03-22 2007-09-06 Mitsubishi Materials Corp Electronic part-sealed body
EP2211357A1 (en) * 2009-01-23 2010-07-28 First Resistor & Condenser Co., Ltd. Surge arrester

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731490B2 (en) 2000-10-02 2004-05-04 Mitsubishi Materials Corporation Surge absorber and production method thereof
AU778872B2 (en) * 2000-10-02 2004-12-23 Mitsubishi Materials Corporation Surge absorber and production method thereof
CN100342603C (en) * 2000-10-02 2007-10-10 三菱综合材料株式会社 Overpressure suction device and making method
JP2007227388A (en) * 2007-03-22 2007-09-06 Mitsubishi Materials Corp Electronic part-sealed body
JP4544255B2 (en) * 2007-03-22 2010-09-15 三菱マテリアル株式会社 Electronic component enclosure
EP2211357A1 (en) * 2009-01-23 2010-07-28 First Resistor & Condenser Co., Ltd. Surge arrester

Similar Documents

Publication Publication Date Title
KR100867492B1 (en) Overvoltage arrester
JP2794346B2 (en) Surge absorber
US4275432A (en) Thermal switch short circuiting device for arrester systems
JP2791979B2 (en) Protection circuit to protect against overvoltage and overcurrent
US7324319B2 (en) Surge protection device
KR930011387B1 (en) Electronic part with safe guard function
JPH07320845A (en) Discharge type surge absorber
JPH024478Y2 (en)
JP2007048759A (en) Surge absorber
JP2002015831A (en) Chip-type surge absorber and its manufacturing method
JP3969098B2 (en) surge absorber
JPH04217813A (en) Surge absorber provided with security function
JPH0731519Y2 (en) Discharge type surge absorber with safety mechanism
JP2594853B2 (en) Discharge type surge absorbing element
JPH0765930A (en) Discharge type surge absorber
JP2531221Y2 (en) Discharge type surge absorbing element with security mechanism
JPH08153565A (en) Surge absorber
JPH0748928B2 (en) Surge absorber
JP2509812Y2 (en) Discharge type surge absorber with safety mechanism
JP4239422B2 (en) surge absorber
JPH071748Y2 (en) Substrate resistance and surge absorber with safety mechanism
JP2594860B2 (en) Discharge type surge absorbing element with security mechanism
JPH071749Y2 (en) Substrate resistance and surge absorber with safety mechanism
JPH01176689A (en) Discharge gap
JPH07169554A (en) Surge absorbing element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011204