JPH0765930A - Discharge type surge absorber - Google Patents

Discharge type surge absorber

Info

Publication number
JPH0765930A
JPH0765930A JP20676993A JP20676993A JPH0765930A JP H0765930 A JPH0765930 A JP H0765930A JP 20676993 A JP20676993 A JP 20676993A JP 20676993 A JP20676993 A JP 20676993A JP H0765930 A JPH0765930 A JP H0765930A
Authority
JP
Japan
Prior art keywords
surge absorber
surge
electrodes
hole
insulating tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20676993A
Other languages
Japanese (ja)
Other versions
JP3199088B2 (en
Inventor
Katsusaki Matsuzawa
功先 松沢
Yoshiyuki Tanaka
芳幸 田中
Masatoshi Abe
政利 阿部
Mikio Harada
三喜男 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP20676993A priority Critical patent/JP3199088B2/en
Publication of JPH0765930A publication Critical patent/JPH0765930A/en
Application granted granted Critical
Publication of JP3199088B2 publication Critical patent/JP3199088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To provide a surge absober which can simply be assembled in a small size with a less number of component parts, excels in the mass-productivity, can absorb a next W surge voltage, and which can prevent overheat or firing of electronic component etc., automatically stopping electric discharge when an overcurrent or overvoltage is applied. CONSTITUTION:A surge absorber 10 of electric discharge type is so structured that a pair of electrodes 12, 13 are installed and sealed at the two ends of an insulated tube 11 in such a positioning as opposing each other, wherein a surge absorber 20 is interposed according to necessity. An inert gas 14 is encapsulated in the space bounded by the electrodes 12, 13 and the insulated tube 11. Hole's) 15 is formed in at least either of the mating electrodes 12, 13 and is sealed with a low melting point metal 16. This metal 16 melts with the heat emitted by an electric discharge of the surge absorber 10, and the hole 15 is opened to allow the air to flow via hole 15 into the insulated tube 11 filled with the inert gas 14, and the discharge hold voltage becomes higher than the overvoltage so that the discharge is stopped which is achieved by a simple and small-sized configuration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電話機、ファクシミリ、
電話交換機、モデム等の通信機器用の電子部品に印加さ
れるサージ電圧の吸収機能に加えて、継続的な過電圧又
は過電流の電子部品への侵入時に電子部品やこの部品を
搭載するプリント基板の熱的損傷又は発火を防止する放
電型サージアブソーバに関する。更に詳しくは、管内部
にギャップ又はマイクロギャップを有する絶縁管の両端
を一対の対向電極で封止(hermetic seal)した放電型
サージアブソーバに関するものである。本明細書で、過
電圧又は過電流とは、サージ吸収素子の放電開始電圧を
上回る異常電圧とこれに伴う異常電流をいう。
The present invention relates to a telephone, a facsimile,
In addition to the function of absorbing surge voltage applied to electronic components for communication equipment such as telephone exchanges and modems, the electronic components and the printed circuit boards on which these components are mounted when continuous overvoltage or overcurrent enters the electronic components. The present invention relates to a discharge type surge absorber that prevents thermal damage or ignition. More specifically, the present invention relates to a discharge type surge absorber in which both ends of an insulating tube having a gap or a microgap inside the tube are hermetically sealed with a pair of opposing electrodes. In the present specification, the overvoltage or the overcurrent refers to an abnormal voltage exceeding the discharge start voltage of the surge absorbing element and an abnormal current associated therewith.

【0002】[0002]

【従来の技術】この種のサージアブソーバは電子部品の
一対の入力線路にこの電子部品に並列に接続され、電子
部品の使用電圧より高い電圧で動作するように構成され
る。即ち、サージアブソーバはその放電開始電圧より低
い電圧では抵抗値の高い抵抗体であるが、印加電圧がそ
の放電開始電圧以上のときには数10Ω以下の抵抗値の
低い抵抗体になる。電子部品に雷サージ等の数kV〜数
10kVのサージ電圧が瞬間的に印加されると、サージ
アブソーバが放電し、このサージ電圧を吸収して電子部
品を保護するようになっている。このため、電子部品を
含む回路に過電圧又は過電流が不慮の事故等により継続
して加わると、サージアブソーバには電流が流れ続け
る。この結果、サージアブソーバが発熱し周辺の電子機
器の発火の原因となる。
2. Description of the Related Art This type of surge absorber is connected to a pair of input lines of an electronic component in parallel with the electronic component, and is configured to operate at a voltage higher than the working voltage of the electronic component. That is, the surge absorber is a resistor having a high resistance value at a voltage lower than the discharge starting voltage, but becomes a resistor having a low resistance value of several tens Ω or less when the applied voltage is equal to or higher than the discharge starting voltage. When a surge voltage such as a lightning surge of several kV to several tens of kV is momentarily applied to an electronic component, the surge absorber is discharged, and the surge voltage is absorbed to protect the electronic component. Therefore, if an overvoltage or an overcurrent is continuously applied to a circuit including electronic components due to an accident or the like, current continues to flow in the surge absorber. As a result, the surge absorber generates heat, which causes ignition of electronic devices in the vicinity.

【0003】通常、このような過電圧又は過電流が回路
に継続して侵入することは考えられないが、不慮の事故
を想定して最大限の安全対策を施していく考えが広まっ
てきている。例えば、米国のUL(Underwriter's Labo
ratories Inc.)では、このような継続的な過電圧又は
過電流の侵入時にサージアブソーバが通信機器に火災や
電撃の危険を与えてはならないように、サージアブソー
バに対して所定の安全規格を制定している。
Normally, it is unlikely that such an overvoltage or overcurrent will continuously enter the circuit, but it is becoming more and more popular to take the maximum possible safety measures in anticipation of an accident. For example, UL (Underwriter's Labo) in the United States
ratories Inc.) has established a prescribed safety standard for surge absorbers so that the surge absorbers do not pose a risk of fire or electric shock to communication equipment when such continuous overvoltage or overcurrent enters. ing.

【0004】従来、こうした安全規格に適合し、継続的
な過電圧又は過電流に起因した電子機器の発火を防止し
得るサージアブソーバとして、ヒューズや低融点金属部
材をサージアブソーバの表面に密着させ、このヒューズ
や低融点金属部材をサージアブソーバに直列に接続した
ものが開示されている(特開昭63−11022、特開
昭63−18923)。
Conventionally, a fuse or a low melting point metal member has been adhered to the surface of a surge absorber as a surge absorber which complies with such safety standards and can prevent ignition of electronic equipment due to continuous overvoltage or overcurrent. A fuse and a low melting point metal member connected in series to a surge absorber are disclosed (Japanese Patent Laid-Open Nos. 63-11022 and 63-18923).

【0005】[0005]

【発明が解決しようとする課題】しかし、ヒューズや低
融点金属部材をサージアブソーバに直列に接続したサー
ジアブソーバは、過電圧又は過電流の侵入によりヒュー
ズや低融点金属部材が溶断すると、サージ吸収回路はオ
ープン状態になるため、次に到来するサージ電圧に備え
てサージアブソーバを新品と交換しなければならない煩
わしさがあった。本発明の目的は、雷サージのような瞬
間的なサージ電圧を吸収することに加えて、継続的な過
電圧又は過電流の侵入があった場合にはサージアブソー
バの異常発熱のみならず、電子部品やこの部品を搭載す
るプリント基板の熱的損傷、発火等を防止することがで
き、しかも次に到来するサージ電圧を吸収し得る放電型
サージアブソーバを提供することにある。本発明の別の
目的は、部品点数が少なくて済み、小型で、組立てが簡
単で量産性に優れた放電型サージアブソーバを提供する
ことにある。
However, a surge absorber in which a fuse or a low melting point metal member is connected in series to a surge absorber has a surge absorbing circuit which is not activated when the fuse or the low melting point metal member is blown out by the intrusion of overvoltage or overcurrent. Since it is in the open state, there is the trouble of having to replace the surge absorber with a new one in preparation for the next surge voltage. The object of the present invention is to absorb not only an instantaneous surge voltage such as a lightning surge but also not only abnormal heat generation of the surge absorber when there is a continuous overvoltage or overcurrent intrusion, but also electronic parts. Another object of the present invention is to provide a discharge type surge absorber capable of preventing thermal damage, ignition, etc. of a printed circuit board on which this component is mounted, and capable of absorbing a surge voltage that comes next. Another object of the present invention is to provide a discharge type surge absorber which has a small number of parts, is small in size, is easy to assemble, and is excellent in mass productivity.

【0006】[0006]

【課題を解決するための手段】本発明者らは、不活性ガ
ス入りの放電型サージアブソーバの放電開始電圧と比べ
て空気入りの放電型サージアブソーバの放電開始電圧が
高く、しかも後者の放電開始電圧は、例えば電話回線と
配電線の混触等により生じる過電圧より高い点に着目
し、本発明に到達した。
DISCLOSURE OF THE INVENTION The inventors have found that the discharge start voltage of an air-filled discharge surge absorber is higher than the discharge start voltage of an inert gas-filled discharge surge absorber, and the latter discharge start The present invention has been accomplished by paying attention to the point that the voltage is higher than the overvoltage generated by, for example, the contact between the telephone line and the distribution line.

【0007】即ち、図1に示すように、本発明の放電型
サージアブソーバ10は、絶縁管11と、この絶縁管1
1の両端に相対向して封着された一対の対向電極12,
13と、これらの対向電極12,13と絶縁管11とに
より形成される空間に封入された不活性ガス14とを備
える。その特徴ある構成は、一対の対向電極12,13
のいずれか一方又は双方に孔15が形成され、この孔1
5が低融点金属16で封止されたことにある。
That is, as shown in FIG. 1, the discharge type surge absorber 10 of the present invention includes an insulating pipe 11 and the insulating pipe 1.
A pair of opposed electrodes 12 which are sealed to face each other at both ends of
13 and an inert gas 14 sealed in a space formed by the counter electrodes 12 and 13 and the insulating tube 11. The characteristic configuration is that the pair of counter electrodes 12 and 13 are
Holes 15 are formed in either or both of
5 is sealed with the low melting point metal 16.

【0008】以下、本発明を詳述する。本発明の放電型
サージアブソーバは、対向電極型のサージアブソーバ
と、絶縁管内部にマイクロギャップを有するマイクロギ
ャップ式のサージアブソーバを含む。対向電極型サージ
アブソーバには、図3に示すような絶縁管11の両端に
互いに対向する一対の電極12,13を数mm間隔をあ
けて設け、これらの電極間に不活性ガス14を充填し封
入したサージアブソーバ30や、或いは図示しないが金
属製の一対の円柱状電極を数mm間隔で互いに対向さ
せ、絶縁管により不活性ガスを充填し封入したサージア
ブソーバがある。
The present invention will be described in detail below. The discharge type surge absorber of the present invention includes a counter electrode type surge absorber and a microgap type surge absorber having a microgap inside the insulating tube. In the counter electrode type surge absorber, a pair of electrodes 12 and 13 facing each other are provided at both ends of an insulating tube 11 as shown in FIG. 3 at intervals of several mm, and an inert gas 14 is filled between these electrodes. There is a surge absorber 30 that is enclosed, or a surge absorber (not shown) in which a pair of metal cylindrical electrodes are opposed to each other at intervals of several millimeters and filled with an inert gas by an insulating tube and enclosed.

【0009】図1に示すように、マイクロギャップ式の
サージアブソーバ10は絶縁管11内部にサージ吸収素
子20が収容される。サージ吸収素子20は導電性皮膜
21で被包した円柱状のセラミック素体22の両端に一
対のキャップ電極24,25を冠着した後、セラミック
素体22の中央に円周方向にマイクロギャップ23を形
成して作られる。導電性皮膜21はスパッタリング法、
蒸着法、イオンプレーティング法、めっき法、CVD法
等の薄膜形成法によりセラミック素体22を被包するよ
うにセラミック素体22の表面に形成され、マイクロギ
ャップ23はレーザにより導電性皮膜21を分割するよ
うに形成される。マイクロギャップはレーザ光線の焦点
深度及び導電性皮膜の厚さから10〜200μmの幅に
形成される。サージアブソーバ10はこのサージ吸収素
子20を絶縁管11内に収容してセラミック素体22の
両端に一対の対向電極12,13を配置し、これらの対
向電極12,13をキャップ電極24,25に電気的に
接続し同時に絶縁管11内部に不活性ガス14を封入し
て作られる。収容されたサージ吸収素子20は一対の対
向電極12,13を絶縁管11の両端に封着するときに
対向電極12,13により固定される。
As shown in FIG. 1, the surge absorber 10 of the microgap type has a surge absorbing element 20 housed inside an insulating tube 11. In the surge absorbing element 20, a pair of cap electrodes 24 and 25 are attached to both ends of a cylindrical ceramic body 22 covered with a conductive film 21, and then a microgap 23 is circumferentially formed in the center of the ceramic body 22. Made by forming. The conductive film 21 is formed by the sputtering method,
The ceramic body 22 is formed on the surface of the ceramic body 22 by a thin film forming method such as a vapor deposition method, an ion plating method, a plating method, and a CVD method. It is formed to be divided. The micro gap is formed in a width of 10 to 200 μm depending on the depth of focus of the laser beam and the thickness of the conductive film. The surge absorber 10 accommodates the surge absorbing element 20 in an insulating tube 11 and arranges a pair of counter electrodes 12 and 13 at both ends of a ceramic body 22. The counter electrodes 12 and 13 are cap electrodes 24 and 25, respectively. It is made by electrically connecting and at the same time enclosing the inert gas 14 inside the insulating tube 11. The accommodated surge absorbing element 20 is fixed by the counter electrodes 12 and 13 when the pair of counter electrodes 12 and 13 is sealed at both ends of the insulating tube 11.

【0010】本発明の絶縁管はガラス管、セラミック管
等である。ガラス管はホウケイ酸ガラスのような硬質ガ
ラス、又は鉛ガラス、ソーダ石灰ガラスのような軟質ガ
ラスから作られる。セラミック管はPLZT、透明アル
ミナのような可視光線を透過するセラミック焼結体から
作られたもののみならず、他の絶縁性のあるセラミック
管であればよい。
The insulating tube of the present invention is a glass tube, a ceramic tube or the like. The glass tube is made of hard glass such as borosilicate glass, or soft glass such as lead glass, soda lime glass. The ceramic tube is not limited to one made of a ceramic sintered body that transmits visible light, such as PLZT or transparent alumina, but may be another ceramic tube having an insulating property.

【0011】対向電極は封着時の絶縁管の熱収縮による
クラックの発生を防止するために絶縁管と熱膨張係数の
ほぼ等しい金属を用いる。従って対向電極は絶縁管の種
類より材質を選定する。絶縁管が軟質ガラス管である場
合には、対向電極に鉄52wt%−ニッケル42wt%
−クロム6wt%合金等が用いられ、絶縁管が硬質ガラ
ス管である場合には、鉄58wt%−ニッケル42wt
%合金(以下、42合金という)等が用いられる。絶縁
管がセラミック管である場合には、対向電極に42合金
と銅のクラッド材、コバール(Kovar)等が用いられ
る。42合金と銅のクラッド材は42合金の板材の片面
又は両面に銅薄膜を密着させ、高温で機械的に圧延する
クラッド法(cladding)により作られる。クラッド材の
銅薄膜を酸化させて銅表面を亜酸化銅にすると封着時に
ガラスとのなじみが良くなり好ましい。このクラッド材
を円板に打抜いた後、絞り加工して対向電極にする。
The counter electrode is made of a metal whose coefficient of thermal expansion is substantially the same as that of the insulating tube in order to prevent the occurrence of cracks due to thermal contraction of the insulating tube during sealing. Therefore, the material of the counter electrode is selected according to the type of insulating tube. When the insulating tube is a soft glass tube, iron 52 wt% -nickel 42 wt% is applied to the counter electrode.
-Chromium 6wt% alloy is used, and when the insulating tube is a hard glass tube, iron 58wt% -nickel 42wt%
% Alloy (hereinafter referred to as 42 alloy) or the like is used. When the insulating tube is a ceramic tube, a clad material of 42 alloy and copper, Kovar, or the like is used for the counter electrode. The clad material of 42 alloy and copper is made by a clad method in which a copper thin film is adhered to one or both sides of a plate material of 42 alloy and mechanically rolled at high temperature. It is preferable to oxidize the copper thin film of the clad material to form cuprous oxide on the copper surface, because the compatibility with glass becomes good at the time of sealing. After punching this clad material into a disk, it is drawn to form a counter electrode.

【0012】対向電極型のサージアブソーバもマイクロ
ギャップ式のサージアブソーバも対向電極を封着すると
きには 絶縁管の内部にアルゴンガス、ネオンガス、窒
素ガス等の不活性ガスを充填する。また本発明の対向電
極に形成される孔は1個に限らず、複数個でもよい。ま
た一方の対向電極のみでなく、双方の対向電極に形成し
てもよい。更に本発明の低融点金属にはアルミニウム、
鉛、錫又は亜鉛のいずれか或いはこれらの合金が用いら
れる。
Both the counter electrode type surge absorber and the micro gap type surge absorber are filled with an inert gas such as argon gas, neon gas or nitrogen gas when the counter electrode is sealed. Further, the number of holes formed in the counter electrode of the present invention is not limited to one, and a plurality of holes may be formed. Further, not only one counter electrode but also both counter electrodes may be formed. Further, the low melting point metal of the present invention is aluminum,
Either lead, tin or zinc or alloys thereof are used.

【0013】[0013]

【作用】本発明のサージアブソーバ10が接続された線
路に継続して過電圧又は過電流が侵入すると、サージ吸
収素子20が抵抗体であるため発熱し、これに伴って対
向電極12,13も発熱する。この熱により対向電極に
形成された孔15を封止していた低融点金属16が溶融
する。この溶融により孔15が開放され、不活性ガス1
4で満たされていた絶縁管11内に孔15を通って空気
が流入する。絶縁管11の内部に空気が入ると、放電維
持電圧が通常の過電圧より高くなり放電が停止する。
When an overvoltage or an overcurrent continuously enters the line to which the surge absorber 10 of the present invention is connected, the surge absorbing element 20 is a resistor and generates heat, and the counter electrodes 12 and 13 also generate heat accordingly. To do. This heat melts the low melting point metal 16 that has sealed the hole 15 formed in the counter electrode. The holes 15 are opened by this melting, and the inert gas 1
Air flows through the hole 15 into the insulating tube 11 which is filled with 4. When air enters the insulating tube 11, the discharge sustaining voltage becomes higher than the normal overvoltage and the discharge is stopped.

【0014】[0014]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。 <実施例>図1に示すように、マイクロギャップ式のサ
ージアブソーバ10を次の方法により製造した。先ず絶
縁管11内に収容されるサージ吸収素子20を用意し
た。このサージ吸収素子20の円柱状のセラミック素体
22はムライト焼結体からなり、この表面はスパッタリ
ングによりTiNからなる導電性皮膜21で被包され
る。このセラミック素体22の両端にステンレス製のキ
ャップ電極24と25が冠着される。セラミック素体2
2の中央部にレーザビームを照射して導電性皮膜21を
円周方向にトリミングして幅約30μmのマイクロギャ
ップ23が形成され、サージ吸収素子20が作製され
る。
Embodiments of the present invention will now be described in detail with reference to the drawings. <Example> As shown in FIG. 1, a microgap type surge absorber 10 was manufactured by the following method. First, the surge absorbing element 20 housed in the insulating tube 11 was prepared. The cylindrical ceramic body 22 of the surge absorbing element 20 is made of a mullite sintered body, and its surface is covered with a conductive film 21 made of TiN by sputtering. Cap electrodes 24 and 25 made of stainless steel are attached to both ends of the ceramic body 22. Ceramic body 2
By irradiating the central portion of 2 with a laser beam and trimming the conductive film 21 in the circumferential direction, a microgap 23 having a width of about 30 μm is formed, and the surge absorbing element 20 is manufactured.

【0015】絶縁管11として低融点の鉛ガラス管を用
意し、このガラス管11をカーボンヒータを設けた封着
室(図示せず)に配置した。孔15が形成されていない
ハット状の対向電極13をガラス管11内に挿入し、次
いでガラス管11の内部にサージ吸収素子20を入れ、
対向電極13の凹部13aにキャップ電極25を挿入し
た。これによりサージ吸収素子20がガラス管11の中
心に配置され、続いて孔15が形成されたハット状の対
向電極12の凹部12aをサージ吸収素20のキャップ
電極24に被せ、対向電極12をガラス管11内に挿入
した。対向電極12,13は鉄52wt%−ニッケル4
2wt%−クロム6wt%合金により構成される。
A low melting point lead glass tube was prepared as the insulating tube 11, and the glass tube 11 was placed in a sealing chamber (not shown) provided with a carbon heater. The hat-shaped counter electrode 13 in which the hole 15 is not formed is inserted into the glass tube 11, and then the surge absorbing element 20 is inserted into the glass tube 11.
The cap electrode 25 was inserted into the recess 13 a of the counter electrode 13. As a result, the surge absorbing element 20 is arranged in the center of the glass tube 11, and subsequently, the recess 12a of the hat-shaped counter electrode 12 in which the hole 15 is formed is covered with the cap electrode 24 of the surge absorbing element 20, and the counter electrode 12 is made of glass. It was inserted into the tube 11. The counter electrodes 12 and 13 are iron 52 wt% -nickel 4
2 wt% -chromium 6 wt% alloy.

【0016】封着室を負圧にすることによりガラス管内
部の空気を抜いた後、代わりにアルゴンガスを封着室に
供給して240Torrの圧力でガラス管内にこのアル
ゴンガス14を導入した。この状態でカーボンヒータに
よりガラス管11及び対向電極12,13を740℃、
1分間加熱した。対向電極12,13がガラス管11に
封着した後、孔15の上に低融点金属16であるPb/
Sn合金を配置し、ガラス管11内にアルゴンガス14
を満たした状態で低融点金属16が溶ける温度にカーボ
ンヒータを加熱し、孔15を低融点金属16で封止し
て、サージアブソーバ10を得た。このサージアブソー
バ10は長さ8.0mmで外径6.0mmの寸法を有し
た。
After the air inside the glass tube was evacuated by setting the negative pressure in the sealing chamber, argon gas was supplied to the sealing chamber instead, and the argon gas 14 was introduced into the glass tube at a pressure of 240 Torr. In this state, the glass tube 11 and the counter electrodes 12, 13 are heated to 740 ° C. by a carbon heater.
Heated for 1 minute. After the counter electrodes 12 and 13 are sealed to the glass tube 11, the low melting point metal 16 of Pb /
Arranging Sn alloy, Argon gas 14 in the glass tube 11
The carbon heater was heated to a temperature at which the low-melting point metal 16 melts in a state of satisfying the above condition, and the hole 15 was sealed with the low-melting point metal 16 to obtain the surge absorber 10. This surge absorber 10 had a length of 8.0 mm and an outer diameter of 6.0 mm.

【0017】<比較例1>孔15及び低融点金属16の
ない対向電極12を用いた以外は実施例と同一のサージ
アブソーバを用意した。図4に示すようにこのサージア
ブソーバ1に(8×20)μsec−600Aで初めて
溶断するヒューズ2を直列に接続し、たて1.0cm、
よこ2.0cm、高さ0.5cmの寸法を有するケース
3に入れた。
<Comparative Example 1> The same surge absorber as that of the embodiment was prepared except that the counter electrode 12 having neither the hole 15 nor the low melting point metal 16 was used. As shown in FIG. 4, the surge absorber 1 was connected in series with the fuse 2 which is blown for the first time at (8 × 20) μsec-600 A, and the height was 1.0 cm.
It was placed in a case 3 having dimensions of width 2.0 cm and height 0.5 cm.

【0018】<比較例2>孔15及び低融点金属16の
ない対向電極12を用いた以外は実施例と同一のサージ
アブソーバを用意した。
<Comparative Example 2> The same surge absorber as that of the embodiment was prepared except that the counter electrode 12 having neither the hole 15 nor the low melting point metal 16 was used.

【0019】<比較試験と評価> (a) 過電圧印加試験 実施例のサージアブソーバ10と比較例1のヒューズ付
きサージアブソーバと比較例2のサージアブソーバにそ
れぞれ1Aで600Vの過電圧を印加した。その結果、
実施例のサージアブソーバ10では、対向電極12,1
3が過熱し、低融点金属16が溶融した。孔15が開放
され、ガラス管11内に空気が入り込んで、約3秒で放
電が止んだ。比較例1のヒューズ付きサージアブソーバ
では、ヒューズ2が過熱により同様に約3秒で溶断し、
サージアブソーバ1の放電が止んだ。比較例2のサージ
アブソーバは放電が停止せず、対向電極が過熱し、接続
していたプリント基板を発火させた。
<Comparison Test and Evaluation> (a) Overvoltage Application Test An overvoltage of 600 V at 1 A was applied to each of the surge absorber 10 of the example, the surge absorber with a fuse of comparative example 1 and the surge absorber of comparative example 2. as a result,
In the surge absorber 10 of the embodiment, the counter electrodes 12, 1
3 overheated, and the low melting point metal 16 melted. The hole 15 was opened, air entered the glass tube 11, and the discharge stopped in about 3 seconds. In the surge absorber with a fuse of Comparative Example 1, the fuse 2 was blown out in about 3 seconds due to overheating.
The surge absorber 1 has stopped discharging. With the surge absorber of Comparative Example 2, the discharge did not stop, the counter electrode overheated, and the connected printed circuit board ignited.

【0020】(b) インパルスに対する応答試験 放電開始電圧Vs(V)とサージ応答電圧Vimp(V)を
それぞれ測定した。放電開始電圧の測定は試料数それぞ
れ20個で行い、サージ応答電圧は実施例のサージアブ
ソーバ10と比較例1,2のサージアブソーバに(1.
2×50)μsec−10kVの疑似サージをそれぞれ5
回ずつ繰返し印加し、その動作電圧を測定した。これら
の平均値を表1に示す。
(B) Impulse Response Test The discharge start voltage Vs (V) and the surge response voltage Vimp (V) were measured. The discharge start voltage was measured for each of 20 samples, and the surge response voltage was measured in the surge absorber 10 of the example and the surge absorbers of the comparative examples 1 and 2 (1.
2 x 50) μsec-10kV pseudo surge for each 5
The voltage was applied repeatedly and the operating voltage was measured. Table 1 shows these average values.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、実施例のサージ
アブソーバ10は比較例1及び比較例2のサージアブソ
ーバと比較して同等の優れたサージ応答性を有すること
が判った。
As is clear from Table 1, it was found that the surge absorber 10 of the example has the same excellent surge response as compared with the surge absorbers of the comparative examples 1 and 2.

【0023】[0023]

【発明の効果】以上述べたように、本発明によれば、雷
サージのような瞬間的なサージ電圧を吸収することに加
えて、継続的な過電圧又は過電流の侵入があった場合に
は低融点金属が溶融して、絶縁管内に空気が流入するた
め、放電維持電圧が上昇し、サージアブソーバの異常発
熱のみならず、電子部品及びこの部品を搭載するプリン
ト基板の熱的損傷、発火等を防止することができる。ま
た本発明の放電型サージアブソーバは従来のようなヒュ
ーズを用いないため、部品点数を減少してコストを削減
でき、占有スペースが僅かで済み、組立が簡便で量産性
に優れる。特に絶縁管内に空気が流入した後にも、サー
ジに対する応答性は低下するが、次に到来するサージ電
圧を吸収するサージアブソーバ本来の機能を依然として
有する。
As described above, according to the present invention, in addition to absorbing a momentary surge voltage such as a lightning surge, when there is a continuous overvoltage or overcurrent intrusion, Since the low melting point metal melts and air flows into the insulating tube, the discharge sustaining voltage rises, causing not only abnormal heat generation of the surge absorber, but also thermal damage and ignition of electronic components and the printed circuit board on which these components are mounted. Can be prevented. Further, since the discharge type surge absorber of the present invention does not use a fuse as in the prior art, the number of parts can be reduced and the cost can be reduced, the occupying space is small, the assembly is easy and the mass productivity is excellent. In particular, even after air has flowed into the insulating tube, the response to the surge is reduced, but it still has the original function of the surge absorber that absorbs the next surge voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のマイクロギャップ式のサージアブソー
バの中央縦断面図。
FIG. 1 is a central longitudinal sectional view of a micro-gap type surge absorber of the present invention.

【図2】(a)その孔の形成された一方の対向電極の正
面図。 (b)その孔の形成されない他方の対向電極の正面図。
FIG. 2A is a front view of one counter electrode in which the hole is formed. (B) The front view of the other counter electrode in which the hole is not formed.

【図3】本発明の対向電極型のサージアブソーバの中央
縦断面図。
FIG. 3 is a central longitudinal sectional view of a counter electrode type surge absorber of the present invention.

【図4】従来例のヒューズ付きサージアブソーバの回路
構成図。
FIG. 4 is a circuit configuration diagram of a conventional surge absorber with a fuse.

【符号の説明】[Explanation of symbols]

10,30 サージアブソーバ 11 絶縁管(ガラス管) 12,13 対向電極 14 不活性ガス 15 孔 16 低融点金属 20 サージ吸収素子 21 導電性皮膜 22 セラミック素体 23 マイクロギャップ 24,25 キャップ電極 10,30 Surge absorber 11 Insulation tube (glass tube) 12,13 Counter electrode 14 Inert gas 15 Hole 16 Low melting point metal 20 Surge absorbing element 21 Conductive film 22 Ceramic element body 23 Microgap 24,25 Cap electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月24日[Submission date] August 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 ─────────────────────────────────────────────────────
[Figure 1] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月27日[Submission date] September 27, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】対向電極は封着時の絶縁管の熱収縮による
クラックの発生を防止するために絶縁管と熱膨張係数の
ほぼ等しい金属を用いる。従って対向電極は絶縁管の種
類より材質を選定する。絶縁管が軟質ガラス管である場
合には、対向電極に鉄52wt%−ニッケル42wt%
−クロム6wt%合金、鉄58wt%−ニッケル42w
t%合金(以下、42合金という)と銅のクラッド材等
が用いられ、絶縁管が硬質ガラス管である場合には、4
2合金等が用いられる。絶縁管がセラミック管である場
合には、対向電極に42合金と銅のクラッド材、コバー
ル(Kovar)等が用いられる。42合金と銅のクラッド
材は42合金の板材の片面又は両面に銅薄膜を密着さ
せ、高温で機械的に圧延するクラッド法(cladding)に
より作られる。クラッド材の銅薄膜を酸化させて銅表面
を亜酸化銅にすると封着時にガラスとのなじみが良くな
り好ましい。このクラッド材を円板に打抜いた後、絞り
加工して対向電極にする。
The counter electrode is made of a metal whose coefficient of thermal expansion is substantially the same as that of the insulating tube in order to prevent the occurrence of cracks due to thermal contraction of the insulating tube during sealing. Therefore, the material of the counter electrode is selected according to the type of insulating tube. When the insulating tube is a soft glass tube, iron 52 wt% -nickel 42 wt% is applied to the counter electrode.
-Chromium 6wt% alloy, Iron 58wt% -Nickel 42w
If t% alloy (hereinafter referred to as 42 alloy) and copper clad material are used and the insulating tube is a hard glass tube, 4
2 alloy or the like is used. When the insulating tube is a ceramic tube, a clad material of 42 alloy and copper, Kovar, or the like is used for the counter electrode. The clad material of 42 alloy and copper is made by a clad method in which a copper thin film is adhered to one or both sides of a plate material of 42 alloy and mechanically rolled at high temperature. It is preferable to oxidize the copper thin film of the clad material to form cuprous oxide on the copper surface, because the compatibility with glass becomes good at the time of sealing. After punching this clad material into a disk, it is drawn to form a counter electrode.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】絶縁管11として低融点の鉛ガラス管を用
意し、このガラス管11をカーボンヒータに設けた封着
室(図示せず)に配置した。孔15が形成されていない
ハット状の対向電極13をガラス管11内に挿入し、次
いでガラス管11の内部にサージ吸収素子20を入れ、
対向電極13の凹部13aにキャップ電極25を挿入し
た。これによりサージ吸収素子20がガラス管11の中
心に配置され、続いて孔15が形成されたハット状の対
向電極12の凹部12aをサージ吸収素20のキャップ
電極24に被せ、対向電極12をガラス管11内に挿入
した。対向電極12,13は鉄52wt%−ニッケル4
2wt%−クロム6wt%合金により構成される。
A low melting point lead glass tube was prepared as the insulating tube 11, and the glass tube 11 was placed in a sealing chamber (not shown) provided in a carbon heater. The hat-shaped counter electrode 13 in which the hole 15 is not formed is inserted into the glass tube 11, and then the surge absorbing element 20 is inserted into the glass tube 11.
The cap electrode 25 was inserted into the recess 13 a of the counter electrode 13. As a result, the surge absorbing element 20 is arranged in the center of the glass tube 11, and subsequently, the recess 12a of the hat-shaped counter electrode 12 in which the hole 15 is formed is covered with the cap electrode 24 of the surge absorbing element 20, and the counter electrode 12 is made of glass. It was inserted into the tube 11. The counter electrodes 12 and 13 are iron 52 wt% -nickel 4
2 wt% -chromium 6 wt% alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 政利 埼玉県秩父郡横瀬町大字横瀬2270番地 三 菱マテリアル株式会社セラミックス研究所 内 (72)発明者 原田 三喜男 埼玉県秩父郡横瀬町大字横瀬2270番地 三 菱マテリアル株式会社セラミックス研究所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatoshi Abe 2270 Yokoze, Yokose-cho, Chichibu-gun, Saitama Sanryo Materials Co., Ltd. Ceramics Laboratory (72) Mikio Harada 2270 Yokose, Yokose-cho, Chichibu-gun, Saitama Sanryo Materials Co., Ltd. Ceramics Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁管(11)と、 前記絶縁管(11)の両端に相対向して封着された一対の対
向電極(12,13)と、 前記対向電極(12,13)と前記絶縁管(11)とにより形成さ
れる空間に封入された不活性ガス(14)とを備えた放電型
サージアブソーバ(10)において、 前記一対の対向電極(12,13)のいずれか一方又は双方に
孔(15)が形成され、 前記孔(15)が低融点金属(16)で封止されたことを特徴と
する放電型サージアブソーバ。
1. An insulating tube (11), a pair of counter electrodes (12, 13) sealed at opposite ends of the insulating tube (11) so as to face each other, the counter electrode (12, 13) and the In a discharge type surge absorber (10) provided with an inert gas (14) sealed in a space formed by an insulating tube (11), one or both of the pair of counter electrodes (12, 13) A discharge type surge absorber, characterized in that a hole (15) is formed in the hole, and the hole (15) is sealed with a low melting point metal (16).
【請求項2】 導電性皮膜(21)で被包した円柱状のセラ
ミック素体(22)の周面にマイクロギャップ(23)が形成さ
れ、前記セラミック素体(22)の両端に一対のキャップ電
極(24,25)を有するサージ吸収素子(20)が絶縁管(11))内
に収容され、 一対の対向電極(12,13)が封着状態で前記サージ吸収素
子(20)を固定し、かつ前記一対のキャップ電極(24,25)
に電気的に接続された請求項1記載の放電型サージアブ
ソーバ。
2. A microgap (23) is formed on a peripheral surface of a cylindrical ceramic body (22) covered with a conductive film (21), and a pair of caps is provided at both ends of the ceramic body (22). The surge absorbing element (20) having the electrodes (24, 25) is housed in the insulating tube (11), and the pair of opposing electrodes (12, 13) are fixed to fix the surge absorbing element (20). And the pair of cap electrodes (24, 25)
The discharge type surge absorber according to claim 1, which is electrically connected to the.
【請求項3】 低融点金属(16)がアルミニウム、鉛、錫
又は亜鉛のいずれか或いはこれらの合金である請求項1
又は2記載の放電型サージアブソーバ。
3. The low melting point metal (16) is aluminum, lead, tin or zinc, or an alloy thereof.
Alternatively, the discharge type surge absorber described in 2.
JP20676993A 1993-08-23 1993-08-23 Discharge type surge absorber Expired - Lifetime JP3199088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20676993A JP3199088B2 (en) 1993-08-23 1993-08-23 Discharge type surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20676993A JP3199088B2 (en) 1993-08-23 1993-08-23 Discharge type surge absorber

Publications (2)

Publication Number Publication Date
JPH0765930A true JPH0765930A (en) 1995-03-10
JP3199088B2 JP3199088B2 (en) 2001-08-13

Family

ID=16528789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20676993A Expired - Lifetime JP3199088B2 (en) 1993-08-23 1993-08-23 Discharge type surge absorber

Country Status (1)

Country Link
JP (1) JP3199088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686634A (en) * 2015-12-04 2019-04-26 深圳市槟城电子有限公司 A kind of gas-discharge tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686634A (en) * 2015-12-04 2019-04-26 深圳市槟城电子有限公司 A kind of gas-discharge tube
US10943757B2 (en) 2015-12-04 2021-03-09 Shenzhen Bencent Telectronics Co., Ltd. Gas discharge tube

Also Published As

Publication number Publication date
JP3199088B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JP2794346B2 (en) Surge absorber
US4355345A (en) High current draining capacity micro-lightning arrester
US5404126A (en) Fuse Resistor, and discharging-type surge absorbing device with security mechanism
US7466530B2 (en) Surge arrester
US5559663A (en) Surge absorber
US3564473A (en) Surge protector
US4175277A (en) Voltage surge protector
JPH024478Y2 (en)
JPH0765930A (en) Discharge type surge absorber
JP4544255B2 (en) Electronic component enclosure
JP3265874B2 (en) surge absorber
JP3601320B2 (en) surge absorber
US4277812A (en) Excess voltage arrester
EP0595399B1 (en) High pressure discharge lamp provided with a thick film resistor in an outer envelope and a thick film resistor therefore
US5475356A (en) Gas-tube arrester
JPH07320845A (en) Discharge type surge absorber
JPH0878133A (en) Serge absorber
JPH07169554A (en) Surge absorbing element
JPH0748928B2 (en) Surge absorber
JP2513087B2 (en) Surge absorber for communication line
JP3134912B2 (en) surge absorber
JPH071748Y2 (en) Substrate resistance and surge absorber with safety mechanism
JPH0731519Y2 (en) Discharge type surge absorber with safety mechanism
JPH071749Y2 (en) Substrate resistance and surge absorber with safety mechanism
JPH1022042A (en) Electronic part sealing body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

EXPY Cancellation because of completion of term