TW591764B - Scalable split-gate flash cell structure and its contactless divided diffusion bit-line arrays - Google Patents

Scalable split-gate flash cell structure and its contactless divided diffusion bit-line arrays Download PDF

Info

Publication number
TW591764B
TW591764B TW92115290A TW92115290A TW591764B TW 591764 B TW591764 B TW 591764B TW 92115290 A TW92115290 A TW 92115290A TW 92115290 A TW92115290 A TW 92115290A TW 591764 B TW591764 B TW 591764B
Authority
TW
Taiwan
Prior art keywords
layer
side wall
common
region
pair
Prior art date
Application number
TW92115290A
Other languages
Chinese (zh)
Other versions
TW200428600A (en
Inventor
Ching-Yuan Wu
Original Assignee
Silicon Based Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Based Tech Corp filed Critical Silicon Based Tech Corp
Priority to TW92115290A priority Critical patent/TW591764B/en
Application granted granted Critical
Publication of TW591764B publication Critical patent/TW591764B/en
Publication of TW200428600A publication Critical patent/TW200428600A/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A scalable split-gate flash cell structure comprises a scalable split-gate region being formed between a common-source region and a scalable common-drain region. The scalable split-gate region comprises a scalable control-gate conductive island having its first portion formed above a scalable floating-gate island with an integrate dielectric layer being formed on its top surface and a poly-oxide layer being formed over its inner sidewall and its second portion formed on a gate dielectric layer with an implant region being formed in a surface portion of a semiconductor substrate. The common-source/scalable common-drain region comprises a common-source/drain diffusion region with or without being divided into a pair of buried source/drain diffusion regions by an etched-back first/second planarized field-oxide layer. Based on the source/drain diffusion structure, three different contactless divided diffusion bit-line arrays are disclosed.

Description

591764 五、發明說明(1) (1 )發明所屬之技術領域 本發明與一種分閘式(S P 1 i t - g a t e )快閃記 構及其快閃記憶陣列有關,特別是與一種可微 快閃記憶細胞元結構及其無接點(contactles〈 d i v i ded )擴散位元線陣列有關。 (2 )先前技術 一個疊堆閘(stacked-gate)快閃記憶細胞 是一個電晶體的細胞元且可以根據基本邏輯功 或型(NOR-type)、非及型(NAND-type)或及型 陣列。上述之非及型快閃記憶陣列係透過共源 將该疊堆閘快閃記憶細胞元加予串接。因此, 串内的細胞元數目,其細胞元尺寸可以製造成 5 F 2之間。然而,當一個字串内的細胞元數目 串聯電阻將大幅增加,因而造成讀速度的降低 上述之非或型快閃記憶陣列可以透過共源 形成於共汲擴散區的位元線接觸(c〇ntac/)'將 閃記憶細胞元加予並聯來組成。通常,由於該 的關係,該非或型快閃記憶陣列的單位細胞^ 6F 2 ,然而其讀速度比該非及型快閃記憶陣列 。上述之非或型快閃記憶陣列可以將該疊堆閘 胞,加予並聯且形成於埋層共源/汲擴散位元 除每一個細胞元的位元線接觸,然而該埋層丘 線係透過一個沒選擇電晶體的—個接觸接^二 憶細胞元結 縮化分閘式 ;)分、離式( 元係被公認 能來組成非 (AND-type) /汲擴散區 根據一個字 介於4 F 2和 增加時,其 〇 擴散管線及 該疊堆閘快 位元線接觸 尺寸係大於 的快得很多 快閃記憶細 線之間來消 汲擴散位元 個數據線而 591764 五、發明說明(2) 該埋層共源位元線係藉由一個接觸點接至一個共接地擴散 線。這裡可以清楚地看到,該非或型快閃記憶陣列的細胞 元尺寸可以製造成比該非及型快閃記憶陣列的小;另外, 當該疊堆閘快閃記憶細胞元的數目增加時,該埋層共源/ 汲擴散位元線陣列之讀速度比該非及型快閃記憶陣列的快 得很多。 上述之埋層共源/汲擴散位元線陣列的一個典型實例 如圖一所示,其中複數疊堆閘快閃細胞元(1 0〜2 5 )係形成 於相鄰埋層共源/汲擴散位線(BL’ s)之間且複數字線(WL’ s)係與該埋層共源/汲擴散位元線(BL’ s)互為垂直。上述 之疊堆閘快閃記憶細胞元(1 0〜2 5 )的每一個係藉由通道熱 電子注入法(CHEI )來寫入且可以藉由富勒-諾得漢(Fowler -Nordheim)穿透法將儲存於一個漂浮閘的電子穿透至該埋 層共源擴散位元線或一個半導體基板來擦洗。 這裡可以清楚地看到,若該疊堆閘快閃記憶細胞元進 一步加予微縮化時,位於該埋層共源/汲擴散位元線之間 的該疊堆閘快閃記憶細胞元尚有一些問題仍有待克服:抵 穿效應將是元件微縮化的一個主要關切點;當源/汲接面 深度加予微縮化時,該埋層共源/汲擴散位元線的片電阻 將大幅增加;通道熱電子注入法的寫入效率較低且一個高 密度快閃記憶陣列的寫入時間將變長;以及一個高密度快 閃記憶陣列的超擦洗(〇 v e r - e r a s e )問題會造成較長的驗證 時間。 因此,本發明的一個主要目的係提供一個可微縮化分591764 V. Description of the invention (1) (1) The technical field to which the invention belongs The present invention relates to a SP 1 it-gate flash memory structure and its flash memory array, and particularly to a micro flash memory The cell structure is related to the contactless array (divided) diffusion bit line array. (2) In the prior art, a stacked-gate flash memory cell is a cell of an electric crystal and can be based on basic logic work or type (NOR-type), non-type (NAND-type) or and type Array. The above-mentioned non-flash type flash memory array is cascaded by cascading the stacked gate flash memory cells through a common source. Therefore, the number of cells in a string can be made between 5 F 2 and its cell size. However, when the number of cells in a string is increased, the series resistance will increase greatly, which will cause the read speed to decrease. The above-mentioned non-or flash memory array can be formed by bit line contact (c ntac /) 'is made up of parallel flash memory cells. Generally, due to the relationship, the unit cell of the NAND flash memory array is 6F 2, but its read speed is faster than that of the NAND flash memory array. The above-mentioned non-or flash memory array can add the stacked gate cells in parallel and formed in the buried source / diffusion bit except for the bit line contact of each cell. However, the buried mound line system Through a non-selective transistor, a contact connection, two memory cell shrinking and opening type;), separation and separation type (elementary system is recognized to form an AND-type / diffusion region according to a word between When 4 F 2 is increased, the size of the contact between the diffusion line and the fast bit line of the stack gate is larger than that of many fast flash memory thin lines to drain the diffusion bit data lines, and 591764 V. Description of the invention ( 2) The buried source bit line is connected to a common ground diffusion line through a contact point. It can be clearly seen here that the cell size of the NAND flash memory array can be made faster than the NAND flash memory array. The flash memory array is small; in addition, as the number of stacked flash memory cells increases, the read speed of the buried source / diffusion bit line array is much faster than that of the non-flash memory array. Common buried source / diffusion potentials mentioned above A typical example of an array is shown in Fig. 1. A plurality of stacked gate flash cells (10 to 25) are formed between adjacent buried common source / drain diffusion bit lines (BL's). The digital line (WL's) is perpendicular to the buried source / diffusion bit line (BL's). Each of the above-mentioned stack gate flash memory cells (10 to 25) It is written by the channel hot electron injection method (CHEI) and the electrons stored in a floating gate can be penetrated by the Fowler-Nordheim penetration method to the buried layer common source diffusion site Line or a semiconductor substrate for scrubbing. It can be clearly seen here that if the stack gate flash memory cell is further miniaturized, the stack located between the buried layer common source / diffusion bit line There are still some problems to be overcome in the gate flash memory cell: the puncture effect will be a major concern of component miniaturization; when the source / drain junction depth is increased to the micronization, the buried layer co-source / drain diffusion potential The chip resistance of the element wire will be greatly increased; the write efficiency of the channel hot electron injection method is low and a high-density flash The write time of the memory array will become longer; and the over-erase problem of a high-density flash memory array will cause a longer verification time. Therefore, a main object of the present invention is to provide a miniaturizable Minute

第7頁 591764 五、發明說明(3) 閘式快閃記憶細胞元結構及其無接點分離式擴散位元線陣 列來消除或降低上述之微縮化疊堆閘快閃記憶細胞元及其 快閃記憶陣列所面臨的問題。 (3 )發明内容 本發明揭示一種可微縮化分閘式快閃記憶細胞元結構 及其無接點分離式擴散位元線陣列。上述之可微縮化分閘 式快閃記憶細胞元結構形成於一種第一導電型的一個半導 體基板之上至少包含一個可微縮化分閘區形成於一個共源 區及一個可微縮化共汲區之間。上述之可微縮化分閘區藉 由一個第四側邊牆介電墊層來定義至少包含一個可微縮化 控制閘導電島具有其第一部份形成於一個可微縮化漂浮閘 島之上方及其第二部份形成於一個閘介電層的一部份表面 之上,其中上述之可微縮化漂浮閘島係藉由一個第三側邊 牆介電墊層來定義且具有一個閘間介電層形成於其頂部表 面之上及一個複晶矽氧化物層形成於其内側邊牆之上以及 一個離子佈植區至少包含一個淺離子佈植區以作為臨界電 壓的調整及一個深離子佈植區以形成一個抵穿禁止區係形 成於該閘介電層的一部份表面之下的該半導體基板之一個 表面部份。 上述之共源區至少包含一種第二導電型的一個共源擴 散區形成於該半導體基板的一個表面部份及一對回蝕第一 側邊牆介電墊層形成於相鄰可微縮化分閘區的側邊牆之上 且置於該穿透介電層的一部份表面之上。上述之可微縮化Page 7 591764 V. Description of the invention (3) Gate flash memory cell structure and its non-contact discrete diffusion bit line array to eliminate or reduce the above-mentioned miniaturized stacked gate flash memory cell and its fast Problems facing flash memory arrays. (3) Summary of the Invention The present invention discloses a miniaturizable open-type flash memory cell structure and a contactless discrete diffusion bit line array. The above-mentioned micronizable split-type flash memory cell structure is formed on a semiconductor substrate of a first conductivity type and includes at least one micronizable split-type region formed in a common source region and a micronizable common drain region. between. The above-mentioned micronizable gate area is defined by a fourth side wall dielectric cushion layer, which includes at least one micronizable control gate conductive island having a first portion formed above a micronizable floating gate island and The second part is formed on a part of the surface of a gate dielectric layer. The above-mentioned miniaturizable floating gate island is defined by a third side wall dielectric cushion layer and has a gate dielectric. An electrical layer is formed on the top surface thereof, a polycrystalline silicon oxide layer is formed on the inner side wall, and an ion implantation region includes at least one shallow ion implantation region for the adjustment of the threshold voltage and a deep ion A region is planted to form a surface portion of the semiconductor substrate that is formed below a portion of the surface of the gate dielectric layer and penetrates the forbidden region. The above-mentioned common source region includes at least a second conductivity type, a common source diffusion region formed on a surface portion of the semiconductor substrate, and a pair of etched back side wall dielectric pads formed on adjacent micronizable elements. The gate region is on the side wall and is disposed on a part of the surface of the penetrating dielectric layer. Miniaturizable

591764 五、發明說明(4) 共汲區至少包含該第二導電型的一個共汲擴散區及一對回 蚀第二側邊牆介電墊層形成於相鄰可微縮化分閘區的側邊 赌之上。一個金屬字線與該可微縮化控制閘導電島積體化 連結,其中上述之金屬字線、該可微縮化控制閘導電島、 該閘間介電層及該可微縮化漂浮閘島係同時藉由一個罩幕 光阻的步驟來成形。一個細胞元隔離區至少包含該第一導 電塑的一個隔離離子佈植區或一個淺凹槽隔離(ST I)區係 形成於該金屬字線之外且位於該共源區及該可微縮化共沒 區之間的該半導體基板之每一個側邊表面部份。上述之共 源/及該可微縮化共汲區進一步包含一個共源/沒導電層 形成於該對回餘第一 /第二側邊牆介電墊層之間且置於該 共源/汲擴散區之内的該第二導電型的一個高摻雜共源/ 汲擴散區之上及一個回蝕第一/第二平面化氧化物層形成 於該對回蝕第一/第二側邊牆介電墊層之間且置於該共源 /汲導電層之上或進一步至少包含一個淺凹槽形成於該對 回蚀第一/第二侧邊牆介電整層之間的該半導體基板之一 個表面部份及一個回蝕第一/第二平面化場氧化物層形成 於該對回蝕第一/第二側邊牆介電墊層之間。 根據共源/汲擴散結構,本發明組成三種不同的無接 點分離式擴散位元線陣列。一種第一型無接點分離式擴散 位元、線陣列至少包含複數偶對埋層沒擴散位元線及複數共 源導電管線平行地形成且與複數金屬字線互為垂直。一種 第二型無接點分離式擴散位元線至少包含複數共汲導電管 、線及複鸯1偶對埋層源擴散位元線平行地形成且與複數金屬591764 V. Description of the invention (4) The common sinking area includes at least a common sinking diffusion area of the second conductivity type and a pair of etched back second side wall dielectric pads formed on the sides of adjacent miniaturizable tripping areas. Bet on top. A metal word line is integrated with the conductive island of the micronizable control gate. The metal word line, the conductive island of the micronizable control gate, the inter-gate dielectric layer, and the micronizable floating gate island system are simultaneously connected. Formed by a mask photoresist step. A cell isolation region includes at least an isolation ion implantation region or a shallow groove isolation (ST I) region of the first conductive plastic formed outside the metal word line and located in the common source region and the micronizable Each side surface portion of the semiconductor substrate between the common areas. The above-mentioned common source / and the micronizable common drain region further includes a common source / non-conductive layer formed between the pair of remaining first / second side wall dielectric pads and placed in the common source / drain. A highly doped common source / drain diffusion region of the second conductivity type within the diffusion region and an etched back first / second planarized oxide layer are formed on the pair of etched back first / second sides The semiconductor between the wall dielectric pads and placed on the common source / drain conductive layer or further comprising at least one shallow groove formed between the pair of etched back first / second side wall dielectric monolayers A surface portion of the substrate and an etched back first / second planarized field oxide layer are formed between the pair of etched back first / second side wall dielectric pads. According to the common source / drain diffusion structure, the present invention composes three different contactless separated diffusion bit line arrays. A first type of contactless discrete diffusion bit and line array includes at least a plurality of even-pair buried layer non-diffused bit lines and a plurality of common source conductive pipelines formed in parallel and perpendicular to the plurality of metal word lines. A second type of non-contact separated diffusion bit line includes at least a plurality of common-drain conductive tubes, lines, and a complex pair of buried layer source diffusion bit lines formed in parallel with a plurality of metals.

591764 五、發明說明(5) 字線互為垂直。一種第三型無接點分離式擴散位元線陣列 至少包含複數偶對埋層源擴散位元線及複數偶對埋層汲擴 政位元線平行地形成且與複數金屬字線互為垂直。 (4 )發明實施方式 現請參見圖二A至圖二L,其中顯示製造本發明之第一 型可微縮化分閘式快閃記憶細胞元結構及其無接點分離式 擴散位元線陣列的製程步驟及其剖面圖。 圖二A顯示一個穿透介電層301係形成於一種第一導電 型的一個半導體基板3 0 0之上;一個第一導電層3 0 2係形成 於該穿透介電層3 0 1之上;一個閘間介電層3 0 3係形成於該 第一導電層3 0 2之上;以及一個罩幕介電層3 0 4係形成於該 問間介電層3 0 3之上。上述之穿透介電層3 0 1係一個熱二氧 化石夕層或一個氮化(n itrided)熱二氧化矽層且其厚度係介 於8〇埃和12〇埃之間。上述之第一導電層3〇2係由摻雜複晶 石夕或換雜非晶矽所組成且利用低壓化學氣相堆積(LPCVD) 法來堆積’其厚度係介於1 0 0 0埃和3 0 0 0埃之間。上述之 閘=二,層,3係一個二氧化石夕—氮化石夕—二氧化石夕(ΟΝΟ)層 且/、 效一氧化石夕厚度係介於1⑽埃和1 5 0埃之間。上述之 3 0 3可以是-個熱複晶矽氧化物(poly-oxide) 埃之間乳化熱複晶矽氧化物層且其厚度係介於150埃和 LPCVD法^堆^述之罩幕介電層304係—個氮化矽層且利用 積’其厚度係介於2gqq埃和埃之間。 不複數共源區(CSR)係藉由一個第一罩幕光591764 V. Description of the invention (5) The word lines are perpendicular to each other. A third type of contactless separated diffusion bit line array includes at least a complex even-pair buried layer source diffusion bit line and a complex even-pair buried layer drain bit line formed in parallel and perpendicular to the plural metal word lines . (4) Embodiments of the invention Please refer to FIG. 2A to FIG. 2L, which show the manufacture of the first type of micronizable and switchable flash memory cell structure and the non-contact separated diffusion bit line array of the present invention. Process steps and cross-sectional views. FIG. 2A shows that a penetrating dielectric layer 301 is formed on a semiconductor substrate 3 0 of a first conductivity type; a first conducting layer 3 0 2 is formed on the penetrating dielectric layer 3 0 1 An inter-gate dielectric layer 3 03 is formed on the first conductive layer 3 02; and a mask dielectric layer 3 0 4 is formed on the inter-layer dielectric layer 3 03. The above-mentioned penetrating dielectric layer 301 is a thermal dioxide layer or a nitrided thermal silicon dioxide layer and its thickness is between 80 angstroms and 120 angstroms. The above-mentioned first conductive layer 30 is composed of doped polycrystalline silicon or doped amorphous silicon and is deposited using a low pressure chemical vapor deposition (LPCVD) method. Its thickness is between 100 angstroms and 100 angstroms. Between 3 0 0 0 Angstroms. The above gates = two, three, and three are a layer of stone dioxide-nitride stone-stone dioxide (NONO) layer and / or the thickness of the effective oxide is between 1 Angstrom and 150 Angstroms. The above 3 0 3 can be a thermal polycrystalline silicon oxide (poly-oxide) angstrom emulsified thermal polycrystalline silicon oxide layer and its thickness is between 150 angstroms and LPCVD method. The electrical layer 304 is a silicon nitride layer and its thickness is between 2 gqq Angstrom and Angstrom. Countless Common Source Regions (CSR)

第10頁 591764 五、發明說明(6) 阻(PR1 )步驟(未圖示)來成形;然後,位於該複數共源區 (CSR)的每一個之内的該罩幕介電層3〇4 、該閘間介電層 3 〇 3及該第一導電層3 〇 2係循序地利用非等向乾式蝕刻法 加予去除;接著,一種第二導電型的一個共源擴散區3 〇 5a j以一個自動對準的方式跨過該穿透介電層3 0 1佈植摻雜 貝於该複數共源區(CSR)的每一個之内的該半導體基板3〇〇 之一個表面部份内。該共源擴散區3〇5a至少包含一個高摻 雜(heavi ly-doped)共源擴散區或一個高摻雜共源擴散區 形成於一個淡摻雜(1 ight ly-doped)共源擴散區之内。由 圖二β可以清楚地看到,一個虛擬閘區(VGR)係形成於該 共源區(CSR)之間且至少包含一對可微縮化分閘區(SSGR) 及一個可微縮化共汲區(SCDR)形成於該對可微縮化分閘區 (SSGR)之間。 圖二C顯示一對第一側邊牆介電墊層(s p a c e r s) 3 0 6 a係 形成於相鄰虛擬閘區(V G R)的側邊牆之上且置於該複數共 源區(CSR)的每一個之内的該穿透介電層301的一部份表面 之上。該對第一側邊牆介電墊層3 0 6係由二氧化矽所組成 且利用L P C V D法來堆積,係先堆積一個二氧化矽層3 0 6於圖 二B所示的結構表面之上再回蝕所堆積之二氧化矽層3 〇 6的 一個厚度。 圖一 D顯示位於該複數共源區(CSR)的每一個之内的 該對第一側邊牆介電墊層3 0 6 a之間的該穿透介電層3 〇丨係 利用非荨向乾式#刻法或一個稀釋氫氟酸的泡浸法來加予 去除;然後,一個回蝕第二導電層3 0 7b係形成於該對第一 591764 五、發明說明(7) 侧邊騰介電墊層30 6a之間的該共源擴散區3 0 5a之上;接 著’該回蝕第二導電層3 〇 7b係以一個自動對準的方式佈植 個高劑量的摻雜質來作為一個摻雜質擴散源,以形成該 第二導電型的一個高摻雜共源擴散區3 〇 5 b於該共源擴散區 3 0 5 a之内。上述之回蝕第二導電層3 〇 7b係由摻雜複晶矽所 組成且利用LPCVD法來堆積,係先堆積一個厚的第二導電 層3 0 7來填滿位於該對第一側邊牆介電墊層3〇6a之間的空 隙’再利用化學-機械磨平(CMP)法加予平面化並以該罩幕 ”電層304a作為一個磨平停止層(p〇iishing stop),接 著回#該平面化第二導電層3〇7&使其具有3〇〇埃和looo埃 之間的厚度。 圖二E顯示一個回蝕第一覆蓋導電層3 0 7d係形成於該 回蝕第二導電層307b之上,接著一個第一平面化氧化物層 3 0 8 a係形成於該對第一側邊牆介電墊層3 〇 6 &之間的該回 蝕第一覆蓋導電層307d之上。上述之回蝕第一覆蓋導電層 3 0 7d至少包含鎢(w)或矽化鶴(WSi 2 )且利用LPCVD法或 濺鍍法來堆積’係利用該回蝕第二導電層3 〇 7 b的相同製程 步驟來形成。這裡值得注意的是,該回蝕第一覆蓋導電層 3 0 7d連同該回蝕第二導電層3 07b係組成一個共源導電管線 3 0 7(1/ 3 0 713來大幅降低由埋層共源擴散位元線3〇51)/3〇53 的共源位元線電阻而該埋層共源擴散位元線3〇5b// 3〇58的 接面深度可以進一步加予微縮化。上述之第一平面化氧化 物層3 0 8&係由二氧化矽、磷玻璃(? — 213^)或硼磷玻璃(卟 -glass)所組成且利用LPCVD法、高密度電漿(hdP)CVD或電Page 10 591764 V. Description of the invention (6) Resistive (PR1) step (not shown) to form; then, the mask dielectric layer 30 located within each of the plurality of common source regions (CSR) The inter-gate dielectric layer 3 03 and the first conductive layer 3 02 are sequentially removed by using an anisotropic dry etching method. Then, a common source diffusion region 3 05a of a second conductivity type is used. A dopant is implanted across the penetrating dielectric layer 301 in a self-aligned manner within a surface portion of the semiconductor substrate 300 within each of the plurality of common source regions (CSRs). . The common source diffusion region 305a includes at least one highly doped (source-doped) common source diffusion region or a highly doped common source diffusion region formed in a lightly doped (1 ight ly-doped) common source diffusion region. within. It can be clearly seen from Fig. 2 β that a virtual gate region (VGR) is formed between the common source region (CSR) and includes at least a pair of micronizable gates (SSGR) and a micronizable common sink. Regions (SCDRs) are formed between the pair of miniaturizable tripping regions (SSGR). FIG. 2C shows a pair of first side wall dielectric spacers 3 0 6 a formed on the side walls of the adjacent virtual gate area (VGR) and placed in the plurality of common source areas (CSR). On each part of the surface of the penetrating dielectric layer 301. The pair of first side wall dielectric pads 3 0 6 is composed of silicon dioxide and is deposited by LPCVD method. A silicon dioxide layer 3 6 is first deposited on the surface of the structure shown in FIG. 2B. A thickness of 306 of the deposited silicon dioxide layer is etched back. FIG. 1D shows that the penetrating dielectric layer 3 between the pair of first side wall dielectric pads 3 0 6 a located within each of the plurality of common source regions (CSR) uses non-net Add to the dry # engraving method or a dilute hydrofluoric acid bubble immersion method; then, an etch-back second conductive layer 3 0 7b is formed on the pair of first 591764 V. Description of the invention (7) Above the common source diffusion region 30 5a between the dielectric pad layers 30 6a; then, the etchback second conductive layer 3 07b is implanted with a high dose of dopants in an auto-aligned manner. As a dopant diffusion source, a highly doped common source diffusion region 3 05 b of the second conductivity type is formed within the common source diffusion region 3 05 a. The above-mentioned etch-back second conductive layer 3 07b is composed of doped polycrystalline silicon and is deposited by LPCVD method. A thick second conductive layer 3 07 is first deposited to fill the pair of first sides. The gap between the wall dielectric layer 306a 'is planarized by chemical-mechanical smoothing (CMP) method, and the mask "electrical layer 304a is used as a smoothing stop layer, Next, the planarized second conductive layer 3007 is made to have a thickness between 300 angstroms and 15 angstroms. Fig. 2E shows an etched back first conductive layer 3007d formed in the etched back. On top of the second conductive layer 307b, a first planarized oxide layer 3 0 8 a is formed between the pair of first side wall dielectric pads 3 0 6 & Layer 307d. The above-mentioned etch-back first covering conductive layer 307d includes at least tungsten (w) or silicide crane (WSi 2) and is deposited by LPCVD method or sputtering method. The etch-back second conductive layer is used. 3 〇 7 b to form the same process steps. It is worth noting here that the etch-back first conductive layer 3 7 7d together with the etch-back second conductive layer Layer 3 07b constitutes a common source conductive pipeline 3 0 7 (1/3 0 713) to greatly reduce the common source bit line resistance from the buried layer common source diffusion bit line 3051 and 3503. The junction depth of the common source bit line 305b // 3058 can be further miniaturized. The first planarized oxide layer 308 & is made of silicon dioxide and phosphor glass (?-213 ^) Or borophosphoglass (porous-glass) and using LPCVD method, high-density plasma (hdP) CVD or

第12頁 591764 五、發明說明(8) 漿增強型(PE)CVD法來堆積,係先堆積一個氧化物層3〇8於 該對第一側邊牆介電墊層30 6a之間的空隙,再利用CMP法 將所堆積之氧化物層3 0 8加予平面化並以該成形罩幕介電 層3 04a作為一個磨平停止層。 圖二F顯示位於該複數虛擬閘區(VGR)的每一個之内的 該成形罩幕介電層3 0 4 a係利用熱磷酸或非等向乾式#刻法 來加予去除;然後,一對第三側邊牆介電墊層3 〇 9 a係形成 於相鄰共源區(CSR)之内的該第一側邊牆介電墊層3的 外側邊牆之上且置於該複數虛擬閘區(VGR)的每一個之内 的該成形閘間介電層3 0 3 a的側邊部份之上來定義一對漂浮 閘區(F G R);接著,位於該對第三側邊牆介電墊層3 〇 9 a之 間的該成形閘間介電層3 0 3 a及該成形第一導電層3 〇 2 a係循 序地利用非等向乾式餘刻法來加予去除;然後,以一個自 動對準的方式執行一個離子佈植製程,將摻雜質跨過該成 形穿透介電層30la佈植於該複數虛擬閘區(VGR)的每一個 之内的該對第三側邊牆介電墊層3 0 9a之間的該半導體基板 300之一個表面部份來形成該第一導電型的一個離子佈植 區3 1 0a。該對第三側邊牆介電墊層3 〇 9a係由氮化矽所組成 且利用L P C V D法來堆積,係先堆積一個氮化石夕層3 〇 9再回 蝕所堆積之氮化矽層309的一個厚度。上述之離子佈植區 3 1 0a至少包含一個淺離子佈植區如一個虛線所標示以作為 界電壓的調整及一個深離子佈植區如打X X X號所標示 以形成一個抵穿禁止區(punch-through stop)。 圖二G顯示位於該複數虛擬閘區(VGR)的每一個之内的Page 12 591764 V. Description of the invention (8) Plasma-reinforced (PE) CVD method for stacking, first deposits an oxide layer 308 between the pair of first side wall dielectric pads 30 6a Then, the stacked oxide layer 308 is planarized by the CMP method, and the forming mask dielectric layer 304a is used as a smoothing stop layer. FIG. 2F shows that the shaped mask dielectric layer 3 0 4 a located within each of the plurality of virtual gate regions (VGR) is added and removed by using hot phosphoric acid or an isotropic dry # etch method; then, a The third side wall dielectric cushion layer 3 09a is formed on the outer side wall of the first side wall dielectric cushion layer 3 within the adjacent common source region (CSR) and is placed on the A pair of floating gate regions (FGR) are defined above the side portions of the shaped inter-gate dielectric layer 3 0 3 a within each of a plurality of virtual gate regions (VGR); then, located on the third side of the pair The formed inter-gate dielectric layer 3 03 a and the formed first conductive layer 3 02 a between the wall dielectric pad 3 0 9 a are sequentially removed by using an anisotropic dry-etching method; Then, an ion implantation process is performed in an auto-alignment manner, and a dopant is implanted across the shaped penetrating dielectric layer 30la into the pair of first gates within each of the plurality of virtual gate regions (VGR). A surface portion of the semiconductor substrate 300 between the three side wall dielectric pads 3 0 9a forms an ion implantation region 3 1 0a of the first conductivity type. The pair of third side wall dielectric pads 3 09a is composed of silicon nitride and is deposited by LPCVD method. First, a nitride nitride layer 3 09 is deposited, and then the deposited silicon nitride layer 309 is etched back. A thickness. The above-mentioned ion implantation area 3 1 0a includes at least a shallow ion implantation area as indicated by a dashed line as an adjustment of the boundary voltage and a deep ion implantation area as indicated by a number XXX to form a puncture prohibition area (punch -through stop). Figure 2G shows the locations within each of the plurality of virtual gate areas (VGR).

第13頁 591764 五、發明說明(9) 該對第三側邊牆介電墊層3 0 9a之間的該f透介電層30 1 a係 利用一個稀釋氫氟酸泡浸法或非等向乾式蚀刻法來加予去 除;然後,進行一個熱氧化製程來同時成長一個複晶石夕氧 化物層3 1 1 a於該漂浮閘層3 0 2b的每一個内側邊牆之上及一 個閘介電層3 1 1 W立於該複數虛擬閘區(v (j R )的每一個之内 的該對第三側邊牆介電墊層3 09a之間的該半導體基板300 之上。 圖二Η顯示該對第三側邊牆介電墊層3 〇 9感利用熱磷 酸加予去除;然後,一個回蝕平面化導電層3 1 2 b係形成於 該複數虛擬閘區(V G R )的每一個之内的該成形閘間介電層 3 0 3 b、該複晶石夕氧化物層3 1 1 a及該閘介電層3 1 1 b之上; 接著,一對第四側邊牆介電墊層313a係形成於相鄰共源區 (C S R )的該第一側邊牆介電墊層3 〇 6 a的外侧邊牆之上且置 於違回#平面化導電層3 1 2 b的側邊表面部份來定義一對可 微縮化分閘區(SSGR)及位於該複數虛擬閘區(VGR)的每一 個之内的該對可微縮化分閘區(SSGR)之間的一個可微縮化 共汲區(SCDR)。上述之回蝕平面化導電層312_由摻雜 =石夕所組成且利用LPCVD&來堆積,係先堆積一個厚的摻 雜複晶矽層31 2來填平該複數虛擬閘區(VGR)的每一個 1空隙再利用CMP Μ回蝕技術將所堆積之厚㈣ 矽層312加予平面化來形成一個平面化導電層 ,、^ 回:該平面化導電層312a至所預定的一個厚▲ J者 側邊牆介電墊層313a係由氮化矽所組成且利 η四 堆積,係先堆積一個氮化矽層3 1 3再回# % 去來 蝕所堆積之氮化矽Page 13 591764 V. Description of the invention (9) The f transparent dielectric layer 30 1 a between the pair of third side wall dielectric pads 3 0 9a is a dilute hydrofluoric acid bubble immersion method or the like. A dry etching method is used to remove it; then, a thermal oxidation process is performed to simultaneously grow a polycrystalline oxide layer 3 1 1 a on each inner side wall of the floating gate layer 3 0 2b and a A gate dielectric layer 3 1 1 W stands on the semiconductor substrate 300 between the pair of third side wall dielectric pads 3 09a within each of the plurality of virtual gate regions (v (j R)). Fig. 2 shows that the pair of third side wall dielectric pads 3 009 are removed by adding hot phosphoric acid; then, an etch-back planarized conductive layer 3 1 2 b is formed in the plurality of virtual gate regions (VGR). On each of the formed inter-gate dielectric layer 3 0 3 b, the polycrystalline oxide layer 3 1 1 a, and the gate dielectric layer 3 1 1 b; then, a pair of fourth sides The side wall dielectric cushion layer 313a is formed on the outer side wall of the first side wall dielectric cushion layer 3 of the adjacent common source region (CSR) on the outer side wall and placed on the violation #planar conductive layer 3 1 2 b The side surface part defines a pair of miniaturizable trip areas (SSGR) and a variable interval between the pair of miniaturizable trip areas (SSGR) within each of the plurality of virtual gate areas (VGR). Micronized common drain region (SCDR). The above-mentioned etch-back planarized conductive layer 312_ is composed of doped = Shi Xi and is stacked using LPCVD & firstly, a thick doped polycrystalline silicon layer 31 2 is filled. Each gap of the plurality of virtual gate regions (VGR) is flattened, and the thick silicon layer 312 stacked by CMP etchback technology is planarized to form a planarized conductive layer. ^ Back: The planarized conductive layer The layer 312a to a predetermined thickness ▲ The side wall dielectric pad 313a is composed of silicon nitride and is stacked in four, and a silicon nitride layer 3 1 3 is deposited first and then returned to etch. Deposited silicon nitride

第14頁 591764 五、發明說明(ίο) 層的一個厚度。由圖二F及圖二Η可以清楚地看到,該可微 縮化分閘區(SSGR)的每一個至少包含一個漂浮閘區(FGR) 及一個選擇閘區(SGR)。 圖二I顯示位於該複數虛擬閘區(VGR)的每一個之内 的該對第四側邊牆介電墊層3 1 3 a之間的該回蝕平面化導電 層3 1 2 b係利用非等向乾式蝕刻法來加予去除,以形成一對 可微縮化控制閘導電層3 1 2 c ;然後,以一個自動對準的方 式執行一個離子佈植製程,將摻雜質跨過該閘介電層311b 佈植摻雜質於該複數虛擬閘區(VGR)的每一個之内的該半 導體基板3 0 0的一個表面部份來形成該第二導電型的一個 共汲擴散區314a。上述之共汲擴散區31 4a至少包含一個高 摻雜共汲擴散區或一個高摻雜共汲擴散區形成於一個淡摻 雜共》及擴散區之内。 圖二J顯示一對第二側邊牆介電墊層3丨5a係形成於相 鄰可微縮化分閘區(SSGR)的側邊牆之上並且置於該可微縮 化共汲區(SCDR)的每一個之内且位於該對第四側邊牆介電 墊層3 1 3a之間的該閘介電層3 11 b的侧邊表面之上;然後, 位於該可微縮化共汲區(SCDR)的每一個之内的該對第二側 邊牆介電墊層3 1 5 a之間的該閘介電層3 1 1 b係利用非等向 乾式蝕刻法來加予去除;接著,一個淺凹槽係形成於該對 第二側邊牆介電墊層315 a之間的該半導體基板3〇〇之一個 表面部份來形成位於該可微縮化共沒區(SCDR)的每一個之 内的一對埋層沒擴散位元線3 1 4 c ;然後,一個第二平面化 場氧化物層3 1 7a係填滿該可微縮化共沒區(SCDR)的每一個Page 14 591764 V. Description of the Invention (ίο) A thickness of the layer. From Figure 2F and Figure 2 二, it can be clearly seen that each of the scalable gate openings (SSGR) includes at least one floating gate (FGR) and a selective gate (SGR). FIG. 2I shows that the etch-back planarized conductive layer 3 1 2 b is located between the pair of fourth side wall dielectric pads 3 1 3 a within each of the plurality of virtual gate regions (VGR). Non-isotropic dry etching method is used to add and remove to form a pair of micronizable control gate conductive layers 3 1 2 c; then, an ion implantation process is performed in an auto-aligned manner to pass the dopants across the The gate dielectric layer 311b implants a surface portion of the semiconductor substrate 300 that is doped within each of the plurality of virtual gate regions (VGR) to form a common-drain diffusion region 314a of the second conductivity type. . The above-mentioned common-diffusion diffusion region 31 4a includes at least one highly-doped common-drain diffusion region or a highly-doped common-drain diffusion region formed in a lightly-doped common diffusion region. Figure 2J shows that a pair of second side wall dielectric pads 3 丨 5a are formed on the side walls of the adjacent miniaturizable branching area (SSGR) and placed on the miniaturizable common drain area (SCDR ) Within each of them and located on the side surface of the gate dielectric layer 3 11 b between the pair of fourth side wall dielectric pads 3 1 3a; then, located in the miniaturizable common-sink area (SCDR) the gate dielectric layer 3 1 1 b between the pair of second side wall dielectric pads 3 1 5 a is added and removed by anisotropic dry etching; A shallow groove is formed on a surface portion of the semiconductor substrate 3000 between the pair of second sidewall spacers 315a to form each of the SCDRs. A pair of buried layers within one do not diffuse the bit lines 3 1 4 c; then, a second planarized field oxide layer 3 1 7a fills each of the micronizable common area (SCDR)

第15頁 591764 五、發明說明(11) 之内的該淺凹槽之上。該對第二側邊牆介電墊層3丨5a係由 二氧化矽所組成且利用LPCVD法來堆積,係先堆積一個二 氧化矽層3 1 5再回蝕所堆積之二氧化矽層3 1 5的一個厚度。 上述之第二平面化場氧化物層317 a係由二氧化石夕、磷玻璃 或硼磷玻璃所組成且利用LPCVD法、HDPCVD法或PECVD法來 堆積,係先堆積一個氧化物層3 1 7來填滿該可微縮化共汲 區(SCDR)的每一個之内的空隙再利用CMP法將所堆積之氧 化物層3 1 7加予平面化並以該對第四側邊牆介電墊層3 1 3 a 作為一個磨平停止層。 圖二K顯示位於該複數共源區(CSR)的每一個之内的該 對第一側邊牆介電墊層3 0 6 a及該第一平面化氧化物層3 0 8 a 及位於該可微縮化共汲區(SCDR)的每一個之内的該對第二 側邊牆介電墊層3 1 5a及該第二平面化場氧化物層3 1 7a係利 用非等向乾式蝕刻法或溼式蝕刻法先回蝕至該可微縮化控 制閘導電層3 1 2c的一個頂部表面水平;然後,位於該複數 虛擬閘區(VGR)的每一個之内的該對第四側邊牆介電墊層 3 1 3a係利用熱磷酸或非等向乾式蝕刻法來加予去除;接著 ,一個金屬層3 1 8係形成於所形成的結構表面之上。上述 之金屬層318至少包含一個鎢(?)、銅((:11)或鋁(八1)層置於 一個障礙金屬(barrier metal)層諸如一個氮化鈦(TiN)或 氮化钽(TaN)之上而該可微縮化控制閘導電層312c在未形 成該金屬層31 8之前可以加予矽化(si 1 icided)來形成一個 耐高溫金屬矽化物層諸如矽化鈦(TiSi 2 )或矽化鈷(CoSi 2 )Page 15 591764 V. Above the shallow groove in the description of the invention (11). The pair of second side wall dielectric pads 3 丨 5a are composed of silicon dioxide and are stacked by LPCVD method. First, a silicon dioxide layer 3 1 5 is deposited and then the stacked silicon dioxide layer 3 is etched back. A thickness of 1 to 5. The above-mentioned second planarized field oxide layer 317 a is composed of silica, phosphor glass, or borophospho glass and is deposited by LPCVD method, HDPCVD method, or PECVD method. An oxide layer is first deposited 3 1 7 To fill the gaps within each of the SCDRs and then use CMP to planarize the stacked oxide layers 3 1 7 and use the pair of fourth side wall dielectric pads Layer 3 1 3 a acts as a smoothing stop layer. FIG. 2K shows the pair of first side wall dielectric pads 3 0 6 a and the first planarized oxide layer 3 0 8 a located in each of the plurality of common source regions (CSR) and the The pair of second side wall dielectric pads 3 1 5a and the second planarized field oxide layer 3 1 7a within each of the scalable common drain regions (SCDRs) are made by anisotropic dry etching Or wet etching firstly etch back to a top surface level of the micronizable control gate conductive layer 3 1 2c; then, the pair of fourth side walls located within each of the plurality of virtual gate regions (VGR) The dielectric pad layer 3 1 3a is removed by hot phosphoric acid or anisotropic dry etching. Next, a metal layer 3 1 8 is formed on the surface of the structure. The above metal layer 318 includes at least one tungsten (?), Copper ((11) or aluminum (eight 1) layer placed on a barrier metal layer such as a titanium nitride (TiN) or tantalum nitride (TaN). ) And the micronizable control gate conductive layer 312c can be added with silicide (Si 1icided) to form a high temperature resistant metal silicide layer such as titanium silicide (TiSi 2) or cobalt silicide before the metal layer 3 1 8 is formed. (CoSi 2)

第16頁 591764 五、發明說明(12) 圖二L顯示上述之金屬層3 1 8係藉由一個第二罩幕光阻 (P R 2 )步驟(未圖示)來加予成形,以形成複數金屬字線( WL) 3 1 8a ;然後,該可微縮化控制閘導電層3 1 2c 、該閘 間介電層3 03b、該複晶矽氧化物層31 la及該可微縮化漂浮 閘層3 0 2b係同時藉由該第二罩幕光阻(pR2)步驟來成形及 循序地去除,以形成可微縮化控制閘導電島3 1 2 d及可微縮 化漂浮閘島3 0 2 c ;接著,以一個自動對準的方式執行一個 離子佈植製程來形成該第一導電型的複數隔離離子佈植區 31 9a (未圖示)於該複數金屬字線(WL) 3 18a之間及該共源區 (CSR)與該可微縮化共汲區(SCDR)之間的該半導體基板300 之表面部份。il裡值得注意的是,上述之隔離離子佈植區 3 1 9 a可以輕易地利用淺凹槽隔離(ST I)區來加予取代。 現請參見圖三A至圖三C,其中揭示製造本發明之第一 型可微縮化分閘式快閃記憶細胞元結構具有一個複合控制 閘導電層及其第一型無接點分離式擴散位元線陣列之接續 圖二J的製程步驟及其剖面圖。 圖三A顯示位於該複數共源區(CSR)的每一個之内的該 對第一侧邊踏介電墊層306 a及該第一平面化氧化物層308a 及位於該複數可微縮化共汲區(SCDR)的每一個之内的該對 第二側邊牆介電墊層3 1 5 a及該第二平面化場氧化物層3 1 7 a 係利用非等向乾式餘刻法來回餘,以去除該第一 /第二側 邊牆介電墊層3 0 6 a / 3 1 5 a之彎曲部份;然後,位於該複 數虛擬閘區(VGR)的每一個之内的該對第四側邊牆介墊層 3 1 3 a係利用熱磷酸或非等向乾式钱刻法來加予去除。Page 16 591764 V. Description of the invention (12) Figure 2L shows that the above-mentioned metal layer 3 1 8 is preformed by a second mask photoresist (PR 2) step (not shown) to form a plurality Metal word line (WL) 3 1 8a; then, the micronizable control gate conductive layer 3 1 2c, the inter-gate dielectric layer 3 03b, the polycrystalline silicon oxide layer 31 la, and the micronizable floating gate layer 3 0 2b is simultaneously formed and sequentially removed by the second mask photoresist (pR2) step to form a scaleable control gate conductive island 3 1 2 d and a scaleable floating gate island 3 0 2 c; Next, an ion implantation process is performed in an auto-alignment manner to form the plurality of isolated ion implantation regions 31 9a (not shown) of the first conductivity type between the plurality of metal word lines (WL) 3 18a and A surface portion of the semiconductor substrate 300 between the common source region (CSR) and the miniaturizable common drain region (SCDR). It is worth noting that the above-mentioned isolated ion implantation area 3 1 9 a can be easily replaced with a shallow groove isolation (ST I) area. Referring now to FIGS. 3A to 3C, it is disclosed that the first type of miniaturizable split-type flash memory cell structure for manufacturing the present invention has a composite control gate conductive layer and a first type of contactless discrete diffusion. The bit line array is followed by the process steps and cross-sectional views of Figure 2J. FIG. 3A shows the pair of first side step dielectric pads 306 a and the first planarized oxide layer 308 a located within each of the plurality of common source regions (CSRs) and the plurality of scaleable common layer The pair of second side wall dielectric pads 3 1 5 a and the second planarized field oxide layer 3 1 7 a within each of the drain regions (SCDRs) are back and forth using non-isotropic dry-etching To remove the curved portion of the first / second side wall dielectric cushion layer 3 0 6 a / 3 1 5 a; then, the pair located within each of the plurality of virtual gate regions (VGR) The fourth side wall interlayer 3 1 3 a is removed by using hot phosphoric acid or an anisotropic dry money engraving method.

第17頁 591764 五、發明說明(13) 圖三B顯示一個平面化覆蓋導電層3 2 0 a係填滿位於該 複數可微縮化分閘區(SSGR)的每一個之内的空隙;然後, 一個金屬層3 1 8係形成於所形成的結構表面之上。上述之 平面化覆蓋導電層320a係由矽化鎢(WSi 2 )或鎢(W)所組成 且利用L P C V D法或錢鍍法來堆積。上述之金屬層3 1 8係如圖 二K所描述的相同製程步驟來形成。 圖三C顯示該金屬層3 1 8係利用一個第二罩幕光阻(PR2 )步驟(未圖示)來成形,以形成複數金屬字線(WL) 3 18a; 然後,該平面化覆蓋導電層3 2 0 a、該可微縮化控制閘導電 層312c 、該閘間介電層3 0 3b 、該複晶矽氧化物層31 la及 該可微縮化漂浮閘層3 0 2b係藉由該第二罩幕光阻步驟(未 圖示)來循序地去除,以形成可微縮化複合控制閘導電島 3 2 0b/ 31 2d及可微縮化漂浮閘島3 0 2c;接著,以一個自動 對準的方式執行一個離子佈植的製程,佈植摻雜質於該複 數金屬字線(WL) 3 18a之間及位於該共源區(CSR)與該可微 縮化共汲區(SCDR)之間的該半導體基板3 0 0之表面部份來 形成該第一導電型的複數隔離離子佈植區319a (未圖示)。 比較圖二L及圖三C可以清楚地看到,圖三C之位於該金屬 子線(WL)318a與該共源導電管線307 d/ 3 0 7 b之間的雜散 電容較小。 現請參見圖四,其中顯示本發明之該可微縮化分閘式 快閃記憶細胞元結構及其第一型無接點分離式擴散位元線 陣列的一個混合頂視佈建圖。如圖四所示,複數共源導電 管線30 7d/ 3 0 7b及複數偶對埋層汲擴散位元線(BL2)3 14cPage 17 591764 V. Description of the invention (13) Fig. 3B shows a planar covering conductive layer 3 2 0 a which fills the gaps in each of the plurality of micronizable trip zones (SSGR); then, A metal layer 3 1 8 is formed on the surface of the structure. The above-mentioned planarized conductive layer 320a is composed of tungsten silicide (WSi 2) or tungsten (W) and is deposited by the L P C V D method or the coin plating method. The above-mentioned metal layer 3 1 8 is formed by the same process steps as described in FIG. 2K. FIG. 3C shows that the metal layer 3 1 8 is formed by using a second mask photoresist (PR2) step (not shown) to form a plurality of metal word lines (WL) 3 18a; then, the planarization cover is conductive. Layer 3 2 0 a, the micronizable control gate conductive layer 312c, the inter-gate dielectric layer 3 0 3b, the polycrystalline silicon oxide layer 31 a1, and the micronizable floating gate layer 3 0 2b The second mask photoresist step (not shown) is sequentially removed to form a micronizable composite control gate conductive island 3 2 0b / 31 2d and a micronizable floating gate island 3 0 2c; then, an automatic alignment An ion implantation process is performed in a standard way, implanting dopants between the plurality of metal word lines (WL) 3 18a and between the common source region (CSR) and the micronizable common drain region (SCDR). A plurality of isolated ion implantation regions 319a (not shown) of the first conductivity type are formed on the surface portion of the semiconductor substrate 300 in between. Comparing Fig. 2L and Fig. 3C, it can be clearly seen that the stray capacitance between the metal sub-line (WL) 318a and the common source conductive line 307 d / 3 0 7 b is smaller in Fig. 3C. Please refer to FIG. 4, which shows a hybrid top-view layout diagram of the miniaturizable open-type flash memory cell structure and the first contactless discrete diffusion bit line array of the present invention. As shown in Figure 4, the complex common source conductive pipeline 30 7d / 3 0 7b and the complex even-pair buried-drain diffusion line (BL2) 3 14c

第18頁 591764 五、發明說明(14)Page 18 591764 V. Description of the Invention (14)

係交變地形成且與複數金屬字線(WL) 3 18a互為垂直。上述 之複數金屬字線(WL) 3 18a的每一個係與位於該可微縮化分 閘區(SSGR)之間的可微縮化控制閘導電島31 2d或可微縮 化複合控制閘導電島320b/ 31 2d積體化連結,如虛線打x 號所標示。上述之共源導電管線3 0 7d/ 3 0 7b的每一個係形 成於一對回蝕第一側邊牆介電墊層306b(306c)的每一個之 間的一個高摻雜共源擴散區3 0 5 b之上而該複數埋層沒擴散 位元線(BL2 ) 3 1 4c的每一個係藉由一對回蝕第二側邊牆介 電墊層315b (315c)之間的一個回蝕第二平面化場氧化物 層3171)(317(:)來分離;然後,複數隔離離子佈植區319 8的 每一個如打X X X號所標示係形成於該複數金屬字線(WL) 3 1 8 a、該複數共源區(C S R )及該複數可微縮化共沒區(§ c D R )之外的該半導體基板3 0 0之表面部份。 現請參見圖五A至圖五F,其中顯示本發明之該可微縮 化分閘式快閃記憶細胞元結構具有一個可微縮化控制閘導 電島3 1 2 d及其第一型無接點分離式擴散位元線陣列的各種 不同剖面圖。圖四所標示之沿著一個A - A,線的一個剖面圖 係顯示於圖二L中。 圖五A顯示圖四所標示的圖二l之沿著一個D — D,線的一 個剖面圖,其中一個共源導電管線3 0 7d/ 3〇 7b係形成於一 個共源擴散區3 0 5 a之内的一個高摻雜共源擴散區3 〇 5 b之上 ;一個回蝕第一平面化氧化物層3〇8b係形成於該共源導電 管線30 7(1/ 3 0 713之上以及複數金屬字線(几)318&係交變地 形成於該回蝕第一平面化氧化物層3〇8b之上。It is formed alternately and perpendicular to the plurality of metal word lines (WL) 3 18a. Each of the plurality of metal word lines (WL) 3 18a described above and the micronizable control gate conductive island 31 2d or the micronizable composite control gate conductive island 320b / located between the micronizable split gate area (SSGR) 31 2d integration link, as indicated by the dashed line with an x. Each of the above common source conductive lines 3 7d / 3 0 7b is formed in a highly doped common source diffusion region between each of a pair of etched back side wall dielectric pads 306b (306c) Each of the buried layers without diffusion bit lines (BL2) 3 1 5c above 3 0 5 b is etched back by a pair of etch backs between the second side wall dielectric pads 315b (315c) The second planarized field oxide layer 3171) (317 (:) is etched to separate; then, each of the plurality of isolated ion implantation regions 3198 is formed on the plurality of metal word lines (WL) 3 as indicated by XXX. 3 1 8 a. The surface portion of the semiconductor substrate 3 0 outside the complex common source region (CSR) and the complex shrinkable common region (§ c DR). Please refer to FIGS. 5A to 5F Among them, the present invention shows that the miniaturizable open-type flash memory cell structure of the present invention has a micro-controllable gate conductive island 3 1 2 d and various first contactless discrete diffusion bit line arrays. Sectional view. A cross-sectional view along the line A-A shown in Figure 4 is shown in Figure 2L. Figure 5A shows the figure 2l marked in Figure 4 A cross-sectional view taken along a line D-D, in which a common source conductive line 3 07d / 307b is a highly doped common source diffusion region 3 formed within a common source diffusion region 3 0 5 a. 〇5 b; an etched back first planarized oxide layer 308b is formed on the common source conductive line 307 (1/3 0 713) and a plurality of metal word lines (several) 318 & alternating A ground is formed on the etched back first planarized oxide layer 308b.

第19頁 591764 五、發明說明(15) 圖五B顯示圖四所標示的圖二L之沿著一個C — C’線的一 個剖面圖,其中一個回蝕第一側邊牆介電墊層3 0 6b置於一 個穿透介電層3 0 1 b之上係形成於一個共源擴散區3 0 5a之上 而複數金屬字線(WL) 3 18a係交變地形成於該回蝕第一側邊 牆介電墊層3 0 6b之上。 圖五C顯示圖四所標示的圖二L之沿著一個D — D’線的一 個剖面圖,其中位於該漂浮閘區(FGR)的每一個之内的該 金屬字線3 1 8a、該可微縮化控制閘導電島3 1 2d、該閘間介 電層3 0 3 c及該可微縮化漂浮閘島3 0 2 c係藉由一個第二罩 幕光阻(PR2)步驟來同時成形;以及一個隔離離子佈植區 3 1 9 a係以一個自動對準的方式跨過該穿透介電層3 0 1 b佈植 摻雜質於該半導體基板3 0 0的一個表面部份。 圖五D顯示圖四所標示的圖二L之沿著一個E-E’線的 一個剖面圖,其中位於該選擇閘區(SGR)的每一個之内的 該金屬字線(WL) 3 18a連同該可微縮化控制閘導電島31 2d係 同時藉由該第二罩幕光阻(PR2)步驟來成形;一個離子佈 植區3 1 0 b至少包含一個淺離子佈植區如一個虛線所標示以 作為臨界電壓的調整及一個深離子佈植區如打χ χ χ號所 標示以形成一個抵穿禁止區係形成於該選擇閘區(SGR)的 每一個之内的一個閘介電層311d之下的該半導體基板3〇〇 之一個表面部份;以及如圖五C所描述之隔離離子佈植區 3 1 9 a係形成於相鄰金屬字線(WL)318 a之間的該半導體其板 3 0 0之一個表面部份。 圖五E顯示圖四所標示的圖二L之沿著一個F — F,線的一Page 19 591764 V. Description of the invention (15) Figure 5B shows a cross-sectional view of Figure 2L marked along Figure 4 along a line C-C ', one of which etches back the first side wall dielectric cushion layer 3 0 6b is formed on a penetrating dielectric layer 3 0 1 b and is formed on a common source diffusion region 3 5 5a. A plurality of metal word lines (WL) 3 18a are alternately formed on the etch back section. One side wall dielectric cushion layer 3 0 6b. FIG. 5C shows a cross-sectional view of FIG. 4L along a D-D ′ line, where the metal word lines 3 1 8a, which are located within each of the floating gate areas (FGR), The micronizable control gate conductive island 3 1 2d, the inter-gate dielectric layer 3 0 3 c, and the micronizable floating gate island 3 0 2 c are simultaneously formed by a second mask photoresist (PR2) step. And an isolated ion implantation region 3 1 9a implants a dopant on a surface portion of the semiconductor substrate 300 in a self-aligned manner across the penetrating dielectric layer 3 0 1 b. FIG. 5D shows a cross-sectional view of FIG. 4L along the line EE ′, wherein the metal word line (WL) 3 18a is located within each of the selection gate regions (SGR). Together with the micronizable control gate conductive island 31 2d, it is simultaneously formed by the second mask photoresist (PR2) step; an ion implantation region 3 1 0 b contains at least one shallow ion implantation region as indicated by a dashed line. It is marked as the adjustment of the threshold voltage and a deep ion implantation area is marked as χ χ χ to form a barrier dielectric layer formed within each of the selective gate regions (SGR). A surface portion of the semiconductor substrate 300 under 311d; and an isolated ion implantation region 3 1 9 a as described in FIG. 5C is formed between adjacent metal word lines (WL) 318 a A surface portion of a semiconductor board 300. Figure 5E shows one of the two lines marked L in Figure 4 along a line F—F.

第20頁 591764 五、發明說明(16) 擴散位元線314c 成於該回蝕第二 個剖面圖,其中一個回蝕第二側邊牆介電墊層3 1 5 b置於一 個閘介電層3 1 1 d之上係形成於一個埋層汲 之上而複數金屬字線(WL ) 3 1 8 a係交變地形 側邊牆介電墊層31 5b之上。 化物層31 7b係形 個表面之上;以 該回#第二平面 圖五F顯示圖四所標示的圖二L之沿著一個G_G’線的一 個剖面圖,其中一個回蝕第二平面化場氧 成於一個淺凹槽之該半導體基板300的一 及複數金屬字線(WL)318 a係交變地形成於 化場氧化物層3 1 7 b之上。 發明之該可微縮 合控制閘導電島 位元線陣列的各 一個B - B ’線的一 平面化氧化物層 物層3 0 8 c所取代 現請參見圖六A至圖六F,其中顯示本 化分閘式快閃記憶細胞元結構具有一個複 3 2 0b/ 31 2b及其第一型無接點分離式擴散 種不同簡要剖面圖。 圖六A顯示圖四所標示的圖三C之沿著 個剖面圖,其中圖五A之内的該回餘第一 3 0 8b係由一個較厚的回蝕第一平面化氧化 圖六B顯示圖四所標示的圖三C之沿著一個C - C,線的一 個剖面圖,其中圖五B之内的該回餘第一側邊牆介電墊層 306 b係由一個較厚的回餘第一側邊牆介電塾層306 c所取代 〇 圖六C顯示圖四所標示的圖三C之沿著一個D — D,線的 一個剖面圖,其中圖五C之内的該可微縮化控制閘導電島 31 2d係覆蓋有一個平面化覆蓋導電島3 2 0b。Page 20 591764 V. Description of the invention (16) Diffusion bit line 314c is formed in the second section of this etch-back, one of which etches back the second side wall dielectric pad 3 1 5 b on a gate dielectric The layer 3 1 1 d is formed on a buried layer drain and the plurality of metal word lines (WL) 3 1 8 a is on the alternating terrain side wall dielectric pad 31 5b. The material layer 31 7b is formed on each surface; a second cross-sectional view along the line G_G 'shown in FIG. One and a plurality of metal word lines (WL) 318 a of the semiconductor substrate 300 formed by oxygen in a shallow groove are alternately formed on the chemical field oxide layer 3 1 7 b. The invention is a planarized oxide layer material layer 3 0 8 c of each of the B-B 'lines of the micro-condensable control gate conductive island bit line array. Now refer to FIG. 6A to FIG. 6F, which shows The localized split-type flash memory cell structure has different complex cross-sections of a complex 3 2 0b / 31 2b and its first contactless detached diffusion species. FIG. 6A shows a cross-sectional view of FIG. 3C marked in FIG. 4, wherein the remaining first 3 0 8b in FIG. 5A is formed by a thicker etched back first planarized oxide. FIG. 6B A cross-sectional view along line C-C, shown in FIG. 3C shown in FIG. 4 is shown, in which the remaining first side wall dielectric cushion layer 306b in FIG. 5B is formed by a thicker Replaced by the first side wall dielectric layer 306c. Figure 6C shows a cross-sectional view along Figure D-C along a line D-D, shown in Figure 4C. The scaleable control gate conductive island 31 2d is covered with a planarized conductive island 3 2 0b.

第21頁 591764 五、發明說明(17) 圖六D顯示圖四所標示的圖三c之沿著一個E-E,線的 一個剖面圖,其中圖五D之内的該可微縮化控制閘導電島 312 d係覆蓋有一個平面化覆蓋導電島32〇b。 圖六E顯示圖四所標示之沿著一個f - F ’線的一個剖面 圖,其中圖五E之内的該回蝕第二側邊牆介電墊層315 b係 由一個較厚的回蝕第二侧邊牆介電墊層3丨5 c來取代。 圖六F顯示圖四所標示之沿著一個G-G,線的一個剖面 圖,其中圖五F之内的該回蝕第二平面化場氧化物層317b 係由一個較厚的回蝕第二平面化場氧化物層3 1 7 c所取代。 圖七顯示本發明之該可微縮化分閘式快閃記憶細胞元 結構及其第一型無接點分離式擴散位元線陣列的一個混合 簡要電路代表圖,其中複數共源導電管線(BL 1 ) 30 7d / 3 0 7b及複數偶對埋層擴散位元線(BL2)3 14c係平行及交變 地形成;複數可微縮化分閘式快閃記憶細胞元(2 (Π〜2 2 5 ) 係形成於相鄰共源導電管線(BL 1 ) 3 0 7d / 3 0 7b及埋層汲 擴散位元線(BL2)314c之間以及複數金屬字線(WL)318a係 與該複數共源導電管線(BL1 ) 3 0 7d/ 3 0 7b及該複數偶對埋 層汲擴散位元線(BL2)314c互為垂直而複數金屬字線(WL) 3 1 8a的每一個係與每一列之内的該可微縮化控制閘導電島 312(1或該可微縮化複合控制閘導電島3 2 01)//312(1積體化連 結。 現請參見圖八A至圖八I,其中揭示製造本發明之一種 可微縮化分閘式快閃記憶細胞元結構及其第一型無接點分 離式擴散位元線陣列之接續圖二C的製程步驟其及剖面圖Page 21 591764 V. Description of the invention (17) Fig. 6D shows a cross-sectional view taken along the line EE of Fig. 3c marked in Fig. 4, among which the conductive island of the micronizable control gate in Fig. 5D 312 d is covered with a planarized conductive island 32b. FIG. 6E shows a cross-sectional view taken along a line f-F ′ as shown in FIG. 4, wherein the etched back side dielectric spacer 315 b in FIG. 5E is formed by a thicker Instead, the second side wall dielectric pad 3? 5c is etched. FIG. 6F shows a cross-sectional view taken along a line GG, shown in FIG. 4, wherein the etched back second planarized field oxide layer 317b in FIG. 5F is formed by a thicker etched back second plane The chemical field oxide layer 3 1 7 c is replaced. FIG. 7 shows a schematic representation of a hybrid schematic circuit of the scalable micro-flash memory cell structure of the present invention and its first type of contactless discrete diffusion bit line array, in which a plurality of common source conductive pipelines (BL 1) 30 7d / 3 0 7b and plural pairs of buried diffusion bit lines (BL2) 3 14c are formed in parallel and alternately; complex can be miniaturized gated flash memory cell (2 (Π ~ 2 2 5) is formed between the adjacent common source conductive pipeline (BL 1) 3 0 7d / 3 0 7b and the buried drain diffusion bit line (BL2) 314c and the plural metal word line (WL) 318a is common with the plural The source conductive pipeline (BL1) 3 0 7d / 3 0 7b and the complex even-pair buried-drain-diffusion bit line (BL2) 314c are perpendicular to each other and each of the plurality of metal word lines (WL) 3 1 8a is associated with each column Within the micronizable control gate conductive island 312 (1 or the micronizable composite control gate conductive island 3 2 01) // 312 (1 integrated connection. Now refer to FIG. 8A to FIG. 8I, where The invention discloses a miniaturized open-type flash memory cell structure of the present invention and the continuation of the first contactless discrete diffusion bit line array. The two process steps C and a sectional view thereof

第22頁 591764 五、發明說明(18) 〇Page 22 591764 V. Description of the invention (18) 〇

圖八A顯示位於該複數共源區(CSR)的每一個之内的該 對第一側邊牆介電墊層3 0 6 a之間的該穿透介電層3 0 1係利 用非等向乾式蝕刻法加予去除,且位於該對第一側邊牆介 電墊層3 0 6a之間的該半導體基板3 0 0係利用非等向乾式蝕 刻法來形成位於該複數共源區(CSR)的每一個之内的一個 淺凹槽;然後,一個平面化場氧化物層3 0 8d係填滿位於 該複數共源區(C S R )的每一個之内的該對第一側邊牆介電 墊層30 6a之間的空隙。這裡值得注意的是,在未形成該第 一平面化場氧化物層3 08d之前可以進行一個熱氧化製程, 以形成一個襯氧化物(liner-oxide)層於該淺凹槽的一個 表面之上來消除該半導體基板3 0 0之一個淺凹槽表面所產 生的瑕疵。該第一平面化場氧化物層3 0 8 d可以利用形成該 第一平面化氧化物層308a的相同製程步驟來完成。這裡可 以清楚地看到,圖二C中的該共源擴散區3 0 5 a的每一個係 被分離成一對埋層源擴散位元線3 〇 5 c。 依照圖二F至圖二I所描述的相同製程步驟’圖八B、 圖八C、圖八D及圖八E可以輕易地得到。FIG. 8A shows that the penetrating dielectric layer 3 0 1 between the pair of first side wall dielectric pads 3 0 6 a located within each of the plurality of common source regions (CSR) uses non-equivalence The semiconductor substrate 300 is removed by a dry etching method, and the semiconductor substrate 300 located between the pair of first side wall dielectric pads 3 06a is formed by using an anisotropic dry etching method to form the plurality of common source regions ( A shallow groove within each of the CSR); then, a planarized field oxide layer 3 08d fills the pair of first side walls within each of the plurality of common source regions (CSR) A gap between the dielectric pads 30 6a. It is worth noting here that before the first planarized field oxide layer 3 08d is formed, a thermal oxidation process may be performed to form a liner-oxide layer on a surface of the shallow groove. Defects generated on a shallow groove surface of the semiconductor substrate 300 are eliminated. The first planarized field oxide layer 3 0 8 d can be completed by using the same process steps for forming the first planarized oxide layer 308 a. It can be clearly seen here that each of the common source diffusion regions 3 05 a in FIG. 2C is separated into a pair of buried source diffusion bit lines 3 05 c. Fig. 8B, Fig. 8C, Fig. 8D and Fig. 8E can be easily obtained according to the same process steps described in Fig. 2F to Fig. 2I.

圖八F顯示一對第二側邊牆介電墊層3 1 5a係形成於該 對第四側邊牆介電墊層3 1 3a置於該對可微縮化控制閘層 3 12c的側邊牆之上及置於該可微縮化共沒區(SCDR)的每一 個之内的該閘介電層3 11匕的側邊表面部份之上;然後’位 於該可微縮化共汲區(SCDR)的每一個之内的該對第二側邊 賭介墊層3 1 5 a之間的該閘介電層3 11 b係藉由非等向乾式#FIG. 8F shows that a pair of second side wall dielectric pads 3 1 5a are formed on the pair of fourth side wall dielectric pads 3 1 3a on the sides of the pair of micronizable control gate layers 3 12c. Over the wall and on the side surface portion of the gate dielectric layer 3 11k placed within each of the SMD; then 'located on the SMD SCDR) within each of the pair of second side bet dielectric layers 3 1 5 a, the gate dielectric layer 3 11 b is by non-isotropic dry type #

591764 五、發明說明(19) 刻法或稀釋氫氟酸、緩衝氫氟酸的渥式#刻法來加予去除 ;接著,一個共汲導電管線3 1 6d/ 3 1 6b係形成於該可微縮 化共汲區(SCDR)的每一個之内的位於該共汲擴散區314 a之 内的一個高掺雜共汲擴散區314 b之上且藉由圖二d及圖二e 所描述之形成該共源導電管線3 0 7d/ 3 0 7b的相同製程步驟 來形成;然後,一個第二平面化氧化物層3 0 7d係形成於該 可微縮化共汲區(SCDR)的每一個之内的該對第二側邊牆介 電墊層3 1 5 a之間的該共汲導電管線3 1 6 d/ 3 1 6 b之上。 根據圖二K至圖二L所描述之相同製程步驟,圖八g至 圖八I可以輕易地得到。 相似地,根據圖三A至圖三C所描述之相同製程步驟, 圖九A至圖九C可以輕易地得到。 圖十顯示本發明之該可微縮化分閘式快閃記憶細胞元 結構及其第二型無接點分離式擴散位元線陣列,其中圖十 所標示之沿著一個A-A’線的一個剖面圖係顯示於圖八I及 圖九C中。如圖十所示,複數共汲導電管線(BL2) 316d/ 3 16b係交變地形成;位於該複數共源區(CSR)的每一個之 内的一對埋層源擴散位元線(BL 1 ) 30 5c係藉由該對回蝕第 一側邊牆介電墊層3 0 6b( 3 0 6c)如圖八I及圖九C所示的一個 回蝕第一平面化場氧化物層3 08e( 30 8 f)來分離;然後,複 數金屬字線(WL)318a係與該複數共汲導電管線(BL2)316d / 31 6b互為垂直,其中該複數金屬字線(WL) 3 18a的每一個 係與每一列的該可微縮化控制閘導電島3 1 2d或該可微縮化 複合控制閘導電島32 0b/ 31 2d積體化連結;接著,一個隔591764 V. Description of the invention (19) Engraving or dilute hydrofluoric acid, buffered hydrofluoric acid #engraving method to remove; then, a common draw conductive line 3 1 6d / 3 1 6b is formed in the can Each of the miniaturized common-drain regions (SCDRs) is located on a highly doped common-drain diffusion region 314 b within the common-drain diffusion region 314 a and is described by FIG. 2 d and FIG. 2 e The same process steps for forming the common source conductive line 3 7d / 3 0 7b are formed; then, a second planarized oxide layer 3 7d is formed in each of the micronizable common drain regions (SCDRs). Above the pair of second side wall dielectric pads 3 1 5 a above the common-drain conductive pipeline 3 1 6 d / 3 1 6 b. According to the same process steps described in FIGS. 2K to 2L, FIGS. 8g to 8I can be easily obtained. Similarly, according to the same process steps described in FIGS. 3A to 3C, FIGS. 9A to 9C can be easily obtained. FIG. 10 shows the structure of the miniaturizable open-type flash memory cell and the second type of non-contact discrete diffusion bit line array according to the present invention. A cross-sectional view is shown in FIGS. 8I and 9C. As shown in FIG. 10, the complex common drain pipeline (BL2) 316d / 3 16b is formed alternately; a pair of buried source diffusion bit lines (BL) located within each of the complex common source regions (CSR) 1) 30 5c is an etched back first planarized field oxide layer by using the pair of etched back side wall dielectric pads 3 0 6b (3 0 6 c) as shown in FIG. 8I and FIG. 9C 3 08e (30 8 f) to separate; then, the plural metal word line (WL) 318a is perpendicular to the plural common drain line (BL2) 316d / 31 6b, wherein the plural metal word line (WL) 3 18a Each of them is integrally connected to the conductive island 3 1 2d of the micronizable control gate or the conductive island 32 0b / 31 2d of the micronizable composite control gate;

591764 五、發明說明(20) 離離子佈植區31 9a係形成於該共源區(CSR)與該可微縮化 共沒區(SCDR)之間且介於相鄰金屬字線(WL)318a之間。 圖十一 A至圖十一 F顯示圖十所標示之圖八!的各種不 同剖面圖’其中圖十一 A顯示圖十所標示之沿著一個B_B, 線的一個剖面圖;圖十一 B顯示圖十所標示之沿著一個c_ C ’線的一個剖面圖;圖十一 c顯示圖十所標示之沿著一個 D-D’線的一個剖面圖;圖十一 d顯示圖十所標示之沿著一 個E-E線的一個剖面圖;圖十一 e顯示圖十所標示之沿著 一個F - F ’線的一個剖面圖;以及圖十一 ρ顯示圖十所標示 之沿著一個G - G ’線的一個剖面圖。 圖十一 A顯示一個回蝕第一平面化場氧化物層3 〇 8 6係 形成於該半導體基板3 0 0之上而複數金屬字線(WL ) 3 1 8a係 交變地形成於該回蝕第一平面化場氧化物層3 0 8 e之上。 圖十一 B顯示一個回蝕第一側邊牆介電墊層3〇6b置於 一個穿透介電層3 0 1 b之上係形成於一個埋層源擴散位元線 3 0 5c之上而複數金屬字線(WL) 3 18a係交變地形成於該回蝕 第一側邊牆介電墊層3 0 6b之上。 圖十一 C顯示位於該漂浮閘區(FGR)的每一個之内的該 複數金屬字線(WL)318a的每一個、該可微縮化控制閘導電 島31 2d、該閘間介電層3 0 3c及該可微縮化漂浮閘島3 0 2c係 藉由一個第二罩幕光阻(PR2 )步驟來同時成形;以及一個 隔離離子佈植區31 9a以一個自動對準的方式跨過該穿透介 電層30 lb佈植摻雜質於相鄰金屬字線(WL) 3 18a之間的該半 導體基板3 0 0之一個表面部份。591764 V. Description of the invention (20) The ion implantation region 31 9a is formed between the common source region (CSR) and the micronizable common sinking region (SCDR) and between adjacent metal word lines (WL) 318a between. Figure 11 A to Figure 11 F shows Figure 8 marked in Figure 10! The various cross-sectional views 'of which FIG. 11A shows a cross-sectional view along a line B_B, marked in FIG. 10; FIG. 11B shows a cross-sectional view along a c_C' line marked in FIG. 10; Fig. 11c shows a cross-sectional view along a DD 'line shown in Fig. 10; Fig. 11d shows a cross-sectional view along an EE line shown in Fig. 10; Fig. 11e shows Fig. 10 A cross-sectional view along a F-F 'line is shown; and FIG. 11p shows a cross-sectional view along a G-G' line shown in FIG. FIG. 11A shows that an etch-back first planarized field oxide layer 3 008 6 is formed on the semiconductor substrate 300 and a plurality of metal word lines (WL) 3 1 8a are alternately formed on the semiconductor substrate 3 0 8. Etch the first planarized field oxide layer 3 0 8e. FIG. 11B shows that an etch-back first side wall dielectric pad layer 306b is formed on a penetrating dielectric layer 3 0 1 b and is formed on a buried layer source diffusion bit line 3 0 5c. A plurality of metal word lines (WL) 3 18a are alternately formed on the etched back sidewall dielectric layer 3 0 6b. FIG. 11C shows each of the plurality of metal word lines (WL) 318a within the floating gate area (FGR), the conductive island 31 2d of the micronizable control gate, and the dielectric layer 3 between gates. 0 3c and the micronizable floating gate island 3 0 2c are formed simultaneously by a second mask photoresist (PR2) step; and an isolated ion implantation region 31 9a crosses the A 30 lb penetrating dielectric layer implants a surface portion of the semiconductor substrate 300 between the adjacent metal word lines (WL) 3 18a.

第25頁 591764 五、發明說明(21) 圖十一 D顯示位於該選擇閘區(SGR)的每一個之内的該 複數金屬字線(WL ) 3 1 8 a的每一個及該可微縮化控制閘導電 島3 1 2 d係同時藉由该第一罩幕光阻(PR2)步驟來成形,其 中位於該選擇閘區(S G R )的每一個之内的該可微縮化控制 閘導電島3 1 2 d係形成於該閘介電層3 11 d之上;一個離子佈 植區3 1 0 b至少包含一個淺離子佈植區如一個虛線所標示以 作為臨界電壓的調整及一個深離子佈植區如打χ χ χ號所 標示以形成一個抵穿禁止區係形成於該複數金屬字線(wL) 3 1 8 a的母一個之下的該半導體基板3〇 〇之一個表面部份; 以及一個隔離離子佈植區3 1 9 a係形成於相鄰金屬字線(ψ [) 3 1 8a的該半導體基板3 0 0之一個表面部份。 、 圖十一 E顯示一個回蝕第二側邊牆介電墊層3丨5b置於 遠閘介電層3 1 1 d之上係形成於該可微縮化共沒區($ [ j) r )的 每一個之内的一個共汲擴散區31 4a之上而複數金屬字線( WL)318a係父變地形成於該回餘第二側邊牆介電塾層315b 之上。 圖十一 F顯示一個回#第二平面化氧化物層3丨7e係形 成於該可微縮化共沒區(SCDR )的每一個之内的一個沒導 電管線3 1 6 d/ 3 1 6 b之上;該共沒導電管線係形成於該共沒 擴散區3 1 4 a之内的一個高摻雜共沒擴散區3 1 4 b之上;以及 複數金屬字線(WL) 3 18a係交變地形成於該可微縮化共沒區 (SCDR)的每一個之内的該回蝕第二平面化氧化物層3176之 上。 圖十二A至圖十二F顯示圖十所標示的圖九c之各種不Page 25 591764 V. Description of the invention (21) FIG. 11D shows each of the plurality of metal word lines (WL) 3 1 8 a located within each of the selection gate regions (SGR) and the micronizable The control gate conductive island 3 1 2 d is formed at the same time by the first mask photoresist (PR2) step, wherein the scaleable control gate conductive island 3 located within each of the selection gate regions (SGR) 1 2 d is formed on the gate dielectric layer 3 11 d; an ion implanted region 3 1 0 b includes at least a shallow ion implanted region as indicated by a dashed line for adjustment of the threshold voltage and a deep ion implanted region The implanted area is marked with χ χ χ to form a surface portion of the semiconductor substrate 300 that is formed under the mother of the plurality of metal word lines (wL) 3 1 8 a. And an isolated ion implantation region 3 1 9 a is formed on a surface portion of the semiconductor substrate 3 0 0 of an adjacent metal word line (ψ [) 3 1 8a. Figure 11E shows an etch-back second side wall dielectric cushion layer 3 丨 5b on top of the far gate dielectric layer 3 1 1 d and is formed in the micronizable common area ($ [j) r A plurality of metal word lines (WL) 318a are formed on each of the common drain regions 31 4a within each of the above), and are formed on the remaining second side wall dielectric layer 315b. FIG. 11F shows a non-conducting pipeline 3 1 6 d / 3 1 6 b formed on each of the second planarized oxide layer 3 丨 7e is formed within each of the micronizable common area (SCDR). On; the common conductive line is formed on a highly doped common diffusion region 3 1 4 b within the common diffusion region 3 1 4 a; and a plurality of metal word lines (WL) 3 18a intersect Variantly formed over the etched-back second planarized oxide layer 3176 within each of the micronizable common area (SCDR). Figures 12A to 12F show various types of Figure 9c marked in Figure 10.

第26頁 591764 五、發明說明(22) 同剖面圖,其中其中圖十二A顯示圖十所標示之沿著一個 B - B ’線的一個剖面圖’其中該回餘第一平面化場氧化物層 3 0 8 e係由一個較厚的回蝕平面化場氧化物層3 0 8 f所取代; 圖十二B顯示圖十所“示之沿者一個C - C ’線的一個剖面圖 ,其中圖十一 B所示之該回餘第一側邊牆介電墊層306 b係 由一個較厚的回餘第一側邊牆介電墊層306 c所取代;圖十 二C顯示圖十所標示之沿著一個D - D,線的一個剖面圖,其 中圖十一 C所示的該可微縮化控制閘導電島3 1 2 d係由該可 微縮化控制閘導電島3 1 2 d覆蓋有一個平面化覆蓋導電島 3 2 0 b所取代;圖十二D顯示圖十所標示之沿著一個e _ £,線 的一個剖面圖,其中圖H D所示的該可微縮化控制閘導 電島3 1 2d係由該可微縮化控制閘導電島3 1 2d覆蓋有一個平 面化覆蓋導電島3 2 0 b所組成;圖十二Ε顯示圖十所標示之 沿著一個F - F ’線的一個剖面圖,其中圖十一 E所示之該回 蝕第二側邊牆介電墊層3 1 5 b係由一個較厚的回蝕第二側邊 牆介電墊層3 1 5 c所取代;以及圖十二F顯示圖十所標示之 沿著一個G-G’線的一個剖面圖,其中圖十一 F所示之該回 蝕第二平面化氧化物層3 1 7 e係由一個較厚的回蝕第二平面 化氧化物層3 1 7 f所取代。 圖十三揭示本發明之該可微縮化分閘式快閃記憶細胞 元結構及其第二型無接點分離式擴散位元線陣列的一個混 合簡要電路代表圖,其中複數共汲導電管線(BL2) 31 6d/ 31 6b及複數偶對埋層源擴散位元線(BL 1 ) 3 0 5c係平行地形 成;複數可微縮化分閘式快閃記憶細胞元(3 〇 1〜3 2 5 )係形Page 26, 591764 V. Description of the invention (22) The same cross-sectional view, in which FIG. 12A shows a cross-sectional view along a line B-B indicated in FIG. 10, in which the remaining first planarization field is oxidized The physical layer 3 0 8 e is replaced by a thicker etch-back planarized field oxide layer 3 8 8 f; FIG. 12B shows a cross-sectional view of a line “C-C '” shown in FIG. 10 Among them, the first side wall dielectric cushion layer 306 b shown in FIG. 11B is replaced by a thicker first side wall dielectric cushion layer 306 c; FIG. 12C shows A cross-sectional view taken along a line D-D, shown in FIG. 10, in which the conductive island 3 1 2 of the micronizable control gate shown in FIG. 11C is the conductive island 3 1 of the micronizable control gate 2 d is replaced by a planarized conductive island 3 2 0 b; Figure 12D shows a cross-section view along an e_ £, line marked in Figure 10, where the miniaturizable shown in Figure HD The control gate conductive island 3 1 2d is composed of the scalable control gate conductive island 3 1 2d covered with a planarized conductive island 3 2 0 b; Figure 12E A cross-sectional view along an F-F 'line indicated in Fig. 10, wherein the etched back side dielectric spacer 3 1 5 b shown in Fig. 11E is formed by a thicker back The second side wall dielectric pad 3 1 5 c is replaced; and FIG. 12F shows a cross-sectional view along a line G--G ′, as shown in FIG. The etch-back second planarized oxide layer 3 1 7 e is replaced by a thicker etch-back second planarized oxide layer 3 1 7 f. FIG. A hybrid schematic circuit representation of the flash memory cell structure and its second type of non-contact separated diffusion bit line array, in which the complex common drain pipeline (BL2) 31 6d / 31 6b and the complex even paired buried layer source diffusion The bit line (BL 1) 3 0 5c is formed in parallel; the plurality can be miniaturized and opened the flash memory cell (3 0 1 to 3 2 5).

第27頁 591764 五、發明說明(23) 成於該複數共汲導電管線(BL 2)316 d/ 316b的每一個及其 鄰近埋層源擴散位元線(BL丨)3 〇 5 c之間;以及複數金屬字 線(”1〇3188係與該複數共汲導電管線(以2)316(1/31613互 為垂直’其中上述之複數金屬字線(WL) 3 18a的每一個係與 每一列的該可微縮化控制閘導電島或該可微縮化複合控制 閘導電島320b/ 312d積體化連結。 現請參見圖十四A至圖十四C及圖十五,其中揭示製造 本發明之一種可微縮化分閘式快閃記憶細胞元結構及其第 二型無接點分離式擴散位元線陣列之接續圖八E的簡化製 程步驟及其剖面圖。 圖十四A顯示一對第二側邊牆介電墊層3丨5a係形成於 相鄰可微縮化分閘區(SSGR)的側邊牆之上且置於該可微縮 化共汲區(SCDR)的每一個之内的該閘介電層31 lb的側邊表 面部份之上;位於該可微縮化共汲區(SCDR)的每一個之内 的該對第二側邊牆介電墊層3 1 5 a之間的該閘介電層3 1 1 b 係利用非等向乾式餘刻法來加予去除;接著,位於該對第 二側邊牆介電墊層3 1 5a之間的該半導體基板係利用非等向 乾式餘刻法來蝕刻,以形成該可微縮化共汲區(SCDR)的每 一個之内的一個淺凹槽;然後,一個第二平面化場氧化物 層3 1 7 a係填滿位於該可微縮化共汲區(s c d R)的每一個之内 的該對第二側邊牆介電墊層3 1 5a之間的空隙。上述之第二 側邊牆介電墊層3 1 5a係由二氧化矽所組成係利用LPCVD法 來堆積’係與形成該第一側邊牆介電墊層3 〇 6 a的相同製程 步驟來形成。上述之第二平面化場氧化物層3丨7a係由二氧Page 27 591764 V. Description of the invention (23) Between each of the plurality of common drain pipelines (BL 2) 316 d / 316b and its adjacent buried layer source diffusion bit line (BL 丨) 3 〇5 c ; And a plurality of metal word lines ("10303188 and the plurality of common conductive lines (to 2) 316 (1/31613 are perpendicular to each other ') wherein each of the above-mentioned plurality of metal word lines (WL) 3 18a and each A row of the conductive islands of the scaleable control gate or the conductive islands of the scaleable composite control gate 320b / 312d are integrated. Now refer to FIG. 14A to FIG. 14C and FIG. One kind of miniaturizable open-type flash memory cell structure and the continuation of the second type of non-contact discrete diffusion bit line array are shown in Figure 8E, which is a simplified process step and a cross-sectional view thereof. Figure 14A shows a pair of The second side wall dielectric cushion layer 3 丨 5a is formed on the side wall of the adjacent miniaturizable branching area (SSGR) and is placed in each of the miniaturizable common drain areas (SCDR). Over 31 lb of the side surface portion of the gate dielectric layer; located within each of the miniaturizable common drain regions (SCDRs) The gate dielectric layer 3 1 1 b between the pair of second side wall dielectric pads 3 1 5 a is added and removed by using a non-isotropic dry-cut method; The semiconductor substrate between the wall dielectric pads 3 1 5a is etched using an anisotropic dry-etching method to form a shallow groove within each of the micronizable common drain regions (SCDRs); then A second planarized field oxide layer 3 1 7 a fills the pair of second side wall dielectric pads 3 1 5a located within each of the scalable common drain regions (scd R). The above-mentioned second side wall dielectric pad layer 3 1 5a is composed of silicon dioxide and is deposited using the LPCVD method to form the first side wall dielectric pad layer 3 0a. It is formed by the same process steps. The second planarized field oxide layer 3 丨 7a described above is made of dioxygen.

第28頁 591764 五、發明說明(24) 化矽、磷玻璃或硼磷玻璃所組成且利用LPCVD法、HDPCVD 法或PECVD法來堆積’係與形成該第一平面化場氧化物層 3 0 8d的相同製程步驟來形成。這裡可以清楚地看到,該共 >及擴散區3 1 4 a的母一個係被該第一平面化場氧化物声3 1 7 a 來分離成一對埋層汲擴散位元線3 1 4c。 9 圖十四B顯示位於該平面化控制閘導電層3 1 2 c的一個 頂部表面水平之上的該第一側邊牆介電墊層306a、該第二 側邊牆介電墊層3 1 5 a、該第一平面化場氧化物層3 〇 8 a、該 第二平面場化氧化物層3 1 7 a及該第四側邊牆介電塾層3 1 3 a 係循序地去除來形成一個平坦的結構表面,如圖二L或圖 三C所示。 圖十四C顯示一個金屬層3 1 8係形成於該平坦結構表面 之上且藉由一個第二罩幕光阻(PR2)步驟(未圖示)來成形 以形成複數金屬字線(WL ) 3 1 8a ;該平面化控制間導電層 3 1 2 c、該閘間介電層3 0 3 b、該可微縮化漂浮閘層3 〇 2 b及該 複晶矽氧化物層3 1 1 a係利用非等向乾式蝕刻法來循序地加 予去除;然後,以一個自動對準的方式執行一個離子佈植 製程來形成位於該共源區(CSR)及該可微縮化共汲區(SCDR )及位於相鄰金屬字線(WL) 3 1 8 a之間的一個隔離離子佈植 區319a。上述之詳細製程可以參考圖二L或圖三C的描述。 圖十五顯示該第一側邊牆介電墊層3 0 6 a、該第二側邊 牆介電墊層315a 、該第一平面化場氧化物層308d及該第 二平面化場氧化物層3 1 7d係利用非等向乾式蝕刻法來回蝕 ,以去除該第一 /第二側邊牆介電墊層3 0 6 a/ 3 1 5 a的彎曲Page 28 591764 V. Description of the invention (24) It is composed of siliconized, phosphorous glass or borophosphoric glass and is deposited using LPCVD method, HDPCVD method or PECVD method to form the first planarized field oxide layer 3 0 8d The same process steps to form. It can be clearly seen here that the parent and the diffusion region 3 1 4 a are separated by the first planarized field oxide sound 3 1 7 a into a pair of buried layer drain bit lines 3 1 4c . 9 FIG. 14B shows the first side wall dielectric cushion layer 306a and the second side wall dielectric cushion layer 3 1 above a top surface level of the planarization control gate conductive layer 3 1 2 c. 5 a, the first planarized field oxide layer 3 0 8 a, the second planarized field oxide layer 3 1 7 a, and the fourth side wall dielectric hafnium layer 3 1 3 a are sequentially removed Form a flat structure surface, as shown in Figure 2L or Figure 3C. FIG. 14C shows that a metal layer 3 1 8 is formed on the surface of the flat structure and is formed by a second mask photoresist (PR2) step (not shown) to form a plurality of metal word lines (WL). 3 1 8a; the planarization control interlayer conductive layer 3 1 2 c, the inter-gate dielectric layer 3 0 3 b, the micronizable floating gate layer 3 〇 2 b, and the polycrystalline silicon oxide layer 3 1 1 a The non-isotropic dry etching method is used to sequentially add and remove; then, an ion implantation process is performed in an auto-alignment manner to form the common source region (CSR) and the micronizable common drain region (SCDR). ) And an isolated ion implantation region 319a between adjacent metal word lines (WL) 3 1 8 a. For the detailed process mentioned above, please refer to the description in FIG. 2L or FIG. 3C. Figure 15 shows the first side wall dielectric pad 3 0 6 a, the second side wall dielectric pad 315 a, the first planarization field oxide layer 308 d, and the second planarization field oxide Layer 3 1 7d is etched back using non-isotropic dry etching to remove the bending of the first / second side wall dielectric cushion layer 3 0 6 a / 3 1 5 a

第29頁 591764 五、發明說明(25) 部份;然後,第四側邊牆介電墊層3 1 3 a係利用非等向乾式 蝕刻法或熱磷酸的溼式蝕刻法來加予去除;接著,一個平 面化覆盍導電層320 a係填滿所去除之第四側邊牆介電墊層 3 1 3a所存留的每一個空隙;然後,一個金屬層3丨8係形成 於所形成的結構表面之上,再利用一個第二罩幕光阻(PR2 )步驟(未圖示)來成形,以形成複數金屬字線(WL) 3 18a; 接著,位於該可微縮化分閘區(SSGR)的每一個之内的相鄰 金屬字線(WL) 3 18a之間的該平面化覆蓋導電層3 2 0a、該平 面化控制閘導電層312c、該閘間介電層3 0 3b、該可微縮化 漂浮閘層3 0 2 b及該複晶石夕氧化物層3 11 a係循序地加予去除 ;最後,以一個自動對準的方式執行一個離子佈植製程, 將摻雜質佈植於該共源區(CSR)及該可微縮化共沒區(scDR )之間及位於相鄰金屬字線3 1 8a之間的該半導體基板3 〇 〇的 一個表面部份來形成一個隔離離子佈植區319a (未圖示)。 上述之詳細製程步驟可以參見圖三A至圖三C的描述。 由圖十四C及圖十五可以清楚地看到,該共源擴散區 3 0 5 a及該共没擴散區314 a係分別藉由一個回勉第一平面化 場氧化物層3 0 8 e/ 3 0 8 f及一個回蝕第二平面化場氧化物層 317b/ 3 17c來加予分離成一對埋層源擴散位元線3〇5c及一 對埋層〉及擴散位元線3 1 4 c ;因此,上述之複數可微縮化分 閘式快閃記憶細胞元的每一個可以單獨地加予擦洗。 現請參見圖十六’其中本發明之該可微縮化分閘式快 閃β己憶細胞元結構及其第二型無接點分離式擴散位元線陣 列的一個混合簡要頂視佈建圖。如圖十六所示,複數偶對Page 29, 591764 V. Part (25) of the description of the invention; Then, the fourth side wall dielectric pad 3 1 3 a is removed by non-isotropic dry etching or wet etching with hot phosphoric acid; Next, a planarized clad conductive layer 320 a fills every gap left by the removed fourth side wall dielectric pad layer 3 1 3a; then, a metal layer 3 丨 8 is formed on the formed Above the structure surface, a second mask photoresist (PR2) step (not shown) is used to form to form a plurality of metal word lines (WL) 3 18a; then, in the micronizable opening zone (SSGR) ) Between each of the adjacent metal word lines (WL) 3 18a within the planarized overlay conductive layer 3 2 0a, the planarized control gate conductive layer 312c, the inter-gate dielectric layer 3 0 3b, the The micronizable floating gate layer 3 0 2 b and the polycrystalline stone oxide layer 3 11 a are sequentially removed; finally, an ion implantation process is performed in an automatic alignment manner, and the doped fabric Implanted between the common source region (CSR) and the micronizable common concealed region (scDR) and between adjacent metal word lines 3 1 8a A surface portion of the semiconductor substrate 3 to form a billion billion ion implantation isolation region 319a (not shown). For the detailed process steps mentioned above, please refer to the description of FIGS. 3A to 3C. It can be clearly seen from FIG. 14C and FIG. 15 that the common source diffusion region 3 0 5 a and the common diffusion region 314 a are respectively stimulated by a first planarization field oxide layer 3 0 8 e / 3 0 8 f and an etched back second planarization field oxide layer 317b / 3 17c to separate into a pair of buried source diffusion bit lines 3 05c and a pair of buried layers> and diffusion bit line 3 1 4 c; therefore, each of the above-mentioned plurality of micronizable open-type flash memory cells can be scrubbed separately. Please refer to FIG. 16 ′, which is a mixed brief top-view layout diagram of the miniaturizable and openable flash β-calyx cell structure of the present invention and its second type of contactless discrete diffusion bit line array . As shown in Figure 16, the complex even pair

第30頁 591764 五、發明說明(26) 埋層源擴散位元線(BL 1 ) 30 5c及複數偶對埋層汲擴散位元 線(BL2)3 14c係平行地形成且與複數金屬字線(WL)3 18a互 為垂直,其中上述之複數金屬字線(WL) 3 18a的每一個係與 該可微縮化控制閘導電島3 1 2d或該可微縮化控制閘導電島 31 2d覆蓋有該平面化覆蓋導電島32 0b積體化連結;以及 一個隔離離子佈植區3 1 9 a係形成於該共源區(c s R )與該可 微縮化共沒區(S C D R )之間及位於相鄰金屬字線(ψ l ) 3 1 8 a之 間0 圖十 面圖,其 示於圖十 B-B’線的 一個 C - C ’ 沿著 示之 所標 示圖 得注 顯示 考圖 係分 詳細 圖, 一個 沿著 不 十六 意的 的一 十一 別與 描述 圖十 其中 七A至圖十七F顯示圖十六中之圖十四c的簡要剖 中圖十六中之沿著一個A - A ’線的一個剖面圖係顯 四C中;圖十七A顯示圖十六所標示之沿著一個 一個剖面圖;圖十七B顯示圖十六所標示之沿著 線的一個剖面圖;圖十七C顯示圖十六所標示之 D-D’線的一個剖面圖;圖十七D顯示圖十二^ 一個E-E’線的一個剖面圖;圖十七^^員示圖十= 沿著一個F - F ’線的一個剖面圖;以及圖十七F 所標示之沿著一個G-G,線的一個剖面圖。這裡值 是’圖十七A至圖十七D係與圖十一 a至圖十一 d所 樣。因此,圖十七A至圖十七D的詳細描述可以表 A至圖十一 D的說明。相似地,圖十七E和圖十七> 圖五龄口圖五F—樣。因此,圖十七£和圖十七 可以分別參考圖五E和圖五F的解說。 八A至圖十八F顯示圖十六中之圖十五的簡要剖面 圖十六中之沿著一個A-A,線的一個剖面圖係^示Page 30 591764 V. Description of the invention (26) Buried source diffusion bit line (BL 1) 30 5c and complex even-buried layer drain diffusion bit line (BL2) 3 14c are formed in parallel and are parallel to the complex metal word line (WL) 3 18a is perpendicular to each other, wherein each of the plurality of metal word lines (WL) 3 18a is covered with the micronizable control gate conductive island 3 1 2d or the micronizable control gate conductive island 31 2d The planarization covers an integrated connection of the conductive island 32 0b; and an isolated ion implantation region 3 1 9 a is formed between the common source region (cs R) and the miniaturizable common congestion region (SCDR) and is located at Adjacent metal word lines (ψ l) between 3 1 8 a 0 Figure 10-surface diagram, which is shown in Figure 10 B-B 'line of a C-C' Along the marked diagram shown in Figure 10 shows the map system A detailed drawing, one along the eleventh part of the eleventh and the description of the eleventh in Fig. Ten of which seven A through seventeen F show a brief cross-section of the fourteenth c in the sixteenth A cross-sectional view of an A-A 'line is shown in Fig. 4C; Fig. 17A shows a cross-sectional view along a line marked in Fig. 16; Fig. 10 B shows a cross-sectional view along the line indicated in FIG. 16; FIG. 17C shows a cross-sectional view along the line DD 'shown in FIG. 16; FIG. 17D shows FIG. 12 ^ an E-E A cross-sectional view of the 'line; Figure XVII ^^' s Figure X = a cross-sectional view along an F-F 'line; and a cross-sectional view along a GG, line indicated in Figure XVIIF. Here, the values are as shown in Fig. 17A to Fig. 17D and Fig. 11a to Fig. 11d. Therefore, the detailed descriptions of FIGS. 17A to 17D can be described in Tables A to 11D. Similarly, FIG. 17E and FIG. 17 > FIG. Therefore, FIG. 17 and FIG. 17 can be explained with reference to FIGS. 5E and 5F, respectively. Figures 8A through 18F show a brief section of Figure 15 in Figure 16 and a section along A-A in Figure 16 is shown.

591764 五、發明說明(27) '~ - 於圖十五中;圖十八A顯示圖十六所標示之沿著個B _ B,線 的一個剖面圖;圖十八B顯示圖十六所標示之沿著一個c — C’線的一個剖面圖;圖十八c顯示圖十六所標示之沿著一 ,D-D’線的一個剖面圖;圖十八D顯示圖十六所標;之沿 著一個E-E’線的一個剖面圖;圖十八e顯示圖十六所標示 之沿著一個F-F,線的一個剖面圖;以及圖十八F顯示^十 六所標示之沿著一個G - G ’線的一個剖面圖。圖十八a至圖 十八D係與圖十一 A至圖十一 D相同。因此,圖十八a至圖十 八D的詳細描述可以分別參見圖十二a至圖十二])的解說。 相似地,圖十八E和圖十八F係分別與圖六E和圖六F相同。 因此,圖十八E和圖十八F的詳細描述可以分別參考圖六E 和圖六F的解說。 圖十九顯示本發明之該可微縮化分閘式快閃記憶細胞 元結構及其第三型無接點分離式擴散位元線陣列的一個混 合簡要電路代表圖,其中複數偶對埋層源擴散位元線(B L1 ) 3 0 5c及複數偶對埋層汲擴散位元線(BL2)314c係平行地形 成且與複數金屬字線(WL)318 a互為垂直;上述之複數金屬 字線(WL) 3 18a的每一個係與該可微縮化控制閘導電島31 2d 或該可微縮化控制閘導電島3 1 2 d覆蓋有該平面化覆蓋導電 島3 2 0 b積體化連結;以及複數可微縮化分閘式快閃記憶細 胞元(40卜425 )係形成於該埋層源擴散位元線(BL1 ) 305c 及該埋層汲擴散位元線(BL2 )31 4c之間。 由圖十四C及圖十五可以清楚地看到,該共源擴散區 3 0 5a及該共汲擴散區3 1 4a係分別藉由一個回蝕第一平面化591764 V. Description of the invention (27) '~-In FIG. 15; FIG. 18A shows a cross-sectional view along the line B_B, shown in FIG. 16; FIG. 18B shows FIG. A cross-sectional view along a line c-C 'marked in FIG. 18; FIG. 18c shows a cross-sectional view along line DD' marked in FIG. 16; FIG. 18D shows a mark in FIG. ; A cross-sectional view along an E-E 'line; FIG. 18e shows a cross-sectional view along a line FF, shown in FIG. 16; and FIG. 18F shows a line indicated by ^ 16 A sectional view along a G-G 'line. Figures 18a to 18 are the same as Figures 11A to 11D. Therefore, the detailed description of FIG. 18a to FIG. 18D can be referred to the explanation of FIG. 12a to FIG. 12], respectively). Similarly, Figures 18E and 18F are the same as Figures 6E and 6F, respectively. Therefore, the detailed descriptions of FIG. 18E and FIG. 18F can be referred to the explanations of FIG. 6E and FIG. 6F, respectively. FIG. 19 shows a schematic representation of a hybrid schematic circuit of the micronizable split-gate flash memory cell structure and the third type of contactless discrete diffusion bit line array of the present invention, in which multiple pairs of buried layer sources The diffusion bit line (B L1) 3 0 5c and the multiple even-pair buried layer diffusion bit line (BL2) 314c are formed in parallel and perpendicular to the complex metal word line (WL) 318 a; the above complex metal word Each of the lines (WL) 3 18a is connected to the conductive island 31 2d or the conductive island 3 1 2 d covered with the planarized conductive island 3 2 0 b. ; And a plurality of scalable micro flash memory cells (40, 425) are formed between the buried source diffusion bit line (BL1) 305c and the buried layer drain diffusion line (BL2) 31 4c. . It can be clearly seen from FIG. 14C and FIG. 15 that the common source diffusion region 3 0 5a and the common drain diffusion region 3 1 4a are respectively planarized by an etchback first.

第32頁 以於 可等 構寸 結尺 元的 胞元 細胞 憶細 記化 閃縮 快微 式可 閘個 分一 化供 縮提 微術 可技 該程 之製。 明牆20 發邊4 本側於 >由小 (a經或 591764 五、發明說明(28) 場氧化物層3 0 8 e/ 3 0 8 f及一個回#第二平面化場氧化物層 317b/ 317c來分離成一對埋層源擴散位元線(BL 1 ) 30 5c及 一對埋層汲擴散位元線(BL2) 31 4c ;以及該複數可微縮化 分閘式快閃記憶細胞元(4(Π〜42 5 )的每一個可以具有較高 的彈性來寫入及擦洗。 這裡值得強調的是,本發明之各種不同的無接點分離 式擴散位元線陣列之該隔離離子佈植區3 1 9 a可以輕易地由 形成淺凹槽隔離(STI )區來加予取代而該半導體基板30 0可 以是該第一導電型的一個擴散井(well)形成於該第二導電 型的一個擴散井之内。 基於此,本發明之該可微縮化分閘式快閃記憶細胞元 結構及其無接點分離式擴散位元線陣列的特色及優點可以 歸納如下: fb)本發明之該可微縮化分閘式快閃記憶細胞元結構提供 、水固u可微縮化漂洋閘島藉由中間通道熱電子注入法(MCHEI 徒升寫入效率及降低寫入功率。 本發明之該可微縮化分閘式快閃記憶細胞元結構及其 …、點刀離式擴散位元線陣列可以藉由一個自動對準的方P.32 Based on the isomorphic structure of the cell, the cell can be memorized, flashed down, and fast-typed, which can be gated for micro-surgery, and can be used for this process. Bright wall 20 hairline 4 This side is> from small (a warp or 591764 v. Invention description (28) field oxide layer 3 0 8 e / 3 0 8 f and a back # second planarization field oxide layer 317b / 317c to separate into a pair of buried source diffusion bit lines (BL 1) 30 5c and a pair of buried layer drain diffusion bit lines (BL2) 31 4c; and the plurality of miniaturizable gated flash memory cells (4 (Π ~ 42 5) each can have high flexibility for writing and scrubbing. It is worth emphasizing here that the various ion-free isolated ion cloths of the present invention have different contactless separated diffusion bit line arrays. The implanted region 3 1 9 a can be easily replaced by forming a shallow groove isolation (STI) region, and the semiconductor substrate 300 can be a diffusion well of the first conductivity type formed in the second conductivity type. Based on this, the features and advantages of the miniaturizable open-type flash memory cell structure of the present invention and the contactless discrete diffusion bit line array can be summarized as follows: fb) The present invention The micro-scale open-type flash memory cell structure is provided, and the water-solidity can be micro-scaled. The island uses the middle channel hot electron injection method (MCHEI to zoom into the writing efficiency and reduce the writing power. The miniaturized open-type flash memory cell structure of the invention and its point-and-diffusion diffusion bit line The array can be

第33頁 591764 五、發明說明(29) 式比先前技術需要較少的罩幕光阻步驟來製造。 (d )本發明之該可微縮化分閘式快閃記憶細胞元結構及其 無接點分離式擴散位元線陣列提供該複數金屬字線的每一 個之金屬層與該可微縮化控制閘導電島或該可微縮化複合 控制閘導電島積體化連結來大幅降低字線電阻。 供低 提降 列幅 陣大 線來 元線 位管 散源。 擴共阻 &B0 Πν\ 離導線 分高元 點個位 接一源 無之共 型個的 1 一時 第每度 該的深 之區面 明散接 發擴源 本源化 >共縮 e . C該微 (f )本發明之該第二型無接點分離式辨五 _ 該共汲擴散區的每一個之一個高導雷Αg A A千q扠仏 ^敵縮化汲接面深度時的共汲位元線電阻。 降低 (g)本發明之該第三型無接點分離式 該共源/汲擴散區的每一個之一對 兀線陣列提供 來增加細胞元操作的彈性。 叉爾政位元線 本發明雖特別以參考所附的例子咬 一 ,但僅是代表陳述而非限制。再者,本涵來圖示及描述 之細節,對於熟知此種技術的人亦可瞭明不侷限於所列 或細節的更動在不脫離本發明的真實粹 ’ f種不同形狀 造’但亦屬本發明的範_。 1 1和範_下均可製Page 33 591764 V. Description of the invention (29) The formula requires fewer mask photoresist steps to manufacture than the prior art. (d) The micronizable split-gate flash memory cell structure and the contactless discrete diffusion bit line array of the present invention provide the metal layer of each of the plurality of metal word lines and the micronizable control gate Conductive islands or the conductive composite islands of the reducible composite control gates are integrated to reduce the word line resistance significantly. Provide low-rise and high-rise array lines to the yuan line, bit tube, and scattered sources. Expansion and common resistance & B0 Πν \ From the conductor points, the high-level points are connected to a common type with a single source, and every time the deep area of the deep is exposed, the source is expanded and the source is shrunk e. C The micro (f) The second type of contactless separation of the present invention is identified by a high-conductance mine Δg AA of each of the common-diffusion diffusion regions at the time when the depth of the dip junction is reduced. Common drain bit line resistance. Decrease (g) The third type of the contactless separation type of the present invention each of the common source / sink diffusion regions is provided to the line array to increase the flexibility of cell operation. The present invention refers to the attached example, but it is only a representative statement and not a limitation. In addition, the details shown and described in this text can also make clear to those skilled in the art that they are not limited to the listed or detailed changes without departing from the true meaning of the present invention, 'f different shapes are made' but also It belongs to the scope of the present invention. 1 1 and Fan_ can be made under

591764 圖式簡單說明 圖一顯示先前技術之一種埋層共源/汲擴散位元線陣 列。 圖二A至圖二ϋ易示製造本發明之一種可微縮化分閘式 快閃記憶細胞元結構具有一個可微縮化控制閘導電島及其 第一型無接點分離式擴散位元線陣列。 圖三A至圖三C揭示製造本發明之一種可微縮化分閘式 快閃記憶細胞元結構具有一個可微縮化複合控制閘導電島 及其第一型無接點分離式擴散位元線陣列之接續圖二J的 製程步驟及其剖面圖。591764 Brief Description of Drawings Figure 1 shows a buried common source / drain diffusion bit line array of the prior art. FIGS. 2A to 2E are easy to show that a miniaturizable open-type flash memory cell structure of the present invention has a micro-controllable conductive gate conductive island and a first type of contactless discrete diffusion bit line array. . FIG. 3A to FIG. 3C show that a miniaturized split-type flash memory cell structure for manufacturing the present invention has a micronizable composite control gate conductive island and a first type of contactless discrete diffusion bit line array. It follows the process steps and cross-sectional views of Figure 2J.

圖四揭示本發明之該可微化分閘式快閃記憶細胞元結 構及其第一型無接點分離式擴散位元線陣列的一個混合簡 要頂視佈建圖。FIG. 4 illustrates a hybrid schematic top-view layout diagram of the miniaturizable split-type flash memory cell structure and the first type of contactless discrete diffusion bit line array of the present invention.

圖五A至圖五F揭示圖四A所標示之圖二L的各種不同剖 面圖,其中圖五A顯示圖四所標示之沿著一個B - B ’線的一 個剖面圖;圖五B顯示圖四所標示之沿著一個C-C’線的一 個剖面圖;圖五C顯示圖四所標示之沿著一個D-D’線的一 個剖面圖;圖五D顯示圖四所標示之沿著一個E-E’線的一 個剖面圖;圖五E顯示圖四所標示之沿著一個F - F ’線的一 個剖面圖;以及圖五F顯示圖四所標示之沿著一個G-G’線 的一個剖面圖。 圖六A至圖六F揭示圖四A所標示之圖三C的各種不同剖 面圖,其中圖六A顯示圖四所標示之沿著一個B-B’線的一 個剖面圖;圖六B顯示圖四所標示之沿著一個C - C ’線的一 個剖面圖;圖六C顯示圖四所標示之沿著一個D-D’線的一FIGS. 5A to 5F show various cross-sectional views of FIG. 4A indicated in FIG. 4A, wherein FIG. 5A shows a cross-sectional view along a line B-B ′ indicated in FIG. 4; FIG. 5B shows A cross-sectional view along a CC line indicated in FIG. 4; FIG. 5C shows a cross-sectional view along a D-D 'line indicated in FIG. 4; FIG. A cross-section view along an E-E 'line; FIG. 5E shows a cross-section view along a F-F' line indicated in FIG. 4; and FIG. 5F shows a G-G line along FIG. A section view of the line. FIGS. 6A to 6F show various cross-sectional views of FIG. 3C indicated in FIG. 4A, where FIG. 6A shows a cross-sectional view along a line BB ′ indicated in FIG. 4; FIG. 6B shows A cross-section view taken along a line CC-C 'shown in FIG. 4; FIG. 6C shows a cross-section view taken along a D-D' line shown in FIG.

第35頁 591764 圖式簡單說明 個剖面圖 個剖面圖 個剖面圖 圖六D顯示圖 圖六E顯示圖 以及圖六F顯 的一個剖面圖。 揭示本發明 圖七 結構及其 簡要電路 圖八 快閃記憶 第二型無 步驟及其 圖九 快閃記憶 及其第二 製程步驟 圖十 結構及其 簡要佈建 圖十 同剖面圖 線的一個 C ’線的一 D - D ’線的 個E - E ’線 之該 第一型無接點分 代表圖。 A至圖八I揭示製 細胞元結構具有 接點分離式擴散 剖面圖。 A至圖九C揭示製 細胞元結構具有 型無接點分離式 及其剖面圖。 揭示本發明之該 第二型無接點分 圖。 四所標示之沿著一個E-E’線的一 四所標示之沿著一個F - F ’線的一 示圖四所標示之沿著一個G-G’線 可微縮化分閘式快閃記憶細胞元 離式擴散位元線陣列的一個混合 造本發明之一種可微縮化分閘式 一個可微縮化控制閘導電島及其 位元線陣列之接續圖二C的製程 造本發明之一種可微縮化分閘式 一個可微縮化複合控制閘導電島 擴散位元線陣列之接續圖八F的 可微縮化分閘式快閃記憶細胞元 離式擴散位元線陣列的一個混合 不圖十所標不之圖八I的各種不 顯示圖十所標示之沿著一個B-B’ B顯示圖十所標示之沿著一個C-個剖面圖;圖十一 C顯示圖十所標示之沿著一個 Η--D顯示圖十所標示之沿著一 圖Ί--Ε顯示圖十所標示之沿著 一 Α至圖十一 F揭 ,其中圖十一 A 剖面圖;圖十一 一個剖面圖;圖 的一個剖面圖;Page 35 591764 Brief description of the drawings A section view A section view A section view Figure 6D display figure Figure 6E display figure and Figure 6F a sectional view. Reveal the structure of the invention in Figure 7 and its schematic circuit diagram. Eight flash memories of the second type without steps. Figure 9 Flash memory and its second process steps. Figure X. Structure and its brief layout. A D-D 'line of the line E-E' line of the first type of non-contact point representative diagram. A to FIG. 8I show the cross-sectional views of the cell structure with contact-separated diffusion. A to Fig. 9C reveal that the cell structure has a contactless separation type and its sectional view. The second type of contactless sub-map of the present invention is disclosed. Four marked along an E-E 'line. Four marked along an F-F' line. Figure 4 marked along a G-G 'line. Miniaturized trip flash. A hybrid of a memory cell cell with a diffused bit line array is made of a micronizable split gate type, a micronizable control gate conductive island and its bit line array are connected. The process of FIG. 2C makes one of the present invention. Continuation of a micronizable split gate type diffused bit line array of conductive islands in a controllable composite control gate Figure 8F The various diagrams shown in Figure 8I do not show a section along the line B-B 'shown in Figure X. Figure B shows a section along the C-line along Figure X. Figure 11 shows a section along the line marked in Figure X. Η--D shows the figure along the figure 一 --E shows the figure along the figure A through 11A, of which figure 11A is a cross-sectional view; A sectional view;

第36頁 591764 圖式簡單說明 一個F-F’線的一個剖面圖;以及圖十一 F顯示圖十所標示 之沿著一個G - G ’線的一個剖面圖。 圖十二A至圖十二F揭示圖十所標示之圖九C的各種不 同剖面圖,其中圖十二A顯示圖十所標示之沿著一個B-B’ 線的一個剖面圖;圖十二B顯示圖十所標示之沿著一個C-C ’線的一個剖面圖;圖十二C顯示圖十所標示之沿著一個 D-D’線的一個剖面圖;圖十二D顯示圖十所標示之沿著一 個E-E’線的一個剖面圖;圖十二E顯示圖十所標示之沿著 一個F-F’線的一個剖面圖;以及圖十二F顯示圖十所標示 之沿著一個G-G’線的一個剖面圖。 圖十三揭示本發明之該可微縮化分閘式快閃記憶細胞 元結構及其第二型無接點分離式擴散位元線陣列的一個混 合簡要電路代表圖。 圖十四A至圖十四C揭示製造本發明之一種可微縮化分 閘式快閃記憶細胞元結構具有一個可微縮化控制閘導電島 及其第三型無接點分離式擴散位元線陣列之接續圖八E的 製程步驟及其剖面圖。 圖十五揭示一種可微縮化分閘式快閃記憶細胞元結構 具有一個可微縮化複合控制閘導電島及其第三型無接點分 離式擴散位元線之沿著一個通道長度方向的一個剖面圖。 圖十六揭示本發明之該可微縮化分閘式快閃記憶細胞 元結構及其第三型無接點分離式擴散位元線陣列的一個混 合簡要電路代表圖。 圖十七A至圖十七F揭示圖十六所標示之圖十四C的各P.36 591764 The drawing simply illustrates a cross-sectional view of an F-F 'line; and FIG. 11F shows a cross-sectional view along a G-G' line marked in FIG. Figs. 12A to 12F show various cross-sectional views of Fig. 9C indicated in Fig. 10, wherein Fig. 12A shows a cross-sectional view along a BB 'line indicated in Fig. 10; Fig. 10 2B shows a cross-sectional view along a CC ′ line indicated in FIG. 10; FIG. 12C shows a cross-sectional view along a D-D ′ line indicated in FIG. 10; FIG. 12D shows FIG. 10 A cross-sectional view along an E-E 'line as shown; FIG. 12E shows a cross-sectional view along an FF' line as shown in FIG. 10; and FIG. 12F shows a cross-section along the line as shown in FIG. A sectional view taken along a line G-G '. FIG. 13 shows a representative schematic diagram of a hybrid schematic circuit of the miniaturizable open-type flash memory cell structure of the present invention and its second type of contactless discrete diffusion bit line array. FIGS. 14A to 14C show that a miniaturized split-gate flash memory cell structure for manufacturing the present invention has a micronizable control gate conductive island and a third type of non-contact discrete diffusion bit line. The process of the array is continued with FIG. 8E and its sectional view. Figure 15 reveals one of the structures of a miniaturizable split-gate flash memory cell structure with a micronizable composite control gate conductive island and its third type of contactless discrete diffusion bit line along the length of a channel. Sectional view. FIG. 16 is a representative schematic diagram of a hybrid schematic circuit of the miniaturizable open-type flash memory cell structure of the present invention and its third type of contactless discrete diffusion bit line array. Figures 17A to 17F disclose each of Figure 14C marked in Figure 16.

第37頁 591764 圖式簡單說明 種不同剖面圖,甘士 M @ ^中圖十七A顯示圖十六所標示之沿著— 著一個c 令 圖;圖十七6顯示圖十六所標示之沿Page 591764 The diagram briefly illustrates the different cross-sectional views. Figure 17A in Gan Shi M @ ^ shows along the line marked in Figure 16 — with a c command map; Figure 17 6 shows the line marked in Figure 16. along

>冰$ 一加的一個剖面圖;圖十七C顯示圖十六所標示 β二之机签_/D’線的一個剖面圖;圖十七D顯示圖十六所 二i標Ϊ之E_E’線的一個剖面圖;圖十七E顯示圖十 ^ +丄&者一個F-F,線的一個剖面圖;以及圖十七F 顯六所標示之沿著一個G_G,線的一個剖面二十 八A至圖十八F揭示圖十六所標示之圖十i Μ & # 不同剖面圖,圖本、a#s-eil 固卞五的各種 R R,魄# ^ 十^ A ”、、員不圖十六所標示之沿著一個 B-B線的一個剖面圖; 者: 一個Γ-Γ,綠从 , 1八尸坏才示不之沿著 個C線的一個剖面圖;圖十八c顯示圖十丄 -:-基? 個剖面ffi ;圖十八D顯示圖十丄所俨 …。者一個E_E’線的一個剖面圖;圖 ::戶:士 所標示之沿著一個F_F,線的一個剖面圖;以圖:六 示圖十六所標示之沿著一個",線的一個剖面;:八F顯 圖十九揭示本發明之該可微縮化分閘式 元結構及其第三型無接點分離式擴散位元 的、=: 合簡要電路代表圖。 平夕』的一個混 代表圖號說明: 300半導體基板 301穿透介電層 301a/ 301b成形穿透介電層302第一導電層 3 0 2a成形第一導電層 302b可微縮化漂浮閘層> A cross-sectional view of the ice plus one; FIG. 17C shows a cross-sectional view of the β-two machine label _ / D 'line shown in FIG. 16; FIG. A cross-sectional view of line E_E '; FIG. 17E shows a cross-section of a line FF + 丄 & 丄 in FIG. 10; and a cross-section along line G_G, line 2 of FIG. Eighteen A through 18F reveal the figure ten marked in figure sixteen Μ &# different cross-sectional views, picture book, a # s-eil various RRs solidifying five, soul # ^ 十 ^ A ”,, The member does not show a cross-sectional view along a BB line as shown in FIG. 16; or: A Γ-Γ, green from, 1 is only a cross-sectional view along the C line; Figure 18c Fig. 18 shows a cross section ffi; Fig. 18D shows a cross section of an E_E 'line in Fig. 18D; A cross-section view along the line "" indicated by sixteen and sixteen; eighth F. Fig. Nineteen reveals the miniaturizable open-type element structure of the present invention and its first section. three Contactless discrete diffusion bit, =: and a brief circuit representative diagram. A mixed representative drawing number of Hiroshi ’s description: 300 semiconductor substrate 301 penetrates the dielectric layer 301a / 301b is formed and penetrates the dielectric layer 302 first The conductive layer 3 0 2a is formed into a first conductive layer 302b to reduce the size of the floating gate layer.

第38 591764 圖式簡單說明 3 0 2 c可微縮化漂浮閘島 3 0 3 a/ 3 0 3 b/ 3 0 3 c 成形閘間 3 04 罩幕介電層 3 0 5 a共源擴散區 3 0 5 c埋層源擴散位元線 306 b/ 306c回蝕第一侧邊牆 3 0 7d/ 3 0 7b共源導電管線 3 0 8b回蝕第一平面化氧化物 3 08d第一平面化場氧化物層 3 08e/ 3 08 f回蝕第一平面化 309a第三側邊牆介電墊層 3 11 b/ 3 11 d閘介電層 312a平面化第二導電層 3 1 2 c可微縮化控制閘導電層 313a第四側邊牆介電墊層 314b高摻雜共汲擴散區 315a第二側邊牆介電墊層 3 1 5 b/ 3 1 5 c回餘第二侧邊牆 316d/ 316b共汲導電管線 317b/ 317c回蝕第二平面化 31 7d第二平面化氧化物層 317e/317f回餘第二平面化 318 金屬層 319a隔離離子佈植區 30 3 閘間介電層 介電層 30 4a成形罩幕介電層 3 0 5 b高摻雜共源擴散區 3 0 6 a第一側邊牆介電墊層 介電塾層 308a第一平面化氧化物層 層 場氧化物層 310a/ 310b離子佈植區 3 1 1 a/ 3 1 1 c複晶石夕氧化物層 312b回#平面化第二導電層 3 1 2 d可微縮化控制閘導電島 3 1 4 a共沒擴散區 3 1 4 c埋層汲擴散位元線 介電墊層 3 1 7 a第二平面化場氧化物層 場氧化物層 氧化物層 318a金屬字線 32 0a平面化覆蓋導電層38 591764 Brief description of the drawing 3 0 2 c Miniaturized floating gate island 3 0 3 a / 3 0 3 b / 3 0 3 c Forming gate 3 04 Mask dielectric layer 3 0 5 a Common source diffusion area 3 0 5 c buried source diffusion bit line 306 b / 306c etch back the first side wall 3 0 7d / 3 0 7b common source conductive pipeline 3 0 8b etch back the first planarization oxide 3 08d first planarization field The oxide layer 3 08e / 3 08 f etch back the first planarization 309a, the third side wall dielectric cushion layer 3 11 b / 3 11 d, the gate dielectric layer 312a, the planarization, and the second conductive layer 3 1 2 c. Control gate conductive layer 313a, fourth side wall dielectric pad 314b, highly doped common-drain diffusion region 315a, second side wall dielectric pad 3 1 5 b / 3 1 5 c, back side wall 316d / 316b common drain conductive line 317b / 317c etch back second planarization 31 7d second planarization oxide layer 317e / 317f back to second planarization 318 metal layer 319a isolation ion implantation area 30 3 inter-gate dielectric layer dielectric Layer 30 4a forming mask dielectric layer 3 0 5 b highly doped common source diffusion region 3 0 6 a first side wall dielectric pad layer dielectric hafnium layer 308 a first planarized oxide layer layer field oxide layer 310a / 310b ion implantation area 3 1 1 a / 3 1 1 c polycrystalline stone oxide layer 312b back to #planarize the second conductive layer 3 1 2 d can be controlled to control the gate conductive island 3 1 4 a common diffusion region 3 1 4 c buried layer drain diffusion line Dielectric pad layer 3 1 7 a second planarized field oxide layer field oxide layer oxide layer 318 a metal word line 32 0 a planarized cover conductive layer

591764 圖式簡單說明 3 2 0b平面化覆蓋導電島591764 Schematic illustration of 3 2 0b planar cover conductive island

mm 第40頁mm Page 40

Claims (1)

591764 六、申請專利範圍 1. 一種可微縮化分閘式快閃記憶細胞元結構,至少包含: 一種第一導電型的一個半導體基板; 一個可微縮化分閘區形成於該半導體基板之上,其中 上述之可微縮化分閘區係位於一個共源區及一個可微縮化 共汲區之間; 該可微縮化分閘區至少包含一個可微縮化控制閘導電 島具有其第一部份形成於一個可微縮化漂浮閘島之上方及 其第二部份形成於一個閘介電層的一部份表面之上,其中 上述之可微縮化漂浮閘島具有一個閘間介電層形成於其頂 部表面之上及一個複晶矽氧化物層形成於其内側邊牆之上 係形成於一個穿透介電層的一部份表面之上; 該共源區藉由一個第一罩幕光阻步驟來定義至少包含 一種第二導電型的一個共源擴散區藉由一個自動對準的方 式佈植摻雜質於該半導體基板的一個表面部份; 該可微縮化共汲區至少包含該第二導電型的一個共汲 擴散區藉由一個自動對準的方式佈植摻雜質於該半導體基 板的一個表面部份; 一個金屬字線與該共源區及該可微縮化共汲區互為垂 直且與該可微縮化控制閘導電島積體化連結,其中上述之 金屬字線、該可微縮化控制閘導電島、該閘間介電層及該 可微縮化漂浮閘島係同時藉由一個第二罩幕光阻步驟來成 形;以及 一個細胞元隔離區形成於該金屬字線之外且位於該共 源區及該可微縮化共汲區之間的該半導體基板之每一個表591764 VI. Scope of patent application 1. A miniaturizable open-type flash memory cell structure including at least: a semiconductor substrate of a first conductivity type; a miniaturizable open-circuit area is formed on the semiconductor substrate, The above-mentioned micronizable trip zone is located between a common source zone and a minimizable common sink zone; the mininizable trip zone contains at least one micronizable control gate conductive island with its first part formed Above a miniaturizable floating gate island and its second part is formed on a part of the surface of a gate dielectric layer, wherein the aforementioned miniaturizable floating gate island has an inter-gate dielectric layer formed on it Above the top surface and a polycrystalline silicon oxide layer formed on its inner side wall is formed on a portion of the surface that penetrates the dielectric layer; the common source region is illuminated by a first mask Resistance step to define a common source diffusion region containing at least one second conductivity type, and implanting a dopant on a surface portion of the semiconductor substrate by an automatic alignment method; the micronizable common drain region A common-drain diffusion region containing the second conductivity type is implanted with a dopant on a surface portion of the semiconductor substrate by an automatic alignment method; a metal word line with the common source region and the micronizable The common draw area is vertical to each other and is integrated with the conductive island of the micronizable control gate, wherein the metal word line, the conductive island of the micronizable control gate, the inter-gate dielectric layer, and the micronizable floating gate The island system is simultaneously formed by a second mask photoresist step; and a semiconductor substrate is formed outside the metal word line and between the semiconductor substrate and the common source region and the micronizable common drain region. Every table 第41頁 591764 六、申請專利範圍 面部份。 2. 如申請專利範圍第1項所述之可微縮化分閘式快閃記憶 細胞元結構,其中上述之共源區進一步至少包含一對回蝕 第一側邊牆介電墊層形成於相鄰可微縮化分閘區之間的側 邊牆之上且置於該穿透介電層的一部份表面之上、一個共 源導電層形成於該對回蝕第一側邊牆介電墊層之間且置於 形成於該共源擴散區之内的一個高摻雜共源擴散區之上以 及一個回蝕第一平面化氧化物層形成於該對回蝕第一側邊 牆介電墊層之間且置於該共源導電層之上而該可微縮化共 沒區進一步至少包含一對回#第二側邊牆介電塾層形成於 相鄰可微縮化分閘區的側邊牆之上且置於該閘介電層的一 部份表面之上、一個回蝕第二平面化場氧化物層形成於該 對回蝕第二側邊牆介電墊層之間且置於該半導體基板之内 的一個淺凹槽之上來分離該共汲擴散區成一對埋層汲擴散 區。 3. 如申請專利範圍第1項所述之可微縮化分閘式快閃記憶 細胞元結構,其中上述之共源區進一步至少包含一對回蝕 第一側邊牆介電墊層形成於相鄰可微縮化分閘區的側邊牆 之上且置於該穿透介電層的一部份表面之上、一個淺凹槽 形成於該對回蝕第一側邊牆介電墊層之間的該半導體基板 之一個表面部份以及一個回蝕第一平面化場氧化物層形成 於該對回蝕第一側邊牆介電墊層之間來分離該共源擴散區Page 41 591764 Six, the scope of patent application. 2. The miniaturizable open-type flash memory cell structure described in item 1 of the scope of the patent application, wherein the common source region further includes at least a pair of etch-back first side wall dielectric cushion layers formed on the phase A common source conductive layer is formed on the pair of etched back first side wall dielectrics on a side wall between adjacent miniaturizable trip zones and on a portion of the surface of the penetrating dielectric layer Between the underlayers and placed on a highly doped common source diffusion region formed within the common source diffusion region and an etched back first planarized oxide layer is formed on the pair of etched back side walls Between the electric pad layers and placed on the common source conductive layer, the micronizable common area further includes at least a pair of back #second side wall dielectric layers formed in the adjacent micronizable opening gates. An etch-back second planarization field oxide layer is formed on the side wall and on a part of the surface of the gate dielectric layer, and is formed between the pair of etch-back second side wall dielectric pads and It is placed on a shallow groove in the semiconductor substrate to separate the common-drain diffusion region into a pair of buried-drain diffusion regions. 3. The miniaturizable open-type flash memory cell structure described in item 1 of the scope of patent application, wherein the common source region further includes at least a pair of etched back first side wall dielectric cushion layers formed on the phase A shallow groove is formed on the side wall adjacent to the miniaturizable trip zone and on a part of the surface of the penetrating dielectric layer, and a shallow groove is formed in the pair of etched back first side wall dielectric cushion layers. A surface portion of the semiconductor substrate and an etched back first planarized field oxide layer are formed between the pair of etched back side wall dielectric pads to separate the common source diffusion region 591764 六、申請專利範圍 成一對埋層源擴散區而該可微縮化共汲區至少包含一對回 蝕第二側邊牆介電墊層形成於相鄰可微縮化分閘區的側邊 牆之上且置於該閘务電層的一部份表面之上、一個共汲導 電層形成於該對回蝕第二側邊牆介電墊層之間且置於形成 於該共汲擴散區之内的該第二導電型的一個高摻雜共汲擴 散區之上以及一個回蝕第二平面化氧化物層形成於該對回 蝕第二側邊牆介電墊層之間且置於該高摻雜共汲擴散區之 上。 4. 如申請專利範圍第1項所述之可微縮化分閘式快閃記憶 細胞元結構,其中上述之共源/可微縮化共汲區進一步至 少包含一對回蝕第一 /第二側邊牆介電墊層形成於相鄰可 微縮化分閘區的側邊牆之上且置於該穿透介電層/該閘介 電層的一部份表面之上、一個淺凹槽形成於該對回#第一 /第二側邊牆介電墊層之間的該半導體基板之一個表面部 份以及一個回蝕第一 /第二平面化場氧化物層形成於該對 回蝕第一 /第二側邊牆介電墊層之間來分離該共源/汲擴 散區成一對埋層源/汲擴散區。 5. 如申請專利範圍第1項所述之可微縮化分閘式快閃記憶 細胞元結構,其中上述之可微縮化漂浮閘島藉由形成於該 共源區的一個側邊牆之上的一個第三側邊牆介電墊層來定 義至少包含一個摻雜複晶矽或摻雜非晶矽島而該可微縮化 控制閘導電島藉由形成於該共源區的一個側邊牆之上的一591764 VI. The scope of the patent application is a pair of buried layer source diffusion regions, and the miniaturizable common drain region includes at least a pair of etched back second side wall dielectric pads formed on the side walls of adjacent miniaturizable trip zones. Above and placed on a part of the surface of the gated electrical layer, a common drain conductive layer is formed between the pair of etched second side wall dielectric pads and is positioned in the common drain diffusion area Within the second conductivity type, a highly doped common-drain diffusion region and an etch-back second planarizing oxide layer are formed between the pair of etch-back second sidewall spacer dielectric pads and disposed Over the highly doped common-drain diffusion region. 4. The miniaturizable open-type flash memory cell structure described in item 1 of the scope of the patent application, wherein the above-mentioned co-source / differentiable co-drain region further includes at least a pair of etch-back first / second sides A side wall dielectric cushion layer is formed on the side wall of the adjacent miniaturizable trip zone and is placed on a part of the surface of the penetrating dielectric layer / the gate dielectric layer, and a shallow groove is formed. A surface portion of the semiconductor substrate between the pair of first and second side wall dielectric pads and an etched back first / second planarized field oxide layer are formed in the pair of etched back layers. A common source / drain diffusion region is separated between one / second side wall dielectric pads to form a pair of buried source / drain diffusion regions. 5. The miniaturizable open-type flash memory cell structure described in item 1 of the scope of the patent application, wherein the above-mentioned miniaturizable floating gate island is formed on a side wall of the common source area by A third side wall dielectric pad layer is defined to include at least one doped polycrystalline silicon or doped amorphous silicon island and the scaleable control gate conductive island is formed by a side wall formed in the common source region. On one 第43頁 591764 六、申請專利範圍 個第四側邊牆介電墊層來定義至少包含一個摻雜複晶矽島 或一個摻雜複晶矽島覆蓋有一個鎢(W)島或一個矽化鎢( WSi2)島。 6. 如申請專利範圍第1項所述之可微縮化分閘式快閃記憶 細胞元結構,其中上述之共源/汲擴散區至少包含一個高 摻雜擴散區或一個高摻雜擴散區形成於一個淡摻雜擴散區 之内。 7. 如申請專利範圍第1項所述之可微縮化分閘式快閃記憶 細胞元結構,其中上述之金屬字線至少包含一個金屬層形 成於一個障礙金屬層之上而該金屬層至少包含鋁(A1)、銅 (Cu)或鶴(W)。 8. 如申請專利範圍第1項所述之可微縮化分閘式快閃記憶 細胞元結構,其中上述之第一導電型的一個離子佈植區至 少包含一個淺離子佈植區以作為臨界電壓的調整及一個深 離子佈植區以形成一個抵穿禁止區係形成於位於該可微縮 化分閘區之内的該閘介電層之下的該半導體基板之一個表 面部份。 9. 如申請專利範圍第1項所述之可微縮化分閘式快閃記憶 細胞元結構,其中上述之細胞元隔離區至少包含該第一導 電型的一個隔離離子佈植區或一個淺凹槽隔離(STI )區。Page 43 591764 VI. Scope of patent application A fourth sidewall spacer is defined to contain at least one doped polycrystalline silicon island or one doped polycrystalline silicon island covered with a tungsten (W) island or a tungsten silicide (WSi2) island. 6. The miniaturizable open-type flash memory cell structure described in item 1 of the scope of patent application, wherein the co-source / drain diffusion region includes at least one highly doped diffusion region or a highly doped diffusion region. Within a lightly doped diffusion region. 7. The miniaturizable open-type flash memory cell structure described in item 1 of the scope of patent application, wherein the metal word line includes at least one metal layer formed on a barrier metal layer and the metal layer includes at least Aluminum (A1), copper (Cu) or crane (W). 8. The miniaturizable open-type flash memory cell structure described in item 1 of the scope of patent application, wherein an ion implantation region of the first conductivity type described above includes at least one shallow ion implantation region as a threshold voltage Adjustment and a deep ion implantation region to form an anti-forbidden region formed on a surface portion of the semiconductor substrate under the gate dielectric layer located within the miniaturizable switching region. 9. The miniaturizable open-type flash memory cell structure as described in item 1 of the patent application scope, wherein the cell isolation region includes at least an isolation ion implantation region or a shallow depression of the first conductivity type. Trench Isolation (STI) area. 591764 六、申請專利範圍 1 0 · —種無接I 一種第一 複數共源 導體基板之上 共源區的每一 該複數共 個共源擴散區 導體基板的一 電墊層形成於 個穿透介電層 回#第一側邊 部份以及一個 第一側邊牆介 源擴散位元線 該複數可 型的一個共沒 以及一對回钱 閘區的側邊牆 該可微縮 制閘導電島交 第一部份形成 化控制閘導電 面之上,其中 S分離式擴散位元線陣列,至少包含· 導電型的一個半導體基板; · 區及複數可微縮化共汲區交變地形成於 ,其中一個可微縮化分閘區係形成於該 個及其鄰近可微縮化共汲區之間; 源區的每一個至少包含一種第二導電型 藉由個自動對準的方式佈植摻雜質於 個表面°卩份來形成、一對回钱第一側邊 相鄰可微縮化分閘區的側邊牆之上且置 的一部份表面之上、一個淺凹槽形成於 牆介電塾層之間的該半導體基板之一個 ^ 千面化場氧化物層形成於該對 電塾層之間來分離該共源擴散區成一對 f Μ縮化共;及區的每一個至少包含該第二 擴散區形成於該半導體基板的一個表面 第一側邊牆介電墊層形成於相鄰可微縮 之t且置於一個閘介電層的部份表面之 ,刀問區的每一個至少包含複數可微縮 變地形成並具有該可微縮化控制閘導電 於一個可微縮化漂浮閘島之上方及該可 島的第二部份形成於一個閘介電層的部 上述之可微縮化漂浮閘島具有一個閘間 該半 複數 的一 該半 牆介 於一 該對 表面 回餘 埋層 導電 部份 化分 上; 化控 島的 微縮 份表 介電 591764 六、申請專利範圍 層形成於其頂部表面之上及一個複晶矽氧化層形成於其内 側邊牆之上係形成於該穿透介電層的部份表面之上; 複數金屬字線與該複數共源區及該複數可微縮化共汲 區互為垂直並具有複數金屬字線的每一個與該可微縮化控 制閘導電島積體化連結,其中上述之複數金屬字線、該可 微縮化控制閘導電島、該閘間介電層以及該可微縮化漂浮 閘島係藉由一個罩幕光阻步驟來同時成形;以及 複數細胞元隔離區形成於該複數金屬字線、該複數共 源區及該複數可微縮化共汲區之外的該半導體基板之表面 部份。 11 ·如申請專利範圍第丨〇項所述之無接點分離式擴散位元 線陣列’其中上述之複數可微縮化共汲區的每一個進一步 至少包含一個淺凹槽形成於該對回蝕第二侧邊牆介電墊層 之間的該半導體基板的一個表面部份及一個回蝕第二平面 化場氧化物層形成於該對回蝕第二側邊牆介電墊層之間且 置於該半導體基板之該淺凹槽之上來分離該共汲擴散區成 一對埋層汲擴散位元線。 1 2.如申請專利範圍第丨〇項所述之無接點分離式擴散位元 線陣列’其中上述之複數可微縮化共汲區的每一個至少包 含一個共沒導電管線形成於該對回蝕第二側邊牆介電墊層 之,且置於形成於該共汲擴散區之内的該第二導電型的一 個局摻雜共汲擴散區之上以及一個回蝕第二平面化氧化物591764 VI. Application patent scope 1 0 · — No connection I. Each of the plurality of common source diffusion regions on the first plurality of common source conductor substrates has an electric pad layer formed on the penetration Dielectric layer back #First side part and a first side wall source diffusion bit line. The plurality of configurable ones are common and a pair of side walls returning to the money gate area. The first part of the intersection is formed on the conductive surface of the chemical control gate, wherein the S-separated diffusion bit line array includes at least a semiconductor substrate of conductivity type; the regions and the plurality of micronizable common drain regions are alternately formed on, One of the miniaturizable opening regions is formed between the one and its adjacent miniaturizable common drain region; each of the source regions contains at least one second conductivity type, and the dopants are implanted by an automatic alignment method. It is formed on each surface, a pair of cash back, the first side of a pair of cash back, and a part of the surface adjacent to the side wall which can be miniaturized and opened, and a shallow groove is formed on the wall dielectric. One of the semiconductor substrates between the layers A chemical field oxide layer is formed between the pair of electrode layers to separate the common source diffusion region into a pair of fM condensation regions; and each of the regions includes at least the second diffusion region formed on a surface of the semiconductor substrate. A side wall dielectric cushion layer is formed on a part of the surface of an adjacent shrinkable t and placed on a part of a gate dielectric layer, and each of the knife regions includes at least a plurality of shrinkably formed and has the shrinkable The control gate is electrically conductive above a scaleable floating gate island and the second part of the scaleable island is formed in a portion of a gate dielectric layer. The above scaleable floating gate island has a half of the gate and a half of the half of the gate. The wall lies between a pair of surface conductive layers of the remaining buried layer; the micro-scale fraction of the island of chemical control is dielectric 591764. 6. A patent-application layer is formed on the top surface and a polycrystalline silicon oxide layer is formed on The inner side wall is formed on a part of the surface of the penetrating dielectric layer; a plurality of metal word lines are perpendicular to the plurality of common source regions and the plurality of micronizable common drain regions and have a plurality of metal words. Each of the lines It is integrated with the conductive island of the micronizable control gate, wherein the plurality of metal word lines, the conductive island of the micronizable control gate, the dielectric layer between the gates, and the micronizable floating gate island are all connected by a cover. Curtain photoresist steps are simultaneously formed; and a plurality of cell isolation regions are formed on the surface portion of the semiconductor substrate outside the plurality of metal word lines, the plurality of common source regions, and the plurality of micronizable common drain regions. 11 · The non-contact separated diffused bit line array according to item No. 丨 0 of the application scope, wherein each of the above-mentioned plurality of micronizable common drain regions further includes at least one shallow groove formed in the pair of etch-backs A surface portion of the semiconductor substrate between the second side wall dielectric pads and an etch-back second planarization field oxide layer are formed between the pair of etched second side wall dielectric pads and It is placed on the shallow groove of the semiconductor substrate to separate the common-drain diffusion area into a pair of buried-drain diffusion bit lines. 1 2. The contactless separated diffused bit line array as described in item No. 丨 0 of the patent application, wherein each of the above-mentioned plurality of scaleable common sink regions includes at least one common conductive line formed in the pair. Etch the second side wall dielectric pad and place it on a locally doped common-drain diffusion region of the second conductivity type formed within the common-drain diffusion region and etch back a second planarization oxide Thing 第46頁 591764 六、申請專利範圍 第二側邊牆介電墊層 圍第1 0項所述之無接 該複數可微縮化分閘 制閘導電島藉由形成 上的一個第四側邊騰 島或播雜複晶碎島覆 該複數可微縮化分閘 島藉由形成於該複數 第三側邊牆介電塾層 晶石夕島。 圍第1 0項所述之無接 之複數細胞元隔離區 個隔離離子佈植區或 圍第1 0項所述之無接 之第一導電型的一個 區以作為臨界電壓的 抵穿禁止區係形成於 電層之下的該半導體 層形成於該對回蝕 導電管線之上。 1 3 .如申請專利範 線陣列,其中位於 該複數可微縮化控 每一個之側邊牆之 少包含摻雜複晶石夕 鶴(WSi2)島而位於 該可微縮化漂浮閘 側邊牆之上的一個 雜複晶石夕或摻雜非 1 4 ·如申請專利範 線陣列,其中上述 該第一導電型的一 STI)區。 1 5 ·如申請專利範 線陣列,其中上述 含一個淺離子佈植 佈植區以形成一'個 閘區之内的該閘介 份0 t間且置於該共汲 •點分離式擴散位元 區的每一個之内的 於該複數共源區的 介電墊層來定義至 蓋有鎢(W)或矽化 區的每一個之内的 共源區之每一個的 來定義至少包含摻 點分離式擴散位元 的每一個至少包含 一個淺凹槽隔離( 點分離式擴散位元 離子佈植區至少包 調整及一個深離子 位於該可微縮化分 基板之一個表面部 591764 六 、申請專利範圍Page 46 591764 VI. Scope of patent application The second side wall dielectric cushion layer described in item 10 is not connected to the plurality of miniaturizable opening and closing gate conductive islands by forming a fourth side edge An island or a doped complex crystal island is covered with the plurality of dilatable islands by forming a dielectric spar layer spar island in the third side wall of the plurality. A non-connected multiple cell isolation area described in item 10 is an isolation ion implantation area or a non-connected first conductivity type area described in item 10 is used as a threshold voltage forbidden area The semiconductor layer, which is formed below the electrical layer, is formed on the pair of etch-back conductive lines. 1 3. As claimed in the patent application line array, wherein the side wall of each of the plurality of micronizable micro-controllers contains a doped polycrystalline stone evening crane (WSi2) island and is located on the side wall of the micro-narrowable floating gate. A heteromulticrystalite or doped non 1 4 · such as a patent-applied fan line array, wherein the STI) region of the first conductivity type is described above. 15 · If applying for a patented line array, wherein the above-mentioned area containing a shallow ion implantation area is formed to form a gate region of the gate intermediary 0 t, and is located at the common drain-point separation diffusion site A dielectric pad within the plurality of common source regions within each of the meta regions is defined to each of the common source regions covered with each of the tungsten (W) or silicidated regions to define at least doping points Each of the discrete diffusion bits includes at least one shallow groove isolation (the point-separated diffusion bit ion implantation area includes at least adjustment and a deep ion is located on a surface portion of the micronizable sub-substrate 591764. 導 共 個 回 邊 型 \ 個 且 摻 成 管 制 第 化 面 •種無接點分離式擴散位元線陣列,至少包含· 一種第一導電型的一個半導體基板; β · 複數共源區及複數可微縮化共汲區交變地 體基板之上,其中一個可微縮化分閘區係形成 、口 %於該複 >原區的每一個及其鄰近可微縮化共汲區之間; 該複數共源區的每一個至少包含一種第二導電型的 共源擴散區形成於該半導體基板的一個表面部份及一 餘第一側邊牆介電塾層形成於相鄰可微縮化分閘區的 牆之上且置於一個穿透介電層的一部份表面之上; 該複數可微縮化共汲區的每一個至少包含該第二導 的一個共汲擴散區形成於該半導體基板的一個表面部 —對回蝕第二侧邊牆介電墊層形成於相鄰可微縮化分 的侧邊牆之上且置於一個閘介電層的部份表面之上、 共汲導電管線形成於該對回蝕第二側邊牆介電墊層之 置於形成於該共汲擴散區之内的該第二導電型的一個 雜共汲擴散區之上以及一個回餘第二平面化氧化物層 於該對回蝕第二側邊牆介電蟄層之間且置於該共沒導 線之上; 該可微縮化分閘區的每一個至少包含複數可微縮化 閘導電島交變地形成並具有該可微縮化控制閘導電島 -部份形成於-個町微縮化漂洋閘島之上方及s亥可微 控制間導電島的P部份形成於一個閘介電層的一個 部份之上,盆中上述之可微縮化漂浮閘島具有一個閘 半 數 對 側 電 份 閘 間 形 電 控 的 縮 表 間There are a total of back-edge types and a number of control surfaces. • A type of non-contact discrete diffusion bit line array including at least one semiconductor substrate of a first conductivity type; β. A common source area and a plurality of Above the micronized common dip zone alternating ground substrate, one of the micronizable open gate systems is formed, and the openings are between each of the complex > original regions and its adjacent minimizable common dip zone; the plural Each of the common source regions includes at least a second conductivity type common source diffusion region formed on a surface portion of the semiconductor substrate and a plurality of first side wall dielectric chirped layers formed on adjacent miniaturizable gate opening regions. On the wall of the semiconductor substrate and on a part of a surface of the penetrating dielectric layer; each of the plurality of miniaturizable common drain regions including at least a second drain common drain region is formed on the semiconductor substrate; One surface portion—the etch-back second side wall dielectric cushion layer is formed on the adjacent side wall of the micronizable element and is placed on a part of the surface of a gate dielectric layer to form a conductive pipeline. Dielectric on the second etched back side wall A layer of the second conductive type formed on the hetero-diffusion region of the second conductivity type formed within the common-drain diffusion region and a second planarizing oxide layer remaining on the pair of etched-back second sidewall spacers Each of the micronizable gates is formed alternately with at least a plurality of micronizable gate conductive islands and is provided with the micronizable control gate conductive island-portion It is formed above the miniaturized floating island of Gemachi and the P part of the conductive island between the micro-controllable islands is formed on a part of a gate dielectric layer. The above-mentioned micronizable floating gate in the basin The island has a half-diameter scale-type electrical control scale-down scale 591764 六、申請專利範圍 介電層形成於其頂部表面之上及一個複晶矽氧化物層形成 於其内側邊牆之上係形成於該穿透介電層的部份表面之上 複數金屬字線與該複數共源區及該複數可微縮化共汲 區互為垂直並具有該複數金屬字線的每一個與該可微縮化 控制閘導電島積體化連結,其中上述之複數金屬字線、該 可微縮化控制閘導電島、該閘間介電層以及該可微縮化漂 浮閘島係同時藉由一個罩幕光阻步驟來成形;以及 複數細胞元隔離區形成於該複數金屬字線、該複數共 源區及該複數可微縮化共汲區之外的該半導體基板之表面 部份。 1 7.如申請專利範圍第1 6項所述之無接點分離式擴散位元 線陣列,其中上述之複數共源區的每一個進一步至少包含 一個共源導電管線形成於該對回#第一側邊牆介電墊層之 間且置於形成於該共源擴散區之内的該第二導電型的一個 高摻雜共源擴散區之上以及一個回蝕第一平面化氧化物層 形成於該對回蝕第一側邊牆介電墊層之間且置於該共源導 電管線之上。 1 8.如申請專利範圍第1 6項所述之無接點分離式擴散位元 線陣列,其中上述之複數共源區的每一個進一步至少包含 一個淺凹槽形成於該對回蝕第一側邊牆介電墊層之間的該 半導體基板之一個表面部份及一個回蝕第一平面化場氧化591764 VI. Patent Application Range A dielectric layer is formed on the top surface and a polycrystalline silicon oxide layer is formed on its inner side wall. A plurality of metals are formed on a part of the surface of the penetrating dielectric layer. The word line is perpendicular to the complex common source region and the complex scalable common sink region and each of the complex metal word lines is integrated with the conductive island integration of the scalable control gate, wherein the complex metallic word described above Lines, the conductive island of the micronizable control gate, the dielectric layer between the gates, and the floating micron island are simultaneously formed by a mask photoresist step; and a plurality of cell cell isolation regions are formed in the plurality of metal words A surface portion of the semiconductor substrate outside the line, the plurality of common source regions, and the plurality of scalable common drain regions. 1 7. The non-contact separated diffused bit line array according to item 16 of the scope of the patent application, wherein each of the plurality of common source regions further includes at least one common source conductive pipeline formed in the pair of back # 第One side wall dielectric pad layer is disposed on a highly doped common source diffusion region of the second conductivity type formed within the common source diffusion region and an etched back first planarized oxide layer Formed between the pair of etched back side wall dielectric pads and placed on the common source conductive pipeline. 1 8. The contactless separated diffused bit line array according to item 16 of the scope of patent application, wherein each of the plurality of common source regions further includes at least one shallow groove formed in the pair of etch-back first A surface portion of the semiconductor substrate between the side wall dielectric pads and an etch-back first planarization field oxidation 第49頁 591764 六、申請專利範圍 物層形成於該對回蝕第一側邊牆介電墊層之間且置於該半 導體基板的該淺凹槽之上來分離該共源擴散區成一對埋層 源擴散位元線。 1 9.如申請專利範圍第1 6項所述之無接點分離式擴散位元 線陣列,其中位於該可微縮化分閘區的每一個之内的該可 微縮化漂浮閘島藉由形成於該共源區的側邊牆之上的一個 第三側邊牆介電墊層來定義至少包含摻雜複晶矽或摻雜非 晶矽島而位於該可微縮化分閘區的每一個之内的該可微縮 化控制閘導電島藉由形成於該共源區的一個側邊牆之上的 一個第四側邊牆介電墊層來定義至少包含摻雜複晶矽島或 摻雜複晶矽島覆蓋有鎢(W)或矽化鎢(WSi 2 )島。 2 0 .如申請專利範圍第1 6項所述之無接點分離式擴散位元 線陣列,其中上述之複數細胞元隔離區的每一個至少包含 該第一導電型的一個隔離離子佈植區或一個淺凹槽隔離( ST I)區而該第一導電型的一個離子佈植區至少包含一個淺 離子佈植區以作為臨界電壓的調整及一個深離子佈植區以 形成一個抵穿禁止區係形成於該可微縮化分閘區的每一個 之内的該閘介電層之下的該半導體基板之一個表面部份。Page 49 591764 VI. Patent application scope An object layer is formed between the pair of etched back side wall dielectric pads and placed on the shallow groove of the semiconductor substrate to separate the common source diffusion region into a pair of buried layers. Layer source diffusion bit line. 19. The contactless separated diffusion bit line array as described in item 16 of the scope of the patent application, wherein the micronizable floating gate island located within each of the micronizable gate opening regions is formed by A third side wall dielectric pad layer over the side walls of the common source region is used to define each of the micronizable break-out regions that includes at least doped polycrystalline silicon or doped amorphous silicon islands. The scaleable control gate conductive island within is defined by at least a doped polycrystalline silicon island or doped by a fourth side wall dielectric pad formed on a side wall of the common source region. The polycrystalline silicon islands are covered with tungsten (W) or tungsten silicide (WSi 2) islands. 20. The non-contact separated diffusion bit line array according to item 16 of the scope of the patent application, wherein each of the plurality of cell isolation regions includes at least one isolation ion implantation region of the first conductivity type. Or a shallow groove isolation (ST I) region, and an ion implantation region of the first conductivity type includes at least one shallow ion implantation region as a threshold voltage adjustment and a deep ion implantation region to form a breakdown prohibition A region is formed on a surface portion of the semiconductor substrate under the gate dielectric layer within each of the miniaturizable opening regions. 第50頁Page 50
TW92115290A 2003-06-05 2003-06-05 Scalable split-gate flash cell structure and its contactless divided diffusion bit-line arrays TW591764B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92115290A TW591764B (en) 2003-06-05 2003-06-05 Scalable split-gate flash cell structure and its contactless divided diffusion bit-line arrays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92115290A TW591764B (en) 2003-06-05 2003-06-05 Scalable split-gate flash cell structure and its contactless divided diffusion bit-line arrays

Publications (2)

Publication Number Publication Date
TW591764B true TW591764B (en) 2004-06-11
TW200428600A TW200428600A (en) 2004-12-16

Family

ID=34059342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92115290A TW591764B (en) 2003-06-05 2003-06-05 Scalable split-gate flash cell structure and its contactless divided diffusion bit-line arrays

Country Status (1)

Country Link
TW (1) TW591764B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI802316B (en) * 2022-03-10 2023-05-11 華邦電子股份有限公司 Method for forming semiconductor structure

Also Published As

Publication number Publication date
TW200428600A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
KR100919433B1 (en) Non volatile memory device and method for fabricating the same
US6861698B2 (en) Array of floating gate memory cells having strap regions and a peripheral logic device region
JP4422944B2 (en) MONOS memory array
JP2011187794A (en) Semiconductor storage device, and method of manufacturing the same
JPH11204753A (en) Semiconductor integrated circuit device and manufacture thereof
US7723775B2 (en) NAND flash memory device having a contact for controlling a well potential
TW200406044A (en) Floating gate memory structures and fabrication methods
TWI234244B (en) Paired stack-gate flash cell structure and its contactless NAND-type flash memory arrays
US6566706B1 (en) Semiconductor array of floating gate memory cells and strap regions
TW569395B (en) Method of forming a stacked-gate cell structure and its NAND-type flash memory array
US6743674B2 (en) Method of forming a semiconductor array of floating gate memory cells and strap regions, and a memory array and strap regions made thereby
TW200901371A (en) Semiconductor devices including interlayer conductive contacts and methods of forming the same
TW591764B (en) Scalable split-gate flash cell structure and its contactless divided diffusion bit-line arrays
JP3762584B2 (en) Semiconductor integrated circuit device
US7084453B2 (en) Method of forming different oxide thickness for high voltage transistor and memory cell tunnel dielectric
US6760252B2 (en) Floating gate memory cell, method for fabricating it, and semiconductor memory device
TWI220570B (en) Scalable split-gate flash cell structure and its contactless flash memory arrays
TW594943B (en) Scalable stack-gate flash cell structure and its contactless flash memory arrays
TW525298B (en) Manufacturing method of stacked-gate flash memory array
JP2000216353A (en) Fabrication of semiconductor integrated circuit device
TWI220558B (en) Dual-bit floating-gate flash cell structure and its contactless flash memory arrays
TW575947B (en) Isolated stack-gate flash cell structure and its contactless flash memory arrays
TW567611B (en) A scalable split-gate flash memory cell structure and its contactless flash memory arrays
TWI227938B (en) Self-aligned string/ground select gate structure and its contactless NAND-type flash memory array
TW571437B (en) A scalable stack-gate flash memory cell and its contactless memory array

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees