TW567611B - A scalable split-gate flash memory cell structure and its contactless flash memory arrays - Google Patents
A scalable split-gate flash memory cell structure and its contactless flash memory arrays Download PDFInfo
- Publication number
- TW567611B TW567611B TW91122691A TW91122691A TW567611B TW 567611 B TW567611 B TW 567611B TW 91122691 A TW91122691 A TW 91122691A TW 91122691 A TW91122691 A TW 91122691A TW 567611 B TW567611 B TW 567611B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- conductive
- gate
- side wall
- flash memory
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
567611 五、發明說明(1) 發明背景: (1)發明範疇 本發明與一種分閘式(s p 1 i t - g a t e )快閃記憶細胞元及 其快閃記憶陣列有關,特別是與一種可微縮化(sea 1 ab 1 e ) 分閘式快閃記憶細胞元具有一種可控制的尖端陰極(tipcat h o d e ) 漂 浮閘結 構及其 無接點 ( c ο n t a c 11 e s s )快 閃記憶 陣列有關。 (2 )習知技藝描述 一個分閘式快閃記憶細胞元結構通常具有一個選擇閘 (select-gate)區及一個閘疊堆(gate-stack)區能提供比 一個疊堆閘(s t ack-ga t e )快閃記憶細胞元結構較為的細胞 元尺寸,且常組成一種非或(NOR)型陣列。圖一 A及圖一 B 分別顯示兩種典型的分閘式快閃記憶細胞元結構。 圖一 A顯示一種分閘式快閃記憶細胞元結構具有局部 氧化矽(LOCOS)技術所形成的一個漂浮閘,其中漂浮閘長 由於位於兩個閘端之兩個鳥嘴的形成通常比所使用技術的 一個最小線寬(minimum feature size; F)大;一個控制 閘層1 5係形成於一個局部氧化石夕層1 2及一個較厚選擇閘氧 化層1 4的一部份之上;一個複晶石夕氧化(ρ ο 1 y - ο X i d e )層1 3 係形成於該漂浮閘層1 1的一個側邊牆之上;一個源擴散區 1 6及一個洩擴散區1 7以自動對準的方式形成於一個半導體 基板1 0 0之内;以及一個薄閘介電層1 0係形成於該漂浮閘567611 V. Description of the invention (1) Background of the invention: (1) Scope of the invention The present invention relates to a sp 1 it-gate flash memory cell and its flash memory array, and in particular to a miniaturizable The (sea 1 ab 1 e) split-type flash memory cell has a controllable tipcat hode floating gate structure and its non-contact (c ntac 11 ess) flash memory array. (2) Description of the know-how. A split-type flash memory cell structure usually has a select-gate region and a gate-stack region, which can provide more than a st ack- ga te) flash memory cells have a relatively large cell size and often form a non-or (NOR) array. Figure 1A and Figure 1B show the two typical open flash memory cell structures. Figure 1A shows a floating gate formed by a split flash memory cell structure with local silicon oxide (LOCOS) technology. The length of the floating gate due to the formation of two bird's beaks at the two gate ends is usually longer than A minimum feature size (F) of the technology is large; a control gate layer 15 is formed on a portion of a local oxide layer 12 and a portion of a thicker selective gate oxide layer 14; a The polycrystalite oxidation (ρ ο 1 y-ο X ide) layer 1 3 is formed on a side wall of the floating gate layer 1 1; a source diffusion region 16 and a drain diffusion region 17 are automatically formed. The alignment is formed in a semiconductor substrate 100; and a thin gate dielectric layer 10 is formed in the floating gate.
567611 五、發明說明(2) 層1 1之下。圖一 A所示之分閘式快閃記憶細胞元結構係利 用中間通道(mid-channel)熱電子 (hot-electron)注入法 來寫入,因此寫入效率較高而寫入功率比傳統疊堆閘快閃 記憶細胞元結構所使用之通道熱電子注入法小。另外,該 分閘式快問記憶細胞元結構的超擦洗(〇 v e r - e r a s e )問題可 以藉由位於該選擇閘區之選擇電晶體的一個較高臨界電壓 (threshold-voltage)來避免,因而擦洗及驗證的控制邏 輯電路可以簡化。然而,圖一 A具有一些不利之處:由於 一個非自動對準控制閘結構,細胞元的尺寸較大;由於控 制閘層1 5相對於漂浮閘層1 1間的誤對準,閘長不容易微縮 ;耦合比(c 〇 u p 1 i n g r a t i 〇 )低,擦洗時所加的控制電壓較 大;由於局部氧化矽層1 2之鳥嘴的罩幕能力較弱,漂浮閘 層1 1的場發射尖端很難加予控制;以及形成一個明顯發射 尖端需要一個高溫氧化製程。 圖一 B顯示另一種分閘式快閃記憶細胞元結構,其中 一個飄浮閘層2 1係形成於所使用技術的一個最小線寬 (F ) 來定義;一個薄穿透二氧化矽層2 0係形成於該漂浮閘層2 1 之下;一個選擇閘氧化層2 2係形成於選擇閘區的一個半導 體基板1 0 0及一個暴露漂浮閘層2 1之上;一個控制閘層2 3 係置於該漂浮閘層2 1及選擇閘區的一部份表面之上方;以 及一個源擴散區2 4和一個雙擴散(double-diffused) 結 構2 5/ 2 6分別形成於該半導體基板1 0 0之内。根據圖一 B所 示,可以明顯地看出,除了擦洗之位置係位於該漂浮閘層 2 1與該雙擴散洩結構2 5/ 2 6之間外,類似圖A的缺點仍然567611 V. Description of the invention (2) Below layer 1 1. The split-type flash memory cell structure shown in FIG. 1A is written using a mid-channel hot-electron injection method. Therefore, the writing efficiency is higher and the writing power is higher than that of a conventional stack. The channel hot electron injection method used in the stack flash memory cell structure is small. In addition, the over-erasing problem of the open-cell memory cell structure can be avoided by a higher threshold-voltage of the selection transistor located in the selection gate area, thus scrubbing And verified control logic can be simplified. However, Figure 1A has some disadvantages: due to a non-automatic alignment control gate structure, the size of the cell is large; due to the misalignment between the control gate layer 15 and the floating gate layer 1 1, the gate length is not Easy to scale down; low coupling ratio (c 0up 1 ingrati 〇), larger control voltage applied during scrubbing; due to the weak shielding capability of the bird's beak of the local silicon oxide layer 12, the field emission of the floating gate layer 1 1 Tips are difficult to control; and forming a pronounced launch tip requires a high-temperature oxidation process. Figure 1B shows another open flash memory cell structure. A floating gate layer 2 1 is defined by a minimum line width (F) of the technology used; a thin penetrating silicon dioxide layer 2 0 Is formed under the floating gate layer 2 1; a selective gate oxide layer 2 2 is formed over a semiconductor substrate 100 and an exposed floating gate layer 2 1 in the selective gate region; a control gate layer 2 3 system Placed on the floating gate layer 21 and a part of the surface of the selective gate region; and a source diffusion region 24 and a double-diffused structure 2 5/2 6 are formed on the semiconductor substrate 10 respectively Within 0. According to Figure 1B, it can be clearly seen that, except that the scrubbing position is between the floating gate layer 21 and the double diffusion structure 2 5/2 6, the disadvantages similar to Figure A still remain.
567611 五、發明說明(3) 存在。很明顯地,該雙擴散洩結構2 5/ 2 6主要係用來消除 帶對帶(band-to-band)穿透效應,但成為進一步微縮化的 一個障礙。 基於此,本發明的一個目的係提供一種可微縮化分閘 式快閃記憶細胞元結構具有一個等於4F 2或更小之可微縮 化的細胞元尺寸。 本發明的另一個目的係提供該可微縮化分閘式快閃記 憶細胞元之一個可控制的尖端陰極結構並具有一個高擦洗 效率。 本發明的一個更進一步目的係提供具有較少嚴謹罩幕 步驟的一種製造方法。 本發明的額外目的係提供兩種無接點陣列架構以作為 高速操作,且具有較低的功率消耗。 發明概述: 本發明之一種可微縮化分閘式快閃記憶細胞元結構係 形成於一種第一導電型且具有一個主動區及兩個淺凹槽隔 離(STI)區的一個半導體基板之上並至少包含一個共源區 、一個可微縮化分閘區、及一個可微縮化共洩區,其中上 述之可微縮化分閘區係位於該共源區及該可微縮化共洩區 之間。該共源區至少包含一種第二導電型的一個共源擴散 區形成於該主動區之内、一個第一側邊牆介電墊層形成於 該可微縮化分閘區的一個外側邊牆之上且置於由位於該主567611 V. Description of the invention (3) Exist. Obviously, the double diffusion structure 2 5/2 6 is mainly used to eliminate the band-to-band penetration effect, but it becomes an obstacle to further miniaturization. Based on this, it is an object of the present invention to provide a micronizable and switchable flash memory cell structure having a micronizable cell size equal to 4F 2 or less. Another object of the present invention is to provide a controllable tip cathode structure of the miniaturizable open-type flash memory cell with a high scrubbing efficiency. It is a further object of the present invention to provide a manufacturing method with fewer rigorous masking steps. An additional object of the present invention is to provide two contactless array architectures for high-speed operation with low power consumption. Summary of the Invention: A miniaturized and openable flash memory cell structure of the present invention is formed on a semiconductor substrate of a first conductivity type having an active region and two shallow groove isolation (STI) regions, and At least one common source area, one miniaturizable trip area, and one miniaturizable co-leak area are included. The aforementioned miniaturizable trip area is located between the common source area and the micronizable co-leak area. The common source region includes at least a second conductivity type. A common source diffusion region is formed in the active region, and a first side wall dielectric cushion layer is formed on an outer side wall of the micronizable gate opening region. Above and placed by
567611 五、發明說明(4) 動區的一個穿透介電層及位於該兩個淺凹槽隔離區内的兩 個第四突出場氧化層所組成之一個平坦表面的一部份之上 、一個共源導電管線形成於該第一側邊牆介電墊層之外的 一個第一平坦床之上、以及一個第一平面化厚二氧化矽層 形成於該共源導電管線之上,其中上述之共源擴散區至少 包含一個淺高摻雜共源擴散區形成於一個淡摻雜共源擴散 區之内及該第一平坦床至少包含位於該主動區之該淺高摻 雜共源擴散區及位於該兩個淺凹槽隔離區内之兩個第五突 出場氧化物層所組成。該可微縮化分閘區由形成於該共源 區之一個外側邊牆之上的一個第三側邊牆介電墊層來定義 至少包含由形成於該共源區之一個外側邊牆之上的一個第 二側邊牆介電墊層所定義的一個漂浮閘區及位於漂浮閘區 之外的一個選擇閘區,其中一個漂浮閘層置於一個薄穿透 介電層之上係形成於該漂浮閘區之該主動區的該半導體基 板之上及一個控制閘導電層的一部份置於一個閘介電層之 上係形成於該選擇閘區之該主動區的該第一導電型的一個 離子佈植區之上。該離子佈植區至少包含一個淺離子佈植 區以作為選擇閘電晶體的臨界電壓調整及一個深離子佈植 區以形成一個抵穿禁止區。該浮閘層至少包含一個尖端陰 極線形成於鄰近該選擇閘區之該漂浮閘層的一個外側邊牆 之上的一個第一熱複晶二氧化矽層及鄰近該共源區之該漂 浮閘層的一個上方角落部份的一個回填二氧化矽層之間及 一個第二熱複晶二氧化矽層形成於該尖端陰極線之上以作 為一個穿透介電層。一個控制閘導電層覆蓋有一個覆蓋控567611 V. Description of the invention (4) A penetrating dielectric layer in the moving region and a part of a flat surface composed of two fourth protruding field oxide layers located in the two shallow groove isolation regions, A common source conductive line is formed on a first flat bed outside the first side wall dielectric cushion layer, and a first planarized thick silicon dioxide layer is formed on the common source conductive line. The common source diffusion region includes at least a shallow highly doped common source diffusion region formed in a lightly doped common source diffusion region and the first flat bed includes at least the shallow highly doped common source diffusion in the active region. A region and two fifth protruding field oxide layers located in the two shallow groove isolation regions. The miniaturizable opening area is defined by a third side wall dielectric cushion layer formed on an outer side wall of the common source area, and includes at least one outer side wall formed in the common source area. A floating gate area defined by a second side wall dielectric cushion layer above and a selective gate area located outside the floating gate area. One of the floating gate layers is placed above a thin penetrating dielectric layer. A portion of a conductive gate control layer formed on the semiconductor substrate in the active region of the floating gate region and a gate dielectric layer is formed on the first of the active regions of the selected gate region. Above an ion implantation area of conductivity type. The ion implantation area includes at least one shallow ion implantation area as a threshold voltage adjustment for selecting a gate transistor and a deep ion implantation area to form a breakdown prohibited area. The floating gate layer includes at least a first thermal polycrystalline silicon dioxide layer formed on an outer side wall of the floating gate layer adjacent to the selective gate region and a floating gate adjacent to the common source region. Between a backfilled silicon dioxide layer in an upper corner portion of the layer and a second thermally complex silicon dioxide layer is formed over the tip cathode line as a penetrating dielectric layer. A control gate conductive layer is covered with a coverage control
567611 五、發明說明(5) 制閘導電層係形成於該可微縮化分閘區之該漂浮閘區及該 選擇閘區之上以作為一個導電字線來組成本發明之一種第 一型可微縮化分閘式快閃記憶細胞元,其中一個平面化覆 蓋二氧化矽層係形成於該覆蓋控制閘導電層之上。一個金 屬字線與一個平面化控制閘導電島置於一個控制閘導電島 之上係對準於該主動區之上來成形以組成本發明之一種第 二型可微縮化分閘式快閃記憶細胞元,其中上述之控制閘 導電島係形成於位於該漂浮閘區之該漂浮閘層及位於該選 擇閘區之該閘介電層之上。上述之可微縮化共洩區至少包 含該第二導電型的一個共洩擴散區及一個第四側邊牆介電 墊層形成於該可微縮化分閘區之另一側邊牆之上及置於一 個第二平坦床之一部份表面之上,其中上述之共洩擴散區 至少包含一個淺高摻雜共洩擴區形成於一個淡摻雜共洩擴 區之内及該第二平坦床至少包含位於該主動區之該淺高摻 雜共洩擴散區及該兩個淺凹槽隔離區之兩個第六突出場氧 化物層所組成。一個金屬位元線與一個平面化共洩導電島 積體化連結係對準該主動區之上來組成本發明之第一型可 微縮化分閘式快閃記憶細胞元,其中上述之平面化共洩導 電島係形成於該第四側邊牆介電墊層之外的該淺高摻雜共 洩擴散區之上。一個共洩導電層覆蓋有一個覆蓋共洩導電 層係形成於該第四側邊牆介電墊層之外的該第二平坦床之 上以組成本發明之第二型可微縮化分閘式快閃記憶細胞元 ,其中一個第二平面化厚二氧化矽層係形成於該覆蓋共洩 導電層之上。567611 V. Description of the invention (5) The gate-conducting conductive layer is formed on the floating gate area and the selective gate area of the miniaturizable sub-gate area as a conductive word line to form a first type of the present invention. A microscopic split-gate flash memory cell, in which a planarized silica layer is formed on the conductive layer of the overlay control gate. A metal word line and a planar control gate conductive island are placed on top of a control gate conductive island, are aligned on the active area and formed to form a second type of micronizable split-gate flash memory cell of the present invention. The conductive gate island of the control gate is formed on the floating gate layer in the floating gate region and the gate dielectric layer in the selected gate region. The above-mentioned miniaturizable co-leakage region includes at least a co-leakage diffusion region of the second conductivity type and a fourth side wall dielectric cushion layer formed on the other side wall of the micronizable gate opening region and Placed on a part of the surface of a second flat bed, wherein the co-drained diffusion region includes at least a shallow highly doped co-drained diffusion region formed in a lightly doped co-drained diffusion region and the second flat The bed includes at least the shallow highly doped co-drained diffusion region in the active region and two sixth protruding field oxide layers in the two shallow groove isolation regions. A metal bit line and a planarized co-bleeding conductive island integrated connection system are aligned on the active area to form the first type of micronizable and switchable flash memory cell of the present invention. A leakage conductive island is formed on the shallow highly doped co-bleeding diffusion region outside the fourth side wall dielectric pad. A co-bleeding conductive layer is covered with a co-bleeding conductive layer formed on the second flat bed outside the fourth side wall dielectric cushion layer to form a second type of micronizable split-gate of the present invention. In a flash memory cell, a second planarized thick silicon dioxide layer is formed on the covered and co-bleeded conductive layer.
567611 五、發明說明(6) 本發明之可微縮化分閘式快閃記憶細胞元結構係用來 組成兩種無接點快閃記憶陣列:一種無接點非或型快閃記 憶陣列及一種無接點平行共源/洩導電位元線快閃記憶陣 列。上述之無接點非或型快閃記憶陣列至少包含複數主動 區及複數淺凹槽隔離區交變地形成於一種第一導電型的一 個半導體基板之上、複數第一型可微縮化分閘式快閃記憶 細胞元形成於該半導體基板之上、複數共源導電管線係與 該複數主動區互為垂直、及複數金屬位元線與該複數第一 型可微縮化分閘式快閃記憶細胞元之該平面化共洩導電島 積體化連結係與複數導電字線互為垂直。本發明之無接點 平行共源/洩導電位元線快閃記憶陣列至少包含複數主動 區及複數淺凹槽隔離區交變地形成於一種第一導電型的一 個半導體基板之上、複數第二型可微縮化分閘式快閃記憶 細胞元形成該半導體基板之上、複數共源導電位元線及複 數共洩導電位元線交變地形成且與複數主動區互為垂直、 複數金屬字線與該平面化控制閘導電島置於該控制閘導電 島之上積體化連結並與該複數共源/洩導電位元線互為垂 直。 上述之無接點快閃記憶陣列的每一單位細胞元尺寸係 可微縮化且可以製造成等於4F 2或更小,而所使用之嚴謹 罩幕步驟比先前技術的少。 發明之詳細說明: 現請參見圖二A至圖二C,其中揭示製造本發明之一種567611 V. Description of the invention (6) The miniaturizable split-type flash memory cell structure of the present invention is used to form two types of non-contact flash memory arrays: a non-contact non-or type flash memory array and a Contactless parallel common source / drain conductive bit line flash memory array. The above non-contact non-OR flash memory array includes at least a plurality of active regions and a plurality of shallow groove isolation regions which are alternately formed on a semiconductor substrate of a first conductivity type, and the plurality of first type micronizable micro-switches. Flash memory cells are formed on the semiconductor substrate, a plurality of common source conductive pipelines are perpendicular to the plurality of active regions, and a plurality of metal bit lines and the plurality of first-type miniaturizable open-type flash memories The planarized and collectively drained conductive island integrated connection system of the cell is perpendicular to the plurality of conductive word lines. The non-contact parallel common source / drain conductive bit line flash memory array of the present invention includes at least a plurality of active regions and a plurality of shallow groove isolation regions alternately formed on a semiconductor substrate of a first conductivity type. Type II micronizable split-type flash memory cells are formed on the semiconductor substrate, and a plurality of common source conductive bit lines and a plurality of co-leakable conductive bit lines are alternately formed and perpendicular to the plurality of active regions. The plurality of metals The word line is integrated with the planar control gate conductive island on the control gate conductive island and is perpendicular to the plurality of common source / drain conductive bit lines. The size of each unit cell of the above-mentioned contactless flash memory array can be miniaturized and can be made equal to 4F 2 or less, using less rigorous masking steps than the prior art. Detailed description of the invention: Please refer to FIG. 2A to FIG. 2C, which discloses a method for manufacturing the present invention.
567611 五、發明說明(7) 可微縮化分閘式快閃記憶細胞元結構及其盔接點快閃記憶 陣列的一種淺凹槽隔離結構之製程步驟及^剖面圖。567611 V. Description of the invention (7) Process steps and cross-sectional views of a shallow recessed isolation structure of a flash memory cell structure capable of miniaturizing a split-type flash memory and its helmet contact flash memory array.
“ 圖二觸示一個薄穿透介電層3 0 1係形成於一種第一導 電t的個半導體基板30 0之上;一個導電声go 2係形成於 該薄穿透介電層3〇1之上;然後,一個第電層3〇3 形成於該導電層3 0 2之上;接著,複數罩幕光阻pR1形成於 該第一罩幕介電層3 0 3之上以定義複數主動區(aa) (pR1之 下)及複數淺凹槽隔離(^^區(PR1之間)。該薄穿透介電 層301係一個熱一氧化矽層或一個氮化(ni^ided)熱二氧 化層且其厚度係介於7 〇埃和1 2 〇埃之間。該導電層3 〇 2係一 個心雜複晶石夕或摻雜非晶石夕層且係利用低壓化學氣相堆積 j L P C V D )法來堆積’其厚度係介於丨5⑽埃和4 〇 〇 〇埃之間。 «亥第一罩幕介電層3 0 3係由氮化矽所組成且利用lpcVD法來 堆積’其厚度係介於1 〇 〇 〇埃和3 〇 〇 〇埃之間。這裡值得一提 的是’該複數罩幕光阻PR1的寬度及間距可以利用所使用 技術的一個最小線寬(F)來定義,如圖二A所示。“FIG. 2 shows that a thin penetrating dielectric layer 3 0 1 is formed on a semiconductor substrate 300 having a first conductivity t; a conductive acoustic go 2 is formed on the thin penetrating dielectric layer 3 01 Then, a first electrical layer 30 is formed on the conductive layer 3 02; then, a plurality of mask photoresistors pR1 are formed on the first mask dielectric layer 3 0 3 to define a plurality of active layers. Area (aa) (below pR1) and multiple shallow groove isolations (^^ area (between PR1). The thin penetrating dielectric layer 301 is a thermal silicon oxide layer or a nitrided thermal layer The dioxide layer has a thickness between 70 angstroms and 120 angstroms. The conductive layer 302 is a heart-shaped polycrystalite or doped amorphous stone layer and is deposited using low-pressure chemical vapor deposition. j LPCVD) method to deposit 'its thickness is between 5 Angstroms and 4,000 Angstroms. «The first mask dielectric layer 3 0 3 is composed of silicon nitride and is deposited using the lpcVD method' Its thickness is between 1000 Angstroms and 3,000 Angstroms. It is worth mentioning here that the width and pitch of the multiple mask photoresist PR1 can be made using the technology used A minimum line width (F) is defined as shown in FIG two A.
圖二B顯示位於該複數罩幕光阻PR丨之間的該第一罩幕 介電層3 0 3、該導電層3 0 2、及該薄穿透介電層301係循序 地利用非等向乾式蝕刻法加予去除,然後位於該複數罩幕 光阻PR 1之間的該半導體基板3 0 〇係非等向性地被蝕刻以形 成複數淺凹槽,接著去除該複數罩幕光阻PR1。圖二B又顯 示一個平面化場氧化物層3 0 4 a係填平該第一罩幕介電層 3〇3a之間的每一個空隙。該平面化場氧化物3 04a係由二氧 化矽、磷玻璃(p —glass)、或硼磷玻璃(BP-glass)所組成FIG. 2B shows the first mask dielectric layer 3 0 3, the conductive layer 3 2 2, and the thin penetrating dielectric layer 301 between the plurality of mask photoresist PRs. The dry etching method is removed, and then the semiconductor substrate 300, which is located between the plurality of mask photoresists PR1, is anisotropically etched to form a plurality of shallow grooves, and then the plurality of mask photoresists is removed. PR1. FIG. 2B also shows that a planarized field oxide layer 3 0 4 a fills every gap between the first mask dielectric layer 3 03 a. The planarized field oxide 3 04a is composed of silicon dioxide, phosphorous glass (p-glass), or borophosphoric glass (BP-glass).
567611 五、發明說明(8) 且利用LPCVD、高密度電漿(HDP)CVD、或電漿增強型(pE) CVD來堆積,係先堆積一個厚氧化物層3 〇 4以填滿該第一罩 幕介電層3 0 3a之間的每一個空隙,然後利用化學機械磨平 法(CMP)將所堆積之厚氧化物層3〇4加予平面化並以該第— 罩幕介電層3 0 3a作為一個磨平停止層(p〇lishing st〇p)。 圖二C顯示該平面化場氧化層3 〇 4a係利用非等向乾式 蝕刻法加予選擇性地回蝕等於該第一罩幕介電層3 〇 3a= ^ 度的一個深度;然後利用高溫磷酸或非等向乾式蝕刻法$ 除違第一罩幕介電層303a,以形成由一個第一突出場氧化 物層3 04b及該導電層3 0 2a所交變地組成的一個平坦表面; 接著’ 一個第二罩幕介電層305形成於該平坦表面之上。 該第二罩幕介電層3 0 5係由氮化矽所組成且利用LPCVD法來 堆積’其厚度係介於5 0 0 0埃和1 5 0 0 0埃之間。圖二c中沿著 一個主動區方向,如一個c_c,線所標示係顯示於圖三八之 中。 這裡值得一提的是,有一些方法可以用來形成圖二c ,示的平坦表面。例如:該第一罩幕介電層3 〇 3可以由二 氧化石夕所組成且利用LPCVD法來堆積,而該第一罩幕介電 層3 0 3a及所堆積之厚二氧化矽層可以同時利用CMP法來加 予平面化;複數罩幕光阻PR1可以直接形成於該導電層302 之上’然後無需第一罩幕介電層來形成複數淺凹槽,接著 利用CMP法形成第一突出場氧化物層3〇4b。然而,圖二A至 圖二C的製程步驟較適合形成一個櫬有(lined with)二氧 化石夕層於凹槽的表面來消除凹槽所引起的瑕疵。567611 V. Description of the invention (8) And using LPCVD, high-density plasma (HDP) CVD, or plasma enhanced (pE) CVD to deposit, first deposit a thick oxide layer 304 to fill the first Each gap between the mask dielectric layers 3 0 3a is then planarized by chemical mechanical polishing (CMP) and the thick oxide layer 30 is deposited and the first mask dielectric layer is formed. 3 0 3a acts as a polishing stop. FIG. 2C shows that the planarized field oxide layer 3 〇 4a is selectively etched back by a non-isotropic dry etching method to a depth equal to the first mask dielectric layer 3 〇 3a = ^ degrees; then using high temperature Phosphoric acid or non-isotropic dry etching method, except that the first mask dielectric layer 303a is violated to form a flat surface composed of a first protruding field oxide layer 304b and the conductive layer 302a; Then, a second mask dielectric layer 305 is formed on the flat surface. The second mask dielectric layer 305 is composed of silicon nitride and is deposited using the LPCVD method. Its thickness is between 500 angstroms and 15 angstroms. In Figure 2c, along the direction of an active area, such as a c_c, the lines are shown in Figure 38. It is worth mentioning here that there are some methods that can be used to form the flat surface shown in Figure 2c. For example, the first mask dielectric layer 3 03 can be composed of SiO2 and stacked using LPCVD method, and the first mask dielectric layer 3 0 3a and the thick silicon dioxide layer can be stacked. At the same time, the CMP method is used to add planarization; a plurality of mask photoresist PR1 can be directly formed on the conductive layer 302 ', and then a first mask dielectric layer is not required to form a plurality of shallow grooves, and then a first mask is formed by the CMP method. The field oxide layer 304b is protruding. However, the process steps of FIGS. 2A to 2C are more suitable for forming a lined with dioxide layer on the surface of the groove to eliminate defects caused by the groove.
567611 五、發明說明(9) ⑶ 現參見圖三A至圖三J,其中顯示製造本發明之一種可 微維化分閘式快閃記憶細胞元結構及其無接點快閃記憶陣 列之—種共用平台結構的製程步驟及其剖面圖。 圖三A顯示複數罩幕光阻PR2係形成於該第二罩幕介電 ,30 5之上以定義複數可微縮化區(pR2之下)及複數共源區 R 2之間),其中上述之複數可微縮化區的每一個如X1 F ^示至少包含一對可微縮化分閘區及一個可微縮化共浪 f形成於該對可微縮化分閘區之間及該共源區如F所標示 =以利用所使用技術的一個最小線寬(F)來定義。這^值 =一提的是,X 1係一個可微縮化參數。若X 1係等於3,本 考:明之一個可微縮化分閘快閃記憶細胞元結構的單位細胞 70尺寸係等於4F2。通常,單位細胞元尺寸係等於(1+Xi)f2 且可以透過X i來加予微縮化。 1 八圖二B顯示位於该複數罩幕光阻pr2之間的該第二罩幕 I電層3 0 5係利用非等向乾式蝕刻法加予選擇性地 &後去除該複數罩幕光阻PR2。 ’、 圖三c顯示位於複數共源區之每一個的該導電層3〇2a ^^1用澄式蝕刻法或等向性(isotropic)乾式蝕刻^來形 成一個下蝕(undercut)形狀於該複數可微縮區的每一個之 =L這裡值得一提的是,此種下蝕形狀可以利用傳統氧化 I程來形成,而成長的氧化層再利用溼式蝕 但此種方法需高溫氧化步驟。 术侍到 圖三D顯示下蝕的空洞係填滿回填(refilled)二氧化 石夕層3 0 6b,然後位於複數共源區之每一個的第一突出場氧567611 V. Description of the invention (9) ⑶ Referring now to FIG. 3A to FIG. 3J, which shows the manufacturing of a micro-dimensional switchable flash memory cell structure and a contactless flash memory array of the present invention— The manufacturing steps of a common platform structure and its sectional view. FIG. 3A shows that a plurality of mask photoresistors PR2 are formed on the second mask dielectric, 30 5 to define a complex scalable region (below pR2) and a complex common source region R 2). Each of the plurality of micronizable regions such as X1 F ^ shows that at least one pair of micronizable switching regions and a common micronizable wave f are formed between the pair of micronizable switching regions and the common source region such as F is marked = defined by a minimum line width (F) using the technology used. This value = It is mentioned that X 1 is a scaleable parameter. If X 1 is equal to 3, in this study: a unit cell 70 that can be miniaturized and opened flash memory cell structure is equal to 4F2. Generally, the unit cell size is equal to (1 + Xi) f2 and can be miniaturized through X i. 1 FIG. 2B shows the second mask I electrical layer located between the plurality of mask photoresist pr2. The 305 series uses a non-isotropic dry etching method to selectively & remove the multiple mask light. Resistance PR2. ', FIG. 3c shows that the conductive layer 3202a located in each of the plurality of common source regions is formed by an undercut shape using a clear etching method or an isotropic dry etching method. It is worth mentioning here that each of the plurality of scalable regions can be formed by the conventional oxidation process, and the grown oxide layer is reused by wet etching, but this method requires a high temperature oxidation step. Figure 3D shows that the etched hollow system is filled with the refilled oxidized stone layer 3 0 6b, and then the first protruding field oxygen in each of the plurality of common source regions
第13頁 567611 五、發明說明(ίο) 化物層3 04b及存 由該薄穿透介電 交變地組成的一 易地先堆 層3 0 5 a之 之厚二氧 磨平停止 平面化厚 平,然後 層3 0 1 a的 3 0 4 e,接 的該存留 程,以自 質於該半 摻雜共源 以4艮容 幕介電 所堆積 為一個 回钱該 頂部水 透介電 化物層 個之内 佈植製 植摻雜 一個淡 留的導電層302 b係循序地加予钱刻以形成 :3〇la及一個第四突出場氧化物層3 0 4e所 平垣表面。該下飿的空洞之回填製程可 間二,厚二氧化石夕層3 0 6來填滿該第二罩 二砂個空隙、然後利用CMP法平面化 層,‘ 第二罩幕介電層3〇5&作 層轰;耆利用非等向乾式餘刻法選擇性地 —虱化矽層3 0 6a至存留墓带兑 悍 回I虫兮筮一作 知 電層3 0 2 b之一個 一個τΐ部本2 h琢氧化物層3 0 4b至該薄穿 著,」:ί平以形成該第四突出場氧 者選擇性地去除位*該複 導電層3 0 2b。圖三D又:數;源區的每-動對準的方式跨過該薄;行-個離子 擴散區W該複數;;導電型的 勒Ihe的每一個之内 圖 E顯示一對第一側邊牆介電墊 可微縮化區的外側邊牆之上且置於由誃9 、a形成於鄰近 及該第四突出場氧化物層3 0 4e所交變上组=透介電層301 b 的一部份表面之上;然後,位於該對第ff;之該平坦表面 3 0 8a之間的該薄穿透介電層301a係利用非二邊,介電墊層 或稀釋氫氟酸的泡浸法加予去除,而該篦$乾式蝕刻法 層3 04_同時被#刻,以形成由一個第五今二^ ?氧化物 3 0 4 f及該淡摻雜共源擴散區3 〇 7a所交變=%氧化物層 人爻地組成的一個第一Page 13 567611 V. Description of the Invention (3) The compound layer 3 04b and an ex-situ stacking layer consisting of the thin penetrating dielectric alternating layer 3 0 5 a are thickened and the oxygen leveling is stopped to planarize the thickness. Level, then layer 3 0 1 a, 3 0 4 e, followed by the retention process, to be self-produced in the semi-doped co-source, and 4 ohms of the screen dielectric deposits as a cash back the top water-permeable dielectric Each layer is implanted with a lightly doped conductive layer 302b, which is sequentially added to the engraved surface to form: 30a and a fourth protruding field oxide layer 3004e. The backfilling process of the lower cavity can be filled with a thick layer of silica dioxide 3 06 to fill the gaps of the second cover and sand, and then planarize the layer using the CMP method. 〇5 & for layer bombardment; 耆 Use non-isotropic dry-etching method to selectively-liceize the silicon layer 3 0 6a to the surviving grave belt and return to the worm. 作 Make one of the electrical layers 3 0 2 b τΐ The oxide layer 3 0 4b is cut into the thin layer 2 h, and the thin layer is flattened to form the fourth protruding field oxygen to selectively remove the bit * the complex conductive layer 3 0 2b. Figure 3D again: the number; the dynamic alignment of the source region across the thin; the ion diffusion region W the complex number; the inside of each of the conductive type Ihe Figure E shows a pair of first The side wall dielectric pad is on the outer side wall of the micronizable region and is placed adjacent to the fourth protruding field oxide layer 3 0 4e and formed by 誃 9, a. The upper group is = the dielectric layer. 301 b on a part of the surface; then, the thin penetrating dielectric layer between the flat surfaces 3 0 8a of the pair ff; the 301a uses non-edged, dielectric padding or dilute hydrogen fluoride The acid is immersed in the bubble immersion method, and the dry etching layer 3 04_ is simultaneously etched to form a fifth doped oxide 3 0 4 f and the lightly doped common source diffusion region. 3 〇7a Alternate =% of the oxide layer artificially composed of a first
567611 五、發明說明(11) 平坦床於該複數共源區的每一個之内;然後,一個複合導 電層3 1 0 b/ 3 0 9 b係形成於該複數共源區之每一個的該第一 平坦床之上’以作為一個共源導電管線3丨〇 b/ 3 〇 9 b ;接著 ,一個第一平面化厚二氧化矽層31 la係形成於該對第一側 邊牆w電墊層3 0 8 a之間的每一個空隙。上述之第一側邊踏 介電塾層3 0 8a係由二氧化矽所組成且利用LpcVD法來堆積 ’係先堆積一個二氧化矽層3 〇 8 ,然後非等向性地回蝕所 堆積之二氧化矽層3〇8的厚度。這裡值得注意的是,在未 回蝕所堆積之二氧化矽前,可以進行一個離子佈植製程, 以自動對準的方式跨過所堆積之二氧化矽層3 〇 8及該薄穿 透,電層3 0 1 a佈植摻雜質於該半導體基板3 〇 〇之内以形成 该第一導電型的一個淺高摻雜共源擴散區3 〇 7b於該淡摻雜 共源擴散區3 0 7a之内。上述之複合導電層31 〇b/ 3〇9b至少 包含一個摻雜複晶矽層3 0 913藉lPCVD來堆積及一個覆蓋共 源導電層3101)諸如一個矽化鎢(^丨2)或鎢(^)層藉1^(^1)法 或濺鍍法來堆積。上述之摻雜複晶矽層3〇9b可以進一步加 12 Ϊ ,问劑里的摻雜質以作為一個摻雜質擴散源來形 ί ^ f 型的一個淺高摻雜共源擴散3 0 7b於該淡摻雜 八政區3 0 7a之内,係先堆積一個厚摻雜複晶矽層3〇9 並八將/斤堆積之厚摻雜複晶石夕層3 0 9力…面化 :平:化摻雜複晶石夕取所預設的一個厚度。 源導電層31〇b可以利用該換雜複晶石夕層 3〇9b之相同的製程步驟來形&。上述之第一平面化厚二氧567611 V. Description of the invention (11) A flat bed is within each of the plurality of common source regions; then, a composite conductive layer 3 1 0 b / 3 0 9 b is formed in each of the plurality of common source regions. Above the first flat bed is used as a common source conductive line 3b / b; 3b; then, a first planarized thick silicon dioxide layer 31a is formed on the pair of first side walls. Each gap between the pads 3 0 8 a. The above-mentioned first side step dielectric layer 3 0a is composed of silicon dioxide and is deposited using the LpcVD method. First, a silicon dioxide layer 3 08 is deposited, and then the deposit is anisotropically etched back. The thickness of the silicon dioxide layer 308. It is worth noting here that before the silicon dioxide deposited is not etched back, an ion implantation process can be performed to automatically align the stacked silicon dioxide layer 308 and the thin penetration, An electrical layer 3 0 1 a is implanted with dopants within the semiconductor substrate 3000 to form a shallow highly doped common source diffusion region 3 of the first conductivity type 307 b on the lightly doped common source diffusion region 3 Within 0 7a. The above-mentioned composite conductive layer 31 0b / 309b includes at least one doped polycrystalline silicon layer 3 0 913 and is deposited by lCVD and covers a common source conductive layer 3101) such as a tungsten silicide (^ 丨 2) or tungsten (^ ) The layers are stacked by 1 ^ (^ 1) method or sputtering method. The above-mentioned doped polycrystalline silicon layer 309b can be further added with 12 Ϊ. The dopant in the interfacial agent is used as a dopant diffusion source to form a shallow highly doped common source diffusion of type ^ f 3 0 7b Within the lightly doped bazheng area 3 0 7a, a thickly doped polycrystalline silicon layer 3009 is deposited first, and the thickly doped polycrystalline stone layer 3/9 is deposited in force / surface. : Flat: Chemically doped polycrystalline stone takes a preset thickness. The source conductive layer 310b can be shaped using the same process steps of the doped polyspar evening layer 3009b. First planarized thick dioxygen
第15頁 567611 五、發明說明(12) '〜一'-Page 15 567611 V. Description of the invention (12) '~ 一'-
化矽層3 1 1 a係由二氧化矽、磷玻璃、或硼磷玻M 碉所組成且 利用LPCVD、HDPCVD、或PECVD法來製造,係先玱接 一斤 70唯積一個厚 —氧化矽層311來填滿該對第一側邊牆介電墊層3〇8a之于 的每一個空隙,再利用CMP法將所堆積之厚二氧曰化石夕^之間 加予平面化並以該第二罩幕介電層3 0 5a作為一個磨θ 31 1 Μ Τ 1宁止 圖二F顯示該第二罩幕介電層3 Ο 5 a係選擇性地利古 熱碌酸或非等向乾式餘刻法加予去除;一對第二側邊牆f 電墊層312a係形成於鄰近第一側邊牆介電塾層的卜 牆一對漂浮閉區3°2d的寬〆然後:於該 邊牆介電墊層312a之間的該導電層3 0 2c係利用非 蝕刻法加予選擇性地去除;#著,以自動對準的 i式跨過該穿透介電層301b佈植摻雜質於 :=之層内,之間的該複數主動區之每-個的㈡2 ίΓ:: 成該第一導電型的一個離子佈植區”3a。 迷之第二側邊牆介電墊層31 2a係由氮化矽所 =之來上堆積’係先堆積-個氮化…2二=: 回㈣堆積之氮化石夕層312的-個厚度。 所ί干=植區313&至少包含一個淺離子佈植區如虛線 整二個ίί;於選擇間區之該選擇電晶·的臨界電壓調 閘電晶體:抿;:=如打X: Χ號所標示以形成該選擇 =抵穿不止(punch-thr〇Ugh區。 泡浸“ 該2透Γ層3川係利用稀釋氯氣酸之 專向乾式蝕刻法加予去除,而位於複數淺凹槽 567611 五、發明說明(13) 隔離區的該第一突出場氧化物層3 0 4b亦少許地被蝕刻以形 成第二突出場氧化物層3 0 4c,然後進行一個熱氧化製程以 形成位於該對第二側邊牆介電墊層3 1 2 a之間的複數主動區 之每一個内的一個閘介電層3 1 4a及一個第一熱複晶二氧化 矽層3 1 5 a形成於該漂浮閘層3 0 2 d的每一個側邊牆之上。這 裡值得一提的是,上述之薄穿透介電層301b可以不必去除 ,然後執行熱氧化製程。這裡可以清楚地看到,一個尖端 陰極線係形成於該複數漂浮閘層的每一個之内,該尖端陰 極線的寬度係由該第一熱複晶二氧化矽層3 1 5 a及該回填二 氧化矽層3 0 6 b之間距來控制且係介於1 0 0埃和3 0 0埃之間。 圖三Η顯示該對第二側邊牆介電墊層3 1 2a係選擇性地 利用高熱磷酸加予去除;然後進行一個熱氧化製程以形成 一個第二熱複晶二氧化矽層3 1 6 a於該尖端陰極線的每一個 之上,接著在笑氣(N 20 )環境下進行一個熱退火製程以形 成氮化第一 /第二熱複晶二氧化矽層3 1 5a/ 3 1 6a及氮化閘 介電層3 1 4a ;然後,一個控制閘導電層3 1 7b形成於該複數 可微縮化區;接著,一對第三側邊牆介電墊層3 1 8a係形成 於鄰近第一側邊牆介電墊層3 0 8 a的外側邊牆之上且置於該 控制閘導電層3 1 7b的一部份表面之上來定義一對可微縮化 分閘區及同時定義一個可微縮化共洩區於該複數可微縮區 的每一個之内的該對可微縮化分閘區之間。上述之氮化第 二熱複晶二氧化矽層3 1 6 a的厚度係介於7 0埃和2 0 0埃之間 ,而該氮化第一熱複晶二氧化矽層3 1 5 a的厚度係介於2 0 0 埃和3 0 0埃之間。上述之控制閘導電層3 1 7b係由摻雜複晶The siliconized layer 3 1 1 a is composed of silicon dioxide, phosphorous glass, or borophosphoric glass M 碉 and is manufactured by LPCVD, HDPCVD, or PECVD. It is first connected to a pound of 70 and only one thick—silicon oxide Layer 311 to fill each gap of the pair of first side wall dielectric pads 308a, and then use the CMP method to planarize the stacked thick dioxin and fossils ^ and The second mask dielectric layer 3 0 5a acts as a grinding θ 31 1 Μ Τ 1 but Figure 2F shows that the second mask dielectric layer 3 0 5 a is selectively Liguron acid or anisotropic dry type. A pair of second side wall f electric cushion layers 312a are formed on a pair of floating closed areas 3 ° 2d wide adjacent to the dielectric wall of the first side wall. Then: The conductive layer 3 0 2c between the side wall dielectric pad layers 312a is selectively removed by non-etching method; the first step is to implant the dopant across the penetrating dielectric layer 301b in an automatic alignment. Impurities are in the layer of ==, between each of the plurality of active regions ㈡Γ :: an ion implanted region of the first conductivity type "3a. The second side wall dielectric pad Layer 31 2a is composed of The stacking of silicon nitride = it is first stacked-one nitrided ... 22 = = the thickness of the nitrided stone layer 312 that is stacked back. The dried = planted area 313 & contains at least one shallow ion cloth The planting area is two dotted lines as a dotted line; the threshold voltage switching transistor of the selection transistor in the selection area: 抿;: = as marked by the X: XX to form the selection = puncture more than (punch- thr〇Ugh area. Soak dipping “The 2 through Γ layer and 3 chuan system are removed by the special dry etching method of dilute chlorine gas acid, and are located in a plurality of shallow grooves 567611. 5. Description of the invention (13) The first of the isolation area The protruding field oxide layer 3 0 4b is also slightly etched to form a second protruding field oxide layer 3 0 4c, and then a thermal oxidation process is performed to form a dielectric spacer layer 3 1 2 a on the pair of second side walls. A gate dielectric layer 3 1 4a and a first thermal polycrystalline silicon dioxide layer 3 1 5 a within each of the plurality of active regions are formed on each side wall of the floating gate layer 3 0 2 d It is worth mentioning here that the thin penetrating dielectric layer 301b mentioned above may not be removed, and then a thermal oxidation process is performed. Here It can be clearly seen that a tip cathode line is formed in each of the plurality of floating gate layers, and the width of the tip cathode line is formed by the first thermally complex silicon dioxide layer 3 1 5 a and the backfilled silicon dioxide The distance between the layers 3 0 6 b is controlled and is between 100 angstroms and 300 angstroms. Fig. 3a shows that the pair of second side wall dielectric pads 3 1 2a selectively uses high-temperature phosphoric acid. Additive removal; then a thermal oxidation process is performed to form a second thermal polycrystalline silicon dioxide layer 3 1 6 a on each of the tip cathode lines, followed by a thermal annealing in a laughing gas (N 20) environment Process to form a nitrided first / second thermally complex silicon dioxide layer 3 1 5a / 3 1 6a and a nitrided gate dielectric layer 3 1 4a; then, a control gate conductive layer 3 1 7b is formed on the plurality of Micronization area; next, a pair of third side wall dielectric pads 3 1 8a are formed on the outer side wall adjacent to the first side wall dielectric pads 3 0 8 a and placed on the control gate A part of the surface of the conductive layer 3 1 7b is used to define a pair of micronizable switch-off regions and at the same time a micronizable co-leakage region is defined in the Between each of the plurality of scalable regions, between the pair of scalable gates. The thickness of the second thermally nitrided silicon dioxide layer 3 1 6 a is between 70 angstroms and 200 angstroms, and the first thermally nitrided silicon dioxide layer 3 1 5 a is nitrided. The thickness is between 200 angstroms and 300 angstroms. The above-mentioned control gate conductive layer 3 1 7b is doped with multiple crystals.
567611 五、發明說明(14) 矽所組成且利用LPCVD法來堆積,係先堆積一個厚摻雜複 晶矽層3 1 7,接著利用CMP法或回蝕法將所堆積之厚摻雜複 晶矽層3 1 7加予平面化,然後回蝕至一個所預設的厚度。 上述之第三側邊牆介電墊層3 1 8a係由氮化矽所組成且利用 LPCVD法來堆積,係先堆積一個氮化矽層318,再回蝕所堆 積之氮化矽層318的一個厚度。這裡值得一提的是,該第 三側邊牆介電墊層 3 1 8 a的墊層厚度係由所堆積之氮化矽 層3 1 8的厚度來加予控制,因此一個可微縮化分閘區的控 制閘寬係可微縮化。這裡必須強調的是,上述之控制閘導 電層3 1 7b可以是一個複合導電層且係一個摻雜複晶矽層覆 蓋有一個矽化鎢(WSi 2)或鎢(W)層。 圖三I顯示複數罩幕光阻PR3係形成於該複數共源區之 上及鄰近之可微縮化分閘區的一部份表面之上;然後,位 於該複數可微縮化區之每一個的該對第三側邊牆介電墊層 3 1 8a間的該控制閘層3 1 7b係先回蝕至該第二突出場氧化物 層3 04c的一個頂部表面水平,接著回蝕該第二突出場氧化 物層3 0 4 c至該閘介電層3 1 4 a的一個頂部表面水平,然後存 留的控制閘導電層係非等向性地加予去除以形成由該閘介 電層3 1 4a及該第三突出場氧化物層3 0 4d所交變地組成的一 個平坦的表面;接著,以自動對準的方式跨過該閘介電層 31 4a佈植摻雜質於該半導體基板3 0 0内,以形成該第二導 電型的一個淡摻雜共洩擴散區於該對第三側邊牆介電墊層 3 1 8 a之間的該複數主動區之每一個内。 圖三J顯示位於該對第三側邊牆介電墊層3 1 8 a之間的567611 V. Description of the invention (14) Silicon is formed by LPCVD method. A thick doped polycrystalline silicon layer 3 1 7 is deposited first, and then the deposited thick doped polycrystalline is deposited by CMP method or etch-back method. The silicon layer 3 1 7 is planarized, and then etched back to a predetermined thickness. The third side wall dielectric pad layer 3 1 8a is composed of silicon nitride and is deposited by LPCVD method. First, a silicon nitride layer 318 is deposited, and then the deposited silicon nitride layer 318 is etched back. A thickness. It is worth mentioning here that the thickness of the pad of the third side wall dielectric pad 3 1 8 a is controlled by the thickness of the stacked silicon nitride layer 3 1 8, so a micronizable component The control gate width of the gate area can be miniaturized. It must be emphasized here that the above-mentioned control gate conductive layer 3 1 7b may be a composite conductive layer and a doped polycrystalline silicon layer covered with a tungsten silicide (WSi 2) or tungsten (W) layer. FIG. 3I shows that a plurality of mask photoresistors PR3 are formed on the surface of the plurality of common source regions and a part of the surface of the adjacent micronizable switchable region; then, each of the plurality of micronizable regions is located The control gate layer 3 1 7b between the pair of third side wall dielectric pads 3 1 8a is etched back to a top surface level of the second protruding field oxide layer 3 04c, and then the second The field oxide layer 3 0 4 c is protruded to a top surface level of the gate dielectric layer 3 1 4 a, and then the remaining control gate conductive layer is anisotropically removed to form the gate dielectric layer 3. 1 4a and the third protruding field oxide layer 3 0 4d alternately constitute a flat surface; then, a dopant is implanted across the gate dielectric layer 31 4a in an automatic alignment manner to the semiconductor Within the substrate 300, a lightly doped co-drained diffusion region of the second conductivity type is formed in each of the plurality of active regions between the pair of third side wall dielectric pads 3 1 8a. Figure J shows the dielectric layer between the pair of third side wall dielectric pads 3 1 8 a.
567611 五、發明說明(15) 該閘介電層3 1 4a係利用稀釋氫氟酸加予泡浸或等向 刻來加予去除,而該第三突出場氧化物層3〇4d亦同 刻,以形_成一個第二平坦床;然後,去除該複數罩 P R 3。圖二J又顯示一對第四側邊牆介電墊層3 2 〇 &係 鄰近可微縮化分閘區的外側邊牆之上且置於該第二 的一部份表面之上。這裡值得一提的是,在^回蝕 之介電層3 2 0以形成該第四側邊牆介電墊層32〇a之 以藉自動對準的方式跨過該堆積之介電層佈植一個 的掺雜質,以形成該第二導電型的一個淺高摻雜共 區3 1 9b於該淡摻雜共洩擴散區3丨9a之内。因此 2 地由該淺高摻雜共线擴散區3i9b及 面…導電層3⑽填平該複數可-微= 個的忒對第四側邊牆介電層之間的每一個* °° 四側邊牆介電墊層32 〇3係由二永。上 法來堆積,係先堆積一個二氧:二所」且成且利用 表面之上,然後再回#所堆積之二:化:::: 度。上述之平面化共泡導電層 ς 32的 且利用LPCVD來堆積,係先堆積一個^由心雜複晶石夕 於該對第四側邊牆介電墊層32〇 、層321以 利用CMP法將所堆積厚導 間的母一個空隙 ,側繼電塾層積二 吕周的疋,圖二J組成一個妓么 τ曰。這裡 種可微縮化分開式快閃& ^ ° = 口結構來製造本發 閃隱細胞元結構及其無接點 乾式蝕 時被蝕 幕光阻 形成於 平垣床 所堆積 前,可 高劑量 洩擴散 述之第 一個第 一個平 之每一 述之第 LPCVD 的結構 一個厚 所組成 填滿位 ’然後 該對第 值得強 明之一 快閃記567611 V. Description of the invention (15) The gate dielectric layer 3 1 4a is removed by dilute hydrofluoric acid and soaked or isotropically etched, and the third protruding field oxide layer 304d is also etched. To form a second flat bed; then, remove the multiple mask PR 3. Figure 2J again shows a pair of fourth side wall dielectric pads 3 2 0 & on the outer side wall adjacent to the miniaturizable trip zone and placed on a portion of the second surface. It is worth mentioning here that the etched back dielectric layer 3 2 0 is used to form the fourth side wall dielectric pad layer 32 0a, and the stacked dielectric layer cloth is automatically aligned. A dopant is implanted to form a shallow highly doped common region 3 1 9b of the second conductivity type within the lightly doped common leakage diffusion region 3 丨 9a. Therefore, 2 grounds are filled by the shallow highly doped collinear diffusion region 3i9b and the surface ... the conductive layer 3⑽ fills in the plural-micro = 个 pairs of each of the fourth side wall dielectric layers * °° four sides The side wall dielectric cushion layer 32 〇3 is made by Erong. The above method is used to accumulate, which is to accumulate a dioxin: Ersuo "and make use of it on the surface, and then return to the second accumulation of #: 化 :::: degree. The above-mentioned planarized co-bubble conductive layer 32 is stacked using LPCVD. First, a complex polycrystalline stone is deposited on the pair of fourth side wall dielectric pads 32 and 321 to use the CMP method. A gap between the mothers of the stacked thick conductors is stacked on the side of the electric conductor, and the two Lu Zhous are stacked. Figure 2J constitutes a prostitute. This kind of miniaturized split flash & ^ ° = mouth structure to make the hairy cryptic cell structure and its non-contact dry etching is formed by the eclipse photoresist before the accumulation of the flat bed, which can be discharged at high doses. Diffusion of the first one of the first flat structure of each of the LPCVD structures is made up of a thick filling bit 'then the pair of flashes worthy of the first
567611 五、發明說明(16) 憶陣列。 現參考圖四A至圖四C,其中揭示接續圖三J製造本發 明之一種可微縮化分閘式快閃記憶細胞元結構及其無接點 非或型快閃記憶陣列的製程步驟及其剖面圖。這裡有兩種 方法可以用來製造一種無接點非或型快閃記憶陣列。第一 種方法:將平面化共洩導電層3 2 1 a先佈植該第二導電型的 一個高劑量之摻雜質,然後利用一個習知的自動對準石夕化 製程技術來矽化該平面化共洩導電層3 2 1 a,以形成一個折 光(refractory )金屬石夕化物層諸如一個石夕化鈦(T i S i 2)或 石夕化钻(C 〇 S i D層;接著,一個金屬層32 4形成於所形成的 結構表面之上;然後’該金屬層3 2 4連同該碎化平面化丘 洩導電層3 2 1 a—併藉由一個罩幕光阻步驟來成形,以形^ 複數金屬位元線324a與矽化平面化共洩導電島積體化‘幹 。上述之金屬層3 24至少包含一個銅(Cu)或鋁(A1)層形$ 於一個障礙金屬(barrier metal)層諸如一個氮化鈦Θ(Τ^Ν) 或氮化鈕(TaN)層之上。上述之罩幕光阻步驟至少包含1複 數罩幕光阻對準於該複數主動區之上或複數硬質罩幕^ 層對準於該複數主動區之上而一個側邊牆介電墊層形&於 該複數硬質罩幕介電層的每一個側邊牆之上以消除誤對^ 。此一製程步驟較簡單,但該複數金屬位元線的每一個與 該控制閘導電層3丨7c作為一個導電字線之間的雜散電容車交 大,因為該第三側邊牆介電墊層係一高介電常數的氮化矽 所組成。另一種方法如圖四A至圖四c所示,可以提供介於 該金屬仇元線及該導電字線間較小的雜散電容。 、567611 V. Description of the invention (16) Memory array. Reference is now made to FIGS. 4A to 4C, which disclose the manufacturing steps of a miniaturized split-type flash memory cell structure and its non-contact non-or type flash memory array and its manufacturing steps following FIG. Sectional view. There are two methods that can be used to make a contactless NAND flash memory array. The first method: firstly implant the planarized co-draining conductive layer 3 2 1 a with a high dose of dopant of the second conductivity type, and then use a conventional automatic alignment process technology to silicide the Planarize the common leakage conductive layer 3 2 1 a to form a refractory metal petrified layer such as a petrified titanium (T i S i 2) or petrified diamond (CoS i D layer; then A metal layer 32 4 is formed on the surface of the formed structure; then the metal layer 3 2 4 together with the shattered planarized hump conductive layer 3 2 1 a—and formed by a mask photoresist step In order to form a plurality of metal bit lines 324a and silicidation planarization and co-leakage conductive islands, they are integrated. The above-mentioned metal layer 324 contains at least one copper (Cu) or aluminum (A1) layer in the form of a barrier metal ( barrier metal) layer such as a titanium nitride Θ (Τ ^ N) or nitride button (TaN) layer. The above mask photoresist step includes at least one mask photoresist aligned on the plurality of active regions. Or a plurality of hard masks ^ aligned on the plurality of active areas and a side wall dielectric pad shape & Count the hard cover screen dielectric layer on each side wall to eliminate misalignment ^. This process step is simpler, but each of the plurality of metal bit lines and the control gate conductive layer 3 丨 7c are conductive The stray capacitance between the word lines is very large, because the third side wall dielectric pad is composed of a high dielectric constant silicon nitride. Another method is shown in Figure 4A to Figure 4c, which can Provides smaller stray capacitance between the metal line and the conductive word line.
567611 五、發明說明(17) 圖,A顯示上述之平面化共洩導電層3 2丨&係選擇性地 利用非等向乾式蝕刻法少許回蝕來去除彎曲的部份;然後 ’ 4對第一側邊牆介電墊層3 〇 8 a、該第一平面化厚二氧化 石夕層3 1 1 a :及該對第四側邊牆介電墊層3 2 0 a亦回蝕相同的 咏度’接著’上述之第三側邊牆介電墊層3丨8a係利用高溫 礎酸或非等向乾式蝕刻法加予去除。 、圖四B顯示一個覆蓋控制閘導電層322b係置於該控制 閘導電層31 7c的每_個之上,然後一個平面化覆蓋氧化物 層323a形成於該覆蓋控制闊導電層322b之上。上述之覆蓋 控制間導電層32 2b至少包含一個鶴(w)或石夕化鶴(以丨2)層 且利用LPCVD法或濺鍍法來堆積,係先堆積一個導電層322 來填滿位於回蝕第四側邊牆介電墊層3 2 0b及回蝕第一側邊 =電墊層3〇8b之間的每〆個空隙,然後利用CMP法或回 ^道Ϊ所堆積之導電層3 2 2加予平面化,接著回蝕該平面 電層至所預設的一個厚度。上述之平面化覆蓋氧化物 曰2 2 3 a係由一氧化矽、磷玻璃、或硼磷玻璃所組成且利用 f PCVD、HDPCVD、或PECVD法來堆積,且係先堆積一個厚二 氧化矽層3 23來填滿位於該回蝕第一側邊牆介電墊層3〇8b 及該回蝕第四側邊牆介電墊層32〇b之間的每一個空隙,然 後利用CMP法或回蝕法將所堆積之厚二氧化矽層3 2 3加予平 面化。相似地,上述之回蝕平面化共洩導電層321b可以佈 植該第二導電型的一個高劑量之摻雜質,然後利用該習知 自動對準矽化技術加予矽化,以形成該折光金屬矽化物層 567611 五、發明說明(18) 圖四C顯示一個金屬層3 2 4係形成於一個所形成的結構 表面之上;而該金屬層324連同該回餘平面化共汽導電層 3 2 1 b同時藉一個罩幕光阻步驟來成形及餘刻,以形成複數 金屬位元線3 2 4 a與回触平面化共洩導電層3 2 1 c積體化連結 。如前面所述,該金屬層至少包含一個銅(Cu)或鋁(A1)層 形成一個障礙金屬層之上;而該罩幕光阻步驟至少包含複 數罩幕光阻對準於該複數主動區之上或複數硬質罩幕介電 層對準於該複數主動區之上而一個側邊牆介電墊層形成於 該複數硬質罩幕介電層的每一個側邊牆之上。這裡可以清 楚地看出’複數高導電字線322 b/ 3 1 7 c係與該複數金屬仅 元線3 2 4 a互為垂直,而該複數金屬位元線3 2 4 a的每一條係 與該複數高導電字線3 2 2b/ 3 17c藉一個平面化覆蓋二氧化 矽層3 2 3a加予隔開。這裡亦可以清楚看出,圖二c所述之 第二罩幕介電層3 0 5的厚度係介於1 〇 〇 〇 〇埃和1 5 〇 〇 〇埃之間 ’ 4平面化覆盖'一*氧化秒層323a的厚度係介於 5 〇 〇 〇埃和 1 0 0 0 0埃之間,因此該複數金屬位元字線3 2 4 a的每一條與 該複數高導電字線3 2 2 b/ 3 1 7 c之間的雜散電容係很小。 現請參見圖五A至圖五C,其中揭示接續圖三j製造本 發明之一種可微縮化分閘式快閃記憶細胞元結構及其無接 點平行共源/洩位元線快閃記憶陣列。 圖五A顯示該平面化共洩導電層3 2 1 a係選擇性地回麵 至約等於該共源導電層3 0 9b的一個厚度;然後佈植該第二 導電型的一個高劑量的摻雜質於該共汽導電層3 2 5 b中;〜 個覆蓋共、/¾導電層3 2 6 b係形成於該共泡導電層3 2 5 b之上,567611 V. Description of the invention (17) Figure, A shows that the above-mentioned planarized co-bleeding conductive layer 3 2 丨 & is selectively etched back by a non-isotropic dry etching method to remove the curved portion; then '4 pairs The first side wall dielectric cushion layer 3 0 8 a, the first planarized thick stone dioxide layer 3 1 1 a: and the fourth side wall dielectric cushion layer 3 2 0 a are also etched the same The degree of "continuation" of the third side wall dielectric pad 3a-8a described above is removed by using a high-temperature basic acid or an anisotropic dry etching method. Fig. 4B shows that a cover control gate conductive layer 322b is placed on each of the control gate conductive layers 317c, and then a planarized cover oxide layer 323a is formed on the cover control wide conductive layer 322b. The above-mentioned conductive control layer 32 2b includes at least one crane (w) or Shixihuahe crane (2) layer and is stacked by LPCVD method or sputtering method. A conductive layer 322 is first deposited to fill the back layer. Etch the fourth side wall dielectric pad layer 3 2 0b and etch back each gap between the first side edge = electric pad layer 308b, and then use the CMP method or the conductive layer 3 stacked 2 2 is planarized, and then the plane electrical layer is etched back to a preset thickness. The above planarized covering oxide 2 2 3 a is composed of silicon monoxide, phosphor glass, or borophospho glass and is deposited by f PCVD, HDPCVD, or PECVD, and a thick silicon dioxide layer is deposited first. 3 23 to fill each gap between the etched back side wall dielectric pad 30b and the etched back side wall dielectric pad 32b, and then use the CMP method or back The etching method planarizes the thick silicon dioxide layer 3 2 3. Similarly, the above-mentioned etch-back planarization and common-leakage conductive layer 321b can be implanted with a high-dose dopant of the second conductivity type, and then silicided by the conventional auto-aligned silicidation technology to form the refractive metal. Silicide layer 567611 V. Description of the invention (18) FIG. 4C shows that a metal layer 3 2 4 is formed on a formed structure surface; and the metal layer 324 together with the remnant planarization vapor-conductive layer 3 2 1 b is formed and etched at the same time by a mask photoresist step to form a plurality of metal bit lines 3 2 4 a and a planarized co-bleeding conductive layer 3 2 1 c. As mentioned above, the metal layer includes at least one copper (Cu) or aluminum (A1) layer to form a barrier metal layer; and the mask photoresist step includes at least a plurality of mask photoresist aligned to the plurality of active regions. The upper or plural hard mask dielectric layers are aligned on the plurality of active regions and a side wall dielectric pad is formed on each of the plural side walls of the plural hard mask dielectric layers. It can be clearly seen here that the 'complex high-conductivity word line 322 b / 3 1 7 c system is perpendicular to the complex metal only element line 3 2 4 a, and each of the complex metal bit line 3 2 4 a It is separated from the plurality of highly conductive word lines 3 2 2b / 3 17c by a planarization covering the silicon dioxide layer 3 2 3a. It can also be clearly seen here that the thickness of the second mask dielectric layer 305 described in FIG. 2c is between 10,000 angstroms and 1,500 angstroms. * The thickness of the oxidation second layer 323a is between 5000 angstroms and 1000 angstroms. Therefore, each of the plurality of metal bit word lines 3 2 4 a and the plurality of high conductive word lines 3 2 2 The stray capacitance between b / 3 1 7 c is small. Please refer to FIG. 5A to FIG. 5C, which reveals that following FIG. 3j, a miniaturized split-type flash memory cell structure of the present invention and its contactless parallel co-source / bleed line flash memory are disclosed. Array. FIG. 5A shows that the planarized co-bleeding conductive layer 3 2 1 a is selectively faced back to a thickness approximately equal to the common source conductive layer 3 9 9b; and then a high-dose dopant of the second conductivity type is implanted. Impurities are in the common vapor conductive layer 3 2 5 b; ~ covering the conductive layer 3 2 6 b is formed on the co-foam conductive layer 3 2 5 b,
ΜΜ
第22頁 567611 五、發明說明(19) ,作為一個共汽導電位元線3 2 6b/ 32 5b於該複數共洩區的 母一個之内;接著,一個第二平面化厚二氧化矽層3 2 7a係 化成於该對第四側邊牆介電墊層3 2 〇 a之間的該共洩導電位 =線3 2 6b/ 3 2 5b之上。上述之共洩導電層325b係由摻雜複 晶石夕層所組成且利用LPCVD法來堆積,且利用所述之共源 導電層309 b之相同製程步驟來形成。上述之覆蓋共洩導電 層3 2 6b至少包含一個矽化鎢或鎢層且利用lpcVd法或藏鍍 去來堆積’係利用該複數共源區之每一個的該覆蓋共源導 電層3 1 0 b之相同製程步驟來形成。Page 22 567611 V. Description of the invention (19) As a common vapor conductive bit line 3 2 6b / 32 5b within the mother of the multiple common leakage area; then, a second planarized thick silicon dioxide layer 3 2 7a is formed on the common leakage potential between the pair of fourth side wall dielectric pads 3 2 0a = line 3 2 6b / 3 2 5b. The above-mentioned co-bleeding conductive layer 325b is composed of a doped polycrystalline spar layer and is deposited by the LPCVD method, and is formed by the same process steps of the co-source conductive layer 309b described above. The above-mentioned covered common-leakage conductive layer 3 2 6b includes at least one tungsten silicide or tungsten layer and is stacked by using the lpcVd method or Tibetan plating. The covered common-source conductive layer 3 1 0 b uses each of the plurality of common source regions. The same process steps are used to form.
圖五B顯示該對第一側邊牆介電墊層3〇8a、該第一平 面化厚一氧化;ε夕層3 1 1 a、該對第四側邊踏介電勢層3 2 0 a、 及該第一平面化厚二氧化矽層3 2 7a係利用非等向乾式蝕刻 或溼式蝕刻加予選擇性地回蝕來去除彎曲的部份;然後, 該對第三側邊牆介電墊層318福利用高溫磷酸或非等向乾 式餘刻法加予去除;接著,一個平面化控制閘導電層3 28a 係形成於邊回餘第一側邊牆介電塾層3 〇 8匕及該回蚀第四側 邊牆介電墊層320 b之間的該控制閘導電層3 1 7 c之上。上述 之平面化控制閘導電層3 28a係由鎢、矽化鎢、或其他金屬 ,料襯有(1 1 n e d w i t h)—個障礙金屬層(未圖示)諸如一個 氮化鈦(T i N )或氮化钽(T a N )層所組成。上述之控制閘結構 係先堆積一個障礙金屬層於所形成的結構表面之上,然後 一個高導電層3 28填滿位於該回蝕第一側邊牆介電墊層 3 0 8b及該回蝕第四側邊牆介電墊層32〇b之間的每一個空隙 ,接著利用CMP法或回蝕法將所堆積之高導電層328加予平FIG. 5B shows the pair of first side wall dielectric pads 308a, the first planarized thick oxide; ε layer 3 1 1a, the pair of fourth side stepped dielectric layers 3 2 0 a, and the first planarized thick silicon dioxide layer 3 2 7a is a non-isotropic dry etching or wet etching plus selective etchback to remove the curved portion; then, the pair of third side walls The dielectric cushion layer 318 is removed by high temperature phosphoric acid or non-isotropic dry-etching method. Then, a planarization control gate conductive layer 3 28a is formed on the edge side of the first side wall dielectric layer 3 〇8 And the etch back on the control gate conductive layer 3 1 7 c between the fourth side wall dielectric pad layer 320 b. The above-mentioned planarization control gate conductive layer 3 28a is made of tungsten, tungsten silicide, or other metal, and is lined with (1 1 nedwith) a barrier metal layer (not shown) such as a titanium nitride (T i N) or It consists of tantalum nitride (T a N) layer. The above-mentioned control gate structure is firstly deposited a barrier metal layer on the formed structure surface, and then a highly conductive layer 3 28 fills the dielectric pad layer 3 8b located on the first side wall of the etch back and the etch back Each gap between the fourth side wall dielectric pad layer 32b, and then the CMP method or etch-back method is used to flatten the stacked highly conductive layer 328.
第23頁 567611 五、發明說明(20) ^~〜 面化。 圖五C顯不一個金屬層3 2 9形成於一個所形成的結構表 面之上,而該金屬層329連同該平面化控制閘導電層328& 置於該控制閘導電層317c係同時藉一個罩幕光阻步驟來成 开> 及#刻’以形成複數金屬字線3 2 9 a與平面化控制閘導電 島3 2 8 b置於控制閘導電島3 1 7 d之上積體化連結。相同地, 上述之金屬層329至少包含一個銅或銘層形成於一個障礙 金屬層諸如一個氮化鈦(TiN)或氮化鈕(TaN)層之上所組成 。上述之罩幕光阻步驟至少包含複數罩幕光阻對準於該複 數主動區之上或複數硬質罩幕介電層對準於該複數主動區 之上而一個側邊牆介電墊層形成於該複數硬質罩幕介電層 之每一個側邊牆之上來消除誤對準。這裡可以清楚地看出 ,上述之複數金屬字線 3 2 9a係與該複數共源導電位元線 310b/ 3 0 9b及該複數共洩導電位元線3 2 6b/ 3 2 5b互為垂 直。 圖六A顯示本發明之一種無接點非或型快閃記憶陣列 的一個頂視佈建圖,其中該複數主動區(A A )及該複數淺凹 槽隔離區(ST I)係交變地形成於該半導體基板3 0 0之上;該 複數導電字線(WL)係形成於該複數共源區及該複數可微縮 化共洩區之間;該複數共源區的每一個至少包含一對第一 側邊牆介電墊層3 0 8b及一個共源導電管線(CSBL)形成於該 對第一側邊牆介電墊層3 〇 8b之間;該複數可微縮化共洩區 的每一個至少包含複數平面化共洩導電島3 2丨c與該複數金 屬位元線324a積體化連結;複數尖端陰極線316a係形成於Page 23 567611 V. Description of the invention (20) ^ ~~ FIG. 5C shows that a metal layer 3 2 9 is formed on a formed structural surface, and the metal layer 329 together with the planarization control gate conductive layer 328 & is placed on the control gate conductive layer 317c while borrowing a cover The curtain photoresist step is opened to form a plurality of metal word lines 3 2 9 a and a planar control gate conductive island 3 2 8 b is integrated on the control gate conductive island 3 1 7 d. . Similarly, the above-mentioned metal layer 329 includes at least a copper layer or a layer formed on a barrier metal layer such as a titanium nitride (TiN) or nitride button (TaN) layer. The above mask photoresist step includes at least a plurality of mask photoresistors aligned on the plurality of active regions or a plurality of hard mask dielectric layers aligned on the plurality of active regions and a side wall dielectric cushion layer is formed. Over each side wall of the plurality of hard mask dielectric layers to eliminate misalignment. It can be clearly seen here that the above-mentioned plurality of metal word lines 3 2 9a are perpendicular to the complex common source conductive bit line 310b / 3 0 9b and the complex common drain conductive bit line 3 2 6b / 3 2 5b . FIG. 6A shows a top-view layout diagram of a non-contact non-or-type flash memory array according to the present invention, wherein the plurality of active regions (AA) and the plurality of shallow groove isolation regions (ST I) are alternately grounded. Formed on the semiconductor substrate 300; the plurality of conductive word lines (WL) are formed between the plurality of common source regions and the plurality of scaleable common leakage regions; each of the plurality of common source regions includes at least one A pair of first side wall dielectric pads 3 0 8b and a common source conductive pipeline (CSBL) are formed between the pair of first side wall dielectric pads 3 0 8b; Each of which includes at least a plurality of planarized common-leakage conductive islands 3 2 丨 c and the plurality of metal bit lines 324a are integrated and connected; a plurality of tip cathode lines 316a are formed at
567611 五、發明說明(21) 該漂浮閘區之該第一熱複晶二氧化矽層3 1 5a及該回填二氧 化矽層3 0 6 b之間。如圖六A所示,若X尸3,則一個單位細 胞元的尺寸係等於4 F 2 ;而該漂浮閘區、該可微縮化分閘 區、及該可微縮化共洩區係由墊層形成技術來定義且可以 加予微縮化。 圖六B顯示本發明之一種無接點平行共源/洩導電位 元線快閃記憶陣列的一個頂視佈建圖,其中該複數主動區 (AA)及該複數淺凹槽隔離區(STI )係交變地形成於該半導 體基板3 0 0之上;該複數共源導電位元線(cSBL)及該複數 共洩導電位元線(CDBL)係交變地形成且與該複數主動區互 為垂直;該複數共源導電位元線(CSBL)的每一個係形成於 該對第一側邊牆介電墊層3 0 8b之間;該複數共洩導電位元 線(CDBL)的每一個係形成於該對第四側邊牆介電墊層32〇b 之間;該複數金屬字線(WL)與該平面化控制閘導電島3 28b 置於該控制閘導電島3 1 7 d之上積體化連結係與該複數共源 導電位元線(CSBL)及該複數共洩導電位元線(CDBL)互為垂 直;該漂浮閘區的每一個至少包含複數尖端陰極線3丨6 a, 而複數尖端陰極線3 1 6 a的每一個係介於該漂浮層之該第一 熱複晶二氧化矽層3 1 5 a及該回填二氧化矽層3 〇 6 b之間。如 圖六B所示,若X尸3,則一個單位細胞元的尺寸係等於4 F 2 ,而該漂浮閘區、該可微縮化分閘區、及該可微縮化共洩 區係由墊層形成技術來定義且可以加予微縮化。 根據以上的解說,本發明之一種可微縮化分閘式快閃 記憶細胞元結構及其無接點快閃記憶陣列的特色及優點總567611 V. Description of the invention (21) Between the first thermally multicrystalline silicon dioxide layer 3 1 5a and the backfilled silicon dioxide layer 3 0 6 b in the floating gate area. As shown in FIG. 6A, if X corpse 3, the size of a unit cell is equal to 4 F 2; and the floating gate area, the micronizable sub-gate area, and the micronizable co-leakage area are formed by pads. Layer formation techniques are defined and can be miniaturized. FIG. 6B shows a top-view layout diagram of a contactless parallel common source / drain conductive bit line flash memory array according to the present invention, wherein the complex active area (AA) and the complex shallow groove isolation area (STI) ) Are alternately formed on the semiconductor substrate 300; the complex common source conductive bit line (cSBL) and the complex common drain conductive bit line (CDBL) are alternately formed and are in contact with the complex active region Each other is vertical; each of the plurality of common source conductive bit lines (CSBL) is formed between the pair of first side wall dielectric pads 3 0 8b; the plurality of common leaked conductive bit lines (CDBL) Each is formed between the pair of fourth side wall dielectric pads 32b; the plurality of metal word lines (WL) and the planarized control gate conductive island 3 28b are placed on the control gate conductive island 3 1 7 The integrated connection above d is perpendicular to the complex common source conductive bit line (CSBL) and the complex common drain conductive bit line (CDBL); each of the floating gate areas includes at least a complex tip cathode line 3 丨6 a, and each of the plurality of tip cathode wires 3 1 6 a is interposed between the first thermal polycrystalline silicon dioxide layer 3 1 5 of the floating layer a and the back-filled silicon dioxide layer 3 06 b. As shown in FIG. 6B, if X is 3, the size of a unit cell is equal to 4 F 2, and the floating gate area, the micronizable sub-gate area, and the micronizable co-leakage area are formed by pads. Layer formation techniques are defined and can be miniaturized. According to the above explanations, the features and advantages of a miniaturizable open-type flash memory cell structure and a contactless flash memory array of the present invention
567611 五、發明說明(22) 結如下: (a )本發明之可微縮化分閘式快 ^ 墊層形成技術提供一個i 、 °己憶細胞元結構可以藉 化細胞元等於4F域更小。 (b)本發明之可微縮化分閘 個可控制的尖端陰極線來言:内元憶細胞元結構提供一 子擦洗至控制閘層。 呵$率地將儲存於漂浮閘層之電 (C)本發明之可微縮化分 接點快閃記憶陣列可…心八快閃記憶細胞元結構及其無 早歹】TU利用較少的嚴謹罩幕步驟來製造。 (d )本發明之無接點 元線與平面化共洩導’型快閃記憶陣列提供複數金屬位 面電容之複數S導β島積體化連結、具有較低的雜散接 為高速讀/寫/捧、4 ί源導電管線、及複數導電字線以作 /标冼的操作。 (e)本發明之無接點 列提供複數金屬a綠订,、源/洩導電位凡線快閃記憶陣 電島之上積体化^社與平面化控制閘導電島置於控制閘導 /洩導電位元線以二及f有較低接面雜散電容之複數共源 乍為高速讀/寫/擦洗的操作。 本發明雖#特別 、 顯現及解說,但係*所示範例及内涵作為一個示範例來 一“陳述而非限制。再者,本發明不限於所567611 V. Description of the invention (22) The conclusion is as follows: (a) The miniaturizable and open-type fast-layer technology of the present invention provides an i, ° membrane cell structure that can be borrowed to make the cell area smaller than the 4F domain. (b) In the present invention, the micronizable gate can be controlled by a controllable tip cathode wire. The internal cell structure provides a scrub to the control gate. (C) The electricity stored in the floating gate layer (C) The miniaturizable tap point flash memory array of the present invention can ... Masking steps to manufacture. (d) The contactless element line and the planarized co-lead-conducting type flash memory array of the present invention provides a complex S-conductor β island integration connection with a plurality of metal plane capacitances, and has low spurious connection for high-speed reading. / Write / hold, 4 源 source conductive pipelines, and multiple conductive word lines for / label operation. (e) The non-contact row of the present invention provides a plurality of metal a green sheets, and the source / drain potential is integrated on the flash memory array island. The conductive island is placed on the control gate and the planar control gate. The high-speed read / write / swipe operation is based on the common source of the / bleed conductive bit line with two and f having lower interface stray capacitance. The present invention is #Special, manifested and explained, but the examples and connotations shown in * are used as an example to "state rather than limit. Furthermore, the present invention is not limited to all
ηn
567611567611
第27頁 567611 圖式簡單說明 圖一 A及圖一 B顯示先前技術的簡要剖面圖,其中圖一 A顯示一種分閘式快閃記憶細胞元具有利用一個局部氧化 矽(LOCOS)技術所形成之一個尖端陰極漂浮閘結構的一個 剖面圖;圖一 B顯示一種分閘式快閃記憶細胞元具有一個 源邊擦洗的一個剖面圖。 圖二A至圖二C顯示製造本發明之一種可微縮化分閘式 快閃記憶細胞元結構及其無接點快閃記憶陣列之一種淺凹 槽隔離(ST I )結構的製程步驟及其剖面圖。 圖三A至圖三J顯示製造本發明之一種可微縮化分閘式 快閃記憶細胞元結構及其無接點快閃記憶陣列之一種共同 平台結構的製程步驟及其剖面圖。 圖四A至圖四C揭示接續圖三J製造本發明之一種可微 縮化分閘式快閃記憶細胞元結構及其無接點非或型快閃記 憶細胞陣列的製程步驟及其剖面圖。 圖五A至圖五C揭示接續圖三J製造本發明之一種可微 縮化分閘式快閃記憶細胞元結構及其無接點平行共源/洩 導電位元線快閃記憶陣列的製程步驟及其剖面圖。 圖六A及圖六B揭示本發明的頂視佈建圖,其中圖六A 揭示一種無接點非或型快閃記憶陣列的一個頂視佈建圖; 圖六B揭示一種無接點平行共源/洩導電位元線記憶陣列 的一個頂視佈建圖。 圖號對照說明Page 567611 Brief Description of Drawings Figures 1A and 1B show a brief cross-sectional view of the prior art, of which Figure 1A shows a gated flash memory cell with a local silicon oxide (LOCOS) technology A cross-sectional view of a tip cathode floating gate structure; Figure 1B shows a cross-sectional view of a split flash memory cell with a source-side scrub. FIG. 2A to FIG. 2C show the manufacturing steps of a shallow groove isolation (ST I) structure for manufacturing a miniaturized split-type flash memory cell structure and a contactless flash memory array of the present invention, and FIG. Sectional view. FIG. 3A to FIG. 3J show the manufacturing steps and cross-sectional views of a common platform structure for fabricating a scalable flash memory cell structure and a contactless flash memory array of the present invention. Figures 4A to 4C disclose the manufacturing steps and cross-sectional views of the miniaturized split-type flash memory cell structure of the present invention and its non-contact non-or type flash memory cell array following Figure 3J. FIG. 5A to FIG. 5C disclose the manufacturing steps of the miniaturized split-type flash memory cell structure and the contactless parallel source / drain conductive bit line flash memory array following FIG. 3J. And its section. FIG. 6A and FIG. 6B disclose top-view layout diagrams of the present invention, wherein FIG. 6A discloses a top-view layout diagram of a non-contact non-or-type flash memory array; FIG. 6B illustrates a contactless parallel A top-view layout of a common source / drain conductive bit line memory array. Drawing number comparison description
567611 301 薄 303 第 物 層 3 04b 第 化 物 層 3 04d 第 化 物 層 3 04 f 第 化 物 層 305 第 層 3 0 7a 淡 擴 散 區 3 08a 第 牆 介 電 塾 層 3 0 9b 共 層 二 氧 化 矽 層 化 厚 二 氧 化 矽層 電 墊 層 314a 閘 氧 化 石夕 層 氧 化 石夕 層 317d 控 電 塾 層 319a 淡 擴 散 1^ 32 0a 第 牆 介 電 塾 層 321a 平 電 島 3 22b 覆 氧 化 矽 層 324a 金 326b 覆 氧 化 矽 層 穿透介電層 一罩幕介電層 &出場氧化物層 二突出場氧化物層 五突出場氧化物層 二罩幕介電層 摻雜共源擴散區 一側邊牆介電墊層 源導電層 介電層 圖式簡單說明 300半導體基板 3 0 2 導電層 3 0 4 a平面化場氧化 3 0 4c第二突出場氧 304e第四突出場氧 3〇4g第六突出場氧 3 0 6 b回填二氧化矽 3 0 7 b淺高摻雜共源 3 0 8b回蝕第一側邊 31〇b覆蓋共源導電 311a第一平面化厚 311b回餘第一平面 3 1 2 a第二側邊牆介 313a離子佈植區 3 1 5 a第一熱複晶二 3 1 6 a第二熱複晶二 3 1 7 c控制閘導電層 3 1 8 a第三側邊牆介 3 1 9 b淺高摻雜共茂 3 2 0 b回餘第四側邊 3 2 1 b平面化共汽導 3 2 3a平面化覆蓋二 325b共、/¾導電層 327a第一平面化厚 制閘導電島 才參雜共洩擴散區 四側邊牆介電墊層 ,化共洩導電層 蓋控制閘導電層 屬伋元線 蓋共洩導電層567611 301 thin 303 first material layer 3 04b first material layer 3 04d first material layer 3 04 f first material layer 305 first layer 3 0 7a light diffusion region 3 08a first wall dielectric layer 3 0 9b co-layer silicon dioxide layering Thick silicon dioxide layer, electric pad layer 314a, gate oxide layer, oxide layer 317d, electric control layer 319a, light diffusion 1 ^ 32 0a, wall dielectric layer 321a, flat island 3 22b, silicon oxide layer 324a, gold 326b, Silicon oxide layer penetrates the dielectric layer, masks the dielectric layer & field oxide layer, two protruded field oxide layers, five protruded field oxide layers, two masked dielectric layers, doped common source diffusion region, one side wall dielectric Underlayer source conductive layer dielectric layer diagram brief description 300 semiconductor substrate 3 0 2 conductive layer 3 0 4 a planarization field oxidation 3 0 4c second protruding field oxygen 304e fourth protruding field oxygen 304 g sixth protruding field oxygen 3 0 6 b backfill silicon dioxide 3 0 7 b shallow highly doped common source 3 0 8b etch back the first side 31 b to cover common source conductivity 311 a first planarization thickness 311 bBack to the first plane 3 1 2 a Second side wall 313a Ion implantation area 3 1 5 a First thermal compound 2 3 1 6 a Second thermal compound 2 3 1 7 c Control gate conductive layer 3 1 8 a third side wall 3 1 9 b shallow highly doped co-macro 3 2 0 b back to the fourth side 3 2 1 b planarization co-vapor conductance 3 2 3a planarization covering two 325 b Conductive layer 327a The first planarized thick gate conductive island is intermixed with the four side wall dielectric cushion layers of the co-leakage diffusion area.
567611 圖式簡單說明 3 2 7b回蝕第二平面化厚二氧化矽層 3 2 8a平面化控制閘導電層 3 28b平面化控制閘導電島 3 2 9 a金屬字線 第30頁567611 Brief description of the diagram 3 2 7b Etching back the second planarized thick silicon dioxide layer 3 2 8a Planarization control gate conductive layer 3 28b Planarization control gate conductive island 3 2 9 a Metal word line Page 30
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91122691A TW567611B (en) | 2002-10-01 | 2002-10-01 | A scalable split-gate flash memory cell structure and its contactless flash memory arrays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91122691A TW567611B (en) | 2002-10-01 | 2002-10-01 | A scalable split-gate flash memory cell structure and its contactless flash memory arrays |
Publications (1)
Publication Number | Publication Date |
---|---|
TW567611B true TW567611B (en) | 2003-12-21 |
Family
ID=32502649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91122691A TW567611B (en) | 2002-10-01 | 2002-10-01 | A scalable split-gate flash memory cell structure and its contactless flash memory arrays |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW567611B (en) |
-
2002
- 2002-10-01 TW TW91122691A patent/TW567611B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW565947B (en) | Non-volatile memory cells with selectively formed floating gate | |
TW535242B (en) | Methods of fabricating a stack-gate non-volatile memory device and its contactless memory arrays | |
KR100919433B1 (en) | Non volatile memory device and method for fabricating the same | |
US7186607B2 (en) | Charge-trapping memory device and method for production | |
TWI227544B (en) | Nonvolatile memories and methods of fabrication | |
US7960266B2 (en) | Spacer patterns using assist layer for high density semiconductor devices | |
TW200406040A (en) | Floating gate memory fabrication methods comprising a field dielectric etch with a horizontal etch component | |
US20080237680A1 (en) | Enabling flash cell scaling by shaping of the floating gate using spacers | |
KR20080035799A (en) | Nor-type non-volatile memory device and method of forming the same | |
TW201611247A (en) | Split-gate flash memory cell with improved scaling using enhanced lateral control gate to floating gate coupling | |
JP2007005380A (en) | Semiconductor device | |
TWI234244B (en) | Paired stack-gate flash cell structure and its contactless NAND-type flash memory arrays | |
TW200406884A (en) | Method of forming a stacked-gate cell structure and its NAND-type flash memory array | |
TW200406904A (en) | Bit line structure and method for fabricating it | |
US20060108692A1 (en) | Bit line structure and method for the production thereof | |
TW567611B (en) | A scalable split-gate flash memory cell structure and its contactless flash memory arrays | |
KR20080037229A (en) | Non-volatile memory cell using state of three kinds and method of manufacturing the same | |
TW525298B (en) | Manufacturing method of stacked-gate flash memory array | |
TW586219B (en) | Self-aligned split-gate flash cell structure and its contactless flash memory arrays | |
US6833580B2 (en) | Self-aligned dual-bit NVM cell and method for forming the same | |
TWI227938B (en) | Self-aligned string/ground select gate structure and its contactless NAND-type flash memory array | |
TW575947B (en) | Isolated stack-gate flash cell structure and its contactless flash memory arrays | |
TWI220570B (en) | Scalable split-gate flash cell structure and its contactless flash memory arrays | |
TW531885B (en) | Dual-bit flash memory cells for forming high-density memory arrays | |
TW591763B (en) | Scalable dual-bit floating-gate flash cell structure and its contactless flash memory arrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |