TW525298B - Manufacturing method of stacked-gate flash memory array - Google Patents

Manufacturing method of stacked-gate flash memory array Download PDF

Info

Publication number
TW525298B
TW525298B TW90127476A TW90127476A TW525298B TW 525298 B TW525298 B TW 525298B TW 90127476 A TW90127476 A TW 90127476A TW 90127476 A TW90127476 A TW 90127476A TW 525298 B TW525298 B TW 525298B
Authority
TW
Taiwan
Prior art keywords
layer
complex
parallel
source
gate
Prior art date
Application number
TW90127476A
Other languages
Chinese (zh)
Inventor
Ching-Yuan Wu
Original Assignee
Silicon Based Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Based Tech Corp filed Critical Silicon Based Tech Corp
Priority to TW90127476A priority Critical patent/TW525298B/en
Application granted granted Critical
Publication of TW525298B publication Critical patent/TW525298B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A manufacturing method of stacked-gate flash memory array is disclosed, wherein a shallow trench isolation (STI) structure that comprises plural parallel arranged STI lines and plural active region lines among the STI lines is formed on a semiconductor substrate. Each active region line has a main floating gate put on a thin tunneling dielectric layer and each STI line has two separated extending floating gates put on the sides of a planarized field oxide layer. The main floating gate and two extending floating gates are connected to be a self-aligned integrated floating gate layer to greatly increase the coupling ratio of the stacked gate flash memory cell. The plural word lines and STI lines are vertically arranged by each other on the STI structure, wherein the control gates are composed by a complex conduction layer that consists of a metal or metal silicide, a barrier metal and a highly doped polycrystalline or amorphous silicon and the top, bottom and two sides are enveloped by a dielectric layer. The word line parasitic capacitor is greatly reduced. The common source/drain of the stacked flash memory cell uses self-aligned source/drain landing island to form contacts and proceed a self-aligned shallow/heavy doped ion implantation. The contacts problem of shallow source/drain area and punch-through of short channel length are then prevented. The self-aligned source/drain landing island is composed by a silicide heavy doped polycrystalline or amorphous silicon. The inter-connection resistance among stacked flash memory cells is also greatly reduced. The self-aligned source/drain lines are composed by a silicide heavy doped polycrystalline or amorphous silicon and located on the flat plane that is formed by a common source/drain area and a field oxide layer to be the contact and self-aligned shallow/heavy doped source/drain area. The contact issue of shallow source/drain is thus solved. Besides, the self-aligned common source/drain resistance, parasitic capacitor between the source/drain and substrate and junction leakage are greatly reduced.

Description

525298 五、發明說明(1) ---, 發明背景: (1) 發明範疇 本1¾月14邊又决閃記憶陣列(f 1 a s h m e m 〇 r y a r r a y )的 結構及其製造方法有關,特別是與高密度和高性能疊堆閘 式(stack-gate)快閃記憶陣列的結構及其製造方法有關。 (2) 習知技藝描述 快閃記憶兀件可區分為兩類:疊堆閘式(stack_gate) φ 結構及分閘式(spl i t〜gate)結構。疊堆閘式結構的快閃記 憶細胞兀是一=電晶體所組成的元件,其閘長度可以利用 所使,技術的最小線寬來定義;分閘式結構的快閃記憶細 胞兀是由一個疊堆閘式的結構與一個選擇閘所組成,其總 閘長度通常約等於最小線寬的丨.5倍,因之被視為i · 5個電 晶體所組成的元件。因此,疊堆閘式快閃記憶元件均被採 用於高密度的快閃記憶系統中。 典型的疊堆閘式快閃記憶元件如圖一所示,其中圖一 A的結構疋藉通道熱電子注入法^^㈣^ hot-electron in jection)將通道熱電子跨過薄閘氧化層ι〇1的能障注入 _ 至漂浮閘1 0 2 ’以執行程式或寫入(p r 0 g r a m m丨n g )的動作; 然後,將儲存於漂浮閘1 0 2内的電子以富勒—諾得漢穿透法 (Fowler-Nordheim tunneling)經由薄閘氧化層1〇1穿透至 雙擴散源(double-diffused source)區 105a、107a,以執525298 V. Description of the invention (1) ---, Background of the invention: (1) The scope of the invention The structure of the flash memory array (f 1 ashmem 〇ryarray) and its manufacturing method from the 14th to the 14th of March, especially the high density It is related to the structure of a high-performance stack-gate flash memory array and its manufacturing method. (2) Description of conventional skills Flash memory elements can be divided into two types: stack gate type (stack_gate) φ structure and split gate type (spl i t ~ gate) structure. The flash memory cell of the stacked gate structure is an element composed of an transistor, and the gate length can be defined by the minimum line width of the technology. The flash memory cell of the gated structure is composed of a The structure of a stack gate and a selection gate is generally composed of a total gate length of approximately .5 times the minimum line width. Therefore, it is regarded as an element composed of i · 5 transistors. Therefore, stacked gate flash memory elements are all used in high-density flash memory systems. A typical stacked-gate flash memory device is shown in Figure 1. The structure in Figure 1A uses channel hot electron injection method ^^ ㈣ ^ hot-electron in jection) to pass channel hot electrons across the thin gate oxide layer. 〇1 Energy barrier injection_ to the floating gate 10 2 'to execute the program or write (pr 0 gramm 丨 ng); Then, the electrons stored in the floating gate 10 2 are fuller-Nordham The penetration method (Fowler-Nordheim tunneling) penetrates through the thin gate oxide layer 101 to the double-diffused source regions 105a and 107a.

525298 五、發明說明(2) 行擦洗(e r a s i n g )的動作。雙擴散源區的形成主要是提供 漂浮閘與源擴散區間較大的重疊面積,以降低擦洗所需的 時間,同時源極接正電壓作擦洗動作時不會產生帶對帶穿 透(B a n d - t 〇 - B a n d t u η n e 1 i n g )效應。然而,當閘長度縮短 時,雙擴散源的結構容易因為通道熱電子注入之寫入操作 時產生元件抵穿(punch-through)效應,因而成為元件微 縮化的一個致命障礙。另外,通道熱電子注入的寫入效率 低,大部份的通道電流均浪費掉,對有限負荷的電荷幫浦 (c h a r g e p u m p )電路而言,高密度記憶系統將需較長的寫 入時間。 圖一 B所示之疊堆閘式結構具有對稱的源/洩擴散區 1 〇 7a,其操作方法可分成二種。第一種是將電子以富勒一 諾得漢穿透方法將儲存於漂浮閘1 0 2的電子穿過通道區的 薄閘氧化層1 0 1至半導體基板1 0 0,以執行擦洗的動作;而 寫入的動作仍然以通道熱電子注入方式進行。此種寫入及 擦洗的操作,源/洩擴散區的接面深度可以變淺但其摻雜 質濃度較高,元件之抵穿效應可以降低,但仍然是微縮化 的主要瓶頸。另一種操作法是將源擴散區1 0 7 a的電子以富 勒一諾得漢穿透方法穿透薄閘氧化層1 0 1至漂浮閘1 0 2,以 執行擦洗的動作;而將儲存於漂浮閘層1 0 2的電子以富勒 —諾得漢穿透方法穿透薄閘氧化層1 0 1至洩擴散區1 0 7a , 以執行寫入的動作。此種寫入及擦洗的操作,源/泡擴散 區的接面深度需較深,而其摻雜質濃度可以降低,元件的 抵穿效應較不易產生,但源/洩擴散區的接面深度需隨閘525298 V. Description of the invention (2) The action of scrubbing (er a s i n g). The formation of the dual diffusion source region is mainly to provide a large overlap area between the floating gate and the source diffusion interval to reduce the time required for scrubbing. At the same time, the source is connected to a positive voltage for scrubbing action. -t 〇-B andtu η ne 1 ing) effect. However, when the gate length is shortened, the structure of the dual diffusion source is prone to element punch-through effect during the write operation of channel hot electron injection, thus becoming a fatal obstacle to the miniaturization of the element. In addition, the write efficiency of channel hot electron injection is low, and most of the channel current is wasted. For a limited load charge pump (c h a r g e p u m p) circuit, a high-density memory system will require a longer write time. The stacked gate structure shown in FIG. 1B has a symmetrical source / drain diffusion region 107a, and its operation method can be divided into two types. The first method is to perform electron scrubbing by passing electrons stored in the floating gate 102 through the thin gate oxide layer 101 in the channel region to the semiconductor substrate 100 using the Fuller-Nordheim penetration method. ; And the writing operation is still performed by channel hot electron injection. In such writing and scrubbing operations, the junction depth of the source / drain diffusion region can be reduced, but its dopant concentration is higher, and the device's anti-pass effect can be reduced, but it is still the main bottleneck of miniaturization. Another operation method is to perform the scrubbing action by passing electrons in the source diffusion region 1 0 7 a through the thin gate oxide layer 1 101 to the floating gate 10 2 by the Fuller-Nordheim penetration method; The electrons on the floating gate layer 102 penetrate the thin gate oxide layer 101 to the leak diffusion region 107a by the Fuller-Nordheim penetration method to perform a write operation. In this writing and scrubbing operation, the junction depth of the source / bubble diffusion region needs to be deeper, and its dopant concentration can be reduced, and the element's penetration effect is less likely to occur, but the junction depth of the source / drain diffusion region Need to follow the brakes

第6頁 525298 五、發明說明(3) 長度的縮小而變淺,因而寫入及擦洗的時間勢必變長。 當所述之疊堆閘式快閃記憶元件加予積體化,以形成 記憶陣列,首先必須考慮的問題是元件的隔離方法及元件 端點的接觸與連接。元件的隔離方法基本上可區分成矽局 部氧化法(L 0 C 0 S )及淺凹槽隔離法(S T I ),其中淺凹槽隔離 法佔有矽表面的面積較小,適合高密度記憶體的製造。記 憶陣列中之元件(細胞元)端點的接觸與連接均依記憶系統 的架構來安排,且以矩陣方式排列,以達最高的内裝密度 。快閃記憶陣列的架構有N 0 R、N A N D、A N D及D I N 0 R等,其 中以NOR及NAND的架構最常用。對所有的架構而言,在半 導體基板上先形成互為平行之複數隔離區線(i s0 1 a t i on-region 1 ines)及介於 隔離區 線間之 複數主 動區線 (act ive -r eg i on 1 i ne s ),而快閃記憶細胞元整齊地製造在主動區 線上’並將快閃記憶細胞元的控制閘層跨過隔離區線上之 場氧化物(field-oxide; FOX)層來形成與複數隔離區線互 為垂直之複數字線(w 0 r d 1 i n e s ),每一主動區線上的快閃 圮憶細胞元形成行(c 〇 1 u m n ),且均以共用源/洩擴散區串 接。以NOR型架構為例,每一行上之快閃記憶細胞元的共 洩擴散區形成接觸點後接至與複數字線互為垂直的一條位 元線(b 11 1 1 n e )’以形成複數位元線;而每一列上之快閃 記憶細胞元的共源擴散區,以各種可能連接的方式形成平 行於子線的共源管線(c〇mm〇n_s〇urce line)。 傳統的共源官線均將隔離區線上的場氧化物層(F 〇 X ) 加予去除’然後同時佈植高劑量摻雜質於共源管線上之主Page 6 525298 V. Description of the invention (3) The length is reduced and lightened, so the time for writing and scrubbing is bound to be longer. When the stacked gate type flash memory element is integrated to form a memory array, the first problem that must be considered is the isolation method of the element and the contact and connection of the end points of the element. Element isolation methods can be basically divided into silicon local oxidation method (L 0 C 0 S) and shallow groove isolation method (STI). The shallow groove isolation method occupies a smaller area of the silicon surface, which is suitable for high-density memory. Manufacturing. The contact and connection of the end points of the elements (cells) in the memory array are arranged according to the structure of the memory system and arranged in a matrix manner to achieve the highest built-in density. The architectures of flash memory arrays include N 0 R, N A N D, A N D, and D I N 0 R. Among them, NOR and NAND architectures are the most commonly used. For all architectures, a plurality of parallel isolation area lines (i s0 1 ati on-region 1 ines) and a plurality of active area lines between the isolation area lines (act ive -r eg i on 1 i ne s), and the flash memory cell is neatly fabricated on the active area line 'and the control gate layer of the flash memory cell is placed across the field-oxide (FOX) layer on the isolation area line To form a complex digital line (w 0 rd 1 ines) that is perpendicular to the complex isolation area line, and the flash memory cells on each active area line form a line (c 0 1 umn), and all use a common source / drain The diffusion regions are connected in series. Taking the NOR-type architecture as an example, the co-leakage diffusion area of the flash memory cell on each row forms a contact point and then connects to a bit line (b 11 1 1 ne) 'perpendicular to the complex digital line to form a complex Digital line; and the co-source diffusion area of the flash memory cell in each column forms a co-source line (c0mm_n_urce line) parallel to the sub-line in various possible connections. The traditional common source official line is added to remove the field oxide layer (F 0 X) on the isolation area line, and then a high-dose dopant is implanted on the common source pipeline.

第7頁 525298 五、發明說明(4) 動區及隔離區的半導體表面,以形成埋層共源線 (bur ied common-source lines), 士口圖 C及圖 D所示,其中圖 C顯示矽局部氧化隔離結構之埋層共源線的剖面圖;圖一:C 顯示淺凹槽隔離結構之埋層共源線的剖面圖。根據圖示可 以看出,矽局部氧化之鳥嘴部位1 0 7 c是不易均勻離子佈植 ,以致造成高的埋層電阻;然而淺凹槽隔離結構的陡峭槽 邊1 0 7c更不易均勻離子佈植。這裡值得注意的是,佈植或 摻雜深接面埋層對微縮化疊堆閘式快閃記憶元件所需之較 淺源/洩擴散區而言是互為衝突的。另外,埋層共源線對 半導體基板間的雜散接面電容與洩電亦不可忽視。 傳統的位元線係採用第一連線金屬層並透過鶴金屬检 (tungsten plug)及覆蓋於石夕化物(silicide)上之障礙金 屬(b a r r i e r m e t a 1 )層與共洩擴散區連接。佈局的接觸洞 口通常需比最小線寬的尺寸大,方能獲得良好的共洩擴散 區之接觸面積,對高密度快閃記憶陣列而言,亦是仍待克 服的技術瓶頸。另外,共洩擴散區的接面深度將隨疊堆閘 式快閃記憶元件的微縮化變得愈來愈淺,位元線與共洩擴 散區的接觸問題亦不可忽視。對NAND型架構而言,每一行 的主動區線上均有一字元組(b y t e )的快閃記憶細胞以共源 /洩擴散區來加予内部串接。當共源/洩擴散區的接面深 度變淺時,此種連接方式所產生的串聯電阻對高速讀出資 料而吕亦呈現不良的效果’再加上源選擇電晶體(source s e 1 e c t t r a n s i s t 〇 r )端之埋層共源線的串聯電阻,N A N D 型架構的高密度優點將會儘失。Page 7 525298 V. Description of the invention (4) The semiconductor surface of the moving area and the isolation area to form a bur ied common-source lines, as shown in Figure C and Figure D, where Figure C shows A cross-sectional view of the common source line of the buried layer of the silicon partial oxidation isolation structure; Figure 1: C shows a cross-sectional view of the common source line of the buried layer of the shallow groove isolation structure. According to the figure, it can be seen that the bird's beak part 1 7 c of silicon is not easy to be implanted with uniform ions, which results in high buried resistance; however, the steep groove edge 1 0 7c of the shallow groove isolation structure is more difficult to uniform ions. Planting. It is worth noting here that implantation or doping of deep junction buried layers conflicts with the shallow source / drain diffusion regions required for the miniaturization of stacked gate flash memory devices. In addition, the stray junction capacitance and leakage between the buried source layer and the semiconductor substrate cannot be ignored. The conventional bit line is connected to the co-leakage diffusion region by using a first connection metal layer and passing a tungsten plug and a barrier metal (b a r r e r m e t a 1) layer covering the silicide. The layout of the contact hole usually needs to be larger than the minimum line width in order to obtain a good contact area of the co-leakage diffusion region. For high-density flash memory arrays, it is still a technical bottleneck to be overcome. In addition, the junction depth of the co-leakage diffusion area will become shallower with the miniaturization of stacked gate flash memory devices, and the contact between the bit line and the co-leakage diffusion area cannot be ignored. For a NAND-type architecture, each row of the active area line has a byte (b y t e) of flash memory cells added to the internal concatenation with a co-source / leak diffusion area. When the depth of the junction of the common source / diffusion diffusion zone becomes shallow, the series resistance generated by this connection method has a bad effect on high-speed reading of data and Lu also has a source selection transistor (source se 1 ecttransist 〇). The series resistance of the buried source common line at the end of r), the high density advantage of the NAND type architecture will be lost.

525298 五、發明說明(5) 另外,字線係藉控制閘層將每一列上之疊堆閘式快閃 記憶細胞加予連接,傳統的控制閘層均利用石夕化鎢置於複 晶矽之上或矽化複晶矽組成,但此種控制閘層結構會隨控 制閘層的變窄呈現較高的片電阻(s h e e t r e s i s t a n c e ),此 種現象稱為石夕化物的結塊(a g g 1 o m e r a t i ο n )效應。高密度 的記憶陣列代表字線連接更多的快閃記憶細胞元,字線的 雜散串聯電阻將大幅增加,字線的RC延遲將更嚴重,快閃 記憶體的操作速度將愈差。 根據上述的解說,傳統的快閃記憶陣列不管採用什麼 記憶體架構均面臨如下有待克服的基本問題:(1 )埋層共 同源/洩管線的高雜散串聯電阻及雜散電容;(2)淺源/ 洩擴散區連接至位元線之接觸洞口尺寸的縮小及接觸問題 ;(3)淺源/洩擴散區作為快閃記憶元件之内部連接的高 雜散串聯電阻;(4 )長字線的高雜散串聯電阻;以及(5 )微 縮化快閃記憶細胞元的抵穿效應問題。525298 V. Description of the invention (5) In addition, the word line is connected with stacked gate flash memory cells on each column by the control gate layer. Above or silicified polycrystalline silicon, but this control gate structure will show a higher sheet resistance as the control gate narrows, this phenomenon is called agglomeration of agglomerates (agg 1 omerati ο n) effect. A high-density memory array represents more flash memory cells connected to the word line. The stray series resistance of the word line will increase significantly, the RC delay of the word line will be more serious, and the operation speed of the flash memory will be worse. According to the above explanation, no matter what memory architecture the traditional flash memory array uses, it faces the following basic problems to be overcome: (1) High stray series resistance and stray capacitance of the buried common source / drain pipeline; (2) Shrinking and contact problems of the contact hole openings of the shallow source / drain diffusion region to the bit line; (3) The high stray series resistance of the shallow source / drain diffusion region as the internal connection of the flash memory element; (4) long word High stray series resistance of the wire; and (5) the problem of the puncture effect of miniaturized flash memory cells.

525298 五、發明說明 複數主動 區線具有 隔離線具 層上的側 連接成自 漂浮閘層 於主漂浮 可能產生 !動對準 構之微線 複數 自動對準 控制閘層 下方的複 礙金屬層 其上下與 可以大幅 效應。 本發 區上均置 高摻雜源 的接觸問 >自動定 所組成, (6) 區線’ 主漂浮 有兩個邊,而 動對準 係利用 閘層的 的不對 積體化 條的微 字線與 積體化 夾於第 層結構 /南換 側邊均 降低, 明之疊 有自動 /戌擴 題可以 位源/ 疊堆閘 形成於 閘層置 分離的 每一主 積體化 邊膽塾 兩側, 準誤差 漂浮閘 影蝕刻 複數淺 漂浮閘 二罩幕 所組成 雜複晶 由介電 且不會 堆閘式 定位源 散區的 避免, 洩著陸 式細胞 一個半導體基板上, 於薄穿透介電層之上 延伸漂浮閘層置於平 漂浮閘層與兩個延伸 漂浮閘層。所述之自 層的技術來形成兩個 因之無需額外的罩幕 ,即能獲得較高的耦 層的表面相當平坦, 將更為有利。 凹槽隔離線互為垂直 的平坦化淺凹槽隔離 介電層位於上方與閘 。控制閘層係由金屬 或非晶碎的複合導電 層所包住,長字線的 因高溫快速退火產生 其中每一主動 :每一 面化場 漂浮閘 動對準 延伸漂 光阻步 合比; 對疊堆 淺凹槽 氧化物 層電氣 積體化 浮閘層 驟及其 另外, 閘式結 地排列於具有 結構上,係由 間介電層位於 或矽化物/障 層所組成,且 雜散串聯電阻 矽化物結塊的 快閃記憶細胞元的共用源/洩擴散 /洩著陸島,以作為接觸之用及淺 自動對準擴散源,淺源/洩擴散區 而短通道長度的抵穿效應可以降低 島係由矽化的高掺雜複晶或非晶矽 元之内部串接的串聯電阻亦可大幅525298 V. Description of the invention The plural active zone lines have isolation wire layers on the side connected to form a self-floating sluice on the main float. A micro-wire of the dynamic alignment structure can automatically align the control metal layer under the sluice. Up and down can have a big effect. The contact area of the highly doped source is placed on this area > it is automatically determined. (6) The area line 'main float has two sides, and the dynamic alignment is based on the use of the micro layer of the gate layer. The word line and the integration are lowered on the side of the first-level structure / south change, and there is an automatic / extended expansion problem in the Ming Dynasty. The source / stacking gate is formed on each main integration and separated by the gate. On both sides, the quasi-error floating gate shadow is etched with multiple shallow floating gates and the second complex curtain is composed of a dielectric and does not stack gate-type positioning source scattered areas to avoid the leak-type cells on a semiconductor substrate for thin penetration. The extended floating gate layer above the dielectric layer is placed on the flat floating gate layer and two extended floating gate layers. The self-layered technology described above is more advantageous because it does not require an additional cover, that is, the surface that can obtain a higher coupling layer is relatively flat. The trench isolation lines are flat and shallow trench isolation perpendicular to each other. The dielectric layer is located above the gate. The control gate layer is covered by a metal or amorphous composite conductive layer, and each of the active parts of the long word line is caused by rapid annealing at high temperature: each surface field floating gate is aligned with the extended drift resistance ratio; Stacked shallow groove oxide layers are electrically integrated to form floating gates. In addition, the gate junctions are arranged on a structure, which is composed of an interlayer dielectric layer or a silicide / barrier layer, and is stray in series. Resistive silicide agglomerated flash memory cell common source / leakage diffusion / leakage landing island for contact and shallow auto-alignment diffusion source. Shallow source / leakage diffusion area and short channel length can resist the effect It can also reduce the series resistance of the internal series connection of the island-based siliconized highly doped complex or amorphous silicon cells.

第10頁 525298 同管線係置於業經指定之兩條 及場氧化物層所形成的平坦床 淺高摻雜源/洩擴散區的自動 管線與淺源/洩擴散區的接觸 動定位共同管線係由矽化的高 共同管線的串聯電阻及與半導 洩電均可大幅降低。 五、發明說明(7) 降低。本發明之自動定位共 字線間的共用源/洩擴散區 上,並作為接觸之用及形成 對準擴散源,自動定位共同 問題可以避免。相同地,自 摻雜複晶或非晶矽所組成, 體基板間的雜散電容及接面 圖號對照說明: 3 0 0 半導體基板 301a薄穿透介電層 3 0 2a主漂浮閘層 3 0 3 第一罩幕介電層 3 0 4a第二導電層 3 0 4c自動對準積體化漂浮閘 305a第一介電墊層 3 0 6 a閘間介電層 3 0 7 a控制閘層 30 8a第二罩幕介電層 3 0 9b共同洩擴散區 310b第三介電墊層 3 1 1 a自動定位共同源管線 3 1 2 a淺高摻雜共用源擴散區 301 薄穿透介電層 3 0 2 第一導電層 3 0 2b殘留的主漂浮閘層 30 3a第一罩幕介電層 3 0 4 b延伸漂浮閘層 層 3 0 6 閘間介電層 3 0 7 第三導電層 3 0 8 第二罩幕介電層 3 0 9 a共同源擴散區 310a第二介電墊層 311 第四導電層 3 1 1 b自動定位共用洩著陸島 312b淺高摻雜共用洩擴散區Page 10 525298 The same pipeline system is located on a flat bed formed by two designated and field oxide layers. The shallow and highly doped source / diffusion diffusion zone contacts and locates the common pipeline system. The series resistance of the siliconized high common pipeline and the semi-conductive leakage can be greatly reduced. 5. Description of the invention (7) Decrease. According to the present invention, the common source / diffusion diffusion area between the common word lines is automatically used as a contact and an alignment diffusion source is formed. The common problem of the automatic positioning can be avoided. Similarly, the self-doped complex or amorphous silicon, stray capacitance between the substrates and the interface drawing number comparison description: 3 0 0 semiconductor substrate 301a thin penetrating dielectric layer 3 0 2a main floating gate layer 3 0 3 First mask dielectric layer 3 0 4a Second conductive layer 3 0 4c Automatic alignment with integrated floating gate 305a First dielectric pad layer 3 0 6 a Inter-gate dielectric layer 3 0 7 a Control gate layer 30 8a Second mask dielectric layer 3 0 9b Common leakage diffusion area 310b Third dielectric pad layer 3 1 1 a Auto-location common source pipeline 3 1 2 a Shallow highly doped common source diffusion area 301 Thin penetration dielectric Layer 3 0 2 First conductive layer 3 0 2b Main floating gate layer 30 3a First mask dielectric layer 3 0 4 b Extended floating gate layer 3 0 6 Inter-gate dielectric layer 3 0 7 Third conductive layer 3 0 8 Second mask dielectric layer 3 0 9 a Common source diffusion region 310 a Second dielectric pad layer 311 Fourth conductive layer 3 1 1 b Automatically locate common leak landing island 312b Shallow highly doped common leak diffusion region

525298 五、發明說明(8) 3 1 3 b石夕化物層 315a第一障礙金屬層 317a第二障礙金屬層 3 2 0 a複晶氧化層 3 2,0 c複晶氧化層 3 1 3 a ^夕化物層 314a層間介電層 3 1 6 a金屬栓 318a第一連線金屬層 3 2 0 b複晶石夕氧化層 3 2 1 b接觸洞〇 發明之詳細說明:525298 V. Description of the invention (8) 3 1 3 b Stone oxide layer 315a First barrier metal layer 317a Second barrier metal layer 3 2 0 a multiple crystal oxide layer 3 2,0 c multiple crystal oxide layer 3 1 3 a ^ The oxide layer 314a, the interlayer dielectric layer 3 1 6 a, the metal plug 318 a, the first connection metal layer 3 2 0 b, the polycrystalline oxide layer 3 2 1 b, and the contact hole.

現參考圖二A至圖二E的圖示,其中圖二A顯示本發明 之NOR型快閃記憶陣列的部份佈局圖;圖二b顯示圖二a之 A - A方向的剖面圖;圖二c顯示圖二a之B - B,方向的剖面圖 ,圖一 D顯示圖二a之C - C ’方向的剖面圖;以及圖二E顯示 圖一 A之D - D方向的剖面圖。圖二a顯示複數淺凹槽隔離線 (S T I 1 i n e )平行地形成於半導體基板3 〇 〇上,而隔離區線 間有複數主動區線(active-region line)。每一主動區線 均有一條位元線(bi t 1 i ne ; BL) 3 1 8a跨於其上,並藉第二 障礙金屬(barrier metal)層 317a、金屬栓(metai piUg) 316a、第一障礙金屬層315a及自動定位泡著陸島(seif 一 registered drain landing island)3llb與疊堆閘式快閃 記憶細胞元的洩擴散區3 1 2 b、3 0 9 b連接,如圖二b所示。 垂直於複數隔離線方向有複數字線(w 〇 r d 1 i n e ; W L )的排 列,每一字線係由控制閘線3 0 7 a組成,控制閘線3 0 7 a下 有複數自動對準積體化漂浮閘(self-aligned integrated floating-gate)層304c,如圖二E所示。複數自動定位共Reference is now made to the diagrams in FIGS. 2A to 2E, wherein FIG. 2A shows a partial layout of the NOR flash memory array of the present invention; FIG. 2b shows a cross-sectional view in the direction A-A of FIG. 2a; 2c shows a cross-sectional view in the direction B-B of FIG. 2a, FIG. 1D shows a cross-sectional view in the direction C-C 'of FIG. 2a; and FIG. 2E shows a cross-section view in the direction D-D of FIG. 1A. FIG. 2 a shows that a plurality of shallow groove isolation lines (S T I 1 ine) are formed in parallel on the semiconductor substrate 300, and there are a plurality of active-region lines between the isolation region lines. Each active area line has a bit line (bi t 1 i ne; BL) 3 1 8a straddling it, and borrows a second barrier metal (barrier metal) layer 317a, metal piUg 316a, first A barrier metal layer 315a and a seif-registered drain landing island 3llb are connected to the leakage diffusion regions 3 1 2 b and 3 0 9 b of the stacked gate flash memory cell, as shown in Fig. 2b. Show. There is an arrangement of complex digital lines (wo rd 1 ine; WL) perpendicular to the direction of the complex isolation lines. Each word line is composed of a control gate line 3 0 7 a, and a plurality of automatic alignment under the control gate line 3 0 7 a The self-aligned integrated floating-gate layer 304c is shown in FIG. 2E. Plural automatic positioning

第12頁 525298 五、發明說明(9) 一 同源管線(self-reglstered ⑶mmon_source bus Une; CSBL) 31 la係由矽化的高摻雜第四導電層31 la所組成,並 置於共同源擴散區31 2a及場氧化物層(F〇x)所形成的平坦 床面上,並且介於第二介電墊層31〇a之間(圖二B),如圖 二C所示。自動定位洩著陸島31 lb係由矽化的高摻雜第°二 導電層311b所組成,並置於兩個第二介電墊層31〇&(圖二 B)及兩個第三介電墊層31〇b (圖二〇)所圍成的共用洩^ ^ 區3 1 2b之上的接觸洞口内。自動定位共同源管線亦作^ ^ 备雜貝的自動對準擴散源(d i f f u s i〇n s 〇 u r c e ),以形成淺 咼摻雜源擴散區3 1 2 a ;自動定位洩著陸島3丨丨b亦作為高摻 雜質的2動對準擴散源,以形成淺高摻雜洩擴散區3 。 一 〃現洋看圖二B所示之剖面圖,疊堆閘式快閃記憶細胞 兀係以共用源/洩擴散區串接於主動區線上。 問㊁快=憶細胞元由上而下包含有第二罩幕介電層;上 成弟二 ¥ 電層 3〇 7a 、閘間介電(intergate dieUctric) 、第一導電層3〇2a及薄穿透介電(thln tunneHng 結1i二:)置層有3:U’八並/於半導體基板3°〇上。疊堆閘式 , + 、 〜介電墊層(dielectric spacer) 31〇a 以曰’鋒^溥穿透介電層301a之上。第二罩幕介電層3 0 8a可 =二矽層、矽氣氮(si丨ic〇n_〇xyni讨丨心)層或氮化矽 从二羊矽複合介電層,完全依控制閘層之第三導電層的 第1二i i ί統的控制閘層3〇7a係由摻雜複晶石夕所組成, 化:/ ί : ^ 均採用氮化矽。若控制閘層3 0 7a係矽 〃 禝B日矽之複合導電層所組成,則第二罩幕介電Page 12 525298 V. Description of the invention (9) A homologous pipeline (self-reglstered CDmmon_source bus Une; CSBL) 31 la is composed of a silicided, highly doped fourth conductive layer 31 la and is placed in a common source diffusion region 31 2a and the field oxide layer (Fox) formed on the flat bed surface, and is between the second dielectric pad layer 31〇a (Figure 2B), as shown in Figure 2C. The automatic positioning of the landing island 31 lb is composed of a siliconized highly doped second conductive layer 311b, and is placed on two second dielectric pads 31 ° (Figure 2B) and two third dielectric pads. Inside the contact hole above the common leakage area 3 1 2b surrounded by the layer 31Ob (Figure 20). The automatic positioning of the common source pipeline is also used as an automatic alignment diffusion source (diffusi0ns 〇urce) for the preparation of miscellaneous shells to form a shallow erbium-doped source diffusion region 3 1 2 a; the automatic positioning of the landing island 3 丨 b also As a highly doped bi-directional alignment diffusion source, a shallow highly doped drain diffusion region 3 is formed. First, look at the cross-sectional view shown in Figure 2B. Stacked gate flash memory cells are serially connected to the active area line with a common source / diffusion area. Ask ㊁quick = memory cell contains a second mask dielectric layer from top to bottom; the upper layer of the electric layer 307a, the gate dielectric (intergate dieUctric), the first conductive layer 302a and thin A through dielectric (thln tunneHng junction 1i2 :) layer is provided with 3: U ′ and is on a semiconductor substrate at 3 °. In the stacked gate type, +, ~ dielectric spacer 31〇a penetrates the dielectric layer 301a with a front edge. The second mask dielectric layer 308a can be a two-silicon layer, a silicon gas-nitrogen (si 丨 ic〇n_〇xyni) layer, or a silicon nitride layer from the two-silicon composite dielectric layer, completely depending on the control gate. The first and second control gate layers 307a of the third conductive layer of the layer are composed of doped polycrystalline stone, and all of them are made of silicon nitride. If the control gate layer is composed of a composite conductive layer of silicon 〃 禝 日 B silicon, the second mask dielectric

第13頁 525298 五、發明說明(ίο) 層3 0 8 a採用矽氧氮層為佳。控制閘層3 〇 7⑴亦作〜 用摻雜複晶矽所產生的串聯電阻太大,不太高二字 閃記憶陣列之用;控制閘層3〇7a若採用矽化^ )大 石夕的複合導電層,在高溫快速退火之下,碎^ 接 晶矽間會產生矽化物的結塊效應,以導致高的^與 月之控制閘層3 0 7 a係採用石夕化鶬/障礙金^ _ 非晶石夕的複合導電層或金屬/障礙金屬/摻雜福f 矽的複合導電層結構,其中障礙金屬層係用來曰曰 或高熔點金屬與摻雜複晶或非晶矽間的反應,以致 $鎢或高熔點金屬的高導電特性。障礙金屬層係採 金屬氮化物(refractory metal-nitride)層]諸二 〇iN)或氮化钽(TaN)等;金屬層係採用高^點之= 諸如鎢;第二罩幕介電層3 0 8a則採用氮化石夕/二^ 結構或矽氧氮化物。閘間介電層3 0 6 a係採用二氧L 化石夕/二氧化矽(0N0)或氮化矽/二氧化矽的1合 ;第一導電層3 0 2 a係由摻雜非晶矽或摻雜複晶石夕二 /專牙透介電層301 a係熱氧化石夕(thermal 〜oxide)咬 氧化矽(nitrided thermal-oxide)所組成;第二及 電墊層3 1 0 a、3 1 0 b係由氮化矽所組成。 現同時參考圖二B及圖二C所示之共用源擴散區 定位共同源管線,其中源擴散區3 0 9 a係對準閘結構 半導體基板3 0 0之摻雜質型態相反的摻雜質,且可 種不同結構的障礙層來佈植(未圖示)。第一種係殘 一導電層3 0 2b及置於其下的薄穿透氧化層301a;第 線,採 $量快 #複晶 捧雜複 °本發 複晶或 或非晶 石夕化鎢 改變石夕 用折光 氮化鈦 屬層, 化矽的 發/氣 介電層 &成; 4化熱 胃三介 及自動 佈植與 跨過二 留的第 二種係Page 13 525298 V. Description of the invention (ίο) The layer 3 0 8 a is preferably a silicon oxygen nitrogen layer. The control gate layer 3 〇7 作 is also used ~ The series resistance generated by doped polycrystalline silicon is too large and not too high for two-word flash memory arrays; if the control gate layer 307a is silicified ^) Dashi Xi's composite conductive layer Under the rapid annealing at high temperature, the silicide agglomeration effect will be generated between the broken silicon and the silicon, which will lead to the high control layer of the moon and the moon. 3 0 7 a is based on stone yam / barrier gold ^ _ non Crystalline composite conductive layer or metal / barrier metal / doped silicon composite conductive layer structure, wherein the barrier metal layer is used to describe the reaction between high melting point metal and doped polycrystalline or amorphous silicon. As a result, high conductivity of tungsten or high melting point metals. The barrier metal layer is a refractory metal-nitride layer] (20iN) or tantalum nitride (TaN), etc .; the metal layer is a high point = such as tungsten; the second mask dielectric layer 3 0 8a uses a nitride stone / two-layer structure or silicon oxynitride. The inter-gate dielectric layer 3 0 6 a is a combination of dioxyl fossil / silicon dioxide (0N0) or silicon nitride / silicon dioxide; the first conductive layer 3 0 2 a is made of doped amorphous silicon Or doped with polycrystalline spar / special teeth through dielectric layer 301 a series of thermal ~ oxide nitrided thermal-oxide; second and electrical cushion layer 3 1 0 a, 3 1 0 b is composed of silicon nitride. Now referring to the common source diffusion regions shown in FIG. 2B and FIG. 2C at the same time, the common source pipeline is positioned, wherein the source diffusion region 3 0 9 a is doped with the opposite dopant type of the gate structure semiconductor substrate 3 0 0 Quality, and can be planted with barrier layers of different structures (not shown). The first type is a conductive layer 3 0 2b and a thin penetrating oxide layer 301a placed therebelow; the second line is to pick up the amount quickly # compound crystal holding mixed compound ° the present compound crystal or amorphous tungsten Change the refracted titanium nitride layer used by Shi Xi, the silicon hair-generating / air-dielectric layer & the second line of the hot stomach and the automatic implantation and crossover

第14頁Page 14

525298 五、發明說明(11) 薄穿透氧化層3 0 1 a。佈植的摻雜質可以是磷或砷離子,且 可以與洩擴散區分開或同時佈植,以形成不對稱或對稱的 源/洩擴散區,依快閃記憶細胞的操作而定。若源與洩擴 散區採分開佈植,源擴散區3 0 9 a可利用共同源管線之平坦 化床面的非嚴謹罩幕光阻PR3來佈植,無需額外罩幕光阻 步驟。因此,圖二B的源/泡擴散區3 0 9 a、3 0 9 b僅是示意 圖而非實際的摻雜質分佈,實際摻雜質分佈與細胞元的操 作有關,將於後面說明。淺源/洩擴散區3 1 2 a、3 1 2 b均由 自動定位共同源管線3 1 1 a及自動定位洩著陸島3 1 1 b作為雜 質自動對準擴散源來形成。圖二C顯示自動定位共同源管 線31 la係置於源擴散區312a及業經蝕刻之場氧化物(FOX) 所形成的平坦床面上,且經由自動對準矽化來形成高導電 矽化物層3 1 3 a。由圖二C可以清楚看到,本發明之自動定 位共同源管線不但具有低的管線電阻,而且管線對半導體 基板3 0 0的雜散電容亦大幅降低,同時管線之接面的漏電 流亦大幅減少。另外,本發明利用殘留之第一導電層3 0 2b 保護主動區之半導體表面,使平坦化床面的蝕刻不影響半 導體表面及隔離區之側面的完整性。 現同時參考圖二B及圖二D所示之自動定位共用洩著陸 島的剖面圖,其中自動定位共用洩著陸島3 1 1 b係介於疊堆 閘結構所形成的第二介電墊層310a及場氧化物層(FOX)側 邊之第三介電墊層3 1 0 b之間,且經自動對準矽化來形成矽 化物層313b 。平面化層間介電(interlayer dielectric) 層3 1 4a係覆蓋整個結構,並在自動定位洩著陸島上形成自525298 V. Description of the invention (11) Thin penetrating oxide layer 3 0 1 a. The implanted dopant can be phosphorus or arsenic ions, and can be implanted separately or simultaneously from the diffusion diffusion zone to form an asymmetric or symmetrical source / release diffusion zone, depending on the operation of the flash memory cells. If the source and vent diffuse areas are planted separately, the source diffuse area 309a can be planted using the non-rigid mask PR3 of the flattened bed of the common source pipeline, without the need for an additional mask photoresist step. Therefore, the source / bubble diffusion regions 3 0 9 a and 3 0 9 b in Fig. 2B are only schematic diagrams and not actual dopant distributions. The actual dopant distributions are related to the operation of the cell and will be explained later. The shallow source / diffusion diffusion areas 3 1 2 a and 3 1 2 b are both formed by automatically locating the common source pipeline 3 1 1 a and the automatic locating leakage landing island 3 1 1 b as the impurity automatic alignment diffusion source. FIG. 2C shows that the common source line 31 la is automatically positioned on the flat bed formed by the source diffusion region 312 a and the etched field oxide (FOX), and a highly conductive silicide layer is formed by auto-aligned silicidation 3 1 3 a. It can be clearly seen from FIG. 2C that the common source pipeline of the present invention not only has low pipeline resistance, but also the stray capacitance of the pipeline to the semiconductor substrate 300 is greatly reduced, and the leakage current at the interface of the pipeline is also greatly reduced. cut back. In addition, the present invention uses the remaining first conductive layer 3 2b to protect the semiconductor surface of the active region, so that the etching of the planarized bed surface does not affect the integrity of the semiconductor surface and the side of the isolation region. Reference is now made to the cross-sectional views of the self-locating shared venting landing island shown in FIG. 2B and FIG. 2D at the same time, where the auto-locating common venting landing island 3 1 1 b is a second dielectric cushion layer formed by a stacked gate structure Between 310a and the third dielectric pad layer 3 1 0 b on the side of the field oxide layer (FOX), the silicide layer 313b is formed by automatic alignment silicidation. The planarized interlayer dielectric layer 3 1 4a covers the entire structure and forms a self-locating island

第15頁 525298 五、發明說明(12) - 動對準接觸(self-aligned contact; SAC)洞 321b,接 # 將洞口添入薄的第一障礙金屬315a及鎢检316a,再覆罢f 二障礙金屬層3 1 7及第一連線金屬層3丨8。然後,利^ = 光阻的技術,蝕刻第一連線金屬層3丨8及 八 3 1 7以形成與字線垂直的複數位开飧 至屬層 -D ^ ^ ^ « 的自動對準擴散源來形成淺古A 二但作為间摻雜質 供-個良好之位元線接;二散區312b,而且提 觸的完整性…卜,本發明之疊堆閑式接 準接觸洞及墊高的自動定㈣著陸島,對 口 32 lb的尺寸可以縮小,進而提 j下之接觸洞 面圖,其中顯示本發= 字線方向的剖 結構。根據圖二Ε所示,备一 έ 、豆化,示汙閘層3 0 4c的 浮閘層3 0 4 c包含一個主淠、i M s f元的自動對準積體化漂 層上之兩個延伸漂浮閘;^ I S 〇2a及置於相鄰場氧化物 兩個分離延伸漂浮閘層3〇 、 ^ ^化物層上的 微縮,以大幅提昇自動利用墊層技術加予 ,同時使堆積於閘間介電> 3Qf ^冰汙間層3〇4c的耦合比 相當平坦的表面,以利::=士的控制閑層Wa獲得 得-嶋,本發明。=長度的微影姓刻。這裡值 作無需額外的罩幕光阻步:對準積體化漂浮間層304。的製 上述的解說係針對N 〇 R型 田 列,然而本發明所揭示的: = 豐堆問式快閃記憶陣 的陣列關鍵技術亦可應用於其他的 525298 五、發明說明(13) 架構上,以製造高密度及高性能的疊堆閘式快閃記憶陣列 。茲將本發明之疊堆閘式快閃記憶陣列的關鍵技術及其特 色總結如下: (a )本發明之平坦化淺凹槽隔離結構具有自動對準積 體化漂浮閘層,除能提供控制閘層平坦化的表面以利複數 窄閘長的微影蝕刻外,在不需額外罩幕光阻步驟下提供疊 堆閘式細胞元較大之漂浮閘的搞合比; (b )本發明之疊堆閘結構的控制閘係由金屬或矽化物 /障礙金屬/摻雜複晶或非晶矽之複合導電層所組成,且 其上下方及兩側邊均由緊密的介電層所包住,高溫退火下 不會產生矽化物的結塊效應,因而高導電金屬或矽化物的 本質可以不變,控制閘層作為字線之串聯電阻可以大幅降 低,使得長字線的訊號延遲時間變短; (c )本發明之自動定位共同源/洩管線係由矽化之高 摻雜複晶或非晶矽所組成,且置於源/洩擴散區及場氧化 物層所形成的平坦化床面上,共同管線的雜散串聯電阻可 大幅減小,且共同管線對半導體基板間的雜散電容及接面 漏電亦可大幅變小。 摻雜 高換 之之 化區 碎散 由擴 係雜 推 陸高 著淺 洩供 \提 源但 位不 定’ 動成 自組 之所 明碎 發晶 本非 }或 d C 曰aa 複 雜Page 15 525298 V. Description of the invention (12)-Self-aligned contact (SAC) hole 321b, then # Add the hole to the thin first barrier metal 315a and tungsten inspection 316a, repeat again The barrier metal layer 3 1 7 and the first connection metal layer 3 丨 8. Then, using the technique of photoresist, the first connection metal layers 3 丨 8 and 8 3 1 7 are etched to form a plurality of bit openings perpendicular to the word line to the metal layer -D ^ ^ ^ «auto-alignment diffusion Source to form shallow ancient A, but as a dopant for a good bit line connection; the second scattered area 312b, and the integrity of the touch ...…, the stack of idle contact contacts and pads of the present invention The height of the automatic fixed landing island can be reduced by the size of the opposite 32 lb, and then the contact hole surface diagram under j is shown, which shows the cross-section structure in the direction of the hairline = word line. As shown in Figure IIE, the preparation of the floating gate layer 3 0 4c of the pollution gate layer 3 4c includes a main frame, i M sf element, and two automatic alignment on the integrated drift layer. Two extended floating gates; ^ IS 〇2a and two separate extended floating gate layers 30, ^ ^ on the oxide layer adjacent to the field to shrink, to greatly enhance the automatic use of cushion technology to add, while making accumulation in Inter-gate dielectrics> The coupling ratio of 3Qf ^ ice fouling layer 304c is a relatively flat surface, so that the control layer Wa is obtained from the control layer of 士: 士, which is the present invention. = Length of the lithograph surname engraved. This value does not require an additional mask photoresistive step: align the integrated floating interlayer 304. The above explanation is directed to the NO RR type field array, however, the present invention discloses: = The key technology of the array of flash memory arrays can also be applied to other 525298 V. Description of the invention (13) architecture To manufacture high-density and high-performance stacked gate flash memory arrays. The key technologies and features of the stacked gate flash memory array of the present invention are summarized as follows: (a) The flat shallow groove isolation structure of the present invention has automatic alignment of the integrated floating gate layer, which can provide control. The flattened surface of the gate layer facilitates the lithographic etching of a plurality of narrow gate lengths, and provides a ratio of floating gates with a large stack of gated cell elements without the need for an additional mask photoresist step; (b) the present invention The control gate of the stacked gate structure is composed of a metal or silicide / barrier metal / doped complex or amorphous silicon composite conductive layer, and the upper, lower and both sides are covered by a tight dielectric layer. However, the silicide agglomeration effect does not occur under high temperature annealing, so the nature of the highly conductive metal or silicide can be unchanged, and the series resistance of the control gate layer as the word line can be greatly reduced, making the signal delay time of the long word line variable. Short; (c) The self-locating common source / drain line of the present invention is composed of a silicided highly doped complex or amorphous silicon, and is placed on a flattened bed formed by a source / drain diffusion region and a field oxide layer. On the surface, the stray series resistance of the common pipeline can be Significantly reduced, and the stray capacitance between the common pipeline to the semiconductor substrate and the leakage of the interface can also be greatly reduced. Doping high instead of chemical zone fragmentation is caused by the expansion of the system, the ground is shallow, the source is leaked, the source is raised but the position is not fixed ’, and it is turned into a self-organized crystal. The crystal is not} or d C is aa complex.

第17頁 525298 五、發明說明(14) 質的自動對準擴散源,而且作為位元線與淺洩擴散區之間 連線之墊高的緩衝區,以提昇接觸的完整性及縮小接觸洞 口 ,同時亦可藉自動對準接觸的結構縮小接觸洞口的尺寸 。另外,自動定位源/洩著陸島亦可降低串接細胞元内部 的串聯電阻;以及 (e )疊堆閘式快閃記憶細胞元之源與洩擴散區的形成 可以不增加罩幕光阻步驟下,藉平坦化共同管線的製造形 成對稱或不對稱的摻雜質分佈。 現參考圖三A至圖三I的圖示,其中揭示具有複數自動 對準積體化漂浮閘層之平坦化淺凹槽隔離結構的製程步驟 及其剖面圖。圖三A顯示尋序地在半導體基板3 0 0之上形成 薄穿透介電層301、第一導電層302及第一罩幕介電層303 ,並在第一罩幕介電層30 3之上塗敷光阻PR1,並將其成形 (patterning)來定義互相平行的複數主動區線(PR 1之下) 及複數隔離線(PR1之間)。半導體基板3 0 0可以是一個p-井 或一個P-型半導體基板,以製造η-通道的記憶元件;半導 體基板3 0 0亦可以是一個η-井或一個η-型半導體基板,以 製造Ρ-通道的記憶元件。後續的圖示均以製造η-通道記憶 元件為主,ρ -通道記憶元件亦可改變摻雜質形態來製造。 薄穿透介電層3 0 1係由熱氧化矽或氮化熱氧化矽所組成; 第一導電層3 0 2係由複晶矽或非晶矽所組成;第一罩幕介 電層3 0 3係由氮化矽所組成。Page 17 525298 V. Description of the invention (14) Quality automatic alignment of the diffusion source, and as a cushioning buffer for the connection between the bit line and the shallow leakage diffusion area to improve the integrity of the contact and reduce the contact opening At the same time, the size of the contact opening can be reduced by automatically aligning the contact structure. In addition, the automatic positioning of the source / discharge landing island can also reduce the series resistance inside the cascaded cell; and (e) the formation of the stack gate flash memory cell and the source and the leakage diffusion region can be formed without adding a mask photoresist step Next, a symmetrical or asymmetric dopant distribution is formed by manufacturing the planarized common pipeline. Reference is now made to the diagrams in FIGS. 3A to 3I, which disclose the process steps and cross-sectional views of a planarized shallow groove isolation structure with a plurality of automatically aligned integrated floating gate layers. FIG. 3A shows that a thin penetrating dielectric layer 301, a first conductive layer 302, and a first mask dielectric layer 303 are sequentially formed on the semiconductor substrate 300, and the first mask dielectric layer 303 is formed. A photoresist PR1 is coated thereon and patterned to define a plurality of parallel active area lines (below PR 1) and a plurality of isolation lines (between PR1) parallel to each other. The semiconductor substrate 3 0 0 can be a p-well or a P-type semiconductor substrate to make an n-channel memory element; the semiconductor substrate 3 0 0 can also be an n-well or an n-type semiconductor substrate to make P-channel memory element. Subsequent illustrations are mainly made of η-channel memory elements, and ρ-channel memory elements can also be manufactured by changing the dopant morphology. The thin penetrating dielectric layer 3 0 1 is composed of thermal silicon oxide or nitrided thermal silicon oxide; the first conductive layer 3 0 2 is composed of polycrystalline silicon or amorphous silicon; the first mask dielectric layer 3 The 0 3 system is composed of silicon nitride.

第18頁 525298 五、發明說明(15) 圖三B顯示非等向地(a n i s 〇 t r 〇 p i c a 1 1 y )|虫刻罩幕光阻 PR 1外之第一罩幕介電層303、第一導電層302及薄穿透介 黾層301’並於半導體基板300形成複數淺凹槽(shallow trenches),然後將罩幕光阻PR 1去除。接著將圖三β所示 之複數淺凹槽的結構添滿平面化(Ρ 1 a n a r i z e d )場氧化物層 (F 0 X ),如圖二C所示。圖三c所示的結構係先堆積厚的二 氧化矽層於圖三B的結構,4 學-機械研磨(chemical-me< 加予平坦化,並且以第一罩 (polishing stop)。這裡值 可以形成圖三C所示的結構 加予氧化,並於第一導電層 薄氧化層,以消除淺凹槽餘 ’然後再形成平面化氧化物 為圖三C所示之平面化氧化 在未蝕刻淺凹槽之前先將罩 後之第一罩幕介電層303a、 層3 0 1 a的側面形成薄的二氧 導體基板3 0 0來形成淺凹槽 面,以形成薄氧化層,然後 薄的二氧化矽墊層及薄氧化 場氧化物層的一部份。第— 動區的通道寬度;第二種方 而不會損失主動區的通道宽 卜利用回蝕(etch back)法或化 ’hanical polishing; CMP)法 幕介電層3 0 3 a作為研磨停止層 得一提的是,有二種其他方法 第一種方法是將圖三B的結構 3 〇2a的側面及淺凹槽表面形成 亥J所產生之半導體表面的瑕疮 層’此時成長的薄氧化層均視 物層的一部份。第二種方法是 f光阻PR1去除,然後在蝕刻 第一導電層302a及薄穿透介電 匕夕墊層’接著非等向I虫刻半 ,接著氧化淺凹槽的半導體表 形成平面化場氧化物層,此時 运均視為圖三C所示之平面化 種方法會因氧化而稍許損失主 去則因薄二氧化石夕塾層的形成 度。Page 18 525298 V. Description of the invention (15) Figure 3B shows anisotropic ground (anis 〇tr 〇pica 1 1 y) | The first mask dielectric layer 303 outside the worm-etched mask photoresist PR1, the first A conductive layer 302 and a thin penetrating dielectric layer 301 ′ form a plurality of shallow trenches in the semiconductor substrate 300, and then the mask photoresist PR 1 is removed. Then, the structure of the plurality of shallow grooves shown in β in FIG. 3 is filled with a planarized (P 1 a n a r z d) field oxide layer (F 0 X), as shown in FIG. 2C. The structure shown in FIG. 3c is a structure in which a thick silicon dioxide layer is first deposited on the structure of FIG. 3B. The chemical-mechanical polishing (chemical-me < flattening, and the first stop (polishing stop). Here is the value The structure shown in FIG. 3C can be formed with pre-oxidation, and a thin oxide layer can be formed on the first conductive layer to eliminate shallow grooves, and then a planarized oxide is formed. The planarized oxide shown in FIG. 3C is not etched. Before the shallow groove, firstly, the side of the first mask dielectric layer 303a and the layer 3 0 a behind the mask is formed into a thin dioxygen conductor substrate 300 to form a shallow groove surface to form a thin oxide layer, and then thin Part of the silicon dioxide underlayer and the thin oxide field oxide layer. The first channel width of the active region; the second method without losing the channel width of the active region, using the etch back method or 'hanical polishing; CMP) method The dielectric layer 3 0 3 a is used as a polishing stop layer. There are two other methods. The first method is to use the side and shallow grooves of the structure 3 〇 2a in FIG. 3B. The surface of the surface of the semiconductor layer is formed by the helium layer. A portion of the layer. The second method is to remove the photoresist PR1, and then etch the first conductive layer 302a and the thin penetrating dielectric pad layer, and then anisotropically engrav the half, and then oxidize the semiconductor surface of the shallow groove to form a planarization. The field oxide layer at this time is regarded as the planarization method shown in FIG. 3C, which will be slightly lost due to oxidation, mainly due to the formation of the thin dioxide layer.

525298 五、發明說明(16) 圖三D顯示圖三C的平面化場氧化物層經回I虫一個稍大 於第一罩幕介電層3 0 3 a厚度之深度後,將形成的凹槽回填 平面化第二導電層304。平面化第二導電層30 4係於回蝕的 凹槽先填滿第二導電層3 0 4,再利用CMP法磨平,並以第一 罩幕介電層303 a作為研磨停止層。接著回蝕平面化第二導 電層304,深度約等於第一罩幕介電層303a的厚度,以便 獲得第一導電層302 a及第二導電層304 a之表面平坦化,如 圖三E所示。這裡值得一提的是,回蝕平面化第二導電層 3 0 4的深度亦可以小於第一罩幕介電層3 0 3 a的厚度,但第 一導電層3 0 2 a與第二導電層3 0 4 a之表面形成步階式的不平 坦表面,對後續微影蝕刻疊堆閘較為不利,但耦合比較大 〇 圖三F顯示第一罩幕介電層3 0 3 a的兩個侧邊各形成第 一介電塾層305a。第一介電墊層305 a的形成是先堆積良好 覆蓋性介電層3 0 5於圖三E的結構,再非等向性回蝕良好覆 蓋性介電層3 0 5的厚度。第一介電墊層3 0 5 a係由氮化矽所 組成。接著以第一罩幕介電層3 0 3 a及第一介電墊層3 0 5 a作 為硬質蝕刻罩幕,蝕刻第一介電墊層3 0 5 a間的第二導電層 3 0 4a,如圖三G所示。然後,將第一罩幕介電層3 0 3 a及第 一介電墊層305 a去除,如圖三Η所示,去除的方法包括高 溫磷酸清洗或利用非等向乾式蝕刻。這裡值得一提的是, 第一導電層3 0 2 a和兩個第二導電層3 0 4b組成一個自動對準 積體化漂浮閘層3 0 4 c。 圖三I顯示在圖三Η的結構上形成閘間介電層3 0 6 ,然525298 V. Description of the invention (16) Figure 3D shows the groove of the planarized field oxide layer of Figure 3C after the thickness of the first mask dielectric layer is slightly larger than the thickness of the first mask dielectric layer 3 0 3 a. The backfill planarizes the second conductive layer 304. The planarized second conductive layer 304 is filled with the second conductive layer 304 in the etched-back recess, and then flattened by the CMP method, and the first mask dielectric layer 303a is used as a polishing stop layer. Then etch back the planarized second conductive layer 304 to a depth approximately equal to the thickness of the first mask dielectric layer 303a, so as to obtain the planarization of the surfaces of the first conductive layer 302a and the second conductive layer 304a, as shown in FIG. 3E. Show. It is worth mentioning here that the depth of the etch-back planarized second conductive layer 304 can also be smaller than the thickness of the first mask dielectric layer 3 0 3 a, but the first conductive layer 3 0 2 a and the second conductive layer The surface of layer 3 0 4 a forms a stepped uneven surface, which is not good for subsequent lithographic etching stack gates, but the coupling is relatively large. Figure 3F shows two of the first mask dielectric layer 3 0 3 a A first dielectric rhenium layer 305a is formed on each side. The first dielectric pad layer 305a is formed by first depositing a good covering dielectric layer 305 in the structure of FIG. 3E, and then anisotropically etching back the thickness of the covering dielectric layer 305. The first dielectric pad layer 3 0 5 a is composed of silicon nitride. Next, the first mask dielectric layer 3 0 3 a and the first dielectric pad layer 3 5 5 a are used as hard etching masks, and the second conductive layer 3 0 4a between the first dielectric pad layer 3 0 5 a is etched. , As shown in Figure IIIG. Then, the first mask dielectric layer 3 0a and the first dielectric pad layer 305a are removed, as shown in Fig. 3 (a). The removal method includes high-temperature phosphoric acid cleaning or non-isotropic dry etching. It is worth mentioning here that the first conductive layer 3 0 2 a and the two second conductive layers 3 0 4 b form an automatic alignment integrated floating gate layer 3 0 4 c. FIG. 3I shows the formation of an inter-gate dielectric layer 3 0 6 on the structure of FIG.

第20頁 525298 五、發明說明(17) 後佈植與半導體基板3 0 0推雜質型悲相反的南劑量換雜質 於自動對準積體化漂浮閘層3 0 4c中(未圖示),接著堆積第 三導電層3 0 7於閘間介電層3 0 6之上。閘間介電層3 0 6係二 氧化矽/氮化矽/二氧化矽(ΟΝΟ)的複合介電層或氮化矽 /二氧化矽的複合介電層。第三導電層307係金屬/障礙 金屬/摻雜複晶或非晶矽的複合導電層或矽化物/障礙金 屬/摻雜複晶或非晶$夕的複合導電層,其中障礙金屬係折 光金屬氮化物(refractory metal-nitride),諸如氮化 鈦(T i N )或氮化钽(TaN );金屬係高熔點的金屬,諸如鎢; 矽化物係高熔點的矽化物,諸如矽化鎢(W S i 2) ◦這裡值得 一提的是,障礙金屬層係用來阻止金屬層/矽化物層與摻 雜複晶或非晶矽間之反應所形成的矽化物結塊效應,進而 避免大幅增加金屬層/矽化物的片電阻;摻雜複晶或非晶 矽係跨過障礙金屬層來佈植與半導體基板3 0 0掺雜質相反 的高劑量摻雜質,且作為閘間介電層3 0 6與障礙金屬層間 之緩衝區。 · 現參考圖四A至圖四G的圖示,其中顯示製造複數細胞 元及其陣列的方法及其剖面圖。圖四A顯示在圖三I的結構 上形成第二罩幕介電層308 ,並在第二罩幕介電層上塗敷 罩幕光阻PR2並加予成形,以定義與複數隔離線互為垂直 的複數字線(PR 2下)。第二罩幕介電層3 0 8係矽氧氮層或氮 化石夕/二氧化石夕的複合介電層。 圖四B ( a )顯示非等向地I虫刻圖四A的結構,將罩幕光 阻PR 2外的第二罩幕介電層3 0 8、第三導電層3 0 7、閘間介Page 20 525298 V. Description of the invention (17) The rear implantation and the semiconductor substrate 3 0 0 push the opposite amount of the impurity type to replace the impurities in the automatic alignment integrated floating gate 3 0 4c (not shown), A third conductive layer 3 07 is then deposited on the inter-gate dielectric layer 3 06. Inter-gate dielectric layer 3 0 6 series silicon dioxide / silicon nitride / silicon dioxide (ONO) composite dielectric layer or silicon nitride / silicon dioxide composite dielectric layer. The third conductive layer 307 is a metal / barrier metal / doped complex or amorphous silicon composite conductive layer or a silicide / barrier metal / doped complex or amorphous composite conductive layer, wherein the barrier metal is a refractive metal Refractory metal-nitride, such as titanium nitride (T i N) or tantalum nitride (TaN); metal based high melting point metal, such as tungsten; silicide, high melting point silicide, such as tungsten silicide (WS i 2) ◦ It is worth mentioning here that the barrier metal layer is used to prevent the silicide agglomeration effect formed by the reaction between the metal layer / silicide layer and the doped polycrystalline or amorphous silicon, thereby avoiding a substantial increase in metal Sheet / silicide sheet resistance; doped polycrystalline or amorphous silicon system implants a high-dose dopant opposite to the semiconductor substrate 3 0 0 dopant across the barrier metal layer, and acts as an inter-gate dielectric layer 3 0 6 Buffer zone with barrier metal layer. Reference is now made to the diagrams in FIGS. 4A to 4G, which show a method of manufacturing a plurality of cells and an array thereof, and a sectional view thereof. FIG. 4A shows that a second mask dielectric layer 308 is formed on the structure of FIG. 3I, and a mask photoresist PR2 is coated on the second mask dielectric layer and is formed to define that the plurality of isolation lines are mutually Vertical complex digital lines (under PR 2). The second mask dielectric layer 308 is a silicon oxide nitrogen layer or a compound dielectric layer of nitrogen fossil / titanium dioxide. Fig. 4B (a) shows the structure of the anisotropic ground engraved figure 4A. The second mask dielectric layer 3 0 8, the third conductive layer 3 7, and the gate between the mask photoresist PR 2 Introduce

第21頁 525298 五、發明說明(18) 電層3 0 6及等於延伸漂浮閘3 0 4 b之厚度的自動對準積體化 漂浮閘層3 0 4 c加予蝕刻。圖四B ( b )顯示閘區外之共源/洩 線(圖二A之B - B ’及C - C ’方向)的剖面圖,其中場氧化物層 (FOX)之上的延伸漂浮層3 0 4b均被蝕刻。接著以自動對準 方式佈植與半導體基板3 0 0摻雜質型態相反的摻雜質,以 形成對稱的源/洩擴散區3 0 9 a、3 0 9 b。佈植的摻雜質可以 是砷或磷,佈植的摻雜質劑量可以是高劑量或中劑量,完 全視細胞元的寫入及擦洗操作而定。 圖四C ( a )顯示利用成形的罩幕光阻PR3置於洩擴散區 線(D L )及部份的第二罩幕介電層3 0 8 a上,以露出共源線 (B-B’),接著蝕刻共源線上之場氧化物層(FOX),蝕刻的 厚度約等於殘留漂浮閘層3 0 2 b的厚度,如圖四C ( b )所示。 洩擴散線(DL)因有罩幕光阻PR3蓋住,場氧化物(FOX)未被 蝕刻,如圖四C ( c )所示。這裡值得一提的是,利用罩幕光 阻的結構,在此步驟下可以佈植摻雜質,以形成不對稱的 源/洩擴散區。例如,佈植中劑量的摻雜質,以形成較深 的源擴散區,然後去除光阻PR3 ,再佈植高劑量摻雜質以 形成淺高摻雜源/洩擴散區,接著進行快速熱退火。較深 源擴散區所佈植的雜質可以是磷,而較淺高摻雜源/洩擴 散區所佈植的雜質可以是砷。 圖四D ( a )顯示源/洩擴散線上的殘留漂浮閘層3 0 2 b利 用非等向蝕刻法加予去除。圖四D(b)顯示共源線(B-B’)呈 現平坦的表面;圖四D ( c )顯示洩擴散線(C - C ’)呈現步階 式的結構,其中場氧化物層(F 0X)的表面比薄穿透介電層Page 21 525298 V. Description of the invention (18) Automatic alignment integration of the electric layer 3 0 6 and the thickness equal to the extended floating gate 3 0 4 b The floating gate layer 3 0 4 c is etched. Figure 4B (b) shows the cross-section of the common source / drain line outside the gate (directions B-B 'and C-C' in Figure 2A), where the floating layer above the field oxide layer (FOX) 3 0 4b are all etched. Then, dopants of opposite types to the semiconductor substrate 300 dopant are implanted in an automatic alignment manner to form symmetrical source / drain diffusion regions 3 0 9 a and 3 9 9 b. The implanted dopant can be arsenic or phosphorus, and the implanted dopant can be a high or medium dose, depending on the cell writing and scrubbing operations. FIG. 4C (a) shows that the formed mask photoresist PR3 is placed on the drain diffusion region line (DL) and a part of the second mask dielectric layer 3 0 a to expose the common source line (B-B '), And then the field oxide layer (FOX) on the common source line is etched, and the thickness of the etching is approximately equal to the thickness of the residual floating gate layer 3 2 b, as shown in FIG. 4C (b). The diffusion line (DL) is covered by the mask photoresist PR3, and the field oxide (FOX) is not etched, as shown in Figure 4C (c). It is worth mentioning here that with the structure of the mask photoresist, dopants can be implanted in this step to form an asymmetric source / drain diffusion region. For example, the dopants in the middle dose are implanted to form a deeper source diffusion region, and then the photoresist PR3 is removed, and then the high-dose dopants are implanted to form a shallow highly doped source / drain diffusion region, followed by rapid thermal treatment. annealing. The impurity implanted in the deeper source diffusion region can be phosphorus, and the impurity implanted in the shallower highly doped source / bleed diffusion region can be arsenic. FIG. 4D (a) shows that the residual floating gate layer 3 2 b on the source / drain diffusion line is removed by anisotropic etching. Figure 4D (b) shows that the common source line (B-B ') shows a flat surface; Figure 4D (c) shows that the diffusion diffusion line (C-C') shows a step-like structure, in which the field oxide layer ( F 0X) has a thinner surface than the dielectric

第22頁 525298 五、發明說明(19) 3 0 1 a的表面高。 圖四E ( a )顯示第二介電墊層3 1 0 a形成於圖四D ( a )之閘 結構的兩侧,並置於薄穿透介電層3 0 1 a之上,並利用稀釋 的氟酸(HF )泡浸將第二介電墊層3 1 0 a之外的薄穿透介電層 3 1 0 a力π予去除。共源線(B - B ’)的表面亦保持平坦化,如圖 四E ( b )所示;:¾擴散線(C - C ’)則形成如圖四E ( c )所示的結 構,其中第三介電墊層3 1 0 b亦形成於場氧化物層的兩側並 置於薄穿透介電層301 a之上,但由於去除薄穿透介電層之 故,場氧化物層(FOX)亦被蝕刻而呈現少許的下陷。第二 和第三介電墊層3 1 0 a、3 1 0 b係由氮化矽所組成,其形成的 方法與前述之第一介電墊層相同。接著堆積厚的第四導電 層3 1 1於圖四A的結構上,再利用CMP方法將厚的第四導電 層3 1 1磨平(未圖示),接著回蝕平面化第四導電層,如圖 四F ( a )所示。第四導電層係由複晶矽或非晶矽所組成。這 裡值得一提的是,回蝕平面化第四導電層的深度約至第三 介電墊3 1 0 b的頂部。 圖四F ( a )顯示回蝕後之第四導電層3 1 1 a、3 1 1 b的表面 上成長薄複晶氧化層3 2 0 a、3 2 0 b,以氧化可能存留於場氧 化物層(FOX)上殘留的第四導電層。接著跨過薄複晶氧化 層3 2 0 a、3 2 0 b佈植與半導體基板之摻雜質相反型態的高劑 量摻雜質於第四導電層3 1 1 a 、3 1 1 b内,以作為淺高摻雜 源/洩擴散區的3 1 2a、3 1 2b之摻雜質的自動對準擴散源。 圖四F(b)係顯示共源線(B-B’)方向的剖面圖,其中回蝕後 之第四導電層3 1 1 a係作為自動定位共同源管線,其上成長Page 22 525298 V. Description of the invention (19) The surface of 3 0 1 a is high. FIG. 4E (a) shows that the second dielectric pad layer 3 1 0 a is formed on both sides of the gate structure of FIG. 4 D (a), and is placed on top of the thin penetrating dielectric layer 3 0 1 a. Hydrofluoric acid (HF) bubble immersion removes a thin penetrating dielectric layer 3 1 0 a other than the second dielectric pad layer 3 1 0 a. The surface of the common source line (B-B ') also remains flat, as shown in Figure 4E (b);: ¾ diffusion line (C-C') forms the structure shown in Figure 4E (c), The third dielectric pad layer 3 1 0 b is also formed on both sides of the field oxide layer and placed on top of the thin penetrating dielectric layer 301 a. However, because the thin penetrating dielectric layer is removed, the field oxide layer (FOX) is also etched to show a slight depression. The second and third dielectric pads 3 1 0 a and 3 1 0 b are composed of silicon nitride, and the formation method is the same as that of the first dielectric pad. Next, a thick fourth conductive layer 3 1 1 is deposited on the structure of FIG. 4A, and then the thick fourth conductive layer 3 1 1 is polished by a CMP method (not shown), and then the fourth conductive layer is etched back and planarized. , As shown in Figure 4F (a). The fourth conductive layer is composed of polycrystalline silicon or amorphous silicon. It is worth mentioning here that the depth of the etch-back planarized fourth conductive layer is about the top of the third dielectric pad 3 1 0 b. FIG. 4F (a) shows that a thin polycrystalline oxide layer 3 2 0 a, 3 2 0 b is grown on the surface of the fourth conductive layer 3 1 1 a, 3 1 1 b after the etch-back, and the oxidation may remain in the field oxide layer. (FOX) the remaining fourth conductive layer. Next, a high-dose dopant of the opposite type to that of the semiconductor substrate is implanted across the thin polycrystalline oxide layers 3 2 0 a and 3 2 0 b in the fourth conductive layer 3 1 1 a and 3 1 1 b. The 3 1 2a, 3 1 2b dopant auto-aligned diffusion source is used as the shallow highly doped source / drain diffusion region. F (b) in FIG. 4 is a cross-sectional view showing the direction of the common source line (B-B ′), in which the fourth conductive layer 3 1 1 a after the etch-back is used as an automatic positioning common source pipeline, and grows thereon.

第23頁 525298 五、發明說明(20) 之薄複晶氧化層3 2 0 a、3 2 0 b係作為離子佈植的犧牲氧化層 (s a c r i f i c i a 1 — 〇 X i d e )。圖四 F ( c )係顯示洩擴散線(c — c,) 的剖面圖,其中回蝕後之第四導電層3 1 1 a、3 1 1 b係置於兩 個第一介電墊層31〇a及兩個第三介電墊層310b之間的泡 ,散區3 0 9b上,以作為自動定位洩著陸島,並於其上成長 薄複晶氧化層3 2 0 b,以作為離子佈植的犧牲氧化層。 圖四G ( a )顯示圖四F ( a )的結構經快速熱退火後,於源 /浪擴散區3 0 9 a、3 0 9b内形成淺高摻雜源/洩擴散區312a 、312b’接著去除薄複晶氧化層32 0a、320b、3 2 0 C,然後 ,行自動對準矽化(self-aligned silicidation)製程。Page 23 525298 V. Description of the invention (20) The thin multicrystalline oxide layers 3 2 0 a and 3 2 0 b are sacrificial oxide layers implanted as ions (s a c r i f i c i a 1 — 0 x i d e). FIG. 4 F (c) is a cross-sectional view showing the leakage diffusion line (c — c,), in which the fourth conductive layer 3 1 1 a, 3 1 1 b after the etch-back is placed on the two first dielectric pad layers 31oa and two third dielectric pads 310b on the bubble and scattered area 3 009b as an automatic positioning of the landing island, and a thin polycrystalline oxide layer 3 2 0 b is grown on it as an ion cloth Planted sacrificial oxide layer. Figure 4G (a) shows that the structure of Figure 4F (a) is subjected to rapid thermal annealing to form shallow highly doped source / drain diffusion regions 312a, 312b 'in the source / wave diffusion regions 3 0a, 3 0b. Then, the thin polycrystalline oxide layers 32 0a, 320b, and 3 2 0 C are removed, and then a self-aligned silicidation process is performed.

1複,氧化層32 0a、32 0b、3 2 0c的去除可以利用稀釋的氣 I泡β或非等向性乾式蝕刻。自動對準矽化製程係先在於 =堆積折光金屬Μ ’接著在氮氣或氬氣的環境下、快速: =占自動定位茂著陸島及自動定位共同源管將 == 匕物層313a、313b,其餘未反應成秒化4 = 予/奋液加予去除。折光金屬係採用鈦(T = (=)、銦(M。)、鎳(Ni)、白金(Pt)或鎢(w)等。、’ 〇以 b)頌不自動定位共同源管線3Ua的棘回 313a’源擴散區3〇9a的表面形成淺高摻雜^:^夕化物 自,定位共同源管線3 1 1 a係置於淺高摻雜源声二:3 1 2a。 場氧化物層(F〇x)所形成的平坦床上,豆有二二區31 2a及 比傳統的埋層結構短得很多,因之大幅降長度將 相同的道理,自動定位共同源管線311ay\W的電阻; 的雜散電容及接面$電亦大幅的減少 體基板3〇〇 圖四G(〇顯示自動1 complex, the removal of the oxide layers 32 0a, 32 0b, and 3 2 0c can be made by diluting the gas I bubble β or anisotropic dry etching. The automatic alignment silicidation process is first to deposit the refracted metal M ′, and then quickly in the environment of nitrogen or argon: = occupying the automatic positioning Maodao Island and the automatic positioning common source tube will == dagger layer 313a, 313b, the rest Unreacted in seconds 4 = Pre / Fenji added to remove. Refractive metal system uses titanium (T = (=), indium (M.), nickel (Ni), platinum (Pt) or tungsten (w), etc.), '〇 to b) not automatically locate the common source pipeline 3Ua's spines Back to 313a ', the surface of the source diffusion region 309a forms a shallow highly doped material. The common source line 3 1 1 a is located at the shallow highly doped source sound 2: 3 1 2a. On the flat bed formed by the field oxide layer (Fox), the bean has two and two regions 31 2a and is much shorter than the traditional buried structure. Therefore, the length of the substantially reduced length will be the same, and the common source pipeline 311ay is automatically positioned. The resistance of W; the stray capacitance and interface power are also greatly reduced. Figure 4 G (0 shows automatic

第24頁 525298 五、發明說明(21)Page 24 525298 V. Description of the invention (21)

定位著陸島3 1 1 b的表面已轉換成矽化物3 1 3 b,而洩擴散 區3 0 9b的表面則形成淺高摻雜洩擴散區31 2b。自動定位茂 著陸島3 1 1 b不但解決淺擴散區的接觸問題,同時提供墊高 的接觸點來降低位元線之連結的深度,位元線的接觸洞口 3 2 1 b之尺寸亦可變小,進而提昇記憶陣列的密度。這裡值 得一提的是’自動定位共同源管線及自動定位洩著陸島均 可以利用即有的自動對準矽化技術將其全部轉換成矽化物 (未圖不)’自動定位共同源管線的管線電阻將可進一步降 低’且對源擴散區的接觸電阻亦可降低,而自動定位汽著 陸島對洩擴散區的接觸電阻亦可以降低。另外,對“⑽型 架構而言,細胞元係以共用源/洩擴散區方式串接,自動 定位著陸島的全矽化將可大幅降低細胞元的串接電阻。 接著在圖四G的結構上先形成一個平面化層間介電層 (interlayer dielectric; ILD)314a,然後利用一個罩幕The surface of the positioning landing island 3 1 1 b has been converted into silicide 3 1 3 b, while the surface of the leak diffusion region 3 9b forms a shallow highly doped leak diffusion region 31 2b. Automatically positioning Mao landing island 3 1 1 b not only solves the contact problem of the shallow diffusion zone, but also provides a heightened contact point to reduce the depth of the bit line connection. The size of the contact hole 3 2 1 b of the bit line is also variable. Smaller, thereby increasing the density of the memory array. It is worth mentioning here that 'automatically locate the common source pipeline and automatically locate the landing island can use the existing auto-alignment silicidation technology to convert all of them into silicide (not shown). The contact resistance to the source diffusion region can be further reduced, and the contact resistance of the auto-locating steam landing island to the leakage diffusion region can also be reduced. In addition, for the “⑽” type structure, the cell elements are connected in series by a common source / diffusion diffusion zone, and the fully silicified automatic positioning of the landing island will greatly reduce the cell resistance in series. Then on the structure of Figure 4G First form a planar interlayer dielectric (ILD) 314a, and then use a mask

光阻的步驟(未圖示)挖出與自動定位洩著陸島的接觸洞口 3 2 1 b,接著循序堆積薄的第一障礙金屬層3 1 5及厚的栓金 屬層3 1 6 ,並利用c Μ P或回蝕法加予平坦化,以形成圖二BThe photoresist step (not shown) excavates the contact opening 3 2 1 b with the automatic positioning of the landing island, and then sequentially deposits a thin first barrier metal layer 3 1 5 and a thick plug metal layer 3 1 6, and uses c MP or etch-back method to planarize to form Figure 2B

所示的第一障礙金屬層315 3及金屬栓(11^七&1011^)3163。 然後,再堆積薄的第二障礙金屬層3 1 7及第一連線金屬層 3 1 8 ’接著利用另一個罩幕光阻的步驟(未圖示)選擇性地 蝕刻第一連線金屬層3 1 8及第三障礙金屬層3 1 7來形成垂直 於字線的複數位元線3 1 8 a,如圖二B所示。圖二C係顯示共 源管線方向(B-B,)的剖面圖;圖二D係顯示洩擴散線方向 (C-C )的剖面圖;圖二E係顯示字線方向(D - D ’)的剖面圖 525298 五、發明說明(22) 。層間介電層3 1 4 a係由二氧化矽或摻雜質二氧化矽所組成 ,諸如純玻璃(g 1 a s s )、磷玻璃(P - g 1 a s s )或硼填玻璃(B P -g 1 a s s );第一和第二障礙金屬層係由折光金屬氮化物所 組成,諸如氮化欽(T i N )或氮化组(T a N );金屬检係由鶴 或鋁所組成;第一連線金屬層係由鋁、鋁矽銅合金或銅所 組成。 這裡值得注意的是,圖二A至圖二E係以NOR型架構之 疊堆閘式快閃記憶陣列為示範,其他熟知的疊堆閘式快閃 記憶陣列架構均可利用本發明的關鍵技術加予製造,以顯 現本發明所述之優點。另外,圖二A至圖二E所示之疊堆閘 式快閃細胞元均具有對稱的源/洩擴散區,對於常見之不 對稱源/洩擴散區的疊堆閘式細胞元而言,亦無需額外的 罩幕光阻步驟即能製造。 本發明雖特別以參考所附例子或内涵來圖示及描述, 但只是陳述而非限制。再者,本發明不侷限於所列之細節 ,對於熟知此種技術的人亦可瞭解,各種不同形狀或細節 的更動在不脫離本發明的真實精神和範疇下均可製造。 參考文獻 美國專利 4, 698, 787 10/1987 MukherjeeThe first barrier metal layer 3153 and the metal plug (11 ^ 7 & 1011 ^) 3163 are shown. Then, a thin second barrier metal layer 3 1 7 and a first connection metal layer 3 1 8 ′ are deposited, and then another first photoresist step (not shown) is used to selectively etch the first connection metal layer. 3 1 8 and the third barrier metal layer 3 1 7 to form a plurality of bit lines 3 1 8 a perpendicular to the word line, as shown in FIG. 2B. Fig. 2C is a cross-sectional view showing a common source pipeline direction (BB,); Fig. 2D is a cross-sectional view showing a leak diffusion line direction (CC); Fig. 2E is a cross-sectional view showing a word line direction (D-D ') 525298 V. Description of Invention (22). The interlayer dielectric layer 3 1 4 a is composed of silicon dioxide or doped silicon dioxide, such as pure glass (g 1 ass), phosphorous glass (P-g 1 ass), or boron filled glass (BP -g 1 ass); the first and second barrier metal layers are composed of refracted metal nitrides, such as nitride (T i N) or nitride group (T a N); the metal detector is composed of cranes or aluminum; A connection metal layer is composed of aluminum, aluminum silicon copper alloy or copper. It is worth noting here that FIGS. 2A to 2E are examples of stacked-gate flash memory arrays of the NOR type. Other well-known stacked-gate flash memory array architectures can use the key technology of the present invention. It is pre-manufactured to show the advantages of the present invention. In addition, the stacked gate flash cells shown in Figs. 2A to 2E have symmetrical source / drain diffusion regions. For the stacked gated cells in common asymmetric source / drain diffusion regions, It can also be manufactured without additional mask photoresist steps. Although the present invention is particularly illustrated and described with reference to the attached examples or connotations, it is only a statement and not a limitation. Furthermore, the present invention is not limited to the listed details. For those skilled in the art, it can be understood that changes of various shapes or details can be made without departing from the true spirit and scope of the present invention. References US Patent 4, 698, 787 10/1987 Mukherjee

第26頁 525298 五、發明說明(23) 5, 918, 141 6/1999 Merrill 6, 1 0 3, 5 74 8/2000 Iwasak i 6, 21 1,020 B1 4/2001 Tripsas et a 1. 6, 215, 145 B1 4/2001 Noble 6, 2 7 7, 6 9 3 B1 8/2001 Chen 其他發表文獻 S. Ar i tome, 丨’Advanced Flash Memory Technology and Trends for File Storage App 1 i cal :i on n, IEDM (2000), pp. 763〜766. J. D. Choi e t a 1 .,H A 0.15// m NAND Flash Technology With 0.11// m2 Cell Size for 1Gbit FlashPage 26 525298 V. Description of the invention (23) 5, 918, 141 6/1999 Merrill 6, 1 0 3, 5 74 8/2000 Iwasak i 6, 21 1,020 B1 4/2001 Tripsas et a 1. 6, 215, 145 B1 4/2001 Noble 6, 2 7 7, 6 9 3 B1 8/2001 Chen Other publications S. Ar i tome, 丨 'Advanced Flash Memory Technology and Trends for File Storage App 1 i cal: i on n , IEDM (2000), pp. 763 ~ 766. JD Choi eta 1., HA 0.15 // m NAND Flash Technology With 0.11 // m2 Cell Size for 1Gbit Flash

Memory", IEDM (2000), pp.767-770.Memory ", IEDM (2000), pp.767-770.

第27頁 525298 圖式簡单說明 圖一 A至圖一 D顯示先前技術的結構及剖面圖,其中圖 一 A顯示具有不對稱源/洩擴散區之疊堆閘式快閃記憶元 件的剖面圖;圖一 B係顯示具有對稱源/洩擴散區之疊堆 閘式快閃記憶元件的剖面圖;圖一 C係顯示埋層共源管線 跨過矽局部氧化隔離之槽溝的剖面圖;以及圖一 D係顯示 埋層共源管線跨過淺凹槽隔離之槽溝的剖面圖; 圖二A至圖二E係顯示本發明之疊堆閘式快閃記憶陣列 的結構及其剖面圖,其中圖二A係顯示本發明之NOR型架構 的上視圖;圖二B係顯示本發明之疊堆閘式快閃記憶細胞 元在通道長度方向(圖二A之A-A ’方向)的剖面圖;圖二C係 顯示本發明之共同源管線(CSBL)方向(圖二A之B-B’方向) 的剖面圖;圖二D係顯示本發明之洩擴散區線(DL)方向(圖 二A之C - C ’)的剖面圖;以及圖二E係顯示本發明之字線方 向(圖二A之D - D ’方向)的剖面圖; 圖三A至圖三I係顯示本發明之具有自動對準積體化漂 浮閘層之淺凹槽隔離結構的製程步驟及其剖面圖;以及 圖四 A、圖四 B(a)-(b)、圖四 C(a)-(c)、圖四 D(a)-( c)、圖四 E(a)-(c)、圖四 F(a)-(c)、圖四 G(a)-(c)係顯示 本發明之具有自動定位共同源管線及自動定位洩著陸島的 疊堆閘式快閃記憶陣列之製程步驟及其剖面圖。Page 525298 Brief Description of Drawings Figures 1A to 1D show the structure and cross-sectional views of the prior art, of which Figure 1A shows a cross-sectional view of a stacked gate flash memory device with asymmetric source / drain diffusion regions Figure 1B is a cross-sectional view of a stacked gate flash memory device with a symmetrical source / diffusion diffusion region; Figure 1C is a cross-sectional view showing a buried common source pipeline across a trench of local oxidation isolation of silicon; and Fig. 1D is a cross-sectional view showing a buried common source pipeline crossing a trench isolated by a shallow groove; Figs. 2A to 2E are diagrams showing a structure and a cross-sectional view of a stacked gate flash memory array according to the present invention. Figure 2A is a top view of the NOR-type architecture of the present invention; Figure 2B is a cross-sectional view of the stack gate flash memory cell of the present invention in the channel length direction (AA 'direction of Figure 2A); FIG. 2C is a cross-sectional view showing the direction of the common source pipeline (CSBL) of the present invention (direction BB ′ in FIG. 2A); FIG. C-C ') cross-sectional view; and FIG. 2E shows the zigzag direction of the present invention ( 2A, D-D 'direction); Figures 3A to 3I show the process steps and cross-sectional views of the shallow groove isolation structure of the present invention with an auto-aligned integrated floating gate layer; and Figure 4A, Figure 4B (a)-(b), Figure 4C (a)-(c), Figure 4D (a)-(c), Figure 4E (a)-(c), Figure 4 F (a)-(c) and Figure 4G (a)-(c) show the process steps of the stacked gate flash memory array with automatic positioning of the common source pipeline and automatic positioning of the landing island in the present invention and Sectional view.

第28頁Page 28

Claims (1)

5252 1. 覆^造疊 該方法至少 成具有複數 方法, 形 行主動區線的一個 中所述 導電層 的每一 氧化物 其 二導電 循 電層於 成 字線, 該閘間 導電層 面化場 數主要 該複數 以 透介電 該複數 稱共用 非 之複數平行 形成於薄穿 條均具有兩 堆閘式快閃記憶陣列於半導體基板上的 包含: 平行淺 淺凹槽 主動區線的每一條均具有一個主要第 透介電 個延伸 凹槽隔離線及介於其間之複數平 隔離結構於該半導體基板上’其 層上及該複數平行淺凹槽隔離線 第二導電層形成於一個平面化場 層上的每一側邊; 中所 層電 序地 該淺 形與 並循 介電 之厚 氧化 第一 平行 自動 層佈 平行 源/ 等向 述之主 氣連接 形成閘 凹槽隔 該複數 序地I虫 層及該 度,其 物層上 導電層 主動區 對準方 植與半 主動區 擴散 性地回 要第一 成一個 間介電 離結構 平行淺 刻該第 自動對 中所述 的複數 被部份 線上仍 式跨過 導體基 線的半 區, I虫所指 導電 自動 層、 上; 凹槽 二罩 準積 之複 延伸 I虫刻 有複 該複 板之 導體 層係與兩 對準積體 第三導電 隔離 幕介 體化 數平 第二 ,並 數存 數存 摻雜 基板 線互 電層 漂浮 行字 導電 於該 留第 留第 質型 内, 個鄰近之該延伸第 化漂浮閘層; 層、及第二罩幕介 為垂 、該 閘層 線外 層均 複數 一導 一導 態相 以形 直之複 第三導 至該延 之置於 被去除 平行字 電層; 電層及 反的摻 成複數 數平行 電層、 伸第二 複數平 ,而複 線外之 該薄穿 雜質至 第一對 定之共同管線上的該複數平面化1. Overlay this method to have at least a plurality of methods, each oxide of the conductive layer in one of the active area lines is formed, and the second conductive conductive layer is formed on a word line, and the number of conductive layered fields between the gates is Mainly, the plurality is formed through the dielectric, the plurality is called a common non-parallel, and the thin through-bars each have two stacks of gate-type flash memory arrays on a semiconductor substrate. Each of the parallel shallow and shallow groove active area lines has A main dielectric first extension groove isolation line and a plurality of flat isolation structures therebetween are formed on the semiconductor substrate and its plurality of parallel shallow groove isolation lines. A second conductive layer is formed in a planarized field layer. The shallow shape is electrically connected in series with the first parallel automatic layer cloth parallel to the dielectric thick oxide layer in parallel to the source / isotropic main gas connection to form a gate groove to isolate the complex sequence. The insect layer and the degree, the conductive layer on the physical layer is aligned with the active area of the square plant and the semi-active area diffusely to the first to form an inter-dielectric ionization structure in parallel. The complex number described in the above section still crosses the semi-conductor's baseline on the conductor, and the worm guides the electric automatic layer. The worm is covered with a complex extension of the quasi-product. The worm is engraved with the conductor layer of the complex plate. The third conductive isolation screen is aligned with the two, and the mediator is flat and the second, and the doped substrate line and the mutual electric layer are floating. The conductive lines are electrically conductive in the left-quality type, and adjacent to the extension. The first floating gate layer; the layer and the second screen are vertical, and the outer layer of the gate line has a plurality of leads and a conducting phase in a straight shape and a third lead to the extension and is placed in the parallel parallel electric layer. ; The electrical layer and the reverse doped with a plurality of parallel electrical layers, extending a second complex plane, and the thin penetrating impurities outside the complex line to the complex plane of the first pair of common pipelines 第29頁 525298 六、申請專利範圍 場氧化物層至約等於該複數存留第一導電層厚度的深度, 然後以自動對準方式非等向性地去除該複數存留第一導電 層; 形成第二介電墊層於該複數平行字線的邊牆,並同時 形成第三介電墊層於未經去除之該複數平面化場氧化物層 的邊牆; 以自動對準方式去除該複數平行主動區線之該半導體 基板上的該薄穿透介電層,並同時蝕刻該複數平行淺凹槽 隔離線上之該複數平面化場氧化物層,在該指定之共同管 線的每一線上形成一個平坦床面並暴露複數共用源/洩接 觸洞口; 將複數第四導電層置於該複數平坦床面上以作為複數 自動定位共同管線並同時置於該複數共用源/洩接觸洞口 上以作為複數自動定位共用源/泡著陸島; 佈植與半導體基板之摻雜質型態相反的高劑量摻雜質 於該複數第四導電層内,以作為形成複數淺高摻雜源/洩 擴散區於該複數第一對稱源/洩擴散區内之自動對準摻雜 質擴散源;以及 自動對準矽化該複數自動定位共同管線及該複數自動 定位源/泡著陸島,以形成複數自動對準石夕化物層。 2. 如申請專利範圍第1項所述之方法,該方法更包含 形成平面化層間介電層於所形成的結構上,然後在所Page 29 525298 6. Apply for a patent application Field oxide layer to a depth approximately equal to the thickness of the plurality of retained first conductive layers, and then anisotropically remove the plurality of retained first conductive layers in an automatic alignment manner; form a second A dielectric pad is formed on the side wall of the plurality of parallel word lines, and a third dielectric pad is formed on the side wall of the plurality of planarized field oxide layers without being removed; the plurality of parallel active layers are removed in an automatic alignment manner. The thin penetrating dielectric layer on the semiconductor substrate of the area line and simultaneously etches the plurality of planarized field oxide layers on the plurality of parallel shallow groove isolation lines to form a flat surface on each line of the designated common pipeline The surface of the bed is exposed with a plurality of common source / drain contact openings; a plurality of fourth conductive layers are placed on the plurality of flat bed surfaces as a plurality of automatically positioned common pipelines and simultaneously placed on the plurality of common source / drain contact openings as a plurality of automatic Positioning a common source / bubble landing island; implanting a high-dose dopant of the opposite type to that of the semiconductor substrate in the plurality of fourth conductive layers to form a plurality Automatic alignment of dopant diffusion sources in highly doped source / drain diffusion regions within the plurality of first symmetrical source / drain diffusion regions; and automatic alignment of silicified common automatic positioning common pipelines and the plural automatic positioning sources / bubbles landing Islands to form a plurality of self-aligned layers 2. The method described in item 1 of the scope of patent application, which further comprises forming a planarized interlayer dielectric layer on the formed structure, and then 第30頁 525298 六、申請專利範圍 指定之複數矽化之自動定位共用源/洩著陸島上形成複數 自動對準接觸洞,其中所述之複數自動對準接觸洞的每一 個洞均填滿第一障礙金屬所圍住的平面化金屬栓; 循序地形成第二障礙金屬層和第一連線金屬層於該平 面化層間介電層、複數平面化金屬栓、和複數第一障礙金 屬層上,以及 成形和非等向性地蝕刻該第一連線金屬層和該第二障 礙金屬層,以形成複數平行位元線於該複數平行主動區線 的上方。 3.如申請專利範圍第1項所述之方法,其中所述之淺 凹槽隔離結構係經由如下方法來製造,該方法至少包含: 循序地形成該薄穿透介電層、該第一導電層、及第一 罩幕氮化矽層於該半導體基板上,以形成一個複層結構; 成形該複層結構來定義該複數平行主動區線,並非等 向性地蝕刻該複層結構及半導體基板,以形成複數平行淺 凹槽; 氧化該複層結構之蝕刻後的邊牆和該複數平行淺凹槽 之蝕刻後的半導體表面,然後堆積厚的二氧化矽膜來填滿 該複數平行淺凹槽所形成的空隙,接著利用回蝕或化學一 機械研磨法將該厚的二氧化矽膜加予平坦化,以形成複數 平面化場氧化物層,並以第一罩幕氮化矽層作為研磨停止 層; 非等向性地回蝕該複數平面化場氧化物層至稍大於該Page 30 525298 VI. A plurality of siliconized automatic positioning common source / discharge landing islands specified in the scope of patent application form a plurality of automatic alignment contact holes, wherein each of the plurality of said automatic alignment contact holes fills the first obstacle A planarized metal plug surrounded by metal; sequentially forming a second barrier metal layer and a first connection metal layer on the planarized interlayer dielectric layer, a plurality of planarized metal plugs, and a plurality of first barrier metal layers, and Forming and anisotropically etching the first connecting metal layer and the second barrier metal layer to form a plurality of parallel bit lines above the plurality of parallel active area lines. 3. The method according to item 1 of the scope of patent application, wherein the shallow groove isolation structure is manufactured by the following method, the method at least comprises: sequentially forming the thin penetrating dielectric layer, the first conductive layer Layer and a first mask silicon nitride layer on the semiconductor substrate to form a multilayer structure; forming the multilayer structure to define the plurality of parallel active area lines does not etch the multilayer structure and the semiconductor isotropically A substrate to form a plurality of parallel shallow grooves; oxidize the etched sidewall of the multilayer structure and the etched semiconductor surface of the plurality of parallel shallow grooves; and then deposit a thick silicon dioxide film to fill the plurality of parallel shallow grooves The gap formed by the groove is then planarized by etch back or chemical-mechanical polishing to form a thick planarized field oxide layer, and a first mask silicon nitride layer is formed. As a polishing stop layer; anisotropically etch back the complex planarized field oxide layer to a little larger than the 第31頁 525298 六、申請專利範圍 用化層 小 和 刻電物 形構 利坦矽 或 牆 蝕導化 以結 著平化 於 邊 為二氧 ,離 接予氮 等 的 作第化 層隔 ,加幕 至 層 層化面 墊槽 隙膜罩 層 矽 墊面平 矽凹 空電一 電 化 碎平數 化淺 的導第 導 氮 化數複 氮該 後二以 二 幕 氮複該 一的 餘第並 第·,罩 一之於 第層 回的, 化度一 ·,第#層及該閘 •,滿厚層 面深第上該回電以和浮 度填該電 平的該層和該導;層漂 深來將導 數度於電層刻二邊發化 的膜法二 複厚層導矽蝕第侧化體 度電磨第 該層塾二化地伸個氮積 厚導研化#^碎第氮性延兩幕準 層二械面。回化化化幕向個的罩對 碎第機平層地氮氮面罩等兩面一動 化的一數止性幕一平一非該上第自 氮厚學複停向罩第數第,成個該數 幕積化成磨等一成複該幕形一除複 罩堆或形研非第形之藉罩以每去有 一 餘以為 該#質,之 具 第回,作 於 回 硬層層 成。 4 ·如申請專利範圍第1項所述之方法,其中所述之淺 凹槽隔離結構係經由如下方法來製造,該方法至少包含: 循序地形成該薄穿透介電層、該第一導電層、和第一 罩幕氮化矽層於該半導體基板上,以形成一個複層結構; 成形該複層結構來定義該複數平行主動區線,並非等 向性地蝕刻該複層結構; 形成二氧化矽墊層於蝕刻後之複層結構的邊牆和該半Page 31 525298 6. The scope of the application for a patent is to use a small layer and an electrically-etched material to form lithium silicon or wall erosion to conduct flattening to the edge as dioxygen and separate nitrogen and other layers as the first spacer. Add the curtain to the layered surface pad, the slot film, the silicon layer, the flat silicon cavity, the electrocavity, the electrochemical breakup, and the shallow conduction. And the first layer, the first layer of the cover, the first degree, the first layer and the gate, the full thickness of the first layer of the circuit and the floating fill the level of the layer and the guide; The depth of the layer is used to etch the derivative on the electrical layer. The two-layer thick layer is used to conduct silicon etching. The lateralization volume is electromilled. The second layer is stretched to form a nitrogen product. The second nitrogen extended two scenes of the quasi-layer and two-machine surface. The reversion of the curtain to the number of masks on the two planes, such as the nitrogen and nitrogen masks, which are activated on both sides, is a number of tentative curtains, one is flat, and the other is not the first. The number of scenes accumulated into a grind, etc. One after the other, the shape of the screen, except for the complex mask pile or the shape of the non-form borrowing mask, every time there is more than one thought that the # quality, the first time, made back to the hard layer. 4. The method according to item 1 of the scope of patent application, wherein the shallow groove isolation structure is manufactured by a method including at least: sequentially forming the thin penetrating dielectric layer and the first conductive layer Layer, and a first mask silicon nitride layer on the semiconductor substrate to form a multilayer structure; forming the multilayer structure to define the plurality of parallel active area lines, rather than isotropically etching the multilayer structure; forming Side wall of the multi-layer structure of the silicon dioxide cushion layer after the etching and the half 第32頁 525298 六、申請專利範圍 導體基板上,接著非等向性地蝕刻該半導體基板,以形成 複數平行淺凹槽; 氧化該複數平行淺凹槽之飯刻後的半導體表面,然後 堆積厚的二氧化矽膜來填滿該複數平行淺凹槽,接著利用 回钱或化學一機械研磨法將該厚的二氧化石夕膜加予平坦化 ,以形成複數平面化場氧化物層,並以第一罩幕氮化矽層 作為研磨停止層; 非等向性地回蝕該複數平面化場氧化物層至稍大於該 第一罩幕氮化石夕層厚度的深度; 堆積厚的第二導電膜來填滿回蝕後的空隙,接著利用 回蝕或化學一機械研磨法將該厚的第二導電膜加予平坦化 ,以形成複數平面化第二導電層,並以第一罩幕氮化矽層 作為研磨停止層; 非等向性地回蝕該複數平面化第二導電層至等於或小 於該第一罩幕氮化矽層厚度的深度; 形成第一氮化矽墊層於該第一罩幕氮化矽層的邊牆和 回蝕之複數平面化第二導電層上; 藉該第一罩幕氮化矽層和該第一氮化矽墊層作為蝕刻 硬質罩幕,非等向性地蝕刻該回蝕之複數平面化第二導電 層,以形成該兩個延伸第二導電層於該回餘之複數平面化 氧化物層之每一個上面的兩個側邊;以及 去除該第一罩幕氮化矽層和該第一氮化矽墊層,以形 成具有複數自動對準積體化漂浮閘層的該淺凹槽隔離結構Page 32 525298 VI. Patent application scope Conductor substrate, and then anisotropically etch the semiconductor substrate to form a plurality of parallel shallow grooves; oxidize the semiconductor surface after the meal of the plurality of parallel shallow grooves, and then deposit Silicon dioxide film to fill the plurality of parallel shallow grooves, and then use the money back or chemical-mechanical polishing method to planarize the thick dioxide film to form a complex planarized field oxide layer, and The first mask silicon nitride layer is used as a polishing stop layer; the multiple planarization field oxide layer is anisotropically etched back to a depth slightly larger than the thickness of the first mask nitride layer; The conductive film is used to fill the gap after the etch-back, and then the thick second conductive film is planarized by etch-back or chemical-mechanical polishing to form a plurality of planarized second conductive layers, and a first mask is used. The silicon nitride layer is used as a polishing stop layer; the plurality of planarized second conductive layers are anisotropically etched back to a depth equal to or smaller than the thickness of the first mask silicon nitride layer; a first silicon nitride pad layer is formed on The first hood The side wall of the curtain silicon nitride layer and the plurality of etched back planarized second conductive layers; the first mask silicon nitride layer and the first silicon nitride pad layer are used as an etching hard mask, anisotropic Etch the etched back plurality of planarized second conductive layers to form two sides of the two extended second conductive layers above each of the remaining plurality of planarized oxide layers; and remove the first Mask a silicon nitride layer and the first silicon nitride pad layer to form the shallow groove isolation structure with a plurality of automatic alignment integrated floating gate layers 第33頁 525298 六、申請專利範圍 5. 如申請專利範圍第1項所述之方法,其中所述之薄 穿透介電層係熱氧化矽層或氮化熱氧化矽層,而該閘間介 電層係二氧化矽-氮化矽-二氧化矽(ΟΝΟ)或氮化矽-二氧化 石夕的複合介電層。 6. 如申請專利範圍第1項所述之方法,其中所述之第 一導電層、該第二導電層或該第四導電層係由複晶矽或非 晶矽所組成。 7. 如申請專利範圍第1項所述之方法,其中所述之第 三導電層係由金屬/障礙金屬/摻雜複晶或非晶矽的複合 導電層所組成,該金屬係由南溶點金屬所組成’諸如鶴, 而該障礙金屬係由折光金屬氮化物所組成,諸如氮化鈥( TiN)或氮化钽(TaN)。 8. 如申請專利範圍第1項所述之方法,其中所述之第 三導電層係由矽化物/障礙金屬/摻雜複晶或非晶矽的複 合導電層所組成,該矽化物係由折光金屬矽化物所組成, 諸如石夕化鐫;而該障礙金屬係由折光金屬氮化物所組成, 諸如氮化鈦(T i N )或氮化组(T a N )。 9. 如申請專利範圍第1項所述之方法,其中所述之第 二介電墊層或該第三介電墊層係由氮化石夕所組成,而該第525298, page 33. Application scope of patent 5. The method as described in item 1 of the scope of patent application, wherein the thin penetrating dielectric layer is a thermal silicon oxide layer or a nitrided thermal silicon oxide layer, and the gate The dielectric layer is a silicon dioxide-silicon nitride-silicon dioxide (ONO) or silicon nitride-stone dioxide composite dielectric layer. 6. The method according to item 1 of the scope of patent application, wherein the first conductive layer, the second conductive layer, or the fourth conductive layer is composed of polycrystalline silicon or amorphous silicon. 7. The method according to item 1 of the scope of patent application, wherein the third conductive layer is composed of a metal / barrier metal / doped polycrystalline or amorphous silicon composite conductive layer, and the metal is composed of The point metal is composed of, for example, a crane, and the barrier metal is composed of a refractive metal nitride, such as nitride (TiN) or tantalum nitride (TaN). 8. The method according to item 1 of the scope of patent application, wherein the third conductive layer is composed of a silicide / barrier metal / doped polycrystalline or amorphous silicon composite conductive layer, and the silicide is composed of Refractive metal silicides, such as Shi Xihua, and the barrier metal is composed of refractive metal nitrides, such as titanium nitride (T i N) or nitride group (T a N). 9. The method according to item 1 of the scope of patent application, wherein said second dielectric pad or said third dielectric pad is composed of nitride nitride, and said first 525298 六、申請專利範圍 二罩幕介電層係由矽氧氮化物或氮化矽/二氧化矽所組成 1 0 .如申請專利範圍第1項所述之方法,其中所述之複 數自動定位共同管線或該複數自動定位共用源/洩著陸島 係經由如下方法來製造,該方法至少包含: 堆積厚的第四導電膜於所形成的結構,525298 6. The scope of the patent application. The second mask dielectric layer is composed of silicon oxynitride or silicon nitride / silicon dioxide. 10. The method according to item 1 of the scope of patent application, wherein the plural number is automatically positioned. The common pipeline or the plurality of automatic localization common source / discharge landing islands is manufactured by the following method, which at least includes: depositing a thick fourth conductive film on the formed structure, 藉回蝕或化學一機械研磨法平坦化該厚的第四導電膜 ,並以該第二罩幕介電層作為研磨停止層,以形成複數平 面化第四導電層;以及 回蝕該複數平面化第四導電層至約等於該第三介電墊 層之頂端的水平。 1 1.如申請專利範圍第1項所述之方法,其中所述之複 數自動對準矽化物層形成於該複數自動定位共同管線或該 複數自動定位共用源/洩著陸島係折光金屬矽化物所組成 ,諸如石夕化鈦(T i S i 2)、石夕化钻(C〇S i 2)、石夕化錄(N i S i 2)、 矽化鉬(MoSi2)、矽化钽(TaSi2)、矽化鉑(PtSi2)或矽化鎢 (WSi2)等。Planarize the thick fourth conductive film by etch back or chemical-mechanical polishing, and use the second mask dielectric layer as a polishing stop layer to form a plurality of planarized fourth conductive layers; and etch back the plurality of planes The fourth conductive layer is formed to a level approximately equal to the top of the third dielectric pad layer. 1 1. The method according to item 1 of the scope of patent application, wherein the plurality of automatic alignment silicide layers are formed on the plurality of automatic positioning common pipelines or the plurality of automatic positioning common source / discharge landing island-based refractive metal silicides. Composition, such as Titanium Silicate (T i S i 2), Titanium Silicate (CoS i 2), Nishi Sulfur (N i S i 2), Molybdenum Silicide (MoSi2), TaSi2 (TaSi2 ), Platinum silicide (PtSi2) or tungsten silicide (WSi2), etc. 1 2 .如申請專利範圍第1項所述之方法,其中所述之複 數自動定位共同管線或該複數自動定位共用源/洩著陸島 係藉堆積厚的折光金屬層或改變自動對準石夕化製程中之退 火溫度或時間來完全轉換成厚的矽化物層。1 2. The method according to item 1 of the scope of patent application, wherein the plurality of automatic positioning common pipelines or the plurality of automatic positioning common source / discharge landing islands are formed by depositing a thick layer of refracted metal or changing automatic alignment to Shi Xi The annealing temperature or time in the chemical process is completely converted into a thick silicide layer. 第35頁 525298 六、申請專利範圍 1 3 .如申請專利範圍第2項所述之方法,其中所述之第 一障礙金屬層或該第二障礙金屬層係由折光金屬氮化物所 組成,諸如氮化欽(T i N )或氮化组(T a N )。 1 4 .如申請專利範圍第2項所述之方法,其中所述之栓 金屬係由鐵或銘所組成,而該第一連線金屬層係由銘、I呂 矽銅合金或銅所組成。 15. 一 的方法,該 形成具 槽隔離線, 個主漂浮閘 槽隔離線的 化場氧化物 其中所 電氣連接成 形成複 線上使複數 中所述之複 閘層; 形成該 擴散區, 種製 方法 有複 其中 層置 每一 層之 述之 一個 數疊 平行 數平 造豐堆閘 至少包含 數平行主 所述之複 於薄穿透 條均有兩 上的兩個 主漂浮閘 自動對準 堆閘式快 字線與該 行字線的 式快閃記 動區線位 數平行主 介電層之 個延伸漂 侧邊; 層係與相 積體化漂 閃記憶細 複數平行 憶陣列於半導體基板上 於其間之複數平行淺凹 動區線的每一條均有一 上,而該複數平行淺凹 浮閘層形成於一個平面 鄰之該兩個延伸漂浮閘 浮閘; 胞元於複數平行主動區 主動區線相互垂亩’其 每一條至少包含一個連續的控制 複數疊堆閘式快閃記憶細胞元的複數共用源Page 35, 525298 6. Application for patent scope 1 3. The method as described in item 2 of the patent application scope, wherein the first barrier metal layer or the second barrier metal layer is composed of a refractive metal nitride, such as Nitride (T i N) or nitride group (T a N). 14. The method as described in item 2 of the scope of patent application, wherein the bolt metal is composed of iron or Ming, and the first connection metal layer is composed of Ming, I-Si-Cu alloy or copper . 15. A method of forming a slotted isolation line, a chemical field oxide of the main floating gate slot isolation line, wherein all of the chemical field oxides are electrically connected to form a complex gate layer as described in the complex line; forming the diffusion region, and seeding The method consists of stacking a number of parallel and flat numbering piles in each layer, including at least a few parallels. The main floating gates, which have two on the thin penetrating strip, are automatically aligned with the stack gate type. The number of lines of the fast flash line and the flash line of the row word line are parallel to one extended drift side of the main dielectric layer; the layer system and the phase-integrated flash memory are stored in a thin and complex parallel array on the semiconductor substrate in between. Each of the plurality of parallel shallow concave moving area lines has one on it, and the plurality of parallel shallow concave concave floating gate layers are formed on a plane adjacent to the two extended floating gate floating gates; 'Mu', each of which contains at least one continuous control complex stacked gate flash memory cell multiple shared source 第36頁 525298 六、申請專利範圍 依所指定之記憶陣列架構於所指定之共同管線上形成 由該複數共用源/洩擴散區和複數平面化場氧化物層所組 成的複數平坦化床面; 形成複數矽化之自動定位共同管線於所指定之該複數 平坦化床面及形成複數矽化之自動定位共用源/洩著陸島 於所指定之該複數共用源/洩擴散區; 形成複數平行位元線與該複數平行字線相互垂直,其 中所述之複數平行位元線係透過平面化厚的層間介電層中 所形成的複數自動對準接觸洞,依該指定之記憶陣列架構 與所指定之該複數矽化之自動定位共用源/洩著陸島連接 1 6 .如申請專利範圍第1 5項所述之方法,其中所述之 自動對準積體化漂浮閘層係由複晶矽或非晶矽所組成且佈 植與該半導體基板之掺雜質型態相反的高劑量摻雜質。 1 7 .如申請專利範圍第1 5項所述之方法,其中所述之 連續的控制閘層係由金屬/障礙金屬/摻雜複晶或非晶矽 或石夕化物/障礙金屬/摻雜複晶或非晶石夕所組成,該金屬 係由鐫所組成,該石夕化物係由石夕化鶴所組成,而該障礙金 屬係由氮化鈦(TiN)或氮化钽(TaN)所組成。 1 8 .如申請專利範圍第1 5項所述之方法,其中所述之 複數自動定位共同管線或該複數自動定位共用源/洩著陸Page 36 525298 6. The scope of the patent application is based on the specified memory array structure to form a complex planarized bed surface composed of the complex shared source / drain diffusion region and the complex planarization field oxide layer on the designated common pipeline; Forming a plurality of silicified automatic positioning common pipelines on the specified plurality of flattened beds and forming a plurality of silicified automatic positioning common sources / discharge landing islands on the specified plurality of common source / discharge diffusion regions; forming a plurality of parallel bit lines It is perpendicular to the plurality of parallel word lines, wherein the plurality of parallel bit lines are automatically aligned with the contact holes through a plurality of planarized thick interlayer dielectric layers, according to the specified memory array structure and the specified The multiple silicified automatic positioning common source / discharge landing island connection 16. The method as described in item 15 of the scope of patent application, wherein the automatic alignment integrated floating gate layer is made of polycrystalline silicon or amorphous A high-dose dopant composed of silicon and implanted with a type opposite to that of the semiconductor substrate. 17. The method according to item 15 of the scope of patent application, wherein said continuous control gate layer is composed of metal / barrier metal / doped polycrystalline or amorphous silicon or petrochemical / barrier metal / doped It is composed of polycrystalline or amorphous stone, the metal is composed of thorium, the stone is composed of Shixi Chemical Crane, and the barrier metal is made of titanium nitride (TiN) or tantalum nitride (TaN) Composed of. 18. The method according to item 15 of the scope of patent application, wherein said plural automatic positioning common pipelines or said plural automatic positioning common source / discharge landings 第37頁 525298 六、申請專利範圍 島係由複晶或非晶碎所組成且佈植與該半導體基板之換雜 質型態相反的高劑量摻雜質,以作為形成複數淺高摻雜源 /洩擴散區的自動對準摻雜質擴散源。 1 9 .如申請專利範圍第1 5項所述之方法,其中所述之 複數自動定位共同管線或該複數自動定位共用源/洩著陸 島可以利用熟知的自動對準矽化製程加予部份或全部矽化 ,而該矽化物係由折光金屬矽化物所組成,諸如矽化鈦( TiSi 2)、石夕4匕姜古(CoSi 2)、石夕4匕I旦(TaSi 2)、石夕4匕I目(MoSi 2) 、矽化鎳(NiSi2)、矽化鉑(PtSi2)或矽化鎢(WSi2)等。 20. 一 的方法,該 形成複 線之間 隔離 上之 線作 胞元 層, 薄穿 個平 戌擴 該複數 為一條 的每一 而該自 透介電 面化場 形成該 種製造 方法至 數疊堆 所形成 疊堆閘 字線加 個細胞 動對準 層之上 氧化物 複數疊 疊堆閘式 少包含: 閘式快閃 的複數平 式快閃記 予連接, 元至少包 積體化漂 及位於側 層之上; 堆閘式快 快閃記憶陣列於半導體基板上 記憶細胞元於複數平行淺凹槽 行主動區線上,其中每一個列 憶細胞元係由一條連續控制閘 且該複數疊堆閘式快閃記憶細 含一個自動對準積體化漂浮閘 浮閘係由一個主漂浮閘層置於 邊之兩個延伸漂浮閘層置於兩 閃記憶細胞元的複數共用源/ 散區, 依所指定之記憶陣列架構形成複數平坦床面於所指定Page 37 525298 6. The scope of the patent application The island is composed of complex crystals or amorphous fragments and is implanted with a high-dose dopant that is opposite to the impurity type of the semiconductor substrate to form a plurality of shallow highly doped sources / Automatically aligning the dopant diffusion source with the leak diffusion region. 19. The method as described in item 15 of the scope of patent application, wherein the plurality of automatic positioning common pipelines or the plurality of automatic positioning common source / discharge landing islands can be added to a part or All silicides, and the silicide is composed of refracted metal silicides, such as titanium silicide (TiSi 2), Shi Xi 4 Ding Jiang Gu (CoSi 2), Shi Xi 4 D I (Dan Si 4), Shi Xi 4 D I mesh (MoSi 2), nickel silicide (NiSi2), platinum silicide (PtSi2) or tungsten silicide (WSi2), etc. 20. A method of forming a line on the isolation between the complex lines as a cell layer, thinning a flattened expansion of each of the complex number to one, and the self-transmitting dielectric planarization field forming the manufacturing method to several stacks The stack gate word line formed by the reactor plus a cell dynamic alignment layer on top of the oxide complex stack gate include: a gate flash, a plurality of flat flashes are connected, and the element is at least inclusive Above the side layer; a stack gate type flash memory array on a semiconductor substrate memorizing cells on the active area line of a plurality of parallel shallow grooves, wherein each column memory cell is controlled by a continuous control gate and the plurality of stacked gates The flash memory contains a self-aligning integrated floating gate. The floating gate is composed of a main floating gate on the side and two extended floating gates on the two flash memory cells. The specified memory array structure forms a plurality of flat beds on the specified 第38頁 525298 六、申請專利範圍 之共同管線的該複數共用源/洩擴散區及複數平面化場氧 化物層上; 形成複數自動定位共同‘管線於該複數平坦床面上及形 成複數自動定位共用源/洩著陸島於該複數共用源/洩擴 散區上,其中所述之複數自動定位共同管線或該複數自動 定位共用源/洩著陸島係佈植與半導體基板之摻雜質型態 相反的高劑量摻雜質,以作為形成複數淺高摻雜源/洩擴 散區的自動對準摻雜質擴散源; 執行自動對準矽化製程並將該複數自動定位共同管線 及該複數自動定位共用源/洩著陸島部份或全部轉換成複 數自動對準矽化物層,其中所述之複數自動對準矽化物層 係由折光金屬矽化物所組成;以及 形成複數平行位元線於該複數平行主動區線上方,其 中所述之複數平行位元線係依該指定之記憶陣列架構,透 過平面化厚的層間介電層中所形成之複數自動對準接觸洞 與所指定之複數矽化之自動定位共用源/洩著陸島連接。Page 38 525298 VI. The common shared source / diffusion diffusion zone and complex planarization field oxide layer of the common pipeline in the scope of patent application; forming a complex automatic positioning common 'pipeline on the complex flat bed and forming a complex automatic positioning The common source / discharge landing island is located on the plurality of common source / discharge diffusion regions, wherein the plurality of automatically positioned common pipelines or the plurality of automatically positioned common source / discharge landing islands are arranged opposite to the doped type of the semiconductor substrate. High-dose dopants for automatic alignment of dopant diffusion sources forming a plurality of shallow high dopant sources / diffusion diffusion regions; perform an auto-alignment silicidation process and share the complex automatic positioning common pipeline and the complex automatic positioning The source / drain landing island is partially or fully converted into a complex auto-aligned silicide layer, wherein the complex auto-aligned silicide layer is composed of a refracted metal silicide; and a plurality of parallel bit lines are formed in the plurality of parallel Above the active area line, the plurality of parallel bit lines are formed by planarizing the thick interlayer dielectric layer according to the specified memory array architecture. The formed plurality of auto-aligned contact holes are connected to the designated multiple silicified auto-location common source / discharge landing island. 第39頁Page 39
TW90127476A 2001-11-05 2001-11-05 Manufacturing method of stacked-gate flash memory array TW525298B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90127476A TW525298B (en) 2001-11-05 2001-11-05 Manufacturing method of stacked-gate flash memory array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90127476A TW525298B (en) 2001-11-05 2001-11-05 Manufacturing method of stacked-gate flash memory array

Publications (1)

Publication Number Publication Date
TW525298B true TW525298B (en) 2003-03-21

Family

ID=28450671

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90127476A TW525298B (en) 2001-11-05 2001-11-05 Manufacturing method of stacked-gate flash memory array

Country Status (1)

Country Link
TW (1) TW525298B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794564A (en) * 2012-10-26 2014-05-14 李迪 Semiconductor structure and manufacturing method thereof
CN103839892A (en) * 2012-11-26 2014-06-04 李迪 Semiconductor structure and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794564A (en) * 2012-10-26 2014-05-14 李迪 Semiconductor structure and manufacturing method thereof
CN103839892A (en) * 2012-11-26 2014-06-04 李迪 Semiconductor structure and manufacturing method thereof
CN103839892B (en) * 2012-11-26 2016-08-10 李迪 A kind of semiconductor structure and manufacture method thereof

Similar Documents

Publication Publication Date Title
US6689658B2 (en) Methods of fabricating a stack-gate flash memory array
JP4065414B2 (en) Self-aligned method for forming a semiconductor memory array of floating gate memory cells with buried source lines and floating gates and memory array made thereby
TW535242B (en) Methods of fabricating a stack-gate non-volatile memory device and its contactless memory arrays
KR100608407B1 (en) Method for producing metallic bit lines for memory cell arrays, method for producing memory cell arrays and memory cell arrays
TWI264115B (en) Self-aligned split-gate NAND flash memory and fabrication process
TW569437B (en) Nonvolatile memory structures and fabrication methods
JP2004530296A5 (en)
US6211012B1 (en) Method of fabricating an ETOX flash memory
JP2005228786A (en) Semiconductor memory and its manufacturing method
US6967372B2 (en) Semiconductor memory array of floating gate memory cells with vertical control gate sidewalls and insulation spacers
US6855599B2 (en) Fabrication method of a flash memory device
JP5016761B2 (en) Self-aligned method for forming a semiconductor memory array of floating gate memory cells with partially protruding control gates and memory array made thereby
JP4354596B2 (en) Semiconductor memory device manufacturing method and semiconductor memory device
JP2006526284A (en) Bit line structure and manufacturing method thereof
US7368350B2 (en) Memory cell arrays and methods for producing memory cell arrays
TW525298B (en) Manufacturing method of stacked-gate flash memory array
US20040079984A1 (en) Polysilicon self-aligned contact and a polysilicon common source line and method of forming the same
TWI415248B (en) Non-volatile memory device and method of the same
TWI220570B (en) Scalable split-gate flash cell structure and its contactless flash memory arrays
TW567611B (en) A scalable split-gate flash memory cell structure and its contactless flash memory arrays
TW561591B (en) A stack-gate flash memory cell structure and its contactless flash memory arrays
JP2004253474A (en) Nonvolatile semiconductor memory and its fabricating process
TWI232580B (en) Scalable paired stack-gate flash cell structure and its contactless NOR-type flash memory array
TW527725B (en) A scalable dual-bit flash memory cell and its contactless flash memory array
TW522478B (en) Self aligned method of forming a semiconductor memory array of floating gate memory cells with low resistance source regions and high source coupling, and a memory array made thereby

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees