TW522478B - Self aligned method of forming a semiconductor memory array of floating gate memory cells with low resistance source regions and high source coupling, and a memory array made thereby - Google Patents

Self aligned method of forming a semiconductor memory array of floating gate memory cells with low resistance source regions and high source coupling, and a memory array made thereby Download PDF

Info

Publication number
TW522478B
TW522478B TW090123053A TW90123053A TW522478B TW 522478 B TW522478 B TW 522478B TW 090123053 A TW090123053 A TW 090123053A TW 90123053 A TW90123053 A TW 90123053A TW 522478 B TW522478 B TW 522478B
Authority
TW
Taiwan
Prior art keywords
layer
patent application
region
scope
trenches
Prior art date
Application number
TW090123053A
Other languages
Chinese (zh)
Inventor
Jr-Shing Wang
Amitay Levi
Original Assignee
Silicon Storage Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/916,555 external-priority patent/US6727545B2/en
Application filed by Silicon Storage Tech Inc filed Critical Silicon Storage Tech Inc
Application granted granted Critical
Publication of TW522478B publication Critical patent/TW522478B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A sell aligned method of forming a semiconductor memory array of floating gate memory cells in a semiconductor substrate having a plurality of spaced apart isolation regions and active regions on the substrate substantially parallel to one another in the column direction, and an apparatus formed thereby. Floating gates are formed in each of the active regions. In the row direction, trenches are formed that include indentations or different widths. The trenches are filled with a conducting material to form blocks of the conducting material that constitute source regions with a first portion that is disposed adjacent to but insulated from the floating gate, and a second portion that this disposed over but insulated from the floating gate.

Description

522478 A7 _____B7_ 五、發明説明(1 ) 發明領域 本發明係關於形成分離閘極型之浮動閘極記憶體晶 胞之半導體記憶體陣列的自行對齊方法。本發明也關於前 述型式之浮動閘極記憶體晶胞的半導體記憶體陣列。 發明背景 在技術中熟知使用浮動閘極來把電荷儲存於其上的 非依電性半導趙記憶體晶胞和形成在一半導體基趙中的此 等非依電性記憶體晶胞之記憶體陣列。典型上,此等浮動 閘極記憶體晶胞已係分離閘極型、或堆疊閘極型、或其之 組合。 面對半導體浮動閘極記憶體晶胞陣列之製造性的問 題之一係諸如源極、没極、控制閘極、和浮動閘極等各種 組件之對齊,特別在記憶體晶胞尺寸上被縮小時。當半導 體處理之整合度的設計規則減少、來縮減最小的微影外貌 時,對精確對齊之需求變得更重要。各種元件之對齊也決 定半導體產品之製造產能。 自行對齊在技術中為熟知。自行對齊參照於處理涉及 一或更多材料之一或更多步琢的行動,使得在該處理步驟 中波此相對地自動對齊外貌。據此,本發明使用自行對齊 技術來達成浮動閘極記憶體晶胞型之半導體記憶體陣列的 製造。 在記憶體晶胞尺度被缩小時經常牽連兩主要問題。第 一,源極線上的電阻隨著較小記憶體晶胞尺度而增加,且 一較高電阻在讀取操作期間泰制所期望晶胞電流。第二, 夂紙杀尺度適Ώ中國國家標準(CNS) A4規格(210X297公釐) 4 (請先閲讀背面之注意事項再填寫本頁) -訂丨 522478 A7 B7 五、發明說明( 2 較小記憶體晶胞尺度導致源極和位元線接合點間的一較低 擊穿電壓VPT,其在一程式操作期間限制可達成最大浮動閘 極電壓Vfg。透過自源極區的電壓耦合、透過係在源極和浮 動問極間的耦合氧化物層,來達到浮動閘極電壓Vfg。在一 源極側注入機構中,對於一充分熱載子注入效率需要一較 高vfg(且因此一較高擊穿電壓νρτ) 〇 發明之槪_ 本發明藉由提供一(Τ形)源極區而解決上述問題,其中 一較寬傳導上部縮減源極線電阻、同時源極線上的一較窄 下部促進較小記憶體晶胞尺寸。記憶體晶胞架構除了透過 底部搞合氧化物的耦合外,也促進源極電壓透過在浮動閘 極之上部上的一氧化物而耦合至浮動閘極,其加強源極電 極和浮動閘極間的耗合效率。 本發明係一種自行對齊方法,用來在一半導體基體中 形成浮動閘極記憶體晶胞之一半導體記憶體陣列,各記憶 體晶胞具有一浮動閘極、一第一端子、於其間有一通道區 的一苐二端子、及一控制閘極,該方法包含下列步驟: a) 在該基體上形成多個隔開的隔離區,該等隔離區彼 此大致平行且以一第一方向延伸、在各對相鄰隔離區間有 一主動區,該等主動區各包含在該半導體基體上的一第一 層之絕緣材料、及在該第一層絕緣材料上的一第一層之傳 導讨料: b) 跨越該等主動區和隔離區形成多個隔開之第一渠 漢’該等第一渠溝彼此大致平行且以大致垂直於該第一方 各紙永尺度迖中SS家標準(CXS) A4規格(210X297公釐) (請先閲讀背面之注意卞項再填¾本頁) -裝,522478 A7 _____B7_ V. Description of the Invention (1) Field of the Invention The present invention relates to a self-aligning method of a semiconductor memory array that forms a floating gate memory cell of a split gate type. The invention also relates to a semiconductor memory array of the aforementioned type of floating gate memory cell. BACKGROUND OF THE INVENTION It is well known in the art to use non-electrostatic semiconductor memory cells that use floating gates to store charge thereon and the memory of such non-electrostatic memory cells that are formed in a semiconductor substrate. Body array. Typically, these floating gate memory cells have been separated gate type, or stacked gate type, or a combination thereof. One of the problems facing the manufacturability of semiconductor floating gate memory cell arrays is the alignment of various components such as source, non-polar, control gate, and floating gate, especially in the reduction of memory cell size Time. As the design rules for the integration of semiconductor processing are reduced to minimize the lithographic appearance, the need for precise alignment becomes more important. The alignment of various components also determines the manufacturing capacity of semiconductor products. Self-alignment is well known in the art. Self-alignment refers to an action that involves one or more steps of one or more materials, so that the process automatically aligns the appearance relatively in this process step. Accordingly, the present invention uses self-alignment technology to achieve the fabrication of a semiconductor memory array of floating gate memory cell type. Two major issues are often implicated when the size of the memory cell is reduced. First, the resistance on the source line increases with smaller memory cell sizes, and a higher resistance makes the desired cell current during a read operation. Second, the paper size is suitable for Chinese National Standard (CNS) A4 specifications (210X297 mm) 4 (Please read the precautions on the back before filling this page)-Order 丨 522478 A7 B7 V. Description of the invention (2 smaller Memory cell scale results in a lower breakdown voltage VPT between the source and bit line junctions, which limits the maximum floating gate voltage Vfg that can be achieved during a program operation. Through voltage coupling from the source region, transmission A coupling oxide layer is connected between the source and the floating interrogator to reach the floating gate voltage Vfg. In a source-side injection mechanism, a high vfg (and therefore a High breakdown voltage νρτ) 〇 Invention _ The present invention solves the above problems by providing a (T-shaped) source region, in which a wider conductive upper portion reduces the resistance of the source line, while a narrower lower portion of the source line Promote smaller memory cell size. In addition to coupling the oxide through the bottom, the memory cell structure also promotes the coupling of the source voltage to the floating gate through an oxide on the upper part of the floating gate. Strengthen source Consumption efficiency between an electrode and a floating gate. The present invention is a self-aligning method for forming a semiconductor memory array, which is a floating gate memory cell, in a semiconductor substrate, and each memory cell has a floating gate. Electrode, a first terminal, a two terminal with a channel region in between, and a control gate, the method includes the following steps: a) forming a plurality of spaced-apart isolation regions on the substrate, the isolation regions are mutually Approximately parallel and extending in a first direction, there is an active region in each pair of adjacent isolation sections, each of the active regions includes a first layer of insulating material on the semiconductor substrate, and on the first layer of insulating material A first layer of conductive material: b) forming a plurality of spaced apart first channels across the active area and the isolation area. The first channels are substantially parallel to each other and substantially perpendicular to the first paper. SS Standard (CXS) A4 Specification (210X297mm) (Please read the note on the back before filling this page)-Installation,

•、可I :線丨 522478 A7 _B7_ 五、發明説明(3 ) 向的一第二方向來延伸,各個該等第一渠溝具有含有在其 中形成之一縮格的一側壁; c) 把一第一傳導材料填入各個該等第一渠溝、來形成 該傳導材料之第一方塊,其中對於各個該等主動區中的各 個該等第一方塊: 該第一方塊包括形成在該第一渠溝側壁的該縮格下 方之一較低部份,該較低部份係設置相鄰於該第一層傳導 材料且與其絕緣;及 該第一方塊包括形成在該第一渠溝側壁的該縮格上 方之一較上部份,該較上部份係設置於該第一層傳導材料 上方且與其絕緣; d) 在該基體中形成多個第一端子,其中在各個該等主 動區中各個該等第一端子相鄰於該等傳導材料第一方塊中 之一個、且與其電氣地連接;以及 Ο在該基禮中形成多個第二端子,其中在各個該等主 動區中各個該等第二端子係與該等第一端子隔開。 在本發明之另一層面中,一電氣可程式和可抹除記憶 體裝置包括一第一傳導型之半導艘材料的一基體,在一第 二傳導型之該基體中的第一和第二隔開區域、其間有一通 道區,設置在該基禮上方的一第一絕緣層,設置在該第一 絕緣層上方、且延伸於一部份該通道區上方和一部份該第 一區上方的一電氣傳導浮動閘極,及設置在該基體中的該 第一區上方、且與其電氣地連接的一電氣傳導源極區。該 源極區具有設置相鄰於該浮知閘極且舆其絕緣的一較低部 表紙ϋ度這用也3 3家標準(CNS) Α4規格(2ΐ〇χ297公爱) (請先閲讀背面之注念卞項再填舄本頁) :^τ— 6 522478 A7 ____ B7_ 五、發明説明(4 ) 份、及設置於該浮動閘極上方且與其絕緣的一較上部份。 在本發明之又一層面中,一陣列之電氣可程式和可抹 除έ己憶趙裝置包括:一第一傳導型之半導體材料的一基 體,形成在該基體上、大致彼此平形且以一第一方向延伸 的多個隔開之隔離區、在各對相鄰隔離區間有一主動區, 且各個主動區包括一行多對、以該第一方向延伸之記憶體 晶胞。各個記憶體晶胞對組包括在具有一第二傳導型基體 中隔開之一第一區和一對第二區、於該第一區和該等第二 區間在該基體中形成有通道區,設置在該基體上方、包括 該等通道區上方的一第一絕緣層,設置在該第一絕緣層上 方、且延伸於該等通道區中之一個的一部份上方和一部份 該第一區上方的一對電氣傳導浮動閘極,及設置在該基體 中的該第一區上方、且與其電氣地連接的一電氣傳導源極 區。該源極區具有設置相鄰於該對浮動閘極且與其絕緣的 一較低部份、及設置於該對浮動閘極上方且與其絕緣的一 較上部份。 藉由檢視說明書、申請專利範圍、和附囷,本發明之 其他目的和特徵將變得明顯。 周式之簡蕈描述 第1Α圖係使用在本發明之方法的第一步驟中來形成 隔離區之一半導體基體的上視圓; 第1Β圖係沿著Μ線採用的橫截面圖; 第1C圖係在處理第1Β囷之結構中的次一步驟之上視 圖,其中隔離區被形成; 表紙法尺度逍;η中a國家標準(CNS) Α4規格(210X297公釐) --------------------裝------------------1Τ--......-........線· (請先閱讀背面之注意事項再填舄本頁) 522478 A7 -^s_!Z___ 五、發明説明(5 ) 第ID圖係第1C圖中沿著1-1線採用、來顯示形成在結 構中的隔離條帶之結構的橫載面圊; ......…: (請先閲讀背面之注意事項再填寫本頁) 第1E圖係第1C圖中沿著1-1線採用、來顯示可形成在 結構中的兩型式之隔離區:LOCOS或淺渠溝的結構之橫 載面圖; 第2 A-2N圖係第1C圖令沿者2-2線採用、來依序顯示在 處理第1C圖顯示的結構中、形成分離閘極型之浮動記憶體 晶胞的一非依電性記憶體陣列之後續步驟的橫載面圖; 第20圖係顯示在形成分離閘極型之浮動記憶體晶胞 的一非依電性記憶體陣列中、列線和位元線之互相連接於 主動區中的端子之上視圖; 第3A-3I®係沿著苐1C圖之2·2線採用、來依序顯示在 第一替換處理第1C圖顯示的結構中、形成分離閘極型之浮 動記憶體晶胞的一非依電性記愧體陣列之步驟的橫載面 QQ · 圃, 第4A-4J圖係沿著第1C圖之2-2線採用、來依序顯示在 第二替換處理第1C圖顯示的結構中、形成分離閘極型之浮 動記憶體晶胞的一非依電性記憶體陣列之步驟的橫載面 圖·及 第5Α·5Κ圖係沿著第1C圖之2-2線採用、來依序顯示在 第三替換處理第1C圖顯示的結構中、形成分離閘極型之浮 動記憶體晶胞的一非依電性記憶體陣列之步驟的橫載面 圊。 鲛佳實施例之詳鉍描述 乒纸m送司泣国国家標準(®s)Α4規格(21〇χ297公爱) 522478 A7 B7 五、發明説明(6 ) 請參考第1A囷,顯示有較佳為p型且技術中熟知的一 半導體基體ίο之上視圖。如二氧化矽(氧化物)的一第一層 之絕緣材料12如第1B圖顯示地沉積於其上。第一絕緣層12 由諸如氧化或沉積(例如化學氣相沉積或CVD)的熟知技術 來形成在基體10上,形成一層二氧化矽(此後為”氧化 物”)。一第一層之多晶矽14(FG多晶矽)沉積在第一層絕緣 材料12上面。可由諸如低壓CVD或LPCVD的熟知程序來實 施第一多晶矽層14之沉積和形成在第一絕緣層12上。一氮 化矽層18(此後為’’氬化物”)沉積在多晶矽層14上方,較佳 由CVD。此氤化物層18被使用在隔離形成期間來界定主動 區/當然,所有前述參數和此後描述之參數依賴設計規則 和程序技術世代。在此描述的係針對0.18微米程序。然而, 由熟知該技術者將瞭解到本發明既不受限於任何特定程序 技術世代,也不限於在此後描述的任何程序參數之任何特 定值。 一旦第一絕緣層12、第一多晶矽層14、和氮化矽層18 已形成,適當光阻材料19被施於氮化矽層18上、且一光罩 步驟被實施以自某些區(條帶16)選擇性地去除光阻材料。 在光阻材料19被去除處,如第1C囷顯示地使用標準蝕刻技 術(亦即非等方蝕刻程序)來蝕刻掉在Y方向或行方向中形 成的條帶16中之氮化矽18、多晶矽14和下方的絕緣材料 12。在相鄰條帶16間的距離W可小至所使用程序的最小微 影外貌。在光阻19未去除處,氮化矽18、第一多晶矽區14 和下方的絕緣區12被留下。所產生結構在第1D圖說明。如 (請先閱讀背面之.江意事項洱媾寫本頁) •装丨 訂— 線丨 各纸彔尺度逯用中gg家標準(CNS) A4規格(210X297公釐) 9 522478 A7 _B7_ 五、發明説明(7 ) 將描述的,在形成隔離區中有兩實施例:LOCOS和STI。 在STI實施例中,蝕刻持續到基體10中達一預定深度。 結構被進一步處理來去除所餘光阻19。然後,如二氧 化矽的隔離材料20a或20b在區域或”凹溝”16中形成。氮化 物層18然後被選擇性去除來形成第1E圖顯示的結構。可經 由導致局部場域氧化物20a的熟知LOCOS程序(如藉由把露 出基體氧化)來形成隔離,或可經由導致在區域20b中形成 的二氧化矽之一淺渠溝程序(STI)(如沉積一氧化物層,然 後由一化學機械拋光或CMP蝕刻)來形成它。請注意到在 LOCOS形成期間,可能需要一間隔器以在局部場域氧化物 之形成期間來保護多晶矽層14之側壁。 所餘第一多晶矽層14和下方的第一絕緣材料12形成 主動區。因此,此時基體10具有交錯條帶之主動區和隔離 區、隔離區係由LOCOS絕緣材料20a或淺渠溝絕緣材料20b 來形成。雖然第1E圖顯示一LOCOS區20a和一淺渠溝區20b 兩者之形成,LOCOS程序(20a)或淺渠溝程序(20b)中只一 個被使用。在較佳實施例中,淺渠溝20b將被形成》淺渠溝 20b因可以較小設計規則來更精確形成而較佳。•, I: line 522522 A7 _B7_ V. Description of the invention (3) Extending in a second direction, each of the first trenches has a side wall containing a contraction formed therein; c) a A first conductive material fills each of the first trenches to form a first block of the conductive material, and for each of the first blocks in each of the active regions: the first block includes a first block formed in the first A lower part of the trench side wall below the contraction, the lower part is disposed adjacent to and insulated from the first layer of conductive material; and the first block includes a An upper part of the reduced grid is disposed above the first layer of conductive material and is insulated therefrom; d) forming a plurality of first terminals in the substrate, wherein each of the active areas Each of the first terminals is adjacent to and electrically connected to one of the first squares of the conductive material; and 0, a plurality of second terminals are formed in the foundation ceremony, each of which is in each of the active areas The second terminals are related to the first terminals Separated. In another aspect of the invention, an electrically programmable and erasable memory device includes a substrate of a first conductivity type semiconductive material, and a first and a first of the second conductivity type substrates. Two spaced regions with a channel region in between, a first insulating layer disposed above the base, a first insulating layer disposed above the first insulating layer, and extending over a portion of the channel region and a portion of the first region An upper electrically conductive floating gate, and an electrically conductive source region disposed above the first region in the base body and electrically connected to the first region. The source region has a lower cover sheet adjacent to the buoyancy gate and its insulation. This is also a standard (CNS) Α4 specification (2ΐ〇χ297 公 爱) (Please read the back first (Notes on this item will be refilled on this page): ^ τ— 6 522478 A7 ____ B7_ V. Description of the invention (4) and an upper part which is arranged above the floating gate and insulated from it. In yet another aspect of the present invention, an electrically programmable and erasable device of an array includes: a substrate of a first conductive type semiconductor material, formed on the substrate, substantially flat to each other, and a The plurality of spaced apart isolation regions extending in the first direction have an active region in each pair of adjacent isolation intervals, and each active region includes a row of multiple pairs of memory cell cells extending in the first direction. Each memory cell pair includes a first region and a pair of second regions separated in a matrix having a second conductivity type, and a channel region is formed in the matrix between the first region and the second regions. A first insulating layer disposed above the substrate and including the channel regions, disposed above the first insulating layer and extending over a portion of one of the channel regions and a portion of the first insulating layer A pair of electrically conductive floating gates above a region, and an electrically conductive source region disposed above the first region in the base body and electrically connected to it. The source region has a lower portion disposed adjacent to and insulated from the pair of floating gates, and an upper portion disposed above and insulated from the pair of floating gates. Other objects and features of the present invention will become apparent from a review of the specification, patent application scope, and appendixes. Brief description of Zhou Shiji Figure 1A is a top circle of a semiconductor substrate used in the first step of the method of the present invention to form an isolation region; Figure 1B is a cross-sectional view taken along the line M; Figure 1C The top view of the next step in the processing of the structure of 1B 囷, in which the isolation zone is formed; the scale of the paper method is small; the national standard (CNS) A4 specification (210X297 mm) in η -------- ------------ Install ------------------ 1T --......-........ line · (Please read the notes on the back before filling in this page) 522478 A7-^ s_! Z ___ V. Description of the invention (5) Figure ID is taken along line 1-1 in Figure 1C to show the formation on the structure The horizontal loading surface of the structure of the isolation strip in 圊; ......: (Please read the precautions on the back before filling this page) Figure 1E is taken along line 1-1 in Figure 1C. To show the two types of isolation areas that can be formed in the structure: the cross-sectional view of the structure of LOCOS or shallow trenches; Figures 2 A-2N are shown in Figure 1C along the 2-2 line to sequentially display In processing the structure shown in Figure 1C, one of the floating-memory cell cells forming a separate gate type is formed. Cross-sectional view of the subsequent steps of the electromechanical memory array; FIG. 20 is a diagram showing the row and bit lines in a non-electrostatic memory array forming a floating gate unit cell of the separation gate type. Above view of the terminals connected to each other in the active area; 3A-3I® is adopted along line 2 and 2 of Figure 1C to sequentially display in the structure shown in Figure 1C of the first replacement process to form a separation gate Figure 4A-4J, which is taken along the line 2-2 of Figure 1C, is used to sequentially display the cross-sections of the steps of a non-electrically-regrettable array of floating memory cells. In the structure shown in FIG. 1C of the second replacement process, a cross-sectional view of a step of forming a non-electron-dependent memory array of a floating-gate floating-memory cell is shown in FIG. 5A and FIG. Lines 2-2 of FIG. 1C are used to sequentially display the steps of forming a non-electrolytic memory array in the structure shown in FIG. 1C to form a separate gate-type floating memory cell in the third replacement process. Cross loading surface 圊. Detailed description of the best example of bismuth description of bismuth paper to send to the national standard (®s) A4 specification (21〇χ297 public love) 522478 A7 B7 5. Description of the invention (6) Please refer to section 1A 囷, it shows that there is better Top view of a semiconductor substrate p-type and well known in the art. A first layer of insulating material 12 such as silicon dioxide (oxide) is deposited thereon as shown in FIG. 1B. The first insulating layer 12 is formed on the substrate 10 by a well-known technique such as oxidation or deposition (for example, chemical vapor deposition or CVD) to form a layer of silicon dioxide (hereinafter referred to as "oxide"). A first layer of polycrystalline silicon 14 (FG polycrystalline silicon) is deposited on the first layer of insulating material 12. The deposition and formation of the first polycrystalline silicon layer 14 on the first insulating layer 12 may be performed by a well-known procedure such as low-pressure CVD or LPCVD. A silicon nitride layer 18 (hereafter "argonide") is deposited over the polycrystalline silicon layer 14, preferably by CVD. This halide layer 18 is used during isolation formation to define the active area / of course, all the aforementioned parameters and thereafter The parameters described depend on design rules and program technology generation. The description herein is for 0.18 micron programs. However, those skilled in the art will understand that the present invention is not limited to any specific program technology generation, nor is it limited to the following description Once the first insulating layer 12, the first polycrystalline silicon layer 14, and the silicon nitride layer 18 have been formed, a suitable photoresist material 19 is applied on the silicon nitride layer 18, and a A photomask step is performed to selectively remove the photoresist material from certain areas (strip 16). Where the photoresist material 19 is removed, standard etching techniques (ie, non-isotropic etching procedures) are used as shown in Figure 1C 囷. ) To etch away silicon nitride 18, polycrystalline silicon 14, and the underlying insulating material 12 in the strip 16 formed in the Y direction or the row direction. The distance W between adjacent strips 16 can be as small as the smallest procedure used Lithography appearance. Where the resistance 19 is not removed, the silicon nitride 18, the first polycrystalline silicon region 14 and the underlying insulating region 12 are left. The resulting structure is illustrated in Figure 1D. For example, (please read the back. Jiangyi matters 洱 媾(Write this page) • Binding-Binding-Lines, Paper Size (CNS) A4 Specification (210X297 mm) 9 522478 A7 _B7_ V. Description of the Invention (7) will be described in the formation of the isolation zone. Two embodiments: LOCOS and STI. In the STI embodiment, the etching continues to a predetermined depth in the substrate 10. The structure is further processed to remove the remaining photoresist 19. Then, an isolation material such as silicon dioxide 20a or 20b is Areas or "recesses" 16. The nitride layer 18 is then selectively removed to form the structure shown in Figure 1E. The well-known LOCOS procedure that results in local field oxides 20a (eg, by oxidizing the exposed substrate) Isolation may be formed, or it may be formed by a shallow trench process (STI) that results in the formation of silicon dioxide in the region 20b (such as depositing an oxide layer and then etching by a chemical mechanical polishing or CMP). Please note During the formation of LOCOS, A spacer is required to protect the sidewalls of the polycrystalline silicon layer 14 during the formation of the local field oxide. The remaining first polycrystalline silicon layer 14 and the first insulating material 12 below form an active region. Therefore, the substrate 10 has The active area, the isolation area, and the isolation area of the staggered stripe are formed by the LOCOS insulating material 20a or the shallow trench insulation material 20b. Although FIG. 1E shows the formation of both a LOCOS area 20a and a shallow trench area 20b, LOCOS Only one of the program (20a) or the shallow trench program (20b) is used. In the preferred embodiment, the shallow trench 20b will be formed. The shallow trench 20b is better because it can be formed more accurately with smaller design rules. .

第1E圖之結構代表一自行對齊結構,其比由一非自行 對齋方法形成的結構更緊湊。形成第1E圖顯示的結構、係 熟知且傳統的一非自行對齊方法如下。在基體10中先形成 隔離區20。這可藉由在基體10上沉積一層氮化矽、沉積光 阻、使用第一光罩步驟把氮化矽圖型化來露出基體10之選 定部份、且然後使用涉及矽渠溝形成和渠溝填充的LOCOS 10 (請先閲讀背面之注意事唷再填寫本頁) 义詆&尺度这司士33家標準(CNS) A4規格(210 X 297公釐) 522478 A7 B7 五、發明説明(8 程序或STI程序把所露出基體1〇氧化而完成。其後,乳化石夕 被去除’且一第一層一氧化石夕12(來形成閘極氧化物)被沉 積在基體10上方。一第一層多晶矽14沉積在閘極氧化物12 上方。然後使用一第二光罩步驟把第一層多晶石夕14圖型 化、且選定部分被去除。因此,多晶石夕14不與隔離區20自 行對齊,且需要一第二光罩步驟。再者,額外光罩步驟要 求多晶矽14之尺度相對於隔離區20有一對齊裕度。請注意 到,非自行對齊方法不利用氮化物層18。 以使用自行對齊方法或非自行對齊方法製作的第1Ε 圖顯示之結構,結構被進一步處理如下。請參考第2Α圖、 其顯示自與第1Β和1Ε圖者垂直的視線之結構,在本發明之 程序中的後續步驟被說明。如氮化矽(此後稱,,氧化物”)的 一厚絕緣層形成在結構上,隨後形成如多晶矽(此後稱‘‘多 晶矽的一薄保護層26。所產生結構說明於第2Α圖。 用施於多晶矽層26上的光阻來實施一傳統光學微影 遮罩操作。一光罩步驟被施於以X或列方向界定的條帶(即 遮罩區)中。相鄰條帶間的距離可為由要製造的裝置之需要 來決定的一尺寸。光阻在所界定遮罩區(即列方向的條帶) 中被去除’其後使用一傳統非等方多晶矽蝕刻程序來蝕刻 掉在ί条帶中位於所去除光阻下方之多晶矽層26、來露出部 份之下方氮化物層24。然後實施一非等方氮化物蝕刻程序 來去除氧化矽層24之露出部份、以露出部份之多晶矽層 14。然後可實施一取捨的多晶矽蝕刻程序來只去除所露出 多晶矽層14之一上部,以使多晶矽層14相對於其餘氮化物 各纸張又度这用中3 3家標準(CNS) Α4規格(210X 297公爱) 11 .......................^------------------、耵------------------绛 (請先閲讀背面之注意事项再填窝本頁) 522478 A7 ___ _B7_____ 五、發明説明(9 ) 層24地稍微凹陷,來形成多晶矽層14觸及氮化物層24的傾 斜部份28。對於各此對之鏡面記憶體晶胞,這些蝕刻程序 導致形成延伸下至(且較佳稍微進入)多晶矽層14的單一第 一渠溝。其餘光阻然後被去除,導致顯示於第2B圖的結構。 然後使用例如一熱氧化處理來在結構上方形成如二 氧化矽(此後稱”氧化物”)的一絕緣材料層32。形成在渠溝 30中的多晶矽層14上的部份之氧化物層32具有由多晶矽14 之傾斜部份28引起的升起部份34,給予渠溝30内的氧化物 層32—透鏡形狀。所產生結構說明於第2C圖。 然後在渠溝30内形成絕緣間隔片40(第2E圖)。間隔片 之形成在技術中為熟知、由把一材料沉積於結構外形上 方、隨後實施一非等方蝕刻程序(如RIE),藉此材料自結構 之水平表面被去除,同時材料餘留大致接觸在結構之垂直 定向表面上。可由任何介電材料來形成間隔片40。在較佳 實施例中,以下列方式由氮化物來形成間隔片40。較佳使 用一傳統化學氣相沉積(CVD)程序、來在第2C圖之結構上 方形成一薄絕緣材料(即氧化物)層36»然後較佳藉由一傳 統氮化物沉積程序、來在結構上方形成一厚絕緣材料(即氮 化物)層38,如第2D圖顯示的。接著實施使用氧化物層36 為一蝕刻停止的一厚氮化物蝕刻程序。除了沿著渠溝30側 璧的側壁間隔片40外,此蝕刻程序去除所有氮化物層38。 然後實施使用多晶矽層26為一蝕刻停止的一非等方氧化物 蝕刻程序。此氧化物蝕刻去除氧化物層36和32於氮化物層 24上方的露出部份。該氧化物蝕刻也去除氧化物層36和32 又纸杀又度这丐由33家標粜(CNS) A4規格(210X297公釐) .12 --------------------------- (請先閱讀背面之注意事項再填舄本頁) *τ .¾. 522478 A7 ____ B7_ 五、發明説明(10 ) 在渠溝30中於間隔片40間露出的部份,來露出多晶矽層14 於渠溝30中央的部份。所產生結構顯示於第2E圖。 一厚氮化物蝕刻程序被實施以自渠溝30去除間隔片 40。然後實施一多晶矽蝕刻程序、來去除多晶矽層26以露 出氮化物層24,且去除多晶矽層14於渠溝30之底部中央的 露出部份、以露出氧化物層12。如第2F圖顯示的,渠溝30 各具有由多晶石夕層14和氡化物層32和36侷限的一窄較低部 份42,及由氧化物層36侷限的一上較寬部份44。請注意到 在把部份多晶矽層14去除的多晶矽蝕刻程序後,間隔片4〇 可被去除。 實施適當的離子楂入越過結構之整個表面。在離子具 有充分能量來穿透渠溝30中的第一二氧化矽層12處,它們 然後在基體10中形成一第一區(端子)50。在所有其他區域 中,離子被現存結構吸收、且它們不具效應。絕緣間隔片 46(如氧化物)被形成在渠溝30之較低部份42的側壁上。較 佳地,藉由在多晶矽層14於渠溝3.0内露出的側面上先形成 一絕緣側壁層48(氧化物)(即藉由把結構氧化或藉由 CVD),來進行氧化物間隔片46之形成。然後,氧化物被形 成於結構上方(即CVD程序),接著實施一氧化物非等方蝕 刻、除了在較低渠溝部份42之側壁上形成的氧化物間隔片 46外、其去除於結構上方形成的氧化物《此氧化物形成和 蝕刻程序也加至氧化物層36在上渠溝部份44中的垂直部份 之厚度。非等方餘刻也去除氧化物層36之一上部,薄至氧 化物層36於氧化物層32上方的部份,以及去除氧化物層12 各紙杀尺度这司由SS家標準(CNS) A4規格(210X297公釐) 13 -----------------------裝------------------^------------------線 (請先閲讀背面之注意事項再填舄本頁) 522478 A7 ___B7_ 五、發明説明(11 ) 在間隔片46間於渠溝30底部的部份,來露出基體10。所產 生結構顯示在第2G圊。 良好黏附於露出基體10如氮化鈦的一傳導層52被形 成於整個結構上方,其對齊渠溝30之側壁和其中的露出基 體10。接著在渠溝30内形成傳導方塊54,其係藉由把如鎢 的一傳導材料沉積在結構上方、接著實施一鎢平面化程序 (較佳CMP)、把傳導方塊54填入渠溝30而形成。接著實施 一鎢蝕回步驟來去除渠溝30外面的任何鎢,且舊佳界定傳 導方塊54於氡化物層36之上部下方的上表面。然後在傳導 方塊54上方形成一傳導層56(氮化鈦),較佳藉由把氮化鈦 沉積在結構上方、接著實施去除除了在渠溝30中於傳導方 塊54上方之傳導層56外的所沉積氮化鈦之一平面化(CMP) 程序。然後實施一氮化鈦蝕刻使得傳導層56凹陷於氧化物 層36上部之下方。一絕緣材料(氧化物)層58然後形成於結 構上方,接著實施一平面化程序(CMP)和氧化物蝕刻程 序、來去除除了傳導層56上方之該部份外的所沉積氧化 物。所產生結構顯示於第2H圖,其中窄/寬渠溝部份42/44 導致含有窄較低方塊部份60和寬上部方塊部份62的大致T 形鎢傳導方塊54,其被氮化鈦層52/56包圍。 苐二渠溝63以下列方式形成於對組記憶體晶胞間且 相鄰於第一渠溝30。較佳使用一等方蝕刻程序來去除氮化 物層24,以如第21圖顯示地露出部份之多晶矽層14和氧化 物層32。接著實施一多晶矽蝕刻程序(即一乾式蝕刻)來去 除多晶矽層14之露出部份且龛出氧化物層12。然後經由一 夂纸丟尺度这用由国3家標準(CNS) A4規格(210X297公釐〉 14 ;-「:77嬤…: (請先閲讀背面之注7S事項再填寫本頁) .訂· 522478 A7 _____B7_ 五、發明説明(U ) 受控制氧化物蝕刻來去除氧化物層12之露出部份,露出基 艘1〇 °較佳為氧化物的一絕緣層64然後形成在整個結構上 方’導致第2J圖顯示的結構。氧化物層32之升起部份34導 致形成多晶矽層14觸及氧化物層64之向上延伸尖銳邊緣 66。 以下列方式在第二渠溝63中形成控制閘極多晶矽方 塊° 一厚層之多晶矽被沉積於結構上方,隨後實施一非等 方多晶矽敍刻程序、其去除除了緊靠氧化物層64之垂直定 向部份而形成的多晶矽間隔片(方塊)68外之所有經沉積多. 晶石夕。多晶矽方塊68具有緊鄰於多晶矽層14設置的較低部 份70、和延伸越過多晶矽層14包括尖銳邊緣66之一部份的 較上部份。多晶矽方塊68由氧化物層64和32來與多晶矽層 14絕緣。所產生結構說明於第2K圖。 絕緣間隔片74然後形成相鄰於多晶矽方塊68,且由一 或多層材料製成。在較佳實施例中,絕緣間隔片74係藉由 先沉積一薄層76之氧化物、接著把氮化物沉積在結構上 方’而由兩層材料製成。一非等方氮化物蝕刻被實施來去 除所沉積氮化物,留下氮北物間隔片78。然後使用離子植 入(如N+)、以和形成第一區50的相同方式在基體中形成第 二區(端子)80。然後實施一受控制氧化物蝕刻,其去除氧 化物層76之露出部份、以及氧化物層64之露出部份,以露 出基髏10和第二區80。所產生結構顯示於第2L圖。 藉由把如钱、结、鈥、鍊、鉑或鉬等一金屬沉積在結 構上、在基體10於側壁間隔片74旁邊之上部中、與一層在 夂紙張尺度这同中S3家標準(CNS) A4規格(210X 297公釐) 15 -----------------------f------------------IT;----------------绛 (請先閲讀背面之注意事項再填寫本頁) 522478 A7 __B7_ 五、發明説明(I3 ) 晶矽方塊68上方的金屬化矽84—起形成一層金屬化矽(矽 化物)82 »結構被淬火、允許熱金屬流動且滲入基體10之露 出上部、來形成一矽化物82,且滲入多晶矽方塊68之露出 上部、來形成金屬化矽84。由一金屬蝕刻程序來去除沉積 在其餘結構上的金屬。在基體10上的金屬化矽區82因由間 隔片78來自行對齊於第二區80而可稱為自行對齊矽化物 (即矽化物)。所產生結構顯示於第2M圖。 使用如BPSG 86的舖蓋來覆蓋整個結構。一光罩步驟 被實施來界定矽化物區82上方的蝕刻區。BPSG 86在遮罩 區中被選擇性蝕刻來產生理想上於成對記憶體晶胞之相鄰 組集間形成的矽化物區82上方中央、且延伸下至其中的接 觸開口。接觸開口然後由金屬沉積和平面化蝕回來填充有 一傳導體金屬,來形成接觸傳導體88。矽化物層82幫助傳 導體8.8和第二區80間的傳導。由遮罩BPSG 86上方之金屬 來加上一位元線90,來把記憶體晶胞行上的所有傳導體88 連接在一起。最終的記憶體晶胞結構說明於第2N圖。 如第2N圖顯示的,第一和第二區50/80形成各晶胞的 源極和汲極(熟知該技術者知道源極和汲極在操作期間可 以切換)。各晶胞之通道區92係基體於源極和汲極50/80間 之部份。多晶矽方塊68構成控制閘極,且多晶矽層14構成 浮動閘極。氧化物層32、36、46和48—起形成設置相鄰於 浮動閘極14且在其上方的一絕緣層。氧化物層36和64—起 形成把源極線與控制閘極68隔離的一絕緣層。控制閘極68 具有一側面對齊於第二區80乏邊緣,且設置於部份之通道 16 (請先閲讀背面之注意事項再填rirT本頁) 夂紙尜尺度这同中33家標準(CNS) A4規格(210X297公釐〉 522478 A7 B7 五、發明説明(Μ ) 區92上方。控制閘極68具有設置相鄰於浮動閘極14的一較 低部份70(用氧化物層64來與其絕緣)、及設置(延伸)在相鄰 多晶矽層14之一部份上方的一上突起部份72(由氧化物層 64來與其絕緣)。一凹口 94由突起部份72形成、其中浮動閘 極14之尖銳邊緣66延伸到凹口 94中。浮動閘極14係設置在 部份之通道區92上方、由控制閘極68來部份重叠於一端, 且以其另一端來部份重疊第一區50。傳導方塊54和傳導層 52/56 —起形成延伸跨越多行記憶體晶胞的源極線96。源極 線96之上部份62延伸越過浮動閘極14但與其絕緣,而源極 線96之較低部份相鄰於浮動閘極14但與其絕緣。如第2^^圖 說明的,本發明之程序形成彼此鏡映的記憶體晶胞對組。 各對之鏡映的記憶體晶胞由氧化物層76、氮化物間隔片78 和BPSG 86來與其他晶胞對组絕緣。 請參考第20圖,顯示有所產生結構的上視圖、及位元 線90和控制線68之互相連接至第二區80,控制線68沿著X 或列方向、且最後源極線96連接至基體1〇内的第一區5〇β 雖然源極線96(如應由熟知該技術者瞭解的,字組,,源極,, 可與字組”汲極”互換)在整個列方向上與基體1〇接觸、即與 主動區及隔離區接觸,源極線96只電氣地連接至基體1〇中 的第一區50 ^另外,連接有”源極,,線96的各第一區50由兩 相鄰記憶體晶胞共用。同樣地,連接有位元線90的各第二 區80由不同鏡面組集之記憶醴晶胞中的相鄰記憶體晶胞所 共用 結果係多個分離閘極型之非依電性記憶髏晶胞,其具 表紙法尺度这丐中ag家標準(CNS) Α4規格(210X297公釐) 17 (請先閲讀背面之注意事項再填¾本頁) -裝· 訂— :線· 522478 A7 ----2Z_ 五、發明說明(I5 ) 有一浮動閘極14、係緊鄰於但與浮動閘極14分開且連接至 沿著列方向之長度且連接至在相同列上的其他記憶體晶胞 之控制閘極之一控制閘極68、也沿著列方向且連接在相同 列方向上的記憶體晶胞對組之第一區50的一源極線96、及 沿著行或Y方向且連接在相同行方向上的記憶體晶胞之第 二區80的一位元線90。控制閘極、浮動閘極、源極線、和 位元線之形成都係自行對齊。非依電性記憶體晶胞係具有 都如在美國專利第5,572,054號中描述的浮動閘極到控制 閘極隧通之分離閘極型式,其揭露相對於此一非依電性記 憶體晶胞及由其形成的一陣列之操作,在此被合併參考。 本發明因T形傳導方塊52之較寬上部份62而展現經縮 減源極線電阻,同時由於T形傳導方塊52之較窄下部份60 而仍提供較小規模之記憶體晶胞尺度(即第一渠溝30在上 和下部份62/60間的側壁之縮格形成T形之源極線)。上部份 62也延伸越過浮動閘極14但與其絕緣,其允許源極電壓從 源極線96透過氧化物層32/36之耦合到浮動閘極14(其係加 至透過氧化物層46/48經由下部份60、和透過氧化物層12 經由第一區50的耦合)。因此,在源極電極和浮動閘極間的 耦合係數被加強。 第一替換實施例 第3Α·3Ι圊說明與第2N圖說明者相似、但用一多晶矽 源極線,來形成一記憶艘晶胞陣列的第一替換程序。此第 一替換程序由和第2G圊顯示的相同結構開始’但繼續如 下。 -------ΓΊνν-0^----- (請先閲讀背面之注意事項再填¾衣頁) 訂- 夂纸浅又度这习笮33家標準(CNS) Α4規格(210X 297公爱) .18 - 522478 A7 B7 五、發明説明(16 傳導方塊98被形成在渠溝30内,較佳由把如多晶矽的 一傳導材料沉積在結構上方、接著實施一多晶矽平面化程 序(較佳CMP)來去除渠溝30上方的多晶矽。接著實施一多 晶矽蝕回步驟來去除渠溝30外面的任何多晶矽、且使傳導 方塊98之上表面凹陷至氧化物層36上部之下方。多晶矽方 塊98可為在位摻雜或使用植入的摻雜。一絕緣材料(氧化物) 層58然後形成在多晶矽方塊98上方、例如由熱氧化或由氧 化沉積、接著實施一 CMP平面化程序和一氧化物蝕刻程 序,使得氧化物層58凹陷於氧化物層36上部之下方。所產· 生結構顯示於第3A圖,其中窄/寬渠溝部份42/44導致含有 窄下方塊部份60和寬上方塊部份62的大致T形傳導多晶矽 方塊98。 第二渠溝63以下列方式形成於對組記憶體晶胞間且 相鄰於第一渠溝30。較佳使用一等方蝕刻程序來去除氮化 物層24,以如第3B圖顯示地露出部份之多晶矽層14和氧化 物層32。接著實施一多晶矽蝕刻程序(即一乾式蝕刻)來去 除多晶矽層14之露出部份且露出部份之氧化物層12 »然後 經由一受控制氧化物蝕刻來去除氧化物層12之露出部份, 露出基體10。較佳為氧化物的一絕緣層64然後形成在整個 結構上方,導致第3C圖顯示的結構。氧化物層32之升起部 份34導致形成多晶矽層14觸及氧化物層64之向上延伸尖銳 邊緣66 β 以下列方式在第二渠溝63中形成控制閘極多晶矽方 塊。一厚層之多晶矽被沉積於結構上方,隨後實施一非等 表紙m逍用由33家標準(CNS) Α4規格(210X 297公釐) 19 - -----------------------裝------------------,可------------------線. (請先閱讀背面之注意事項再填寫本頁) 522478 A7 _B7 _ 五、發明説明(17 ) (請先閲讀背面之注意事項再瑱窩本頁) 方多晶矽蝕刻程序、其去除除了緊靠氧化物層64之垂直定 向部份而形成的多晶矽間隔片(方塊)68外之所有經沉積多 晶矽。多晶矽方塊68具有緊鄰於多晶矽層14設置的較低部 份70、和延伸越過多晶矽層14包括尖銳邊緣66之一部份的 較上部份。多晶矽方塊68由氧化物層64和32來與多晶矽層 14絕緣。所產生結構說明於第3D圖。 一氧化物蝕刻被實施來去除氧化物層64之露出部 份、及下方氧化物層58,以露出多晶矽方塊98和基體10。 較佳地,有端點檢測的一乾式蝕刻程序被使用、其也去除 氧化物層36之上部份,使得它與多晶矽方塊98之上表面大 致同形。接著實施一氧化物沉積程序來把一氧化物層1〇〇 形成於結構上方,且取代基禮10上方的氧化物層64。所產 生結構說明於第3E圖。 -釋 絕緣間隔片74然後形成相鄰於多晶矽方塊68,且由一 或多層材料製成。在較佳實施例中,絕緣間隔片74係包括 藉由把氮化物沉積於結構上方、接著實施一非等方氮化物 蝕刻來去除所沉積氮化物(使用氧化物層1 〇〇為一蝕刻停 止)、留下氧化物層64上方和相鄰於多晶矽間隔片68的氮 化物78,所形成的氧化物層1〇〇和氮化物間隔片78之下部份 的化合物間隔片》氮化物間隔片1〇1如第3F圖顯示地也形 成在傳導方塊98之端點上方。 然後使用離子植入(如N+)、以和形成第一區50的相同 方式在基體中形成第二區(端子)80。然後實施一受控制氧 化物蝕刻,來去除氧化物層1〇〇之露出部份以露出多晶矽方 夂紙:¾尺度適用中3 3家標準(CNS) A4規格(210X297公釐) 20 522478 A7 B7 五、發明説明(18 塊98、且去除氧化物層64之露出部份以露出基體10。所產 生結構顯示於第3G圖。 藉由把如鎢、鈷、鈦、鎳、鉑或鉬等一金屬沉積在結 構上方、在基體10於側壁間隔片74旁邊之上部中、與一層 在晶矽方塊68上方的金屬化矽84—起形成一層金屬化矽 (矽化物)82。結構被淬火、允許熱金屬流動且滲入基體10 之露出上部、來形成一矽化物82,且滲入多晶矽方塊68和 98之露出上部、來形成金屬化矽84。由一金屬蝕刻程序來 去除沉積在其餘結構上的金屬。在基體10上的金屬化矽區 82因由間隔片78來自行對齊於第二區80而可稱為自行對齊 矽化物(即矽化物)。所產生結構顯示於第3H圖。 使用如BPSG 86的舖蓋來覆蓋整個結構。一光罩步驟 被實施來界定矽化物區82上方的蝕刻區。BPSG 86在遮罩 區中被選擇性蝕刻來產生理想上於成對記憶體晶胞之相鄰 組集間形成的矽化物區82上方中央、且延伸下至其中的接 觸開口。接觸開口然後由金屬沉積和平面化蝕回來填充有 一傳導體金屬,來形成接觸傳導體88。矽化物層82幫助傳 導體88和第二區80間的傳導。由遮罩BPSG 86上方之金屬 來加上一位元線90,來把記憶體晶胞行上的所有傳導體88 連接在一起。最终的記憶體晶胞結構說明於第31圖。 第一替換實施例因T形多晶矽方塊98之較寬上部份 62、及形成於其上的高傳導金屬化矽層84,而展現經缩減 源極線電阻,同時由於T形傳導方塊98之較窄下部份60而 仍提供較小規模之記憶艘晶跑尺度。上部份62也延伸越過 21 (請先閱讀背面之注意事項再填寫未頁) 夂纸尜尺度这习中国S家標進(CNS) A4規格(210X297公釐) 522478 A7 ___B7___ 五、發明説明(19 ) 浮動閘極14,其允許源極電壓從多晶矽方塊98透過氧化物 層32/36之耦合到浮動閘極14(其係加至透過氧化物層46/48 經由下部份60、和透過氧化物層12經由第一區50的輕合)。 因此,在源極電極和浮動閘極間的耦合係數被加強。 第二替換膏施例 第4A-4I圖說明與第2N圖說明者相似、但利用一自行 對齊接觸設計,來形成一記憶體晶胞陣列的第二替換程 序。此第二替換程序由和第2J圖顯示的相同結構開始,但 繼續如下。 如多晶石夕的一厚傳導材料層102如第4 A圖顯示地沉積 在結構上方。一層氮化物104然後沉積在結構上方,接著實 施一 IL化物平面化程序(如CMP)。然後實施一氮化物钱回 步驟,以去除氮化物層104在多晶矽層102之提升部份上方 的部份,同時留下氬化物層104在多晶矽層102之平坦側面 部份上方的部份。隨後實施一氧化步驟來把多晶矽層102 之露出中央部份氧化,以在其上方形成一層氧化物106。所 產生結搆顯示於第4B圖。 由一氮化物蝕刻程序來去除氮化物層104,接著實施 一非等方多晶矽蝕刻步驟、來去除多晶矽層102不在氧化物 層106正下方的露出中央部份,如第4C圖說明的。 然後實施一氧化物沉積步驟來把一厚氧化物層施於 結構上方。隨後實施如CMP的一平面化氧化物钕刻,來把 結構平面化、使用多晶矽層1〇2為一蝕刻停止。然後實施一 氡化物蝕回步騍,留下氧化‘在多晶矽層102之任一側面上 各纸洚尺度適丐中a S家標粜(CNS) A4規格(210X297公釐) 22 -------j-v费…: (熗先閲讀背面之注意事項再填寫本頁) .訂丨 522478 A7 B7 五、發明説明(2〇 ) 的方塊108。也由氧化物平面化和蝕回步驟來去除氧化物層 106,導致第4D圖顯示的結構》然後使用氧化物方塊108為 一蝕刻停止來實施如CMP的一平面化多晶矽蝕刻,如第4E 圖說明的。隨後實施如RIE的一多晶矽蝕回程序,來去除 多晶矽層102之上部份、只留下相鄰氧化物方塊108之多晶 矽方塊103,且露出氧化物層64。多晶矽方塊103具有設置 緊鄰於多晶矽層14的較低部份70,和延伸越過多晶矽層14 包括尖銳邊緣66之一部份的較上部份72。多晶矽方塊103 由氧化物層64和32來與多晶矽層14絕緣。氧化物方塊1〇8 和氡化物層36被留下來充分延伸於多晶矽103之上表面上 方,如第4F圖說明的。 可實施一取捨的植入步驟來摻雜露出之多晶矽方塊 103。然後實施一金屬沉積步驟,來把把如鎢、鈷、鈦、鎳、 鉑或鉬等一金屬沉積在結構上方。結構被浮火、允許熱金 屬流動且滲入多晶矽方塊103之露出上部、來在其上形成一 金屬化矽傳導層84。由一金屬蝕刻程序來去除沉積在其餘 結構上的金屬。金屬化矽層84因由氧化物層64和氧化物方 塊108來自行對齊於多晶矽方塊103、而可稱為自行對齊。 一保護氮化物層Π0以下列方式來形成在多晶矽方塊103上 方和氧化物方塊108間。氮化物被沉積在結構上方,接著實 施如CMP的一平面化氣化物餘刻、以氧化物方塊log使用 為鮏刻停止層,使得氮化物層110與氧化物方塊1〇8同平 準。氮化物層110由氧化物方塊108來自行對齊於多晶梦方 塊103。所產生结構顯示於第4G圖。 夂纸这家標準(CNS〉Α4規格(210X297公釐) 23 .......……-..........¥------------------------------------緣 (諳先閲讀背面之注意事項再填寫本頁) 522478 A7 _B7_ 五、發明説明(21 ) 然後實施一氧化物蝕刻來去除氧化物方塊108和氧化 物層64之露出部份,如第4H圖說明的。絕緣間隔片74然後 形成相鄰於多晶矽方塊103和氮化物層110,且由一或多層 材料製成。在較佳實施例中,絕緣間隔片74係藉由先沉積 一薄氧化物層7 6、隨後把一氮化物沉積在結構上方,而由 兩層材料製成。一非等方氮化物姓刻被實施來去除所沉積 氮化物,留下氬化物間隔片78。然後使用離子植入(如N+)、 以和形成第一區50的相同方式在基體中形成第二區(端 子)80。然後實施一氧化物蝕刻,其去除氧化物層76之露出 部份。藉由把如鎢、鈷、钦、鎳、鉑或鉬等一金屬沉積在 結構上方、在基體10於側壁間隔片74旁邊之上部中形成一 層金屬化矽(碎化物)82。結構被浮火、允許熱金屬流動且 滲入基體10之露出上部、來形成一矽化物區82。由一金屬 蝕刻程序來去除沉積在其餘結構上的金屬。在基體10上的 金屬化矽區82因由間隔片78來自行對齊於第二區80而可稱 為自行對齊矽化物(即矽化物)。所產生結構顯示於第41圖。 使用如BPSG 86的舖蓋來覆蓋整個結構。一光罩步驟 被實施來界定矽化物區82上方的飪刻區。BPSG 86在遮罩 區中被選擇性蝕刻來產生理想上於成對記憶體晶胞之相鄰 組集間形成的矽化物區82上方中央、且比矽化物區82寬的 接獨開口 ^氮化物層110供用在此蝕刻程序中來保護多晶矽 方塊103和金屬化矽84。接觸開口然後由金屬沉積和平面化 钱回來填充有一傳導體金屬,藉此在成對記憶體晶胞相鄰 組集之氮化物間隔片78間的整個區域都填充有所沉積金 m尺度这3]笮s g家標準(OJS) A4規格(21〇X 297公釐) (請先閲讀背面之注意事項再填寫本頁)The structure of Fig. 1E represents a self-aligning structure which is more compact than a structure formed by a non-self-aligning method. A well-known and conventional non-self-aligning method for forming the structure shown in Figure 1E is as follows. An isolation region 20 is formed in the substrate 10 first. This can be done by depositing a layer of silicon nitride on the substrate 10, depositing a photoresist, patterning the silicon nitride using a first photomask step to expose selected portions of the substrate 10, and then using silicon trench formation and trenches involved. Trench filling LOCOS 10 (Please read the notes on the back first, and then fill out this page) The meaning and standard of this company are 33 standards (CNS) A4 specifications (210 X 297 mm) 522478 A7 B7 V. Description of the invention ( 8 program or STI program is completed by oxidizing the exposed substrate 10. Thereafter, the emulsified stone is removed 'and a first layer of oxide 12 (to form the gate oxide) is deposited on the substrate 10. A first layer of polycrystalline silicon 14 is deposited over the gate oxide 12. Then, a second photomask step is used to pattern the first layer of polycrystalline silicon 14 and selected portions are removed. Therefore, the polycrystalline silicon 14 is not related to The isolation region 20 aligns itself and requires a second photomask step. Furthermore, the additional photomask step requires that the dimensions of the polycrystalline silicon 14 have an alignment margin relative to the isolation region 20. Please note that the non-self-alignment method does not use a nitride layer 18. To use self-alignment method or non-self-alignment The structure shown in Figure 1E produced by the uniform method is further processed as follows. Please refer to Figure 2A, which shows the structure from a line of sight perpendicular to Figures 1B and 1E. The subsequent steps in the procedure of the present invention are explained. A thick insulating layer such as silicon nitride (hereinafter referred to as oxide) is formed on the structure, and a thin protective layer 26 such as polycrystalline silicon (hereinafter referred to as `` polycrystalline silicon '') is subsequently formed. The resulting structure is illustrated in FIG. 2A. A photoresist applied to the polycrystalline silicon layer 26 is used to perform a conventional optical lithographic masking operation. A mask step is applied to a strip (ie, a mask area) defined in the X or column direction. Between adjacent strips The distance may be a size determined by the needs of the device to be manufactured. The photoresist is removed in the defined masking area (ie, the strip in the column direction), and is then etched using a conventional non-equival polycrystalline silicon etching process The polycrystalline silicon layer 26 dropped in the stripe under the removed photoresist to expose the lower nitride layer 24. Then, a non-isotropic nitride etching process was performed to remove the exposed portion of the silicon oxide layer 24 to Exposed Polycrystalline silicon layer 14. Then a trade-off polycrystalline silicon etching process can be performed to remove only one of the upper portions of the exposed polycrystalline silicon layer 14, so that the polycrystalline silicon layer 14 is relatively more effective than the rest of the nitride paper. This is a standard of 3 (CNS) Α4 specifications (210X 297 public love) 11 ............... -、 耵 ------------------ 绛 (Please read the notes on the back before filling in this page) 522478 A7 ___ _B7_____ V. Description of the invention (9) Floor 24 It is slightly recessed to form a sloped portion 28 of the polycrystalline silicon layer 14 touching the nitride layer 24. For each pair of mirrored memory cells, these etching procedures result in the formation of a single first trench extending down (and preferably slightly into) the polycrystalline silicon layer 14. The remaining photoresist is then removed, resulting in the structure shown in Figure 2B. A layer of insulating material 32, such as silicon dioxide (hereinafter referred to as "oxide"), is then formed over the structure using, for example, a thermal oxidation process. The portion of the oxide layer 32 formed on the polycrystalline silicon layer 14 in the trench 30 has a raised portion 34 caused by the inclined portion 28 of the polycrystalline silicon 14 and gives the oxide layer 32 in the trench 30 a lens shape. The resulting structure is illustrated in Figure 2C. An insulating spacer 40 is then formed in the trench 30 (FIG. 2E). The formation of spacers is well known in the art, by depositing a material over the structural outline and then performing an asymmetric etching process (such as RIE), whereby the material is removed from the horizontal surface of the structure while the material remains in approximate contact On the vertically oriented surface of the structure. The spacer 40 may be formed of any dielectric material. In the preferred embodiment, the spacers 40 are formed of nitride in the following manner. A conventional chemical vapor deposition (CVD) process is preferably used to form a thin insulating material (ie, oxide) layer 36 over the structure in FIG. 2C, and then a conventional nitride deposition process is preferably used to A thick insulating material (ie, nitride) layer 38 is formed over it, as shown in Figure 2D. A thick nitride etch process using the oxide layer 36 as an etch stop is then performed. This etch process removes all nitride layers 38 except for the side wall spacers 40 along the trench 30 side. An anisotropic oxide etching process using polysilicon layer 26 as an etch stop is then performed. This oxide etch removes the exposed portions of the oxide layers 36 and 32 above the nitride layer 24. The oxide etch also removes the oxide layers 36 and 32. The paper is smashed again and again. This standard is made by 33 domestic standard (CNS) A4 specifications (210X297 mm). 12 -------------- ------------- (Please read the notes on the back before filling out this page) * τ .¾. 522478 A7 ____ B7_ V. Description of the invention (10) In the trench 30 at intervals The exposed portion between the wafers 40 exposes the portion of the polycrystalline silicon layer 14 in the center of the trench 30. The resulting structure is shown in Figure 2E. A thick nitride etch process is performed to remove the spacers 40 from the trenches 30. Then, a polycrystalline silicon etching process is performed to remove the polycrystalline silicon layer 26 to expose the nitride layer 24, and to remove the polycrystalline silicon layer 14 from the exposed part of the center of the bottom of the trench 30 to expose the oxide layer 12. As shown in FIG. 2F, the trenches 30 each have a narrow lower portion 42 bounded by the polycrystalline layer 14 and the halide layers 32 and 36, and an upper wide portion bounded by the oxide layer 36. 44. Please note that the spacer 40 can be removed after the polysilicon etching process for removing a part of the polysilicon layer 14. Implement appropriate ion halide penetration across the entire surface of the structure. Where the ions have sufficient energy to penetrate the first silicon dioxide layer 12 in the trench 30, they then form a first region (terminal) 50 in the substrate 10. In all other regions, ions are absorbed by existing structures and they have no effect. An insulating spacer 46 (such as an oxide) is formed on the side wall of the lower portion 42 of the trench 30. Preferably, the oxide spacer 46 is performed by forming an insulating sidewall layer 48 (oxide) on the side of the polycrystalline silicon layer 14 exposed in the trench 3.0 (ie, by oxidizing the structure or by CVD). Formation. An oxide is then formed over the structure (ie, a CVD process), followed by an oxide anisotropic etching, which is removed from the structure except for the oxide spacers 46 formed on the sidewalls of the lower trench portion 42 The oxide formed above is also applied to the thickness of the vertical portion of the oxide layer 36 in the upper trench portion 44. The non-equivalence also removes one of the upper part of the oxide layer 36, as thin as the part of the oxide layer 36 above the oxide layer 32, and removes the oxide layer 12 each paper-killing standard. This is by SS Home Standard (CNS) A4 Specifications (210X297 mm) 13 ----------------------- install ------------------ ^ ------------------ line (please read the precautions on the back before filling this page) 522478 A7 ___B7_ V. Description of the invention (11) Between the spacer 46 and the channel The bottom of the groove 30 exposes the substrate 10. The resulting structure is shown in 2G 圊. A conductive layer 52 that adheres well to the exposed substrate 10, such as titanium nitride, is formed over the entire structure, which aligns the sidewalls of the trench 30 and the exposed substrate 10 therein. A conductive block 54 is then formed in the trench 30 by depositing a conductive material such as tungsten over the structure, followed by a tungsten planarization process (preferably CMP), and filling the conductive block 54 into the trench 30. form. A tungsten etching step is then performed to remove any tungsten outside the trench 30, and the upper surface of the conductive block 54 is defined below the upper portion of the halide layer 36. A conductive layer 56 (titanium nitride) is then formed over the conductive block 54, preferably by depositing titanium nitride over the structure, and then removing the conductive layer 56 except the conductive layer 56 above the conductive block 54 in the trench 30. One of the deposited titanium nitride planarization (CMP) procedures. A titanium nitride etch is then performed so that the conductive layer 56 is recessed below the upper portion of the oxide layer 36. An insulating material (oxide) layer 58 is then formed over the structure, followed by a planarization process (CMP) and an oxide etch process to remove the deposited oxide other than the portion above the conductive layer 56. The resulting structure is shown in Figure 2H, where the narrow / wide trench portion 42/44 results in a generally T-shaped tungsten conductive square 54 containing a narrow lower square portion 60 and a wide upper square portion 62, which is titanium nitride Surrounded by layers 52/56. The second channel trench 63 is formed between the pair of memory cells and adjacent to the first channel trench 30 in the following manner. It is preferred to use a first-level etching process to remove the nitride layer 24 to expose portions of the polycrystalline silicon layer 14 and the oxide layer 32 as shown in FIG. Then, a polycrystalline silicon etching process (ie, a dry etching) is performed to remove the exposed portion of the polycrystalline silicon layer 14 and scoop out the oxide layer 12. Then throw the scale through a stack of paper. This standard is used by the three national standards (CNS) A4 (210X297 mm> 14;-": 77 : ...: (Please read the note 7S on the back before filling out this page). Order · 522478 A7 _____B7_ V. Description of the invention (U) Controlled oxide etching is used to remove the exposed portion of the oxide layer 12, exposing a base layer 10 °, preferably an oxide, and an insulating layer 64 is then formed over the entire structure. The structure shown in Figure 2J. The raised portion 34 of the oxide layer 32 results in the formation of a polycrystalline silicon layer 14 that touches the upwardly extending sharp edge 66 of the oxide layer 64. A gate polycrystalline silicon block is formed in the second trench 63 in the following manner ° A thick layer of polycrystalline silicon is deposited over the structure, followed by a non-equilateral polycrystalline silicon lithography process, which removes all but the polycrystalline silicon spacers (boxes) 68 formed immediately adjacent to the vertically oriented portion of the oxide layer 64 The polycrystalline silicon block 68 has a lower portion 70 disposed immediately adjacent to the polycrystalline silicon layer 14 and an upper portion extending beyond the polycrystalline silicon layer 14 including a portion of the sharp edge 66. The polycrystalline silicon block 68 is made of oxygen The physical layers 64 and 32 are insulated from the polycrystalline silicon layer 14. The resulting structure is illustrated in Figure 2K. The insulating spacer 74 is then formed adjacent to the polycrystalline silicon block 68 and is made of one or more layers of material. In the preferred embodiment, The insulating spacer 74 is made of two layers of material by first depositing a thin layer of oxide 76 and then depositing a nitride over the structure. A non-isotropic nitride etch is performed to remove the deposited nitride, The nitrogen spacer 78 is left. A second region (terminal) 80 is then formed in the substrate using ion implantation (such as N +) in the same manner as the first region 50. Then a controlled oxide etch is performed, It removes the exposed portion of the oxide layer 76 and the exposed portion of the oxide layer 64 to expose the base 10 and the second region 80. The resulting structure is shown in Fig. 2L. A metal such as metal, chain, platinum, or molybdenum is deposited on the structure, in the upper part of the substrate 10 next to the side wall spacer 74, and in a layer on the paper scale. This is the same as the S3 Standard (CNS) A4 (210X 297 mm) 15 ----------------------- f ------------------ IT ; ---------------- 绛 (Please read the precautions on the back before filling in this page) 522478 A7 __B7_ V. Description of the Invention (I3) Silicon metal silicon over the silicon block 68 84—Forming a layer of metalized silicon (silicide) 82 »The structure is quenched, allowing hot metal to flow and penetrate into the exposed upper portion of the substrate 10 to form a silicide 82, and penetrate into the exposed upper portion of the polycrystalline silicon block 68 to form metallization Silicon 84. A metal etching process is used to remove the metal deposited on the remaining structures. The siliconized silicon region 82 on the substrate 10 can be referred to as a self-aligned silicide (ie, silicide) because the spacers 78 are aligned in rows to the second region 80. The resulting structure is shown in Figure 2M. A covering such as BPSG 86 is used to cover the entire structure. A photomask step is performed to define an etched area above the silicide area 82. The BPSG 86 is selectively etched in the mask region to create a contact opening ideally above and in the center of the silicide region 82 formed between adjacent sets of paired memory cell cells. The contact opening is then filled back with a conductor metal by metal deposition and planarization etching to form the contact conductor 88. The silicide layer 82 facilitates conduction between the conductor 8.8 and the second region 80. A metal wire 90 is added by the metal above the mask BPSG 86 to connect all the conductors 88 on the memory cell row. The final memory cell structure is illustrated in Figure 2N. As shown in Figure 2N, the first and second regions 50/80 form the source and drain of each cell (one skilled in the art knows that the source and drain can be switched during operation). The channel region 92 of each unit cell is the part of the matrix between the source and drain 50/80. The polycrystalline silicon block 68 constitutes a control gate, and the polycrystalline silicon layer 14 constitutes a floating gate. The oxide layers 32, 36, 46, and 48 together form an insulating layer disposed adjacent to and above the floating gate 14. The oxide layers 36 and 64 together form an insulating layer that isolates the source line from the control gate 68. The control gate 68 has a side aligned with the edge of the second area 80 and is arranged in a part of the channel 16 (please read the precautions on the back before filling the rirT page) 夂 paper 尜 dimensions This is the same as the 33 Chinese standards (CNS ) A4 specification (210X297 mm> 522478 A7 B7 V. Description of the invention (M) above the area 92. The control gate 68 has a lower portion 70 (adjacent to the oxide layer 64) Insulation), and an upper protruding portion 72 (insulated by an oxide layer 64) disposed (extending) above a portion of the adjacent polycrystalline silicon layer 14. A notch 94 is formed by the protruding portion 72, which floats therein The sharp edge 66 of the gate 14 extends into the notch 94. The floating gate 14 is arranged above a part of the channel region 92, and is partially overlapped by one end by the control gate 68, and partially overlapped by the other end The first region 50. The conductive blocks 54 and the conductive layers 52/56 together form a source line 96 extending across a plurality of rows of memory cell cells. A portion 62 above the source line 96 extends beyond the floating gate 14 but is insulated therefrom, The lower part of the source line 96 is adjacent to but insulated from the floating gate 14. As shown in Figure 2 ^^ It is to be noted that the program of the present invention forms a pair of memory cell units that mirror each other. The mirrored memory cell units of each pair are formed by an oxide layer 76, a nitride spacer 78, and a BPSG 86 to form a unit cell pair. Insulation. Please refer to FIG. 20, which shows a top view of the generated structure, and the bit line 90 and the control line 68 are connected to the second area 80. The control line 68 is along the X or column direction and the last source line. 96 is connected to the first region 50β in the base body 10. Although the source line 96 (as should be understood by those skilled in the art, the block, the source, can be interchanged with the block "drain") throughout In the column direction, it is in contact with the base body 10, that is, in contact with the active area and the isolation area. The source line 96 is electrically connected to the first area 50 in the base body 10. In addition, a "source" is connected to each of the lines 96. The first region 50 is shared by two adjacent memory cells. Similarly, each of the second regions 80 connected to the bit line 90 is shared by adjacent memory cells in the memory cells of different mirror sets. It is a kind of non-electrostatic memory cell with multiple separated gates. It has the surface paper method standard (CNS). 4 Specifications (210X297 mm) 17 (Please read the precautions on the back before filling this page)-Binding · Binding —: Line · 522478 A7 ---- 2Z_ 5. Description of the invention (I5) There is a floating gate electrode 14, One of the control gates, which is adjacent to but separate from the floating gate 14 and connected to the length along the column direction and connected to other memory cells on the same column, is also controlled along the column direction and connected One source line 96 of the first region 50 of the memory cell pair in the same column direction and one bit of the second region 80 of the memory cell along the row or Y direction and connected in the same row direction Element line 90. The control gates, floating gates, source lines, and bit lines are all self-aligned. The non-dependent memory cell line has a floating gate to a controlled gate tunnel separation type as described in U.S. Patent No. 5,572,054, which discloses a non-dependent memory cell And the operation of an array formed by it is incorporated herein by reference. The present invention exhibits reduced source line resistance due to the wider upper portion 62 of the T-shaped conductive block 52, while still providing a smaller-scale memory cell scale due to the narrower lower portion 60 of the T-shaped conductive block 52. (That is, the side walls of the first trench 30 between the upper and lower portions 62/60 form a T-shaped source line). The upper portion 62 also extends but is insulated from the floating gate 14, which allows the source voltage to be coupled from the source line 96 through the oxide layer 32/36 to the floating gate 14 (which is added to the through oxide layer 46 / 48 via the lower portion 60 and the transmission oxide layer 12 via the first region 50). Therefore, the coupling coefficient between the source electrode and the floating gate is enhanced. First Alternate Embodiment 3A.31I illustrates a first replacement procedure similar to that illustrated in FIG. 2N, but using a polycrystalline silicon source line to form a memory cell array. This first replacement procedure starts with the same structure as shown in 2G 圊 'but continues as follows. ------- ΓΊνν-0 ^ ----- (Please read the precautions on the reverse side and fill in the ¾ page) Order-夂 Paper is light and light, this standard is 33 standards (CNS) Α4 size (210X 297 public love) .18-522478 A7 B7 V. Description of the invention (16 The conductive block 98 is formed in the trench 30, preferably by depositing a conductive material such as polycrystalline silicon on the structure, and then performing a polycrystalline silicon planarization procedure ( (Preferably CMP) to remove the polycrystalline silicon above the trench 30. Next, a polycrystalline silicon etching back step is performed to remove any polycrystalline silicon outside the trench 30, and the upper surface of the conductive block 98 is recessed below the upper portion of the oxide layer 36. The polycrystalline silicon block 98 may be in-situ doping or doping using implantation. An insulating material (oxide) layer 58 is then formed over the polycrystalline silicon blocks 98, such as by thermal oxidation or deposition by oxidation, followed by a CMP planarization process and a The oxide etching process causes the oxide layer 58 to be recessed below the upper portion of the oxide layer 36. The resulting structure is shown in Figure 3A, where the narrow / wide trench portion 42/44 results in a narrow lower square portion 60 Approximately T-shaped conduction of the upper square part 62 Crystal silicon block 98. The second trenches 63 are formed between the pair of memory cells and adjacent to the first trenches 30 in the following manner. It is preferable to use a first-level etching process to remove the nitride layer 24, as in the first step. Figure 3B shows the exposed polycrystalline silicon layer 14 and oxide layer 32. Then a polycrystalline silicon etching process (ie, a dry etch) is performed to remove the exposed portion of the polycrystalline silicon layer 14 and the exposed portion of the oxide layer 12 » A controlled oxide etch removes the exposed portion of the oxide layer 12, exposing the substrate 10. An insulating layer 64, preferably an oxide, is then formed over the entire structure, resulting in the structure shown in Figure 3C. The oxide layer 32 The raised portion 34 results in the formation of a polycrystalline silicon layer 14 that touches the upwardly extending sharp edge 66 β of the oxide layer 64. A gate polycrystalline silicon block is formed in the second trench 63 in the following manner. A thick layer of polycrystalline silicon is deposited over the structure , And subsequently implemented a non-equal sheet m free use by 33 standards (CNS) A4 specifications (210X 297 mm) 19------------------------ Install ------------------, but ------------------ line. (Please read the Please fill in this page if necessary) 522478 A7 _B7 _ V. Description of the invention (17) (Please read the precautions on the back before digging this page) Fang polycrystalline silicon etching process, except for the vertical alignment part that is close to the oxide layer 64 All of the polysilicon spacers (blocks) 68 are formed. The polycrystalline silicon block 68 has a lower portion 70 disposed immediately adjacent to the polycrystalline silicon layer 14 and a portion extending beyond the polycrystalline silicon layer 14 including a sharp edge 66 Upper part. The polycrystalline silicon block 68 is insulated from the polycrystalline silicon layer 14 by oxide layers 64 and 32. The resulting structure is illustrated in Figure 3D. An oxide etch is performed to remove exposed portions of the oxide layer 64 and the underlying oxide layer 58 to expose the polycrystalline silicon blocks 98 and the substrate 10. Preferably, a dry etching process with endpoint detection is used, which also removes the upper portion of the oxide layer 36 so that it is approximately the same shape as the upper surface of the polycrystalline silicon block 98. An oxide deposition process is then performed to form an oxide layer 100 over the structure and replace the oxide layer 64 over the substrate 10. The resulting structure is illustrated in Figure 3E. -The release spacer 74 is then formed adjacent to the polycrystalline silicon block 68 and is made of one or more layers of material. In a preferred embodiment, the insulating spacer 74 includes removing the deposited nitride by depositing a nitride over the structure, and then performing an anisotropic nitride etch (using the oxide layer 100 as an etch stop). ), Leaving the nitride 78 above the oxide layer 64 and adjacent to the polycrystalline silicon spacer 68, the compound spacer 100 formed by the oxide layer 100 and the nitride spacer 78 "nitride spacer 101 is also formed above the endpoints of the conductive block 98 as shown in FIG. 3F. A second region (terminal) 80 is then formed in the substrate using ion implantation (e.g. N +) in the same manner as the first region 50 is formed. Then, a controlled oxide etching is performed to remove the exposed portion of the oxide layer 100 to expose the polycrystalline silicon square paper: ¾ standard applicable 3 3 standards (CNS) A4 specifications (210X297 mm) 20 522478 A7 B7 V. Description of the invention (18 pieces 98, and the exposed part of the oxide layer 64 is removed to expose the substrate 10. The resulting structure is shown in Figure 3G. By using a tungsten, cobalt, titanium, nickel, platinum or molybdenum, etc. Metal is deposited over the structure, in the upper part of the base body 10 next to the sidewall spacers 74, and a layer of metalized silicon 84 above the crystalline silicon block 68 to form a layer of metalized silicon (silicide) 82. The structure is quenched, allowed Hot metal flows and penetrates into the exposed upper portion of the substrate 10 to form a silicide 82, and penetrates into the exposed upper portions of the polycrystalline silicon blocks 68 and 98 to form metallized silicon 84. A metal etching process is used to remove the metal deposited on the remaining structures The metalized silicon region 82 on the substrate 10 can be called self-aligned silicide (ie, silicide) because the spacer 78 is aligned in rows to the second region 80. The resulting structure is shown in Figure 3H. Uses such as BPSG 86 Covering To cover the entire structure. A photomask step is performed to define the etched area above the silicide area 82. The BPSG 86 is selectively etched in the masked area to create adjacent sets of cells ideally located in pairs of memory cells A contact opening is formed in the upper center of the silicide region 82 and extends down to it. The contact opening is then filled with a conductive metal by metal deposition and planarization etching to form a contact conductor 88. The silicide layer 82 helps the conductor 88 And the second region 80. The metal above the BPSG 86 is used to add a bit line 90 to connect all the conductors 88 in the memory cell row. The final memory cell structure It is illustrated in Figure 31. The first alternative embodiment exhibits a reduced source line resistance due to the wider upper portion 62 of the T-shaped polycrystalline silicon block 98 and the highly conductive metallized silicon layer 84 formed thereon. Due to the narrower lower part 60 of the T-shaped conductive block 98, it still provides a smaller scale of the memory boat. The upper part 62 also extends beyond 21 (please read the precautions on the back before filling in the unpaged pages) 夂 paper 尜The standard is to learn from Chinese S CNS) A4 specification (210X297 mm) 522478 A7 ___B7___ 5. Description of the invention (19) Floating gate 14, which allows the source voltage from polycrystalline silicon block 98 to be coupled to the floating gate 14 through the oxide layer 32/36 (the system (Apply to light transmission of the transmissive oxide layer 46/48 via the lower portion 60, and the transmissive oxide layer 12 via the first region 50.) Therefore, the coupling coefficient between the source electrode and the floating gate is enhanced. Second 4A-4I of the replacement paste embodiment illustrate a second replacement procedure similar to that illustrated in FIG. 2N but using a self-aligned contact design to form a memory cell array. This second replacement procedure starts with the same structure as shown in Figure 2J, but continues as follows. A thick layer of conductive material 102, such as polycrystalline stone, is deposited over the structure as shown in Figure 4A. A layer of nitride 104 is then deposited over the structure, followed by an IL compound planarization process (e.g., CMP). Then, a nitride money recovery step is performed to remove a portion of the nitride layer 104 above the lifted portion of the polycrystalline silicon layer 102, while leaving a portion of the argon layer 104 above the flat side portion of the polycrystalline silicon layer 102. An oxidation step is then performed to oxidize the exposed central portion of the polycrystalline silicon layer 102 to form an oxide layer 106 thereon. The resulting structure is shown in Figure 4B. A nitride etching process is used to remove the nitride layer 104, and then a non-isotropic polycrystalline silicon etching step is performed to remove the exposed central portion of the polycrystalline silicon layer 102 that is not directly below the oxide layer 106, as illustrated in FIG. 4C. An oxide deposition step is then performed to apply a thick oxide layer over the structure. A planarized oxide neodymium etch, such as CMP, is subsequently performed to planarize the structure, using a polycrystalline silicon layer 102 as an etch stop. Then perform a chemical etching back step, leaving oxides on each side of the polycrystalline silicon layer 102. The paper size is in the standard of a S family standard (CNS) A4 (210X297 mm) 22 ---- --- jv fee ...: (炝 Read the precautions on the back before filling this page). Order 522478 A7 B7 5. Box 108 of the description of the invention (20). The oxide layer 106 is also removed by the oxide planarization and etch-back steps, resulting in the structure shown in Figure 4D. The oxide block 108 is then used as an etch stop to perform a planarized polysilicon etch such as CMP, as shown in Figure 4E. Explained. Subsequently, a polycrystalline silicon etch-back procedure such as RIE is performed to remove the upper portion of the polycrystalline silicon layer 102, leaving only the polycrystalline silicon block 103 adjacent to the oxide block 108, and exposing the oxide layer 64. The polycrystalline silicon block 103 has a lower portion 70 disposed immediately adjacent the polycrystalline silicon layer 14 and an upper portion 72 extending beyond the polycrystalline silicon layer 14 including a portion of the sharp edge 66. The polycrystalline silicon block 103 is insulated from the polycrystalline silicon layer 14 by oxide layers 64 and 32. The oxide block 108 and the halide layer 36 are left to extend sufficiently above the surface of the polycrystalline silicon 103, as illustrated in FIG. 4F. A trade-off implantation step may be performed to dope the exposed polycrystalline silicon block 103. A metal deposition step is then performed to deposit a metal such as tungsten, cobalt, titanium, nickel, platinum or molybdenum over the structure. The structure is floated, allowing hot metal to flow and infiltrating the exposed upper portion of the polycrystalline silicon block 103 to form a metalized silicon conductive layer 84 thereon. A metal etching process is used to remove the metal deposited on the remaining structures. The metalized silicon layer 84 can be referred to as self-aligned because the oxide layer 64 and the oxide block 108 are aligned in a row on the polycrystalline silicon block 103. A protective nitride layer Π0 is formed between the polycrystalline silicon block 103 and the oxide block 108 in the following manner. The nitride is deposited over the structure, and then a planarized gaseous layer such as CMP is implemented, and the oxide block log is used as an etch stop layer, so that the nitride layer 110 is the same as the oxide block 108. The nitride layer 110 is aligned in rows from the oxide block 108 to the polycrystalline dream block 103. The resulting structure is shown in Figure 4G. Paper standard (CNS> Α4 size (210X297 mm) 23 .............-.......... ¥ ------------- ----------------------- Fate (谙 Read the precautions on the back before filling this page) 522478 A7 _B7_ V. Description of the invention (21) Then implement one Oxide etch to remove the exposed portions of oxide block 108 and oxide layer 64, as illustrated in Figure 4H. An insulating spacer 74 is then formed adjacent to the polycrystalline silicon block 103 and the nitride layer 110, and is made of one or more layers of material In the preferred embodiment, the insulating spacer 74 is made of two layers of material by first depositing a thin oxide layer 76 and then depositing a nitride over the structure. An anisotropic nitrogen Carbide etching is performed to remove the deposited nitride, leaving the argon spacer 78. Then using ion implantation (such as N +), a second region (terminal) is formed in the substrate in the same manner as the first region 50 is formed. 80. An oxide etch is then performed to remove the exposed portion of the oxide layer 76. By depositing a metal such as tungsten, cobalt, zinc, nickel, platinum, or molybdenum over the structure, between the substrate 10 and the sidewalls A layer of metallized silicon (fragmentation) 82 is formed in the upper part next to the sheet 74. The structure is floated to allow hot metal to flow and penetrate the exposed upper portion of the substrate 10 to form a silicide region 82. The deposition is removed by a metal etching process Metal on the remaining structure. The metallized silicon region 82 on the substrate 10 can be called self-aligned silicide (ie, silicide) because the spacer 78 is aligned in a row to the second region 80. The resulting structure is shown on page 41 Figure. A covering such as BPSG 86 is used to cover the entire structure. A photomask step is performed to define the etched area above the silicide area 82. BPSG 86 is selectively etched in the mask area to produce ideally paired A separate opening ^ nitride layer 110 in the upper center of the silicide region 82 formed between adjacent groups of the memory cell is wider than the silicide region 82. The nitride layer 110 is used in this etching process to protect the polycrystalline silicon block 103 and the silicon metallized silicon. 84. The contact opening is then filled with a conductive metal by metal deposition and planarization, whereby the entire area between the nitride spacers 78 of adjacent sets of pairs of memory cell cells is filled with deposited gold m. This degree 3] board under tiles on roof s g of Standards (OJS) A4 size (297 mm 21〇X) (Please read the back of the precautions to fill out this page)

24 522478 A7 B7 五、發明説明(22 屬,來形成由氮化物間隔片78來自行對齊於矽化物區82的 接觸傳導體88(即自行對齊接觸設計、或SAC)。矽化物層 82幫助傳導體88和第二區80間的傳導。由遮罩BPSG 86上 方之金屬來加上一位元線90,來把記憶體晶胞行上的所有 傳導體88連接在一起。最終的記憶體晶胞結構說明於第4J 圊。 自行對齊接觸設計(SAC)去除在成對記憶體晶胞之相 鄰對組間的最小間距要求上之一重要限制。特別地,當第 4J圖說明接觸區(且因此傳導體78)完美地設在矽化物區76 上方之中央時,實際上很難沒有相關於矽化物區76的一些 不期望水平位移地形成接觸開口。用一非自行對齊接觸設 計、其中在BPSG形成前結構上方沒有氮化物保護層,若接 觸區88位移和形成於金屬化矽84和多晶矽方塊103上方、則 電氣短路可能發生。為了防止在非自行對齊接觸設計中的 電氣短路,接觸開口必須充分遠離氮化物間隔片78而形 成、使得即使在接觸區中有最大可能位移,它們仍將不延 伸到間隔片78或超越。這當然在間隔片78間的最小距離上 加上一限制,以在成對鏡面晶胞之相鄰對組間提供一充分 裕度距離。 本發明之SAC方法藉由在BPSG下方使用一保護材料 層(気化物層Π0)而消除此限制。用此保護層,接觸開口在 BPSG中形成、即使在形成期間接觸開口有一明顯水平位 移、仍有充分宽度來確定接觸開口與矽化物區82有重昼。 氤化物層110允許部份之接觸區88於其間沒有任何短路地 25 (請先閱讀背面之注意事項再填窩本頁) 各纸尜尺度边冃由a 3家標準(CNS) A4規格(210X297公釐) 522478 A7 _ _ B7_ 五、發明説明(23 ) 形成在多晶矽方塊103或金屬化矽層84上方。寬的接觸開口 確保接觸區88完全填入間隔片78間的極狹窄空間,且與矽 化物區82有良好電氣接觸《因此,接觸區於間隔片78間的 寬度可最小化,同時防止由填充間隔片78間的空間所致之 錯誤連接,允許縮小整個晶胞尺度。 第二替換實施例具有進一步優點,及控制閘極103大 致係矩形、含有於浮動閘極14上方的一突起部份和幫助間 隔片74之形成的一平面相對表面,其又促進矽化物區82之 自行對齊形成、和自行對齊傳導體88之形成。 第三替換實施例 第5A-5K圖說明與第31圓說明者相似、但利用一自行 對齊接觸設計,來形成一記憶體晶胞陣列的第三替換程 序。此第三替換程序由和第3C圖顯示的相同結構開始,但 繼續如下。 如多晶矽的一厚傳導材料層102如第5A圖顯示地沉積 在結構上方。一層I化物104然後沉積在結構上方,接著實 施一氣化物平面化程序(如CMP)。然後實施一氣化物姓回 步驟,以去除氮化物層104在多晶矽層102之提升部份上方 的部份,同時留下氮化物層104在多晶矽層102之平坦側面 部份上方的部份。隨後實施一氧化步騍來把多晶矽層102 之露出中央部份氧化,以在其上方形成一層氧化物106。所 產生結構顯示於第5B囷。 由一氮化物姓刻程序來去除氮化物層104,接著實施 一非等方多晶矽蝕刻步驟、來去除多晶矽層102不在氧化物 表纸杀尺度这用士 33家標準(CNS) A4規格(210X297公釐) 26 -------«费------------------訂----------------馨 (請先閲讀背面之:工意事項再填寫本頁) 522478 A7 B7 五、發明説明(24 ) 層106正下方的那些部份,如第5C圖說明的。 然後實施一氧化物沉積步驟來把一厚氧化物層108施 於結構上方。隨後實施如CMP的一平面化氧化物蝕刻,來 把結構平面化、使用多晶矽層102為一蝕刻停止。然後實施 一氧化物蝕回步驟,留下氧化物在多晶矽層102之任一側面 上的方塊108〇也由氧化物平面化和餘回步驟來去除氧化物 層106。然後實施一氮化物沉積歩驟來把一氮化物層施於結 構上方。隨後做如CMP的一平面化氮化物蝕刻,來把結構 平面化,使用多晶矽層102為一蝕刻停止。然後一氮化物蝕 回步驟被實施,留下於氧化物方塊108上方的氮化物層 109。所產生結構顯示於第5D圖。 然後實施如CMP的一平面化多晶矽蝕刻、使用氮化物 層109為一蝕刻停止。隨後實施如RIE的一多晶矽蝕回程 序,來去除多晶矽層102之上部份、只留下相鄰氧化物方塊 108之多晶矽方塊103,且露出氧化物層64。多晶矽方塊103 具有設置緊鄰於多晶矽層14的較低部份70,和延伸越過多 晶矽層14包括尖銳邊緣66之一部份的較上部份72。多晶矽 方塊103由氧化物層64和32來與多晶矽層14絕緣。氧化物方 塊108和氧化物層36被留下來充分延伸於多晶矽103之上表 面上方,如第5F圊說明的。 一受控制氧化物蝕刻被實施、來去除氧化物層64之露 出水平部份及下方氧化物層58,以露出多晶矽方塊98。較 佳地,有端點檢測的一乾式蝕刻程序被使用,其也去除氧 化物層36之上部份,如第5G圖說明的。 27 (請先閲讀背面之注意事項再填寫本頁) 各紙杀尺度適同中33家標準(CNS) A4規格(210X297公釐) 522478 A7 ____B7_ 五、發明説明(25 ) 可實施一取捨的植入步驟來摻雜露出之多晶矽方塊 103。然後實施一金屬沉積步驟,來把把如鎮、始、飲、錄、 鉑或鉬等一金屬沉積在結構上方。結構被泮火、允許熱金 屬流動且滲入多晶矽方塊103和98之露出上部、來在其上形 成一金屬化矽傳導層84。由一金屬蝕刻程序來去除沉積在 其餘結構上的金屬。金屬化矽層84因由氧化物層64和氧化 物方塊108來自行對齊於多晶矽方塊103、而可稱為自行對 齊。一保護氮化物層110以下列方式來形成在多晶矽方塊 103上方和氧化物方塊108間。氮化物被沉積在結構上方, 接著實施如CMP的一平面化氤化物蝕刻、以氧化物方塊 108使用為蝕刻停止層,使得氮化物層U0與氧化物方塊108 同平準。氮化物層109也由此程序來去除。氮化物層Π0由 氡化物方塊108來自行對齊於多晶矽方塊103。所產生結構 顯示於第5Η圖。 然後實施一氧化物蝕刻來去除氧化物方塊108和氧化 物蜃64之露出部份,如第51圊說明的。絕緣間隔片74然後 形成相鄰於多晶矽方塊103和氮化物層110,且由一或多層 材料製成。在較佳實施例冲,絕緣間隔片74係藉由先沉積 一薄氧化物層76、隨後把一氮化物沉積在結構上方,而由 兩層材料製成。使用氧化物層76為一蝕刻停止來實施一非 等方氬化物蝕刻,以去除除了氮化物間隔片外之所沉積氮 化物。然後使用離子植入(如Ν+)、以和形成第一區50的相 同方式在基體中形成第二區(端子)8〇。然後實施一氧化物 蝕刻,其去除氧化物層76之露出部份。藉由把如鎢、鈷、 衣纸杀尺度这用中sa家標準(CNS) Α4規格(210X297公釐) 28 .......----- (請先閲讀背面之注意事項再填寫本頁) 訂— 522478 A7 --~--_— 五、發明説明(26 ) 欽、錄、始或紹等一金屬沉積在結構上方、在基體10於側 壁間隔片74旁邊之上部中形成一層金屬化矽(矽化物)82。 結構被淬火、允許熱金屬流動且滲入基體10之露出上部、 來形成矽化物區82。由一金屬蝕刻程序來去除沉積在其餘 結構上的其餘金屬。在基體1〇上的金屬化矽區82因由間隔 片78來自行對齊於第二區8〇而可稱為自行對齊矽化物(即 矽化物)。所產生結構顯示於第5J圊。 使用如BPSG 86的舖蓋來覆蓋整個結構。一光罩步驟 被實施來界定矽化物區82上方的蝕刻區。BPSG 86在遮罩 區中被選擇性蝕刻來產生理想上於成對記憶體晶胞之相鄰 組集間形成的石夕化物區82上方中央、且比石夕化物區82寬的 接觸開口。氮化物層Π0供用在此蝕刻程序中來保護多晶矽 方塊103和金屬化矽84。接觸開口然後由金屬沉積和平面化 姓回來填充有一傳導體金屬,藉此在成對記憶體晶胞相鄰 組集之氣化物間隔片7 8間的整個區域都填充有所沉積金 屬,來形成由氮化物間隔片78來自行對齊於矽化物區82的 接觸傳導體88(即自行對齊接觸設計、或SAC)。矽化物層 82幫助傳導體88和第二區80間的傳導。由遮罩BPSG 86上 方之金屬來加上一位元線90,來把記憶體晶胞行上的所有 傳導體88連接在一起。最终的記憶體晶胞結構說明於第5κ 圊。 第三替換實施例具有把第一替換實施例之優點和SAC 之優點組合的優點β 請瞭解到本發明不限於上述和在此說明的實施例,而 乒紙杀尺度这用中as家標準(CNTS) Α4規格(210X297公釐)24 522478 A7 B7 V. Description of the invention (22 properties) to form a contact conductor 88 (that is, a self-aligned contact design, or SAC) aligned with the silicide region 82 by the nitride spacer 78. The silicide layer 82 helps conduct Conduction between the body 88 and the second region 80. The metal above the BPSG 86 adds a bit line 90 to connect all the conductors 88 on the memory cell row. The final memory crystal The cell structure is illustrated in Figure 4J. Self-aligned contact design (SAC) removes one of the important restrictions on the minimum spacing requirement between adjacent pairs of memory cell pairs. In particular, Figure 4J illustrates the contact area ( And therefore, when the conductor 78) is perfectly positioned in the center above the silicide region 76, it is actually difficult to form the contact opening without some undesired horizontal displacement associated with the silicide region 76. With a non-self-aligned contact design, where There is no nitride protection layer above the structure before the formation of BPSG. If the contact area 88 is displaced and formed over the metalized silicon 84 and the polycrystalline silicon block 103, an electrical short may occur. In order to prevent non-self-aligned contact designs For electrical shorts, the contact openings must be formed sufficiently far away from the nitride spacers 78 so that they will not extend to or beyond the spacers 78 even with the greatest possible displacement in the contact area. This is of course at the minimum distance between the spacers 78 A restriction is added to provide a sufficient margin distance between adjacent pairs of paired mirrored unit cells. The SAC method of the present invention eliminates this restriction by using a protective material layer (halide layer Π0) under the BPSG. With this protective layer, the contact opening is formed in the BPSG. Even if the contact opening has a significant horizontal displacement during the formation, there is still sufficient width to determine that the contact opening and the silicide region 82 are heavy. The halide layer 110 allows partial contact. There is no short circuit in the area 88 during the 25 (please read the precautions on the back before filling in this page) The dimensions of each paper scale are from a 3 standard (CNS) A4 specification (210X297 mm) 522478 A7 _ _ B7_ 5 2. Description of the invention (23) It is formed above the polycrystalline silicon block 103 or the metallized silicon layer 84. The wide contact opening ensures that the contact area 88 completely fills the extremely narrow space between the spacers 78 and is silicided. 82 has good electrical contact. Therefore, the width of the contact area between the spacers 78 can be minimized, while preventing erroneous connections caused by filling the space between the spacers 78, allowing the entire cell size to be reduced. The second alternative embodiment has A further advantage is that the control gate 103 is substantially rectangular and includes a protruding portion above the floating gate 14 and a flat opposing surface that helps the formation of the spacer 74, which in turn promotes the self-aligned formation of the silicide region 82, and Formation of Self-Aligned Conductor 88. The third alternative embodiment, Figures 5A-5K, illustrates a third replacement procedure similar to the one described in Section 31, but using a self-aligned contact design to form a memory cell array. This third replacement procedure starts with the same structure as shown in Figure 3C, but continues as follows. A thick layer of conductive material 102, such as polycrystalline silicon, is deposited over the structure as shown in Figure 5A. A layer of halide 104 is then deposited over the structure, followed by a gaseous planarization process (e.g., CMP). Then, a gasification step is performed to remove a portion of the nitride layer 104 above the lifted portion of the polycrystalline silicon layer 102, while leaving a portion of the nitride layer 104 above the flat side portion of the polycrystalline silicon layer 102. An oxide step is then performed to oxidize the exposed central portion of the polycrystalline silicon layer 102 to form an oxide layer 106 thereon. The resulting structure is shown in Section 5B 囷. A nitride lasting process is used to remove the nitride layer 104, and then a non-equal polycrystalline silicon etching step is performed to remove the polycrystalline silicon layer 102. The oxide surface paper is not scaled in accordance with 33 standards (CNS) A4 (210X297). %) 26 ------- «Fee ------------------ Order ---------------- Xin (Please (Read the back of the page first: work items before filling out this page) 522478 A7 B7 V. Description of the invention (24) Those parts directly under layer 106, as illustrated in Figure 5C. An oxide deposition step is then performed to apply a thick oxide layer 108 over the structure. A planarizing oxide etch such as CMP is subsequently performed to planarize the structure, using the polycrystalline silicon layer 102 as an etch stop. An oxide etch-back step is then performed, leaving the blocks 108o of oxide on either side of the polycrystalline silicon layer 102. The oxide layer 106 is also removed by the oxide planarization and retrace steps. A nitride deposition step is then performed to apply a nitride layer over the structure. A planarized nitride etch such as CMP is subsequently performed to planarize the structure, and the polycrystalline silicon layer 102 is used as an etch stop. A nitride etch-back step is then performed, leaving a nitride layer 109 over the oxide block 108. The resulting structure is shown in Figure 5D. A planarized polycrystalline silicon etch such as CMP is then performed, using the nitride layer 109 for an etch stop. Subsequently, a polycrystalline silicon etching process such as RIE is performed to remove the upper portion of the polycrystalline silicon layer 102, leaving only the polycrystalline silicon block 103 adjacent to the oxide block 108, and exposing the oxide layer 64. The polycrystalline silicon block 103 has a lower portion 70 disposed immediately adjacent to the polycrystalline silicon layer 14, and an upper portion 72 extending a portion of the polycrystalline silicon layer 14 including a portion of sharp edges 66. The polycrystalline silicon block 103 is insulated from the polycrystalline silicon layer 14 by oxide layers 64 and 32. The oxide block 108 and the oxide layer 36 are left to extend sufficiently above the surface of the polycrystalline silicon 103, as described in Section 5F (i). A controlled oxide etch is performed to remove the exposed horizontal portion of the oxide layer 64 and the underlying oxide layer 58 to expose the polycrystalline silicon block 98. Preferably, a dry etching process with endpoint detection is used, which also removes the upper part of the oxide layer 36, as illustrated in Figure 5G. 27 (Please read the notes on the back before filling out this page) Each paper size is compatible with 33 standards (CNS) A4 specifications (210X297 mm) 522478 A7 ____B7_ 5. Description of the invention (25) A one-shot implantation can be implemented Steps to dope the exposed polycrystalline silicon block 103. A metal deposition step is then carried out to deposit a metal such as a town, start, drink, record, platinum or molybdenum on the structure. The structure is fired to allow hot metal to flow and penetrate the exposed upper portions of the polycrystalline silicon blocks 103 and 98 to form a metalized silicon conductive layer 84 thereon. A metal etching process is used to remove the metal deposited on the remaining structures. The metallized silicon layer 84 can be referred to as self-aligned because the oxide layer 64 and the oxide block 108 are aligned on the polycrystalline silicon block 103 in a row. A protective nitride layer 110 is formed between the polycrystalline silicon block 103 and the oxide block 108 in the following manner. The nitride is deposited over the structure, and then a planarized halide etch such as CMP is performed, using the oxide block 108 as an etch stop layer, so that the nitride layer U0 is the same as the oxide block 108. The nitride layer 109 is also removed by this procedure. The nitride layer Π0 is aligned from the halide block 108 to the polycrystalline silicon block 103. The resulting structure is shown in Figure 5. An oxide etch is then performed to remove the exposed portions of oxide block 108 and oxide 蜃 64, as described in Section 51 圊. The insulating spacer 74 is then formed adjacent to the polycrystalline silicon block 103 and the nitride layer 110, and is made of one or more materials. In the preferred embodiment, the insulating spacer 74 is made of two layers of material by first depositing a thin oxide layer 76 and then depositing a nitride over the structure. An anisotropic argon etch is performed using oxide layer 76 as an etch stop to remove deposited nitrides other than nitride spacers. A second region (terminal) 80 is then formed in the substrate using ion implantation (such as N +) in the same manner as the first region 50 is formed. An oxide etch is then performed to remove the exposed portion of the oxide layer 76. By using standards such as tungsten, cobalt, and tissue paper, this standard (CNS) A4 (210X297 mm) 28 .......----- (Please read the precautions on the back before (Fill in this page) Order — 522478 A7-~ --_— V. Description of the invention (26) A metal such as Qin, Lu, Shi or Sha is deposited above the structure and formed in the upper part of the base 10 next to the side wall spacer 74. A layer of metalized silicon (silicide) 82. The structure is quenched, allowing hot metal to flow and penetrate into the exposed upper portion of the substrate 10 to form a silicide region 82. A metal etching process is used to remove the remaining metal deposited on the remaining structures. The metalized silicon region 82 on the substrate 10 can be called self-aligned silicide (i.e., silicide) because the spacer 78 is aligned in a row to the second region 80. The resulting structure is shown in Section 5J 圊. A covering such as BPSG 86 is used to cover the entire structure. A photomask step is performed to define an etched area above the silicide area 82. The BPSG 86 is selectively etched in the mask region to create a contact opening that is ideally above the center of the stone material region 82 formed between adjacent sets of paired memory cell cells and wider than the stone material region 82. The nitride layer Π0 is used in this etch process to protect the polycrystalline silicon blocks 103 and the metallized silicon 84. The contact opening is then filled with a conductive metal by metal deposition and planarization, thereby filling the entire area between the gas spacers 78 of adjacent pairs of memory cell cells with deposited metal to form The contact spacers 88 (i.e., self-aligned contact designs, or SAC) are aligned with the silicide regions 82 by the nitride spacers 78. The silicide layer 82 facilitates conduction between the conductor 88 and the second region 80. A bit line 90 is added by the metal above the mask BPSG 86 to connect all the conductors 88 on the memory cell row together. The final memory cell structure is illustrated at 5κκ. The third alternative embodiment has the advantage of combining the advantages of the first alternative embodiment with the advantages of SAC. Please understand that the present invention is not limited to the embodiments described above and described here. CNTS) Α4 size (210X297 mm)

(請先閲讀背面之注意事项再塡筠本頁) 29 522478 A7 _-_____B7_ 五、發明説明(27 ) '~' — 包括在所附申請專利範圍之範嗜内的任何和所有改變。例 如’雖然前述方法描述使用適當摻雜的多晶石夕作為使用來 形成記憶體晶胞之傳導材料,熟知該技術者應清楚到任何 適當傳導材料可被使用。另外,任何適當絕緣物可使用來 取代一氧化矽或氮化矽。再者,其蝕刻特性不同於二氧化 矽(或任何絕緣物)和不同於多晶矽(或任何傳導體)的任何 適g材料可被使用來替代氣化石夕。再者,如從申請專利而 清楚的,並非所有方法步驟需以所說明和所申請的順序來 實施,而是以允許本發明之記憶體晶胞之適當形成的任何· 順序。最後,第一渠溝上和下部份無需為對稱,而是第一 渠溝只需在其惻壁具有一縮格,使得形成於其中的源極線 具有設置相鄰於浮動閘極的一第一部份、和設置於浮動閘 極上方的一第二部份。 各紙m这中3 3家標準(CNS) A4規格(2ΐοχ297公f) -------參…: (請先閲讀背面之注意事項再填寫本頁) ,,一t- 30 522478 A7 B7 五、發明説明(28 ) 元件標號對照 10…半導體基體 12…第一層絕緣材料 14…第一多晶矽層 16…條帶 18…氮化矽層 19…光阻材料 20…隔離區 20a、20b…隔離材料 22…厚氧化矽層 22a…絕緣層 24…厚氮化物絕緣層 26…多晶^夕層 28…傾斜部份 3〇…第一渠溝 30、30a…渠溝 31…縮格 32、58、64…絕緣材料層 34…升起部份 36…薄絕緣材料層 38…厚絕緣材料層 40、46、74…絕緣間隔片 42、70…較低部份 44、72…較上部份 48…絕緣側壁層 50…第一區 52、56…傳導層 54、98…傳導方塊 60…較低方塊部份 62…較上方塊部份 63…第二渠溝 66…尖銳邊緣 68…多晶矽間隔片(方塊) 76…薄氧化物層 78、101…氮化物間隔片 80…第二區 82、84…金屬化矽(矽化物)層(Please read the notes on the back before clicking this page) 29 522478 A7 _-_____ B7_ V. Description of Invention (27) '~' — Includes any and all changes within the scope of the scope of the attached patent application. For example, 'While the foregoing method describes the use of appropriately doped polycrystalline stones as the conductive material used to form the memory cell, those skilled in the art will appreciate that any suitable conductive material can be used. In addition, any suitable insulator can be used in place of silicon monoxide or silicon nitride. Furthermore, any suitable material whose etching characteristics are different from silicon dioxide (or any insulator) and different from polycrystalline silicon (or any conductor) may be used in place of gasified rocks. Furthermore, as is clear from the patent application, not all method steps need to be performed in the order illustrated and applied, but in any order that allows the proper formation of the memory cell of the present invention. Finally, the upper and lower portions of the first trench need not be symmetrical, but the first trench only needs to have a shrinkage on its wall, so that the source line formed therein has a first adjacent to the floating gate. A part, and a second part disposed above the floating gate. Each paper m 3 of the three standard (CNS) A4 specifications (2ΐοχ297 Male f) ------- see ... (Please read the precautions on the back before filling this page), a t- 30 522478 A7 B7 V. Description of the invention (28) Comparison of component numbers 10 ... semiconductor substrate 12 ... first layer of insulating material 14 ... first polycrystalline silicon layer 16 ... strip 18 ... silicon nitride layer 19 ... photoresist material 20 ... isolation region 20a, 20b ... isolation material 22 ... thick silicon oxide layer 22a ... insulation layer 24 ... thick nitride insulation layer 26 ... polycrystalline layer 28 ... inclined portion 30 ... first trench 30, 30a ... trench 31 32, 58, 64 ... Insulating material layer 34 ... Lifting portion 36 ... Thin insulating material layer 38 ... Thick insulating material layer 40, 46, 74 ... Insulating spacers 42, 70 ... Lower portions 44, 72 ... Upper Section 48 ... Insulating sidewall layer 50 ... First regions 52, 56 ... Conductive layers 54, 98 ... Conducting block 60 ... Lower block portion 62 ... Upper block portion 63 ... Second trench 66 ... Sharp edge 68 ... Polycrystalline silicon spacers (squares) 76 ... thin oxide layers 78,101 ... nitride spacers 80 ... second regions 82,84 ... metalized silicon (silicide) layers

86 …BPSG 88…傳導體 90…位元線 92…通道區 94…凹口 96…源極線 100、106···氧化物層 102…厚傳導材料層 103…多晶矽方塊 104、109、110…氮化物層 108…氧化物方塊 (請先閲讀背面之注意事項再填寫本頁) -31 各纸彔尺度逍用中33家標準(CNS) A4規格(210X297公f)86 ... BPSG 88 ... conductor 90 ... bit line 92 ... channel area 94 ... notch 96 ... source line 100, 106 ... oxide layer 102 ... thick conductive material layer 103 ... polycrystalline silicon block 104, 109, 110 ... Nitride layer 108… Oxide block (please read the notes on the back before filling this page) -31 33 standards (CNS) A4 specifications (210X297 male f) in various paper sizes

Claims (1)

經部智慧时產局員工消費合泎Tlurlvii 522478 C8 D8 六、申請專利範圍 1· 一種自行對齊方法,用來在一半導體基體中形成浮動閘 極記憶體晶胞之一半導體記憶體陣列,各記憶體晶胞具 有一浮動閘極、一第一端子、於其間有一通道區的一第 二端子、及一控制閘極,該方法包含下列步驟: a) 在該基體上形成多個隔開的隔離區,該等隔離區 彼此大致平行且以一第一方向延伸'在各對相鄰隔離區 間有一主動區,該等主動區各包含在該半導體基體上的 一第一層之絕緣材料、及在該第一層絕緣材料上的一第 一層之傳導材料; b) 跨越該等主動區和隔離區形成多個隔開之第一 渠溝,該等第一渠溝彼此大致平行且以大致垂直於該第 一方向的一第二方向來延伸,各個該等第一渠溝具有含 有在其中形成之一縮格的一側壁; c) 把一第一傳導材料填入各個該等第一渠溝、來形 成該傳導材料之多個第一方塊,其中對於各個該等主動 區中的各個該等第一方塊: 該第一方塊包括形成在該第一渠溝側壁的該縮格 下方之一較低部份,該較低部份係設置相鄰於該第一層 傳導村料且與其絕緣;及 該第一方塊包括形成在該第一渠溝側壁的該縮格 上方之一較上部份,該較上部份係設置於該第一層傳導 材料上方且與其絕緣; d) 在該基禮1ί1形成多個第一端子,其令在各個該等 主動區中各個該等第一端子相鄰於該等傳導材料第一 二这汝又至違弓=3 1家墚!(CNS)A4規格(210 X 297公釐〉 Ί· --------t---------. <請先M讀背面之注意事項再填窵本頁) 32 522478 A8 B8 C8 D8Employees of the Ministry of Economic Affairs, Smart Time and Industry Bureau, Consumer Consumption Tlurlvii 522478 C8 D8 6. Scope of Patent Application 1. A self-aligning method used to form a semiconductor memory array, one of the floating gate memory cells, in a semiconductor matrix. The body cell has a floating gate, a first terminal, a second terminal with a channel region therebetween, and a control gate. The method includes the following steps: a) forming a plurality of spaced isolations on the substrate; The isolation regions are substantially parallel to each other and extend in a first direction. There is an active region in each pair of adjacent isolation intervals, and each of the active regions includes a first layer of insulating material on the semiconductor substrate, and A first layer of conductive material on the first layer of insulating material; b) forming a plurality of spaced first trenches across the active area and the isolation area, the first trenches being substantially parallel to each other and substantially perpendicular Extending in a second direction of the first direction, each of the first trenches has a sidewall including a grid formed therein; c) filling a first conductive material into each of the first trenches To form a plurality of first squares of the conductive material, wherein for each of the first squares in each of the active areas: the first square includes one of the first squares formed below the contraction in the sidewall of the first trench. A lower part, the lower part is disposed adjacent to the first layer of conductive material and is insulated therefrom; and the first block includes an upper part formed above the contraction of the first trench side wall The upper part is disposed above the first layer of conductive material and is insulated from it; d) forming a plurality of first terminals in the base 1 1 to make each of the first terminals in each of the active areas Adjacent to these conductive materials, the first two, the second and the third, and the bow = 3 1 home! (CNS) A4 specification (210 X 297 mm) Ί · -------- t ---------. ≪ Please read the notes on the back before filling in this page) 32 522478 A8 B8 C8 D8 申請專利範圍 經濟部智慧財產局員工消費合作让印焚 緣材料,其中各個該等第一方塊之該等較低和較上部 係由該第二絕緣材料層來與該第一傳導材料層絕緣。 6·依據申請專利範圍第1項之方法,其更包含下列步驟 形成大致彼此平行且平行於該等第一渠溝的多 隔開之第二渠溝; 在該等第二渠溝中形成第二方塊之一傳導材料, 中針對各個該等第二傳導材料方塊: 該第二方塊包括設置相鄰於該第一層傳導材料 與其絕緣的一較低部份; 該第二方塊包括設置於該第一層傳導材料上方且 方塊中之-_、且與其電氣地連接;以及 e)在該基艘中形成多個第二端子,其中在各個該等 主動區中各個該等第二端子係與該等第-端子隔開。 2·依據中請專利範圍^項之方法,其中傳導材料之該等 第一方塊大致係矩形。 3.依據中請專利範圍p項之方法,其更包含下列步驟: 在各個該等第—傳導材料方塊上形成-層金屬化 石夕。 4·依據申請專利範圍第1項之方法,其更包含下列步驟: 在形成該等第一傳導材料方塊前,於該等第一渠溝 中形成一第二層之傳導材料。 5.依據申請專利範圍第丨項之方法,其其更包含下列步 驟: 沿著各個該等第一渠溝之側壁形成一第二層之絕 份 個 其 且 J紙H复这用议國國家標a (CNS)A4規格(210 X 297公釐) --------------^--------I--------線 ί請先閱讀背面之注意事項再填寫本頁) 33 - 522478 六、申請專利範圍 與其絕緣的一較上部份。 依據申⑺專利範圍第6項之方法,其更包含下列步驟·· 在各個該等第二傳導材料方塊上形成一層金屬化 石夕。 8.依據申請專利範圍第丨項之方法,其t該等第-渠溝之 形成包含下列步驟: 在該第一傳導材料層上方形成至少一層之一第一 材料; 選擇性地蝕穿該至少一第一材料層,來形成該等第 一渠溝之該等上部份; 沿著該等第一渠溝之一下表面來形成至少一層之 一第二材料; 在各個該等第一渠溝之側壁上形成側壁間隔片; 在各個該等第一渠溝中、於該等側壁間隔片間做蝕刻, 且蝕穿該至少一第二材料層、來露出部份之該第一傳導 材料層;及 把該第一傳導材料層之露出部份蝕刻,來形成該第 一渠溝之該等下部份; 經 濟 部 智 慧 貝才 產 局 員 工 消 費 合 让 in 製 其中該等側壁縮格係形成於該等第一渠溝之該等 上和下部份間。 9·依據申請專利範圍第6項之方法,其更包含下列步驟: 沿著各個該等第二傳導材料方塊之一側壁形成一 絕緣材料側壁間隔片;及 在各個該等第二端子上形成一層金屬化矽,其中各 泛iiS用=3 S家標!(CNS)A4規格(210 X 297公釐) 522478Scope of patent application Employees of the Intellectual Property Bureau of the Ministry of Economic Affairs have cooperated with consumers to make Indian materials. The lower and upper parts of each of the first blocks are insulated from the first conductive material layer by the second insulating material layer. 6. The method according to item 1 of the scope of patent application, further comprising the steps of forming a plurality of spaced second trenches substantially parallel to each other and parallel to the first trenches; forming a first trench in the second trenches One of the two blocks is a conductive material for each of the second conductive material blocks: the second block includes a lower portion disposed adjacent to the first layer of conductive material and insulated from the second block; Above the first layer of conductive material and -_ in the block, and is electrically connected to it; and e) forming a plurality of second terminals in the base vessel, wherein each of the second terminals is connected to each of the active areas The first-terminals are separated. 2. The method according to the scope of the patent application, wherein the first squares of the conductive material are substantially rectangular. 3. The method according to item p of the patent application, which further comprises the following steps:-forming a layer of metal fossil on each of the first-conductive material blocks. 4. The method according to item 1 of the scope of patent application, which further comprises the following steps: Before forming the first conductive material blocks, a second layer of conductive material is formed in the first trenches. 5. The method according to item 丨 of the scope of patent application, which further includes the following steps: forming a second layer of absolute ones along the side walls of each of these first trenches Standard a (CNS) A4 specification (210 X 297 mm) -------------- ^ -------- I -------- line, please first (Please read the notes on the back and fill in this page) 33-522478 6. The upper part of the scope of patent application and its insulation. The method according to item 6 of the patent application scope further includes the following steps: forming a layer of metal fossil on each of the second conductive material blocks. 8. The method according to item 丨 of the patent application scope, wherein the formation of the first trenches includes the following steps: forming at least one layer of a first material above the first conductive material layer; selectively etching through the at least one A first material layer to form the upper portions of the first trenches; forming at least one layer of a second material along a lower surface of one of the first trenches; in each of the first trenches Sidewall spacers are formed on the sidewalls; in each of the first trenches, etching is performed between the sidewall spacers, and the at least one second material layer is etched to expose a portion of the first conductive material layer ; And etching the exposed portion of the first conductive material layer to form the lower portions of the first trench; the employees of the Intellectual Property Management Bureau of the Ministry of Economic Affairs and the consumer concession system in which the side walls are formed Between the upper and lower portions of the first canals. 9. The method according to item 6 of the patent application scope, further comprising the steps of: forming an insulating material sidewall spacer along one side wall of each of said second conductive material blocks; and forming a layer on each of said second terminals Silicon metallization, where each Pan IIS uses = 3 S family standard! (CNS) A4 size (210 X 297 mm) 522478 訂 看 清 先 閱 讀 背 面 之 注 意 事 項 再 填 寫 本 頁 k 經濟部智慧財產局員工消費合作-iilbn^ 522478 A8 B8 C8 _ D8 六、申請專利範圍 間之各個該等第二端子上形成一層金屬化矽,使得該層 金屬化矽由該對應對組之側壁間隔片來自行對齊於該 一個第二端子; 於該4第一傳導材料方塊上方形成一層保護絕緣 材料; 於該專主動區上方形成一層舖蓋材料; 形成穿過該舖蓋材料的多個接觸開口,其中針對各 個該等接觸開口: 該接觸開口延伸下至該等金屬化矽層中之一層且 露出它, 該接觸開口具有由該對應對組之側壁間隔片侷限 的一較低部份,及 該接觸開口具有寬於在該對應對組之側壁間隔片 Pel的一間距之一較上部份;以及 把一傳導材料填入各個該等接觸開口。 14.依據申請專利範圍第1項之方法,其中: 各個該等第一渠溝具有一較上部份和一較低部 份’該較上部份具有比該較低部份之者大的一宽度; 各個該等第一方塊較低部份係形成在該等第一渠 溝中之一個的該等較低部份中之一個内;及 各個該等第一方塊較上部份係形成在該等第一渠 溝中之一個的該等較上部份中之一個内。 15· —種陣列之電氣可程式和可抹除記憶體裝置,包含: 一第一傳導型之半導體材料的一基體; (請先閱讀背面之注意事項再填冩本頁) --------訂·--------·Make sure to read the notes on the back before filling in this page. K Consumer spending cooperation with the Intellectual Property Bureau of the Ministry of Economic Affairs-iilbn ^ 522478 A8 B8 C8 _ D8 VI. A layer of silicon metallization is formed on each of these second terminals between the scope of patent application So that the layer of metallized silicon is aligned with the second terminal by the side spacers of the corresponding pair; a layer of protective insulating material is formed above the 4 first conductive material block; a layer is formed above the dedicated active area Cover material; forming a plurality of contact openings through the covering material, wherein for each of the contact openings: the contact opening extends down to one of the metalized silicon layers and exposes it, the contact opening has A lower part of the side wall spacers of the corresponding pair, and the contact opening has an upper part wider than a pitch of the side wall spacers Pel of the corresponding pair; and a conductive material is filled in each of the Wait for the opening. 14. The method according to item 1 of the scope of patent application, wherein: each of said first trenches has an upper portion and a lower portion 'the upper portion has a larger one than the lower portion A width; the lower part of each of the first squares is formed in one of the lower parts of one of the first trenches; and the upper part of each of the first squares is formed Within one of the upper parts of one of the first trenches. 15 · —An array of electrically programmable and erasable memory devices, including: a substrate of a first conductivity type semiconductor material; (Please read the precautions on the back before filling this page) ----- --- Order · -------- · 36 . A8B8C8D8 522478 六、 申請專利範圍 形成在該基體上、大致彼此平形且以一第一方向延 伸的多個隔開之隔離區、在各對相鄰隔離區間有一主動 區,及 各個該等主動區包括多對以該第一方向延伸之記 二 憶體晶胞,各個該等記憶體晶胞對組包括: ; 在具有一第二傳導型之該基體中隔開之一第一區 | 和一對第二區、於該第一區和該等第二區間在該基體中 形成有通道區, 設置在該基體上方、包括該等通道區上方的一第一 絕緣層, 設置在該第一絕緣層上方、且延伸於該等通道區中 之一個的一部份上方和一部份該第一區上方的一對電 氣傳導浮動閘極,以及 設置在該基體中的該第一區上方、且與其電氣地連 I 接的一電氣傳導源極區,該源極區具有設置相鄰於該對 浮動閘極且與其絕緣的一較低部份、及 ^ 設置於該對浮動閘極上方且與其絕緣的一較上部 • 份。 ' 16.依據申請專利範圍第15項之裝置,其中該源極區較上部 份具有比該源極區較低部份之者大的一宽度。 17. 依據申請專利範圍第16項之裝置,其中該源極區具有一 大致T形橫載面。 18. 依據申請專利範圍第15項之裝置,其中各個該等源極區 以大致垂直於該第一方向的一第二方向來延伸跨越該 —______ 沒尺芰=3國家標玉(CNS)A4規格(210x297公爱) n ϋ n 1»· n I n l n n —i n 蠢 · ·ϋ n ϋ n ϋ n I^eJ· n n ϋ ϋ —m ϋ n I (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消f合咋'吐印裂 37 522478 A8B8C8D8 經濟部智慧时產局員工消費合汴τ£印¾ 六、申請專利範圍 等主動區和隔離區,且載交該等記憶體晶胞對組中在各 個該等主動區内的一個。 19·依據申請專利範圍第15項之裝置,其中各個該等記憶體 晶胞對組更包含: 設置在各個該等浮動閘極上方、且與其相鄰,並具 有允許電荷Fowler-Nordheim地通過的一厚度之一第二 絕緣層;及 各具有一第一部份和一第二部份的一對電氣傳導 的控制閘極,該第一控制閘極部份係設置相鄰於該第二 絕緣層和該等浮動閘極中的一個,且該第二控制閘極部 份係設置於一部份之該第二絕緣層和一部份之該一個 浮動閘極上方。 20·依據申請專利範圍第19項之裝置,其中各個該等控制閘 極以大致垂直於該第一方向的一第二方向來延伸跨越 該等主動區和隔離區,且截交該等記憶體晶胞對組中在 各個該等主動區内的一個。 21· —種電氣可程式和可抹除記憶體裝置,包含·· 一第一傳導型之半導髏材料的一基體; 在一第二傳導型之該基禮中的第一和第二隔開區 域、其間有一通道區; 設置在該基體上方的一第一絕緣層; 設置在該第一絕緣層上方、且延伸於一部份該通道 區上方和一部份該第一區上方的一電氣傳導浮動閘 極:及 I ----- HI n I I n mmtm · n n n ·ϋ n I J , · n 1· ϋ n n n ί I ---I —--; * ^ ^ r 言 (琦先閱讀背面之注意事項再填寫本頁) 38 522478 A8 B8 C8 D8 六、申請專利範圍 設置在該基體中的該第一區上方、且與其電氣地連 接的一電亂傳導源極區’該源極區具有設置相鄰於該浮 動閘極且與其絕緣的一較低部份、及設置於該浮動問極 上方且與其絕緣的一較上部份。 22.依據申請專利範圍第21項之裝置,其中該源極區較上部 ) 份具有比該源極區較低部份之者大的一寬度。 f 23·依據申請專利範圍第22項之裝置,其中該源極區具有一 大致T形橫裁面。 24·依據申請專利範圍第21項之裝置,其更包含: 設置在該浮動閘極上方、且與其相鄰,並具有允許 電荷Fowler-Nordheim地通過的一厚度之一第二絕緣 層;及 具有一第一部份和一第二部份的一電氣傳導的控 制閘極,該第一控制閘極部份係設置相鄰於該第二絕緣 > 層和該浮動閘極,且該第二控制閘極部份係設置於一部 份之該第二絕緣層和一部份之該浮動閘極上方。 ---------------- (請先閲讀背面之注意事項再填寫本頁) ί 言 Τ 經濟部智慧財產局員工消費合u印¾ 义度这用〇 g國家楳玉(CNS)A4規格(210 X 297公爱)36. A8B8C8D8 522478 6. The scope of the patent application is formed on the substrate, which are generally flat with each other and extend in a first direction. There are a plurality of separated isolation areas, an active area in each pair of adjacent isolation areas, and each of these active areas. The region includes a plurality of pairs of memory cell units extending in the first direction, and each of the memory cell unit groups includes: a first region separated in the matrix having a second conductivity type; and A pair of second regions, a channel region is formed in the substrate between the first region and the second sections, and a first insulating layer disposed above the substrate and including the channel regions is disposed on the first region. A pair of electrically conductive floating gates above the insulating layer and extending above a portion of one of the channel regions and a portion of the first region, and disposed above the first region in the substrate, And an electrically conductive source region that is electrically connected to it, the source region has a lower portion disposed adjacent to and insulated from the pair of floating gates, and ^ is disposed above the pair of floating gates and One that is insulated from it • upper part. '16. The device according to item 15 of the scope of patent application, wherein the source region has a width larger than that of the upper portion than the lower portion of the source region. 17. The device according to item 16 of the patent application, wherein the source region has a substantially T-shaped cross-section. 18. The device according to item 15 of the scope of patent application, in which each of the source regions extends across the second direction approximately perpendicular to the first direction —______ 不 尺 芰 = 3National Standard Jade (CNS) A4 Specifications (210x297 public love) n ϋ n 1 »· n I nlnn —in stupid ·· ϋ n ϋ n ϋ n I ^ eJ · nn ϋ m —m ϋ n I (Please read the notes on the back before filling this page ) The staff of the Intellectual Property Bureau of the Ministry of Economic Affairs has eliminated the issue of spitting 37 522478 A8B8C8D8 The consumption of employees of the Ministry of Economic Affairs of the Bureau of Intellectual Property and Time Consumption ££ Imprint Ⅵ. Active areas and quarantine areas such as the scope of patent application, and submit such memories One of the unit cell pairs in each such active region. 19. The device according to item 15 of the scope of the patent application, wherein each of the memory cell pairs further includes: disposed above each of the floating gates, adjacent to the floating gate, and having a charge allowing Fowler-Nordheim to pass through A second insulating layer having a thickness; and a pair of electrically conductive control gates each having a first portion and a second portion, the first control gate portion being disposed adjacent to the second insulation Layer and one of the floating gates, and the second control gate portion is disposed above a portion of the second insulating layer and a portion of the one floating gate. 20. The device according to item 19 of the scope of patent application, wherein each of the control gates extends across the active area and the isolation area in a second direction substantially perpendicular to the first direction, and intercepts the memory One of the unit cell pairs in each of these active regions. 21 · —An electrically programmable and erasable memory device, comprising a base body of a first conductivity type semiconducting material; first and second spacers in a base conductivity of a second conductivity type An open region with a channel region therebetween; a first insulating layer disposed above the substrate; a first insulating layer disposed above the first insulating layer and extending over a portion of the channel region and a portion of the first region Electrically conductive floating gate: and I ----- HI n II n mmtm · nnn · ϋ n IJ, · n 1 · ϋ nnn ί I --- I —--; * ^ ^ r Note on the back, please fill in this page again) 38 522478 A8 B8 C8 D8 VI. The scope of the patent application is located above the first area in the base and is electrically connected to an electrically conductive conduction source area 'the source area There is a lower portion disposed adjacent to and insulated from the floating gate, and an upper portion disposed above and insulated from the floating gate. 22. The device according to item 21 of the scope of patent application, wherein the source region has a width larger than that of the lower region of the source region. f 23. The device according to item 22 of the scope of patent application, wherein the source region has a substantially T-shaped cross-section. 24. The device according to item 21 of the scope of patent application, further comprising: a second insulating layer disposed above the floating gate electrode and adjacent to the floating gate electrode and having a thickness allowing a charge Fowler-Nordheim to pass through; and An electrically conductive control gate of a first part and a second part, the first control gate part being disposed adjacent to the second insulation > layer and the floating gate, and the second The control gate part is disposed above a part of the second insulation layer and a part of the floating gate. ---------------- (Please read the precautions on the back before filling out this page) ί ΤΤ Consumption of employees of the Intellectual Property Bureau of the Ministry of Economic Affairs, India and India ¾ Meaning this country is 〇g Saitama (CNS) A4 specifications (210 X 297 public love)
TW090123053A 2000-09-20 2001-09-19 Self aligned method of forming a semiconductor memory array of floating gate memory cells with low resistance source regions and high source coupling, and a memory array made thereby TW522478B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US23431400P 2000-09-20 2000-09-20
US24209600P 2000-10-19 2000-10-19
US26016701P 2001-01-05 2001-01-05
US27551701P 2001-03-12 2001-03-12
US09/916,555 US6727545B2 (en) 2000-09-20 2001-07-26 Semiconductor memory array of floating gate memory cells with low resistance source regions and high source coupling

Publications (1)

Publication Number Publication Date
TW522478B true TW522478B (en) 2003-03-01

Family

ID=28046917

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090123053A TW522478B (en) 2000-09-20 2001-09-19 Self aligned method of forming a semiconductor memory array of floating gate memory cells with low resistance source regions and high source coupling, and a memory array made thereby

Country Status (1)

Country Link
TW (1) TW522478B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI846312B (en) * 2022-04-06 2024-06-21 台灣積體電路製造股份有限公司 Flash memory and manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI846312B (en) * 2022-04-06 2024-06-21 台灣積體電路製造股份有限公司 Flash memory and manufacturing the same
US12063776B2 (en) 2022-04-06 2024-08-13 Taiwan Semiconductor Manufacturing Company., Ltd. Flash memory layout to eliminate floating gate bridge

Similar Documents

Publication Publication Date Title
JP5027365B2 (en) Self-aligned method for forming a semiconductor memory array of floating gate memory cells having a low resistance source region and a high source coupling, and a memory array made thereby
JP4065414B2 (en) Self-aligned method for forming a semiconductor memory array of floating gate memory cells with buried source lines and floating gates and memory array made thereby
TW525297B (en) Self aligned method of forming a semiconductor memory array of floating gate memory cells, and a memory array made thereby
US7307308B2 (en) Buried bit line non-volatile floating gate memory cell with independent controllable control gate in a trench, and array thereof, and method of formation
TW488069B (en) Self-aligned non-volatile random access memory cell and process to make the same
US6563167B2 (en) Semiconductor memory array of floating gate memory cells with floating gates having multiple sharp edges
TWI259585B (en) Split gate flash memory and manufacturing method thereof
TW514994B (en) Self aligned method of forming a semiconductor memory array of floating gate memory cells with control gate spacers, and a memory array made thereby
US7547603B2 (en) Non-planar non-volatile memory cell with an erase gate, an array therefor, and a method of making same
JPH07123143B2 (en) Non-volatile memory manufacturing method
US6967372B2 (en) Semiconductor memory array of floating gate memory cells with vertical control gate sidewalls and insulation spacers
TW441038B (en) Manufacturing method of ETOX flash memory
US6773989B2 (en) Self aligned method of forming a semiconductor memory array of floating gate memory cells with control gate protruding portions
TW589674B (en) Method of manufacturing a semiconductor device with a non-volatile memory comprising a memory cell with an access gate and with a control gate and a charge storage region
KR20040087929A (en) Bi-directional read/program non-volatile floating gate memory cell and array thereof, and method of formation
TW522478B (en) Self aligned method of forming a semiconductor memory array of floating gate memory cells with low resistance source regions and high source coupling, and a memory array made thereby
JP2003100913A (en) Self-aligning method for forming semiconductor memory array of floating gate memory cell having vertical control gate sidewall and insulation spacer, and memory array formed by the method
TW525298B (en) Manufacturing method of stacked-gate flash memory array
US6878591B2 (en) Self aligned method of forming non-volatile memory cells with flat word line
TWI220570B (en) Scalable split-gate flash cell structure and its contactless flash memory arrays
TW502447B (en) Self aligned method of forming a semiconductor memory array of floating gate memory cells with control gates protruding portions, and a memory array made thereby
TW200427001A (en) Stack-gate flash memory cell structure having an efficient punch-through stop and its contactless flash memory arrays

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees