TW577975B - Core inertial measurement unit - Google Patents

Core inertial measurement unit Download PDF

Info

Publication number
TW577975B
TW577975B TW090112463A TW90112463A TW577975B TW 577975 B TW577975 B TW 577975B TW 090112463 A TW090112463 A TW 090112463A TW 90112463 A TW90112463 A TW 90112463A TW 577975 B TW577975 B TW 577975B
Authority
TW
Taiwan
Prior art keywords
circuit board
axis
angular
increment
acceleration
Prior art date
Application number
TW090112463A
Other languages
English (en)
Inventor
Ching-Fang Lin
Hiram Mccall
Original Assignee
American Gnc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32851231&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW577975(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/624,366 external-priority patent/US6522992B1/en
Application filed by American Gnc Corp filed Critical American Gnc Corp
Application granted granted Critical
Publication of TW577975B publication Critical patent/TW577975B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects

Description

577975 --_#號90112463_和年U月/彳曰 格不_ 五、發明說明(1) 相關的發明申請: 本申請書為正式申請書,其相關的預先申請號 為:60/206,993,中請日期為:20 0 0年5月24日。 發明說明: 本發明係關於運動測量,更確切地講,係一種小型慣 性測量組件,它可在動態條件下,提供載體高精度,數字 化角度增量、速度增量、位置、速度、姿態和航向測量 值0 發明總結: 一個慣性測量組件(inertial measurement unit)通 吊用來測置載體的運動參數。從原理上,慣性測量半 賴於三個正交安裝的慣性角速率產生器(inerti)r件依 angular rate producers)和三個正交安裝的加速度產生 器(acceleration producers),獲得三轴角速率和加速度 信號。三個正交安裝的慣性角速率產生器和三個正交安裝 的加速度產生器以及相應的支撐結構和電子電路,傳統上 被稱為慣性測量組件。傳統的慣性測量組件可分為平台式 (Platform)慣性測量組件和捷聯式(Strapd〇wn)慣性測°量" 組件。一個慣性測量組件通常用來測量載體的運動象數。 從原理上,慣性測量組件依賴於三個正交安裝的慣性 率產生器和三個正交安裝的加速度產生器,獲得三軸条 率和加速度信號。三個正交安裝的慣性角速率產生器' 個正交安裝的加速度產生器以及相應的支撐結構和電ς 路,傳統上被稱為慣性測量組件。傳統的慣性測量組件可
577975 -案^ %112463—-b a月丨斤曰 條正 五、發明說明(2) 分為平台式慣性測量組件和捷聯式慣性測量組 式慣性測量組件中,角速率產生器和加速度產生器被安: 在/一穩定平台上。載體的姿態測量可直接從平台的結構中、 取知。然而,載體的姿態角速率測量不能從平台中直接取 得。而且,平台式慣性測量組件中要有相應的高精度反饋 ,制回路。與平台式慣性測量組件相比,在捷聯式慣性測 量組件中,角速率產生器和加速度產生器直接於載體固 聯,角速率產生器和加速度產生器的輸出信號被表達在載 體坐標系内。載體的姿態和姿態角速率信號可通過一系 計算取得。 傳統的慣性測量組件使用不同種類的角速率產生器和 加速度產生器。傳統的角速率產生葬包括鐵轉子陀螺 (iron spinning wheel gyros)和光學陀螺(optical gyros),例如,液浮積分陀螺(Floated Integrating
Gyros),動力調諧陀螺(Dynamically Tuned Gyros),環 形激光陀螺(Ring Laser Gyros),光纖陀螺(Fiber-Optic Gyros) ’ 靜電陀螺(Electrostatic Gyros),約瑟夫陀螺 (Josephson Junction Gyros),以及半球諧振陀螺 (Hem i sper i ca 1 Resonating Gyros)等。傳統的角速率產 生器包括脈衝積分擺式加速度計(Pulsed Integrating Pendulous Accelerometer),擺式陀螺加速度計 (Pendulous Integrating Gyros Accelerometer^ 〇 傳統的慣性測量組件的信號處f方法、機械支樓結 構、電子電路隨所使用的不同種類的陀螺和加速度計而不
577975
同。由於傳統的陀螺和加速度計具有大的體積、大的功率 消耗、可移動的部件,所以要求具有複雜的反饋控制回路 以便獲得穩疋的運動測量。例如,動力調諧陀螺 (dynamic-tuned gyr〇s)和加速度計需要力再平衡回路以 便使移動部件保持再零位置。通常在基於動力調諧陀螺和 加速度計的慣性測量組中,使用脈衝調制力再平衡回路。 因此,通常傳統的慣性測量組件具有以下特點: 成本南 尺寸大(體積、重量) 大的功率消耗 壽命短 長的起動時間 傳統的慣性測量組件的這些缺點極大地限制了它們應 用在一些正在出現的商業應用場合,例如,移動通信的: 控陣天線、汽車導航、以及一些手持式設備。 新的’丨貝性慣性傳感器技術正在出現。採用微機電系統 (=r〇electromechanical System,mems)技術的慣性 感器,與傳統慣性傳感器相比,可極 控制系統的成本、尺寸和可靠性。抆-料導航、 :機電系統可簡單地稱之為微機械。微機電系統被 iif^silic〇n)革命的下一個符合邏輯的步驟。這一步 來30年2片上集成更多的晶體管不同而且更加重要。未 夕r石夕片革ΐ的本質是”片結構引入新的革 使石夕片不僅可思考,而且可敏感,執行動作,以及通
第7頁 577975 ---—-塞號 901124fi5l__>车 月 I占曰___ 五、發明說明(4) 信。目前已經發展出各種MEMS角速率傳感器,來滿足對低 成本且可靠的角速率傳感器的需求,應用領域從汽車到消 費電子產品。 單軸MEMS角速率傳感器(angular rate sensor)基於 線請振原理’比如調諧叉,或者結構模態諧振原理,比如 $動環。更有甚者,多軸MEMS角速率傳感器可基於張力彈 黄懸掛的轉動剛性轉子的角諧振原理。現有的大多數㈣… 角速率傳感器是基於靜電驅動的調諧音叉方法。
大多數MEMS加速度計是力反饋類型,使用閉環電容敏 感和f電施力方法。例如,助佩公旬的加速度計就是一典 型,它具$單矽片結構,包括張力擺及其電容信號讀出裝 置和扭力器。模擬器件公司的MEMS加速度計採用片内 BjMOS工藝製作的集成多層矽結構,包括精密電壓參考 器,本地振盪器,放大器,解調器,力反饋回路,及自檢 雖然從商業市場上已可獲得微小尺寸、低功率消耗的 MEMS角速率傳感器和加速度計,然而,沒有高性能、微小 尺寸、低功率消耗的慣性測量組件。 本發明之主要目的是提供 量組件。它可從角速率產生器 信號取得高精度的載體角度增 而取得在動態環境下載體的高 向測量值。 一應用系統的核心的慣性測 和加速度產生器的輸出電壓 量和遠度增量數字信號,進 精度位置、速度、姿態和航
本發明之另一目的是提供一應用 系統的核心的慣性測
577975 修正 案號 90112463 五、發明說明(5) 量組件,它成功地應用了 MEMS技術。 本發明之另一目的是提供一應用系統的核心的慣性 ,組件。#中,利用了角速率產生器和加速度產生器的輪 出信號,該信號正比於載體的旋轉和平移運動。角速率產 生器和加速度產生器最適合於正在出現的MEMS角速率傳 器陣列和加速度傳感器陣列。與傳統的慣性測量組件相心 比’本發明採用前饋、開環的信號處理方案,通過信號積 分、數字化、溫度控制及補償、傳感器誤差和失準^ ^ 、
正,極大地縮小了機械和電路硬體的尺寸和功率消耗,同 時,可獲得高精度的連動測量。 儘管本發明可使用現有的角速率產生器和加速度產生 器,但本發明特別使用MEMS角速率產生器和加速度產生 來構成一應用系統的核心的慣性測量組件。該慣性測 量組件具有以下獨特性能: !·具有航向姿態參考系統(Attitude Heading inference System,AHRS)功能的核心敏感模組。 2·微型化(長/寬/高)及重量輕。 3 ·高性能及低成本。
4 ·低功耗。 5 ·抗衝擊和振動。 6·可靠性大大提高(由於利用龍]^)。 旦本發明之又一目的是提供一應用系統的核心的慣性測 里組件’它得以結合到一個微型組合地面導航器,其有以 下獨特功能:
第9頁 577975
器-載器 1 ·體積小,重量輕,低功耗,低成本。 2· AHRS,里程計,組合gps芯片組以及磁通閥。 3 ·用於傳感器數據溶合及零速修正的組合濾波器 4·典型應用:汽車,鐵路車輛,微型地面運載器 機 無人駕駛地面車輛,個人導航器,以及軍用地面運 本發明之又一目的是提供一應用系統的核心的慣性測 量組件。它得以作為飛機慣性航空電子裝置,其有以下獨 特功能: | 1·速率陀螺(Rate Gyors) 2·垂直陀螺(Vertical Gyros) 3·航向陀螺(DirectionalGyros)
4. AHRS 5·慣性導航系統(inert ial Navigation System, INS) 6·全偶合GPS/MEMS IMU 組合系統(Fully-Coupled GPS/MEMS IMU Intergrated System) 7·全偶合GPS I MU雷達高度計組合系統 (Fully-Coupled GPS/IMU Radar Altimeter Intergrated System) 8. 通用運載體導航與控制盒(Univeral vehicle navigation and control box) 〇 9. 尋北模組(North Finding Module)
第10頁 577975 _案號90112463_1夂年b月β日 絛正 _ 五、發明說明(7) 本發明之又一目的是提供一應用系統的核心的慣性測 量組件,得以作為太空MEMSIMU姿態確定系統(Spaceborne MEMS IMU Attitude Determination System 和太空全偶合 GPS/MEMS IMU 組合系統(Spaceborne Fully-Coupled GPS/MEMS IMU Intergrated system),用於軌道碟定,姿 態控制,承載指向,和編隊飛行,其有以下獨特功能: 1. 抗衝擊,耐振動 2. 高的抗干擾性能 3. 高動態性能 4 ·寬的使用溫度範圍 5.高分辨率 6 ·緊湊,低功耗,和輕重量單元 7·柔性的硬件和軟件結構 本發明之又一目的是提供一應用系統的核心的慣性測 量組件,得以作為嵌入GPS的海用INS,其有以下獨特功 能:
1·有GPS嵌入的微型MEMS IMU AHRS 2·欲入式控制顯示單元(c〇ntrol Display Un ’CDU) 3·可選用的差分GPS (Differential GPS) 4 ·柔性的硬件和軟件系統結構 5 ·低成本,重量輕,高可靠性 本發明之又一目的是提供一應用系統的核心的丨貝性測 量組件,得以用在微型指向和穩定裝置,其有以卞獨特功 能:
第11頁
577975 案號 90112463 五、發明說明(8) 應用於平台穩定微型MEMS IMU AHRS 曰 修正 合 2· MEMS IMU與指向和穩定裝置的電氣機械設計相結 3·載體運動’振動和其他干擾被穩定平台隔離。 4 ·可變的指向角做跟蹤實現。 5 · /、孓應用·微型天線指向跟蹤控制,光通信系统 的激光束指向控制,圖象攝取之望遠鏡指向㈣,目標跟 蹤空中用激光指向控制車輛控制和導引。 ^本發明之又一目的是提供一應用系統的核心的慣性測 ί ί Γ J *中’ A》咸少對慣性測量組件的振動和衝擊以便 直:::Γ入:支撐架和防衝擊安裝件,以便將慣性測 里組件女裝在一载體上。 -組i發:t又一目的是提供一應用系統的核心的慣性測 ^海_ /、,加入一具有背景亮度按鈕和復位按鈕的液 a日顯不模組,以便制成一掌上型慣性 商業用戶’包括:汽車跟傲^ m 為井多 只,雪上車輛,摩3 統,π車定位系、统’個人船 :航工以及大地測量,提供慣性位置、速度和姿態信 1¾ ° 量組:發J:::的是提供-應用系統的核心的慣性測 以態和的::::需7,可從任何位置’ 動復位按紐,輸:二=電:f ’用戶可通過快速按 的初始化操作。兮择;:點或初始位置,以便進行該器件 -刼作建立了初始位置和零速點。該應用 11 第12頁 577975 — 案號90112463 年月日 修& 一 五、 系 慣 時 誤 正 過 和 獲 果 航 果 性 差 圖 發明說明(9) 統的核心的慣性測量組件可使用戶執行以下扭作· (1 )自由慣性方式··如果不能獲得雷達更新’自由 性方式是唯一可獲得的工作方式。在該方式下’誤差隨 間成指數增加。 (2)多普勒雷達輔助方式··在該方式下,小的位置 差正比與經過的里程。 (3)用戶在一載體上··由於載體的連動,位置誤差 比與經過的里程。當用戶在輪船上,位置誤差正比與經 的里程以及未知的水流速度。 在所有工作方式中,穩定的姿態可以俯仰角,橫滾角 航向角顯不出來。經過三分鐘的初始對準過程之後,可 得姿態信息。該慣性測量組件有最大角速率的限制。如 用戶超過該限制一段時間,則損失輸出姿態精度數秒。 向精度依賴與地球磁場檢測器的航向傳感器的校正。如 該航向傳感器已經過當地磁場的校正,則可獲得最好的 月匕如果,航向傳感器未過當地磁場的校正,則航向誤 號說明: 1 -金屬正六面體 4-第二電路板 6- 角增量和速度增 7- 第三電路板 10 -加速度產生器 2-第一電路板 5-角速率產生器 產生器 ° 9-控制電路板 577975
1 8 -溫度數字化器 2 0 -加熱器 21- X軸振動型角速率檢測單元 22- Y軸加速度計 23-第一前端電路 感產生單元25一第一加熱器 3 0-熱處理器 42-X轴加速度計 41-Y轴振動型角速率檢測單元 43-第二前端電路 45 -第二加熱器 54-電壓產生器 44-第二熱敏感產生單元 53-輸出阻抗 61-角放大電路 62-角度積分電路 6 5 -輸入/輸出介面電路 6 3 -角類比/數位轉換器 66-振盪器 67-加速度放大電路 68-加速度積分電路 6 9 -速度類比/數位轉換器 71-Z轴振動型角速率檢測單元 72-Z轴加速度計 73-第三前端電路 74-第三熱敏感產生單元 乐二刀口热裔 80 -位置和姿態處理機 81- 姿態和航向模組 83-磁航向計算模組 82- 位置、速度,姿態和航向模組 9 0 -外部傳感器 92-ASIC 芯片 95-JTAG 接頭 97-LCD模組 101-支撐架 91 -DSP芯片組 9 4 -快閃存儲器 9 6 -地球磁場檢測器 98-通信模組 105-防衝擊安裝件
第14頁 577975 修正 案號 90112463 五、發明說明(11) 181-附加的放大器電路182-類比/數位轉換器 183-輸入/輸出介面電路3〇1一第一放大器電路 232、432、732-高通濾波器電路 302 -第二放大器電路 303-數位/類比轉換器 304-類比/數位轉換器305-輸入/輸出介面電路 306-溫度控制器 620-角度積分器 630 -加速度積分器 64 0-復位器 650-角增量和速度增量測量器 66 0、665-放大器 661-等效電路 662 -輸入阻抗 691-屏蔽器件 692-防護器件 802-角速率補償模組 8 11 -圓錐誤差補償模組8丨2-角速率補償模組 8 1 3-加速度補償模組81 4-水平加平速度計算模組
81 5-對準旋轉向量計算模組 8 1 6 -方向餘弦矩陣計算模組 8 17-姿態和航向角提取模組 818-垂直阻尼計算模組 8 1 9-北向阻尼計算模組9丨卜熱控制計算模組
912-振動處理模組 921_角信號回路電路 9 2 2-振動控制電路 92 3-熱控制電路 弋I器 926—地球磁場檢測介面電路 公:LCD介面電路 8110-東向阻尼計算模組 8201-圓錐誤差補償模組82〇2_角速率補償模組 8203加速度補该模組82〇4_水平加平速度計算模組
第15頁 577975
9122- 頻率和幅度數據存儲陣模組 9123- 最大值檢測邏輯模組 9124- Q值分析和選擇邏輯模組 9211-電壓放大器電路9212-放大和加法 9213-解調器 9214-低通濾波器 9221- 放大器和加法器電路 9222- 高通濾波器電路9223 -解調器電路 9 2 2 4 -類比/數位轉換器9 2 2 5 -低通濾波器 器電路 923 1 -第一放大器電路9233-數位類比轉換器 9234-第二放大器電路9A -控制電路板 ^ 91 A-數字信號處理芯片92A- ASIC芯片 優選方案之詳細說明 目前,MEMS器件利用微電子電路的底層結構來產生微 小尺寸的複雜機械。這些機械可具有許多功能,包括敏 感、通信及執行。這些MEMS器件可廣泛地應用於各類商業 系統。 製造一應用系統的核心的慣性測量組件的困難在於使 用低成本、低精度的角速率傳感器和加速度計製造IMU, 該IMU具有:
第16頁 577975 __塞號 90112463_% 年 α Η //P a 修正___ 五、發明說明(13) 低成本 小尺寸 低功率消耗 無抽壞期長的使用奇命 立即起動特性 大的動態範圍 高靈敏度 高穩定性 高精度 為了達到上述的高性能,許多難點需要解決,如: (1 )能獲得微小的角速率傳感器和加速度計。目 則’最小的角速率傳感器和加速度計就是MEMS角速率傳感 器和加速度計。 (2 )需設計相應的機械結構。 (3)需設計相應的電子電路。 (4 )滿足相應的熱設計要求以便補償MEMS傳感器的 熱效應。 (5 )相應的電子電路的尺寸和功耗應當大大縮小。 本發明的應用系統的核心的慣性測量組件優選使用 角速率產生器和加速度產生器,例如,MEMS角速率器件陣 列或陀螺陣列,以便產生載體的三轴角速率信號;MEMS加 速度產生器陣列(array)或加速度計陣列(array),以便產 生栽體的三轴加速度信號。載體的運動測量,如姿態和航 向角,通過處理來自角速率產生器的三軸角速率信號和來
Mbtsst 第17頁 577975 _案號 90112463 1夂年\> 月 /(f 曰____ 五、發明說明(14) 自加速度產生器的三轴加速度信號取得。 在本發明中,角速率產生器和加速度產生器的輪出信 號被處理獲得高精度的載體角度增量和速度增量數字信 號’進一步經過處理取得在動態環境下載體的高精度位 置、速度、姿態和航向測量值。 如第一圖,本發明之應用系統的核心的慣性測量組件 包括一角速率產生器5(angular rate producers),來產 生三轴(Χ,γ,Ζ轴)角速率信號;一加速度產生器 1 0 ( accer e 1 era t i on producer),來產生三轴(X,Y,2轴 )加速度信號;一角增量和速度增量產生器6(angular increment and velocity increment producer),用來將 三轴角速率信號轉換為數字角度增量和將三軸加速度信號 轉換為數字速度增量。 進一步’ 一位置和姿態處理機80(position attitude and heading processor)被包含在本發明之應用系統的核 心的慣性測量組件中,它使用三軸數字角度增量和三轴數 字速度增量計算位置、速度、姿態和航向測量值,以便提 供豐富的運動測量滿足不同用戶的需要。 位置和姿態處理機8〇進一步包含兩個可選擇的執行模 組: (1) 姿態和航向模組81(Attitude and Heading Module),用來產生姿態和航向角; (2) 位置、速度’姿態和航向模組82(positi〇n,
Velcocity, Attitude, and Heading Module),用來產生
第18頁 577975 _案號 90112463__年α月/矛曰_修正___ 五、發明說明(15) 位置、速度和姿態角。 選擇執行姿態和航向模組81使小型慣性測量組件具有 航向姿態參考系統(Attitude Heading Reference System,AHRS)功能。選擇執行位置、速度,姿態和航向 模組82使小型慣性測量組件具有慣性導航系統(Inertial
Navigation System ’ INS)功能。
通常,角速率產生器5和加速度產生器10對環境溫度 變化非常敏感。為了提高測量精度,如第二圖所示,本發 明進一步包含一熱控制器件(thermal controlling means) ’以便將角速率產生器5,加速度產生器ι〇和角增 量和速度增量產生器6的工作溫度保持在設定值。值得指 出的是如果角速率產生器5,加速度產生器1〇和角增量和 速度增量產生器6工作在一溫度恆定的環境中,則可不用 該熱控制器件。 依據如第一圖所示的本發明的小型慣性測量組件的優 選方案,該熱控制器件進一步包含一熱敏感產生器 15(thermal sensing producer device), 一加熱器 (heater device)20 以及一熱處理器(thermal processor) 30 〇
熱敏感產生器15與角速率產生器5,加速度產生器ι〇 和角增量和速度增量產生器6並行工作,來產生溫度信 號,以便以便將角速率產生器5,加速度產生器和角增 量和速度增量產生器6的工作溫度保持在設定值。設定的 溫度是一常值,可選擇在15〇卞和185°F之間,優選176Τ (0 · 1 〇F )。
第19頁 577975 五、發明說明----—-- 理突自感產生器15產生的溫度信號,被輸出給熱處 、*金太▲、:、处理器3 〇使用該溫度信號、溫度刻度係數及角 ' 器5和加速度產生器1〇和角增量和速度增量產生 器6的預定的工作溫度,來計算溫度控制指令並形成相應 ,驅動信號給加熱器20,來控制加熱器2〇產生足夠的熱 篁j保持角速率產生器5和加速度產生器1〇和角增量和速 度增量產生器6的預定的工作溫度。 角速率產生器5和加速度產生器10的溫度特性參數, 可通過一系列角速率產生器和加速度產生器的溫度特性參 數標定過程得到。 如第三圖所示,當沒有熱處理器3〇和加熱器2〇時,為 了能補償由於環境溫度變化所引起的角速率產生器和加速 度產出器測量誤差,本發明的應用系統的核心的慣性測量 組件可包含一溫度數字化器(temperature digitizer )18,用來接收來自熱敏感產生器15產生的溫度 信號’輸出數字溫度信號給位置、速度,每態和航向模組 82。如第十二圖所示,該溫度數字化器18可優選為一類比 / 數位轉換器182(analog/digitalconverter)。 進一步,位置、速度,姿態和航向模組8 2使用來自溫 度數字化器18的角速率產生器5和加速度產生器10的當前 工作溫度,查詢角速率產生器5和加速度產生器10的溫度 特性參數,補償輸入的數字角度增量和數字速度增量中的 熱效應誤差,使用補償後的數字角度增量和數字速度增量 計算姿態和航向角。
第20頁 577975 _案號 90112463 知年 >> 月λ?日__^____ 五、發明說明(17) 在多數應用場合,角速率產生器5和加速度產生器1〇 的輸出信號是模擬電壓信號。來自角速率產生器5產生的 三轴角速率模擬電壓信號直接正比於載體的角速率,來自 加速度產生器10產生的三軸加速度模擬電壓信號直接正比 於載體的加速度。 當角速率產生器5和加速度產生器1〇輸出的模擬電壓 信號太弱,以致角增量和速度增量產生器6不能讀取時, 如第五圖和第六圖所示,角增量和速度增量產生器6可使 用放大器件(amplifying means) 66 0和665,以便放大角速 率產生器5和加速度產生器1〇輸出的模擬電壓信號,並壓 縮其中的噪聲。 如第四圖所示,角增量和速度增量產生器6進一步包 含一角度積分器(angular integrating) 620,一加速度積 分器(acceleration integrating means) 630 ,一復位器 (resetting means) 640,角增量和速度增量測量器 (angular increment and velocity increment measureranet means) 650 〇 角度積分器620和加速度積分器630分別用來在預定的 時間段内積分三轴角度模擬電壓信號,以便積累三轴角速 率模擬電壓信號和二轴加速度模擬電壓信號,形成未補償 的原始角增量和速度增量。該積分操作是為了消除在三軸 角速率模擬電壓信號和三軸加速度模擬電壓信號中的非直 接正比於載體角速率和加速度的噪聲信號,提高信號嚼聲 比,並消除在三轴角速率模擬電壓信號和三軸加速度模擬
第21頁 577975
,壓信號中的高頻噪聲。這些三軸角速率模擬電壓信號和 三軸加速度模擬電壓信號中的信號直接正比於載體角速率 和加速度。 ; 復位器產生角度復位電壓脈衝和速度復位電壓脈衝, 作為角度和速度的刻度,分別輸出給角度積分器62〇和加 速度積分器63 0。 角增量和速度增量測量器650使用角度復位電壓脈衝 和速度復位電壓脈衝,來測量積累的三軸角速率模擬電壓 k號和二轴加速度模擬電壓信號,獲得角增量計數值和速 度增量計數值,相應地作為角增量和速度增量的數字量。 為了能輸出實際的角增量和速度增量,作為輸出角增量和 速度增量電壓值輸出的另外一種選擇,角增量和速度增量 測量器650將角增量和速度增量電壓值換算為實際的角增 量和速度增量。 在角度積分器620和加速度積分器63〇中,三軸角速率 模擬電壓信號和三軸加速度模擬電壓信號被分別復位,以 便在每一個預定的時間段的起點,從零開始積累。 如第六圖所示,復位器640可以是一振i器 66(〇SCillat〇r),它產生定時脈衝,作為角度復位電壓脈 衝和速度復位電壓脈衝。在一些應用場合,振盪器66用特 定電路製成,如專用特定應用積體電路(ASIC)和印刷電 路板。 如第七圖所示,用來測量積累的三軸角速率模擬電壓 信號和三轴加速度模擬電壓信號的角增量和速度增量測量 器650,可用一角增量和速度增量測量器650實現。換一方
第22頁 577975 _案號90112463_气> 年月/tf日 修正___ 五、發明說明(19) 式說,角增量和速度增量測量器65 0實際上將原始角增量 和速度增量電壓值數字化為角增量和速度增量的數字量。 如第七圖和第Η—圖所示,角增量和速度增量產生器 6的放大器660和665可分別用一角放大電路(angular ampl i f ier circui t)61和加速度放大電路 67(acceleration amplifier circuit)實現。角放大電路 61和加速度放大電路67分別放大三軸角速率模擬電壓信號 和三轴加速度模擬電壓信號,形成放大後的三轴角速率模 擬電壓信號和三軸加速度模擬電壓信號。
角增量和速度增量產生器6的角度積分器620和加速度 積分器630可分別用一角度積分電路(angular integrator circuit)62 和加速度積分電路68(acceleration integrator circuit)實現。角度積分電路62和加速度積 分電路68分別接收並積分來自角放大電路61和加速度放大 電路67的放大後的三轴角速率模擬電壓信號和三轴加速度 模擬電壓信號,形成積累的三軸角速率模擬電壓信號和三 軸加速度模擬電壓信號。
角增量和速度增量產生器6的角增量和速度增量測量 器6 50進一步包含一角類比/數位轉換器(angUlar analog/digi tal converter )63,一速度類比 / 數位轉換器 (velocity analog/digital converter)69 以及一輸入/ 輸 出介面電路(input/output circuit)65。 來自角度積分電路62的積累的角增量和來自加速度積 分電路6 8的積累的速度增量,被分別輸出給角類比/數位
第23頁 577975 _案號90112463 &年A月/(T日 修正_ 五、發明說明(20) 轉換器63和速度類比/數位轉換器69。 積累的角增量由角類比/數位轉換器6 3,通過使用角 復位電壓信號來測量積累的角增量,以便形成角增量計數 值,作為數字角增量電壓的一形式。該角增量計數值被輸 出給輸入/輸出介面電路65,以便形成數字三轴角增量電 壓值。 積累的速度增量由速度類比/數位轉換器63,通過使 用速度復位電壓信號來測量積累的速度增量,以便形成速 度增量計數值,作為數字速度增量電壓的一形式。該速度 增量計數值被輸出給輸入/輸出介面電路65,以便形成數 字三轴速度增量電壓值。 如第二圖和第八圖所示,為了實現給具有模擬電壓輸 出的熱敏產生器15和具有模擬輸入的加熱器20的熱處理30 的靈活調整,熱處理器30可以由如第八圖所示的數字化反 饋控制回路來實現。 如第八圖所示,熱處理器30包含連接與熱敏感產生器 15 的一類比 / 數位轉換器nai〇g/digital converter)304、 連接與加熱器(the heater device)20的數位/類比轉換器 (analog/digital converter)303以及連接與類比/數位轉 換器304和數位/類比轉換器303的溫度控制器 306 (temperature controller)。類比/數位轉換器 304 輸 入通過熱敏感產生器15產生一溫度電壓信號,由類比/數 位轉換器304採樣該溫度電壓信號,i並數字化該電壓信 號’並將該數字溫度信號輸出給一溫度控制器3 0 6。
第24頁 577975 ---90112463 ^车R月A日 絛正 _ 五、發明說明(21) 溫度控制器3 0 6,使用來自類比/數位轉換器3〇4的數 子溫度電壓信號,溫度標定係數以及預定的上述角速率產 器和加速產生器的工作溫度,來計算數字溫度控制指令, 並將該數字溫度控制指令送入一數位/類比轉換器3〇3。 數位/類比轉換器3 〇 3將來自上述數字溫度控制器3 〇 6 的數字溫度控制指令轉變為模擬信號,並將該模擬信號輸 出給一加熱器2 0 ’以便產生適當的熱量以保證本發明之 IMU的預定的工作溫度。 進一步,如第九圖所示,如果由熱感應產生器15產生 的電壓信壓號太弱,以至於類比/數位轉換器3〇4不能讀 別,則熱處理30進一步包含一連接夺熱感產生器15和數位 /類比轉換器303之間的第一放大器電路(Ampl if ier c ircui t)301,這樣,從熱傳感產生器15得到電壓信號, 輸入到第一放大器電路3〇1放大,並抑制電壓信號中的噪 音,提高信號噪音比,放大的電壓信號輸入到類比/數位 轉換器304。 一般地,加熱器20需要特殊驅動電流信號,在這種情 況下,如第十圖所示,熱處理3〇進一步包含連接在數位/ 類比轉換器303和加熱器2〇之間第二放大器電路 (Amplifier Circuit)302。第二放大器電路3〇2放大從數 位/類比1轉換器303而來的輸入模擬信號,給加熱器2〇。 換言之,在數位/類比轉換器3 〇3中將由溫度控制器 306而來的數字化溫度命令轉換成模i擬㈣ 到放大器電路302。
577975
如第十一圖所示,有時需要一個輸入/輸出介面電路 30 5。把類比數位轉換器3〇4和數位類比轉換器與溫度控 制器306連接起來。在這種情況下,如第十一圖所示,通 過類比/數位轉換器304採樣上述電壓信號,並數字化該採 樣信號,然後,將該數字信號輸出給輸入/輸出介面電路 3〇5(lnput/output interface circuit)。
。如上所述’溫度控制器3 0 6,使用來自類比/數位轉換 器3 04的數字溫度電壓信號,溫度標定係數以及預定的上 述角速率產器和加速產生器的工作溫度,來計算數字溫度 控制指令,並將該數字溫度控制指令輸出給輸入/輸出介 面電路30 5。數位/類比轉換器3〇3將來自輸入/輸出介面電 2 3 0 5的數字溫度控制指令轉變為模擬信號,並將該模擬 信號輸出給一加熱器2〇,以便產生適當的熱量以保證本發 明之IMU的預定的工作溫度。
如第十二圖所示,如上所述,另一方面,第二圖、第 八圖、第九圖、第十圖和第十一圖中的熱處理3〇和加熱器 2〇可用與熱敏產生器15連接類比/數位轉換器182來實現, 以便接收來自熱敏產生器15的電壓信號。如果由熱敏生器 15產生的電壓信號太弱,以至於類中/數位轉換器1 8 2不能 讀取’如第十三圖所示,一附加的放大器電路 (additional amplifier circuit)181 可連接在熱敏產生 器1 5和類比/數位轉換器182之間,以便放大信號,壓縮信 號中的噪聲’提高信號噪聲比,經過放大後的信號,被送 入類比/數位轉換器1 8 2。通過類比/數位轉換器1 8 2採樣輸
第26頁 577975 __案號90112463_七年W月/<y曰 你不 _ 五、發明說明(23) 入的信號,將該放大後的信號數字化為數字信號,輸出該 數字信號給姿態航向處理器8 0。 另一方面’ 一輸入/輸出介面電路(inpUt/〇utput interface circuit } I83可接在類比丨/數位轉換器ig2和姿 態航向處理器8 0之間。這樣,如第十四圖,通過類比/數 位轉換1 8 2採樣輸入的放大後的信號,並將該信號數字 化為數字信號’在輸入給姿態航向處理器8〇之前輸出該數 字信號給輸入/輸出介面電路183。
如第一圖所示,通過角增量和速度增量產生器6,產 生並輸出了數字三軸角增量電壓值或真實值和三轴數字速 度增量電壓值或真實值。
為適應來自角增量和速度增量產生器6的數字三轴角 增量電壓值和數字三轴速度增量電壓值,如第十五圖所 示’姿態航向處理器81包含一圓錐誤差補償模組(coning correction module) 811,其中,ά高速率(短周期)將來 自角增量和速度增量產生器6的輸入/輸出介面電路π的數 字三軸角增量電壓值,以及來自一角速率和加速度產生器 標定過程的粗速角率偏置,輸入到圓錐誤差補償模組 811。在該圓錐誤差補償模組中,使用上述輸入的三軸角 增量電壓值和粗角速度偏置計算圓錐效誤差,以較低的速 率(長周期)輸出上述三轴圓錐效應誤差和長周期的三轴角 增量電壓值。 姿態航向處理器81進一步包含一角速率補償模組 8 1 2 (angu 1 ar rate compensation module)和一對準旋轉 向量
第27頁 577975 銮號90112463_私年α月Af日 修正 五、發明說明(24) 計算模組815(alignment rotation vector computation
module)。其中,來自上述圓錐誤差補償模組81 1的上述圓 錐效應誤差和三軸長周期角增量電#值,以及來自上述角 速率和加速度產生器標定過程的角速率產生器安裝失準角 參數,精角速率偏置誤差項,角速率產生器刻度係數,圓 錐校正刻度係數,輸入到上述角速率補償模組8 1 2,以便 使用輸入的圓錐效應誤差,角速率產生器的安裝失準角, 精角速率偏置誤差項以及圓校錐正刻度係數,來補償上述 輸入的三軸長周期角增量電壓值,使用上述角速率產生器 的刻度係數來將上述補償之後的三軸長周期角增量雷壓值 轉換成實際的三軸長周期角增量值,並將上述實際的三轴 長周期角增量值出到一對準旋轉向量計算模組8 1 5。 姿態航向處理8 1進一步包含一加速度補償模組
813(accelerometer compensation 丨module)和水平加平速 度什算模组814(lever acceleration computation module)。其中,來自的角增量和速度增量產生器6的輸入 /輸出介面電路65的三軸速度增量電壓值,以及來自上述 角速率產生器和加速度產生標定過程加速度器件的安裝失 準角’加速度偏置誤差,加速度器件的刻度係數,輸入到 一加速度補償模組8 1 3,使用加速度器件刻度係數將輸入 的三轴速度增量電壓值轉換為實際的三轴速度增量值,使 用輸入的加速度器安裝失準和加速度偏置誤差項,補償上 述:轴速度增量中的確定性誤差,將補償之後的三轴速度 增篁輸出到一水平加平速度計算模組81 4。
第28頁 577975 修正 案號 90112463 五、發明說明(25) 在對準旋轉向量計算模組8 1 5中,使用來自上述角速 率補償模組81 2的三轴角增量,來自一東向阻尼計算模組 (east damping rate computation |modu 1 e)8 11 0 的的東向 阻尼角增量,來自一北向阻尼計算稹組(north damping rate computation modu 1 e)8 1 9的北向阻尼角增量,來自 一垂直阻尼計算模組(vertical damping rate computation module)818的垂直阻尼角速率,更新一四元 數’該四元數是一向量,用以表示上述載體的旋轉運動, 該更新之後的四元數被送入一方向餘弦矩陣計算模組 816(direction cosine matrix computation module), 以便使用該更新後四元數的計算一方向餘弦矩陣。 該方向餘弦矩陣被輸出給一水平加速度計算模組814 和一姿態和航向角提取模組(attitude and heading angulj extract m〇dule)8l7,以便;使用來自方向餘弦矩 陣計算模組816的方餘弦矩陣計算姿態和航向角。 ^補償之後的三軸速度增量被輸出到水平加平速度計算 f 1 4。其中’使用來自上述加速度補償模組8 1 4的三轴 速度增量和來自上述方向餘弦矩陣計 弦矩陣計算水平速度增量。 幻力π餘 811。水:Ϊ度輸出到上述東向阻尼速率計算模組 Ρ ^ ^ “自上述水平加速度計算模組81 4的北 向水千速度增量,計算東向阻尼角速率增量。 水平速度增量被輸出别μ 819,其中,使用來自上 述東向阻尼^率計算模組 4水千加速度計算模組8 1 4的東向
第29頁 577975 修正 案號 90112463 五、發明說明(26) 水平速度增量’計算北向阻尼角速率增量。 來自上述姿態和航向角提取模#817計算出來的航向 角以及來自一外部傳感器(external丨heading sens(^)9〇 的測里出來的航向角被輸入給垂直阻尼速率計算模組 818,以便計算垂直阻尼角速率增量。 尸東向阻,角速率增量、北向阻尼角速率增量及垂直阻 匕速率增里被反饋給上述對準旋轉向量計算模組8丨5, 以便阻尼姿態和航向角誤差的漂移。 辦旦^適應來自角增量和速度增量產生器6的數字三轴角 :里實,值和數字三軸速度增量實際值,如第十五圖所 δ # 速^率(短周期)輸入來自角增量和速度增量產生器 子,增量值,以及來自一角速率和加速度產生 過程的粗速角率偏置,到一圓錐誤差補償模組 增量值和該粗圓角錐二差,償模組中^ ^ 角速度偏置計算圓錐效誤差,以較低的速率 量偵β 兩出上述二軸圓錐效應誤差和長周期的三轴角增 :、、、。一角速率補償模組812。 和三t i ΐ述圓錐誤差補償模組811的上述圓錐效應誤差 生ϊρΐ期角增量值’以及來自上述角速率和加速度產|癱 偏】程的角速率產生器安裝失準角參數,精角速# I· 補償模組^1 9’及圓錐校正刻度係數,被輸入到上述角速率 的安裝失車 使用輸入的圓錐效應誤差,角速率產生器 數,^ 1 C角.,、精角速率偏置誤差項以及圓校錐正刻度係 孑員上述輸入的三轴長周期声增量值,並將上述實 第30頁 577975 __案號 90112463 五、發明說明(27)
際的三轴長周期角增量值出到一對泰旋轉向量計算模組 815。 、、、、 來自的角增量和速度増量產生器6的三轴速度增量, 以及來自上述角速率產生器和加速度產生標定過程加速度 器件的安裝失準角’加速度偏置誤差,被輸入到一加速度 補償模組81 3,使用輸入的加速度器安裴失準角加速度偏 置誤差項,補償上述三轴速度增量中的確定性誤差,將補 償之後的三軸速度增量輸出到一水平加平速度計算模组 814 。 、、 接下來的模組使用來自角速率補償模組812的補償後 的角增篁值和來自加速度補償模組813的三轴速度增量, 計算姿態和航向角。對上述處理模纟早,這些接下來的處理 模組與前面所述的模組是相同的。 如果使用/BZL度補^員方法,為適應來自角增量和速度增 里產生器6的數子二軸角增量電壓值和數字三轴速度增量 ^壓值,如第三圖3、第十四圖及第十五圖所示。以高速 率(短周期)輸入來自的角增量和速度增量產生器6的數字 二軸角增量電壓值,以及來自一角速率和加速度產生器標 定過程的粗速角率偏置,到一圓錐誤差補償模組8Π,在 為圓錐誤差補償模組中,使用上述輸入的三轴角增量電壓 值和粗角速度偏置計算圓錐效誤差,以較低的速率(長周 期)輪出上述三軸圓錐效應誤差和長周期的三軸角增量電 壓值,給一角速率補償模組812。 | 來自上述圓錐誤差補償模組8 1 1的上述圓錐效應誤差 和
第31頁 577975 案號 90112463 五、發明說明(28) 三軸長周期角增量電壓值, & 產生琴栲宗、M &*以及木目上述角速率和加速度 ^生器払疋過紅的角速率產生器安裝失準角參數, 率偏置誤差項,角速率|生突劝丨洚金私 、月 、 數,及來自於入浐屮人i ^』度係數’回錐校正刻度係 傳感器器的刻度係數,被輪彳 。旒和,孤度 81 9,4t1 輸到述角速率補償模組 计异角速率產生器的當前溫度;使用計算出 :產生器的當前溫度查找到角速率產生器的溫度特性數、 f,使用輸入的圓錐效應誤差,角速率產生器的安裝失準 角’精角速率偏置誤差項以及圓校錐正 上述輸入的三轴長周期角拎詈雷懕佶·你田木補^ 士丨时 電壓f,使用上述角速率產 生1§的划度係數來將上述補償之後的三軸長周 壓值轉換成實際的三軸長周期角增量值, 器的溫度特性數據補償三轴長周期角增量值中由於溫度變 化所引起的誤差,ϋ將上述實際的三軸長周期角增量值出 到一對準旋轉向量計算模組8丨5。 來自的角增量和速度增量產生器6的三轴速度增量電 壓值’以及來自上述角速率產生器和加速度產生標定過程 加速度器件的安裝失準n,加速度偏置誤差,加速度器件 的刻度係數,及來自輸入輸出介面電路183的數字溫度信 號和溫度傳感器器的刻度係數’被輸入到一加速度補償模 組813 ’言十算加速度產生器的當前溫度;使用計算出的加 速度產生器的當前溫度查找到加速|產生器的溫度特性數 據,使用加速度器件刻度係數將輸入的三軸速度增量電壓 值轉換為實際的三軸速度增量值;使用輸入的加速度器安
577975
裝失準,角加速度偏置誤差項,補償上述三軸速度增量中 的確定性誤差;使用加速度產生器的溫度特性數據補償三 軸長周期速度增量值中的由於溫度變化所引起的誤差,將 補償之後的二軸速度增量輸出到一水平加平速度計算模 814。 … 接下來的模組使用來自角速率補償模組8丨2,的補償後 的,增量值和來自加速度補償模組813的三轴速度增量, 計算姿態和航向角。對上述處理模組,這些接下來的處理 模組與前面所述的模組是相同的。丨 如果使用溫度補償方法,為適應來自角增量和速度增 量產生器6的數字三轴角增量實際值和數字三轴速度增量曰 實際值,如第三圖3、第十四圖及第十五圖所示,姿態航 向處理器81進一步可被修改,以便以高速率(短周期)輸入 來自的角增量和速度增量產生器6的數字三軸角增量值, 以及來自一角速率和加速度產生器標定過程的粗速角率偏 置,到一圓錐誤差補償模組8丨丨,在該圓錐誤差補償模組 中,使用上述輸入的三轴角增量值和粗角速度偏置計算圓 =效誤差,以較低的速率(長周期)輸出上述三軸圓錐效應 誤差和長周期的三軸角增量值,給一角速率補償模組 812。 、 來自上述圓錐誤差補償模組8 1 1的上述圓錐效應誤差 和二轴長周期角增量值,以及來自上述角速率和加速度產 生器標定過程的角速率產生器安裝失準角參數,精角速率 偏置誤差項,圓錐校正刻度係數,及來自輸出介面電路 18 3
第33頁 577975 _案號90112j63 办年α月,4曰 鉻π:___ 五、發明說明(30) 的數字溫度信號和溫度傳感器器的刻度係數,被輸入到上 述角速率補償模組8 1 2,計算角速率產生器的當前溫度; 使用計算出的角速率產生器的當前溫度查找到角速率產生 器的溫度特性數據,使用輸入的圓錐效應誤差,角速率產 生器的安裝失準角,精角速率偏置誤差項以及圓校錐正刻 度係數,來補償上述輸入的三轴長周期角增量值;使用角 速率產生器的溫度特性數據補償三軸長周期角增量值中的 由於溫度變化所引起的誤差,並將丰述實際的三轴長周期 角增量值出到一對準旋轉向量計算輪組8 i 5。 來自輸入/輸出介面電路65的三轴速度增量,以及來 自上述角速率產生器和加速度產生標定過程加速度器件的 女裝失準角’加速度偏置誤差,及來自輸入輸出介面電路 1 83的數字溫度信號和溫度傳感器器的刻度係數,被輸入 到 加速度補该模組(Accerlation compensation module )813,計算加速度產生器的當前溫度;使用計算出 的加速度產生器的當前溫度查找到加速度產生器的溫度特 性數據’使用輸入的加速度器安裝失準角加速度偏置誤差 項’補償上述三軸速度增量中的確定性誤差;使用加速度 產生器的溫度特性數據補償三軸長周期速度增量值中的由 於溫度變化所引起的誤差,將補償之後的三轴速度增量輸 出到一水平加平速度計算模組8 1 4。 接下來的模組使用來自角速率補償模組8丨2的補償後 的角增量值和來自加速度補償模組813的三轴速度增量, 計算姿態和航向角。對上述處理模組,這些接下來的處理
577975 案號 90112463 卞> 年、> 月/7日修丨下 五、發明說明(31) 模組與前面所述的模組是相同的。 如第十五圖所示,位置速度姿態處理模組8 2包含: 一圓錐誤差補償模組(coning correction module )820 1,該模組與姿態航向處理器81的圓錐誤差補 償模組811 —樣。
一角速率補償模組(a n g u 1 ar rate compensation modul e)8202,該模組與姿態航向處I理器81的角速率補償 模組812 —樣。 I 一對準旋轉向量計算模組(alignment rotation vector computation module) 820 5,該模組與姿態航向 處理器81的角速率補償模組8 1 5 —樣。 一方向餘弦矩陣計算模組(direction cosine matrix computation module) 820 6,該模組與姿態航向處理器81 的角速率補償模組8 1 6 —樣。 一加速度補償模組(acceleration compenstaion module)82 03,該模組與姿態航向處理器81的加速度補償 模組8 1 3 —樣。 一水平加平速度計算模組(level acceleration computation module)8204,該模組與姿態航向處理器81 的水平加平速度計算模組81 4 —樣。 一姿態和航向角提取模組(attitude and heading extract module) 820 9,該模組與姿態航向處理器81的姿 態和航向角提取模組81 7 —樣。 一位置速度更新模組(posit ion and ve1coi ty_
第35頁 577975 1 號 90112463 五、發明說明(32) update module)8208,該模組接收來自水平加平速度計算 模組8204,計算位置和速度。 一地球和載體速率計算模組(earth and carrier rate computation modUle) 8207,該模組接收位置速度更 新模組8208的位置和速度,計算載體從導航坐標系到慣性
坐才示系的旋轉角速率,並將旋轉角速率輸入對準旋轉向量 計算模組82 05。 I 為了滿足不同的應用系統需求,如第十一圖和第十四 圖,按照外部用戶要求的格式,如RS-232申行通信標準 (serial communication standard),RS-422 申行通信標 準(serial communication standard),PCI/ISA 總線標準 (bus standard),1 553 總線標準(bus standard),在輸入 /輸出介面電路65和輸入/輸出介面電路3〇5中,組裝數字 三軸角增量電壓信號,數字三軸速度增量電壓信號,以及 數字溫度信號。 為了滿足不同的應用系統需求,如第一圖,第十一圖 和第十四圖所示,按照外部用戶要求的格式,如RS-232申 行通信標準,RS —42 2申行通信標準i,PCI/ISA總線標準, 1 553總線標準’在輸入/輸出介面電路65和輸入/輸出介面 電路305中,組裝數字三轴角增量電壓信號’數字三軸速 度增量電壓信號’以及數字溫度信號。 如上所述,本發明達到應用系統的核心的慣性測量組 件的關鍵技術之一是採用微小角速率產生器’其中’採用 MEMS技術的微小角速率產生器及相應的機械結構和電路板
Η
酬 第36頁 577975 案號 90112463 修止 五、發明說明(33) 布局,如以下所示: 本發明達到應用系統的核心的慣性測量組件的關鍵技 術之一是設計功耗很低的小型電路,其中,傳統的…丨c技 術可被用來將複雜的電路縮小到一石夕片。 現有的用來製造微小角速率產参器的心…技術使用振 動慣性質里塊,通過克里奥里斯效應,感應載體的角速 率。克里奥里斯效應(C〇riolis Ef fect)是一般振動型角 速率傳感器的工作原理。 克里奥里斯效應可解釋為,當一角速率施加到一平移 和振動的慣性質量塊,則會產生克里奥里斯力(c〇ri〇l is force)。當一角速率施加到和振盪的慣性質量塊的軸向, 慣性質量塊的齒會接收到克里奥里斯力。該克里奥里 可產生沿傳感器軸向的扭力。該扭力正比於施加的 率。進而,角速率可被測量。 、 克里奥·里:力或加速度是命名與法國物理和數學家, 盍斯佩德·付·克里奥里斯(1 792 —1 843 )。他 疋了它的克里奥里斯力,作為在彈^ /又 校正量。克里奥里斯加速度作用在一=轉的 移動和徑向移動的物體上。 ” 疋角速率 得以克里奥里斯力的基本方程可表達為 FCori〇Us = ^Coriolis = X^0scillati〇n) 其中,戶Car·疋檢測到的克里奥里斯力 Η 第37頁 577975
_ m是慣性質量塊的質量; 5c_;、是產生的克里奥里斯加速度; .ω是輸入的角速度; 是慣性質量塊的振盪速!度。 產生的克里奥里斯加速度正比於慣性質量塊的質量、 輸入的角速度和慣性質量塊的振盪速度之積。慣性質量塊 的振盪速度的方向正交於輸入的角速度方向。
振動5L速率產生器的主要問題是差的精度、靈敏度和 穩定性。不像MEMS加速度產生器是—種被動器件,微機械 振動型角速率產生器是—種主動傳感ϋ。因此,應當發明 相應的高性能的電路和控制,以便更加有效地使用現有的 微機械振動型角速率產生器,達到高性能的角速率測量, 來滿足應用系統的核心的慣性測量組件的需求。 因此。為了獲传振動型角速率檢測單元的角速率敏感 信號’振動驅動信號必需首先饋人振動型角速率檢測單 元,以便驅動慣性質量換& ^ 貝里鬼的振動,並能保持慣性質量塊恆 定的動量。振動驅動信號&胳b 切现的質量是一MEMS角速率產生器的
第十七圖和第十八圖分別顯示了第十圖所示本發明的 應用糸統的核心的慣性測蕃〜^ u ^ _ 組件之機械結構和電路板布局 的透視圖和切面圖。該應用$ ^ , 人士姐丄人琉 < 〜用糸統的核心的慣性測量組件包 含布置在金屬正六面體1内的 -^. 0 . , . χ a的第一電路板2 (a f irst circuit board)、第二電路 · $ 攸4(a second circuit board)、第三電路板7(a tK·, third circuit board)和控制電
577975
案號 90112463 五、發明說明(35) 路板9(a control circuit board)。 敏 第一電路板2與第三電路板7相琿,產生χ轴角速 感信號和Υ軸加速度敏感信號給控制|電路板9。 、第二電路板4與第三電路板7相‘,產生γ軸角速 感信號和X轴加速度敏感信號給控制電路板9。 歌 第三電路板7與控制電路板9相連,產生ζ軸角速 感信號和Ζ轴加速度敏感信號給控制電路板9。 敏 控制電路板9通過第三電路板7與第一電路板2和 電路板4相連,處理來自第一電路板2、第二電路板4 : 三電路板7的X、Υ、Ζ軸角速率敏感信號和χ、γ、ζ軸加^ 度敏感信號’以便產生數字化的角度增量、速度增量、'、 置、速度、姿態和航向測量值。 a里 饭
如第十九圖所示,本發明的應用系統的核心的慣性 量組件之角速率產生器5包含: ; N 連接在第一電路板2的X轴振系型角速率檢測單元( first front-end circuit)21 和第一前端電路(first circuit board)23 ; 一連接在第二電路板4的γ轴振動型角速率檢測單元( second front-end circuit)41 和第二前端電路(second circuit board)43 ; 一連接在第三電路板7的2轴振動型角速率檢測單元( third front-end circuit)71 和第三前端電路(third circuit board)73 ; 二個角信號回路電路921(angular sigularloop η 第39頁 577975
circuit),該電路分別為第一電路板2、第二電路板4、 三電路板7設置,包含在連接在控制|電路板9上的ASic& (chip)92 中; ! 三個振動控制電路(dither motic)n cQntFQl circuit) 922,該電路分別為第一電路板2、第二電路板 4、第三電路板7設置,包含在連接在控制電路板9上 ASIC芯片92中; 一振盪器(oscillator )925用來為X轴振動型角速率檢 測單元21、Y轴振動型角速率檢測單元41、z轴振動型角速
率檢測單元71、角信號回路電路921和振動控制電路922提 供參考拾取信號; 三個振動處理模組(dithe:r m〇ti〇n prQcessing m〇dule)912,分別為第一電路板2、第二電路板4、第三電 路板7設置,運行於連接在控制電路I板9上的DSp (數字信 號處理器)芯片組(chipest)91中。 " 第一前端電路2 3、第二前端電路43和第三前端電路73 在結構亡是一致的,用來分別條理χ、γ、z轴振動型角速 率檢測單元的輸出信號。每一前端電路包含:
一個阻抗轉換放大器電路(trans impedance amplifier circuit)231、431及731,分別連接於相應的 X、Y、Z軸振動型角速率檢測單元21、41及71,用以把振 動運動信號的阻抗,從很高的水平,大於丨〇 〇兆歐姆,轉 換為低阻抗,小於100歐姆,以便獲得兩路振動位移信 號’其為表示慣性質量塊和錨梳之間位移的交流電壓信
第40頁 577975
號’這兩路振動位移信號被輸入給舉動控制電路g 2 2 ; 一個高通濾波器電路(high-pass filter circuit) 232、4 32及732,分別連接於相應的χ、γ、Z軸振動型角速 率檢測單元21、41及71,用以去除振動位移差分信號中殘 餘的振動驅動信號和噪聲以便形成過濾後的振動位移差分 信號給角信號回路電路9 2 1。 X、Y、Z軸振動型角速率檢測單元21、41及71,除了 其敏感軸被正交配置外,在結構上是一致的。X軸振動型 角速率檢測單元2 1用來檢測載體沿X轴的角速率,γ軸振動 型角速率檢測單元2 1用來檢測載體沿γ轴的角速率,ζ轴振 動型角速率檢測單元21用來檢測載體沿ζ軸的角速率。 X、Υ、Ζ轴振動型角速率檢測單元21、41及71都是振 動型器件,包含至少一套振動的慣也質量塊,包括調諧音 叉及相應的支撐結構和器件,如電容性信號讀出器件,並 且利用克里奥里斯效應檢測載體的角速率。 每一X、Υ、Ζ軸振動型角速率檢測單元21、41及71接 收如下信號: (1 )來自振動控制電路922的振動驅動信號,以便保 持慣性質量塊的振動; (2)來自振盪器925的載波參考振盪信號,包含電容 讀出激勵信號。 X、Υ、Ζ軸振動型角速率檢測單元2 1、41及71分別利用動 力學(克里奥里斯力)檢測載體的χ、γ、ζ軸角速率,輸 出如下信號: i
案號 901124R2 五、發明說明(38) 引起的㈣,包含調制在載波參考振盪 端電路23、43、73的高通遽波器電路奶、第奶1二别 (2 )慣性質量塊的振動信號,包轳 換放大器電路231、431及;;…電路23、43、73的阻抗轉 f個振動控制電路922分別接收來自 角速率檢測單元21、41及71的慣性 Z轴振動型 :’以及來自振盪器925的參考拾取動立移: 的慣性質量塊的位移信號。 座生已知相位 及7ΐί = ^、Y、Z軸振動型角速率檢測單元21、“ 及的慣性質量塊的振動位移信號!,變早1二 性質量塊的振動位移信號,*第二、二:J :貝 電路922包含: 固所不,振動控制 一個放大器和加法器電路(amplifi CirCUit) 9221,連接於第一、二、二 summei" 的阻抗轉換放大器電路231、431及^^電㈣、43 '73 號與旁邊錯梳的信號㈣,來結合兩路振=的; 形成振動位移差動信號; 勒位移U,以 一個高通濾波器電路(high-pass fUter circUit) 9222,連接於放大器和加法 = 振動位移差動信號中除去殘餘振動動信號和22^聲以=, 過濾後的振動位移差動信號; 〜”聲’產生 577975 案號 901124fi3 $年月,昃曰_ 五、發明說明(39) | 一個解調器電路(demodulator circuit)9223,連接 於高通濾波器電路9 222,以從振盪器925接收電容檢出激 勵信號作為相位參考信號,從高通濾波器9222接收濾波後 的振動位移差動信號,並提取過濾後的振動位移差動信號 的同相部分用以產生已知相位的慣性質量塊的位移信號; 一個低通濾波器(l〇w-pass fHter)9225,連接於解 調器電路9223,以從輸入的慣性質量塊位移信號中除去高 頻噪聲’形成低頻慣性質量塊位移信號; 一個類比/數位轉換器(analog/digital converter) 9224,連接於低通濾波器9225,用以將模擬低 頻慣性質量塊位移信號,轉換為數參化低頻慣性質量塊位 移信號’並輸出給振動處理模組9 i 2 ; 9 226,對來自振動處理模組912所選的信號幅度進行處 理’以便形成具有正確幅度的振動驅動信號。 一個放大器(amplifer) 9227,基於正確的頻率和幅度 的振動驅動#號,為X、Y、z軸振動型角速率檢測單元 21、41及71產生和放大振動驅動信號。 X、y、z軸振動型角速率檢測單元21、41及71中的 質=塊的振動是由具有精確幅度的高頻正弦信號驅動 的i提供給X、Υ、Z軸振動型角速率檢測單元21、41及71 動驅動信號對X、γ、z丨轴角速率測量值的靈 敏度和穩定度起非常重要的作用。 振動處理模組91 2接收來自振動控制電路922的類比/ Ι^ϋΙ 111819 第43頁 577975 五、發明說明(40) 數位轉換器9224的已知相位的數字化低頻慣性 信號,以便於: 貝里视位移 (1 )搜索具有最高質量因子(Q)值的頻 (2) 鎖定該頻率; ’ (3) 鎖定幅度,產生振動驅動信號,包括且 =的=弦信:’給X、Y、z軸振動型角“ ^、41及71 ’以便使慣性質量塊振動在預定的諸振頻率 振動處理模組912搜索和鎖定χ、γ、ζ軸振 檢測單元、41及71的慣性質量塊的振動頻率和幅】速: =數字化低頻慣性質量塊位移信“; 立葉變換(Discrete Fast Fourier Transf〇rm),表迷傅 頻譜上。 # 、離散快速傅立葉變換是計算離散傅立葉變換的有效糞 法,它極大地降低了離散傅立葉變換的計算量。離散 葉變換用來近似表達離散信號的傅立葉變換。一 的傅立葉變換或頻譜被定義為: "^ x(⑽=「⑴ η 定: •離散信號Χ(ηΤ)的Ν個採樣的離散傅立葉變換由下式給 j / /y 901124R3五、發明說明(41) I? 曰 修正 其中 ’ ω = 2τΓ/ΑΓΓ,τ θ ▲ 分疊加在:起的不同頻=㈣間間隔。FFT的本質是區 葉變換表量塊位移信號通過離散快速傅立 疋具有全局最大〇值的 便雒 檢測單元21、41;5716^ Υ、Ζ轴振動型角速率
值的猸桌及71的慣性質量塊振動在具有全局最大Q 辛Q值曰r:哲低功率消耗,取消許多影響激勵模式的因 1件的=貝性質量塊的基本幾何尺度、材料特性及環境 選定: = 數位類比轉換&-步用來控制和穩定 如第二十六圖所示,振動處理模組912近一步包含一 個離散快速傅立葉變換(Fast F〇urier Transf〇m,fft) 模組9121,一個頻率和幅度數據存儲陣模塊組(mem〇ry array of frequency and amplitude data module)9122,一個最大值檢測邏輯模組(maxima detection logic module)9123及一個Q值分析和選擇邏輯 模組(Q analysis and selection logic module)9124 , 以便找到具有最大Q值的頻率。 離散快速傅立葉變換(Fast Fourier Transform, FFT)模組9121,變換來自振動運動择制電路922的類比數 位轉換器9224的數字化的低頻慣性質量塊的位移信號,以 便形成輸入慣性質量塊位移信號的頻幅上的幅度數據。 第45頁 577975 - -麵90112463_>年 > 月/(f1日 絛正 五、發明說明(42) " —- 頻率和幅度數據存儲陣模組9丨23,接收幅度和 以形成一個幅度和頻譜數據陣。 曰 最大值檢測邏輯模組9丨2 3,將來自幅度和頻譜數據陣 的頻譜數據陣的頻譜分割為一些頻譜段,並從當^ 中選擇出具有最大幅度的頻率。 、
Q值分析和選擇邏輯模組9124,在選出的頻率上進行Q 值分析,通過計算幅度和頻帶寬度的比值,選擇頻率和幅 度。其中,計算用的頻帶寬度取每一個最大頻率點最大值 的正負二分之一之間。 進一步,振動處理模組9 1 2包含i 一個鎖相環(phase - lock 1〇〇p)9 125,用作一個很窄的帶通濾波器,以排斥 所選頻率的噪聲,及產生並鎖定選定頻率的振動驅動俨 號。 三個角信號回路電路921接收來自χ、γ、Ζ軸振動型角 速率檢測單元21、41及71的角速率引起的信號,以及來自 振盪器92 5的參考拾取信號,將角速率引起的信號變換為 角速率信號。如第二十三圖所示,第一電路板2、第二電 路板4、第三電路板7的每一個角信號回路電路921包含: 一個電壓放大器電路(v〇ltage ampHfier circuit )9211,用以放大來自相應的第一、二、三前端電 路2 3、43、73高通濾波器電路232的!過濾後的角速率引起 的信號到至少1 0 0 0毫伏的程度,以形成放大後的角速率引 起的信號; 一個放大和加法器電路(ampHfier and summer circuit)9212 ’用以提取放大後的角速率信號的差異,以
577975 ----案號 90112463__年(、月 /<f日_修正_ 五、發明說明(43) 產生差動的角速率信號; 一個解調器(demodulator)9213,連接於放大和加法 器電路9212,用以從差動的角速率信號和從振盪器925來 的電容讀出激勵信號,提取同相差動角速率信號的幅度; 一個低通濾波器(low-pass filter)9214,連接於解 調器9213,用以去除同相差動角速率信號的幅度信號的高 頻嚼聲,以形成角速率信號輸出給角增量和速度增量產生 器6。
如第十七圖至第十九圖所示,本發明的應用系統的核 心的慣性測量組件的優選方案之加速度產生器丨〇包含:X 一 X 轴加速度汁(X axis accelerometer)42,它位於
第二電路板4上並和控制電路板9中的AS 1C芯片92的角增量 和速度增量產生器6相連; 胃S 一 Y 轴加速度計(Y axis accelerometer)22,它位於 第一電路板2上並和控制電路板9中的ASIC芯片92的角增量 和速度增量產生器6相連; 9 一 Z 軸加速度計(Z axis accelerometer)72,它位於 第三電路板7上並和控制電路板9中的ASIC芯片92的角拗^ 和速度增量產生器6相連。 /如第二圖、第十八圖和第十九_所示,本發明的的應 用系統的核心的慣性測量組件的優選方案之埶敏 = 15進一步包含: 〜王器 第一熱敏感產生單元(first thermal sensing producing uni t)24,用來敏感X軸振動型角速率檢測
第47頁 577975 案號90112463 __ >年p月/孑曰 格不_ 五、發明說明(44) 21和Y軸加速度計22的溫度; 第二熱敏感產生單元(second thermal sensing producr)44,用來敏感Y軸振動型角速率檢測單元41和乂轴 加速度計42的溫度; 第三熱敏感產生單元(third thermal sensing prodUcr)74,用來敏感Z軸振動型角速率檢測單元71和2轴 加速度計72的溫度; 丨 如第二圖和第十九圖所示,本發明的應用系統的核心 的慣性測量組件的優選方案之加熱器2 〇進一步包含: 第一加熱器(first heater)25,它與X軸振動型角速 率檢測單元21,γ轴加速度計22及第一前端電路23相連, 用來保持X轴振動型角速率檢測單元21,γ軸加速度計22及 第一前端電路23的預定的工作溫度; 第二加熱器(36(:011(11^3七61〇45,它與¥轴振動型角速 率檢測單元41,χ轴加速度計42及第二前端電路43相連, 用來保持Υ軸振動型角速率檢測單元41,χ軸加速度計42及 第二前端電路4 3的預定的工作溫度; , 第二加熱器(third heater)75,它與Ζ轴振動型角速 率檢測單元71,Z軸加速度計72及第I三前端電路73相連, 用來保持2軸振動型角速率檢測單元71,Z轴加速度計72及 第三前端電路73的預定的工作溫度。 第一圖、第十八圖、第十九圖、第二十一圖和第二 十五圖所示’本發明的的應用系統的核心的慣性測量組件 的優選方案之熱處理器30進一步包含參個相同的熱控制電
577975 _案號90112463 年A月/cf日 條正_ 五、發明說明(45) 路923 (thermal control circuitries)和運行在DSP 芯片 組91的熱控制計算模組911(thermal control computation module) ° 如第十九圖和第二十五圖所示,每一熱控制電路923 進一步包含:
I 第一放大器電路(first ampli f|ier circuit)9231, 它與相應的X、Y、Z軸熱敏感產生單元24、44和74相連, 用來放大來自相應的X、γ、Z軸熱敏感產生單元24、44和 74的信號並壓縮其中的噪聲,提高信號噪聲比;
一個類比/數位轉換器(analog/digital converter) 9 232,連接於放大器電路923 1,用來採樣溫度 電壓#號’並將採樣的溫度電壓信號數字化為數字信號, 輸出給熱控制計算模組911 ; 一個數位類比轉換器(digital /analog conver ter) 9233,用來將來自熱控制計算模組911的數字 溫度指令,轉換為模擬信號; 第二放大器電路(second amplifier circuit)9234, 用來接收並放大來自數位類比轉換器9233的模擬信號,以
便驅動相應的第一、二、三加熱器25、45、75和閉合溫度 控制回路。 熱控制計算模組911使用來自類比/數位轉換器9 2 3 3的 數字溫度電壓信號,溫度標定係數以及預定的上述角速率 產器和加速產生器的工作溫度,來計算數字溫度指令,並 將該數字溫度指令送入一數位/類比轉換器9233。
Π 第49頁 577975 --案號90112463^-k年Q月曰 仵丁__ 五x發明制(46j '" 、 為了得到一高性能、全功能的應用系統的核心的慣性 測量組件,本發明的小型慣性測量組件的優選方案之第一 電路板2、第二電路板4、第三電路板7和控制電路板9的一 特別封裝方法如下所述: 如第十七圖至第十九圖所示,在本發明的應用系統的 核心的慣性測量組件的優選方案中,使用導電環氧基樹脂 將第三電路板7粘接於移支撐結構,使用非導電環氧基樹 脂將第一電路板2、第二電路板4和控制電路板9平行二與 第三電路板7粘接。 、
換句話說’以這種方式將第一電路板2、第二電路板4 和控制電路板9與第三電路板7粘接,使用第三電路板7作 為内部連接板,因此,可避免内部連接線的需要,以便減 小尺寸。 以共地方式將第一電路板2、第二電路板4和控制電路 板9與第二電路板7纟且裝成了一圓形,以便導電環氧基樹脂 和支撐結構能形成一連續的地極。這樣可降低電子噪聲水 平和熱梯度。另外,這種組裝方式也可以降低由於加速度 造成的結構變形引起的IMU失準角的變化。 如第二十七圖和第三十一圖所示,本發明之應用系統 的核心的慣性測量組件之第二優選實現包括: 一角速率產生器5,來產生三轴(X,γ,z轴)角速率 信號’它與如圖1所示的本發明之應用系統的核心的慣性 測量組件之第一優選實現相同; 加速度產生器10,來產生三轴(X,Y,z轴)加速
第50頁 577975 修正 _案號 90112463 五、發明說明(47) 度信號,它與如第一圖所示的本發明之應用系統的核心的 慣性測量組件之第一優選實現相同; 一角增量和速度增量產生器6,用來將三轴角速率信 號轉換為數字角度增量和將三軸加速度信號轉換為數字速 度增量’它與如第一圖所示的本發萌之應用系統的核心的 慣性測量組件之第一優選實現相同; 一地球磁場檢測器(Earth’s magnetic field detec tor) 96,用來產生地球磁場向量測量值; 一位置和姿態處理機(position,attitude,and heading processor)80進一步被包含在本發明之應用系統 的核心的慣性測量組件中,它與角速率產生器5,加速度 產生器1 0和地球磁場檢測器9 6相連,使用三軸數字角度增 量和三轴數字速度增量計算位置、速度、姿態和航向測量 值,以便提供豐富的運動測量滿足不同用戶的需要。 在本發明之應用系統的核心的慣性測量組件之第一優 選實現中’如第十五圖,來自一外部航向傳感器的航向數 據被輸入到應用系統的核心的慣性測量組件,以便提高和 穩定應用系統的核心的慣性測量組件的航向結果數據。 使用外部航向數據的必要性如下所述。一 I M U必需執 行一初始對準過程,以便為I M U產生初始姿態角。 在IMU地面初始對準過程中,姿態計算使用其自對準 能力,即使用重力計算水平面,使用地球自轉角速率對準 航向。 眾所周知,重力是一強信號。然而,地球自轉角速率
577975 _案號 90112463 五、發明說明(48) 心年月/<?曰 修正 是小信號。例如,現代戰斗機的機動角速率可達40 0度/秒 以上,是地球自轉角速率1 5度/小時的1 0萬倍以上。進一 步,在高緯度地區,地球自轉角速率的水平分量實際上, ί ^
按以下公式減少。 I QN =QcQS(latitude) 例如,在北緯4 5度地區,北向地球自轉角速率減少為 1 0. 6度/小時。在北緯9 0度地區,北向地球自轉角速率消 失了 ,航向變得沒有定義了。
角速率產生器有許多誤差源。其中,角速率產生器的 偏置和隨機遊走是航向確定(通常稱為陀螺羅經 gyrocompassing)的主要誤差源。航向精度和角速率產生 器誤差之間的關係可近似為以下公式: 對角速率產生器的偏置誤差:丨
I ^ rGbias、 δψ = tan (―—) 對角速率產生器的隨機遊走誤差
60RWC δψ = tan
Vr Ω"
其中:Gbi as是角速率產生器的偏置的不確定誤差, 以deg/hr表示。
第52頁 577975 案號 90112463 五、發明說明(49) 月日 修正 Ω, 置’速度和姿態數據。該通信模組可以是: 是北向地球自轉角速率,以deg/hr表示。 是角速率產生器的隨機遊表誤差係數,以 T 是陀螺羅經時間,以deg/hr表示。 是航向誤差。 由於地球自轉角速率的較小幅值,對低成本,低精度 的ΙΜϋ,獲得初始航向要比俯仰角和橫滾角困難。例如, 用Ideg/hr精度的角速率產生器的IMU,在中緯度地區,可 獲得大約5度的航向精度。 地球磁場檢測器96,是用來測量地球磁場向量值的器 件,如磁強計和磁阻傳感器。傳統上,磁羅盤用來找北, 已^有^許多世紀了。今天的最新磁阻傳感器的敏感性可達οι、毫高斯、,小 的全固 態封裝 ,且 反應時 間小於i 毫秒 。這些 磁阻,感器,在運動的載體上,可h高達1〇〇〇HZ的速率輸 出磁場讀數。因此,地球磁場檢測器96優選為磁傳感器, 置於應用系統的核心的慣性測量組件之第二優選實現之 内’提供附加的航向信息,並與陀螺航向相何。 如第二十七圖所示,一通信模組(communication module)98被進一步附加在位置和姿態處理機8〇,以便提 供給用戶IMU的運動測量信息,如位置,速度和姿態數 據。 如第二十七圖所示,一通信模組98與位置和姿態處理 機80介面。以便發放給用戶IMU的運動測量信息,如位 Η 瞧 第53頁 577975 -90112463 ^ 月 W日 絛正 五、發明說明(50) " (1 ) 一基於無線通信的發送收機; (2) —介面電路和連接器。| •如第二十七圖所示,一 LCD (液晶顯示器)模組 (display module)97被進一步附加在位置和姿態處理機 80 ’以便以精簡方式顯示給用戶IMU的運動測量信息,如 位置’速度和姿態數據或曲線或地圖顯示。 L C D疋種非常適合於小儀器的顯示器件。如同發光 二極=和氣太等離子體技術,LCD顯示器也大大小於陰極 射線^技術。而且,LCD要比發光二極管和氣太等離子體 顯示器消耗更小的能量,因為它的工作原理是基於阻當光 線而不是發射光線。 LCD可制成被動顯示陣列和主動顯示陣列。主動顯示 陣列也稱為薄膜晶體管(TFT)顯示i器。被動顯示陣列lcd 有一導體網格,它位於每個像素網輅的每個交又點。通過 兩個導體的電流來控制像的光線。主動顯示陣列LCD在每 一像素網格交叉點,置一導體,來控制像素的亮度。因 此’主動顯示陣列LCD的電流更能 快速開關,以便提高屏幕刷新時間。 一些被動顯示陣列LCD也可進行雙掃描。在用來掃描 一次的時間内,能掃描倆次,但主動顯示陣列LCD仍是較 優越的技術。 因此’ LCD模組97和通信模組98使得本發明之應用系 統的核心的慣性測量組件的運動測量更加方便。 與本發明之應用系統的核心的,ΐρ*性測量組件之第一優
第54頁 577975 案號90112463_^年^月v 五、發明說明(51) 選實現,增加了LCD模組97,通信模1組98和地球磁場檢 器96。 ㈢如第二十八圖所示,本發明之應用系統的核心的慣性 測量組件之第二優選實現’包含布置在金屬正六面體丨内 的第-電路板2、第二電路板4、第三電路板7和控制電路 板(control circuit board ) 9A °
第一電路板1與第二電路板7相連,產生X轴角速率敏 感信號和Y轴加速度敏感信號給控制電路板9 A ^二電路板4與第三電路板7相連,產生γ轴角速㈣ 感佗唬和X轴加速度敏感信號給控制電路板9八 咸=7板7與控制電路板9相,,產生Z轴角速率敏 感L諕和Z軸加速度敏感信號給控制電路板9A。 控制電路板9 A通過第三電路板7:與 度敏感㈣,以便產、j、z轴加速 要、古& 卞化的角度增量、速度增量、你 置、速度、姿態和航向測量值。 疋又a里位 如第—十八圖所示,本發明的庙田么μ, 測量組件的第二優選方案之角速含核心的慣性 和第:ΪίΪ:2—3”:2太的ί軸振動型角速率3檢測單元21 測量址件與本發明之應用系統的核心的慣性 里姐仵之第一優選實現相同; 丨 和第:電轴振^型角速率檢測單元41 ^電路43 ’它與本發明之應用系統的核心的慣性 第55頁 577975
修正 一連接在第三電路板7的Z轴振動型角速率檢測單元71 和f二前端電路7 3,它與本發明之應用系統的核心的慣性 測量組件之第一優選實現相同; $ 二個角信號回路電路921,該電路分別為第一電路板 、第二電路板4、第三電路板7設置,包含在連接在控制 、、、路f 9上的a S IC怒片9 2中,它與本發明之應用系統的核 “的慣性測量組件之第一優選實現松同; 第一三個振動控制電路922,該電路分別為第一電路板2、 電路板4、第二電路板7設置,包含在連接在控制電路 ^的咖芯片92中,它與本發明|之應用系統的核:二 十貝性,量組件之第一優選實現相同; 振盘器925用來為X轴振動型角速率檢測單元21、γ 71、、動^角速率檢測單元41、Ζ軸振動型角速率檢測單元 作妒角!!號回路電路921和振動控制電路9 22提供參考拾取 ":,匕與本發明之應用系統的核心的慣性測量組件之第 一優選實現相同; 路拓4一個振動處理模組9 1 2,分別為第一電路板2、第二電 M ^ ί三電路板7設置,運行於連接在控制電路板9Α上 用系綠^字^號處理器)芯片組9 1中。它與本發明之應 、筮一=心的慣性測量組件之第一優選實現相同; 在紝搖Τ ΐ端電路23、帛二前端電輅43和第三前端電路73 率^、、目,丨w疋一致的,用來分別條理χ、γ、z轴振動型角速 欢/、早元的輸出信號,它與本發明之應用系統的核心的
577975 _塞虢 90112463 > 生 π 日 /^J---- 五、發明說明(53) 慣性測量組件之第一優選實現相阄。 # 如第二十八圖所示,本發明之應用系統的核心的丨貝性 測量組件之第二優選實現之加速虞產生器1 0包含: 一X轴加速度計42,它位於第二電路板4上並和控制電 路板9A中的AS 1C芯片92A的角增量和速度增量產生器6相 連,它與本發明之應用系統的核心的慣性測量組件之第一 優選實現相同; 一Y轴加速度計22,它位於第/電路板2上並和控制電 路板9A中的AS 1C芯片92A的角增量和速度增量產生器6相 連,它與本發明之應用系統的核心的慣性測量組件之第一 優選實現相同; 一Z軸加速度計72,它位於第三電路板7上並和控制電 路板9 A中的AS 1C芯片92A的角增量和速度增量產生器6相 連’它與本發明之應用系統的核心的慣性測量組件之第一 優選實現相同。 振盛器925用來為X軸振動塑角速率檢測單元?!、γ 轴振動型角速率檢測單元41、Ζ軸振動型角速率檢測單元 角信號回路電路921和振動控制電路922提供參考拾取 =琥,它與本發明之應用系統的核心的慣性測量組件之 一優選實現相同; 、、 路杯f 7動處理模組912 ’分別為丨第一電路板2、第二電 板4、第二電路板7設置,運行於蓮接 的DSP (數字信號處理器)芯片組91中。它工血,板9A上 用系統的核心的慣性測量組件之第一優選實、本發明之應 577975
第一前端電路23、第二前端電路43和第三前端電㈣ 在結構上是一致的,用來分別條理X、γ、Z轴振動型角速 率檢測單元的輸出信號’它與本發明之應用系統的核心的 慣性測量組件之第一優選實現相同。 如第二十八圖所示,本發明之應用系統的核心的慣性 測量組件之第二優選實現之加速度產生器丨〇包含:
一X轴加速度計42,它位於第二電路板4上並和控制電 路板9A中的ASIC芯片92A的角增量和i速度增量產生3|β相 連,它與本發明之應用系統的核心的慣性測量組件之第一 優選實現相同; 一Υ轴加速度計22,它位於第一電路板2上並和控制電 路板9Α中的ASIC芯片92Α的角增量和速度增量產生器6相 連,它與本發明之應用系統的核心的慣性測量組件之第一 優選實現相同; 一Z轴加速度計72,它位於第三電路板7上並和控制電 路板9A中的ASIC芯片92A的角增量和速度增量產生器6相 連,它與本發明之應用系統的核心的慣性測量組件之第一 優選實現相同。
ASIC芯片92A與數字信號處理:^片(DSP chipest)91A,地球磁場檢測器96,IlCD顯示模組97,輸入 輸出接頭(connector)93,第一電路板2,第二電路板4, 以及第三電路板7相連,以便為第一電路板2,第二電路板 4,以及第三電路板7提供與數字信號處理芯片91A的介面 和轉換電路。
第58頁 577975 修正
案號90112463_>年&月从B 五、發明說明(55) LCD模組97與ASIC芯片92A的LCD介面電路(interface Ci=Uit) 927相連,以便以精簡方式顯示給用戶IMU的運動 測量信息,如位置,速度和姿態數據或曲線或地圖顯示。 一通信模組98與DSP 91A相連。以便發放給用戶IMU的 運動測量信息,如位置,速度和姿態數據。 為了進一步提高性能,DSP 91A進一步與以下器件介面: (A) —快閃存儲器(flash me_ry)94,^與數字信 號處理芯片(DSP chipest)91A相連i,以便當IMU關掉電^原 後,儲存如第三十圖所示的控制和計算任務的執行軟體; (B) — JTAG 接頭(connector)95,它與 Dsp 9U 相 連’用來為快閃存儲器94的控制和言十算任務的執行軟體提 供在板編程能力。板編程能力是指快閃存儲器94可通過 JTAG進行編程。傳統上,一EPR〇M (可察除的可編程只讀 存儲器)或快閃存儲器94須經過硬體編程器 後經過一插座安裝在板上。 1 985年由幾個大的電子製造商制訂了 JTA(j,為了產生 印刷電路板和積體電路的測試標準。丨9 9 〇年 IEEE1149· ;1〜1 990測試口和邊界掃描結構標準批準了jtag 的建議。在本發明中,JTAG用來執杆在板編程。
”匕二31 ΐ器Γ 一類非易失性存儲器。#易失性存儲器 疋才曰掉電之後’仍可保留信息。與EpR〇M 點。EPROM的察除和編程需要特定的電壓。匕有月顯的優 相應地,地球磁場檢測介面電路926
第59頁 577975 ---tE 90112463 私车π月/孑日 絛正_ 五、發明說明(56) " 被布置在控制電路板9A上。 LCD介面電路(interface circuit ) 927用來為LCD模組 97和DSP 91A提供介面,LCD介面電路927被布置在控制電 路板9 A上。 本發明之應用系統的核心的慣声測量組件之第二優選 實現之AS 1C怒片92A,在本發明之應用系統的核心的慣性 測量組件之第一優選實現之A s丨c芯* 9 2内增加地球磁場檢 測介面電路926和LCD介面電路927產生的,以便形成本發 明之應用系統的核心的慣性測量組件之第二優選實現的控 制電路板9A。 ' 地球磁場檢測介面電路9 2 6,用來連接地球磁場檢測 器96和DSP91A,執行以下步驟: (1 )接收來自地球磁場檢測器9 6的正比於地球磁場 的模擬電信號; (2 )放大該模擬電信號,並壓縮其中的非正比於地 球磁場的噪聲; j (3 )將放大後的模擬電信號轉i換為三轴數字地球磁 場信號,並將之送入DSP 91A ; (4)提供數據連接和地址解碼功能,以便DSp 91人可 訪問地球磁場檢測介面電路9 2 6,獲得三轴數字地球磁場 信號。 LCD介面電路927用來連接LCD模組9 7和DSP 91 A,提供 數據連接和地址解碼功能,以便DSP91A可訪問LCD模組 9 7 ’輸出運動測量,如位置,速度和姿態。
第60頁 577975 修正 _案號 90112463_年 U 月 /,η 五、發明說明(57) 如第二十二圖和第三十一圖所示,本發明之應用系統 的核心的慣性測量組件之第二優選實現之執行於DSP 91A 的任務處理模組9 1 A,是在本發明之應用系統的核心的慣 性測里組件之第一優選實現之任務處理模組(p r 〇 c e s s丨n茗 tasks)91上,增加磁航向計算模組(;jnagnetic heading computation module)83產生的 。 丨 磁航向計算模組83,接收來自ASIC芯片92A的地球磁 場檢測介面電路926的三軸數字地球磁場信號,以及來自 姿態航向處理器8 1或位置速度姿態處理模組82的俯仰和橫 滾角數據,計算磁航向數據,並將磁航向數據輸出給姿態 航向處理器81或位置速度姿態處理模組82(p〇siti〇n,and ajtitude module),以便與陀螺航向數據混合。磁航向計 算模組8 3執行以下步驟·· (1 )從快閃存儲器94中,取得地球磁場檢測器96的 標定參數,用來形成一標定向量; (2)從ASIC芯片92A的地球磁,檢測介面電路926中 ,侍表達在機體坐標系的三轴數字^球磁場信號, 成一測量向量; (3 )接收來自來自姿態航向處理器“或位置 態處理模組82的俯仰和橫滾角數據 到導航坐標系的轉換矩陣· ⑼攸機體上“、 (4 )使用標定向量補償測量向量; (5 )將補償後的測量向量轉換為表 中的測量向量; 達在導航坐標系
577975 _ 案號 90112463 _谷年I》曰 修正_ 五、發明說明(58) (6 )使用表達在導航坐標系中的測量向量,計算磁 航向,並將磁航向數據輸出給姿態航向處理器81或位置速 度姿態處理模組8 2,以便與陀螺航向數據混合。 如第二十八圖所示,熱敏感產丰單元24、44和74和加 熱器25 ’45,75的優選實現如以下^斤述: 用兩個溫度傳感器實現每一熱敏感產生單元24、44和 74 ’用兩個加熱器實現每一加熱器25,45,75,以便形成 兩個加熱器回路; 相應地,本發明之應用系統的核心的慣性測量組件之 第一優選實現之熱控制計算模組(thermal control computation)911,執行以下步驟: (A )通過將加熱器1和2的溫度常數設定到高於終端 溫度1度的值,進行開始參數設定; (B)將該溫度常數與溫度傳感器的值和上一週期的 相加值相加; (C )將該相加值送入一到計數|器,用來形成寬度在〇 到1 0 0 %之間變化的脈衝; (D )存儲該該相加值,以便下一週期使用; (Ε )當達到初始設定的高於終端溫度丨度的溫度常數 時,將加熱器回路1的溫度常數設定到終端溫度,並關 加熱器2 ; (F )當溫度傳感器以忟叩sens〇r)的讀數顯示,溫 度已冷卻到高於終端溫度時,將加熱器回路2(^以^ 度 loop)的溫度常數設定到溫度傳感器2的值,並起動加熱器
第62頁 577975
回路2 ; (G )當二個溫度傳感器和加熱器的任一的新數據 來,重復執行(B )到(F )步驟。 本發明的應用系統的核心的慣择測量組件的第一 方案包含第-電路板2、第二電路板|4、第三電路板7和控 制電路板9,而本發明的應用系統的核心的慣性測量組 的第二優選方案包含第一電路板2、第二電 路板7和控制電路板9A。 弟一電 本發明的應用糸統的核心的慣性測量組件的第一優選 方案的第一電路板2、第二電路板4、第三電路板7和控制 電路板9,可被布置到如第十七圖和第十八圖所示的一金 屬盒子1内,第十七圖和第十八圖分別顯示了第一圖所示 本發明的應用系統的核心的慣性測量組件之機械結構和電 路板布局的透視圖和切面圖。 將控制電路板9用控制電路板9 A代替,本發明的應用 系統的核心的慣性測量組件的第二&選方案的第一電路板 2、第二電路板4、第三電路板7和控制電路板9A,可被布 置到如第十七圖和第十八圖所示的一正方體金屬盒子1 内,第十七圖和第十八圖分別顯示了第二十七圖所示本發 明的應用系統的核心的慣性測量組件之機械結構和電路板 布局的透視圖和切面圖。 第三十二圖和第三十三圖顯示出第一電路板2、第二 電路板4、第三電路板7和控制電路板9的空間布置的第一 變化結構形式。第一電路板2、第二電路板4、第三電路板
第63頁 577975 案號 90112463 五、發明說明(60) 7和控制電路板9被布置到一正方體金屬盒子}内 结 :故f 一電路板2、第二電路板4被置於頂部和底部?第 ::::7以正交方式與第一電路板2、第二電路板“並 ^於,侧和右侧,以便形成角速争產 感轴。控制電路板9被置I於前側或後側,並產與 ^ 一電路板2、第二電路板4、第三電路板7相連。如第三 十一圖和第三十三圖所示,控制電路板9 替代,以便形成本發明的應用系統的核二 組件的第二優選方案。 價〖別里 在以上實現方式中,第一電路板2、第二電路板4、第 二電路板7和控制電路板9被布置到一正方體金屬盒子1 =:在-些應用場合’第一電路板2、第二電路板1 三 電路板7和控制電路板9可被布置到一扁的金屬各子! 一 =十四圖和第三十五圖所示’第三電路板7可以垂直 方式置於扁的金屬盒子^。第一電路板2、第二電 4,一以及控制一電路板9可被置於第三^路板7兩側。如第三 十二圖和第三十四圖所示,控制電路板9可被控制電 9A :替代’以便形成本發明的應用系統的核 組件的第二優選方案。 貝r /貝j 1 本發明的應用系統的核心的慣性測量組件的一一 :憂2方案被安裝在-載體上,提供載體的運 : 振動和衝擊會導致IMU輸出的附加的誤差。如第三十&大的 圖,一支撐架(support bracket)l〇l和防衝擊安裝件、 (shock m〇unt)l〇5用來減少對慣性測量組件的振^和衝
HHH
第64頁 577975 修正 曰 Μ 90112463 月 /沴 五、發明說明(61) 支撐架ιοί直接固連在載體上,IMU通過四個防衝擊安 裝件105與支撐架101相連。 如第一圖和第五圖,通常,角手率產生器的輸出信號 非常微弱。如第三十七圖所示,為^獲取該微弱信號並歷 縮噪聲,角增量和速度增量產生器6:進一步包含: (1) 一屏蔽器件(shield means) 691,它用來覆蓋 所有角速率產生器5的振動驅動電路,以便使角速率產生 器5的振動驅動電路免受角速率產生器5的輸出信號的干 擾; (2) —防護器件(guard means)692,它用來覆蓋角 速率產生器5的輸出管腳和放大器660的輸入管腳(in put P i η),以便將不希望的電磁信號的接收量降到最低。 從角速率產生器5的輸出管腳向内看去,角速率產生 器5的等效電路(equivalent circuit)51如第三十七圖所 示’包含一電壓產生器(voltage geinerator)54和輸出阻 抗(output impedance)53 〇 從放大器660的輸入管腳向内看去,放大器660的等效 電路661如第三十七圖所示,包含一輸入阻抗(input impedance)662 。 防護器件(guard means)692沒有被接地。輸入阻抗 6 62應當盡可能地達到,然而,輸出阻抗53應當盡可能地 小。角速率產生器5的輸出管腳和放大器660的輸入管腳之 間的距離必需小於0.5毫米。角速率產生器5的輸入管腳和 放大器660的輸入管腳之間的距離必需大於0.8毫米。
11«1 第65頁 577975 SS_9〇H2463 年\>月々日 圖式簡單說明 圖示說明 修正
第一圖:顯示了本發明的應用系統的核心的慣性測量 的優選方案之處理模組。 i I 組件 第二圖:顯示了本發明的應用系統&核心的慣性測量組 的優選方案之處理模組及相應的熱控制處理模組。 第三圖:顯示了本發明的應用系統的核心的慣性測量組件 的優選方案之處理模組及相應的熱補償處理模組。 第四圖:顯示了本發明的應用系統的核心的慣性測量組1牛 的優選方案之角增量和速度增量產生器,用來處5里角 ’ 產生器和加速度產生器輸出電壓信號。 冰 n吣沏丨量組 第五圖:顯示了本發明之應用系統的核心的&『、> f田备 的優選方案之另一角增量和速度增量產生器’用 速率產生器和加速度產生器輸出電壓信號。 株 ^ ' 第六圖:顯示了本發明之應用系統的核心的丨貝1^、 备 I _來處理·巧 的優選方案之另一角增量和速度增量產生器’ 速率產生器和加速度產生器輸出電壓信號。 :則f、组件 第七圖:顯示了本發明之應用系統的核心的慣性’ϋ理角 的優選方案之另一角增量和速度增量產生器’用a 速率產生器和加速度產生器輸出電壓信號。
第66頁 577975 90112463 3>年π月W且 圖式簡單說明 第八圖: 的優選方 擬電壓信 第九圖: 的優選方 的模擬電 第十圖: 的優選方 的模擬電 第十一圖 件的優選 第十二圖 件的優選 出的模擬 第十三圖 件的優選 器輸出的 第十四圖 件的優選 第十五圖 件的優選 第十六圖 件的優選 顯示了 案之熱 號。 顯示了 案之另 壓信號 顯示了 案之另 壓信號 •顯示 方案之 •顯示 方案之 電壓信 •顯示 方案之 模擬電 •顯示 方案之 •顯示 方案之 •顯示 方案之 之應用系統_核心的慣 ,用來處理私敏感產生 本發明之應用系統的核心的慣 一熱處理器,用來處理熱敏感 〇 本發明之應用系統的核心的^貝 理器,用來處理熱敏感 本發明 處理器 一熱處 〇 了本發 處理模 了本發 溫度數 號。 明之應用系統的核心的 組。 明之應用系統的核心的 字化器,用參處理熱敏 了本發明之應用系統的核心的 另一溫度數字化器,用來處理 壓信號。 了本發 處理模 了本發 姿態和 了本發 位置和 性測量組件 器輸出的模 性測量組件 產生器輸出 性測量組件 崖生器輸出 慣性測量組 慣性測量耝 感產生器輸 慣性測量組 熱敏感產生 慣性測量組 模組。 慣性測量組 明之應用系統的核心的 組及相應的熱補償處理 明之應用系統的核心的 航向處理模組。 明之應用系統的核心的慣性測里組 速度處理模組。 Ιϋ^ 第67頁 577975
圖式簡單說明 第十七圖 件的優選 第十八圖 件的優選 第十九圖 件的優選 第二十圖 件的優選 第二十一 組件的優 第二十二 組件的優 第二十三 組件的優 路的框圖 第二十四 組件的優 電路的框 第二十五 :顯示 方案之 •顯示 方案之 •顯示 方案之 •顯示 方案之 圖:顯 選方案 圖:顯 選方案 圖:顯 選方案 〇 圖:顯 選方案 圖。 圖:顯 了本發明之應用系“的核心的慣性測量組 機械結構和電路板布局的透視圖。 了本發明之應用系統的核心的慣性測量組 切面圖。 了本發明之應用系統的核心的慣性測量組 内部四塊電路板之間的連接圖。 了本發明之應用系統的核心的慣性測量組 第1、2、3、4電路板的前端電路的框圖。 不了本發明之應用系統的核心的慣性測量 之第3電路板的ASIC芯片的框圖。 不了本發明之應用枣統的核心的慣性測量 之第3電路板的DSP挺運行的處理模組。 不了本發明之應用系統的核心的慣性測量 之第3電路板的ASIC芯片的角信號回路電 不了本發明之應用系統的核心的慣性測量 之第3電路板的as I C芯片的抖動運動控制 示了本發明之應用系統的核心的慣性測量
第68頁 577975 -案號9^1^63_^年少月π曰 圖式簡單綱 1 ------—---- 組件的優選方案之第3電路板的“1(:芯片的熱控 框圖。 w电略的 第二十六圖:顯不了本發明之應用系統的核心的慣 組件的優選方案之第3電路板的DSP里運行的抖動 處理模組。 控制 第二十七圖:顯示了本發明之應用系統的核心的慣性測旦 組件的具有LCD顯示模組和通信模組的第二優選方 u $ 理模組。 ’、 处 第二十八圖·顯示了本發明之應用系統的核心的慣性、、則田 組件的第二優選方案之第2、4、7、|9Α電路板之連接。u $ 第二十九圖·顯示了本發明之應用系統的核心的慣性、、則旦 組件的第二優選方案之9A電路板。 ' 第三十圖:顯示了本發明之應用系統的核心的慣性測量組 件的第二優選方案之9A電路板的AS 1C芯片的框圖。 ' 第三Η 圖:顯示了本發明之應用系統的核心的慣性測量 組件的第二優選方案之位置和姿態處理機里運行的處理^ 組。 第三十二圖:顯示了本發明之應用系統的核心的憤性測量 組件之第一機械結構和電路板布局的透視圖。 第三十三圖:顯示了本發明之應用系統的核心的憤性測量 組件之第二機械結構和電路板布局的透視圖。
第69頁 577975 修正 案號 90112463 圖式簡單說明 第三十四圖:顯示了本發明之應用系統的核心的慣性測量 組件之第三機械結構和電路板布局的透視圖。 第三十五圖:顯示了本發明之應用系統的核心的慣性測量 組件之第五機械結構和電路板布局的透視圖。 第三十六圖:顯示了本發明之應用系統的核心的慣性測量 組件之支撐架和防衝擊安裝件的安裝結構。 第三十七圖:顯示了本發明之應用系統的核心的慣性測量 組件之屏蔽器件和防護器件。 ,
第70頁

Claims (1)

  1. 577975
    值 一地球磁場檢測器,用來產生i地球磁場向量測量 一位置姿態和航向處理機,與角速率產生器,加 度產生器和地球磁場檢測器相連,使用三軸數字角度增、旦 和三轴數字速度增量計算位置、速度、姿態和航向二‘里 值’以便提供的運動測量者。 2 ·如申請專利範圍第丨項所述之一應用系統的核心的慣性 測量組件,一通信模組被進一步附加在所述的位置姿態和 航向處理機,以便提供給外部系統的運動測量信息,包括 位置’速度和姿態數據者。 3 ·如申請專利範圍第1項所述之一應用系統的核心的慣性 測量組件,一 L C D顯示模組被進一步附加在所述的位置姿 態和航向處理機,以便顯示給用戶所述IMU的運動測量信 息’如位置,速度和姿態數據者。 4 ·如申請專利範圍第2項所述之一應用系統的核心的慣性 測量組件,一LCD顯示模組被進一步附加在所述的位置姿 態和航向處理機,以便顯示給用戶所述IMU的運動測量信 息’如位置,速度和姿態數據者。
    第71頁 577975 j號 90112463 曰 六 、申請專利範圍 :修正補先 JL /b 5·如申請專利範圍第2項所述之一應用系統的核心的慣性 測量組件,其中,所述通信模組包含一無線通信的發送/ 接收機者。 6 ·如申請專利範圍第4項所述之一應用系統的核心的慣性 測f纟且件,其中,所述通信模組包含一無線通信的發送/ 接收機者。 7 ·如申請專利範圍第2項所述之一應用系.統的核心的慣性 測量組件,其中,所述通信模組包含一介面電路和連接 器,用來輸出所述I M U的運動測量者。 8 ·如申請專利範圍第4項所述之一應用系統的核心的慣性 測量組件,其中,所述通信模組包含一介面電路和連接 器’用來輸出所述IMU的運動測量者。 9.如申請專利範圍第4項所述之一應用系統的核心的慣性 測量組件,其中,所述位置姿態和航向處理機是一DSp芯 片’ δ亥DSP芯片被置於一控制電路板上;其中,上述通信 模組連接於这D S Ρ芯片;地球磁場檢測器通過一 a s I C芯片 的地球磁場檢測介面電路與DSP芯片相連,該AS IC芯片被 置於上述控制電路板上;LCD模組通過ASIC芯片的LCD介面 電路與該DSP芯片相連者。 10·胃如申請專利範圍第9項所述之一應用系統的核心的慣性 測虽、’且件其中,上述位置姿態和航向處理機進一步連接 陕門存儲器,它與DSp相連,被 板上,以便當IMU關掉雷、、盾接,锉六κ工利电路 開焊電源後,儲存的控制和計算任務
    "975 I------ 90112463 >年 Θ 月 、、申請專利範圍 ' * -- 的執行軟體; 一 JTAG接頭,它與上述DSP芯片相連,被置於上述控 、路板上,用來為快閃存儲器的辛板編程能力者。 ·:如胃申請專利範圍第丨〇項所述之一|應用系統的核心的慣 J里組件,其中,所述地球磁場檢測介面電路包含: 接收來自地球磁場檢測器的正比於地球磁場的模擬 電信號; 放大該模擬電信號,並壓縮其中的非正比於地球磁 場的噪聲; σ 將放大後的模擬電信號轉換為三軸數字地球磁場信 號’並將之送入DSP芯片; 提供數據連接和地址解碼功能,以便DSP芯片可訪問 地球磁場檢測介面電路,獲得三轴數字地球磁場信號者。 1 2 ·如申睛專利範圍第11項所述之一應用系統的核心的慣 性測量組件,其中,上述LCD介面電i路提供數據連接和地 址解碼功能,以便上述DSP可訪問LCD模組,輸出運動測量 者。 1 3 ·如申請專利範圍第丨丨項所述之一應用系統的核心的慣 性測量組件,其中,上述DSP芯片進一步包含磁航向計算 模組,執行以下步驟: 從快閃存儲器中,取得地球磁場檢測器96的標定參 數,用來形成一標定向量; 從AS IC芯片的地球磁場檢測介面電路中取得表達在 機體坐標系的三軸數字地球磁場信號,用來形成一測量向
    第73頁 577975
    量; , 接收的俯仰和橫滾角數據,形成一從機體坐標系到 導航坐標系的轉換矩陣; i 使用標定向量補償測量向量;1 將補償後的測量向量轉換為表達在導航坐標系中的 測量向量; 使用表達在導航坐標系中的測量向量,計算磁航向 角者。 1 4 ·如申請專利範圍第!項、或第2項、或第3項、或第4 項、或第1 2項、或第1 3項所述之一應用系統的核心的慣性 測量組件’其中進一步包含包含一熱控制器件,以便將所 述角速率產生器,加速度產生器和角增量和速度增量產生 器的工作溫度保持在設定值者。 15·如申請專利範圍第14項所述之一應用系統的核心的慣 性測量組件,其中,該熱控制器件進一步包含一熱敏感產 生器,一加熱器以及一熱處理器,其中該熱敏感產生器與 該角速率產生器,加速度產生器和角增量和速度增量產^ 器並行工作,來產生溫度信號?以便以便將該角速率產生 器,加速度產生器和角增量和速度增量產生器的工作溫度 保持在設定值,設定的溫度是一常值,可選擇在15〇卞和 1 85 °F之間’來自該熱敏感產生器產生的溫度信號,被輸 出給該熱處理器,該熱處理器使用該溫度信號、溫度刻度 係數及該角速率產生器和加速度產生器和角增量和速度增 量產生器的預定的工作溫度,來計算溫度控制指令並形成
    第74頁 577975 六、申請專利範圍 相應的驅動信號給加熱器,來控制碎加熱器產生足夠的熱 1 ’保持該角速率產生器和加速度_生器和角增量和速度 增量產生器的預定的工作温度者。 1 6 ·如申請專利範圍第1 5項所述之一應用系統的核心的慣 性測量組件,其中,來自該角速率產生器產生的X、Y、Z 軸角速率信號是模擬電壓信號,直接正比於載體的角速 率’來自加速度產出器產生的X、γ、Z轴加速度信號是模 擬電壓信號,直接正比於載體的加速度者。 1 7·如申請專利範圍第1 6項所述之一應用系統的核心的慣 性測量組件,其中,該角增量和速度增量產生器包含: 角度積分器和加速度積分器分別用來在預定的時間 段内積分X、Y、z軸角速率模擬電壓信號和X、Y、Z轴加速 度模擬電壓信號,以便積累x、Y、z轴角速率模擬電壓信、 號和X、γ、Z軸加速度模擬電壓信號,形成未補償的原^ 角增量和速度增量,其中,該積分操作是為了消除在x、 Y、Z軸角速率模擬電壓信號和χ、γ、z軸加速度模擬電壓 巧:的非直接正比於載體角速率和加速度的噪聲信號, 提咼信號噪聲比,並消降友續X、V 7 h i + I /月I矛、在、γ、Z轴角速率模擬電壓 仏唬和X、Y、Z軸加速度模擬電壓信號中的高頻噪聲. j复位器產生角度復位電壓脈衝和速度復位電壓脈 為角度和速度的刻度,分別輸出 加速度積分器; β又很刀裔和 角增量和速度增量測量器使用該角度復位電壓脈衝 、又復位電壓脈衝,來測量該積累的χ、γ、ζ軸角速率 第75頁 577975 _案號 9Q1124fi3_办年vy月β Β_修正__ 六、申請專利範圍 i 模擬電壓信號和X、Y、Z轴加速度模I擬電壓信號,獲得角 增量計數值和速度增量計數值,相應地作為角增量和速度 增量的數字量者。 1 8 ·如申請專利範圍第1 7項所述之一應用系統的核心的慣 性測量組件,其中,該角增量和速度增量測量器將所述積 累的X、Y、Z軸角增量和速度增量電壓值換算為實際的X、 Y、Z軸角增量和速度增量,其中,在所述角度積分器和加 速度積分器中,所述X、γ、Z轴角速率模擬電壓信號和X、
    Y、Z軸加速度模擬電壓信號被分別復位,以便在所述每一 個預定的時間段的起點,從零開始積累者。 19·如申請專利範圍第18項所述之一 |應用系統的核心的慣 性測量組件,其中,所述復位器包食一振盪器,所述角度 復位電壓脈衝和速度復位電壓脈衝通過所述振盪器產生疋 時脈衝來實現的者。
    2 0 ·如申請專利範圍第1 9項所述之一應用系統的核心的慣 性測量組件,其中用來測量積累的X、Y、Z轴角速率模擬 電壓信號和X、γ、Z轴加速度模擬電壓信號的所述角增量 和速度増量測量器,包含一類比/數位轉換器,以便實際 上將所述原始X、γ、2軸角增量和速度增量電壓值數字化 為X、γ、z軸角增量和速度增量的數字量者。 2 1 ·如申請專利範圍第2 〇項所述之一應用系統的核心的慣 性測量組件,其中,所述角增量和導度增量產生器進/步 包含一角放大電路,用來放大X、Y |、Z軸角速率模擬電壓 信號,形成放大後的X、γ、Z軸角速率模擬信號,和〆加
    577975 _案號 901124fi3__年1>月/<f|日 修正 _____ 六、申請專利範圍 | 速度放大電路用來放大X、Y、z軸加:速度模擬電壓信號’ 形成放大後的X、γ、Z轴加速度模擬信號者。 2 2·如申請專利範圍第21項所述之一應用系統的核心的慣 性測量組件,其中,所述角增量和速度增量產生器的角度 積分器包含一角度積分電路,接收並積分來自所述肖放大 電路的放大後的X、Y、Z轴角速率模擬信號,形成積累的 X、Y、Z軸角增量信號,所述角增量和速度增量產生器的 加速度積分器包含加速度積分電路,接收並積分來自所述 加速度放大電路的放大後的X、Y、Z轴加速度模擬信號, 形成積累的X、Y、Z軸速度增量信號者。 2 3·如申請專利範圍第22項所述之一i應用系統的核心的慣 性測量組件,其中,所述角增量和速度增量產生器的類比 /數位轉換器進一步包含一角類比/數位轉換器,一速度類 比/數位轉換器以及一輸入/輸出介面電路,其中,來自所 述角度積分電路積累的角增量和來自所述加速度積分電路 的積累的速度增量,被分別輸出給所述角類比/數位轉換 器和速度類比/數位轉換器,積累的角增量由所述角類比/ 數位轉換器,通過使用所述角復位電壓信號來測量積累的 角增量,以便形成角增量計數值,作為數字角增量電壓的 一形式,該角增量計數值被輸出給所述輸入/輸出介面電 路,以便形成數字X、Y、Z軸角增量電壓值,所述積累的 速度增量由所述速度類比/數位轉換|器,通過使用速度復 位電壓信號來測量積累的速度增量,以便形成速度增量計 數值,作為數字速度增量電壓的一形式,該速度增量
    第77頁 i 577975 修正 案號 90112463 六、申請專利範圍 計數值被輸出給輸入/輸出介面電路,以便形成數字X、 γ、ζ軸速度增量電壓值者。 2 4 ·如申請專利範圍第2 3所述之一應用系統的核心的慣性 測量組件,其十,所述熱處理器包含連接與所述熱敏感產 生器的一類比/數位轉換器、連接與所述加熱器的數位/類 比轉換器以及連接與所述類比/數位轉換器和數位/類比轉 換器的溫度控制器,其中,所述類比/數位轉換器輸入通 過熱敏感產生器產生的溫度電壓信號,由所述類比/數位 轉換器採樣該溫度電壓信號,並數字化該電壓信號,並將 | 該數字溫度信號輸出給所述溫度控如器,所述溫度控制器 使用來自上述類比/數位轉換器的數字溫度電壓信號,溫 度標定係數以及預定的上述角速率產器和加速產生器的工 作溫度,來計算數字溫度控制指令,並將該數字溫度控制 指令送入上述數位/類比轉換器,所述數位/類比轉換器將 來自上述數字溫度控制器的數字溫度控制指令轉變為模擬 信號,並將該模擬信號輸出給所述加熱器,以便產生適當 的熱量以保驻所述I M U的預定小型慣性測量組件的工作溫 度者。 1 2 5·如申請專利範圍第24項所述之一應用系統的核心的慣 性測量組件,其中,所述熱處理器年一步包含: 連接在上述熱感產生器和數位類比轉換器之間的第 一放大器電路,其中,從上述熱傳烕產生器得到電壓作 號,被輸入到第一放大器電路放大,並抑制電壓信號中的 °喿音,提南信號°喿音比’放大的電壓信號輸入到所述類比
    577975
    ---案號 90112463 六、申請專利範圍 /數位轉換器; 連接在所述數位/類比轉換器和加熱器之間第二放 器電路’用來放大從上述數位/類比轉換器而來的輸入 擬信號,給所述加熱器者。 、 26·如申請專利範圍第25項所述之一應用系統的核心的 性測量組件,其中,所述熱處理器進一步包含一個輸入貝/ 輸出介面電路連接於所述類比數位,換器和數字轉換 溫度控制器之間,其中,通過上述贏比,數位轉換器^樣、 ^述電壓信號,並數字化該採樣信號,然後,將該數字 號輸出給輸入/輸出介面電路,上述溫度控制器,使用來。 自所述輸入/輸出介面電路的類比/數位轉換器的數字溫 電壓信號,溫度標定係數以及預定的上述角速率產器:= 速產生器的工作溫度,來計算數字溫度控制指令,並將該° 數字溫度控制指令反饋上述給輸入/輸出介面電路,上述Λ 數位/類比轉換器將來自上述輸入/輸出介面電路的數字^ 度控制指令轉變為模擬信號,並將該模擬信號輸出給上= 加熱器,以便產生適當的熱量以保証所述小型慣性 件的預定的工作溫度者。 ' 27.如申請專利範圍第1項、或第2項|、或第4項、或第12 項、或第1 3項所述之一應用系統的核心的慣性測量組件, 其中,所述應用系統的核心的慣性測量組件布置在一各子 内的第-電路板、第二電路板、第三電路板和控制電: 板,其^,第一電路板與第三電路板相連,產生X轴角速 率敏感彳s號和Y轴加速度敏感信號給控制電路板,第二電
    577975 --塞藥90112463 敉年'> 月/孑曰 修不 六、申請專利範圍 "-- 路板與第二電路板相連,產生γ轴角速率敏感信號和X轴加 速度敏感信號给控制電路板,第三電路板與控制電路板相 連’產生Z軸角速率敏感信號和Z軸加速度敏感信號給控制 電路板,控制電路板通過第三電路板與第一電路板、第二 電路板相連’處理來自第一電路板、第二電路板、第三電 ^板的X、Y、z轴角速率敏感信號和$、Y、z軸加速度敏感 信號’以便產生數字化的角度增量p速度增量、位置、速 度、姿態和航向測量值者。 28·、如胃申請專利範圍第26項所述之一應用系統的核心的慣 性測量組件,其中,所述應用系統的核心的慣性測量組件 布置在一盒子内的第一電路板、第二電路板、第三電路板 和控制電路板,其中,第一電路板與第三電路板相連,產 軸角速率敏感彳g號和γ轴加速度敏感信號給控制電路 第二電路板與第三電路板相連,產生γ軸角速率敏感 信號和X軸加速度敏感信號給控制電路板,第三電路板與 ^制電路板相連,產生Z轴角速率敏感信號和z轴加速度敏 感信號給控制電路板,控制電路板導過第三電路板與第一 電路板、第二電路板相連,處理來自第一電路板、第二電 路板、、第三電路板的X、Y、Z轴角速率敏感信號和X、γ 2加速度敏感信號,以便產生數字化的角度增量、速度增 $、位置、速度、姿態和航向測量值者。 2 9 ·如胃申請專利範圍第2 7項所述之一應用系統的核心的慣 生測ϊ組件,其中,第一電路板、第二電路板、第三電路 反和控制電路板被布置到一正方體金屬盒子内,其中,第
    第80頁 577975
    案號 90112463 六、申請專利範圍 電路板、第二電路板被置於頂部和底部,第三電路板以 交方式與第一電路板、第二電路板,並被置於左侧和右 侧’以便形成角速率產生器和加速度產生器的三個敏感 轴’控制電路板被置於前侧或後側,並與第一電路板、第 二電路板、第三電路板相連者。 3 0 ·如申請專利範圍第2 8項所述之一應用系統的核心的慣 性測量組件,其中,第一電路板、第二電路板、第三電路 板和控制電路板被布置到一正方體金屬盒子内,其中,第 電路板、第二電路板被置於頂部和底部,第三電路板以 正交方式與第一電路板、第二電路板,並被置於左侧和右 侧’以便形成角速率產生器和加速度產生器的三個敏感 軸,控制電路板被置於前側或後側,並與第一電路板二第 二電路板、第三電路板相連者。 3 1 ·如申請專利範圍第27項所述之一應用系統的核心的慣 性測量組件,其中,第一電路板、第二電路板、第三電路 板和控制電路板可被布置到一扁的金屬盒子内,第三電路 板可以垂直方式置於扁的金屬盒子内,第—電路板了第二 電路板,以及控制電路板可被置於第三電路板兩侧者。一 32.如申請專利範圍第28項所述之一應用系統的核心的慣 性測量組件,其中,第一電路板、第二電路板、第三電路 板和控制電路板可被布置到一扁的金屬盒子内, 板可以垂直方式置於扁的金屬盒子内,第—電路 了 電路板’以及控制電路板可被置於第三電丄 一 ..^ i^扳兩側者。 33·如申請專利範圍第1項、或第2項、或笛j 及弟4項、或第1 2
    577975
    __棄跋 90112M 六、申請專利範圍 項、或第1 3項所述之一應用系統的核心的慣性測量組件, 其中,該角增量和速度增量產生器包含: 角度積分器和加速度積分器分別用來在預定的時間 段内積分X、Y、z軸角速率模擬電壓i信號和X、Y、z軸加速 度模擬電壓信號,以便積累X、Y、Z1轴角速率模擬電壓信 號和X、Y、Z轴加速度模擬電壓信號,形成未補償的原始 角增量和速度增量,其中,該積分操作是為了消除在X、 Y、Z軸角速率模擬電壓信號和X、Y、Z軸加速度模擬電壓 信號中的非直接正比於載體角速率和加速度的噪聲信號, 提高信號噪聲比,並消除在該X、Y、z軸角速率模擬電壓 信號和X、Y、z轴加速度模擬電壓信號中的高頻噪聲; 復位器產生角度復位電壓脈衝和速度復位電壓脈 衝’作為角度和速度的刻度,分別輸出給該角度積分器和 加速度積分器; 角增量和速度增量測量器使用i該角度復位電壓脈衝 和速度復位電壓脈衝,來測量該積^的X、γ、Z轴角速率 模擬電壓#號和X、Y、z轴加速度模擬電壓信號,獲得角 增量計數值和速度增量計數值,相應地作為角增量和速度 增量的數字量者。 34·、如申請專利範圍第33項所述之一應用系統的核心的慣 性測量組件’其中,該角增量和速度增量產生器進一步包 含: 一屏蔽器件,它用來覆蓋所有上述角速率產生器的 振動驅動電路,以便使角速率產生器的振動驅動電路免受
    577975
    皇號 901124M 六、申請專利範圍 ^ 角速率產生器的輸出信號的干擾; 一防護器件,它用來覆蓋 j 管腳和上述放大器的輸入管腳匕丄產生器的輪出 的接收量降到最低者。 便將不希望的電磁信號 35.如申請專利範圍第26項所述 角度積分器和加速度積分考、八X曰里生器包含: 段内積分X、Υ、Ζ軸角速率模播^ Α在預定的時間 神用迷手模擬電壓信號和X 便積累χ、γ、ζ轴角速率模擬電^4 量和速Λ, Λ擬電壓信號,形成未補償的乂 角增s和速度增董’其中’該積分操作 Υ、Ζ轴角速率模擬電壓信號和χ、γ、z 二 信號中的非直接正比於載體角速率令加轴速加度速= 提咼信號噪聲比,並消除在該X、γ:、ζ轴角速率模擬電壓 信號和X、Υ、Ζ轴加速度模擬電壓信號中的高頻噪聲; 復位器產生角度復位電壓脈衝和速度復位電壓脈 衝,作為角度和速度的刻度,分別輸出給該角度積分器和 加速度積分器; 角增量和速度增量測量器使用該角度復位電壓脈衝 和速度復位電壓脈衝,來測量該積累的X、γ、ζ軸角速率 模擬電壓信號和X、γ、Ζ軸加速度模擬電壓信號,獲得角 增量計數值和速度增量計數值,相應地作為角增量和速度 增量的數字量者。 3 6 ·如申請專利範圍第3 5項所述之一i應用系統的核心的慣 I 577975
    六、申請專利範圍 =測量組件,其中,該角增量和速$增量產生器進一步包 案號 90112463 一屏蔽器件,它用來覆蓋所有i上述角速率產生器的 ^動驅動電路,以便使角速率產生器的振動驅動電路免受 角速率產生器的輸出信號的干擾; ”-防護器件,它用來覆蓋上述角速率產生器的輸出 二腳和上述放大器的輸入管冑,以便將不希望的電磁信號 的接收量降到最低者。 37.如申請專利範圍第!項、或第2項、或第4項、或第12 項、或第13項所述之一應用系統的核心的慣性測量組件, 進一步包含包含一熱控制器件,以便將所述角速率產生 器,加速度產生器和角增量和速度增量產生器的工作溫度 保持在設定值,該熱控制器件進一步包含: 一熱敏感產生器,包含: 第一熱敏感產生單元,用來敏感X軸振動型角速率檢 測單元和Y軸加速度計的溫度; 第二熱敏感產生單元,用來敏感γ軸振動型角速率檢 測單元和X轴加速度計的溫度; 取 第三熱敏感產生單元,用來敏感z轴振動型角速率檢 測單元和Z軸加速度計的溫度; 取 一加熱器,包含: 第一加熱器,它與X軸振動型角速率檢測單元,γ轴 加速度計及第一前端電路相連,用來保持X轴振動型角速 率檢測單元,Y轴加速度計及第一前|端電路的預定的工作 mm 577975
    —一 宝號 90112463_日 六、申請專利範圍 、、田危 . 第二加熱器’它與Y轴振動型角速率檢測單元,χ 加速度計及第二前端電路相連’用來保持γ軸振動型 率檢測單元,X轴加速度計及第二前端電路的預定七 、、\i? lie · * Γ /jnL , 第三加熱器,它與Z軸振動型角速率檢測單元,z轴 加速度言I及第三前端電路相連,用來保持z軸振動型角= 率檢測單元,z軸加速度計及第三前端電路的預定的工作 溫度 ;
    熱處理器’包含參個連接在所述控制電路板上的 相同的熱控制電路和熱控制計算模組,其中, 每一熱控制電路進一步包含: m _第—放大器電路,它與相應的χ、Y、z軸熱敏感產生 早連,用來放大來自相應的乂、丫、2軸熱敏感產生單 疋的信號並壓縮其中的噪聲,提高信號噪聲比; 一個類比/數位轉換器,連接於放大器電路,用來採 ^ :度電壓乜號,並將採樣的溫度電壓信號數字化為數字 ^號’輸出給熱控制計算模組; ΛΑ ▲—、個數位/類比轉換器’用來將來自熱控制計算模組 的數字溫度指令,轉換為模擬信號; σ第一放大器電路’用來接收並放大來自數位/類比轉 擬信號,以便驅動相應的第一、〕、三加熱器和 閉σ >凰度控制回路者。 队如申請專利範圍第^、或第2項、或第4項、或第12
    577975 案號 901124M_ 六、申請專利範圍 員 或第1 3項所述之一應用糸統的核心的慣性測量組件, 其中’一支撐架和防衝擊安裝件用來減少對上述慣性測量 組t的振動和衝擊,支撐架直接固連在載體上,上述慣性 測$組件通過四個防衝擊安裝件與支撐架相連者。 39.如日申請專利範圍第26項所述之一應用系統的核心的慣 c牛’其中,一支撐架和防衝擊安裝件用來減 ^述丨貝性測量組件的振動和衝擊,支撐架直接固連在載體 連者十述慣性測量組件通過四個防衝擊安裝件與支樓架相 .:量',件專利Λ圍第29,所述之一1應用系統的核心的慣 里、、且件,其中,一支撐架和防銜擊安裝件 上述慣性測量矣件的4勤 ’ 子 上,卜、十、= 衝擊’支撐架直接固連在載體 連者。述慣性測$組件通過四個防衝擊安裝件與支撐架相 41.如申請專利範圍第3〇項所述之一 性測量組件,苴中,一*待加^ %、用糸統的核心的慣 上述慣性測i i # Μ # & ^ 一防衝擊安裝件用來減少對 上,上述衝擊,支撐架直接固連在載體 連者。 “&件通過四個防衝擊安裝件與支撲架相 ϊ ·測如專之:應用系統的核心的慣 上述慣性測量组件的振二m=:用來減少對 t,上述慣性測量組件通過=以=接固連在載體 連者。 、四個防衝擊安裝件與支撐架相 第86頁 577975 一 絛正____ 專利範圍第32項所述之一應用系…统的核心的慣 上述慣性測^其中,一支撐架和防衝擊安裝件用來減少對 上ϊΐί^組t的振動和衝擊,支揮架直接固連在載體 連者。’l貝'則篁組件通過四個防衝擊安裝件與支撐架相 4 4 ·如申睛專利範圍第3 6項所述之一 性測量組件,l中,,^ ^用糸統的核心的慣 上述慣性測量組件的振動 2件用來減>對 連者。里組件通過四個防衝擊安I件與支撲架相 45·如申請專利範圍第37項所述之一i應 性測量組件,彡中,-支撐架和防衝;安Vi的核心的慣 上述慣性測量組件的振動和衝擊,皮=裝件用來減少對 上,上述慣性測量組件通過四個防衝固連在載體 連者。 衝擎文裝件與支撐架相
TW090112463A 2000-07-25 2001-05-22 Core inertial measurement unit TW577975B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/624,366 US6522992B1 (en) 2000-05-24 2000-07-25 Core inertial measurement unit

Publications (1)

Publication Number Publication Date
TW577975B true TW577975B (en) 2004-03-01

Family

ID=32851231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090112463A TW577975B (en) 2000-07-25 2001-05-22 Core inertial measurement unit

Country Status (2)

Country Link
US (1) US6516283B2 (zh)
TW (1) TW577975B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102853833A (zh) * 2012-04-16 2013-01-02 哈尔滨工程大学 捷联惯性导航系统快速阻尼方法
TWI408372B (zh) * 2009-08-14 2013-09-11 Univ Chung Hua 應用無線射頻識別標籤技術之熱氣泡式加速儀及其製備方法
TWI458888B (zh) * 2009-05-18 2014-11-01 Univ Nat Changhua Education A power generation system that can supply electricity to a rotating member
CN115767948A (zh) * 2022-11-14 2023-03-07 北京自动化控制设备研究所 Mems惯性系统高密度低应力集成方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239949B2 (en) * 2003-02-26 2007-07-03 Ford Global Technologies, Llc Integrated sensing system
US6704619B1 (en) * 2003-05-24 2004-03-09 American Gnc Corporation Method and system for universal guidance and control of automated machines
EP1788397A4 (en) * 2004-09-07 2011-11-02 Vodafone Plc WATER POUCH FOR ULTRASONIC PROBE USED IN ULTRASONIC DIAGNOSTIC DEVICE
US7430460B2 (en) * 2005-03-23 2008-09-30 Price Ricardo A Method for determining roll rate gyro bias in an attitude heading reference system
SE528484C2 (sv) * 2005-04-11 2006-11-28 Advanced Inertial Measurement Kontrollsystem för fordon
US8996255B2 (en) * 2005-10-13 2015-03-31 Trw Vehicle Safety Systems Inc. Method and apparatus for providing a safing function in a restraining system
US8275544B1 (en) 2005-11-21 2012-09-25 Miltec Missiles & Space Magnetically stabilized forward observation platform
US7587277B1 (en) 2005-11-21 2009-09-08 Miltec Corporation Inertial/magnetic measurement device
JP4882912B2 (ja) * 2007-08-10 2012-02-22 日産自動車株式会社 可変圧縮比内燃機関
US9562788B1 (en) 2011-09-30 2017-02-07 Rockwell Collins, Inc. System and method for doppler aided navigation using weather radar
US9733349B1 (en) 2007-09-06 2017-08-15 Rockwell Collins, Inc. System for and method of radar data processing for low visibility landing applications
US9354633B1 (en) 2008-10-31 2016-05-31 Rockwell Collins, Inc. System and method for ground navigation
US9939526B2 (en) 2007-09-06 2018-04-10 Rockwell Collins, Inc. Display system and method using weather radar sensing
US7923623B1 (en) 2007-10-17 2011-04-12 David Beaty Electric instrument music control device with multi-axis position sensors
US9047850B1 (en) 2007-10-17 2015-06-02 David Wiley Beaty Electric instrument music control device with magnetic displacement sensors
WO2009108345A2 (en) 2008-02-27 2009-09-03 Ncomputing Inc. System and method for low bandwidth display information transport
US8338689B1 (en) 2008-10-17 2012-12-25 Telonics Pro Audio LLC Electric instrument music control device with multi-axis position sensors
US8519313B2 (en) * 2008-12-01 2013-08-27 Raytheon Company Projectile navigation enhancement method
TW201035581A (en) * 2009-03-27 2010-10-01 Ind Tech Res Inst Space detecting apparatus, vehicle and control method thereof
US8242423B2 (en) * 2009-06-02 2012-08-14 Raytheon Company Missile navigation method
US8981904B2 (en) * 2009-11-06 2015-03-17 Xsens Holding B.V. Compression of IMU data for transmission of AP
US8558150B2 (en) * 2009-12-01 2013-10-15 Honeywell International Inc. Inertial measurement unit (IMU) multi-point thermal control
FR2961305B1 (fr) 2010-06-14 2012-06-22 Eurocopter France Dispositif de mesure inertielle ameliore et aeronef comportant un tel dispositif
US8655619B1 (en) 2010-07-27 2014-02-18 Raytheon Company System, method, and software for estimating a peak acceleration of an optical system
US8907987B2 (en) 2010-10-20 2014-12-09 Ncomputing Inc. System and method for downsizing video data for memory bandwidth optimization
US8896612B2 (en) 2010-11-16 2014-11-25 Ncomputing Inc. System and method for on-the-fly key color generation
US8749566B2 (en) 2010-11-16 2014-06-10 Ncomputing Inc. System and method for an optimized on-the-fly table creation algorithm
JP5796315B2 (ja) * 2011-03-18 2015-10-21 マツダ株式会社 車両用運転支援装置
US8909471B1 (en) * 2011-09-30 2014-12-09 Rockwell Collins, Inc. Voting system and method using doppler aided navigation
US9262932B1 (en) 2013-04-05 2016-02-16 Rockwell Collins, Inc. Extended runway centerline systems and methods
US9317891B2 (en) 2013-06-07 2016-04-19 Ncomputing, Inc. Systems and methods for hardware-accelerated key color extraction
CN103267527A (zh) * 2013-06-08 2013-08-28 重庆绿色智能技术研究院 一种实现杆塔稳固性监测和预警的系统及方法
US10928510B1 (en) 2014-09-10 2021-02-23 Rockwell Collins, Inc. System for and method of image processing for low visibility landing applications
SE538872C2 (en) * 2015-05-04 2017-01-17 Lkab Wassara Ab Gyro-based surveying tool and method for surveying
WO2016210429A1 (en) * 2015-06-26 2016-12-29 Maxim Integrated Products, Inc. Inertial mems sensor thermal management systems and methods
US10705201B1 (en) 2015-08-31 2020-07-07 Rockwell Collins, Inc. Radar beam sharpening system and method
US9707961B1 (en) * 2016-01-29 2017-07-18 Ford Global Technologies, Llc Tracking objects within a dynamic environment for improved localization
US10228460B1 (en) 2016-05-26 2019-03-12 Rockwell Collins, Inc. Weather radar enabled low visibility operation system and method
US9791279B1 (en) * 2016-06-30 2017-10-17 U-Blox Ag System for and method of determining angular position of a vehicle
US10353068B1 (en) 2016-07-28 2019-07-16 Rockwell Collins, Inc. Weather radar enabled offshore operation system and method
US11535328B2 (en) * 2017-03-30 2022-12-27 Mitsubishi Heavy Industries Machinery Systems, Ltd. Measurement device and program
GB201714978D0 (en) * 2017-09-18 2017-11-01 Trw Ltd Detecting misalignment
CN107741240B (zh) * 2017-10-11 2020-11-24 成都国卫通信技术有限公司 一种适用于动中通的组合惯导系统自适应初始对准方法
CN108426559B (zh) * 2018-02-27 2020-07-24 北京环境特性研究所 一种天线姿态检测装置及方法
KR102598956B1 (ko) * 2018-10-15 2023-11-07 현대자동차주식회사 차량 승객 감지 장치, 그를 포함한 시스템 및 그 방법
JP2023042084A (ja) * 2021-09-14 2023-03-27 セイコーエプソン株式会社 慣性センサーモジュール
JP2023042129A (ja) * 2021-09-14 2023-03-27 セイコーエプソン株式会社 慣性センサーモジュール
JP2023050622A (ja) * 2021-09-30 2023-04-11 セイコーエプソン株式会社 慣性センサーモジュール
CN218628364U (zh) * 2022-07-28 2023-03-14 亿航智能设备(广州)有限公司 一种三轴机械云台的惯性测量装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW410321B (en) * 1998-11-30 2000-11-01 Holux Technology Inc Customized voice navigation device
US6163021A (en) * 1998-12-15 2000-12-19 Rockwell Collins, Inc. Navigation system for spinning projectiles
US6223105B1 (en) * 1999-10-14 2001-04-24 Seagull Technology, Inc. System for determining the orientation in space of a moving body relative to the earth
DE19950247A1 (de) * 1999-10-18 2001-05-17 Daimler Chrysler Ag Regelungsanordnung und Regelungsverfahren für Sstelliten

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458888B (zh) * 2009-05-18 2014-11-01 Univ Nat Changhua Education A power generation system that can supply electricity to a rotating member
TWI408372B (zh) * 2009-08-14 2013-09-11 Univ Chung Hua 應用無線射頻識別標籤技術之熱氣泡式加速儀及其製備方法
US8580127B2 (en) 2009-08-14 2013-11-12 Chung Hua University Method of manufacturing RFID based thermal bubble type accelerometer
CN102853833A (zh) * 2012-04-16 2013-01-02 哈尔滨工程大学 捷联惯性导航系统快速阻尼方法
CN102853833B (zh) * 2012-04-16 2014-12-17 哈尔滨工程大学 捷联惯性导航系统快速阻尼方法
CN115767948A (zh) * 2022-11-14 2023-03-07 北京自动化控制设备研究所 Mems惯性系统高密度低应力集成方法
CN115767948B (zh) * 2022-11-14 2024-04-02 北京自动化控制设备研究所 Mems惯性系统高密度低应力集成方法

Also Published As

Publication number Publication date
US6516283B2 (en) 2003-02-04
US20020183958A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
TW577975B (en) Core inertial measurement unit
TW468035B (en) Micro inertial measurement unit
Groves Navigation using inertial sensors [Tutorial]
Curey et al. Proposed IEEE inertial systems terminology standard and other inertial sensor standards
CN113091709B (zh) 一种新型gnss接收机倾斜测量方法
US6522992B1 (en) Core inertial measurement unit
CN111678538B (zh) 一种基于速度匹配的动态水平仪误差补偿方法
US6494093B2 (en) Method of measuring motion
US6738714B2 (en) Vehicle self-carried positioning method and system thereof
US6473713B1 (en) Processing method for motion measurement
CA1141008A (en) Autonomous navigation system
US2914763A (en) Doppler-inertial navigation data system
CN110017849A (zh) 一种基于gnss接收机和imu传感器的测绘一体机的倾斜测量方法
CN201955092U (zh) 一种基于地磁辅助的平台式惯性导航装置
US6427131B1 (en) Processing method for motion measurement
Johnson et al. Tuning fork MEMS gyroscope for precision northfinding
CN105865453A (zh) 一种位置传感器和姿态传感器的导航系统及其融合方法
Dong MEMS inertial navigation systems for aircraft
Shkel et al. Pedestrian inertial navigation with self-contained aiding
CN104655123A (zh) 一种利用光纤陀螺测定地球自转角速度的方法
Bulz et al. Compact standalone north-finding device based on MEMS gyroscope and maytagging
TW498169B (en) Interruption-free hand-held positioning method and system thereof
TW486576B (en) Vehicle self-carried positioning method and system thereof
TW593981B (en) Micro integrated global positioning system/inertial measurement unit system
JPS62106385A (ja) 乗物の運行角度を計算するためのドップラ慣性ループ

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees