TW486576B - Vehicle self-carried positioning method and system thereof - Google Patents

Vehicle self-carried positioning method and system thereof Download PDF

Info

Publication number
TW486576B
TW486576B TW89126514A TW89126514A TW486576B TW 486576 B TW486576 B TW 486576B TW 89126514 A TW89126514 A TW 89126514A TW 89126514 A TW89126514 A TW 89126514A TW 486576 B TW486576 B TW 486576B
Authority
TW
Taiwan
Prior art keywords
carrier
speed
angular
increment
generator
Prior art date
Application number
TW89126514A
Other languages
Chinese (zh)
Inventor
Ching-Fang Lin
Hiram Mccall
Original Assignee
American Gnc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/704,211 external-priority patent/US6477465B1/en
Application filed by American Gnc Corp filed Critical American Gnc Corp
Application granted granted Critical
Publication of TW486576B publication Critical patent/TW486576B/en

Links

Landscapes

  • Navigation (AREA)

Abstract

A vehicle self-carried positioning system, carried in a vehicle, includes an inertial measurement unit, a north finder, a velocity producer, a navigation processor, a wireless communication device, and display device and map database. Output signals of the inertial measurement unit, the velocity producer, and the north finder are processed to obtain highly accurate position measurements of a vehicle on land and in water, and the vehicle position information can be exchanged with other users through the wireless communication device, and the location and surrounding information can be displayed on the display device by accessing a map database with the vehicle position information.

Description

五、發明說明(1) 本申請書為正式申請書,其預先申請號 為:60/167,830 ’申請日期為:1999年η月29日。 本發明係關於一種定位方法與系統,更確切的講,係一種 載體自攜式定位方法與系統,特別是用於陸地和水上載 體,其可獲得載體在陸地和水上的高精度位置測量,通過 無線,信裝置與其他用戶交換載體位置信息,並且通過以 位置信息訪問地圖數據庫,借助於顯示裝置可提供地點和 周圍壞境信息顯示。 目前的載體導航器依靠全球定位系統(GPS,G1〇bal Positioning Systeffl) eGPS 是一衛星導航系統, 擁有,布置及操縱,但為全世界商業用戶開放。 、疋,GPS易於.被阻塞和遮擋,特別是在陸地上。因 此GPS接故機常常不能提供連續的定位芦自。V. Description of the invention (1) This application is a formal application, and its pre-application number is: 60 / 167,830 ′ The application date is: 29th, 1999. The invention relates to a positioning method and system, more specifically, to a carrier self-contained positioning method and system, especially for land and water carriers. It can obtain high-precision position measurement of the carrier on land and water. The wireless, letter device exchanges carrier location information with other users, and by accessing the map database with the location information, the display device can provide location and surrounding environment information display with the help of the display device. The current carrier navigator relies on Global Positioning System (GPS, G10bal Positioning Systeffl). EGPS is a satellite navigation system that is owned, arranged and operated, but is open to commercial users worldwide. Alas, GPS is easy. It is blocked and obstructed, especially on land. Therefore, GPS receivers often cannot provide continuous positioning.

Inertlal N-^atlon Stsye.) 蚨而 航系統,其不需要接收任何外部高頻信號。 ::二導航系統的成本,體,,功耗,和漂移使 其不犯用於商業載體導航用途。 功耗所為商業載體的運行開發一種成本,體積, 二適的定位系統,其可用於GPS信號不能 境。1" 如隧道,森林和市區,以及高電子對抗環 統,用要目的是提供一載體自攜式定位方法與系 土和水上確定高精度的位置信息,比如在沒Inertlal N- ^ atlon Stsye.) The system does not need to receive any external high-frequency signals. :: The cost, volume, power consumption, and drift of the second navigation system make it not used for commercial carrier navigation purposes. Power Consumption develops a cost, volume, and two suitable positioning system for the operation of commercial carriers, which can be used in GPS signal environments. 1 " Such as tunnels, forests and urban areas, and high-electron countermeasures systems, the purpose is to provide a carrier self-contained positioning method and determine high-precision position information on the soil and water, such as

第5頁 五、發明說明(2) . " :--- 有GPS或雷達修正時糈度優於百分之一的運動距離,直中 ,性測量装 f(IMU,lnertial Measurement Unit) / 速度 生f,和尋北器的輸出信號被處理以獲得載體在陸地和 水上高精度的位置信息。 ^ 本發明的另一目的是提供一載體自攜式定位系統,其 /谷合從IMU,速度產生器,和尋北器來的信息,以軟件和 硬件模塊,達到高精度自主導航解,包括以下能力: (1) 自主導航。 (2) 自主疋位精度’在沒有外部高頻信號時,優於百分 之一的運動距離。 (3 )低成本,低功耗,重量輕。 (4) 獨特的高性能卡爾曼濾波器。通過溶合從微核 IMU(coremocroTM IMU),磁航向傳感器,里程計,和速度 什來的信息,它去除了從低成本的微核丨MU所得到的自由 慣性定位解所固有的漂移。 (5) 對磁傳感器,里程計,和速度計輸出噪聲的平滑。 (6) 創新的狀態變量選擇和卡爾曼濾波器(£&1111311 F i 11 e r)測量設計,包括相對位置修正,航向修正,和零 速修正。 (7 )自主的多載體停止測試和相關的零速修正。載體不 要求進行零速修正,但如果載體自己停止,系統可自主地 利用這個好處。 (8)先進的IMU 基於MEMS(Micr〇electromechanical Systems)和ASIC(Applicaltion Specifec IntegratedPage 5 5. Description of the invention (2). &Quot;: --- With GPS or radar correction, the degree of movement is better than 1% of the distance, straight and neutral measurement equipment f (IMU, lnertial Measurement Unit) The velocity is f, and the output signal of the north seeker is processed to obtain high-precision position information of the carrier on land and water. ^ Another object of the present invention is to provide a carrier-based self-contained positioning system. Its information from IMU, speed generator, and north seeker uses software and hardware modules to achieve high-precision autonomous navigation solutions, including the following: Capabilities: (1) Autonomous navigation. (2) Autonomous positioning accuracy 'is better than one-hundredth of the movement distance when there is no external high-frequency signal. (3) Low cost, low power consumption, and light weight. (4) Unique high-performance Kalman filter. By fusing information from the micro-core IMU (coremocroTM IMU), magnetic heading sensor, odometer, and speed, it removes the inherent drift of the free inertial positioning solution obtained from the low-cost micro-core MU. (5) Smooth the output noise of magnetic sensors, odometers, and speedometers. (6) Innovative state variable selection and Kalman filter (£ & 1111311 F i 11 e r) measurement design, including relative position correction, heading correction, and zero speed correction. (7) Autonomous multi-carrier stop test and related zero speed correction. The carrier does not require zero speed correction, but if the carrier stops itself, the system can autonomously take advantage of this benefit. (8) Advanced IMU is based on MEMS (Micro Electromechanical Systems) and ASIC (Applicaltion Specifec Integrated

mm

486576 五、發明說明(3) C i r c u i t)的微核IM U :微小化長寬高和輕重量,·高性能和 低成本;低功耗;在可靠性方面的特別改進。 (9)地圖數據庫和軟件模塊,利用當前位置解,取得 周圍環境信息。 (1 0 )顯示裝置和軟件模塊顯不用戶位置和周圍環境# 本發明之載體自攜式定位方法與系統典型應用包括气 車,鐵道車輛,微型陸地車,機器人,無人陸^車匕軍^ 陸地車,和水中載體。 本發明的又一目的是提供一載體自攜式定位系統和方 法’其可通過無線通信裝置與其他用戶交.換載體位置信 本發明的又一目的是提供 法,其可通過以位置信息訪問 置提供地點和周圍環境信息。 本發明提供一載體自攜式 於陸地和水上載體,其中慣性 尋北器的的輸出,被加以處理 高精度的位置測量。 一載體自攜式定位系統和方 地圖數據庫,借助於顯示裝 疋位方法和系統,特別針對 測量裝置,速度產生器,和 ’以獲得載體在陸地和水上 MEMS技術對迅速發展使得製造低成本,輕重量,小 Ϊ子t Ϊ Ϊ ί Ϊ螺和加速度計成為可能。MEMS是微型機械 及到:堂或微型集成電子機械裝置。刪裝置涉 MEMS包含微電ίϊϊ術生成可控的機械和運動結構。 予和微機械加工集成的概念。MEMS裝置成 486576 五、發明說明(4) 氣袋打開加速度計,和 功的例子有,喷墨打印頭,汽車外 微塑機器人。 < 微電子技術,在矽片上製作 的技術。微機械加工利用集成電兒于線路,是一種很成熟 技術,在石夕片上製作微小的傳所發展起來的工藝 的體積縮小了好幾個數昔 執行器。除了傳感器 傳統的軍用和民用ϋ = ϊ系統。這-裝置不僅使得 在沒有微小廉價的慣性不;, 與控制系統在成本,體2二r生器件為導引,導航 進/ 體積,和可罪性方面提供了巨大的改 定位圖:依照本發明優選實現方案的載體自攜式 知::Γ量組件1,一尋北器2,-導航處理 ,和一速度產生器6,安裝於載體系。 慣性測量組件1,置於載體,以測量載體運動,對應 、體運動產生數字角增量和速度增量信號。尋北器2,置 於載體,以產生載體的航向測量。速度產生器6,置於載 體’以產生載體系當前轴的速度數據。 導航處理器3 ’連接於慣性測量組件1,尋北器2,和 速f產生器6,以接收數字角增量和速度增量信號,航向 測i,和載體系當前轴的速度數據,送入一實時軟件,复 執行以下任務: ” (1)從數字角增量和速度增量信號得到的IMU位置,與486576 V. Description of the invention (3) C i r c u i t) Micro core IM U: Miniaturized length, width, height and light weight, high performance and low cost; low power consumption; special improvements in reliability. (9) The map database and software module use the current location solution to obtain the surrounding environment information. (1 0) Display device and software module display user location and surrounding environment # Typical application of the carrier self-carrying positioning method and system of the present invention include gas cars, railway vehicles, miniature land vehicles, robots, unmanned land ^ vehicle dagger army ^ Land vehicles, and underwater carriers. Yet another object of the present invention is to provide a carrier self-contained positioning system and method 'which can be exchanged with other users through wireless communication devices. Changing the carrier location letter Another object of the present invention is to provide a method which can be accessed by using location information The location provides location and surrounding information. The present invention provides a carrier self-carrying on land and water carrier, in which the output of the inertial north finder is processed with high-precision position measurement. A carrier self-contained positioning system and a square map database, with the aid of display mounting methods and systems, especially for measuring devices, speed generators, and 'getting carriers on land and aquatic MEMS technologies have made rapid development of low cost, Light weight, small Ϊ t ί ί Ϊ screw and accelerometer become possible. MEMS are micromechanics and to: Tang or micro integrated electromechanical devices. Deletion device involves MEMS including microelectronics to generate controllable mechanical and moving structures. I and the concept of micromachining integration. The MEMS device is 486576. V. Description of the invention (4) The airbag opens the accelerometer, and the examples are, inkjet print head, micro plastic robot outside the car. < Microelectronic technology, a technology fabricated on silicon. Micromachining uses integrated electrical circuits in the circuit. It is a very mature technology. The size of the process developed by making tiny passers-by on Shixi tablets has reduced several previous actuators. In addition to sensors, traditional military and civilian ϋ = ϊ systems. This-device not only makes it possible to have no small and cheap inertia; and the control system provides a huge map in terms of cost, volume, and navigation of the device / guide, volume, and guilt: according to this The carrier of the preferred implementation of the invention is self-contained: Γ quantity module 1, a north seeker 2, a navigation process, and a speed generator 6, installed on the carrier system. The inertial measurement component 1 is placed on the carrier to measure the motion of the carrier, and generates digital angular increment and velocity increment signals corresponding to the body motion. The north finder 2 is placed on the carrier to generate a heading measurement of the carrier. The speed generator 6 is placed on the carrier 'to generate speed data of the current axis of the carrier system. The navigation processor 3 'is connected to the inertial measurement unit 1, the north seeker 2, and the speed f generator 6 to receive digital angular increment and speed increment signals, the heading i, and the speed data of the current axis of the carrier system. Into a real-time software, perform the following tasks: ”(1) The IMU position obtained from the digital angle increment and speed increment signals, and

第8頁 486576 五、發明說明(5) 從航向測量和載體系當前軸的速度數據得到的位置測量進 行比較,並且 (Π )如果位置差別大於一預先定義的標量,則反饋位 置差別以修正I MU位置,以輸出正確的IMU位置。 本發明的申請者發明和開發了 MEMS角速度傳感器和MEMS IMU,包括用於測量角速度的微機電系統 (MicroElectroMechanical System for Measuring Angular Rate),運動測量的處理方法(processing Method for Motion Meas urement),應用微機電系統技 術的角速率產生器(Angular Rate Producer with MicroElectroMechanical System Technology),微型慣 性測 ϊ 裝置(Micro Inertial Measurement Unit),微核 IMU(coremicroTM IMU)。 微核IMU可被優先選擇用在自攜式定位系統,作為慣 性測量裝置I MU 1。然而,並不局限於應用微核I Mu的結 構。任何具有這樣性能指標的jΜϋ均可用於本發明的系統 中。 然而,如杲把純傳統的慣性導航方法用於基於MEMS 的I MU包括微核I Μϋ,位置的漂移很快,以至於無法使用。 在本發明的系統中,微核IMU作為定位系統的核心,在其 周圍建成一個慣性導航系統INS。為了補償INS的誤差,系 統集成了多個導航傳感器。尋北器2用於測量載體的航 向。速度產生器6的優先選擇為一里程計或流速計。里程 計用於測量相對於地面的相對速度,以獲得載體在陸地上Page 8 486576 V. Description of the invention (5) The position measurement obtained from the heading measurement and the speed data of the current axis of the carrier system is compared, and (Π) if the position difference is greater than a predefined scalar, the position difference is fed back to correct I MU position to output the correct IMU position. The applicant of the present invention has invented and developed a MEMS angular velocity sensor and a MEMS IMU, including a microelectromechanical system for measuring angular velocity (MicroElectroMechanical System for Measuring Angular Rate), a processing method for motion measurement (Process Method for Motion Meas urement), Angular Rate Producer with MicroElectroMechanical System Technology, Micro Inertial Measurement Unit, core microTM IMU. The micro-core IMU can be preferentially used in a self-contained positioning system as the inertial measurement device I MU 1. However, the structure is not limited to the application of the micronucleus I Mu. Any jMϋ having such a performance index can be used in the system of the present invention. However, if you use purely traditional inertial navigation methods for MEMS-based I MUs including micro-kernel I MUs, the position drifts so quickly that they are unusable. In the system of the present invention, the micro-kernel IMU serves as the core of the positioning system, and an inertial navigation system INS is built around it. To compensate for INS errors, the system integrates multiple navigation sensors. Northfinder 2 is used to measure the heading of the carrier. The speed generator 6 is preferably selected as an odometer or an anemometer. Odometer is used to measure the relative speed with respect to the ground to get the carrier on land

486576 五、發明說明(6) · ·· 的運動距離。當載體在水上時,、用流速計測量水速,以輔 助IMS。零速修正方法被用來校正INS誤差。 優選的尋北器2可是一個磁傳感器,例如磁通閥,敏 感地球磁場以測里載體的航向角。 速度產生器6進一步包括一里程計6 1,用於測量相對 地面的相對連度當載體在陸地上時,以及一流速計6 2,用 於測量相對水的速度,當載體在水上時。 參照第四圖’優選的在導航處理器3上運行的實時 軟件包含以下模塊: (5· 1) —INS汁算模塊31,用從iMUl來的數字角增量和 速度增量信號產生慣性定位測量; (5· 2) —磁傳感器處理模塊32,以產生航向角·, (5.3) —里程計處理模塊33 ,用以為卡爾曼濾波器產 生相對位置誤差測量; (5.4) —流速計處理模塊34 用以為卡爾曼濾波器產 生相對位置誤差測量;以及 、、U.j) 一集成卡爾曼濾波器35,用以通過進行卡爾曼 濾波計算的方式,估計慣性定位測量誤差,以校正性 位測量誤差。 為了進一步提高本發明載體自攜式定位系統的性能, 八進一步與—個無線通信裝置4相連,用以與其他用戶交 換所獲得的位置信息。、/ 為了顯示本發明載體自攜式定位系統的位置信息,一 地圖數據庫5和—顯示裝置7被進一步加入載體自攜式定位 486576 五、發明說明(7) 〜 糸統’用以在地圖上顯不載體的位置,以及通過用位置作 息存取地圖數據庫以獲得周圍環境信息。 ° IMU 1和相關的INS計算模塊31是陸地和水上導航器的 核心.。IN S計异模塊3 1進一步包含一傳感器補償模塊3 11 : 以校正數字角增量和速度增量信號的誤差,以及一慣性導 航算法模塊322以計算INS位置,速度,和姿態。 第五圖顯示了慣性導航算法模塊322。雖然INS提供了 一種自主式,無輻射,確定的,三維導航手段,短時精確 的位置#息’由於沒有補償的陀螺和加速度計誤差,特別 是低精度捷聯I NS系統,其表現出無界的位置誤差。必須 提供外部輔助信息以提高系統長期精度。在本發明中多導 航傳感器被用來辅助核心INS。磁通閥輔助用於航向更 新。里程計’流速計,和零速修正被用來抑制I N S誤差的 增長。基於所建立的INS誤差模型和其他器件誤差模型, 構造一個組合卡爾曼濾波器來估計和補償INS誤差和傳感 器誤差。本發明的組合系統被用來確定用戶在陸地和水上 的位置。 如第三圖所示本發明載體自攜式定位系統方塊圖,關 鍵技術之一是在系統算法中應用自動零速修正技術,極大 ,減小積累導航誤差。慣性導航系統I NS,其為一位置推 算系統,其位置誤差以第一圖A所示的模式隨時間增加。 零速修正技術利甩附加的零速信息,當用戶停止時,復位 導钪器的速度測量。週期性的零速修正復位導致如第一圖 β所示的誤差模式。 誤 時 有了零速修正禮彳 計和補償,慣性導計和流速計輔助,擴展 導航誤差模式由第^差二增長極大的減小。它, 攜式夂伋方法,在圖^點線所示。本發明載體自 流和漂移’保持了‘於:、上導航期@,有效地補償了水 第六圖是—方掩固刀之—運動距離的導航精度。 3;以感器檢測地球磁其及處理模塊 L旎仏息,用於獲得磁北。爾度和方向,並轉換其為電 為了 ^ 強洚-k又 磁北’地球的磁場測景c/ q 1丨π ΛΑ 匕軟鐵和硬鐵變換陣加以補Ϊ里必須用測付的磁場 栽體上的鐵質金屬隨著 另外,一此穿晉、 ’誤導磁羅盤的讀數。486576 V. Description of invention (6) · · · · Distance of movement. When the carrier is on water, use a flow meter to measure the water speed to assist the IMS. The zero speed correction method is used to correct INS errors. The preferred north finder 2 may be a magnetic sensor, such as a magnetic flux valve, which is sensitive to the earth's magnetic field to measure the heading angle of the carrier. The speed generator 6 further includes an odometer 61 for measuring the relative connectivity with respect to the ground when the carrier is on land, and a tachymeter 62 for measuring the speed of relative water when the carrier is on water. Referring to the fourth figure, the preferred real-time software running on the navigation processor 3 includes the following modules: (5.1) —INS Judgment Module 31, which generates inertial positioning using digital angular increment and velocity increment signals from iMU1 Measurement; (5 · 2) — magnetic sensor processing module 32 to generate heading angle, (5.3) — odometer processing module 33 to generate relative position error measurement for Kalman filter; (5.4) — flowmeter processing module 34 is used to generate relative position error measurement for the Kalman filter; and Uj) an integrated Kalman filter 35 is used to estimate the inertial positioning measurement error by performing a Kalman filter calculation to correct the bit measurement error. In order to further improve the performance of the carrier self-contained positioning system of the present invention, Ba is further connected to a wireless communication device 4 to exchange the obtained position information with other users. In order to display the position information of the carrier self-contained positioning system of the present invention, a map database 5 and—the display device 7 is further added to the carrier self-contained positioning 486576. 5. Description of the invention (7) ~ 糸 同 'used on the map Display the location of the carrier, and access the map database by using the location to obtain information about the surrounding environment. ° IMU 1 and associated INS calculation module 31 are the core of land and water navigators. The IN S differentiating module 31 further includes a sensor compensation module 3 11 to correct the errors of the digital angular increment and velocity increment signals, and an inertial navigation algorithm module 322 to calculate the INS position, velocity, and attitude. The fifth figure shows the inertial navigation algorithm module 322. Although INS provides an autonomous, radiation-free, deterministic, three-dimensional navigation means, short-term accurate position information. Due to the uncompensated gyro and accelerometer errors, especially the low-precision strapdown I NS system, it shows unbounded Position error. External auxiliary information must be provided to improve the long-term accuracy of the system. Multiple navigation sensors are used in the present invention to assist the core INS. Flux valve assists for heading updates. The odometer's flow meter, and zero speed correction are used to suppress the increase in the I N S error. Based on the established INS error model and other device error models, a combined Kalman filter is constructed to estimate and compensate the INS error and the sensor error. The combined system of the present invention is used to determine the user's location on land and water. As shown in the third figure, the block diagram of the carrier's self-contained positioning system of the present invention. One of the key technologies is to apply the automatic zero speed correction technology to the system algorithm, which greatly reduces the accumulated navigation error. The inertial navigation system I NS is a position estimation system, and its position error increases with time in the pattern shown in the first figure A. Zero speed correction technology uses additional zero speed information to reset the speed measurement of the guide when the user stops. The periodic zero speed correction reset results in an error pattern as shown in the first figure β. Time-of-flight correction With zero speed correction and compensation, inertial guide and flowmeter assisted, the extended navigation error mode is greatly reduced from the second difference. It is a portable pumping method, as shown in the dotted line in FIG. The carrier self-flow and drift of the present invention maintains' Yu :, upper navigation period @, which effectively compensates for water. The sixth figure is the navigation accuracy of the square cover knife-moving distance. 3; Use the sensor to detect the magnetic field of the earth and the processing module L information to obtain magnetic north. Degrees and directions, and convert them to electricity in order to ^ strong 洚 -k and magnetic north 'Earth's magnetic field survey c / q 1 丨 π ΛΑ d soft iron and hard iron transformation matrix to supplement the magnetic field The body's ferrous metal goes through, again and again, 'misleading the readings of the magnetic compass.

有的磁場:JC軟鐵扭曲。軟鐵可誤導或放大已 1 便仵校正特別困難。 U 第七圖描述了里藉斗Θ甘老 同步器測量善“ ί 處理模塊33。里程計用-個 以!;:電麼信號。解調這-信號,低= 號。ϋ:模:ίί一個採樣週期内的距離增量的模擬信心 機。號被進—步轉換為數字信號給導航計算 %該庄忍到,測量到的距離增量為表示 系,而不是導航坐標系。 戰篮機徑 了流速計信號及其處理模塊34。流速計的 '疋一模擬k號。一低通濾波器被用來抑制噪聲和用作 二混疊效應濾波器。一個AD轉換·器被用來把流速計信號從 、擬轉換為數字信號並輸入到處理計算機。數字流速計信Some magnetic fields: JC soft iron twisted. Soft iron can be misleading or magnified. Correction is particularly difficult. U The seventh picture depicts the use of the Θ Gan Lao synchronizer to measure good "ί processing module 33. The odometer uses a signal!;: Electric signal. Demodulate this-signal, low = sign. The analog confidence machine for the distance increment in a sampling period. The number is further converted into a digital signal for navigation calculation. The measured distance increment is a representation system, not a navigation coordinate system. The flowmeter signal and its processing module 34 are used. The flowmeter's analog k number is used. A low-pass filter is used to suppress noise and used as a second aliasing effect filter. An AD converter is used to convert The tachometer signal is converted from and to be converted into a digital signal and input to the processing computer.

486^76 —----- 五、發明說明(9) 號接2破級合以獲得距離增量信號。 模塊第慣理模塊31進-步包含傳感器補償 ^㈤性導航算法模塊322。 垂直=螺和加速度計的安裝不是準確地處於三個互相 必須加^正在㈣慣性導航算法模塊322之前,™數據 速;株目前EMSIMU是一低精度的微機械石夕陀螺與加 ==因為屬傳感器對溫度和加速度很敏感,在 傳感器補乜模塊的設計中構造了一組特殊的模塊。 EMES陀螺簡化的誤差模型表示為·· ^misaiign ^ no scaie^Sg 這一 MEMS I MU誤差補償模型解釋如下。 (1)穩定性誤差~,七也表示為漂移。對⑽託陀螺穩定 性誤差來說時間常數很大,這一效應建模為一常值零偏。 (2 )不對準誤差Ί不對準誤差是器件敏感轴的實際 方向和該轴指定方向之間的偏差。這是一個常值角誤差, 通常在安裝時通過準確的裝配和校正技術,可使這一誤差 很小。 (3)不垂直誤差^。這一誤差指的*MEMS IMU本身 組裝的不精確性。1 MU由三個微型陀螺組成,其應該被安 裝於三個理想的互相垂直的軸向。當一個陀螺的輸入軸傾486 ^ 76 —----- V. Description of the invention (9) No. 2 is connected to break the cascade to obtain the incremental distance signal. The module-first conventional module 31 further includes a sensor compensation algorithm 322 for navigation. The installation of the vertical screw and the accelerometer is not exactly in the three must be added to each other. Before the inertial navigation algorithm module 322, the data speed; the current EMSIMU is a low-precision micromechanical stone gyro with the addition == The sensor is very sensitive to temperature and acceleration. A special module is constructed in the design of the sensor compensation module. The simplified error model of the EMES gyro is expressed as ... ^ misaiign ^ no scaie ^ Sg This MEMS I MU error compensation model is explained below. (1) Stability error ~, seven is also expressed as drift. The time constant is large for gyro stability errors, and this effect is modeled as a constant zero bias. (2) Misalignment error: Misalignment error is the deviation between the actual direction of the sensitive axis of the device and the specified direction of the axis. This is a constant angle error, which is usually made small by accurate assembly and correction techniques during installation. (3) Non-vertical error ^. This error refers to the inaccuracy of the * MEMS IMU itself. The 1 MU consists of three micro-gyros, which should be installed in three ideal axes that are perpendicular to each other. When the input axis of a gyro tilts

486576 五、發明說明(ίο) __ 向於由其w兩個陀螺的輸4 直誤差。該不垂直陀螺合 =的+面時,產生了不垂 分量。 Ί、,關於其他兩値轴的角速度 (4 )刻度係數誤差丨。— 的真實角速率的百分比來許瞀 条差以MEMS陀螺檢測到 速度幅值上,產生一個與測:直2度係數誤差在測得的角 刻度係數誤差在大角速率時二塞=角速率成比例的誤差。 ⑸重力敏感誤差t陀螺榦生Λ著的導航誤差。 作用而產生的輸出變化稱為重力敏出由二加速度對器件的 體機動中產生正比於比力大差。這個誤差在載 慣性加速度減去重力加速度。《率零偏誤差。比力等於 同中(6)作隨Λ游走刪 輸出Λθ ί 角速率的積分器。實際的傳感器 於在刀陀螺輸出中的嗓聲,產生-個更平滑的信 ί處= 誤差範圍内隨機游動。角隨機游走由補 1貝處理過程估計。 溫度敏感誤差^⑺· MEMS陀螺對溫度的變化很敏 ^匕甚至可以被看作一個好的溫度傳感器。INS中的導 法必須除去溫度引起的誤差。因此在INu誤差處理中 ^們必須提供一個溫度項,其在相同運行中可根據溫度變 化產生誤差數據。 類似地,MEM加速度計的誤差補償表示為:486576 Fifth, the invention description (ίο) __ To the two gyroscopes by its w 4 straight error. When the non-vertical gyro is connected to the + plane, a non-vertical component is generated. Ί, about the angular velocity (4) scale coefficient error of the other two Z axes. — The percentage of the true angular rate is used to detect the difference in speed. The MEMS gyroscope detects the velocity amplitude, which produces a measurement with a straight 2 degree coefficient error in the measured angular scale coefficient error at a large angular rate. Two plugs = angular rate. Proportional error. ⑸ Gravity-sensitive error t Gyro stemming Λ navigation error. The output change caused by the action is called gravity sensing, which is caused by the two accelerations in the body movement of the device, which is proportional to the specific force. This error is the acceleration due to inertia minus the acceleration due to gravity. "Ratio bias error. The specific force is equal to Tongzhong (6), which is an integrator that outputs Λθ ί with Λ. The actual sensor generates a smoother signal based on the voice in the output of the knife gyro. Γ = random walk within the error range. Angular random walk is estimated by the complement process. Temperature-sensitive error ^ ⑺ MEMS gyroscopes are very sensitive to temperature changes. ^ Dagger can even be regarded as a good temperature sensor. The method in INS must remove errors due to temperature. Therefore, in INU error processing, we must provide a temperature term, which can generate error data according to temperature changes in the same operation. Similarly, the error compensation of the MEM accelerometer is expressed as:

五、發明說明 (11)V. Description of Invention (11)

該加速度計誤差項的定義與MEM陀螺類似。 在實用中,IMU溫度的變化可以近似地用一階微八 私描述The definition of the accelerometer error term is similar to the MEM gyroscope. In practice, the change in IMU temperature can be approximated by a first-order micro-eight

I r 二一丄(r 一 D 丨 t〇 T (0) = Ί〇 其中Τ表示I MU溫度,TO是初始溫度tc是時間常數,了ba 1 是ΙΜϋ平衡溫度。參數tc和Tbal由IMU的熱傳輸特性和環境 溫度所決定,其可由校正獲得。溫度引起的誤差可表示^ 其中Tnom是校正IMU時的標稱溫度,Kt是溫度誤差係 數。第二圖顯示了典型的溫度引起的MEMS IMU陀螺誤差。 參照第五圖,慣性導航算法模塊32 2進一步包含: (1 ) 一姿態積分模塊31 2 1,用以把角增量積分成姿態 數據; (2 ) —速度積分模塊3 1 2 2,通過使用姿態數據,轉揍 測量到的速度增量於合適的導航坐標系,其中轉換後的速I r 丄 r (r D D 丨 t〇T (0) = Ί〇 where T represents the temperature of I MU, TO is the initial temperature tc is the time constant, and ba 1 is the equilibrium temperature of ΙΜ. The parameters tc and Tbal are determined by the IMU. It is determined by the heat transfer characteristics and ambient temperature, which can be obtained by calibration. The error caused by temperature can be expressed ^ where Tnom is the nominal temperature when correcting the IMU and Kt is the temperature error coefficient. The second figure shows a typical temperature-induced MEMS IMU Gyro error. Referring to the fifth figure, the inertial navigation algorithm module 32 2 further includes: (1) an attitude integration module 31 2 1 for integrating angle increments into attitude data; (2) —speed integration module 3 1 2 2 By using attitude data, the measured speed is increased to a suitable navigation coordinate system, where the converted speed

第15頁 486576 五、發明說明(12) 度增量被積分為速度數據;並且 (3 ) —位置模塊3 1 2 3,用以積分,導航系的速度數據為 位置數據。 參照第六圖’用以處理航向角的磁傳感器處理模塊32 進一步包含: (1) 一硬鐵補償模塊321,用以接收數字地球磁場向量 並在地球磁場向量中補償硬鐵效應; (2 ) 軟鐵補償模塊3 2 2 ’用以在地球磁場向量中補償 軟鐵效應; (3) —航向計算模塊322,用以接收補償後的地球磁場 向量,和從慣性導航算法模塊322接收俯仰和橫滾角,並 計算航向數據。 參照第七圖,用以為卡爾曼濾波器產生相對位置誤差 測量的里程計處理模塊3 3進一步包含: (1) 一變換模塊331 ’用以變換輸入的表示在機體系的 里程計速度為表示在導航坐標系的里程計速度; (2) —刻度係數和不對準誤差補償模塊332,用以補償 在里程計速度中的刻度係數和不對準誤差;並且 (3) —相對位置計算模塊333,用以接收IMU速度和姿 怨數據以及補償後的里程計速度,以為卡爾曼濾波器3 5形 成相對位置測量。 參照第八圖’為卡爾曼濾波器產生相對位置誤差測量 的流速計處理模塊3 4包含: (1 ) 一變換模塊3 41,用以變換輸入的表示在機體系的Page 15 486576 V. Description of the invention (12) Degree increments are integrated into speed data; and (3) — Position module 3 1 2 3 is used for integration, and the speed data of the navigation system is position data. Referring to the sixth figure, the magnetic sensor processing module 32 for processing the heading angle further includes: (1) a hard iron compensation module 321 for receiving a digital earth magnetic field vector and compensating for the hard iron effect in the earth magnetic field vector; (2) The soft iron compensation module 3 2 2 ′ is used to compensate the soft iron effect in the earth's magnetic field vector. (3) —A course calculation module 322 is used to receive the compensated earth magnetic field vector, and the pitch and horizontal directions are received from the inertial navigation algorithm module 322. Roll angle and calculate heading data. Referring to the seventh figure, the odometer processing module 3 3 for generating a relative position error measurement for the Kalman filter further includes: (1) a conversion module 331 'to convert the input odometer speed of the on-board system to the Odometer speed in the navigation coordinate system; (2) — scale factor and misalignment error compensation module 332 to compensate for scale factor and misalignment errors in the odometer speed; and (3) — relative position calculation module 333, used Based on receiving the IMU speed and attitude and grievance data and the compensated odometer speed, the Kalman filter 35 is used to form a relative position measurement. Referring to the eighth figure, the flow meter processing module 3 4 for the relative position error measurement produced by the Kalman filter includes: (1) a transformation module 3 41 for transforming the input representation of the on-machine system

第16頁 486576 五、發明說明(13) 流速計速度為表示在導航坐標系的里程計速度; (2) —刻度係數和不對準誤差補償模塊342,用以補償 在流速計速度甲的刻度係數和不對準誤差;並且 (3) —相對位置計算模塊343,用以接收IMU速度和姿 態數據以及補償後的流速計速度,以為卡爾曼濾波器3 5形 成相對位置測量。 夕 相對位置計算模塊343與相對位置計算模塊333相同。 參照第四圖和第六圖,卡爾曼濾波器模塊35進一步包含: (1 ) 一運動測試模塊3 5 1,用以確定載體是否自動停 止;Page 16 486576 V. Description of the invention (13) The speedometer speed is the odometer speed in the navigation coordinate system; (2) — scale factor and misalignment error compensation module 342, which is used to compensate the scale coefficient of the speedometer A And misalignment error; and (3) — a relative position calculation module 343 for receiving the IMU speed and attitude data and the compensated tachymeter speed to form a relative position measurement for the Kalman filter 35. The relative position calculation module 343 is the same as the relative position calculation module 333. Referring to the fourth and sixth figures, the Kalman filter module 35 further includes: (1) a motion test module 3 51 to determine whether the carrier stops automatically;

(2) —測量和時變矩陣形成模塊352,用以根據從運動 測f模塊351來的載體運動狀態,為狀態估計模塊3 53形成 測量和時變矩陣;並且 (3 ) —狀態估計模塊3 5 3,用以濾波測量和獲得IMU位 置誤差的最優估計。 為了獲得I MU位置的最優估計,需要為卡爾曼濾波器 建立虹誤差狀態方程。參考理想系統所確定的p平台與 實際系統所決定的PC平台之間的關係定義為(2) a measurement and time-varying matrix forming module 352 for forming a measurement and a time-varying matrix for the state estimation module 3 53 according to the motion state of the carrier from the motion measurement module 351; and (3) — a state estimation module 3 5 3, used to filter measurements and obtain the best estimate of IMU position error. In order to obtain an optimal estimate of the I MU position, it is necessary to establish a rainbow error state equation for the Kalman filter. The relationship between the p platform determined with reference to the ideal system and the PC platform determined with the actual system is defined as

其中I是單位矩率。[φ] 1丨是向量φ 的反對角陣。Where I is the unit moment. [φ] 1 丨 is the anti-angular matrix of the vector φ.

第17頁 486576 五、發明說明(14) 0 -Φ: ° Φχ 〜φχ Ο 向量Φ丨由參考理相系絲所決定的。C平台之間的:個;: = 平台與實際系統 if 陀螺和加速度計模型表示 為 fc -fb -hVb pr 一 > : / 標傳 示 下的 表 八中—σ和▽ 疋一般化的陀螺和加速度計誤差。 示誤差疋表達在機體系或傳感器系,而且是真 感器誤差。 、 這樣,一·般化的線性INS誤差模型,以一階近似,可 岛以下方程:Page 17 486576 V. Description of the invention (14) 0-Φ: ° Φχ ~ φχ 〇 The vector Φ 丨 is determined by the reference line. Between platform C ::; = platform and actual system if the gyroscope and accelerometer model are expressed as fc -fb -hVb pr a > And accelerometer error. The display error is expressed in the machine system or sensor system, and it is the sensor error. In this way, the generalized linear INS error model, with a first-order approximation, can be expressed by the following equation:

dFx{X) dX 1>]尸叫 ^AGP' •〇dFx (X) dX 1 >] Corpse call ^ AGP '• 〇

II

第18頁 486576 五、發明說明(15)Page 18 486576 V. Description of the invention (15)

-〆-[彡]< +^^(Χ)_ΔΖ P dX 以向量方式表示為 其中-〆- [彡] < + ^^ (Χ) _ΔZ P dX

f?-Clfb : vp ^cpbvb ερ ^Cphsb : 這一般化的INS誤差模型可以用來為不同的系統結構 導出特定的誤差模型。 在狀態估計模塊3 5 3的優選實現方案中,建立了兩個 濾波器:f? -Clfb: vp ^ cpbvb ερ ^ Cphsb: This generalized INS error model can be used to derive specific error models for different system structures. In the preferred implementation of the state estimation module 3 5 3, two filters are established:

(1) 一水平濾波器,用以獲得水平IMU位置誤差的估 計;並且 (2 ) —垂直遽波器,用以獲得垂直位置誤差的估計。(1) a horizontal filter to obtain an estimate of the horizontal IMU position error; and (2) a vertical chirper to obtain an estimate of the vertical position error.

第19頁 486576 五、發明說明(16) ~: ' 水平;慮波器狀態向量的優選狀態向量包含以下變量 1· A ,關於X轴的位置誤差(rad) 垂直濾波器的優選狀態向量包含以下變量: 1 · Ael 高度誤差(FT) 2 . Δνζ 速度誤差(F/s) 3 ·〜 相對位置誤差(FT) 4. : 加速度計零偏(F/s2) 5· Δθν; 里程計/流速計垂直偏角(rad) 2. 關於Y轴的位置誤差(rad). 3. x速度誤差(F/s) 4. Μ y速度誤差(F/s) 5. φχ : X傾斜誤差(rad) 6· Φγ Y傾斜誤差(rad) 7. 航向誤差(rad) 8· △XR 關於X的相對位置誤差(F T ) 9· ΔΥκ 關於Y的相對位置誤差(FT) 10· X陀螺零偏誤差(R/s) 11. y陀螺零偏誤差(R/s) 12. Z陀螺零偏誤差(R/s) 13. Δθ1 里程計/流速計水平偏角(rad) 14· △SF ‘ 里程計/流速計刻度係數誤差Page 19 486576 V. Description of the invention (16) ~: 'Horizontal; The preferred state vector of the wave filter state vector contains the following variables 1 · A, the position error on the X axis (rad) The preferred state vector of the vertical filter contains the following Variables: 1 · Ael height error (FT) 2. Δνζ speed error (F / s) 3 · ~ relative position error (FT) 4.: accelerometer bias (F / s2) 5 · Δθν; odometer / current meter Vertical deflection angle (rad) 2. About the Y-axis position error (rad). 3. x speed error (F / s) 4. Μ y speed error (F / s) 5. φχ: X tilt error (rad) 6 · Φγ Y tilt error (rad) 7. Heading error (rad) 8 · △ XR relative position error (FT) about X 9 · ΔΥκ relative position error (FT) about Y 10 · X gyro bias error (R / s) 11. Y gyro bias error (R / s) 12. Z gyro bias error (R / s) 13. Δθ1 Odometer / Tachymeter horizontal deflection angle (rad) 14 · △ SF 'Odometer / Tachymeter Scale factor error

在陸地上,狀態估计模塊3 5 3不時接收以下外部户 息: (1)已知的位置變化,從里程計處理模塊3 3獲得·On land, the state estimation module 3 5 3 receives the following external information from time to time: (1) Known position changes, obtained from the odometer processing module 3 3 ·

五、發明說明(17) (2 )位置變化等於零’從運動測試模塊3 5丨的零速修正 處理獲得;及 (3)已知航向,從磁傳感器處理模塊32獲得。 在水上狀^"估计模塊3 5 3不時接收以下外部信息: (1)已知的位置變化,從流速計處理模塊獲得; (2 )位置變化等於零,從運動測試模塊3 5 1的零速修正 處理獲得;並且 (3)已知航向,從磁傳感器處理模塊”獲得。 】程:速J/流速計速度和IMU速度之間的差,被迅速積分 成相對位置的三個分量。 對付:ίΪ個卡爾曼濾波器的更新間隔為八秒,X 相 垂甚g 1^又 z相對位置被提供給 置直卡。慮波器接著進行更新和修正IMU位 運動=試模塊351決定載體是否已經停止。如果 置變化施加於卡爾曼遽波器。停止的定義由 :期::運動進行分析,以確定 】 下進行修正睥.哉辨rt 在存在小的測量噪聲條件 广退订u正時,載體在接下來的八 _ ^ ^ 、丁 位,當檢測到運動時,立即被復一 τ止被置 侔丨l·妯罟> ^ I ^设位可能小於八秒。如吴 運動測試模塊351包含: 才了此把,、置位。 ⑴一里程計變化測試模塊,用以純里程計讀數, /υ ^ '發明說明^ ^〜Τ'--~_ 以確定載體是否停止或重新起動; (2) -系統速度變化測試模 =上系統速度的變化,以確定載體是心二,起- -預先定義系的值速進度行::美塊,用以把系統速度的幅值與 動;$的值進仃比較,以確定載體是否停止或重新起 動; 权以確疋載體是否停止或重新起 里程:L在里程計測試中,在指定的八秒區間的開始, 的讀如時進行累加。如果累加值在八秒 停止被復位。 預先•曰疋的值,例如兩個脈沖, f 土統速度測試中,每一個預先指定的 分別鱼秒内X,Y,Z位置變化決定, 刚y w均义,γ,z速度進行比較。如果任何2秒的 =化在任何軸向超過一預先定義的值,例如o.i F/s,該 個八秒區間被定義為非停止。注意到,0· i F/s的速度2 秒對應於0.2F的允許的姿態擾動,約為2英寸。 。在系統速度測試中,如果我們假定一個10FS的系統速 度誤差幅值,我們可用這樣的判據: 每2秒比較平均x,Y,Z速度與前2秒的速度,復位停 止如果任何速度在幅值上大於10FS。5. Description of the invention (17) (2) Position change equal to zero 'is obtained from the zero speed correction process of the motion test module 3 5 丨; and (3) Known heading is obtained from the magnetic sensor processing module 32. On the water ^ " The estimation module 3 5 3 receives the following external information from time to time: (1) known position changes, obtained from the tachometer processing module; (2) position changes equal to zero, zero from the motion test module 3 5 1 The speed correction is obtained; and (3) the known heading is obtained from the magnetic sensor processing module.] Range: The difference between the speed J / speed meter speed and the IMU speed is quickly integrated into the three components of the relative position. : The update interval of a Kalman filter is eight seconds, and the X-phase perpendicularity g 1 ^ and z-relative position is provided to the straight card. The wave filter is then updated and corrected. IMU bit motion = test module 351 determines whether the carrier Has been stopped. If the change is applied to the Kalman waver. The definition of the stop is made by: period :: analysis of the movement to determine the correction under 睥. The carrier is in the next eight ^ ^ and D positions. When motion is detected, it is immediately reset to τ and is set 侔 丨 l · 妯 罟 > ^ I ^ The set position may be less than eight seconds. For example, Wu motion test Module 351 contains: ⑴An odometer change test module for pure odometer reading, / υ ^ 'Explanation ^ ^ ~ Τ'-~ _ to determine whether the carrier is stopped or restarted; (2)-System speed change test mode = up The change in system speed to determine whether the carrier is the second heart. From the pre-defined value, the speed progress line :: US block is used to compare the amplitude of the system speed with the movement; the value of $ is compared to determine whether the carrier is Stop or restart; right to determine whether the carrier stopped or restarted mileage: L in the odometer test, at the beginning of the specified eight-second interval, the reading is accumulated as usual. If the accumulated value is stopped at eight seconds, it is reset. In advance, the value of 疋, such as two pulses, f. In the soil speed test, each X, Y, and Z position changes within the specified second of each pre-specified fish seconds are determined. Any 2 s = 超过 in any axis exceeds a predefined value, such as oi F / s, the eight-second interval is defined as non-stop. Note that a speed of 0 · i F / s 2 s corresponds to 0.2 The allowable attitude disturbance of F is about 2 inches ... in the system In the speed test, if we assume a 10FS system speed error amplitude, we can use this criterion: compare the average x, Y, Z speed with the speed of the previous 2 seconds every 2 seconds, reset and stop if any speed is in the amplitude More than 10FS.

第22頁 486576 五、發明說明(19) 在履帶式載體上,只有一個里程計並且lMu 計附近,載體可能提供鎖定這個履帶的方式進行韓在里程 里程计無輸出且IMU速度很小。這種情形可由姿 貝 試加以檢測。置位停止的條件是在任何2秒和^變化= 内,總的姿態變化小於一度。 了 8£間 在每一個卡爾曼濾波器更新區間内,例如八秒, Y,z相對位置測量送給卡爾曼濾波器以進行一次^ ’ 量方差=〔Η〕〔P〕〔HT〕+R是這一測量的方差估〜新,。標 被用來測試測量幅值的合理性。有三個這樣的標 轴一個。 母调 優選的IMU 1是一小型IMU,其中,内置了—位置 L處理機。該位置和姿態處理機可替代上述INS計算塊" 31。該小型INU如下所述。 、 .一個慣性測量組件通常用來測量載體的運動參數。從 原理上,慣性測量組件依賴於三個正交安裝的慣性角速率 產生器和三個正交安裝的加速度產生器,獲得三轴角速率 和度信號。三個正交安裝的慣性角速率產生器和三個 正交安裝的加速度產生器以及相應的支撐結構和電子電 =,傳統上被稱為慣性測量組件。傳統的慣性測量組件可 77為平台式慣性測量级件和捷聯式慣性測量組件。 口在平台式慣性測量組件中,角速率產生器和加速度產 ^器被安裝在一穩定平台上。載體的姿態測量可直接從平 2的結構中取得。然而,載體的姿態角速率測量不能從平 α中直接取得。而且,平台式慣性測量組件中要有相應的Page 22 486576 V. Description of the invention (19) On a tracked carrier, there is only one odometer and near the 1Mu meter, the carrier may provide a way to lock this track for the Han Zai mileage. The odometer has no output and the IMU speed is very small. This situation can be detected by posture test. The set stop condition is that the total attitude change is less than one degree in any 2 seconds and ^ change =. Within 8 £ within each Kalman filter update interval, for example, eight seconds, the relative position measurement of Y and z is sent to the Kalman filter for one measurement ^ 'Variance of variance = [Η] [P] [HT] + R It is estimated variance of this measurement ~ new. The standard is used to test the reasonableness of the measured amplitude. There are three such axes. Mother Tuning The preferred IMU 1 is a small IMU with a built-in L processor. This position and attitude processor can replace the above-mentioned INS calculation block " 31. The small INU is described below. An inertial measurement component is usually used to measure the motion parameters of the carrier. In principle, the inertial measurement component relies on three orthogonally mounted inertial angular rate generators and three orthogonally mounted acceleration generators to obtain triaxial angular rate and degree signals. Three orthogonally mounted inertial angular rate generators and three orthogonally mounted acceleration generators along with corresponding support structures and electronics are traditionally referred to as inertial measurement components. Traditional inertial measurement components can be platform inertial measurement stages and strapdown inertial measurement components. In the platform type inertial measurement module, the angular rate generator and the acceleration generator are installed on a stable platform. The attitude measurement of the carrier can be obtained directly from the flat 2 structure. However, the attitude angular rate measurement of the carrier cannot be directly obtained from the flat α. Moreover, there must be corresponding

第23頁 比,在捷聯式慣性測量組件 生器直接於载體固聯,角速 出信號被表達在載體坐標系 信號可通過一系列計算取 不同種類的角速率產生器和 產生器包括鐵轉子陀螺和光 ,動力調諧陀螺,環形激光 约瑟夫PS螺,以及半球諧振 包括脈沖積分擺式加速度 號處理方法、機械結構、電 陀螺和加速度計而不同。由 大的體積、大的功率消耗、 複雜的反饋控制回路以便獲 力調諧陀螺和加速度計需要 保持再零位置。通常在基於 性測量組中,使用脈沖調制 統的慣性測量組件具有以下 486576 五、發明說明(20) 高精度反饋控制回路。 與平台式慣性測量4組件相 令’角速率產生器和加速度產 率產生器和加速度產生器的輸 内。載體的姿態和姿態角速率 得。 傳統的慣性測量組件使用 加速度產生器。傳統的角速率 學陀螺,例如,液浮積分陀螺 陀螺’光纖陀螺,靜電陀螺, 陀螺等。傳統的角速率產生器 叶,擺式陀螺加速度計等。 傳統的慣性測量組件的信 子電路隨所使用的不同種類的 於傳統的陀螺和加速度計具有 可移動的部件,所以要求具有 得穩定的運動測量。例如,動 力再平衡回路以便使移動部件 動力調譜陀螺和加速度計的慣 力再平衡回路。因此,通常傳 特點: 成本高 尺寸大(體積、重量) 大的功率消耗Compared with page 23, the strapdown inertial measurement component generator is directly connected to the carrier, and the angular velocity output signal is expressed in the carrier coordinate system. The signal can be obtained through a series of calculations. Different types of angular rate generators and generators include iron. Rotor gyroscope and light, dynamic tuning gyroscope, ring laser Joseph PS gyroscope, and hemispheric resonance include pulse integral pendulum acceleration number processing method, mechanical structure, electric gyroscope and accelerometer. The large volume, large power consumption, and complex feedback control loop in order to obtain the power to tune the gyroscope and accelerometer need to maintain the zero position again. Usually in the sex-based measurement group, the inertial measurement component using the pulse modulation system has the following 486576 V. Description of the invention (20) High-precision feedback control loop. It is the same as the platform-type inertial measurement 4 component. The output of the angular rate generator and acceleration rate generator and acceleration rate generator. The attitude and angular velocity of the carrier are obtained. Traditional inertial measurement components use acceleration generators. Traditional angular rate gyros, for example, liquid floating integral gyro gyro 'fiber optic gyro, electrostatic gyro, gyro and so on. Traditional angular rate generator leaves, pendulum gyro accelerometers, etc. The signal circuit of the conventional inertial measurement module has movable parts depending on the kind used in the conventional gyro and accelerometer, so it is required to have stable motion measurement. For example, a dynamic rebalance circuit is used to rebalance the inertia of a moving part, a dynamic gyro and an accelerometer. Therefore, it is usually transmitted Features: High cost Large size (volume, weight) Large power consumption

第24頁 486576 ———-_ 五、發明說明(21) 壽命短 長的起動時間 傳統的慣性測量紅件的這歧 用在-些正在出現的商章岸用場缺八點極△地限制了它們應 以及一些手持式設備。‘ (Mic:rc)el •貝性傳感器技術正在出現。採用微機電系統 控制系統性可極大提㈣ :士電系統可簡單地稱之為微機械。微機電系統被認 卩的下一個符合邏輯的步驟。這一步驟要比在矽片 j集成更多的晶體管不同而且更加重要。未來3〇年,這場 二^革命的本質是給矽片結構引入新的革命,使矽片不僅 可思考,而且可敏感,執行動作,以及通信。 目前已經發展出各種MEMS角速率傳感^,來滿足對低 、本且可靠的角速率傳感器的需求,應用領域從汽車到消 費電子產品。單轴MEMS角速率傳感器基於線譜振原理,比 如調諧叉,或者結構模態諧振原理,比如振動環。更有盛 者’多轴MEMS角速率傳感器可基於張力彈簧懸掛的轉動剛 性轉子的角諧振原理。現有的大多數奸⑽角速率傳感器是 基於靜電驅動的調諧音叉方法。 、 大多數MEMS加速度計是力反饋類型,使用閉環電容敏 :感和靜電施力方法。例如,助佩公司的加速度計就是一典 型’它具有單矽片結構,包括張力擺及其電容信號讀出裝Page 24 486576 ———-_ V. Description of the invention (21) Short life time Start-up time This inconvenience of the traditional inertial measurement red pieces is used in some emerging commercial banks. They should be as well as some handheld devices. ‘(Mic: rc) el • Bay sensor technology is emerging. The use of micro-electro-mechanical systems to control the system can greatly improve: Shidian system can be simply called micro-mechanics. MEMS is recognized as the next logical step. This step is different and more important than integrating more transistors on silicon j. In the next 30 years, the essence of this revolution is to introduce a new revolution in the structure of silicon, so that silicon can not only think, but also be sensitive, perform actions, and communicate. Various MEMS angular rate sensors have been developed to meet the demand for low-cost, reliable and reliable angular rate sensors, with applications ranging from automobiles to consumer electronics. Single-axis MEMS angular rate sensors are based on line-spectrum vibration principles, such as tuning forks, or structural modal resonance principles, such as vibrating rings. A more advanced 'multi-axis MEMS angular rate sensor can be based on the angular resonance principle of a rotating rigid rotor suspended by a tension spring. Most of the existing angular velocity sensors are based on electrostatically driven tuning tuning fork methods. Most MEMS accelerometers are of the force feedback type and use closed-loop capacitive sensing: inductive and electrostatic force-applying methods. For example, the company ’s accelerometer is a typical one. It has a single silicon structure, including a tension pendulum and its capacitive signal readout device.

第25頁 /Ο 五、發明說明(22) 加速度計采用片内 包括精密電壓參考 ,力反饋回路,及自檢 置和扭力器。模揆哭你γ η wc批⑷擬15件公司的MEMS BIMOS工藝製作的集 母+ m 扪集成多層矽結構, 1§,本地振盪器,访 敌大器,解調器 電路。 雖j從商業市場上已可獲得微小尺寸、低功率、、亩& MEMS角速率傳感器知^命t 低功旱泌耗的 尺寸、低功裘咕紅加速度汁,然而,沒有高性能、微小 : 率4.耗的慣性測量組件。 目前,MEMS器件利用微電子電路的底層結構來 二、尺才的複雜機械,機械可具有許多功能,包括敏微 ^、通信及執行。這些MEMS器件可廣泛地應用於各類 系統。 】糸Page 25 / 〇 V. Description of the invention (22) The accelerometer uses on-chip precision voltage reference, force feedback loop, and self-testing and torque device. The model cries you γ η wc approves the collection of 15 companies' MEMS BIMOS process production master + m 扪 integrated multi-layer silicon structure, 1§, local oscillator, access to the enemy, demodulator circuit. Although small size, low power, and MEMS angular rate sensors are available from the commercial market, the size of the low power and low power consumption, and the low power and low speed acceleration acceleration juice, but there is no high performance, small : Rate 4. Consumption inertial measurement component. At present, MEMS devices make use of the underlying structure of microelectronic circuits. 2. Complex machinery with rulers. Machines can have many functions, including sensitive micro communication, communication, and execution. These MEMS devices can be widely used in various systems.糸 糸

製义小型慣性測量組件的困難在於使用低成本、 度的角速率傳感器和加速度計製造]^1],該11^11具有· 一 低成本 μ ' 小尺寸 低功率消耗 無損壞期/長的使用壽命 立即起動特性 大的動態範圍 高靈敏度 南穩定性 南精度 為了達到上述的高性能,許多難點需要解決,如: (1 )能獲得微小的角速率傳感器和加速度計。目前The difficulty of making small inertial measurement components is to use low-cost, angular angular rate sensors and accelerometers to manufacture [^ 1], the 11 ^ 11 has a low cost μ 'small size, low power consumption, no damage period / long use Immediate life-span characteristics, large dynamic range, high sensitivity, high stability, and high accuracy. In order to achieve the above-mentioned high performance, many difficulties need to be solved, such as: (1) A tiny angular rate sensor and accelerometer can be obtained. Currently

第26頁 486576 五、發明說明(23) 最小的角速率傳感器和加速度計就是訧⑽角速率傳感器和 加速度計。 (2 )需設計相應的機械結構。 (3)需設計相應的電子電路。 (4 )滿足相應的熱設計要求以便補償MEMS傳感器的熱 效應。 (5 )相應的電子電路的尺寸和功耗應當大大縮小。 本發明的IMU優選使用角速率產生器和加速度產出器,例 如,MEMS角速率器件陣列或陀螺陣列,以便產生載體的三 轴角速率信號;MEMS加速度產出器陣列或加速度計陣列, 以便產生載體的三轴加速度信號。載體的運動測量,如姿 態和航向角,通過處理來自角速率產生器的三轴角速率信 號和來自加速度產出器的三軸加速度信號取得。 在本發明中’角速率產生器和加速度產出器的輸出信 號被處理獲得高精度的載體角度增量和速度增量數字信 號’進一步經過處理取得在動態環境下載體的高精度位 置、速度、姿態和航向測量值。 如第十一圖,本專利之小型慣性測量組件包括一角速 率產生器’來產生三轴(X,Y ’Z袖)角速率信號;一 加速度產出器clO,來產生三轴(Χ,Υ,Ζ轴)加速度信 號;一角增量和速度增量產生器C6,用來將三轴角速率信 號轉換為數字角度增量和將三轴加速度信號轉換為數字^ 度增量。 、 進一步,一位置和姿態處理機c80被包含在本專利之Page 26 486576 V. Description of the invention (23) The smallest angular rate sensor and accelerometer are the angular rate sensor and accelerometer. (2) The corresponding mechanical structure needs to be designed. (3) Design the corresponding electronic circuit. (4) Meet the corresponding thermal design requirements in order to compensate the thermal effects of the MEMS sensor. (5) The size and power consumption of the corresponding electronic circuit should be greatly reduced. The IMU of the present invention preferably uses an angular rate generator and an acceleration generator, for example, a MEMS angular rate device array or a gyro array in order to generate a triaxial angular rate signal of a carrier; a MEMS acceleration generator array or an accelerometer array in order to generate Three-axis acceleration signal of the carrier. The motion measurements of the carrier, such as attitude and heading angle, are obtained by processing the three-axis angular rate signal from the angular rate generator and the three-axis acceleration signal from the acceleration generator. In the present invention, 'the output signals of the angular rate generator and the acceleration generator are processed to obtain a high-precision digital signal of the carrier angle increment and the speed increment', and further processed to obtain a high-precision position, speed, Attitude and heading measurements. As shown in Figure 11, the small inertial measurement component of this patent includes an angular rate generator 'to generate three-axis (X, Y' Z sleeve) angular rate signals; an acceleration generator clO to generate three-axis (X, Υ , Z axis) acceleration signal; one-angle increment and speed increment generator C6 is used to convert the three-axis angular rate signal into a digital angular increment and the three-axis acceleration signal into a digital ^ degree increment. Further, a position and attitude processor c80 is included in this patent.

五、發明說明(24) ^ ~ " ~~~—^— $型慣性測量組件中,它使用三轴數字角度增量和三軸數 字速度增量計算位置、速度、姿態和航向測量值,以便提 供豐富的運動測量滿足不同用戶的需要。 、位置和姿態處理機c8〇進一步包含兩個可選擇的執 模塊: (1 )姿態和航向模塊C 8 1,用來產生姿態和航向角; (2 )位置、速度,姿態和航向模塊c 8 2,用來產生仇 置、速度和姿態角。 選擇執行姿態和航向模塊c 8 1使小型慣性測量組件具 有航向姿態參考系統(Attitude Heading Reference System, ARHS)功能。選擇執行位置、速度,姿態和航向 模塊c 8 2使小型慣性測量組件具有慣性導航系統 (Inertial Navigation System, INS)’ 功能。V. Description of the invention (24) ^ ~ " ~~~ — ^ — In the $ -type inertial measurement component, it uses three-axis digital angle increments and three-axis digital speed increments to calculate position, velocity, attitude, and heading measurements. In order to provide rich motion measurement to meet the needs of different users. The position and attitude processor c8〇 further includes two optional execution modules: (1) attitude and heading module C 8 1 for generating attitude and heading angle; (2) position, speed, attitude and heading module c 8 2, used to generate hatred, speed and attitude angle. Selecting the Attitude and Heading Module c 8 1 enables the small inertial measurement unit to have an Attitude Heading Reference System (ARHS) function. Selecting the execution position, speed, attitude and heading module c 8 2 enables the small inertial measurement unit to have an Inertial Navigation System (INS) ’function.

通常,角速率產生器c5和加速度產出器(:1〇對環境溫 度變化非常敏感。為了提南測量精度,如第十二圖,本發 明進一步包含一熱控制器件,以便將角速率產生器c 5,加 速度產出器clO和角增量和速度增量產生器c6的工作溫度 保持在設定值。值得指出的是如果角速率產生器,加速 度產出器10和角增量和速度增量產生器C6工作在一溫度,艮 定的環境中,則可不用該熱控制器件。 X 依據第十二圖所示的本發明的小型慣性測量組件的優 選方案,該熱控制器件進一步包含一熱敏產生器cl 5,一 加熱器c20以及一熱處理器c30。 熱敏感產生器c 15與角速率產生器〇5,加速度產出器Generally, the angular rate generator c5 and the acceleration generator (: 10 are very sensitive to changes in the ambient temperature. To improve the measurement accuracy of the South, as shown in Figure 12, the present invention further includes a thermal control device to convert the angular rate generator c 5, the working temperature of the acceleration generator clO and the angular and speed increment generator c6 is maintained at the set value. It is worth pointing out that if the angular rate generator, the acceleration generator 10 and the angular increment and speed increment The generator C6 operates at a temperature and in a fixed environment, and the thermal control device may not be used. X According to a preferred solution of the small inertial measurement module of the present invention shown in FIG. 12, the thermal control device further includes a thermal Sensitive generator cl 5, a heater c20 and a thermal processor c30. Thermal sensitive generator c 15 and angular rate generator 05, acceleration generator

第28頁 486576 五、發明說明(25) * ' cl〇和角增量和速度增量產生器並行工作,來產生溫度 信,’以便以便將角速率產生器5,加速度產出器cl(f和X角 增量和速度增量產生器c6的工作溫度保持在設定值。設定 的溫度是一常值,可選擇在15(TF和185°F之間,優選丨°76 °F ( ± 〇· 1 卞)。 來自熱敏感產生器c 1 5產生的溫度信號,被輸出給熱 處理器c30,熱處理器C30使用該.溫度信號、溫度刻度係數 及角速率產生器5和加速度產出器ci〇和角增量和速度增量 產生器c6的預定的工作溫度,來計算溫度控制指令並开^ = 相應的驅動信號給加熱器C20,來控制加熱器c2〇產生足夠 的熱量,保持角速率產生器5和加速度產出器(;1〇和角增量 和速度增量產生器c6的預定的工作溫度。 角速率產生器c5和加速度產出器cl0的溫度特性參 數’可通過一系列角速率產生器和加速度產出器的溫度特 性參數標定過程得到。 如第十三圖,當沒有熱處理器c3〇和加熱器心^時,為 了旎補償由於環境溫度變化所引起的角速率產生器和加速 度產出器測量誤差,本發明的小型慣性測量組件可包含一 溫度數字化器cl8,用來接收來自熱敏感產生器cl5產生的 溫度信號,輸出數字溫度信號給位置、速度,姿態和航向 模塊c82。如第二十二圖,該溫度數字化器cl8可優選為— 模擬數字轉換器C182 〇 、 進一步’位置、速度,姿態和航向模塊C82使用來自 溫度數字化器cl8的角速率產生器“和加速度產出^cl()的 4i86576 五、發明說明(26) ‘ 當前工作溫度,查詢角速率產生器C5和加速度產.出器cl 0 的溫度特性參數,補償輸入的數字角度增量和數字速度增 量中的熱效應誤差,使用補償後的數字角度增量和數字速 度增量計算姿態和航向角。 在多數應用場合,角速率產生器“和加速度產出器 clO的輸出信號是模擬電壓信號。來自角速率產生器“產 生的三轴角速率模擬電壓信號直接正比於載體的角速率, 來自加速度產出器cl 〇產生的三轴加速度模擬電壓信號直 接正比於載體的加速度。 當角速率產生器c5和加速度產出器ci〇輸出的模擬電 壓信號太弱,以致角增量和速度增量產生器c6不能讀取 時’如第十五圖和第十六圖所示,角增量和速度增量產生 器c6可使用放大器件(:66〇和C665,以便放大角速率產生器 c5和加速度產出器cl0輸出的模擬電壓信號,並壓縮其中 的噪聲。 如第十四圖’角增量和速度增量產生器c6進一步包含 一角度積分器c62 0,一加速度積分器⑸“,一復位器 c 6 4 0 ’角增量和速度增量測量器c 6 μ。 角度積分器c 6 2 0和加速度積分器c 6 3 〇分別用來在預定 的時間段内積分三軸角速率模擬電壓信號和三轴加速度模. 擬電壓信號’以便積累三軸角速率模擬電壓信號和三軸加 $度模擬電壓信號,形成未補償的原始角增量和速度增 ϊ。該積分操作是為了消除在三轴角速率模擬電壓信號和 二轴加速度模擬電麗信號中的非直接正比於載體角速率和 486576 I五、發明說明(27) 加速度的噪聲信號,提 率模擬電壓信號和三軸 聲。這些三軸角速率模 信號中的信號直接正比 復位器產生角度復 作為角度和速度的刻度 速度積分器c63 0。 角增量和速度增量 和速度復位電壓脈沖, #號和三軸加速度模擬 度增量計數值,相應地 為能輸出實際的角 和速度增量電壓值輸出 量測量器c650將角增量 增量和速度增量。 在角度積分器c620 率模擬電壓信號和三軸 以便在每一個預定的時 如第十六圖,復位 生定時脈沖,作為角度 沖。在一些應用場合, 用集成電路(ASIC )和 如第十七圖,用來 號和三轴加速度模擬電 高信號噪聲比,並消除在三軸 加速度模擬電壓信號中的高頻噪、 擬電壓信號和三軸加速度模擬電壓 於載體角速率和加速度。 位電壓脈沖和速度復位電壓脈沖, ’分別輸出給角度積分器c62〇和加 測量器c6 5 0使用角度復位電壓脈沖 來測量積累的三軸角速率模擬電壓 電壓信號’獲得角增量計數值和速 作為角增量和速度增量的數字量。 增量和速度增量,作為輸出角增量 的另外一種選擇,角增量和速度增 和速度增量電壓值換算為實際的^ 和加速度積分器C630中,三軸角速 加速度模擬電壓信號被分別復位, 間段的起點’從零開始積累。 器c640可以是一振盪器c66,它產 復位電壓脈沖和速度復位電壓脈 振盪器c66用特定電路制成,如專 印刷電路板。 測1積累的二轴角速率模擬電壓信 壓h號的角增量和速度增量測量器Page 28 486576 V. Description of the invention (25) * 'cl0 and the angular increment and velocity increment generator work in parallel to generate the temperature signal,' so that the angular rate generator 5, the acceleration generator cl (f The working temperature of the X and X angle increment and speed increment generator c6 is maintained at the set value. The set temperature is a constant value and can be selected between 15 (TF and 185 ° F, preferably 丨 ° 76 ° F (± 〇 · 1 卞). The temperature signal from the thermal sensitive generator c 1 5 is output to the thermal processor c30, which is used by the thermal processor C30. The temperature signal, temperature scale factor, angular rate generator 5 and acceleration generator ci〇 And the predetermined operating temperature of the angular increment and speed increment generator c6 to calculate the temperature control command and turn on the corresponding driving signal to the heater C20 to control the heater c20 to generate enough heat to keep the angular rate generated Generator 5 and acceleration generator (10 and the predetermined operating temperature of the angular and speed increment generator c6. The temperature characteristic parameters of the angular rate generator c5 and the acceleration generator cl0 'can pass through a series of angular rates Generator and acceleration generator Degree characteristic parameter calibration process is obtained. As shown in the thirteenth figure, when there is no thermal processor c30 and heater core ^, in order to compensate the measurement error of the angular rate generator and the acceleration generator due to the ambient temperature change, the present invention The small inertial measurement component may include a temperature digitizer cl8, which is used to receive the temperature signal generated by the thermal sensitive generator cl5, and output the digital temperature signal to the position, speed, attitude and heading module c82. As shown in the twenty-second figure, the The temperature digitizer cl8 may preferably be an analog-to-digital converter C182. Further, the position, velocity, attitude, and heading module C82 uses an angular rate generator from the temperature digitizer cl8 and an acceleration output ^ cl () of 4i86576. Description of the invention (26) 'Current operating temperature, query the angular rate generator C5 and acceleration output. The temperature characteristic parameters of the output cl 0, compensate the thermal effect error in the input digital angular increment and digital speed increment, and use the compensated Digital angle increment and digital speed increment calculate attitude and heading angle. In most applications, angular rate generator The output signal of the acceleration generator clO is an analog voltage signal. The three-axis angular rate analog voltage signal generated by the angular rate generator "is directly proportional to the angular rate of the carrier. The three-axis acceleration simulation generated by the acceleration generator cl 〇 The voltage signal is directly proportional to the acceleration of the carrier. When the analog voltage signals output by the angular rate generator c5 and the acceleration generator ci〇 are too weak, so that the angular increment and velocity increment generator c6 cannot be read, such as the fifteenth As shown in the figure and the sixteenth figure, the angular increment and velocity increment generator c6 can use amplifier devices (: 66 and C665 to amplify the analog voltage signals output by the angular rate generator c5 and the acceleration generator cl0, and Squeeze the noise. As shown in the fourteenth figure, the angle increment and speed increment generator c6 further includes an angle integrator c62 0, an acceleration integrator ⑸ ", and a resetter c 6 4 0 'angle increment and speed increment measuring device c. 6 μ. The angle integrator c 6 2 0 and the acceleration integrator c 6 3 〇 are used to integrate the three-axis angular rate analog voltage signal and the three-axis acceleration module in a predetermined period of time. The pseudo-voltage signal is used to accumulate the three-axis angle. The rate analog voltage signal and the three-axis plus degree analog voltage signal form an uncompensated original angular increment and velocity increase. This integration operation is to eliminate the three-axis angular rate analog voltage signal and the two-axis acceleration analog electric signal. Is not directly proportional to the carrier angular rate and 486576. I. Description of the invention (27) Acceleration noise signal, analog voltage signal and triaxial sound. The signals in these triaxial angular rate modulus signals are directly proportional to the angular complex of the reset device. Scale speed integrator c63 0 as angle and speed. Angle increment and speed increment and speed reset voltage pulse, ## and three-axis acceleration analog degree increment count value, corresponding to Output the actual angle and speed increment voltage value. The output measuring device c650 will increase the angle increment and the speed increment. The angle integrator c620 rates the analog voltage signal and three axes so that every predetermined time is as shown in the sixteenth figure. The reset timing pulse is used as the angle pulse. In some applications, an integrated circuit (ASIC) and as shown in Figure 17 are used to simulate the high signal-to-noise ratio of the three-axis acceleration and eliminate the analog voltage in the three-axis acceleration. The high-frequency noise in the signal, the pseudo-voltage signal and the three-axis acceleration analog voltage on the carrier angular rate and acceleration. The bit voltage pulse and the speed reset voltage pulse are output to the angle integrator c62〇 and the adder c6 50 respectively. Reset the voltage pulse to measure the accumulated three-axis angular rate analog voltage voltage signal to obtain the angular increment count value and velocity as digital quantities of angular increment and velocity increment. Increment and velocity increment as additional output angular increments One option is to convert the angular increment and velocity increment and the velocity increment voltage values into actual ^ and acceleration integrator C630. The voltage signals are reset separately, and the starting point of the interval is accumulated from zero. The device c640 can be an oscillator c66, which produces reset voltage pulses and speed reset voltage pulse oscillator c66 made of specific circuits, such as a dedicated printed circuit board. Measuring the angular increment and velocity increment of the two-axis angular rate analog voltage signal pressure h accumulated by 1

第31頁 486576 五、、發明說明(28) c 6 5 0,可用一模擬/數字轉換器c 6 5 0實現。換一方式說, 模擬/數字轉換器c 6 5 0實際上將原始角增量和速度增量電 壓值數字化為角增量和速度增量的數字量。 如第十七圖和第二Η--圖,角增量和速度增量產生器 c6的放大器c66 0和C6 65可分別用一角放大電路“丨和加速 度放大電路c67實現。角放大電路c61和加速度放大電路 c67分別放大二轴角速率模擬電壓信號和三軸加速度模擬 電壓信號’形成放大後的三軸角速率模擬電壓信號和三轴 加速度模擬電壓信號。 角增量和速度增量產生器C6的模擬/數字轉換器c65〇 進一步包含一角模擬/數字轉換器c63,一速度模擬/數字 轉換器c69以及一輸入/輸出接口電路c65。 來自角度積分電路c 62的積累的角增量和來自加速度 積分電路c68的積累的速度增量,被分別輸出給角模擬/數 字轉換器c63和速度模擬/數字轉換換器c69。 積累的角增量由角模擬/數字轉換器c63,通過使用角 復位電壓信號來測量積累的角增量,以便形成角增量計數 值’作為數字角增量電壓的一形式。該角增量計數值被輸 出給輸入/輸出接口電路c65,以便形成數字三轴角增量電 壓值。 積累的速度增量由速度模擬/數字轉換器c63,通過使 用速度復位電壓信號來測量積累的速度增量,以便形成速 度增量計數值,作為數字速度增量電壓的一形式。該速度 增量计數值被輸出給輸入/輸出接口電路c 6 5,以便形成數Page 31 486576 V. Description of the invention (28) c 6 50 0 can be realized by an analog / digital converter c 6 50. Said another way, the analog / digital converter c 6 50 actually digitizes the original angular and speed increment voltage values into digital quantities of angular and speed increments. As in the seventeenth figure and the second figure, the amplifiers c66 0 and C6 65 of the angular increment and velocity increment generator c6 can be implemented by a corner amplifying circuit "丨 and an acceleration amplifying circuit c67. The angle amplifying circuit c61 and The acceleration amplifier circuit c67 amplifies the biaxial angular rate analog voltage signal and the triaxial acceleration analog voltage signal, respectively, to form an amplified triaxial angular rate analog voltage signal and a triaxial acceleration analog voltage signal. The angular increment and velocity increment generator C6 The analog / digital converter c65〇 further includes a corner analog / digital converter c63, a speed analog / digital converter c69, and an input / output interface circuit c65. The accumulated angular increment from the angle integration circuit c 62 and the acceleration The accumulated speed increment of the integrating circuit c68 is output to the angle analog / digital converter c63 and the speed analog / digital converter c69, respectively. The accumulated angle increment is performed by the angle analog / digital converter c63 by using the angle reset voltage Signal to measure the accumulated angular increment to form the angular increment count value as a form of digital angular increment voltage. This angular increment count value is input It is output to the input / output interface circuit c65 so as to form a digital three-axis angular incremental voltage value. The accumulated speed increment is measured by the speed analog / digital converter c63 by using the speed reset voltage signal to measure the accumulated speed increment in order to form Speed increment count value as a form of digital speed increment voltage. This speed increment count value is output to the input / output interface circuit c 6 5 so as to form a number

第32頁 /υ 五、發明說明(29) 一'-——---一 字三轴速度增量電壓值。 如第十二圖和第十八圖,為 ' 出的熱敏產生器cl5和具有模上了實J見給具有模擬電壓輸 字化反饋控制回路來實現。了以由如第十八圖所示的數 第十\圖熱處理器c3〇包含連 執 cl5的一模擬/數字轉換器3(1 ,、”、、取歇座生器 付伏裔c〇5U4、連接與加埶器c2〇的數车 模擬轉換器c303以及連接盥禮挺/鉍a絲& ^ 興模擬/數字轉換器c304和數字/ 模擬轉換|§ c 3 0 3的溫度和告,丨哭^ q η β . /凰庋徑制器c30 6。模擬/數字轉換器 C304輸入通過熱敏感產生器cl5產生—溫度電壓信號,由 模擬/>數字轉換器c3〇4採樣該溫度電壓信號,並數字化該 电壓H ’並將該數字溫度信號輸出給―溫度控制器 c 3 0 6 〇 值度控制器c3 0 6,使用來自模擬/數字轉換器c3〇4的 數f溫度電壓信號,溫度標定係數以及預定的上述角速率 產器和加速產生器的工作溫度,來計算數字溫度控制指 令,並將該數字溫度控制指令送入一數字/模擬轉換器 c30 3 〇 數字/模擬轉換器c3〇3將來自上述數字溫度控制器 =30 6的數字溫度控制指令轉變為模擬信號,並將該模擬信 號輸出給一加熱器c2〇,以便產生適當的熱量以保證本發 明之IΜ ϋ的預定的工作溫度。 進一步’如第十九圖,如果由熱感應產生器(:15產生 的電壓信壓號太弱,以至於模擬/數字轉換器c3〇4不能讀Page 32 / υ V. Description of the invention (29) A '-——---- A three-axis speed incremental voltage value. As shown in the twelfth and eighteenth diagrams, the thermal generator cl5 outputted with a mold is shown in FIG. 18, and it is realized by a feedback control circuit with an analog voltage input. In the eighteenth figure shown in Figure 18, the thermal processor c3〇 includes an analog / digital converter 3 (1 ,,,,,,, etc.), which is connected to cl5. , The digital car analog converter c303 connected to the booster c2〇 and the analog / digital converter c304 and digital / analog converter | § c 3 0 3丨 cry ^ q η β. / Phoenix diameter controller c30 6. The input of the analog / digital converter C304 is generated by the thermal sensitive generator cl5-temperature and voltage signal, and the temperature / voltage is sampled by the analog /> digital converter c304 Signal and digitize the voltage H ′ and output the digital temperature signal to the temperature controller c 3 0 6 value controller c 3 0 6, using the number f temperature voltage signal from the analog / digital converter c 3 04, The temperature calibration coefficient and the predetermined operating temperature of the above-mentioned angular rate generator and acceleration generator are used to calculate a digital temperature control instruction, and the digital temperature control instruction is sent to a digital / analog converter c30 3 〇digital / analog converter c3 〇3 will come from the above digital temperature controller = 30 6 The temperature control command is converted into an analog signal, and the analog signal is output to a heater c20, so as to generate appropriate heat to ensure the predetermined operating temperature of the IM ϋ of the present invention. Further, as shown in the nineteenth figure, if the The voltage signal generated by the induction generator (: 15 is too weak to allow the analog / digital converter c3 04 to read

第33頁 486576 五、發明說明(30) : — --- 另」’則熱處理c30進-步包含一連接在熱感產生器。15和數 子/模擬轉換器C303之間的第一放大器電路c3〇1,這樣, 從熱傳感產生器cl5得到電壓信號,輪入到第一放大器電 路C301放大,並抑制電壓信號中的噪音,提高信號噪音 比,放大的電壓信號輸入到模擬/數字轉換器c3〇4。 、一般地,加熱器c20需要特殊驅動電流信號,在這種 If况下,如第一十圖,熱處理(^3()進一步包含連接在數字/ 模擬轉換器c303和加熱器C20之間第二放大器電路c3〇2。 第一放大器電路c3 02放大從數字/模擬轉換器c3〇3而來的 輸入模擬信號,給加熱器c 3 0 2。 換言之,在數字/模擬轉換器c3 03中將由溫度控制器 C30 6而來的數字化溫度命令轉換成模擬信號,該信號輸入 到放大器電路c30 2。 如第二十一圖所示,有時需要一個輸入/輸出接口電 路c305把模擬數字轉換器C304和數字轉換器c303與溫度控 制器c306連接起來。在這種情況下,如第二^--圖所示, 通過模擬/數字轉換器c304採樣上述電壓信號,並數字化 該採樣號’然後’將該數字信號輸出給輸入/輸出接口 電路c3 0 5 · 如上所述’溫度控制器c 3 〇 6,使用來自模擬/數字轉 換器c3 04的數字溫度電壓信號,溫度標定係數以及預定的 上述角速率產器和加速產生器的工作溫度,來計算數字溫 度控制指令,並將該數字溫度控制指令輸出給輸入/輸出 接口電路c3 0 5。數字/模擬轉換器C303將來自輸入/輸出接Page 33 486576 V. Description of the invention (30):---- In addition, the heat treatment c30 further includes a connection to a thermal generator. The first amplifier circuit c3101 between 15 and the digital / analog converter C303. In this way, the voltage signal is obtained from the thermal sensor generator cl5, which is rotated to the first amplifier circuit C301 to amplify, and the noise in the voltage signal is suppressed. To improve the signal-to-noise ratio, the amplified voltage signal is input to the analog / digital converter c304. In general, the heater c20 requires a special drive current signal. In this case, as in the tenth figure, the heat treatment (^ 3 () further includes a second connection between the digital / analog converter c303 and the heater C20. Amplifier circuit c3 02. The first amplifier circuit c3 02 amplifies the input analog signal from the digital / analog converter c3 03 to the heater c 3 0 2. In other words, the digital / analog converter c3 03 is controlled by the temperature The digital temperature command from the controller C30 6 is converted into an analog signal, which is input to the amplifier circuit c30 2. As shown in Figure 21, sometimes an input / output interface circuit c305 is required to convert the analog-to-digital converter C304 and The digital converter c303 is connected to the temperature controller c306. In this case, as shown in the second figure, the above-mentioned voltage signal is sampled by the analog / digital converter c304, and the sampling number is then `` digitized '' The digital signal is output to the input / output interface circuit c3 0 5 · As described above, the 'temperature controller c 3 〇6' uses the digital temperature voltage signal from the analog / digital converter c3 04, and the temperature calibration coefficient And the predetermined operating temperature of the above-mentioned angular rate generator and acceleration generator to calculate a digital temperature control instruction and output the digital temperature control instruction to the input / output interface circuit c3 0 5. The digital / analog converter C303 will come from the input / Output connection

第34頁 486576 五、葵明說明(31) .口電路c305的數字溫度控制指令轉變為模擬信號,並將該 模擬信號輸出給一加熱器c2 0,以便產生適當的熱量以保 證本發明之IMU的預定的工作溫度。 ’、 如第二十二圖所示,如上所述,另一方面,第十二 圖,第十八圖,第十九圖,第二十一圖中的熱處理c3〇和 加熱器c2 0可用與熱敏產生器C15連揍模擬/數字轉換器 cl82來實現’以便接收來自熱敏產生器ci5的電壓信號。 如果由熱敏生器c 1 5產生的電壓信號太弱,以至於模擬/數 子轉換器cl82不能讀取’如第二十三圖所禾,一附加的放 大器電路cl81可連接在熱敏產生器ci5和模擬/數字轉換器 c 1 8 2 0之間,以便放大信號,壓縮信號中的噪聲,提高信 號噪聲比,經過放大後的信號,被送入模擬/數字轉換器 cl82 °通過模擬/數字轉換器cl82採樣輸入的信號,將該 放大後的信號數字化為數字信號,輸出該數字信號給姿態 航向處理器c80。 另一方面,一輸入/輸出接口電路cl 83可接在模擬/數 字轉換器cl82和姿態航向處理器c8〇之間。這樣,如第十 一圖及第二十四圖,通過模擬/數字轉換器cl82採樣輸入 的放大後的信號,並將該信號數字化為數字信號,在輸入 給姿態航向處理器c8〇之前輸出該數字信號給輸入/輸出接 口電路cl83 〇 如第十一圖所示,通過角增量和速度增量產生器C6, 產生並輸出了數字三軸角增量電壓值或真實值和三轴數字 速度增量電壓值或真實值。Page 34 486576 V. Kwai Ming's description (31). The digital temperature control instruction of the port circuit c305 is converted into an analog signal, and the analog signal is output to a heater c2 0, so as to generate appropriate heat to ensure the IMU of the present invention Predetermined operating temperature. 'As shown in the twenty-second figure, as mentioned above, on the other hand, the twelfth figure, the eighteenth figure, the nineteenth figure, the twenty-first figure, the heat treatment c30 and the heater c2 0 are available. An analog / digital converter cl82 is connected to the thermal generator C15 to realize 'in order to receive a voltage signal from the thermal generator ci5. If the voltage signal generated by the thermal generator c 1 5 is too weak to be read by the analog / digital converter cl82, as shown in Figure 23, an additional amplifier circuit cl81 can be connected to the thermal generator. Ci5 and analog / digital converter c 1 8 2 0 in order to amplify the signal, compress the noise in the signal, improve the signal-to-noise ratio, and the amplified signal is sent to the analog / digital converter cl82 ° through the analog / The digitizer cl82 samples the input signal, digitizes the amplified signal into a digital signal, and outputs the digital signal to the attitude heading processor c80. On the other hand, an input / output interface circuit cl 83 may be connected between the analog / digital converter cl 82 and the attitude heading processor c80. In this way, as in the eleventh and twenty-fourth drawings, the input amplified signal is sampled by the analog / digital converter cl82, and the signal is digitized into a digital signal, which is output before being input to the attitude heading processor c80. Digital signals are provided to the input / output interface circuit cl83. As shown in the eleventh figure, the digital three-axis angular incremental voltage value or real value and three-axis digital speed are generated and output by the angular increment and speed increment generator C6. Incremental voltage value or true value.

486576 五、發明說明(32) ' -— 為適應來自角增量和速度增量產生器“的數字三軸 增量電壓值和數字三軸速度增量電壓值,如圖25所示,次 態=向處理器c81包含一圓錐誤差補償模塊c8u,其中欠 以高速率(短周期)將來自角增量和速度增量產生器“的 入/輸出電路c 6 5的數字三軸角增量電壓值,以及來自一角〗 速率和加速度產生器標定過程的粗速角率偏置,輸入到 錐誤差補償模塊C811。在該圓錐誤差補償模塊中,使用上 述輸入的二軸角增量電壓值和粗角速度偏置計算圓錐效誤 差,以較低的速率(長周期)輸出上述三軸圓錐效應誤差和 長周期的三轴角增量電壓值。 女態航向處理器c81進一步包含一角速率補償模塊 C812和一對准旋轉向量計算模塊c815。其中,來自上述圓 ,誤差補償模c811的上述圓錐效應誤差和三轴長周期角增 量電壓值,以及來自上述角速率和加速度產生器標定過程 的角速率產生.器女<裝失准角參數’精角速率偏置誤差項, 角速率產生器刻度係數,圓錐校正刻度係數,輸入到上述 角速率補償模塊c8 1 2,以便使用輸入的圓錐效應誤差,角 速率產生器的安裝失准角,精角速率偏置誤差項以及圓校 錐正刻度係數,來補償上述輸入的三轴長周期角增量電壓 值’使用上述角速率產生器的刻度係數來將上述補償之後 $二軸長周期角增量雷壓值轉換成實際的三軸長周期角增 I值’並將上述實際的三轴長周期角增量值出到一對准旋 轉向量計算模塊C815。 姿態航向處理器c8 1進一步包含一加速度補償模塊486576 V. Description of the invention (32) '-— In order to adapt to the digital three-axis incremental voltage value and digital three-axis speed incremental voltage value from the angle increment and speed increment generator, as shown in FIG. 25, the secondary state = The processor c81 contains a cone error compensation module c8u, in which the digital triaxial angular incremental voltage from the input / output circuit c 6 5 of the angular incremental and velocity incremental generator is insufficient at a high rate (short cycle). The value, and the coarse velocity angular rate offset from the calibration process of the velocity and acceleration generator, are input to the cone error compensation module C811. In this cone error compensation module, the two-axis angular incremental voltage value and the coarse angular velocity offset input above are used to calculate the cone effect error, and the three-axis cone effect error and the long period three are output at a lower rate (long period). Shaft angle incremental voltage value. The female heading processor c81 further includes an angular rate compensation module C812 and an alignment rotation vector calculation module c815. Among them, the above-mentioned conical effect error and three-axis long period angular incremental voltage value from the above-mentioned circle, error compensation module c811, and the angular rate from the above-mentioned angular rate and acceleration generator calibration process. Device female < misalignment angle Parameter 'fine angular rate offset error term, angular rate generator scale factor, cone correction scale factor, input to the above-mentioned angular rate compensation module c8 1 2 in order to use the input cone effect error, angular rate generator misalignment angle , The precise angular rate offset error term and the positive correction factor of the round cone to compensate the input three-axis long-period angular incremental voltage value 'using the scale factor of the angular rate generator above to compensate for the two-axis long period after the above compensation The angular incremental lightning pressure value is converted into an actual three-axis long-period angular increment I value 'and the above-mentioned actual three-axis long-period angular increment value is output to an alignment rotation vector calculation module C815. The attitude course processor c8 1 further includes an acceleration compensation module

第36頁 486576 五.、發明說明(33) — " " ’ "~' C813和水平加平速度計算模塊C814。其中,來自的角增量 和速度增量產生器C6的輸入/輸出電路c 6 5的三轴速度增^ 電壓值,=及來自上述角速率產生器和加速度產生標 程加速度器件的安裝失准角,加速度偏置誤差,加速度器 件的刻度係數,輸入到一加速度補償模塊c8丨3,使用2速 度器件刻度係數將輸入的三軸速度增量電壓值轉換為實於 的二轴速度增量值,使用輸入的加速度器安裝失准和加速 度偏置誤差項,補償上述三轴速度增量中的確定性誤差, 將補償之後的三軸速度增量輸出到一水平加平速度計管 塊 c814—。 ^、 在對准旋轉向量計算模塊c815中,使用來自上述角速 率補償模塊C812的三轴角增量,來自一東向阻尼計算模塊 c8110的東向阻尼角增量,來自一北向阻尼計算模塊c8i9 # 的北向阻尼角增量,來自一垂直阻尼計算模塊以19的垂直 阻尼角速率,更新一四元數,該四元數是一向量,用以表 示上述載體的旋轉運動,該更新之後的四元數被送入一方 向餘弦陳計算模塊c816,以便使用該更新後四元數的計算 一方向餘弦矩陣。 該方向餘弦陳被輸出給一水平加速度計算模塊MM和 ;mi角提取模塊cm,以便使用來自方向餘弦陳 计异模塊C816的方餘弦矩陣計算姿態和航向角。 槿换補η:三軸速度增量被輸出到水平加平速度計算· 鈾、步^換旦^也,使用來自上述加速度補償模塊c814的三 、又曰里A自上述方向餘弦矩陳計算模塊c81 6的方向Page 36 486576 V. Description of the invention (33) — " " '" ~' C813 and horizontal leveling speed calculation module C814. Among them, the three-axis speed increase of the input / output circuit c 6 5 of the angular increment and speed increment generator C 6 ^ voltage value, and the installation of the acceleration device from the angular rate generator and the acceleration range calibration device described above are inaccurate. Angle, acceleration bias error, scale factor of the acceleration device, input to an acceleration compensation module c8 丨 3, and use the 2-speed device scale factor to convert the input three-axis speed increment voltage value to the actual two-axis speed increment value , Use the input accelerometer installation misalignment and acceleration offset error terms to compensate for the deterministic errors in the above three-axis speed increments, and output the compensated three-axis speed increments to a horizontal leveling speedometer tube block c814—. ^ In the alignment rotation vector calculation module c815, the three-axis angular increment from the above-mentioned angular rate compensation module C812, the eastward damping angular increment from an eastbound damping calculation module c8110, and the northbound damping calculation module c8i9 # are used. Northbound damping angle increment. A vertical damping calculation module updates a quaternion at a vertical damping angular rate of 19. The quaternion is a vector representing the rotation of the carrier. The quaternion after the update It is sent to a one-way cosine-Chen calculation module c816 to calculate the one-way cosine matrix using the updated quaternion. This direction cosine Chen is output to a horizontal acceleration calculation module MM and; mi angle extraction module cm to calculate the attitude and heading angle using the square cosine matrix from the direction cosine Chen calculation difference module C816. Hibiscus replacement η: The three-axis speed increment is output to the horizontal leveling speed calculation. Uranium, step ^ change den. ^ Also, use the three and three years A from the above-mentioned acceleration compensation module c814. The cosine moment calculation module c81 from the above direction. 6 directions

第37頁 486576 五、發明說明(34) 餘弦陳計算水 水平速度 c8 11〇,其中 北向水平速度 水平速度 c819 ,其 t , 向水平速度增 來自上述 角以及來自一 給垂直阻尼速 增量。 平速度增 增量被輸 ’使用來g 增量,計 增量被輸 使用來自 量,計算 姿態和航 外部傳感 率計算模 量。 、 出到上述東向阻尼速率計算模塊 上述水平加速度計算模塊c 8丨4的 异東向阻尼角速率增量。 出到上述東向阻尼速率計算模塊 上述水平加速度計算模塊c 814的東 北向阻尼角速率增.量。 向角提取模塊c 817計算出來的航向 器c 9 0的測量出來的航向角被輸入 塊c8 1 8,以便計算垂直阻尼角速率 東向阻尼角速率增量、Λ向阻尼角速率增量及垂直阻 尼速率增量被反饋給上述對准旋轉向量計算模塊c 815, 以便阻尼姿態和航向角誤差的漂移。 曰為適應來自角增量和速度增量產生器c6的數字三軸角 增篁實=值和數字三轴速度增量實際值,如第二十五圖所 不,以南速率(短周期)輪入來自角增量和速度增量產生器 字三轴角增量值,以及來自一角速率和加速度產生 器標定過程的粗速角率偏置,到一圓錐誤差補償模塊 c81^,在該圓雜誤差補償模塊中,使用上述輸入的三轴角 增里值和粗角速度偏置計算圓錐效誤差,以較低的速率 (長周期)輸出上述三轴圓錐效應誤差和長周期的三轴角增 量值,給一角速率補償模塊C812。 來自上述圓錐誤差補償模c811的上述圓錐效應誤差和Page 37 486576 V. Description of the invention (34) Cosine Chen calculates the water horizontal velocity c8 11〇, where the northward horizontal velocity horizontal velocity c819, whose t, increases toward the horizontal velocity from the above angle and from a given vertical damping velocity increment. The flat speed increase and increment are inputted, which are used to increase the g, and the metered increments are inputted to calculate the modulus using attitude and external sensing rate. The different eastward damping angular rate increments to the above-mentioned eastward damping rate calculation module c 8 丨 4. To the east-side damping rate calculation module mentioned above, the north-south damping angular rate increase amount of the horizontal acceleration calculation module c 814 mentioned above. The measured heading angle calculated by the heading unit c 9 0 calculated by the direction angle extraction module c 817 is input to the block c8 1 8 in order to calculate the vertical damping angular rate eastward damping angular rate increment, the Λ damping angular rate increment, and the vertical damping. The rate increment is fed back to the above-mentioned alignment rotation vector calculation module c 815 to dampen the drift of attitude and heading angle errors. In order to adapt to the digital three-axis angular increase from the angular and speed increment generator c6, the real value and the digital three-axis speed increase actual value, as shown in the twenty-fifth figure, south of the rate (short cycle) Enter the three-axis angular increment value from the angular increment and velocity increment generator, and the coarse angular velocity offset from the calibration process of the angular rate and acceleration generator, to a cone error compensation module c81 ^, in this circle In the miscellaneous error compensation module, the conical effect error is calculated by using the input three-axis angular increase and the coarse angular velocity offset, and the above-mentioned three-axis conical effect error and long-period three-axis angular increase are output at a lower rate (long period). The value is given to an angular rate compensation module C812. The above-mentioned cone effect error sum from the above-mentioned cone error compensation module c811

五、發明說明(35) · ,周期角增量值,以及來自上述角速率和加速度產生 置:疋過程的角速率產生器安裝失准角參數,精角速率偏 ^誤差項,及圓錐校正刻度係數,被輸入到上述角速率補 二模塊C812,使用輸入的圓錐效應誤差,角速率產生器的 $裝失准角’精角速率偏置誤差項以及圓校錐正刻度係 • 來補償上述輸入的三軸長周期角增量值,並將上述實 際的二轴長周期角增量值出到一對准旋轉向量計算模塊 c 81 5 〇 、來自的角增量和速度增量產生器c6的三軸速度增量, ^及來自上述角速率產生器和加速度產生標定過程加速度 器2的安裝失准角,加速度偏置誤差,被輸入到一加速度 補y模塊c8 13,使用輸入的加速度器安裝失准角加速度偏 =誤差項,補償上述三轴速度增量中的確定性誤差,將補 償之後的三軸速度增量輸出到一水平加平速度計算模塊 c8 1 4 〇 、 接下來的模塊使用來自角速率補償模塊以^的補償後 的^增量值和來自加速度補償模塊c813的三轴速度增量, 計算姿態和航向角。對上述處理模塊,這些接下來的處理 模塊與前面所述的模塊是相同的。 ^如果使用溫度補償方法,為適應來自角增量和速度增 置產生器c6的數字三轴角增量電壓值和數字三轴速度增 電壓值,如第十三圖,第二十五圖所示。以高速率(短周 期)輸入來自的角增量和速度增量產生器“的數字三軸角 增篁電壓值,以及來自一角速率和加速度產生器標定過程V. Description of the invention (35) · The incremental value of the periodic angle and the angular rate and acceleration from the above-mentioned angular rate generator installation misalignment angle parameters, the precise angular rate deviation error term, and the cone correction scale The coefficient is input to the above-mentioned angular rate complement module C812, which uses the input cone effect error, the $ install misalignment angle of the angular rate generator, the precise angular rate offset error term, and the circular cone positive scale system to compensate the above input. The three-axis long-period angular increment value, and output the above-mentioned actual two-axis long-period angular increment value to an alignment rotation vector calculation module c 81 5 〇, from the angular increment and speed increment generator c6 The three-axis speed increment, ^ and the misalignment angle and acceleration offset error of the accelerometer 2 from the above-mentioned angular rate generator and acceleration generation calibration process are input to an acceleration compensation module c8 13 and installed using the input accelerometer. Misalignment angular acceleration deviation = error term, to compensate for the deterministic error in the above-mentioned three-axis speed increment, and output the three-axis speed increment after compensation to a horizontal leveling speed calculation module c8 1 4 〇 The next module calculates the attitude and heading angle by using the ^ increment value after the ^ compensation from the angular rate compensation module and the three-axis speed increment from the acceleration compensation module c813. For the above processing modules, these subsequent processing modules are the same as those described previously. ^ If the temperature compensation method is used, in order to adapt to the digital triaxial angular incremental voltage value and digital triaxial velocity increasing voltage value from the angular increment and speed increase generator c6, as shown in Figures 13 and 25 Show. Input the digital triaxial angular increment voltage value from the angular increment and velocity increment generator at high rate (short cycle), and from the calibration process of angular velocity and acceleration generator

486576 五、發明說明(36) ^ ^ 的粗速角率偏置,到一圓錐誤差補償模塊c8 1 1,在該圓錐 誤差補償模塊中,使用上述輸入的三轴角增量電壓值和粗 角速度偏置計算圓錐效誤差,以較低的速率(長周期)輸出 上述三軸圓錐效應誤差和長周期的三軸角增量電壓值,給 一角速率補償模塊C812。 述圓錐誤 角增量電 過程的角 項,角速 輸入輸出 刻度係數 角速率產 當前溫度 圓錐效應 置誤差項 長周期角 來將上述 的三軸長 據補償三 差,並將 向量計算 差補償模c 8 11的上述圓錐效 亞值,以及來自上述角速率 速率產生器安裝失准角參數 率產生器刻度係數,圓錐校 接口電路c 1 8 3的數字溫度信 ,被輸入到上述角速率補償 生器的當前溫度;使用計算 找到角速率產生器的溫度特 誤差,角速率產生器的安裝 以及圓校錐正刻度係數,來 增量電壓值;使用上述角速 補償之後的三軸長周期角增 周期角增量值,使用角速率 軸長周期角增量值中的由於 上述實際的三轴長周期角增 模塊c815。 來自上 三轴長周期 產生器標定 率偏置誤差 數,及來自 傳感器器的 c 81 2,計算 率產生器的 使用輸入的 精角速率偏 輸入的三轴 的刻度係數 轉換成實際 溫度特性數 所引起的誤 一對准旋轉 來自的角增量和速度增 壓值,以及來自上述角速^ 加速度器件的安裝失准角, 應誤差和 和加速度 ,精角速 正刻度係 號和溫度 模塊 出的角速 性數據; 失准角, 補償上述 率產生器 量雷壓值 產生器的 溫度變化 量值出到 量產生器c6的三軸速度增量電 產生器和加速度產生標定過程 加速度偏置誤差,加速度器件486576 V. Description of the invention (36) ^ ^ coarse velocity angular rate offset, to a cone error compensation module c8 1 1 In this cone error compensation module, the three-axis angular incremental voltage value and coarse angular velocity entered above are used The offset calculation of the cone effect error is performed at a lower rate (long period) to output the above-mentioned three-axis cone effect error and the long-period three-axis angular incremental voltage value to an angular rate compensation module C812. The angular term of the incremental electrical process of the cone error angle is described. The angular velocity input and output scale coefficients and the angular rate produce the current temperature cone effect. The error term is set to the long term angle to compensate the above three-axis data. The above-mentioned cone efficiency sub-value of c 8 11 and the calibration coefficient of the angular rate parameter generator from the above-mentioned angular rate generator installation misalignment coefficient, and the digital temperature signal of the cone calibration interface circuit c 1 8 3 are inputted into the above angular rate compensation student. Current temperature of the generator; use the calculation to find the temperature error of the angular rate generator, the installation of the angular rate generator, and the positive calibration coefficient of the circular calibration cone to increase the voltage value; use the three-axis long period angular increase after the above angular speed compensation For the period angle increment value, among the angular rate axis long period angle increment values, the above-mentioned actual three-axis long period angle increment module c815 is used. The calibration rate bias error numbers from the upper three-axis long period generator and c 81 2 from the sensor are used to calculate the rate coefficients of the three-axis scale coefficients of the input of the precise angular rate offset input into the actual temperature characteristics. The misalignment caused by the angular increment and speed boost value from the rotation, as well as the above-mentioned angular velocity ^ Accuracy installation angle of the acceleration device, the error and the acceleration, the fine angular velocity positive scale number and the temperature module Angular velocity data; Misalignment angle, to compensate for the above-mentioned rate generator, the amount of temperature change of the thunder pressure value generator, the value of the three-axis speed increment generator of the amount generator c6, and the acceleration generation calibration acceleration acceleration error, acceleration Device

第40頁 486576 五、發明說明(37) 的刻度係數,及來自輸入輸出接口電路c 183的數字溫度信 號和溫度傳感器器的刻‘度係數,被輸入到一加速度補償模 塊c 8 1 3,計算加速度產生器的當前溫度;使用計算出的加 速度產生器的當前溫度查找到加速度產生器的溫度特性數 據;使用加速度器件刻度係數將輸入的三轴速度增量電壓 值轉換為實際的三轴速度增量值;使用輸入的加速度器安 裝失准,角加速度偏置誤差項,補償上述三轴速度增量中 的確定性誤差,使用加速度產生器的溫度特性數據補償三 轴長周期速度增量值中的由於溫度變化所引起的誤差,將 補償之後的三轴速度增量輸出到一水平加平速度計算模塊 c814。 ~ 接下來的模塊使用來自角速率補償模塊c8l2的補償後 的角增量值和來自加速度補償模塊C8l 3的三轴速度增量, 汁算姿態和航向角。對上述處理模塊,這些接下來的處理 模塊與前面所述的模塊是相同的。 如果使用溫度補償方法,為適應來自角增量和速度增 量產生器c6的數字三轴角增量實際值和數字三轴速度 實際值,如第十三圖,第二十圖,第二十五圖所示態 航向處理器c81進一步可被修改,以便以高速率(短周期) 輪入來自的角增量和速度增量產生器〇6的數字三轴角增量 值,以及來自一角速率和加速度產生器標定過程的粗^角 率偏置,到一圓錐誤差補償模塊c811,在該圓錐誤差補償 模塊令,使用上述輸入的三轴角增量值和粗角速度偏置叶 算圓錐效誤差,以較低的速率(長周期)輸出上述三軸圓錐Page 40 486576 V. The scale factor of the invention description (37), the digital temperature signal from the input and output interface circuit c 183, and the scale factor of the temperature sensor are input to an acceleration compensation module c 8 1 3, and calculated The current temperature of the acceleration generator; use the calculated current temperature of the acceleration generator to find the temperature characteristic data of the acceleration generator; use the acceleration device scale factor to convert the input three-axis speed increment voltage value into the actual three-axis speed increase Measured value; use the input accelerometer installation misalignment, angular acceleration offset error term to compensate for the deterministic error in the above-mentioned three-axis speed increment, and use the temperature characteristic data of the acceleration generator to compensate for the three-axis long-period speed increment value Due to the error caused by the temperature change, the three-axis speed increment after compensation is output to a horizontal leveling speed calculation module c814. ~ The following modules use the angular increment value after compensation from the angular rate compensation module c8l2 and the three-axis speed increment from the acceleration compensation module C8l 3 to calculate the attitude and heading angle. For the above processing modules, these subsequent processing modules are the same as those described previously. If the temperature compensation method is used, in order to adapt to the digital triaxial angular increment actual value and digital triaxial velocity actual value from the angular increment and velocity increment generator c6, as shown in the thirteenth figure, the twentieth figure, and the twentieth The heading processor c81 shown in the figure 5 can be further modified to turn in the angular three-axis angular increment value from the angular increment and velocity increment generator 06 at a high rate (short cycle), and from the angular rate The coarse angular rate offset of the calibration process with the acceleration generator is to a cone error compensation module c811. In this cone error compensation module, the three-axis angular increment value and the coarse angular velocity offset entered above are used to calculate the cone effect error. , Output the above triaxial cone at a lower rate (long period)

486576 五、發明說明(38) 給一角速率補償模塊 效應誤差和長周期的三轴角增量值 c812。 來自上述圓錐誤差補償模c81l的上述圓錐效應誤差和 三轴長周期角增量值,以及來自上述角速率和加速度產生 器標定過程的角速率產生器安裝失准角參數,精角速率偏 置誤差項,圓錐校正刻度係數,及來自輪出接口電路。183 的數字溫度信號和溫度傳感器器的刻度係數,被輸入到上 述角速率補償模塊C802,計算角速率產生器的當前溫度; 使用計算出的角速率產生器的當前溫度查找到角速率產生 器的溫度特性數據;使用輸入的圓錐效應誤差,角速率產 生器的安裝失准角,精角速率偏置誤差項以及圓校錐正刻 度係數,來補償上述輸入的三轴長周期角增量值;使用角 速率產生器的溫度特性數據補償三轴長周期角增量值中的 由於溫度變化所引起的誤差,並將上述實際的三轴長周期 角增量值出到一對准旋轉向量計算模塊c815。 來自輸入/輸出電路c 6 5的三轴速度增量,以及來自 上述角速率產生器和加速度產生標定過程加速度器件的安 裝失准角,加速度偏置誤差,及來自輸入輸出接口電路 C183的數字溫度信號和溫度傳感器器的刻度係數,被輸入 到了加速度補償模塊C813,計算加速度產生器的當前溫 度;使用計算出的加速度產生器的當前溫度查找到加 產生器的溫度特性數據;使用輸入的加速度器安裝 =486576 V. Description of the invention (38) Give an angular rate compensation module effect error and long-period three-axis angular increment value c812. The above-mentioned cone effect error and three-axis long period angle increment value from the above-mentioned cone error compensation module c81l, as well as the angular rate generator installation misalignment angle parameters from the above-mentioned angular rate and acceleration generator calibration process, and the precise angular rate offset error Term, cone correction scale factor, and from the wheel out interface circuit. The digital temperature signal of 183 and the scale factor of the temperature sensor are input to the above-mentioned angular rate compensation module C802 to calculate the current temperature of the angular rate generator; use the calculated current temperature of the angular rate generator to find the angular rate generator. Temperature characteristic data; use the input cone effect error, angular rate generator installation misalignment angle, fine angular rate offset error term, and circular calibration cone positive scale coefficient to compensate the three-axis long period angle increment value input above; The temperature characteristic data of the angular rate generator is used to compensate the error caused by the temperature change in the three-axis long-period angular increment value, and the actual three-axis long-period angular increment value is output to an alignment rotation vector calculation module. c815. Three-axis speed increment from the input / output circuit c 6 5 and the installation misalignment angle, acceleration bias error, and digital temperature from the input-output interface circuit C183 from the angular rate generator and acceleration generation calibration process described above The scale coefficients of the signal and temperature sensor are input to the acceleration compensation module C813 to calculate the current temperature of the acceleration generator; use the calculated current temperature of the acceleration generator to find the temperature characteristic data of the plus generator; use the input accelerometer Install =

加速度偏置誤差項,補償上述三轴連度增量中的確定性誤 差;使用加速度產生器的溫度特性數據補償三轴長周期速Acceleration bias error term to compensate for the deterministic error in the above-mentioned three-axis continuity increment; use the temperature characteristic data of the acceleration generator to compensate the three-axis long-cycle speed

五、發明說明(39) ,增里值中的由於溫度變化所引起的誤差,將補償之後的 三轴速度增量輸出到一水平加平速度計算模塊c8U。 接下來的模塊使用來自角速率補償模塊c812的補償後的角 增量值和來自加速度補償模塊c8丨3的三軸速度增量,計算 姿^和航向角。對上述處理模塊,這些接下來的處理模塊 與前面所述的模塊是相同的。 一。如第二十五圖所示,位置速度姿態處理模塊c82包含: 一圓錐誤差補償模塊c82〇l,該模塊與姿態航向處理器c81 的圓錐誤差補償模塊C811 —樣。 一角速率補償模塊C8202,該模塊與姿態航向處理器 的角速率補償模塊c812 一樣。 二對准旋轉向量計算模塊C820 5,該模塊與姿態航向 處理器c81的角速率補償模塊c815 一樣。 ^方向餘弦陳計算模塊c8206,該模塊與姿態航向處 理器c81的角速率補償模塊c816 一樣。 一加速度補償模塊c82〇3,該模塊與姿態航向處理器 c81的加速度補償模塊c813 一樣。 ★ 水平加平速度計算模塊c820 4,該模塊與姿態航向 处 的水平加平速度計算模塊c8U 一樣。 ♦ w ί態和航向角提取模塊C820 9,該模塊與姿態航向 ^ C的姿態和航向角提取模塊c8 1 7 —樣。V. Description of the invention (39), the error caused by temperature change in the increase value is output to the triaxial speed increment after compensation to a horizontal leveling speed calculation module c8U. The next module uses the compensated angular increment value from the angular rate compensation module c812 and the three-axis speed increment from the acceleration compensation module c8 丨 3 to calculate the attitude and heading angle. For the above processing modules, these subsequent processing modules are the same as those described previously. One. As shown in the twenty-fifth figure, the position velocity and attitude processing module c82 includes: a cone error compensation module c8201, which is the same as the cone error compensation module C811 of the attitude and orientation processor c81. An angular rate compensation module C8202, which is the same as the angular rate compensation module c812 of the attitude heading processor. The second alignment rotation vector calculation module C820 5 is the same as the angular rate compensation module c815 of the attitude heading processor c81. The ^ direction cosine Chen calculation module c8206 is the same as the angular rate compensation module c816 of the attitude heading processor c81. An acceleration compensation module c8203, which is the same as the acceleration compensation module c813 of the attitude heading processor c81. ★ Horizontal leveling speed calculation module c820 4 is the same as the horizontal leveling speed calculation module c8U at the attitude heading. ♦ State and heading angle extraction module C820 9, which is similar to the attitude and heading angle extraction module c8 1 7 of attitude heading ^ C.

置速度更新模塊c8208,該模塊接收來自水平加 平速度計算模塊C8204 ,計算位置和速度。 十加 地球和載體迷率計算模塊c8 2 07,該模塊接收位置Set the speed update module c8208, which receives the leveling speed calculation module C8204 to calculate the position and speed. Ten plus earth and carrier fan rate calculation module c8 2 07, this module receives the position

第43頁 五、發明說明(40)為 速度更新模塊c 82 08的位置和速度,計算載體從導航坐標 系到慣性坐標系的旋轉角速率,並將旋轉角速率輸入對准 旋轉向量計算模塊c82〇5。 為了滿足不同的應用系統需求,如第二十一圖和第二 十四圖,按照外部用戶要求的格式,如RS-232申行通信標 準’ RS-422申行通信標準,pC msA總線標準,1 553總線 標準’在輸入/輸出接口電路c65和輸入/輸出接口電路 c3〇5中’組裝數字三轴角增量電壓信號,數字三軸速度增 量電壓信號,以及數字溫度信號。 為了滿足不同的應用系統需求,參考第十一圖,第二 十一圖和第二十四圖,按照外部用戶要求的格式,如 RS-232申行通信標準,rS —422申行通信標準,PCI/ISA總 線標準’ 1 5 53總線標準,在輸入/輸出接口電路C65和輪入 /輸出接口電路c 305中,組裝數字三轴角增量電壓信號, 數字三軸速度增量電壓信號,以及數字溫度信號。 如上所述,本發明達到小型IMU的關鍵技術之一是採 用微小角速率產生器,其中,採用MEMS技術的微小角速率 產生器及相應的機械結構和電路板布局,如以下所示·· 本發明達到小型I Μϋ的關鍵技術之一是設計功耗很低 的]、型電路’其中’傳統的AS 1C技術可被用來將複雜的電 路縮小到一石夕片。 現有的用來製造微小角速率產生器的⑽託技術使用振 動慣性質量塊,通過克里奥里斯效應,感應載體的角速 率。克里奥里斯效應是一般振動型角速率傳感器的工作原Page 43 V. Description of the invention (40) is the position and speed of the speed update module c 82 08, calculate the rotation angular rate of the carrier from the navigation coordinate system to the inertial coordinate system, and input the rotation angular rate to the rotation vector calculation module c82 〇5. In order to meet the requirements of different application systems, such as Figures 21 and 24, according to the format required by external users, such as RS-232 application communication standard 'RS-422 application communication standard, pC msA bus standard, The 1 553 bus standard 'assembles digital triaxial angle incremental voltage signals, digital triaxial speed incremental voltage signals, and digital temperature signals in the input / output interface circuit c65 and the input / output interface circuit c305. In order to meet the requirements of different application systems, refer to Figures 11, 21 and 24. According to the format required by external users, such as RS-232 application communication standard, rS-422 application communication standard, PCI / ISA bus standard '1 53 53 bus standard, in the input / output interface circuit C65 and the wheel in / output interface circuit c 305, a digital triaxial angular incremental voltage signal, a digital triaxial speed incremental voltage signal, and Digital temperature signal. As mentioned above, one of the key technologies of the present invention to achieve a small IMU is to use a micro angular rate generator. Among them, the micro angular rate generator using MEMS technology and the corresponding mechanical structure and circuit board layout are shown below. One of the key technologies invented to achieve small I MEMS is to design a low-power], type circuit 'where' the traditional AS 1C technology can be used to reduce complex circuits to one stone. The existing panning technology used to make tiny angular rate generators uses vibrating inertial masses to sense the angular velocity of the carrier through the Creoles effect. The Creoles effect is the working principle of general vibration type angular rate sensors.

第44頁 486576 五、發明說明(41) *' : - -一-;--一~- .理。 克里奥里斯效應可解釋為,當— 知i戶私认π M:麼b 角通率施加到一平移 和振動的t貝性負量塊,則會產生克 : 率施加到和振逵的憤性晳詈檢純=旲里斯力。當一角速 接收到克里奥里斯力。該克里奥里斯力= 向的is:六。命a 產生7口傳感is轴 被測量。以 正比於施加的角速率。進而,角速率可 蓋斯奥5斯ί或加速度是命名與法國物理和數學家, 二·克里奧里斯(1 792—1 843 )。他在1 835年 !*、*里奥里斯力,作為在彈道計算時對地球旋轉 里奥里斯加速度作用在一繞'點以固定角速 率移動和径向移動的物體上。 得以克里奥里斯力的基本方程可表達為 * ^Coriolis ~ m^CorioUs = X ^Oscillation ) 其中’户CW&是檢測到的克里奥里斯力; 讲 是慣性質量塊的質量; 〜—是產生的克里奥里斯加速度; ^ 是輸入的角速度; 是慣性質量塊的振盪速度· , _產生的克里奥里斯加速度正比於慣性質量塊的質量、 輸入的角速度和慣性質量塊的振盪速度之積。慣性質量塊Page 44 486576 V. Description of the invention (41) * ':--a-; --a ~-. The Creoles effect can be interpreted as, when the π M: Mod b angle flux rate is applied to a translational and vibrating t-behavioral negative gage block, the gram: rate applied to and vibrating Indignation is clear; pure inspection = pure force. When a corner speed received the Creoles force. The Creoles force = is is: VI. Life a produces 7-port sensing is-axis to be measured. At proportional to the applied angular velocity. Further, the angular rate may be Geithau 5s or acceleration is named after the French physicist and mathematician, II Clioris (1792-1843). In 1 835, he and Rioris forces were used to rotate the earth during trajectory calculations. Rioris acceleration acted on objects moving at a fixed angular velocity and radially around a point. The basic equation of the Creoles force can be expressed as * ^ Coriolis ~ m ^ CorioUs = X ^ Oscillation) where 'house CW & is the detected Creoles force; it is the mass of the inertial mass block; ~ —is The generated Creoles acceleration; ^ is the input angular velocity; is the oscillation speed of the inertial mass. _ The generated Creoles acceleration is proportional to the mass of the inertial mass, the input angular velocity, and the oscillation speed of the inertial mass. product. Inertial mass

486576 五、發明說明(42) : 一一·' ""一~~ 的振盛速度的方向正交於輸入的角速度方向。 < —振動型速率產生器的主要問題是差的精度、靈敏度和 穩定性。不像MEMS加速度產生器是一種被動器件,微機械 振動型角速率產生器是一種主動傳感器。因此,應當發明 相應的高性能的電路和控制,以便更加有效地使用現有的 微機械振動型角速率產生器,達到高性能的角速率測量, 來滿足小型IMU的需求。 ^ 。因此。為了獲得振動型角速率檢測單元的角速率敏感 信號,振動驅動信號必需首先饋入振動型角速率檢測單 =,以,驅動慣性質量塊的振動,並能保持慣性質量塊恆 ς二^量。振動驅動信號的質量是一MEMS角速率產生 整體性能的關鍵。 :二十七圖和第二十八圖分別顯示了第十一圖所示本 :二的小型慣性測量組件之機械結構和電路板布局的透視 面s。該小型慣性測量組件包含布置在金屬正六面 體cl内的第一電路板c2、第二電路 ^ ^ 控制電路板c9。 #電路板“、第二電路板。7和 =一電路板“與第三電路板c7相連,產生X轴 J“號和γ轴加速度敏感信號給控制電路板c9。 羊 第一電路板c4與第三電路板c7相連,產 信號和X轴加速度敏感信號給控制電路板c9轴角速率破感 第三電路板c7與控制電路板c9相連,士· 敏感信號和Z轴加速度敏感信號給控制電路板^軸角速率 控制電路板c9遒過第三電路板。?與第一電路板c2和第486576 V. Description of the invention (42): The direction of the vibration velocity of one-to-one is orthogonal to the direction of the input angular velocity. <-The main problems of the vibration type rate generator are poor accuracy, sensitivity and stability. Unlike the MEMS acceleration generator, which is a passive device, the micromechanical vibration-type angular rate generator is an active sensor. Therefore, corresponding high-performance circuits and controls should be invented in order to more effectively use the existing micro-mechanical vibration-type angular rate generators to achieve high-performance angular rate measurements to meet the needs of small IMUs. ^. therefore. In order to obtain the angular rate sensitive signal of the vibration type angular rate detection unit, the vibration driving signal must first be fed into the vibration type angular rate detection unit =, so as to drive the vibration of the inertial mass and maintain the constant mass of the inertial mass. The quality of the vibration drive signal is key to the overall performance of a MEMS angular rate. Figure 27 and Figure 28 respectively show the perspective structure s of the mechanical structure and circuit board layout of the small inertial measurement module shown in Figure 11 as shown in Figure 11. The small inertial measurement component includes a first circuit board c2 and a second circuit ^^ control circuit board c9 arranged in a metal regular hexahedron cl. #Circuit board ", the second circuit board. 7 and = a circuit board" is connected to the third circuit board c7, and generates X-axis J "and γ-axis acceleration-sensitive signals to the control circuit board c9. The first circuit board c4 and The third circuit board c7 is connected, and the output signal and the X-axis acceleration sensitive signal are sent to the control circuit board c9 axis angular rate breaking sense. The third circuit board c7 is connected to the control circuit board c9, and the sensitive signal and the Z-axis acceleration sensitive signal are sent to the control circuit The board ^ axis angular rate control circuit board c9 passes through the third circuit board. The first circuit board c2 and the first

第46頁 別576 五、發明說明(43). " — —- 一電路板C4相連,處理來自第一電路板“、第二電路板 2、第三電路板c^x、γ、z軸角速率敏感信號和$、γ、z =加速度敏感信號,以便產生數字化的角度增量、速度增 里、位置、速度、姿態和航向測量值。 如第二十九圖,本發明的小型慣性測量組件的優選方 案之角速率產生器c5包含: 一連接在第一電路板“的乂軸振動型角速率檢測單元 c“和第一前端電路c23 ; 連接在第二電路板c4的Y轴振動型角速率檢測單元 C41和第二前端電路以;^ ; 連接在第三電路板c7的2軸振動型角速率檢測單元 c7l和第三前端電路C73 ; 三個角信號回路電路c921,該電路分別為第一電路板 :雷 電路板c4、第三電路板7設置,包含在連接在控 制電路板〇9上的八31(:芯片〇92中; 三個振動控制電路c922,該電路分別為第一電路板 雷第二電路板c4、第三電路板e7^置,包含在連 制電路板c9上的ASIC芯片c92中; 振盪器C92 5用來為X轴振動型角速率檢測單元C21、 n角速率檢測單元e41、z軸振動型角速率檢測單 考Ϊ取、信角^號回路電路C921和振動控制電路C922提供參Page 46 Don't 576 V. Description of the invention (43). — —- A circuit board C4 is connected to process the first, second, and third c ^ x, γ, and z axes from the first circuit board, the second circuit board 2, and the third circuit board. Angular rate sensitive signals and $, γ, z = acceleration sensitive signals in order to generate digital angular increment, velocity gain, position, velocity, attitude and heading measurements. As shown in Figure 29, the small inertial measurement of the present invention The angular rate generator c5 of the preferred embodiment of the module includes: a y-axis vibration type angular rate detection unit c "connected to the first circuit board" "and a first front-end circuit c23; a y-axis vibration type connected to the second circuit board c4 The angular rate detection unit C41 and the second front-end circuit are: ^; the two-axis vibration-type angular rate detection unit c7l and the third front-end circuit C73 connected to the third circuit board c7; three angular signal loop circuits c921, which are respectively The first circuit board: the thunder circuit board c4 and the third circuit board 7 are provided, which are included in the 831 (: chip 092) connected to the control circuit board 09; the three vibration control circuits c922, which are the first Circuit board Thunder Second circuit board c4, first The circuit board e7 is provided and is included in the ASIC chip c92 on the connected circuit board c9. The oscillator C92 5 is used for the X-axis vibration type angular rate detection unit C21, the n-angle rate detection unit e41, and the z-axis vibration type angular rate. Test single test capture, horn signal circuit C921 and vibration control circuit C922 provide reference

三個振動處理模塊c921, 電路板c4、第三電路板C7設置 分別為第一電路板c2、第二 ’運行於連接在控制電路板The three vibration processing modules c921, the circuit board c4, and the third circuit board C7 are provided as the first circuit board c2, and the second circuit board ′ runs on the control circuit board.

/ 〇 五、發明說明(44) ~~ ~ --- c9上的DSP (數字信號處理器)芯片組c91中。 C73 端電路⑵;帛二前端電路⑷和第三前端電路 二:構卢是一致的’用來分別條理χ、γ、ζ轴振動型角 速车檢測單元的輸出信號。每—前端電路包含: ^個阻抗轉換放大器電路c231、c431及c73i,分別連 ;相應的X、Y、z軸振動型角速率檢測單元c21、c4l及 用以把振動運動信號的阻抗,從很高的水平,大於 兆酝姆,轉換為低阻抗,小於1 〇 〇歐姆,以便獲得兩路 冷動位f信號,其為表示慣性質量塊和錨梳之間位移的交 二電壓仏號,這兩路振動位移信號被輸入給振動控制 c922 ; 一個尚通濾波器電路c232、c432及〇732,分別連接於/ 〇 5. Description of the invention (44) ~~ ~ --- In the DSP (digital signal processor) chipset c91 on c9. C73 terminal circuit ⑵; two front-end circuits ⑷ and third front-end circuits 2: The structure is the same ′ is used to organize the output signals of the χ, γ, and ζ-axis vibration-type angular velocity detection units. Each front-end circuit includes: ^ impedance conversion amplifier circuits c231, c431, and c73i, connected respectively; corresponding X, Y, and z-axis vibration-type angular rate detection units c21, c4l, and the impedance used to change the vibration motion signal High level, greater than megaohms, converted to low impedance, less than 1000 ohms, in order to obtain two cold motion f signals, which is the cross voltage 仏 sign representing the displacement between the inertial mass and the anchor comb. Two vibration displacement signals are input to vibration control c922; one pass filter circuit c232, c432 and 0732 are connected to

相應的X、γ、z軸振動型角速率檢測單元c2][、c41&cn,、 用以去除振動位移差分信號中殘餘的振動驅動信號和噪聲 以便形成過濾後的振動位移差分信號給角信號回路 c921。 X、γ、z軸振動型角速率檢測單元c2i、c41 &c7;l,除 了其敏感軸被正交配置外,在結構上是一致的。χ轴振動 型角速率檢測單元C2l用來檢測載體沿X軸的角速率,γ軸 振動型角速率檢測單元“丨用來檢測載體沿γ轴的角速率, Z轴振動型角速率檢測單元c21用來檢測載體沿Z軸的角速 率 °Corresponding X, γ, and z-axis vibration-type angular rate detection units c2] [, c41 & cn, to remove residual vibration drive signals and noise from the vibration displacement differential signal to form a filtered vibration displacement differential signal to the angular signal Circuit c921. X, γ, and z-axis vibration-type angular rate detection units c2i, c41 &c7; l, except that their sensitive axes are arranged orthogonally, are structurally identical. The χ-axis vibration type angular rate detection unit C2l is used to detect the angular rate of the carrier along the X axis, the γ-axis vibration type angular rate detection unit "丨 is used to detect the angular rate of the carrier along the γ-axis, and the Z-axis vibration type angular rate detection unit c21 Used to detect the angular velocity of the carrier along the Z axis °

X、Y、Z轴振動型角速率檢測單元c 21 v c 41及c 71都是 振動型器件,包含至少一套振動的慣性質量塊,包括調諧X, Y, Z axis vibration type angular rate detection units c 21 v c 41 and c 71 are all vibration type devices, including at least one set of vibrating inertial mass, including tuning

第48頁 486576 五、發明說明(45) 1 曰又及相應的支撐結構和器件,如電容性信號讀出器件, 並且利用克里奥里斯效應檢測載禮的角速率。 每一X、Y、Z軸振動型角速率檢測單元c2i、c21及c71 接收如下信號·· (1 )來自振動控制電路c 9 2 2的振動驅動信號,以便保 持慣性質量塊的振動; (2)來自振動器C925的載波參考振盪信號,包含電容 讀出激勵信號。 X、Y、z轴振動型角速率檢測單元c2i、c41及c71分別 利用動力學(克里奥里斯力)檢測載體的Χ、γ、Z轴角速 率’輸出如下信號: 雜Ο )角速率引起的信號,包含調制在載波參考振盪信 上的角速率位移信號,該信號輸出給第一、二、三前端 電路C2 3、C43、C73的高通濾波器電路c232、c432及 # i慣性質量塊的振動信號,包含振動位移信號,棄 ‘二2大ΐ第一、二、三前端電路C23、C43、C73的阻抗 轉換放大Is電路c231、c431&c731 ; 别動控制電路c922分別接收來自X、Y、Z轴振動 lit m ^ ^2\ ' C41 ^°71 ^ ^ t * ^ ^ ^ t及來自振盪器C925的參考拾取信號,產生已矣 相位的彳貝性質量塊的位移信號。 议為^將來自X、Y、Z轴振動型角速率檢測單元C21、 c41及C7i的慣性質量塊的振動位移信號,變揍為容易處安 五、發明說明(46) ' ----—_____ 的丨貫i丨生暂 c922包含里的振動位移信號,如圖34,振動控制電路 一义一個放大器和加法器電路c 9221,連接於第一、二、 :月;端電路c23、C43、C73的阻抗轉換放大器電路^、 及c731 ’把兩路振動位移信號放大十倍以上,以 古 ^敏度,通過把中心錨梳的信號與旁邊錨梳的信號相減円 來結合兩路振動位移信號,以形成振動位移差動信號; ^ 一個高通濾波器電路C9222,連接於放大器和加"法器 電=c9221,以便從振動位移差動信號中除去殘餘振動顧 動信號和噪聲,產生過濾後的振動位移差動信號; 一個解調器電路C9223,連接於高通濾波器電路 c9222 ’以從振盪器C92 5接收電容檢出激勵信號作為相位 參考信號,從高通濾波器C9222接收濾波後的振動位移差 動信號,並提取過濾後的振動位移差動信號的同相部分用 以產生已知相位的慣性質量塊的位移信號; 一個低通濾波器c9225,連接於解調器電路C9223,以 從輸入的慣性質量塊位移信號中除去高頻噪聲,形成低頻 慣性質量塊位移信號; 一個模擬/數字轉換器c9224,連接於低通濾波器 c 9 2 2 5,用以將模擬低頻慣性質量塊位移信號,轉換為數 字化低頻慣性質量塊位移信號,並輸出給振動處理模塊 c912 ;、 一個數字模擬轉換器c9226,對來自振動處理模塊 c 9 1 2所選的信號幅度進行處理,以便形成具有正確幅度的Page 48 486576 V. Description of the invention (45) 1 and the corresponding supporting structures and devices, such as capacitive signal readout devices, and use the Creoles effect to detect the angular rate of Ziri. Each X, Y, and Z-axis vibration-type angular rate detection units c2i, c21, and c71 receive the following signals ... (1) A vibration drive signal from a vibration control circuit c 9 2 2 in order to maintain the vibration of the inertial mass; (2) ) Carrier reference oscillation signal from vibrator C925, including capacitor readout excitation signal. The X, Y, and z-axis vibration-type angular rate detection units c2i, c41, and c71 use the kinetics (Clioris force) to detect the X, γ, and Z axis angular rates of the carrier, and output the following signals: Miscellaneous θ) caused by The signal includes the angular rate displacement signal modulated on the carrier reference oscillation signal, and this signal is output to the high-pass filter circuits c232, c432, and #i of the inertia mass block of the first, second, and third front-end circuits C2 3, C43, and C73. Vibration signals, including vibration displacement signals, discard the second, second, and third front-end circuits C23, C43, and C73. Impedance conversion amplifying Is circuits c231, c431 &c731; The fixed control circuit c922 receives signals from X and Y, respectively. , Z-axis vibration lit m ^ ^ 2 \ 'C41 ^ ° 71 ^ ^ t * ^ ^ ^ t and the reference pickup signal from the oscillator C925, to generate a displacement signal of the phase-based gaussian mass. It is proposed to change the vibration displacement signals of the inertial mass blocks from the X, Y, and Z-axis vibration-type angular rate detection units C21, c41, and C7i into easy-to-handle V. Explanation of the invention (46) '-------- The vibration displacement signal contained in _____ from the momentary c922, as shown in Figure 34, the vibration control circuit defines an amplifier and an adder circuit c 9221, connected to the first, second, and month; end circuits c23, C43, The impedance conversion amplifier circuit of C73, and c731 'amplify the two vibration displacement signals by more than ten times. With ancient sensitivity, the two vibration displacements are combined by subtracting the signal of the center anchor comb and the signal of the side anchor comb. Signal to form a vibration displacement differential signal; ^ a high-pass filter circuit C9222, connected to the amplifier and the amplifier "c9221", in order to remove the residual vibration and differential signals from the vibration displacement differential signal and generate filtering A differential signal after the vibration displacement; a demodulator circuit C9223, connected to the high-pass filter circuit c9222 'to receive the capacitor detection excitation signal from the oscillator C92 5 as a phase reference signal, and connected from the high-pass filter C9222 The filtered vibration displacement differential signal is received, and the in-phase portion of the filtered vibration displacement differential signal is extracted to generate a displacement signal of an inertial mass of a known phase. A low-pass filter c9225 is connected to the demodulator circuit. C9223, to remove high-frequency noise from the input inertial mass block displacement signal to form a low-frequency inertial mass block displacement signal; an analog / digital converter c9224 connected to a low-pass filter c 9 2 2 5 to convert the analog low frequency The inertial mass block displacement signal is converted into a digital low-frequency inertial mass block displacement signal and output to the vibration processing module c912; a digital-to-analog converter c9226 processes the signal amplitude selected from the vibration processing module c 9 1 2 so that Forming a

486576 五、發明說明(47) 振動驅動信號。 個放大器c9227 ’基於正確的頻率和幅度的振動驅 動信號’為X、Y、Z轴振動型角速率檢測單元C2i、C4i及 c71產生和放大振動驅動信號。 X、Y、Z轴振動型角速率檢測單元c2i、c41及c71中的 十貝性質篁塊的振動是由具有精確幅度的高頻正弦信號驅動 的和1供給X、Y、Z轴振動型角速率檢測單元c2i、c4i及 c71的高性能的振動驅動信號對χ、γ、z轴角速率測量值的 靈敏度和穩定度起非常重要的作用。 振動處理模塊c9 1 2接收來自振動控制電路“22的模擬 /數字轉換器C9224的已知相位的數字化低頻慣性質量塊 移信號,以便於:486576 V. Description of the invention (47) Vibration driving signal. Each amplifier c9227 'generates and amplifies vibration drive signals for the X, Y, and Z-axis vibration-type angular rate detection units C2i, C4i, and c71 based on vibration drive signals of the correct frequency and amplitude. X-, Y-, and Z-axis vibration-type angular rate detection units c2i, c41, and c71. The vibration of the ten-shell cymbals is driven by a high-frequency sinusoidal signal with a precise amplitude. The high-performance vibration drive signals of the rate detection units c2i, c4i, and c71 play a very important role in the sensitivity and stability of the angular rate measurement values of the χ, γ, and z axes. The vibration processing module c9 1 2 receives a digitized low-frequency inertial mass shift signal of known phase from the analog / digital converter C9224 of the vibration control circuit "22 to facilitate:

(1)搜索具有最南質量因子(Q)值的頻率; (2 )鎖定該頻率; 度的 c2 1 率下 (3)鎖定幅度’產生振動驅動信號,包括具有精確幅 尚頻正弦信號,給X、Y、Z轴振動型角速率檢測單元 、c41&c71,以便使慣性質量塊振動在預定的諧振頻 ,振動處理模塊c912搜索和鎖定X、Y、z轴振動型角读 率檢測單元C21、C41及c71的慣性質量塊沾4 、 洚m J |貝1貝1塊的振動頻率和幅 度。因此,數字化低頻慣性質量塊位移作 快速富立埃變換,表達在頻譜上。破首先通過離散(1) search for the frequency with the southernmost quality factor (Q) value; (2) lock the frequency; at a rate of c2 1 degrees (3) lock the amplitude 'to generate a vibration drive signal, including a sinusoidal signal with a precise amplitude and frequency X, Y, Z axis vibration type angular rate detection unit, c41 & c71, so that the inertial mass is vibrated at a predetermined resonance frequency, and the vibration processing module c912 searches for and locks the X, Y, z axis vibration type angular read rate detection unit C21 , C41 and c71 inertial masses 沾, 洚 m J | shell 1 shell 1 vibration frequency and amplitude. Therefore, the digitized low-frequency inertial mass block displacement is expressed as a fast Fourier transform on the frequency spectrum. Break first by discrete

f散快速富立埃變換是計算離散富立埃變換的有效算 去’它極大地降低了離散富立埃變換的外曾b ^ J <异置。離散富立The f-scattered fast Fourier transform is an effective algorithm for computing the discrete Fourier transform. It greatly reduces the external b ^ J < Discrete Fuli

第51頁 五、發明說明(48) ^---- 埃變換用來近似表達離散伊 ΛΑ 狀遽的昌立埃轡換 的萄立埃變換或頻譜被 、是換 一連續信號 離散信號XUT)的Ν個採樣的離散富立埃 變換由下式給定 •V-1Page 51 V. Explanation of the invention (48) ^ ---- The Angstrom transform is used to approximate the discrete ΔΔ shape of the Changli Angstrom transform (the Grad Transform or the spectrum cover is a continuous signal discrete signal XUT) The discrete Fourier transform of N samples is given by: V-1

Xs {kd) = ^ x{nT)e'JQiTnk 其中Xs (kd) = ^ x (nT) e'JQiTnk where

•·1πΊ NT ^ v ^ j ,T是内採樣時間間隔。FFT的本質是 ^ /刀叠加在一起的不同頻率的波。 &缴f ^予化低頻慣性質量塊位移信號通過離散快速富立 表達在頻譜上後,Q分析被應用在頻譜上,以便確 全局最大Q值的頻率。鎖定χ、γ、ζ軸振 大Q值的頻率,可降低功率消耗,取 ^有王局最 的因素。Q值是慣性質量塊的基本幾何^〜a激勵模式 環境條件的函數。.又、材料特性及 一鎖相環路和數字模擬轉換器近一 步用來控制和穩定 疋的頻率和幅度。 气十六圖,振動‘處理模塊c912近—步包含一個離 0^121 //f(FaSt F〇Urier TranSf〇^ 21,一個頻率和幅度數據存儲陣模塊c9122,一個 值檢測邏輯模塊c91 23及一個Q值分析和選擇邏輯模塊 c91 24,以便找到具有最大q值的頻率。 離散快速富里葉變換(Fast Fourier Transfor'in, FFT)模塊C9121,變換來自振動運動控制電路c922的模擬 數字轉換器C9224的數字化的低頻慣性質量塊的位移信 號,以便形成輸入慣性質量塊位移信號的頻幅上的幅度數 據。 又 頻率和幅度數據存儲陣模塊c91 23,接收幅度和頻譜 數據,以形成一個幅度和頻譜數據陣。 最大值檢測邏輯模塊c 9 1 2 3,將來自幅度和頻譜數據 陣的頻譜數據陣的頻譜分割為一些頻譜段,並從當地頻譜 段中選擇出具有最大幅度的頻率。 Q值分析和選擇邏輯模塊⑼]^‘,在選出的頻率上進行 Q值分析,通過計算幅度和頻帶寬度的比值,選擇頻率和 幅度。其中’计算用的頻帶寬度取每一個最大頻率點最大 值的正負二分之一之間。 進一步,振動處理模塊C912包含一個鎖相環c9125, 用作一個很窄的帶通濾波器,以排斥所選頻率的噪聲,及 產生並鎖定選定頻率的振動驅動信號。 三個角信號回路電路c921接收來自X、Y、Z軸振動型 486576 五、發明說明(50) 角速率檢測單元c21、c41及c71的角速率引起的信號,以 及來自振盪器c925的參考拾取信號,將角速率引起的信號 變換為角速率信號。如圖33,第一電路板c2、第二電路板 c4、第三電路板C7的每一個角信號回路電路c921包含: 一個電壓放大器電路C9211,用以放大來自相應的第一、 二、三前端電路c23、c43、c73高通濾波器電路(:232的過 濾後的角速率引起的信號到至少1 〇 〇 〇毫伏的程度,以形成 放大後的角速率引起的信號; 一個放大和加法器電路c9 212,用以提取放大後的角 速率化號的差異’以產生差動的角速率信號;• · 1πΊ NT ^ v ^ j, where T is the inner sampling time interval. The essence of the FFT is ^ / knife waves of different frequencies superimposed together. After the displacement signal of the low-frequency inertial mass block is expressed on the frequency spectrum by discrete fast richness, Q analysis is applied to the frequency spectrum in order to determine the frequency of the global maximum Q value. Locking the frequency of the large Q values of the χ, γ, and ζ axes can reduce the power consumption, which is the most important factor. The Q value is a function of the basic geometry of the inertial mass ^ ~ a excitation mode environmental conditions. In addition, material characteristics and a phase-locked loop and digital-to-analog converter are used to control and stabilize the frequency and amplitude of chirp. The gas sixteen diagram, vibration 'processing module c912 is near—the steps include a distance from 0 ^ 121 // f (FaSt F〇Urier TranSf〇 ^ 21, a frequency and amplitude data storage array module c9122, a value detection logic module c91 23 and A Q value analysis and selection logic module c91 24 to find the frequency with the largest q value. Discrete Fast Fourier Transfor'in (FFT) module C9121 converts the analog-to-digital converter C9224 from the vibration motion control circuit c922 Digitized low-frequency inertial mass block displacement signal in order to form the amplitude data on the frequency amplitude of the input inertial mass block displacement signal. The frequency and amplitude data storage array module c91 23 receives the amplitude and spectrum data to form an amplitude and spectrum. Data array. The maximum value detection logic module c 9 1 2 3 divides the spectrum of the spectrum data array from the amplitude and spectrum data array into some spectrum segments, and selects the frequency with the largest amplitude from the local spectrum segment. Q value analysis And selection logic module ⑼] ^ ', perform Q value analysis on the selected frequency, and calculate the ratio between the amplitude and the bandwidth Select the frequency and amplitude. The frequency band used for calculation is between plus and minus one-half of the maximum value of each maximum frequency point. Further, the vibration processing module C912 includes a phase-locked loop c9125, which is used as a very narrow bandpass. Filter to exclude the noise of the selected frequency and generate and lock the vibration drive signal of the selected frequency. Three angle signal loop circuits c921 receive X, Y, and Z axis vibration type 486576. 5. Description of the invention (50) Angular rate detection The signals caused by the angular rate of the units c21, c41, and c71, and the reference pickup signal from the oscillator c925, convert the signals caused by the angular rate into angular rate signals. As shown in FIG. 33, the first circuit board c2, the second circuit board c4 Each corner signal loop circuit c921 of the third circuit board C7 includes: a voltage amplifier circuit C9211 for amplifying high-pass filter circuits (: 232 from the corresponding first, second, and third front-end circuits c23, c43, and c73) Post-angular rate-induced signal to a level of at least 1,000 millivolts to form an amplified angular rate-induced signal; an amplifier and adder circuit c9 212, for extracting the difference of the amplified angular rate number to generate a differential angular rate signal;

一個解調器c9213,連接於放大和加法器電路C9212, 用以從差動的角速率信號和從振盪器〇925來的電容讀出激 勵信號,提取同相差動角速率信號的幅度; 一個低通濾波器C9213,連接於解調器C9213,用以去 除同相差動角速率信號的幅度信號的高頻噪聲,以形成角 速率信號輸出給角增量和速度增量產生器C6。 如第二十七圖、第二十八圖及第二十九圖,ci〇本發 明的小型慣性測量組件的優選方案之加速度產生器c 1 〇包 含:A demodulator c9213, connected to the amplifier and adder circuit C9212, is used to read the excitation signal from the differential angular rate signal and the capacitor from the oscillator 0925 to extract the amplitude of the in-phase differential angular rate signal; a low The pass filter C9213 is connected to the demodulator C9213, and is used to remove the high frequency noise of the amplitude signal of the in-phase differential angular rate signal to form an angular rate signal and output it to the angular increment and velocity increment generator C6. As shown in Figure 27, Figure 28, and Figure 29, the acceleration generator c 1 of the preferred solution of the small inertial measurement module of the present invention ci includes:

一 X轴加速度計c42,它位於第二電路板C4上並和控制 電路板c9中的AS 1C芯片c92的角增量和速度增量產生器C6 相連; 一Y轴加速度計c22,它位於第一電路板C2上並和控制 電路板c9中的AS 1C芯片c92的角增量和速度增量產生器C6An X-axis accelerometer c42, which is located on the second circuit board C4 and connected to the angular increment and speed increment generator C6 of the AS 1C chip c92 in the control circuit board c9; a Y-axis accelerometer c22, which is located at the first An angular increment and velocity increment generator C6 on a circuit board C2 and the AS 1C chip c92 in the control circuit board c9

第54頁 4^6576 五、發明說明(51) 相連; 一Z轴加速度計C72,它位於第三電路板c7上並和控制 電路板c 9中的ASIC芯片c92的角增量和速度增量產生器c 6 相連。 如第十二圖12、第二十八圖和第二十九圖,本發明的 小型慣性測量組件的優選方案之熱敏感產生器c 1 5進一步 包含: 第一熱敏感產生單元c 25,用來敏感X轴振動型角速率 檢測單元c 2 1和Y轴加速度計c 2 2的溫度; 第二熱敏感產生單元c 44,用來敏感Y轴振動型角速率 檢測單元c 41和X軸加速度計c 7 2的溫度; 第三熱敏感產生單元C74,用來敏感Z轴振動型角速率 檢測單元c71和Z軸加速度計c72的溫度; 如第十二圖和第二十九圖,本發明的小型慣性測量組 件的、優選方案之加熱器C20進一步包含: 第一加熱器c25,它與X軸振動型角速率檢測單元 c21,Y軸加速度計C22及第一前端電路(;23相連,用來保持 X轴振動型角速率檢測單元C21,γ轴加速度計c22及第一前 端電路c23的預定的工作溫度; 第二加熱器c45,它與Y軸振動型角速率檢測簟元 cU,X轴加速度計C42及第二前端電路角保持 γ軸振動型角速率檢測單元c41,χ軸加速度計c42及第二 端電路c43的預定的工作溫度; 第三加熱器c75,它與Z轴振動型角速率檢測單元Page 54 4 ^ 6576 V. Description of the invention (51) Connected; a Z-axis accelerometer C72, which is located on the third circuit board c7 and the angular increment and speed increment of the ASIC chip c92 in the control circuit board c 9 The generator c 6 is connected. As shown in FIG. 12, FIG. 28, and FIG. 29, the heat-sensitive generator c 1 5 of the preferred embodiment of the small inertial measurement module of the present invention further includes: a first heat-sensitive generating unit c 25, To sensitive the temperature of the X-axis vibration-type angular rate detection unit c 2 1 and the Y-axis accelerometer c 2 2; the second heat-sensitive generating unit c 44 is used to sense the Y-axis vibration-type angular rate detection unit c 41 and the X-axis acceleration Measure the temperature of c 7 2; The third heat-sensitive generating unit C74 is used to sense the temperature of the Z-axis vibration-type angular rate detection unit c71 and the Z-axis accelerometer c72; as shown in Figures 12 and 29, the present invention The preferred heater C20 of the small-scale inertial measurement component further includes: a first heater c25, which is connected to the X-axis vibration-type angular rate detection unit c21, the Y-axis accelerometer C22, and the first front-end circuit (23, and is connected with To maintain the predetermined operating temperature of the X-axis vibration-type angular rate detection unit C21, the gamma-axis accelerometer c22, and the first front-end circuit c23; the second heater c45, which is connected to the Y-axis vibration-type angular rate detection unit cU, the X-axis Accelerometer C42 and second front-end circuit Maintaining a predetermined operating temperature γ-axis vibration-type angular rate detecting unit c41, χ axis accelerometer c42 and c43 of the second end of the circuit; third heater c75, it is the Z axis vibration-type angular rate detecting unit

486576 五'發明說明(52) ;- c71 ’Z轴加速度計C72及第三前端電路〇73相、連,用4來保持 z轴振動型角速率檢測單元c71,z轴加速度計c72及第^前 端電路c73的預定的工作溫度。 如第十二圖、第二十八圖、第二十九圖、第三十一圖 和第三十五圖,本發明的小型慣性測量組件的優選方案之 熱處理器c30進一步包含三個相同的熱控制電路c923和運 行在DSP芯片組C91的熱控制計算模塊c91 i。 每一熱控制電路C923進一步包含: 第一放大器電路C9231,它與相應的X、γ、z轴熱敏感 產生單元c24、c44和c74相連,用來放大來自相應的X、 Y、Z轴熱敏感產生單元c24、c44和c74的信號並壓縮其中 的噪聲,提高信號噪聲比; 一個模擬/數字轉換器c9232,連接於放大器電路 c 9 2 3 1,用來採樣溫度電壓信號,並將採樣的溫度電壓信 號數字化為數字信號,輸出給熱控制計算模塊c 9丨i ; 一個數字模擬轉換器C9233,用來將來自熱控制計算 模塊c911的數字溫度指令,轉換為模擬信號; 第二放大器電路c 9234,用來接收並放大來自數字模 擬轉換器c9233的模擬信號,以便驅動相應的第一、二、 三加熱器c25、c45、c75和閉合溫度控制回路。 熱控制計算模塊C91 1使用來自模擬/數字轉換器c9233 的數字溫度電壓信號,溫度標定係數以及預定的上述角速 率產器和加速產生器的工作溫度,來計算數字溫度指令, 並將該數字溫度指令送入一數字/模擬轉換器c923.3。486576 Five 'invention description (52);-c71' Z-axis accelerometer C72 and third front-end circuit 〇73 are connected, use 4 to maintain z-axis vibration type angular rate detection unit c71, z-axis accelerometer c72 and ^ The predetermined operating temperature of the front-end circuit c73. As shown in the twelfth, twenty-eighth, twenty-ninth, thirty-first, and thirty-fifth figures, the thermal processor c30 of the preferred solution of the small inertial measurement module of the present invention further includes three Thermal control circuit c923 and thermal control calculation module c91 i running on DSP chipset C91. Each thermal control circuit C923 further includes: a first amplifier circuit C9231, which is connected to the corresponding X, γ, and z-axis heat-sensitive generating units c24, c44, and c74, and is used to amplify the heat from the corresponding X, Y, and Z-axis heat-sensitive Generate the signals of units c24, c44 and c74 and compress the noise in them to improve the signal-to-noise ratio; an analog / digital converter c9232 is connected to the amplifier circuit c 9 2 3 1 and is used to sample the temperature voltage signal and the sampled temperature The voltage signal is digitized into a digital signal and output to the thermal control calculation module c 9 丨 i; a digital-to-analog converter C9233 is used to convert the digital temperature command from the thermal control calculation module c911 into an analog signal; the second amplifier circuit c 9234 It is used to receive and amplify the analog signal from the digital-to-analog converter c9233, so as to drive the corresponding first, second and third heaters c25, c45, c75 and the closed temperature control loop. The thermal control calculation module C91 1 uses the digital temperature voltage signal from the analog / digital converter c9233, the temperature calibration coefficient, and the predetermined operating temperature of the above-mentioned angular rate generator and acceleration generator to calculate a digital temperature command, and the digital temperature The instruction is sent to a digital / analog converter c923.3.

第56頁 486576 五、發明說明(53) — ~' 一~--~-- 為了得到-高性能、全功能的小型刚,本發明的 ?貝j測篁組件的優選方案之第一電路板c2、第二電路 C所述二電路板C 7和控制電路板C 9的一特別封裝方法如下 如第二十七圖、第二十 發明的小型慣性測量組件的 樹脂將第三電路板C7粘接於 基樹脂將第一電路板c2、第 行地與第三電路板C7粘接。 八圖和第二十九圖所示,在本 優選方案中,使用導電環氧基 移支撐結構’使用非導電環氧 二電路板c4和控制電路板c9平 換句話說,以這種方式將第一電路板c2、第二電路板 c4和控制電路板c9與第三電路板c7粘接,使用第三電路板 c7作為内部連接板,因此,可避免内部連接線的需要,以 便減小尺寸。 以共地方式將第一電路板c2、第二電路板c4和控制電 路板c9與第三電路板C7組裝成了 一圓形,以便導電環氧基 樹知和支撑結構能形成一連續的地極。這樣可降低電子噪 聲水平和熱梯度。另外,這種組裝方式也可以降低由於加 速度造成的結構變形引起的IMU失准角的變化。 參照第三圖,依照本發明優選實現方案,載體自攜式 處理方法包含以下步驟·· (a)用一個慣性測量組件1敏感用戶運動產生數字角增 量和對應於載體運動的速度增量, (b )用一個哥北器2,例如一個磁傳感器,敏感地球磁 場,以測量載體的航向角,Page 56 486576 V. Description of the invention (53) — ~ 'a ~-~-In order to obtain-a high-performance, full-function, small-sized steel, the first circuit board of the preferred solution of the? J j test module of the present invention c2, a special packaging method for the two circuit boards C 7 and the control circuit board C 9 described in the second circuit C is as follows, as shown in the twenty-seventh figure, the resin of the small inertial measurement module of the twentieth invention, and the third circuit board C7 is glued The first circuit board c2, the first row, and the third circuit board C7 are bonded to the base resin. As shown in Figures 8 and 29, in this preferred solution, a conductive epoxy-based support structure is used, 'using a non-conductive epoxy circuit board c4 and a control circuit board c9. In other words, in this way, The first circuit board c2, the second circuit board c4, and the control circuit board c9 are bonded to the third circuit board c7, and the third circuit board c7 is used as the internal connection board. Therefore, the need for internal connection wires can be avoided in order to reduce the size . The first circuit board c2, the second circuit board c4, the control circuit board c9, and the third circuit board C7 are assembled into a circle in a common ground manner, so that the conductive epoxy tree and the support structure can form a continuous ground electrode. . This reduces electronic noise levels and thermal gradients. In addition, this assembly method can also reduce the variation of IMU misalignment angle caused by structural deformation caused by acceleration. Referring to the third figure, according to a preferred implementation of the present invention, the carrier self-contained processing method includes the following steps: (a) using an inertial measurement unit 1 to generate a digital angular increment and a velocity increment corresponding to the carrier motion by sensitive user motion, (b) using a Norther 2, such as a magnetic sensor, sensitive to the Earth's magnetic field to measure the heading angle of the carrier,

第57頁 ,0吣76 五、發明說明(54) 〜〜—''~ ----~ (C )用一個速度產生器,測量載體相對於它豆 動的運輪面的載體相對速度,並且 、 /、 逐 (d)利用數字角增量和速度增量信號,航向角,用戶 相對於運輸面的相對速度,在組合處理器中取得位置數 在步驟(c)中速度產生器6當運輸面是地面時為一里程 奋十。運輸面疋水面時為·流速計。 ' 步驟(d)進一步包含以下步驟: (d· 1 )利用數字角增量和速度增量信號計算慣性位置 測量; (d· 2)利用地球磁場測量計算航向角;Page 57, 0 吣 76 5. Description of the invention (54) ~~ —— '' ~ ---- ~ (C) Use a speed generator to measure the relative speed of the carrier relative to the carrier surface of the moving wheel. And, /, (d) Use the digital angle increment and speed increment signals, the heading angle, and the user's relative speed with respect to the transport surface to obtain the number of positions in the combination processor. In step (c), the speed generator 6 is When the transportation surface is on the ground, it is ten miles. When the transportation surface is on the water surface, it is a tachometer. 'Step (d) further includes the following steps: (d · 1) Calculate inertial position measurement using digital angular increment and speed increment signals; (d · 2) Calculate heading angle using geomagnetic field measurement;

。(d· 3 )利用用戶相對於地面的相對速度,為卡爾曼濾 波器在里程計處理模塊中產生一相對位置誤差測量; /d· 4)利用用戶相對於水面的相對速度,為卡爾’曼濾 波器在流速計處理模塊中產生一相對位置誤差測量; (曰d.5)通過進行卡爾曼濾波計算的方法,估計慣性定 位測量誤差,以校正慣性定位測量。 為了提高性能,本發明載體自攜式定位方法進一步包 含一第一附加處理步驟,通過一無線通信裝置與其他用戶 交換所獲得的位置信息。 為了顯不位置信息,本發明載體自攜式定位方法進/ 步包含一第二附加處理步驟,在地圖上顯示載體的位置, 並且通I利用位置L息存取地圖數據庫,顯示周圍環境信 息。. (D · 3) Using the relative speed of the user relative to the ground to generate a relative position error measurement for the Kalman filter in the odometer processing module; / d · 4) Using the relative speed of the user with respect to the water surface to be Karl'man The filter generates a relative position error measurement in the flowmeter processing module; (say d.5) Kalman filter calculation method is used to estimate the inertial positioning measurement error to correct the inertial positioning measurement. In order to improve the performance, the method for self-contained positioning of the carrier of the present invention further includes a first additional processing step to exchange the obtained position information with other users through a wireless communication device. In order to display the location information, the self-carrying positioning method of the carrier of the present invention further includes a second additional processing step, displaying the location of the carrier on the map, and accessing the map database by using the location L information to display the surrounding environment information.

第58頁 486576 五、發明說明(55) •原理上講,步驟(d· 1 )可稱為慣性導航系統處理。慣 性導航是一個通過積分速度計算位置,積分總加速度計算 速度的過程。總加速度通過計算重力加速度和非重力力加 速度的和而求得。在現代INS中,通過處於INS計算機中的 一個利用來自一組三轴慣性角速率傳感器的輸入的軟件積 分功能,來提供姿態參考。三軸角速率傳感器和加速度計 安裝於I NS機箱中的同一剛性結構,每一個剛性傳感器之 間保持準確的對準。這樣的布置被稱為捷聯式慣性導航系 統,因為慣性傳感器固連於機箱,即固連於INS所安裝的 載體。 在INS^計算模塊31中所運行的主要功能是:把角速率 成姿態,稱為姿態積分;利用姿態數據把測得的加速 3換到-個適當的導航坐標系,在該系中加速度積分為 接二,ΐ為速度積分;積分導航系速度為位置,稱為位置 —1μ &樣’涉及二個積分功能,姿態,速度,和位置, 要高精度,以保證與慣性器件的精度 比’其計算誤差可忽略不計。 所以,步驟(d.u進一步包含以下步驟: 理;d·1·1)積分角增量為姿態數據,稱為姿態積分處 ϋ | (H.j)利用姿態數據把測得的速度增量變換到一個 (d· 1· 3)積分導航系速度數據為位置數據,·稱為位置Page 58 486576 V. Description of the invention (55) • In principle, step (d · 1) can be referred to as inertial navigation system processing. Inertial navigation is a process that calculates the position by the integral velocity and calculates the velocity by the integral acceleration. The total acceleration is obtained by calculating the sum of gravitational acceleration and non-gravitational acceleration. In modern INS, attitude reference is provided by a software integration function in the INS computer that utilizes inputs from a set of three-axis inertial angular rate sensors. The three-axis angular rate sensor and accelerometer are installed in the same rigid structure in the I NS chassis, and each rigid sensor is accurately aligned. This arrangement is called strapdown inertial navigation system, because the inertial sensor is fixed to the chassis, that is, fixed to the carrier on which the INS is installed. The main function executed in the INS ^ calculation module 31 is: turning the angular rate into a posture, called a posture integral; using the posture data to change the measured acceleration 3 to an appropriate navigation coordinate system, in which the acceleration is integrated For the second, ΐ is the speed integration; the speed of the integrated navigation system is the position, which is called position—1μ & sample 'involves two integration functions, attitude, speed, and position. 'The calculation error is negligible. Therefore, step (du further includes the following steps: processing; d · 1 · 1) The integral angle increment is the attitude data, which is called the attitude integral. Ϋ | (Hj) uses the attitude data to transform the measured speed increment to one ( d · 1 · 3) Speed data of integral navigation system is position data, and is called position

系’在該系中變換後的速度增量積分為速 度稱為速度積分處理;並且 ^ 486576 五、發明說·明(56) 積分處理。In the system, the integral of the speed increment after the transformation is called speed integration processing; and 486,576 V. Invention · Ming (56) Integration processing.

在INS中,一個數學系或虛擬系被引入,其模擬一 平平台的運動’因此稱為平台季 K ,球的速,表不在這一數學平台系中。寫成緊凑的向量來 式’捷聯式慣性導航系統的速度積分方程可表示如下" 其中V為載體相對於地球的速度,表示在ρ系中。 尸疋表不在Ρ系中的比力,或者變換到數學平台系中 的加速度计輸出。 疋表示在Ρ系中的重力加速度。 ^^是表不在P系中的數學平台系相對於地球系的角速 度。 η。是表示在p系中的地球自轉速率。 為了獲得INS確定的速度方程,我們必須首先定義數 學平台系的運動。 在捷聯式INS中的Ρ系為一水平平台,所以它相對於當 地地理系N的位置可以用一個航向角α來描述。該平台系 相對於慣性系的角速度可表示為: Κ^ωηρ ^CPQn \ n ie jIn INS, a mathematical or virtual system is introduced, which simulates the motion of a flat platform ', so it is called platform season K. The speed of the ball is not in this mathematical platform system. The speed integral equation of the strap-down inertial navigation system written as a compact vector formula can be expressed as follows, where V is the velocity of the carrier relative to the earth, and is expressed in the ρ system. The cadaver table is not the specific force in the P system, or the accelerometer output converted to the math platform system.疋 represents the acceleration of gravity in the P system. ^^ is the angular velocity of the mathematical platform system relative to the Earth system that is not in the P system. η. Is the rotation rate of the earth in the p system. In order to obtain the velocity equation determined by INS, we must first define the motion of the mathematical platform system. The P system in the strapdown INS is a horizontal platform, so its position relative to the local geographic system N can be described by a heading angle α. The angular velocity of the platform system relative to the inertial system can be expressed as: κ ^ ωηρ ^ CPQn \ n ie j

第60頁 486576 五、發明說明(57) 其中 速度 是?系相對於N系的角速度。 是P系相對於N系的方向餘弦陣 < 是當地地理坐標系N系相對於地球系E系的角 程: 由於P系是一數學平台,我們可以定義它的運動。基 於上述方程,我們可獲得一個描述p系相對系運動的土方 ά 4- 我們定Ρ二來獲:导不同的INS機械編排。類比於框 架式INS,我們讓# 獲得一個所謂的自由 讓<=Qsin' 獲得一個所謂的游 糸統 完全定義了數學平台的運動。 我們 對自由方位系、统Page 60 486576 V. Description of the invention (57) Where is the speed? The angular velocity of the system relative to the N system. Is the direction cosine array of the P system relative to the N system < is the angular range of the local geographic coordinate system N system relative to the E system of the earth system: Since the P system is a mathematical platform, we can define its motion. Based on the above equation, we can obtain an earthwork describing the relative motion of the p-system. We will obtain two: to guide different INS mechanical arrangements. Analogous to the framed INS, we let # obtain a so-called freedom and let < = Qsin 'obtain a so-called tour system which completely defines the movement of the mathematical platform. We are free

第61頁 486576 五、發明說明(58) 對游移方位系統 ά: 一 K+h x 、 一旦定義了 P系的運動,我們有了一個確定的捷聯INS 速度方程。進一步,我們可獲得一個二階,非線性,時 變’常微分方程作為INS速度方程。 以地理緯度和經度的形式,INS的位置積分方程可寫成:Page 61 486576 V. Description of the invention (58) For the azimuth system for travelling: + K + h x Once the P-series motion is defined, we have a certain strapdown INS velocity equation. Further, we can obtain a second-order, nonlinear, time-varying 'ordinary differential equation as the INS velocity equation. In the form of geographic latitude and longitude, the position integral equation of INS can be written as:

卜」= —. I 之 4 —之+/z(v:s顧+ vyC〇sa) ! νηχ 1 瓦= ^7/〇c—(' cos。-| 注意到,經度方程在地球的兩個極點是奇點。在極區 經度的計算會變得很困難。在實際中,如果需要極區的導 航或仿真,我們可以引進其他的位置表示變量。例如我們 了以用N系相對於地心地球ECEF系的方向餘弦陣作為位置 變量。這樣,位置方程表示為:Bu ”= —. I of 4 — of + / z (v: sGu + vyC〇sa)! Νηχ 1 watt = ^ 7 / 〇c— ('cos.- | The pole is a singularity. The calculation of longitude in the polar region will become difficult. In practice, if navigation or simulation of the polar region is needed, we can introduce other position representation variables. For example, we use the N system relative to the center of the earth. The direction cosine array of the Earth's ECEF system is used as the position variable. In this way, the position equation is expressed as:

486576 五、發明說明(59) C; -KJC; 這是一個矩陣微分方程。其中[& |是對應於向量< I的反 對稱陣。這個微分方程沒有奇點,並且從C:;我們可以計 算表示為經度和練度的位置。然而,在這個方程中,C: 有九個元素而只有三個自由度。因此在計算中,需要進行 一個規格化手續,以保持C7 的規格化。既是,在每一個 積分步驟中,修正d,使其滿足 C:C:T:I \ ' 如果我們把I N S速度方程看作是一個非線性,時變系 統,P系中的比力和重力加速度G〃;可看作是該系統的 輸入。如果忽略重力異常,重力加速度可表示為 其中g是正常的重力,其表示為486576 V. Description of the invention (59) C; -KJC; This is a matrix differential equation. Where [& | is an antisymmetric matrix corresponding to the vector < I. This differential equation has no singularities, and from C :; we can calculate the position expressed as longitude and training. However, in this equation, C: has nine elements and only three degrees of freedom. Therefore, in the calculation, a normalization procedure is needed to maintain the normalization of C7. That is, in each integration step, modify d to satisfy C: C: T: I \ 'If we consider the INS velocity equation as a non-linear, time-varying system, the specific force and the acceleration of gravity in the P system G〃; can be seen as an input to the system. If the gravity anomaly is ignored, the acceleration of gravity can be expressed as where g is normal gravity, which is expressed as

第63頁 486576 五、發明說明(60) S = <§〇[! ~ A + Bsm2 φ]' 其中 A=l+f+m B二2· 5-f F =參考橢球的扁率 赤道重力 m = O^b/Qd \ 1 j h=高度 M=地球質量 G=萬有引力常量 在P系中的比力,尸7,是實際的加速度計輸出變換到數學 平台系: 其中广是加速度計輸出向量或比力表示在I MU或者 機體系中。為了進行這一變換,必須知道方向餘弦陣G 。 即必須獲得IMU系的姿態。在捷聯式INS中,通過高 速計算獲得姿態。正是通過姿態計算和坐標變換,建立起 了數學平台。在捷聯式I NS的實現中,姿態計算最為關P.63 486576 V. Description of the invention (60) S = < §〇 [! ~ A + Bsm2 φ] 'where A = l + f + m B = 2.2 · 5-f F = oblate equator of the reference ellipsoid Gravity m = O ^ b / Qd \ 1 jh = height M = earth mass G = specific force of the gravitational constant in the P system, corpse 7, is the actual accelerometer output transformed into the mathematical platform system: where the wide is the accelerometer output Vector or specific force is expressed in I MU or machine architecture. In order to perform this transformation, the directional cosine array G must be known. That is, the attitude of the IMU system must be obtained. In strapdown INS, attitude is obtained through high-speed calculations. It was through attitude calculations and coordinate transformations that a mathematical platform was established. In the realization of strapdown I NS, attitude calculation is the most important

第64頁 、發明說明(61) 原理上講,有許多種 的姿態。例如,歐扳角數可以被用來表示-個剛體 等等。在實際中,方向弦蜂,四.元數,歐拉參數 計算令的姿態表示。用十車和四兀數最為常用於分析和 寫為: 向餘弦陣表示,姿態微分方程可 這是一個矩陣微分方程 稱陣’其由下列方程所決定 ° [%]是對應於向量的反對 其中%疋iMU中陀螺的輸出或表示在IMU自身系上的 IMU相對於慣性空間的角速度。 豸糸上的 這個姿態方程是1階,非線性,時變常微分方程。夸 而在這,方程中’ ς:有九個元素而只有三個自由度。因 此在汁异:而要進行一個規格化手續,以保持的規 格化。既是,在每〜個積分步驟中,修正c;,k其滿足Page 64, Description of Invention (61) In principle, there are many kinds of attitudes. For example, the Euclid number can be used to represent a rigid body and so on. In practice, the directional string bee, quaternion, Euler parameter is calculated to represent the attitude of the order. The ten-car and four-unit numbers are most commonly used for analysis and written as: expressed to the cosine array, the attitude differential equation can be a matrix differential equation called matrix, which is determined by the following equation ° [%] corresponds to the opposition of the vector which % 疋 The output of the gyro in iMU or the angular velocity of the IMU relative to the inertial space on the IMU itself. This attitude equation on 豸 糸 is a first-order, nonlinear, time-varying ordinary differential equation. In this equation, ‘ς: there are nine elements and only three degrees of freedom. So it's different: a formalization process is required to maintain the standardization. That is, in every ~ integration step, modify c;, k which satisfies

第65頁 486576 五、發明說明(62) 四元數表示由於其簡潔和效率被經常用於姿態計算。 四元數姿態方程表示為: • 1 ’ -A 二 一 (〇λ i 2 其中;I是列矩陣表示形式的四元數,ω是由角速度 決 定的4 X 4矩陣Page 65 486576 V. Description of the invention (62) Quaternion representation is often used for attitude calculations because of its simplicity and efficiency. The quaternion attitude equation is expressed as: • 1 ′ -A 2 1 (0λ i 2 where; I is the quaternion of the column matrix representation, and ω is the 4 X 4 matrix determined by the angular velocity

第66頁 486576 五、發明說明(63) ‘ 個自由度。因此四元數分量由下列關係約束:· t ί + /1^2 +名 + 名=1 , 滿足這一關係的四元數稱為規格化的四元數。在姿態 方程 ^積分中,四元數的規格化很簡單。四元數和方向 餘弦陣的關係表示如下: - 乂2 cbp: 一^ Λ) Λ 人 一又。 為了把INS模型表示成緊湊形式,我們引入一個向量定 義為: X = a φ λPage 66 486576 V. Description of the invention (63) ‘degrees of freedom. The quaternion component is therefore constrained by the following relationship: · t ί + / 1 ^ 2 + name + name = 1, and a quaternion that satisfies this relationship is called a normalized quaternion. Normalization of quaternions is simple in the pose equation ^ integral. The relationship between the quaternion and the direction cosine matrix is expressed as follows:-乂 2 cbp: one ^ Λ) Λ person again. To represent the INS model in compact form, we introduce a vector definition as: X = a φ λ

VV

a φ •又a φ • again

這樣I NS的計算模型可以寫為In this way, the calculation model of I NS can be written as

第67頁 486576 五、發明說明(64) cpbfb 〇 +Page 67 486576 V. Description of the invention (64) cpbfb 〇 +

Gp ΟGp Ο

AW =[<κAW = [< κ

二①i-Cbpcofp 如第九圖,步驟(d. 5)進一步包含: (d· 5· 1 )執行運動測試,用以確定載體是否停止,以 便起動零速修正; (d. 5. 2)根據從i動測步驟的載體運動狀態,形成成 測量和時變矩陣;並且 (d. 5. 3)通過卡爾曼濾波器獲得IMU位置誤差的最優 估計。2 ① i-Cbpcofp As shown in the ninth figure, step (d. 5) further includes: (d · 5 · 1) Perform a motion test to determine whether the carrier is stopped in order to start zero speed correction; (d. 5. 2) according to Form the measurement and time-varying matrix from the motion state of the carrier in the i-motion measurement step; and (d. 5.3) obtain the optimal estimate of the IMU position error through the Kalman filter.

第九圖示出步驟的一優選實現流程。 第九圖中的參數及變量定義如下: 里程計位置改變脈沖數。The ninth figure shows a preferred implementation flow of the steps. The parameters and variables in the ninth figure are defined as follows: The odometer position changes the number of pulses.

第68頁 486576 五、發明說明(65) △τ1高速率的導航·里程計回路的時間間隔。 —/△了,丨里程計指示的速度。 SFCi以脈沖數表示的刻度係數(F/S)。 VQDC:’ |計算的里程計的速度。 ^ αΓ4 Δθ3’|水平和垂直方向的里程計偏角估計。. H 上0 L」1指示的俯仰和橫滾角。里程計機械假定沒有轉 動。 導航系統(遊移角α)的速度。 AAC,計算的和計算的航向角之和。使用ρι丁,r〇l, AAC的坐標變換必需以當前高的導航速率進行。 如第九圖,步驟(d.3)進一步包含: (d· 3· 1 )將里程計或流速計的表達在機體坐標系的速 度轉換為表達在導航坐標系的速度; (d.3.2)將里程計或流速計的速度與IMU得出的速度相 比較,得出速度差; (d· 3· 3)在一預定時間段内,積分該速度·差。 為了進一步闡明該小型IMU應用於本發明的自攜式定位方 法及系統,如第Η--圖至第三十六圖,MEMS技術及小型 IMU進一步描述如下。 微機電系統利用現有的微電子學結構,制造復雜的具 有微米量級尺寸的機器,這種機器可以具有許多功能,包 括感應、通訊和激勵,它在商用領域有廣泛的應用。 利用微機電系統傳感器的小艘種、低成本、批處理, 以及抗振動的優點來發展成本低、重量軽、微型化及準確Page 68 486576 V. Description of the invention (65) Time interval of △ τ1 high-speed navigation and odometer circuit. — / △, the speed indicated by the odometer. SFCi Scale factor (F / S) in pulse number. VQDC: ’| Speed of the calculated odometer. ^ αΓ4 Δθ3 ’| Estimation of odometer deflection angles in horizontal and vertical directions. . Pitch and roll angle indicated by 0 L ″ 1 on H.. The odometer mechanism assumes no rotation. Speed of the navigation system (travel angle α). AAC, calculated and calculated heading angle. Coordinate transformations using π, r0l, AAC must be performed at the current high navigation rate. As shown in the ninth figure, step (d.3) further includes: (d · 3 · 1) converting the speed expressed by the odometer or the flow meter in the body coordinate system to the speed expressed in the navigation coordinate system; (d.3.2) Compare the speed of the odometer or tachometer with the speed obtained by the IMU to get the speed difference; (d · 3 · 3) Integrate the speed · difference within a predetermined period of time. In order to further clarify that the small IMU is applied to the self-contained positioning method and system of the present invention, as shown in Figs. 1 to 36, the MEMS technology and the small IMU are further described as follows. Micro-electro-mechanical systems use existing microelectronics structures to make complex micron-sized machines. Such machines can have many functions, including induction, communication, and excitation, and they are widely used in commercial applications. Utilize the advantages of small size, low cost, batch processing, and vibration resistance of MEMS sensors to develop low cost, low weight, miniaturization and accuracy

第69頁 五、發明說明(66) 度高的集成微機電運動測量系 眾所週知,現有的運動慣 合與傳統的角速率傳感器或陀 角速率儀器和加速度儀器不能 本發明為運動慣性測量單 中角速率產生器和加速度產生 知到高度準確的動力境下載體 速率儀器矩陣和加速速度儀器 楔擬器。 角速率發生器,象微機電 障' ’ k供載體的三轴角速率測 如微機電加速度儀器矩陣或加 輪加度測量信號,象姿態和航 通過對來自角速率產生器的三 速度產生器的三轴加速度測量 本發明中,角速率產生器 號,通過處理而得到載體的數 里和速度增置;進一步的處理 環境下載體的姿態和航向測量 出現的微機電角速率儀器和加 到慣量測量組件中,比如微核 參考第十一圖,本發明的 下例步驟構成。 1·由角速率產生器“產生 統的想法是很直接 性測量組件的處理 螺和加速度計,但 產生的最優性能。 元提供了一種處理 器的輸出信,可以 的姿悲和航向測量 矩捧,或者角速率 角速率儀器矩陣或 量信號,加速度發 速度計矩陣,提供 向角這樣的載體運 轴角速度測量信號 信的處理來得到。 和加速度產生器的 字化的高準確度的 ,可得到高度準確 數據,本發明特別 速度儀器,這些儀 慣性測量纟且件。 載體運動測量的處 的。 方法最適 對微機電 方法。其 通過處理 ’比如角 和加速度 陀螺矩 生器,比 載體的三 動測量可 和來自加 輸出信 角速率增 的在動力 適合正在 器被組合 理方法由 三轴角速率信號,由加速度Page 69 V. Description of the invention (66) The highly integrated micro-electromechanical motion measurement system is well known. The existing motion inertia and traditional angular rate sensors or gyroscopic angular rate instruments and acceleration instruments cannot be used as a single angle measurement for motion inertia measurement. The rate generator and acceleration generator know the highly accurate dynamic environment to download body velocity instrument matrix and acceleration velocity instrument wedge. Angular rate generators, such as micro-electromechanical barriers, such as three-axis angular rate measurements such as micro-electromechanical acceleration instrument matrices or accelerometer measurement signals, such as attitude and flight through three velocity generators from angular rate generators. In the present invention, in the present invention, the angular rate generator number is processed to obtain the number of miles and the speed increase of the carrier; further processing is performed on the micro-electromechanical angular rate instrument appearing in the attitude and heading measurement of the downloading body and adding to the inertia In the measurement component, such as the microkernel, refer to the eleventh figure, and the following example steps of the present invention are constituted. 1. The idea of "generating the system by the angular rate generator" is very straightforward to measure the processing screw and accelerometer of the component, but it produces the best performance. Yuan provides a processor output signal that can measure attitude and heading moments. It can be obtained by processing the angular rate, angular rate instrument matrix, or volume signal, and the accelerometer matrix, which provides the processing of the angular velocity measurement signal signal to the carrier such as the angle. The high accuracy of the characterization of the acceleration generator can be obtained. Obtaining highly accurate data, the present invention special speed instruments, these instruments measure the inertial parts of the carrier. The method of measuring the motion of the carrier. The method is most suitable for the micro-electromechanical method. The dynamic measurement can be combined with the angular rate increase from the output signal. The dynamic fit method is combined with the three-axis angular rate signal and the acceleration.

第70頁 486576 五、發明說明(67) 產生器clO產生二轴加速度信號。 和速度增加產生中,將三㈣速率 口轉換成數子角增量以及將三軸加速度信號轉換為速度 增篁。 使用三轴角度增量和 3 ·在姿態和航向處理器c 8 〇中 三轴速度增量計算姿態與航向。 一般來講,角速率產生器“和加速度產生器C10對溫 度環境的變化非常敏感,為了改善測量的準確性,本發明 引入與上述步驟行的步驟4,如第十二圖◎步驟4是一熱控 制回路,其目地是保持予先設定的操作溫度,該溫度在 150°F和185°F之間,最好176(+_ 。步驟4進一步包 含:Page 70 486576 V. Description of the invention (67) The generator clO generates a two-axis acceleration signal. During speed and speed increase generation, the three-axis velocity port is converted into a number of angular increments and the three-axis acceleration signal is converted into a speed increase. Use the three-axis angular increment and 3 · In the attitude and heading processor c 8, the three-axis speed increment calculates the attitude and heading. Generally speaking, the angular rate generator "and the acceleration generator C10 are very sensitive to changes in the temperature environment. In order to improve the accuracy of the measurement, the present invention introduces step 4 as described above, as shown in Figure 12 ◎ Step 4 is a The purpose of the thermal control circuit is to maintain a preset operating temperature between 150 ° F and 185 ° F, preferably 176 (+ _. Step 4 further includes:

4A-1由熱敏產生器cl5產生溫度信號。 4A-2輸入溫度信號到熱處理器3〇,其目地是利用溫度 信號,溫度比例因子和予先設定的角速率產生器〇5和加速 度產生器cl 0的工作溫度計算出溫度控制的命令。 4A-3利用溫度控制命令產生驅動加熱器c2〇的驅動命 令,並且 4A-4為保證設定的步驟1到步驟3的工作溫度,將驅動 信输入加熱器C20以控制加熱器C20,產生足夠的熱量,並 得到合適的溫度。4A-1 generates a temperature signal from the thermal generator cl5. 4A-2 inputs the temperature signal to the thermal processor 30, and its purpose is to calculate the temperature control command using the temperature signal, the temperature scale factor, and the pre-set angular rate generator 05 and the operating temperature of the acceleration generator cl 0. 4A-3 uses a temperature control command to generate a drive command to drive the heater c20, and 4A-4 enters a drive letter into the heater C20 to control the heater C20 in order to ensure the set operating temperature of step 1 to step 3 to generate enough Heat and get the right temperature.

角速率發生器c5和加速度發生器cl 0的溫度特性參數 可以在一系列了角速率發生器和加速度發生器溫度特性的 標定試驗過程中得以確定。The temperature characteristic parameters of the angular rate generator c5 and the acceleration generator cl 0 can be determined during a series of calibration tests that include the angular rate generator and acceleration generator temperature characteristics.

第71頁 486576 五、發明說明(68) ~ ~ — 一' 參考第十三圖,如果不使用上述關於溫度控制回路的 步驟,為了補償角速率產生器和加速度產生器因溫度環 境改變引起的誤差,在步驟3以後,本發明進一步包括步 驟· 。3A-1由熱、敏產生器cl5產生溫度信號,由溫度數字化 器cl8產生數字化的溫度,並輸入到姿態和航向理器c8〇 ; 3A-2利用從溫^數字化儀cl8產生的角速率產生器和加速 度產生器的當則溫度得到角速率產生器和加速度產生器的 溫度特徵參數;並且Page 71 486576 V. Description of the invention (68) ~ ~ — I 'Refer to the thirteenth figure, if the above steps about the temperature control loop are not used, in order to compensate the errors caused by the temperature environment change of the angular rate generator and the acceleration generator After step 3, the invention further comprises steps ·. 3A-1 generates a temperature signal from a thermal and sensitive generator cl5, and generates a digitized temperature from a temperature digitizer cl8, and inputs it to the attitude and heading controller c8〇 3A-2 uses the angular rate generated from the temperature ^ digitizer cl8 to generate The temperature characteristics of the angular rate generator and the acceleration generator are obtained from the current temperature of the generator and the acceleration generator; and

^3A-3補償在輪入數字角度和速度增量中由熱效應產生 的誤,’並在姿態和航向處理器c80中,利甩三轴數字化 角增量和三轴速度增量計算姿態和航向角。 在上述的步驟1中,在優選的應用中,角速率產生器 一5和加速度產生gci〇是優選的微機電角速率儀器矩陣和 加速度儀器矩陣,並且它們的輸出信號是模擬電壓信號。 現有的微機電角速率和加速度傳感器利用入參考電壓產生 輸出電壓,該電壓正比於輸入電壓及載體的轉動與平動。 因此’步驟1進一步由以下步驟組成: 〇丨_· 1從角速率發生器c5得到三轴模擬角速率電壓信 號’該信號正比於載體的角速率;並且^ 3A-3 Compensate for errors caused by thermal effects in the digital angle and speed increments of the turn-in, and calculate the attitude and heading by using the three-axis digital angle increment and three-axis speed increment in the attitude and heading processor c80. angle. In step 1 described above, in a preferred application, the angular rate generator-5 and the acceleration generating gci0 are the preferred micro-electromechanical angular rate instrument matrix and the acceleration instrument matrix, and their output signals are analog voltage signals. Existing micro-electromechanical angular rate and acceleration sensors use an input reference voltage to generate an output voltage, which is proportional to the input voltage and the rotation and translation of the carrier. Therefore, 'step 1 is further composed of the following steps: 〇 丨 _ · 1 obtains a three-axis analog angular rate voltage signal from the angular rate generator c5', which is proportional to the angular rate of the carrier; and

。1 · 2從加速度產生器c 1 〇得到三轴模擬加速度電壓信 號,該信號正比於載體的加速度。 、§角速率產生器C5和加速度產生-ci〇的輸出信號對 上述步驟2而言太弱以至於不能被步驟2讀取時,上述的步. 1.2 Obtain a three-axis analog acceleration voltage signal from the acceleration generator c 1〇, which is proportional to the acceleration of the carrier. The output signals of § angular rate generator C5 and acceleration generation -ci〇 are too weak for step 2 above to be read by step 2 above.

第72頁 ^〇y/b 五、發明說明(69) · 驟1最好包括有放大作用的步驟1. 3和1. 4,以放大從角速 率'產生器c5和加速度產生—ci〇的模擬電壓輸出信號,並 抑制該信號中的噪音,如圖1 5和2 1所示。 1.3 通過第一個放大電路c6i和第二個放大電路c 67放 i二軸模擬角速率電壓信號和三轴模擬加速度電壓信號。 1 · 4放大的三轴模擬角速率信號和三軸模擬加速度號 輪入到積分器電路C62和積分器電路C68。 相應地’參考第十四圖,上述轉換的步驟2進一步包括下 例步驟:Page 72 ^ 〇y / b V. Description of the invention (69) · Step 1 preferably includes steps 1.3 and 1.4 with amplifying effect to amplify the angular rate generator 'c5 and acceleration-ci' Simulate the voltage output signal and suppress the noise in this signal, as shown in Figures 15 and 21. 1.3 Through the first amplifying circuit c6i and the second amplifying circuit c 67 put i two-axis analog angular rate voltage signal and three-axis analog acceleration voltage signal. 1 · 4 amplified three-axis analog angular rate signal and three-axis analog acceleration number are fed into the integrator circuit C62 and the integrator circuit C68. Correspondingly 'Referring to the fourteenth figure, step 2 of the above conversion further includes the following example steps:

2 · 1對三.轴模擬角速率電壓信號和三轴模擬加速度信 號作予先確定的時間間隔的積分,以累加這些信號,以此 做為予先確定的時間間隔中的原始三轴角增量和原始三轴 速度增量,以得到累加的角增量和累加的速度增量。該積 紛可消除在二轴模擬角速率電壓信號和三轴模擬加速度信 號中不與載體角速率和加速度成正比的噪音信號,以改善 化噪比消除南頻仏號。在三軸模擬角速率電壓信號和三轴 模擬加速度電壓信號中與載體的角速率和加速度成正比的 信號可以在隨後的步驟中使用。 2.2形成一個角度清零電壓脈沖和速度清零電 .X ^ * rta da αδ .丄 k 沖,分別用與角度定標和速度定標2 · 1 Integrate the three-axis analog angular rate voltage signal and three-axis analog acceleration signal at a predetermined time interval to accumulate these signals as the original three-axis angular increase in the predetermined time interval And the original three-axis speed increment to get the accumulated angular increment and the accumulated speed increment. This integration can eliminate noise signals that are not proportional to the carrier angular rate and acceleration in the two-axis analog angular rate voltage signal and the three-axis analog acceleration signal to improve the noise-to-noise ratio and eliminate the south frequency signal. In the three-axis analog angular rate voltage signal and the three-axis analog acceleration voltage signal, a signal that is proportional to the angular rate and acceleration of the carrier can be used in subsequent steps. 2.2 Form an angle zeroing voltage pulse and speed zeroing voltage. X ^ * rta da αδ. 丄 k impulse, respectively, used for angle calibration and speed calibration

2 · 3通jI二零電壓脈沖和速度清零電壓脈沖測量累 加的三轴角增篁和累加的三軸速度增量,以得到角增量叶 數和速度增量計數,以此做為數字化的角度和速度測量2 · 3 pass jI2020 voltage pulses and velocity clearing voltage pulses to measure the accumulated three-axis angular increment and the accumulated three-axis velocity increment to obtain the angular increment leaf number and velocity increment count, which are used as digitization Angle and speed measurement

486576 、發明說明(70) 為了輸出實際三個角增量·和速度增量值做為選擇的輸 出幵乂式’以取代三轴累加角增量和速度增量電壓值,經過 步驟2.3,一轉換的步驟進一步包括: 一 2·4把累加的三軸角度和速度電壓信號調整到實際的 二軸角度和速度增量電壓信號。 在積分步驟2 · 1中,三轴模擬角電壓信號和三轴模擬 加速度信號’在每一個予先設置的時間間隔的初始點被清 零’以便從零開始累加。 此外’總體上講,步驟2· 2中的角度清零電壓脈衝和 速度清零的電壓脈衝,可以由振盪器c 6 6產生的實時脈衝 來實現,如第十六圖所示。 在步驟2.3中,如第十七圖所示,累加的三軸角度和 速度增量的測量可由模擬信號到數字信號轉換器來實現。 用另一句話說,步驟2· 3本質上是把原始的三轴角度和速 度增量電壓值變成數字化的三轴角度與速度的增量的數字 化步驟。 在應用中,上述放大、和分、模擬/數字轉換器c65〇 和振盪器c6 6電路能夠用像特別應用集成電路 (Application Specific Integrated Cercruits, ASIC) 和印刷電路板(Printed Circuit Board)來實現。 如第二十一圖所示,步驟2· 3進一步包括下列步驟:486576, invention description (70) In order to output the actual three angular increments and speed increments as the selected output formula 'to replace the three-axis cumulative angle increment and speed increment voltage values, after step 2.3, a The conversion step further includes: 2 · 4 Adjusting the accumulated three-axis angle and speed voltage signals to the actual two-axis angle and speed incremental voltage signals. In the integration step 2.1, the three-axis analog angular voltage signal and the three-axis analog acceleration signal are cleared at the initial point of each preset time interval to be accumulated from zero. In addition, generally speaking, the angle clearing voltage pulse and the speed clearing voltage pulse in step 2.2 can be realized by the real-time pulse generated by the oscillator c 6 6 as shown in the sixteenth figure. In step 2.3, as shown in the seventeenth figure, the measurement of the accumulated three-axis angle and speed increment can be realized by an analog signal to digital signal converter. In other words, step 2.3 is essentially a digital step of changing the original three-axis angle and speed increment voltage value into a digitized three-axis angle and speed increment. In the application, the above-mentioned amplifier, divider, analog / digital converter c65〇 and oscillator c6 6 circuit can be implemented by using application specific integrated circuit (ASIC) and printed circuit board (Printed Circuit Board). As shown in the twenty-first figure, step 2.3 further includes the following steps:

2 · 3 · 1累加的角增量和累加的速度增量分別輸入到角 度度模擬/數字轉換器c 6 3和速度模擬/數字轉換器中。 2· 3· 2通過角度清零電壓脈衝測量累加的角度增量,The accumulated angular increment of 2 · 3 · 1 and the accumulated speed increment are input to the angle analog / digital converter c 6 3 and the speed analog / digital converter, respectively. 2 · 3 · 2 Measure the accumulated angle increment by the angle clear voltage pulse,

第74頁 五、發明說明^ ^ ^S'二------- 再通過模擬/數字韓換器盤玄外罗 角度择旦斗:二轉15 3數子化累加的角度增量,並以 送到輪入/輸出接口電路c65角'里電壓的測…將結果 2^3 3通過速度清零電壓脈衝測量累加的速度增量, 速數數H換器州數字化累加的速度增量,並以 ς曰=的计數來實現測量數化速度電壓的測量,並將結 送到輪入/輪出接口電路c65。 、 2·3·4由輪入/輸出接口電路c65輪 和速度增量的電壓值。 冑出數予化二轴角度 2二實現給具有模擬電壓輸出的熱敏產生器cl5和呈有模 1輸入的加熱器c2〇的熱處理㈡^的靈活埶、 T可以由如圖18所示的數字化反饋控制回路來實處二 亏第十八圖,上述控制回路步驟4做為選擇地包括以下步 驟: (4B-1)通過一熱敏感產生器cl5產生一電壓信號給一 模擬/數字轉換器, — (U-2)由模擬/數字轉換器c3〇4採樣該電壓信號並 數字化該電壓信號,並將該數字信號輸出給一溫度控 c30 6, 口(4B-3)通過該溫度控制器c3()6,使用該數字溫度電壓 信號,溫度標定係數以及預定的上述角速率產器和加速產 生器的工作溫度,來計算數字溫度控制指令,並將該數字 溫衰控制指令送入一數字/模擬轉換器c3〇3, (4B-4)將來自上述數字溫度控制器c3〇6的數字溫度控Page 74 V. Description of the invention ^ ^ ^ S 'two ------- and then through the analog / digital Korean converter disk Xuan Wai Luo angle selection Dandou: two rotations 15 3 the number of accumulated angular increments, And measure the voltage in the corner of the c65 sent to the wheel input / output interface circuit. Measure the result 2 ^ 3 3 by the speed zero voltage pulse to accumulate the accumulated speed increment. , And realize the measurement of the digitized speed and voltage by counting the counts, and send the junction to the wheel in / wheel out interface circuit c65. , 2 · 3 · 4 by the wheel input / output interface circuit c65 and the voltage value of the speed increment. The calculated number of two-axis angles 22 can be achieved by applying heat treatment to the thermal generator cl5 with analog voltage output and the heater c2 with mold 1 input. The digital feedback control loop actually implements the eighteenth figure. The above control loop step 4 optionally includes the following steps: (4B-1) generating a voltage signal to an analog / digital converter through a thermal sensitive generator cl5, — (U-2) The analog / digital converter c304 samples the voltage signal and digitizes the voltage signal, and outputs the digital signal to a temperature control c30 6, and the port (4B-3) passes the temperature controller c3 (6) Use the digital temperature voltage signal, the temperature calibration coefficient, and the predetermined operating temperature of the above-mentioned angular rate generator and acceleration generator to calculate a digital temperature control instruction, and send the digital temperature decay control instruction to a digital / The analog converter c303, (4B-4) converts the digital temperature control from the digital temperature controller c3006.

第75頁 486576 五、發明說明(72) 制指令轉變為莫擬信號,並將該模擬信號輸出給一加熱器 c 2 0,以便產生適當的熱量以保證上述步驟}到3所需的予 先確實的溫度。 如果由熱感應產生器cl5產生的電壓信壓號太弱,以 至於模擬/數予轉換器c304不能讀別,則在熱感產生器ci5 和數予/模擬轉換器c303之間附加具有放大作用的步驟 4-0,見第十九圖所示。 具有放大作用的步驟4-0 :從熱傳感產生器cl5得到電 壓信號,輸入到第一個放大器電路c301放大,並抑制電壓 k號中的噪音’改進噪音比,其中,放大的電壓信號輸入 到模擬/數字轉換器C304。 一般地,加熱器c20需要特殊驅動電流信號,在這種 情況下,如第二十圖,在數字/模擬轉換器c3〇3和加熱器 c20之間有一 4.5具有放大作用的處理步驟。 4B-5在第二個放大器電路c3〇2中放大從數字/模擬轉 換器c3 03而來的輸入模擬信號,並閉合溫度控制回路。 接著,如第二十圖所示,步驟4B — 4進一步由下列步驟組 成·· 4B-4A在數字/模擬轉換器c3〇3中將由溫度控制器c3〇6 而來的數字化溫度命令轉換成模擬信號,該信號輸入到放 大器電路c3 0 2。 有時,需要一個輸入/輸出接口電路c3〇5把模擬數字 轉換器c30 4和數字轉換器c3〇3與溫度.控制器C306連接起 來’如圖21所示,在這種情況下,步驟4B-2由以下步驟組Page 75 486576 V. Description of the invention (72) The control instruction is converted into a mimetic signal and the analog signal is output to a heater c 2 0 in order to generate appropriate heat to ensure the above-mentioned steps} to 3 in advance. Exact temperature. If the voltage signal generated by the thermal induction generator cl5 is too weak to be read by the analog / digital converter c304, then there is an amplification function between the thermal generator ci5 and the digital / analog converter c303. Steps 4-0 are shown in Figure 19. Step 4-0 with amplification: the voltage signal is obtained from the thermal sensor cl5 and input to the first amplifier circuit c301 to amplify and suppress the noise in the voltage k 'to improve the noise ratio, where the amplified voltage signal is input To analog / digital converter C304. In general, the heater c20 requires a special driving current signal. In this case, as shown in the twentieth chart, there is a 4.5 processing step with an amplification function between the digital / analog converter c303 and the heater c20. 4B-5 amplifies the input analog signal from the digital / analog converter c303 in the second amplifier circuit c302 and closes the temperature control loop. Then, as shown in the twentieth figure, steps 4B-4 are further composed of the following steps. 4B-4A converts the digital temperature command from the temperature controller c3006 to analog in the digital / analog converter c303. Signal, which is input to the amplifier circuit c3 0 2. Sometimes, an input / output interface circuit c305 is required to connect the analog-to-digital converter c30 4 and the digital converter c30 to the temperature. The controller C306 is shown in FIG. 21. In this case, step 4B -2 consists of the following steps

第76頁 486576 五、發明說明(73) . 成· *’ 4B-2A通過模擬/數字轉換器c3〇4採樣上述電壓信號, 並數子化該採樣信號,然後,將該數字信號輸出給輸入/ 輸出接口電路c3〇5。 從而,如圖21所示,步驟4 B-3進一步包含: 4B-3A使用來自輸入/輸出接口電路c 305的數字溫度電 壓信號,溫度傳感器刻度係數,預定的角速率產生器和加 速度產生器的工作溫度,計算數字控制指令,並將後數字 溫度控制指令反饋給輸入/輸出接口電路C3〇5。 如第二十一圖所示,步驟4B-4進一步包含: 4B - 4B通過數字/模擬轉換器c3 03將來自輸入/輸出接 口電路c30 5的數字溫度控制指令轉換為模擬信號,並將該 模擬信號出給加熱器c20,以便提供足夠的能量,以保持 整個步驟(1 )〜(3 )中的系統的工作溫度。 如第二十二圖所示,上述步驟3A-1可用一模擬/數字 轉換器cl82來實現,模擬/數字轉換器cl82是屬為具模擬 信號輸出的熱敏傳感器而設計的,如果由熱敏生器cl 5產 生的電壓信號太弱,以至於模擬/數字轉換器cl 82不能讀 取,如圖23所示,在熱敏產生器cl5和模擬/數字轉換器 cl 82之間,附加三個信號放大的處理步驟,步驟3A-1進一 步包含·· 3Α-1· 1輸入來自熱敏產生器cl 5的電壓信號給放大器 電路c 1 81,以便放大信號,壓縮信號中的噪聲,提高信號 噪聲比,經過放大後的信號,被送入模擬/數字轉換器 486576 五、發明說明(了4) cl82 〇 、3A — i· 2通過模擬/數字轉換器cl 82採樣輸入的信號, 並將該信號數字化為數字信號,輸出該數字信號給姿態航 向處理器c80。 通常,一輪入/輸出接口電路cl83需要接在模擬/數字 轉換器cl 82和姿態航向處理器c8〇之間。這樣,如第二十 四圖,步驟3A-1· 2進一步包含: 。3A —l 2A通常模擬/數字轉換器cl 82採樣輸入的信 號’並將該彳§號數字化為數字信號,輸出該數字信號給輸 入/輸出接口電路C183。 —^第十一圖所示,通過第2處理步驟,產生並輸出了 數子二轴角增量電壓值或真實值,和三轴數字速度增量電 壓值或真實值。 為適應數子二軸角增量電壓值和數字三轴速度增量電 壓值,如第一十五圖所示,上述步驟3進一步包含: 3Β· 1以高速率(短周期)輸入來自上述步驟(2)的輸入 /輸出電路C 65的數字三轴角增量電壓值,以及來自一角速 率和加速度產生器標定過程的粗速角率偏置,到一圓錐誤 差補償模塊C811,在該圓錐誤差補償模塊中,使用上述輸 入的三轴角增量電壓值和粗角速度偏置計算圓錐效誤差, 以較低的速率(長周期)輸出上述三轴圓錐效應誤差和長周 期的二轴角增量電壓值,給一角速率補償模塊c812。 3B. 2輸入來自上述圓錐誤差補償模(:811的上述圓錐 效應誤差,二轴長周期角增量電亞值,以及來自上述角速Page 76 486576 V. Description of the invention (73). * '4B-2A samples the voltage signal through the analog / digital converter c304, digitizes the sampled signal, and then outputs the digital signal to the input / Output interface circuit c305. Thus, as shown in FIG. 21, step 4 B-3 further includes: 4B-3A using the digital temperature voltage signal from the input / output interface circuit c 305, the temperature sensor scale factor, the predetermined angular rate generator and the acceleration generator. Working temperature, calculate the digital control command, and feed back the digital temperature control command to the input / output interface circuit C305. As shown in the twenty-first figure, steps 4B-4 further include: 4B-4B converts the digital temperature control instruction from the input / output interface circuit c30 5 to an analog signal through a digital / analog converter c3 03 and converts the analog The signal is given to the heater c20 so as to provide enough energy to maintain the operating temperature of the system in the entire steps (1) to (3). As shown in Figure 22, the above step 3A-1 can be implemented by an analog / digital converter cl82. The analog / digital converter cl82 is designed for a thermal sensor with an analog signal output. The voltage signal generated by the generator cl 5 is too weak to be read by the analog / digital converter cl 82. As shown in FIG. 23, between the thermal generator cl5 and the analog / digital converter cl 82, three additional Signal amplification processing steps, step 3A-1 further includes ... 3A-1. 1 input the voltage signal from the thermal generator cl 5 to the amplifier circuit c 1 81 in order to amplify the signal, compress the noise in the signal, and improve the signal noise Ratio, the amplified signal is sent to the analog / digital converter 486576 V. Description of the invention (4) cl82 〇, 3A — i · 2 The input signal is sampled by the analog / digital converter cl 82, and the signal is Digitize it into a digital signal, and output this digital signal to the attitude heading processor c80. Generally, a round input / output interface circuit cl83 needs to be connected between the analog / digital converter cl 82 and the attitude heading processor c80. Thus, as shown in Figure 24, steps 3A-1 · 2 further include:. 3A-1 2A usually the analog / digital converter cl 82 samples the input signal 'and digitizes the 彳 § number into a digital signal, and outputs the digital signal to the input / output interface circuit C183. — ^ As shown in the eleventh figure, through the second processing step, the digital two-axis angular incremental voltage value or real value and the three-axis digital speed incremental voltage value or real value are generated and output. In order to adapt to the numerical value of the incremental voltage of the two-axis angle and the incremental voltage of the digital three-axis speed, as shown in the fifteenth figure, the above step 3 further includes: 3B. (2) The digital triaxial angular incremental voltage value of the input / output circuit C 65, and the coarse velocity angular rate offset from the calibration process of the angular rate and acceleration generator, to a cone error compensation module C811, where the cone error In the compensation module, the conical effect error is calculated using the input three-axis angular incremental voltage value and the coarse angular velocity offset, and the above three-axis conical effect error and the long-period two-axis angular increment are output at a lower rate (long period) The voltage value is given to an angular rate compensation module c812. 3B. 2 Input from the above-mentioned cone error compensation mode (: the above-mentioned cone effect error of 811, the two-axis long period angle increment electric sub-value, and the above-mentioned angular velocity

第78頁 486576 五、發明說明(75) * i — 率和加速度產生器標定過程的角速率產生器安裝失准角參 數,精角速率偏置誤差項,角速率產生器刻度係數,圓錐 ,正刻度係數,到上述角速率補償模塊C812,使用輸入的 圓錐效應誤差,角速率產生器的安裝失准角,精角速率偏 置誤差項以及圓校錐正刻度係數’,來補償上述輸入的三轴 長周期角增量電壓值,使用上述角速率產生器的刻度系來 ,上述補償之後的三軸長周期角增量雷壓值轉換成實際的 二轴長周期角增量值,並將上述實際的三轴長周期角增量 值出到一對准旋轉向量計算模塊C815。 、3β· 3輸入來自步驟2的輸入/輸出電路C65的三轴速度 増ϊ ’以及來自上述角速率產生器和加速度產生標定過程 加速度器件的安裝失准角,加速度偏置誤差,加速度器件 的刻度係數,到一加速度補償模塊C813,使用加速度器件 刻度係數將輪入的三轴速度增量電壓值轉換為實際的三轴 速度增量值’使用輸入的加速度器安裝失准,角加速度偏 $誤差項’補償上述三轴速度增量中的確定性誤差,將補 償之後的三軸速度增量輸出到一水平加平速度計算模塊 C 81 4。 3B· 4在上述對准旋轉向量計算模塊⑶^中,使用來 自上述角速率補償模塊C 812的三轴角增量,來自一東向阻 尼計算模塊C 8110的的東向阻尼角增量,來自一北向阻尼 计算模塊C819的北向阻尼角增量,來自一垂直阻尼計算模 塊C810的垂直阻尼角速率,更新一四元數,該四元數是一 向量’用以表示上述載體的旋轉運動,該更新之後的四元Page 78 486576 V. Description of the invention (75) * i — Angular rate generator installation misalignment angle parameter of the rate and acceleration generator calibration process, fine angular rate offset error term, angular rate generator scale coefficient, cone, positive The scale factor, to the above-mentioned angular rate compensation module C812, uses the input cone effect error, the angular misalignment of the angular rate generator, the fine angular rate offset error term, and the positive correction factor of the circular cone to compensate The axis long period angle incremental voltage value uses the scale system of the angular rate generator described above. The three-axis long period angle incremental lightning pressure value after the compensation is converted into an actual two-axis long period angle incremental value, and the above The actual three-axis long period angle increment value is output to an alignment rotation vector calculation module C815. , 3β · 3 inputs Three-axis velocity 増 ϊ 'from the input / output circuit C65 of step 2 and the misalignment angle of the installation of the acceleration device, the acceleration offset error, and the scale of the acceleration device from the above-mentioned angular rate generator and acceleration generation calibration process Coefficient, to an acceleration compensation module C813, using the acceleration device scale coefficient to convert the wheeled three-axis speed incremental voltage value into the actual three-axis speed incremental value. The term 'compensates the deterministic error in the above-mentioned three-axis speed increase, and outputs the three-axis speed increase after compensation to a horizontal leveling speed calculation module C 81 4. 3B · 4 In the above-mentioned alignment rotation vector calculation module CD ^, the three-axis angular increment from the above-mentioned angular rate compensation module C 812 is used, and the east damping angle increment from an east-direction damping calculation module C 8110 is from a north-direction. The northbound damping angle increment of the damping calculation module C819, the vertical damping angular rate from a vertical damping calculation module C810, updates a quaternion, the quaternion is a vector 'used to represent the rotation motion of the above carrier, after the update Quaternary

第79頁 486576 五、發明說明(76) " '一~~一~'~- 數被送入一方向餘弦陳計算模塊C8丨6。, 3β. 5在上述方向餘弦陳計算模塊C816中使用上述 I元數計算一方向餘弦陣,並將該方向餘弦陳輸出給一水 平加速度計算模塊CW4和一姿態和航向角提取模塊C8n ^ 3B. 6在上述姿態和航向角提取模塊。丨7中,使用上 述方餘弦陳計算姿態和航向角,並輸出航向角到垂直阻尼 角速率計算模C818。 3B.7在上述水平加速度計算模塊C8U中,使用來自 上述加速度補償模塊C8 1 4的三轴速度增量和來自上述方向 餘弦矩陳汁算模塊C816的方向餘弦陳計算水平速度增量, 並將水平速度增量輸出到上述東向阻尼速率計算模^C8i〇 和北向阻尼速率計算模塊C81 9。 3B· 8在東向阻尼速率計算模塊C811〇中,使用來自上 述水平加速度計算模塊C814的北向速度增量,計算東向阻 尼角速率增量,並將該東向阻尼角速增量,輸出給上述對 准旋轉向量計算模塊C815。 3B.9在北向阻尼速率計模塊C819中,使用來自上述 水平加度計算模塊C814的東向速度增量,計算北向阻尼角 f率增量,並將該北向阻尼角速率增量,輸出給上述對准 旋轉向量計算模塊C81 5。Page 79 486576 V. Description of the invention (76) " '一 ~~ 一 ~' ~-The number is sent to the cosine Chen calculation module C8 丨 6 in one direction. , 3β. 5 calculates a directional cosine array in the above-mentioned direction cosine Chen calculation module C816, and outputs the direction cosine Chen to a horizontal acceleration calculation module CW4 and an attitude and heading angle extraction module C8n ^ 3B. 6 Extraction module in the above attitude and heading angle. In 丨 7, the above-mentioned square cosine Chen is used to calculate the attitude and heading angle, and output the heading angle to the vertical damping angular rate calculation module C818. 3B.7 In the above-mentioned horizontal acceleration calculation module C8U, the three-axis speed increment from the above-mentioned acceleration compensation module C8 1 4 and the direction cosine Chen from the above-mentioned direction cosine moment calculation module C816 are used to calculate the horizontal speed increase, and The horizontal velocity increment is output to the above-mentioned easting damping rate calculation module ^ C8i0 and the northing damping rate calculation module C81 9. 3B · 8 In the eastbound damping rate calculation module C811〇, the northbound velocity increase from the above-mentioned horizontal acceleration calculation module C814 is used to calculate the eastbound angular rate increase, and the eastbound angular rate increase is output to the above alignment. Rotation vector calculation module C815. 3B.9 In the northbound damping rate meter module C819, use the eastward speed increase from the above-mentioned horizontal acceleration calculation module C814 to calculate the northbound damping angle f rate increase, and output the northbound damping angular rate increase to the above pair. Quasi-rotation vector calculation module C81 5.

3Β· 10在垂直阻尼速率計算模塊C818中,使用來自上 述姿態和航向角提取模塊C817計算出來的航向角以及來自 一外部感器的測量出來的航向角,計算垂直阻尼角速率增 量’並將該垂直阻尼角速率增量,輸出給上述對准旋轉^3B. 10 In the vertical damping rate calculation module C818, the heading angle calculated from the above attitude and heading angle extraction module C817 and the measured heading angle from an external sensor are used to calculate the vertical damping angular rate increment 'and This vertical damping angular rate increment is output to the above-mentioned alignment rotation ^

第80頁 486576 五、發明說明(77) :---- 量計算模塊C815。 為適應數字三軸角增量實際值和數字三轴速度增量實 際值,如第一十五圖所示,上述步驟3b. m 3應當變 為: 3Β· 1A以咼速率(短周期)輸入來自上述步驟的輸 入/輸出電路C65的數字三軸角增量值,以及來自一角速率 和加速度產生器標定過程的粗速角率偏置,到一圓錐誤差 補償模塊C 8 11 ’在該圓錐誤差補償模塊中,使用上述輸入 的三轴角增量值和粗角速度偏置計算圓錐效誤差,以較低 的速率(長周期)輸出上述三轴圓錐效應誤差和長周期的三 轴角增量值,給一角速率補償模塊C812。 3Β·2Α輸入來自上述圓錐誤差補償模(:811的上述圓錐 效應誤差,三轴長周期角增量值,以及來自上述角速率和 加速度產生器標定過程的角速率產生器安裝失准角參數, 精角速率偏置誤差項,圓錐校正刻度係數,到上述角速率 補償模塊C8 1 2,使用輸入的圓錐效應誤差,角速率產生器 的安裝失准角,精角速率偏置誤差項以及圓校錐正刻度係 數,來補償上述輸入的三軸長周期角增量值,並將上述實. 際的三轴長周期角增量值出到一對准旋轉向量計算模瑰 C815 〇 3Β.3Α輸入來自步驟2的輸入/輸出電路C65的三轴速 度增量,以及來自上述角速率產生器和加速度產生標定過 程加速度器件的安裝失准角,加速度偏置誤差,到一加速 度補償模塊C813 ’使用輸入的加速度器安裝失准角加速度Page 80 486576 V. Description of the invention (77): ---- Quantity calculation module C815. In order to adapt to the actual value of the digital three-axis angular increment and the actual value of the digital three-axis speed increment, as shown in the fifteenth figure, the above step 3b. The digital three-axis angular increment value of the input / output circuit C65 from the above steps, and the coarse velocity angular rate offset from the angular rate and acceleration generator calibration process, to a cone error compensation module C 8 11 ' In the compensation module, the conical effect error is calculated using the input three-axis angular increment value and the coarse angular velocity offset, and the three-axis conical effect error and the long-period three-axis angular increment value are output at a lower rate (long period). Give an angular rate compensation module C812. 3Β · 2Α input from the above-mentioned cone error compensation mode (: the above-mentioned cone effect error of 811, the three-axis long period angle increment value, and the angular rate generator misalignment angle parameter from the above-mentioned angular rate and acceleration generator calibration process, Fine angular rate offset error term, cone correction scale factor, to the above-mentioned angular rate compensation module C8 1 2 using the input cone effect error, angular misalignment of the angular rate generator, fine angular rate offset error term, and round calibration Cone positive scale factor to compensate the three-axis long period angle increment value input above, and output the actual three-axis long period angle increment value to an alignment rotation vector calculation module C815 〇3Β.3Α input The three-axis speed increment of the input / output circuit C65 from step 2 and the installation misalignment angle and acceleration offset error of the acceleration device from the above-mentioned angular rate generator and acceleration generation calibration process, to an acceleration compensation module C813 'use input Accelerator Installation Misalignment Angular Acceleration

第81頁 486576 五、發明說明(μ) " -:--- 偏述三轴速度增量中的確走性誤差,將 補俏之後的二轴速度增量輸出到一水平加算模塊 C814 〇 如果使用溫度補償方法 么、由_ & & - 為適應數字三轴角增量電壓 值?數子二軸速度增量電壓值,如第十三圖,帛二十四圖 及第二十五圖所示,上述步驟3A — 2進一步包含: 3A-2.1以高速率(短周期)輸入來自上述步驟(?)的輸 入/輸出電路C6 5的數字三轴角增量電壓值,以及來自一角 速率和加速度產生器標定過程的粗速角率偏置,到一圓錐 誤差補俏模塊C 811,在該圓錐誤差補償模塊中,使用上述 輸入的二轴角增量電壓值和粗角速度偏置計算圓錐效誤 差,以較低的速率(長周期)輸出上述三轴圓錐效應誤差和 長周期的三轴角增量電壓值,給一角速率補償模塊ΜΗ。 3A-2· 2輸入來自上述圓錐誤差補償模C811的上述圓 錐效應誤差,三轴長周期角增量電亞值,以及來自上述角 速率和加速度產生器標定過程的角速率產生器安裝失准角 參數,精角速率偏置誤差項,角速率產生器刻度係數,圓 錐校正刻度係數,到上述角速率補償模塊C812,輸入來自 步驟3Α· ΐ·2的輸入輸出接口電路C813的數字溫度信號和溫 度傳感器器的刻度係數,計算角速率產生器的當前溫度, 使用計算出的角速率產生器的當前溫度查找到角速率產生 器的溫度特性數據,使用輸入:的圓錐效應誤差,角速率產 生器的安裝失准角,精角速率偏置誤差項以及圓校錐正刻 度係數,來補償上述輸入的三轴長周期角增量電壓值,使Page 81 486576 V. Description of the Invention (μ) "-: --- Partially describes the accuracy error in the three-axis speed increase, and outputs the two-axis speed increase after supplementation to a horizontal addition module C814. 〇 Is the temperature compensation method used? _ &Amp; &-To adapt to the digital triaxial angle incremental voltage value? The value of the speed increment voltage of the second axis is shown in Figures 13, 24 and 25. The above steps 3A-2 further include: 3A-2.1 input at a high rate (short cycle) from The digital triaxial angular incremental voltage value of the input / output circuit C6 5 of the above step (?), And the coarse angular velocity offset from the calibration process of the angular rate and acceleration generator, to a cone error compensation module C 811, In this cone error compensation module, the two-axis angular incremental voltage value and the coarse angular velocity offset input above are used to calculate the cone effect error, and the three-axis cone effect error and the long period three are output at a lower rate (long period). The value of the shaft angular incremental voltage is given to an angular rate compensation module MΗ. 3A-2 · 2 Input the above-mentioned cone effect error from the above-mentioned cone error compensation module C811, the triaxial long period angular increment electrical sub-value, and the angular rate generator misalignment angle from the above-mentioned angular rate and acceleration generator calibration process Parameters, fine angular rate offset error term, angular rate generator scale factor, cone correction scale factor, to the above-mentioned angular rate compensation module C812, input the digital temperature signal and temperature from the input / output interface circuit C813 of step 3A · ΐ · 2 The scale factor of the sensor, calculate the current temperature of the angular rate generator, use the calculated current temperature of the angular rate generator to find the temperature characteristic data of the angular rate generator, use the input: cone effect error, the angular rate generator's Install the misalignment angle, precise angular rate offset error term, and the positive correction factor of the circular cone to compensate the three-axis long period angle incremental voltage value input above, so that

I麵 第82頁 486576 五、發明說明(79) 用上述角速率產生器的刻度系來·將上述補償之後的三軸長 周期角增量雷壓值轉換成實際的三轴長周期角增量值,使 用角速率產生器的溫度特性數據補償三軸長周期角增量值 中的由於溫度變化所引起的誤差,並將上述實際的三轴長 周期角增量值出到一對准旋轉向量計算模塊C81 5。 3A-2· 3輸入來自步驟2的輸入/輸出電路C65的三轴速 度增量’以及來自上述角速率產生器和加速度產生標定過 程加速度器件的安裝失准角,加速度偏置誤差,加速度器 件的刻度係數,到一加速度補償模塊C81 3,輸入來自步驟 3Α· 1· 2的輸入輸出接口電路C1 83的數字溫度信號和溫度傳 感器器的刻度係數,計算加速度產生器的當前溫度,使用 計算出的加速度產生器的當前、溫度查找到加速度產生器的 溫度特性數據,使用加速度器件刻度係數將輸入的三轴速 度增量電壓值轉換為實際的三轴速度增量值,使用輸入的 加速度器安裝失准,角加速度偏置誤差項,補償上述三轴 速度增量中的確定性誤差,使用加速度產生器的溫度特性 數據補償三轴長周期速度增量值中的由於溫度變化所引起 的誤差,將補償之後的三軸速度增量輸出到一水平加平速 度計算模塊C814。 3A-2· 4在上述對准旋轉向量計算模塊C815中,使用 來自上述角速率補償模塊C812的三軸角增量,來自一東向 阻尼計算模塊C811 0的的東向阻尼角增量,來自一北向阻 尼計算模塊C81 9的北向阻尼角增量,來自一垂直阻尼計算 模塊C818的垂直阻尼角速率,更新一四元數,該四元數是I surface, page 82, 486576 V. Description of the invention (79) Use the scale system of the angular rate generator to convert the three-axis long-period angular increment lightning pressure value after the above compensation into the actual three-axis long-period angular increment. The temperature characteristics of the angular rate generator are used to compensate the errors caused by temperature changes in the three-axis long-period angular increment value, and the actual three-axis long-period angular increment value is output to an alignment rotation vector. Calculation module C81 5. 3A-2 · 3 input three-axis speed increment from input / output circuit C65 of step 2 and the above-mentioned angular rate generator and acceleration generation calibration process. Acceleration device installation misalignment angle, acceleration offset error, acceleration device's Scale coefficient, to an acceleration compensation module C81 3, input the digital temperature signal from the input and output interface circuit C1 83 of step 3A · 1 and 2 and the scale coefficient of the temperature sensor to calculate the current temperature of the acceleration generator. Use the calculated The current and temperature of the acceleration generator are used to find the temperature characteristic data of the acceleration generator. The acceleration device scale factor is used to convert the input three-axis speed incremental voltage value into the actual three-axis speed incremental value. Accuracy, angular acceleration offset error term, to compensate for the deterministic error in the above-mentioned three-axis speed increment, and use the temperature characteristic data of the acceleration generator to compensate for the error caused by temperature change in the three-axis long-period speed increment value. The three-axis speed increment after compensation is output to a horizontal leveling speed calculation module C8143A-2 · 4 In the above-mentioned alignment rotation vector calculation module C815, the three-axis angular increment from the above-mentioned angular rate compensation module C812 is used, and the eastward damping angle increment from an east-side damping calculation module C811 0 is from a north-direction. The northbound damping angle increment of the damping calculation module C81 9, the vertical damping angular rate from a vertical damping calculation module C818, updates a quaternion, the quaternion is

第83頁 486576 明說明(80) 7量,用以表示上述載體的旋轉運動,該更新之後的四 i:被送入一方向餘弦陳計算模塊〇816。, 3入-2.5~在上述方向餘弦陳計算模塊(:816中,使用上 3兀數計异一方向餘弦陣,並將該方向餘弦陳輪出給一 ^加速度計算模塊C8 1 4和一姿態和航向角提取模塊 7 〇 3A-2.6在上述姿態和航向角提取模塊⑶丨了中,使用 t方餘弦陳計算姿態和航向角,並輸出航向角到垂直阻 ^速率計算模C818。Page 83 486576 specifies the (80) 7-quantity, which is used to indicate the rotation motion of the above carrier. The four i after this update are sent to the one-direction cosine-Chen calculation module 0816. , 3 入 -2.5 ~ In the above-mentioned direction cosine Chen calculation module (: 816, use the upper 3 units to calculate the cosine array in different directions, and give the cosine Chen wheel in that direction to an acceleration calculation module C8 1 4 and an attitude. And heading angle extraction module 703A-2.6 In the above attitude and heading angle extraction module CD1, the t-square cosine Chen is used to calculate the attitude and heading angle, and output the heading angle to the vertical resistance rate calculation module C818.

3 A-2· 7在上述水平加速度計算模塊C814中,使用來自 反加速度補償模塊C8 14的三軸速度增量和來自上述方向 &矩陳汁算模塊C816的方向餘弦味計算水平速度增量, 字水平速度增量輸出到上述東向阻尼速率計算模塊 1 〇和北向阻尼速率計算模塊C81 9。 3A-2· 8在東向阻尼速率計算模塊C8110中,使用來自 足水平加速度計算模塊C8 14的北向速度增量,計算東向 匕角速率增量,並將該東向阻尼角速增量,輸出給上述 隹旋轉向量計算模塊C815。 3A-2· 9在北向阻尼速率計模塊C819中,使用來自上 火平加度計算模塊C814的東向速度增量,計算北向阻尼 ^率增量,並將該北向阻尼角速率增量,輸出給上述對 走轉向量計算模塊C815。 3A-2· 1〇在垂直阻尼速率計算模媿C818中,使用來 h述姿態和航向角提取模塊C8丨7計算出來的航向角以及3 A-2 · 7 In the above-mentioned horizontal acceleration calculation module C814, the three-axis speed increase from the inverse acceleration compensation module C8 14 and the direction cosine smell from the above-mentioned direction & moment-of-age calculation module C816 are used to calculate the horizontal speed increase. The word horizontal velocity increment is output to the above-mentioned eastbound damping rate calculation module 10 and the northbound damping rate calculation module C81 9. 3A-2 · 8 In the eastbound damping rate calculation module C8110, the northbound velocity increase from the foot horizontal acceleration calculation module C814 is used to calculate the eastward angular rate increase, and the eastbound angular velocity increase is output to the above.隹 Rotation vector calculation module C815. 3A-2 · 9 In the northbound damping rate meter module C819, use the eastward speed increase from the Shanghuo flat degree calculation module C814 to calculate the northbound damping rate increase, and output the northbound damping angular rate increase to The above-mentioned travel vector calculation module C815. 3A-2 · 10 In the vertical damping rate calculation module C818, the heading angle calculated by the attitude and heading angle extraction module C8 丨 7 and

第84頁 486576 I五、發明說明(81) 一 " ~-一 來自一外部感器的測量出來的航向角,計算垂直阻尼 率增量’並將該垂直阻尼角速率增量,輸出給上述 = 轉向量計算模塊C815。 & 如果使用溫度補償方法,為適應數字三轴角增量 值和數字三轴速度增量實際值,如圖13,24,25所示 : 述步驟3A-2· 1〜3A-2. 3應改為: ^ ’Page 84 486576 I. Description of the invention (81)-"A measured heading angle from an external sensor, calculate the vertical damping rate increment 'and output the vertical damping angular rate increment to the above = Turn vector calculation module C815. & If the temperature compensation method is used, in order to adapt to the digital triaxial angle increment value and digital triaxial speed increment actual value, as shown in Figures 13, 24, and 25: Steps 3A-2 · 1 ~ 3A-2. 3 Should read: ^ '

3Α-2·1 A以咼速率(短周期)輸入來自上述步驟(?) 的輸入/輸出電路C65的數字三軸角增量值,以及來自一角 速率和加速度產生器標定過程的粗速角率偏置,到一圓錐 誤差補償模塊C 8 11,在該圓錐誤差補償模塊中,使用上述 輸入的三轴角增量值和粗角速度偏置計算圓錐效誤差,以 較^的速率(長周期)輸出上述三轴圓錐效應誤差和長周期 的二轴角增量值,給一角速率補償模塊C812。 3Α_2·2Α輸入來自上述圓錐誤差補償模C8n的上述 圓錐效應誤差,三軸長周期角增量值,以及來自上述角速 率和加速度產生器標定過程的角速率產生器安裝失准角參 數,精角速率偏置誤差項,圓錐校正刻度係數,到上述角 速率補償模塊C812,輸入來自步驟3Α· 12的輸入輸出接 二,路C1 83的數字溫度信號和溫度傳感器器的刻度係數,3Α-2 · 1 A Input the digital triaxial angular increment value from the input / output circuit C65 of the above step (?) At a pseudo rate (short cycle), and the coarse angular rate from the angular rate and acceleration generator calibration process Offset to a cone error compensation module C 8 11, in which the three-axis angular increment and coarse angular velocity offset entered above are used to calculate the cone effect error at a relatively high rate (long period) The above-mentioned three-axis cone effect error and the long-period two-axis angular increment value are output to an angular rate compensation module C812. 3Α_2 · 2Α Input the above-mentioned cone effect error from the above-mentioned cone error compensation module C8n, the three-axis long period angle increment value, and the angular rate generator installation misalignment angle parameter from the above-mentioned angular rate and acceleration generator calibration process, fine angle Rate offset error term, cone correction scale coefficient, to the above-mentioned angular rate compensation module C812, input the input and output from step 3A · 12, then connect the digital temperature signal of C1 83 and the scale coefficient of the temperature sensor.

言|算角速率產生器的當前溫度,使用計算出的角速率產生 器的當則溫度查找到角速率產生器的溫度特性數據使用輸 ^的圓錐效應誤差,角速率產生器的安裝失准角,精角速 率偏置誤差項以及圓校錐正刻度係數,來補償上述輸入的 二轴長周期角增量值使用角速率產生器的溫度特性數據補Language | Calculate the current temperature of the angular rate generator, use the calculated current temperature of the angular rate generator to find the temperature characteristic data of the angular rate generator. Use the conical effect error of the input, and the angular misalignment of the angular rate generator , The precise angular rate offset error term and the positive correction factor of the circular correction cone to compensate the input two-axis long period angle increment value using the angular rate generator's temperature characteristic data to compensate

第85頁 486576 五、發明說明(82) 償三轴長周期角增量值中的由於溫度變化所引起的誤差, 並將上述實際的三轴長周期角增量值出到一對准旋轉向量 計算模塊C815 〇 3A-2· 3A輸入來自步驟2的輸入/輸出電路C65的三轴 速度增量,以及來自上述角速率產生器和加速度產生標定 過程加速度器件的安裝失准 速度補償模塊C813,輸入來 電路C183的數字溫度信號和 算加速度產生器的當前溫度 的當前溫度查找到加速度產 入的加速度器安裝失准角加 轴速度增量中的確定性誤差 性數據補償三轴長周期速度 起的誤差將補償之後的三轴 度計算模塊C814。 圖號說明: 1 -慣性測量組件 3-導航處理器 311 -傳感器補償模塊 3122_速度積分模塊 32-磁傳感器處理模塊 3 2 2 -軟鐵補償模塊 322-慣性導航算法模塊 M2、342'刻度係數和不 角,加速度偏置誤差,到一加 自步驟3 A · 1.2的輸入輸出接口 溫度傳感器器的刻度係數,計 ,使用計算出的加速度產生器 生器的溫度特性數據,使用輸 速度偏置誤差項,補償上述三 ,使用加速度產生器的溫度特 增量值中的由於溫度變化所引 速度增量輸出到一水平加平速 2 -尋北器 31-INS計算模塊 3 1 2 1 -姿態積分模塊 3123-位置模塊 321- 硬鐵補償模塊 322- 航向計算模塊 33-里程計處理模塊 對準誤差補償模塊Page 85 486576 V. Description of the invention (82) Compensate for errors caused by temperature changes in the three-axis long period angle increment value, and output the above-mentioned actual three-axis long period angle increment value to an alignment rotation vector Calculation module C815 〇 3A-2 · 3A input from the input / output circuit C65 of the three-axis speed increment, and from the above-mentioned angular rate generator and acceleration generation calibration process acceleration device installation misalignment speed compensation module C813, input The digital temperature signal from the circuit C183 and the current temperature of the current temperature of the acceleration generator are found to determine the acceleration error. Accelerator installation misalignment angle plus the deterministic error data in the shaft speed increment. The error will be compensated after the triaxiality calculation module C814. Explanation of drawing numbers: 1-Inertial measurement component 3-Navigation processor 311-Sensor compensation module 3122_ Speed integration module 32-Magnetic sensor processing module 3 2 2-Soft iron compensation module 322-Inertial navigation algorithm module M2, 342 'scale factor And angle, acceleration bias error, add to the scale factor of the temperature sensor of the input / output interface of step 3 A · 1.2, and use the calculated temperature characteristic data of the acceleration generator generator, using the input speed offset The error term, which compensates the above three, uses the temperature increase of the acceleration generator's temperature special increment value due to the temperature change to output a level and leveling speed 2-North finder 31-INS calculation module 3 1 2 1-attitude integration Module 3123-Position module321- Hard iron compensation module 322- Heading calculation module 33-Odometer processing moduleAlignment error compensation module

第86頁 486576 五、發明說明(83) 331-變換模塊 333、343-相對位置計算模塊 3 4 -流速計處理模塊 341-變換模塊 3 5 -卡爾曼濾波器 3 5 1 -運動測試模塊 3 5 2 _測量和時變矩陣形成模塊 3 5 3 -狀態估計模塊 4-無線通信裝置 5-地圖數據庠 6 -速度產生器 6 1 -里程計 7-顯示裝置 10 -加速度產出器 cl -金屬正六面體 cl 5-熱敏感產生器 cl8 -溫度數字化器 cl81-放大器電路 cl 82 0 -模擬/數字轉換器 cl82-模擬數字轉換器 cl83-輸入/輸出揍口電路 c2-第一電路板 c 2 0 -加熱器 c23-第一前端電路 c22-Y轴加速度計 c21 -X轴振動型角速率檢測單元 c231、c431、c731阻抗·轉換放大器電路 c232、c432、c732高通濾波器電路 c25 -第一熱敏感產生單元c 3 0-熱處理器 c301-第一放大器電路 c302-第二放大器電路 c3 0 3-數字/模擬轉換器 c304-模擬/數字轉換器 c30 4-連接與模擬/數字轉換器 c305 -輸入/輸出接口電路c3〇6 -溫度控制器 c4-第二電路板 c42-X軸加速度計 c 41 - Y轴振動型角速率檢測單元 c43 -第二前端電路 c44-第二熱敏感產生單元Page 86 486576 V. Description of the invention (83) 331-Transformation module 333, 343-Relative position calculation module 3 4-Flowmeter processing module 341-Transformation module 3 5-Kalman filter 3 5 1-Motion test module 3 5 2 _Measurement and time-varying matrix formation module 3 5 3-State estimation module 4-Wireless communication device 5-Map data 6-Speed generator 6 1-Odometer 7-Display device 10-Acceleration generator cl-Metal positive six Hexahedron cl 5-Thermal sensitive generator cl8-Temperature digitizer cl81-Amplifier circuit cl 82 0-Analog / digital converter cl82-Analog to digital converter cl83-Input / output port circuit c2-First circuit board c 2 0 -Heater c23-First front-end circuit c22-Y-axis accelerometer c21 -X-axis vibration-type angular rate detection units c231, c431, c731 Impedance conversion amplifier circuit c232, c432, c732 high-pass filter circuit c25-First thermal sensitive Generation unit c 3 0-thermal processor c301-first amplifier circuit c302-second amplifier circuit c3 0 3- digital / analog converter c304-analog / digital converter c30 4- connection and analog / digital converter c305-input / Output connection Port circuit c3〇6-temperature controller c4-second circuit board c42-X-axis accelerometer c 41-Y-axis vibration type angular rate detection unit c43-second front-end circuit c44-second heat-sensitive generating unit

第87頁 486576 五、發明說明(84)Page 87 486576 V. Description of the Invention (84)

C5-角速率產生器 c5 c5-角速率產生器 c6-角增量和速度增量產生器 c61-角放大電路 c c62-角度積分電路 c c630 -加速度積分器 c c62 0-角度積分器 c63-角模擬/數字轉換 c 6 6 _振盈器 c640 -復位器c65-輸入/輸出接口電路 c65 0-角增量和速度增量測量器 c660、c665-放大器件 c67_加速度放大電私 c68-加速度積分電路 c660、c6 6 5-放大器 c69-速度模擬/數字轉換器 c7-第三電路板 c72-Z轴加速度計 c71-Z轴振動型角速率檢測單元 c73-第三前端電路 c74-第三熱敏感產生單元 c80 -位置和姿態處理機 c81_姿態和航向模塊 c811圓錐誤差補償模塊c8iiq —東向阻尼計算模塊 c8 1 2-角速率補償模塊 c813-加速度補償模塊 c8 14-水平加平速度計算模塊 c815 -對准旋轉向量計算模塊 c816-方向餘弦陳計算模塊 c8 17-姿態和航向角提取模塊C5-Angular Rate Generator c5 c5-Angular Rate Generator c6-Angular Increment and Velocity Delta Generator c61-Angle Amplifier Circuit c c62-Angle Integrator Circuit c c630-Acceleration Integrator c c62 0-Angular Integrator c63- Angle analog / digital conversion c 6 6 _ Vibrator c640-Resetter c65-Input / output interface circuit c65 0-Angle increment and speed increment measurer c660, c665-Amplifier c67_ Acceleration amplifier electronics c68-Acceleration Integrating circuit c660, c6 6 5-amplifier c69-speed analog / digital converter c7-third circuit board c72-Z-axis accelerometer c71-Z-axis vibration type angular rate detection unit c73-third front-end circuit c74-third thermal Sensitive generation unit c80-Position and attitude processor c81_ Attitude and heading module c811 Cone error compensation module c8iiq —East damping calculation module c8 1 2-Angular rate compensation module c813-Acceleration compensation module c8 14-Horizontal leveling speed calculation module c815- Alignment rotation vector calculation module c816-direction cosine Chen calculation module c8 17-attitude and heading angle extraction module

向阻尼計算模塊C810- C820 1 -圓錐誤差補償模塊 c82—位置、速度,姿! 垂直阻尼計算模塊 姿態和航向模塊Directional Damping Calculation Module C810- C820 1-Cone Error Compensation Module c82—Position, Speed, Pose! Vertical Damping Calculation Module Attitude and Heading Module

第88頁 486576 五、發明說明(85) c82 0 2-角速率補償模塊c8203-加速度補償模塊 c8204-水平加平速度計算模塊 c8206 -方向餘弦陳計算模塊 c820 5-對准旋轉向量計算模塊 c8208 -位置速度更新模塊 c8207 -地球和載體速率計算模塊 c8209-姿態和航向角提取模塊 c9 -控制電路板C9l-DSP芯片紕 c9 1 1 _熱控制計算模塊 c9 1 2-振動處理模塊 c91 21-離散快速富里葉變換模塊 、 c9122 -頻率和幅度數據存儲陣模塊 c 9 1 2 3 -最大值檢測邏輯模塊 c9124-Q值分析和選擇邏輯模塊 c92卜三個角信號回路電 電路C9212—放大和加法器電路 、 c922-三個振動控制電路 法器電路C9222-高通濾波器電 C9224-模擬/數字轉換器 C9226-數字楔擬轉換器 c925-振盪器 c 9 1 2 5 -鎖相環 c9211-電壓放大器 c9213-解調器 c9221-放大器和加 c9223-解調器電路 C9225-低通遽波器 c9227-放大器 c923-熱控制電路 c9232-模擬,數字轉換器 c9234-第二放大器電路 cl〇-加速度產生器 c923卜第一玫大器電路 C9233 -數字楔擬轉換器 c 9 0 _外部傳感器Page 88 486576 V. Description of the invention (85) c82 0 2-Angular rate compensation module c8203-Acceleration compensation module c8204-Horizontal leveling speed calculation module c8206-Direction cosine Chen calculation module c820 5-Alignment rotation vector calculation module c8208-Position Speed update module c8207-Earth and carrier rate calculation module c8209-Attitude and heading angle extraction module c9-Control circuit board C9l-DSP chip 纰 c9 1 1 _ Thermal control calculation module c9 1 2-Vibration processing module c91 21-Discrete fast Furi Leaf transformation module, c9122-frequency and amplitude data storage array module c 9 1 2 3-maximum value detection logic module c9124-Q value analysis and selection logic module c92 b three angle signal loop electrical circuit C9212-amplification and adder circuit, c922-three vibration control circuit, generator circuit, C9222-high-pass filter, electric C9224-analog / digital converter, C9226-digital wedge analog converter, c925-oscillator, c 9 1 2 5-phase-locked loop, c9211-voltage amplifier, c9213-solution Modulator c9221-amplifier and add c9223-demodulator circuit C9225-low pass chirp c9227-amplifier c923-thermal control circuit c9232-analog, digital converter c9234-second amplification Generator circuit cl〇-Acceleration generator c923 Bu the first mega circuit C9233-Digital wedge analog converter c 9 0 _External sensor

486576 圖式簡單說明 圖示說明 實現方案的 優選實現方 優選實現方 優選實現方 優選實現方 顯示了依照上述本發明優選實現方 第一圖:顯示了純INS和輔助INS的特性對比。 第二圖:顯示了溫度引起的ME MS陀螺誤差特性 第三圖··為一方塊圖,顯示了依照本發明優選 載體自攜式定位系統和方法。 第四圖··為一方塊圖,顯示了依照上述本發明 案的導航處理器處理器理模塊。 第五圖:為一方塊圖,顯示了依照上述本發明 案的慣性導航處理模塊。 第六圖:為一方塊圖,顯示了依照上述本發明 案的磁傳感器信號處理。 第七圖:為一方塊圖,顯示了依照上述本發明 案的里程計信號處理。 顯示了依照上述本發明優選實現方 第八圖:為一方塊圖 案的速度計信號處理 第九圖:為一方塊圈 案的里程計相對位置誤差測量的計算。 優選實現方 的優選方案 的優選方案 的優選方案 第十圖··為一方塊圖,顯示了依照上述本發明 案的卡爾曼濾波器的計算。 第十一圖:顯示了本發明的小型慣性測量組件 之處理模塊。 第十二圖··顯示了本發明的小型慣性測量組件 之處理模塊及相應的熱控制處理模塊。 第十三圖:顯示了本發明的小型慣性測量組件486576 Schematic illustration of the diagram Preferred implementation of the implementation scheme Preferred implementation party Preferred implementation party Preferred implementation party Shows the preferred implementation party according to the present invention described above. Figure 1: shows the comparison of the characteristics of pure INS and auxiliary INS. The second figure: shows the temperature-induced ME MS gyro error characteristics. The third figure is a block diagram showing a preferred carrier self-contained positioning system and method according to the present invention. The fourth figure ... is a block diagram showing a navigation processor processor module according to the present invention described above. Fig. 5 is a block diagram showing an inertial navigation processing module according to the present invention. FIG. 6 is a block diagram showing signal processing of the magnetic sensor according to the present invention described above. FIG. 7 is a block diagram showing the odometer signal processing according to the present invention described above. Figure 8 shows the preferred implementation of the present invention. Figure 8: Speedometer signal processing for a block diagram. Figure 9: Calculation of odometer relative position error measurement for a block diagram. Fig. 10 is a block diagram showing the calculation of the Kalman filter according to the present invention described above. Figure 11: The processing module of the small inertial measurement module of the present invention is shown. Fig. 12 shows the processing module and the corresponding thermal control processing module of the small inertial measurement module of the present invention. Figure 13: A small inertial measurement module of the present invention is shown

第90頁 486576Page 486 576

圖式簡單說明 之處理模塊及相應的熱補償處理模塊。 第十四圖··顯示了本·發明的小型慣性測量级件的優選方案 之角增量和速度增量產生器,用來處理角速率產生器和加 速度產生器輸出電壓信號。 第十五圖:顯示了本發明的小型慣性測量組件的優選方案 之另一角增量和速度增量產生器,用來處理角速率產生器 和加速度產生器輸出電壓信號。 第十六圖:顯示了本發明的小型慣性測量組件的優選方案 之另一角增量和速度增量產生器,用來處理角速率產生器 和加速度產生器輸出電壓信號。 第十七圖:顯示了本發明的小型慣性測量組件的優選方案 之另一角增量和速度增量產生器,用來處理角速率產生器 和加速度產生器輸出電壓信號。 第十八圖··顯示了本發明的小型慣性測量組件的優選方案 之熱處理器,用來處理熱敏感產生器輸出的模擬電壓信 號。 第十九圖:顯示了本發明的小型慣性測量紐' 件的優選方案 之另一熱處理器,用來處理熱敏感產生器輸出的模擬電壓 信號。The diagram simply illustrates the processing module and the corresponding thermal compensation processing module. The fourteenth figure shows the preferred scheme of the small inertial measurement stage of the present invention. The angular increment and velocity increment generators are used to process the output voltage signals of the angular rate generator and the acceleration generator. Fig. 15 shows another preferred angular increment and velocity increment generator of the small inertial measurement module of the present invention, which is used to process the output voltage signals of the angular rate generator and the acceleration generator. Fig. 16 shows another angular increment and velocity increment generator of the preferred scheme of the small inertial measurement module of the present invention, which is used to process the output voltage signals of the angular rate generator and the acceleration generator. Fig. 17 shows another angular increment and velocity increment generator of the preferred scheme of the small inertial measurement module of the present invention, which is used to process the output voltage signals of the angular rate generator and the acceleration generator. The eighteenth figure ... shows a preferred embodiment of the small inertial measurement module of the present invention, a thermal processor for processing an analog voltage signal output from a thermally sensitive generator. Fig. 19 shows another preferred embodiment of the small inertial measurement button according to the present invention, which is a thermal processor for processing an analog voltage signal output from a thermal sensitive generator.

第二十圖:顯示了本發明的小型慣性測量纟且件的優選方案 之另一熱處理器’用來處理熱敏感產生器輸出的模擬電壓 信號。 第二十一圖··顯系了本發明的小型慣性測量組件的優選方 案之處理模塊。Fig. 20 shows another preferred embodiment of the small-scale inertial measurement unit of the present invention, which is a thermal processor 'for processing an analog voltage signal output from a thermally sensitive generator. Figure 21 shows the processing module of the preferred solution of the small inertial measurement module of the present invention.

第91頁 486576 圖式簡單說明 第二十二圖··顯示了本發明的小型慣性測量組件的優選方 案之溫度數字化器,用來處理熱敏感產生器輸出的模擬電 壓信號。 · 第二十三圖··顯示了本發明的小型慣性測量組件的優選方 案之另一溫度數字化器,用來處理熱敏感產生器輸出的模 擬電壓信號。 第二十四圖··顯示了本發明的小型慣性測量組件的優選方 案之處理模塊及相應的熱補償處理模塊。 第二十五圖··顯示了本發明的小型慣性測量組件的優選方 案之姿態和航向處理模塊。 第二十六圖:顯示了本發明的小型慣性測量組件的優選方 案之位置和速度處理模塊。 第二十七圖:顯示了本發明的小型慣性測量組件的優選方 案之機械結構和電路板布局的透視圖。 第一十八圖:顯示了本發明的小型慣性測量組件的優選方 案之切面圖。 第一十九圖·顯示了本發明的小型慣性測量組件的優選方 案之内部四塊電路板之間的連接圖。 第一十圖·顯示了本發明的小型慣性測量纟且件的優選方案 之第1 ’2 , 3,4電路板的前端電路的框圖。 第一十一圖·顯示了本發明的小型慣性測量纟且彳丰的優選方 案之第3電路板的ASIC芯片的框圖。里,、且件的優"V方 第二十二圖:顯示了本發明的小型慣性測的^ ^ 案之第3電路板的DSP里運行的處理模塊广件的優、方Page 91 486576 Brief description of the diagram Twenty-two diagrams show the temperature digitizer of the preferred embodiment of the small-scale inertial measurement module of the present invention, which is used to process the analog voltage signal output by the heat-sensitive generator. Figure 23 shows another temperature digitizer, which is a preferred solution for the small inertial measurement module of the present invention, and is used to process the analog voltage signal output from the thermal sensitive generator. Figure 24 shows the processing module and the corresponding thermal compensation processing module of the preferred embodiment of the small inertial measurement module of the present invention. The twenty-fifth figure shows the attitude and heading processing module of the preferred embodiment of the small inertial measurement module of the present invention. Twenty-sixth figure: Position and velocity processing module showing the preferred solution of the small inertial measurement module of the present invention. Figure 27: A perspective view showing the mechanical structure and circuit board layout of the preferred embodiment of the small-scale inertial measurement module of the present invention. Fig. 18 is a sectional view showing a preferred embodiment of the small-scale inertial measurement module of the present invention. Figure 19 shows a connection diagram between four internal circuit boards in the preferred embodiment of the small inertial measurement module of the present invention. The tenth figure shows a block diagram of the front-end circuits of the first '2, 3, 4 circuit board of the preferred scheme of the small inertial measurement unit of the present invention. Fig. 11 is a block diagram showing an ASIC chip of the third circuit board of the preferred embodiment of the small inertial measurement unit of the present invention. Figure 22 shows the best and best method of the processing module running in the DSP of the third circuit board of the small inertial measurement solution of the present invention.

第92頁 486576 圖式簡單說明 第三十三圖:顯示了本發明的小型慣性測量組件的優選方 案之第3電路板的ASIC芯片的角信號回路電路的框圖。 第三十四圖:顯示了本發明的小型慣性測量組件的優選方 案之第3電路板的ASIC芯片的抖動運動控制電路的框圖。 第三十五圖:顯示了本發明的小型慣性測量紅件的優選方 案之第3電路板的AS 1C芯片的熱控制電路的框圖。 第三十六圖··顯示了本發明的小型慣性測量組件的優選方 案之第3電路板的DSP里運行的抖動運動控制處理模塊。Page 92 486576 Brief Description of Drawings Figure 33: A block diagram showing an angular signal loop circuit of an ASIC chip of the third circuit board of the preferred embodiment of the small inertial measurement module of the present invention. Fig. 34 is a block diagram showing a dithering motion control circuit of an ASIC chip of a third circuit board of the preferred embodiment of the small inertial measurement module of the present invention. Figure 35: A block diagram showing the thermal control circuit of the AS 1C chip of the third circuit board of the preferred embodiment of the small inertial measurement red piece of the present invention. The thirty-sixth figure shows a dithering motion control processing module running in the DSP of the third circuit board of the preferred embodiment of the small inertial measurement module of the present invention.

第93頁Chapter 93

Claims (1)

486576 六'申請專利範圍 1 · 一載體自攜式定位系統,包含: 慣性測量組件,置於載體’以測量栽體運動,對應載 體運動產生數字角增量和速度增量信號; 尋北器,置於載體,以產生載體的航向測量; 速度產生器,置於載體,以產生載體系當前軸的速度數 據; 導航處理器,連接於所述慣性測量組件,尋北器,和 速度產生器,以便·接收所述數字角增量和速度增量信號, 航向測量,和載體系當前轴的速度數據,送入一實時軟 件,用來: 將從數字角增量和速度增量信號得到的IMU位置,與 從航向測量和載體系當前軸的速度數據得到的位置測量進 行比較’獲得一位置差別,並且 如果位置差別大於一預先定義的標量,則反饋位置差 別以修正IMU位置,以輸出正確的IMU位置者。 2 ·如申請專利範圍1所述之載體自搞式定位系統,其中, 所述尋北器是一個傳感器,敏感地球磁場以測量載體的航 向角者。 3 ·如申請專利範圍1所述之載體自攜式定位系統,其中, 進一步包含一個無線通信裝置,用以與其他用戶交換所獲 得的I MU位置信息和修正後的丨MU位置信息者。 4·如申請專利範圍2所述之載體自攜式定位系統,其中, 進一步包含一個無線通信裝置,用以與其他用戶交換所獲 得的IMU位置信息和修正後的丨MlJ位置信息者。486576 Six 'application for patent scope 1 · A carrier self-contained positioning system, including: inertial measurement component, placed on the carrier' to measure the movement of the plant, corresponding to the movement of the carrier to generate digital angular increment and velocity increment signals; North finder, Placed on the carrier to generate the heading measurement of the carrier; a speed generator placed on the carrier to generate the speed data of the current axis of the carrier; a navigation processor connected to the inertial measurement component, a north seeker, and a speed generator, In order to receive the digital angular and speed incremental signals, heading measurement, and speed data of the current axis of the carrier system, send them into a real-time software for: IMU obtained from the digital angular and speed incremental signals The position is compared with the position measurement obtained from the heading measurement and the velocity data of the current axis of the carrier system to obtain a position difference, and if the position difference is greater than a predefined scalar, the position difference is fed back to correct the IMU position to output the correct IMU positioner. 2. The carrier self-location positioning system according to claim 1, wherein the north finder is a sensor that is sensitive to the earth's magnetic field to measure the heading angle of the carrier. 3. The self-carrying positioning system of the carrier as described in the patent application scope 1, further comprising a wireless communication device for exchanging the obtained I MU position information and the corrected MU position information with other users. 4. The carrier self-carrying positioning system as described in the patent application scope 2, further comprising a wireless communication device for exchanging the obtained IMU position information and the modified MlJ position information with other users. 第94頁 486576 六、申請專利範圍 5 ·如申請專利範圍1所述之載體自攜式定位系統,其中, 一地圖數據庫和一顯示裝置被進一步加入載體自攜式定位 系統,用以在地圖上顯示載體的位置,以及通過用位置信 息存取地圖數據庫以獲得周圍環境信息者。 6 ·如申請專利範圍2所述之載體自攜式定位系統,其中, 一地圖數據庫和一顯示裝置被進一步加入載體自攜式定位 系統,用以在地圖上顯示載體的位置,以及通過用位置信 息存取地圖數據庫以獲得周圍環境信息者。Page 94 486576 6. Application Patent Scope 5 · The self-carrying positioning system of the carrier as described in the scope of the patent application 1, wherein a map database and a display device are further added to the carrier's self-positioning system for mapping on the map. Display the location of the carrier, and obtain the surrounding environment information by accessing the map database with the location information. 6 · The self-carrying positioning system of the carrier as described in the patent application scope 2, wherein a map database and a display device are further added to the carrier self-positioning system to display the position of the carrier on the map and to pass the position Information access map database to obtain information about the surrounding environment. 7. 如申請專利範圍3所述之載體自攜式定位系統,其中, 一地圖數據庫和一顯示裝置被進一步加入載體自攜式定位 系統,用以在地圖上顯示載體的位置,以及通過用位置信 息存取地圖數據庫以獲得周圍環境信息者。 8. 如申請專利範圍4所述之載體自攜式定位系統,其中, /地圖數據庫和一顯系裝置被進一步加入載體自摆式定位 系統,用以在地圖上顯示載體的位置,以及通過用位置信 自、存取地圖數據庫以獲得周圍環境信息者。 ^如申請專利範圍丄所述之載體自攜式定位系統,其中, 所述導航處理器進一少包含: 一 INS計算模塊,用從Μϋ來的數字角增量和速度增量 信號產生慣性定位測责’ 一磁傳感器處理槔塊,以產生航向角 速度產生器處理模塊’用以為卡爾曼遽波器產生相對位置 誤差測量; 一集成卡爾曼濾波器’用以通過進行卡爾曼濾' 波計算7. The carrier self-contained positioning system as described in the patent application scope 3, wherein a map database and a display device are further added to the carrier self-contained positioning system to display the position of the carrier on the map and to pass the position Information access map database to obtain information about the surrounding environment. 8. The self-carrying positioning system of the carrier as described in the patent application scope 4, wherein the / map database and a display system are further added to the carrier self-positioning system to display the position of the carrier on the map, and to use the Those who trust the location and access the map database to get information about the surrounding environment. ^ The carrier self-contained positioning system as described in the scope of the patent application, wherein the navigation processor further includes: an INS calculation module, which generates an inertial positioning measurement using digital angular increment and velocity increment signals from MEMS. Responsibilities 'A magnetic sensor processes a block to generate a heading angular velocity generator processing module' to generate a relative position error measurement for a Kalman oscillator; an integrated Kalman filter 'is used to perform Kalman filtering' wave calculations 第95頁 486576 六、申請專利範圍 誤 的方式’估計慣性定位測量誤# j里决里,以杈正慣性定位測量 差者。 10.如申請專利範圍9所述之载體自攜 中,所述INS計算模塊進一步包含: 糸統 - 校正所述數字角增量和速度 慣性導航算法模塊,用來計算ΙΜϋ位置、速度及姿 一傳感器補償模塊,用來 增量信號中的誤差; 態者 11·如申請專利範圍10所述之載體自攜式定位系統’坌 中,所述慣性導航算法模塊進一步包含: /、 一姿態積分模塊,用以把所述數字角增量積分成姿態 數據;Page 95 486576 VI. Patent application scope wrong way ’Estimation of inertial positioning measurement error # jLi Juli, use the positive inertial positioning measurement to measure the poor. 10. In the self-carrying of the carrier as described in the scope of application patent 9, the INS calculation module further includes: 糸 system-correction of the digital angular increment and speed inertial navigation algorithm module for calculating ΙΜϋ position, velocity and attitude A sensor compensation module is used to increase the error in the signal. State 11: In the carrier self-carrying positioning system described in the patent application scope 10, the inertial navigation algorithm module further includes: A module for integrating the digital angular increment into attitude data; 一速f積分模塊,通過使用姿態數據,將測量到的所 述速度增量轉換到一合適的導航坐標系,並將轉換後的速 度增量積分為速度數據; 一位置模塊,用以將所述表達在導航系的速度數據積 分為位置數據者。 12·如申請專利範圍11所述之載體自攜式定位系統,其 中,所述速度產生器處理模塊進一步包含:A one-speed f-integration module converts the measured speed increment to an appropriate navigation coordinate system by using attitude data, and integrates the converted speed increment into speed data; a position module is used to It is described that the speed data integrated in the navigation system is integrated into the position data. 12. The carrier self-contained positioning system according to claim 11 in the patent application, wherein the speed generator processing module further includes: 一變換模塊,用以變換輸入的表示在機體系的測量速 度為表系在導航坐標系的測量速度; 一刻度係數和不對準誤差補償模塊,用以補償在所述 測量速度中的刻度係數和不對準誤差; 一相對位置計算模塊,用以接收IMU速度和姿態數據A conversion module for converting the input measurement speed representing the on-board system to the measurement speed of the table system in the navigation coordinate system; a scale coefficient and misalignment error compensation module for compensating the scale coefficient and Misalignment error; a relative position calculation module to receive IMU speed and attitude data 第96頁 486576 六、申請專利範圍 — 以及所述補償後的測量速度,用於為卡爾曼濾、波器形成相 對位置誤差測量者。 13. 如申請專利範圍12所述之載體自攜式定位系統,其 中,所述卡爾曼濾波器模塊進一步包含: 一運動測試模塊,用以確定載體是否自動停止; 一測量和時變矩陣形成模塊’用以根據從運動測試模 塊來的載體運動狀態,為一狀態估計模塊形成測量和時變 矩陣;並且 所述狀態估計模塊,用以濾波測量和獲得I μ u位置誤 差的最優估計者。 14. 如申請專利範圍13所述之載體自攜式定位系統,其 中,所述狀態估計模塊進一步包含: 一水平濾波器,用以獲得水平IMU位置誤差的估計; 並且 一垂直濾波器,用以獲得垂直IM U位置誤差的估計 者。 15·如申請專利範圍1 3所述之載體自攜式定位系統,其 中,所述運動測試模塊進一步包含: 一里程冲變化測試模塊,用以接收里程計讀數,以確 定載體是否停止或重新起動; /系統速度變化測試模塊,用以比較當前和前一遇期 上系統速度的變化,以確定載體是否停止或重新起動; /系統速度測試模塊,用以把系統速度的幅值與一預 先定義的值進行比較,以確定載體是否停止或重新起動; 486576 六、申請專利範圍 一姿態變化測試模塊,用以把系統姿態的幅值與一預先定 義的值進行比較,以確定載體是否停止或重新起動者。 16·如申請專利範圍1所述之載體自攜式定位系統,其 中,所述速度產生器是一里程計,用於當載體在陸地上 時,測量載體相對地面的相對速度者。 1 7 ·如申請專利範圍1 5所述之載體自攜式定位系統,其 中,所述速度產生器是一里程計,用於當載體在陸地上 時,測量載體相對地面的相對速度者。 18·如申請專利範圍1所述之載體自搞式定位系統,其 中,所述速度產生器是流速計,用於測量相對水的速度, 當載體在水上時者。P.96 486576 6. Scope of patent application — and the measurement speed after compensation is used to form relative position error measurer for Kalman filter and wave filter. 13. The carrier self-carrying positioning system according to claim 12, wherein the Kalman filter module further includes: a motion test module to determine whether the carrier stops automatically; a measurement and time-varying matrix forming module 'It is used to form a measurement and time-varying matrix for a state estimation module according to the motion state of the carrier from the motion test module; and said state estimation module is used to filter the measurement and obtain the optimal estimator of the I μ u position error. 14. The carrier self-contained positioning system as described in claim 13, wherein the state estimation module further includes: a horizontal filter for obtaining an estimation of a horizontal IMU position error; and a vertical filter for Obtain an estimator of the vertical IM U position error. 15. The self-carrying positioning system for a carrier according to claim 13 in the patent application range, wherein the motion test module further comprises: an odometer change test module for receiving an odometer reading to determine whether the carrier is stopped or restarted ; / System speed change test module, used to compare the current speed change with the previous encounter period, to determine whether the carrier is stopped or restarted; / System speed test module, used to compare the amplitude of the system speed with a pre-defined 486576 6. Patent application scope-Attitude change test module, which compares the amplitude of the system attitude with a predefined value to determine whether the carrier is stopped or restarted. Starter. 16. The self-carrying positioning system for a carrier according to claim 1, wherein the speed generator is an odometer for measuring the relative speed of the carrier relative to the ground when the carrier is on land. 17 • The carrier self-carrying positioning system according to claim 15 in the patent application, wherein the speed generator is an odometer for measuring the relative speed of the carrier relative to the ground when the carrier is on land. 18. The self-carrying positioning system for a carrier as described in the scope of application patent 1, wherein the speed generator is a flow meter for measuring the speed of relative water, when the carrier is on water. 19·如申請專利範圍1 5所述之載體自攜式定位系統,其 中’所述速度產生器是流速計,用於測量相對水的速度, 當載體在水上時者。 20·如申請專利範圍15所述之載體自攜式定位系統,其 中,所述尋北器是一個磁傳感器,敏感地球磁場以測量載 體的航向角者。 21·如申請專利範圍1 5所述之載體自攜式定位系統,其 中’進一步包含一個無線通信裝置,用以與其他用戶交換 所獲得的〖MU位置信息和修正後的I MU位置信息者。19. The self-carrying positioning system for a carrier as described in the scope of patent application 15, wherein the speed generator is a flow meter for measuring the speed of relative water, when the carrier is on water. 20. The carrier self-carrying positioning system according to claim 15 in which the north seeker is a magnetic sensor that is sensitive to the earth's magnetic field to measure the heading angle of the carrier. 21. The carrier self-carrying positioning system as described in the scope of application patent 15, further including a wireless communication device for exchanging the obtained MU position information and the corrected I MU position information with other users. 22·如申請專利範圍21所述之載體自攜式定位系統,其 中’進一步包含〜個無線通信裝置,用以與其他用戶交換 所獲得的IMU位置信息和修正後的IMU位置信息者。 23.如申請專利範圍丨5所述之載體自攜式定位系統,其22. The carrier self-carrying positioning system as described in the scope of application for patent 21, wherein ′ further includes ~ wireless communication devices for exchanging the obtained IMU position information and the corrected IMU position information with other users. 23. The carrier self-contained positioning system as described in the patent application range 5 第98頁 486576 h -——------ 六、申讀專利範園 中,一地圖數據庫和一顯示裝置被進一步加入載體自攜式 定位系统,用以在地圖上顯示載體的位置,以及通過用位 置信息存取地圖數據庫以獲得周圍環境信息者。 24.如申請專利範圍22所述之載體自攜式定位系統,其 中’一地圖數據庫和一顯示裝置被進一步加入載體自攜式 定位系统,用以在地圖上顯示載體的位置,以及通過用位 置信息存取地圖數據庫以獲得周圍環境信息者。 2 5 ·如申請專利範圍1所述之載體自攜式定位系統,其 中,所述慣性測量件是一小型慣性測量組件,包含: 一角速率產生器,用來產生X,Y,Z轴角速率信號; 一加速度產出器,用來產生X,Υ,Ζ轴加速度信號; 一角增量和速度增量產生器,用來將所述X,γ,Ζ轴 負速率信號轉換為數字角度增量和將所述X,γ,Ζ轴加速 度信號轉換為數字速度增量者。 26.如申請專利範圍25所述之載體自攜式定位系統,其 中,所述小型慣性測量組件進一步包含包含一熱控制器 件,以便將所述角速率產生器,加速度產出器和角增量和 速度增量產生器的工作溫度保持在設定值者。 2 j ·如申請專利範圍2 6所述之載體自攜式定位系統,其 中.,所述熱控制器件進一步包含一熱敏感產生器,一加熱 器以及一熱處理器,其中該熱敏感產生器與該角速率產生 器,加速度產出器和角增量和速度增量產生器並行工作, 來產生溫度信號’以便以便將該角速率產生器,加速度產 出器和角增量和速度增量產生器的工作溫度保持在設定Page 98 486576 h ------------- 6. In the patent application park, a map database and a display device are further added to the carrier's self-contained positioning system to display the location of the carrier on the map. And by accessing the map database with location information to obtain information about the surrounding environment. 24. The carrier self-contained positioning system as described in the patent application scope 22, wherein a map database and a display device are further added to the carrier self-contained positioning system to display the position of the carrier on the map, and to use the position Information access map database to obtain information about the surrounding environment. 2 5 · The carrier self-contained positioning system as described in the patent application scope 1, wherein the inertial measurement member is a small inertial measurement component, including: an angular rate generator for generating X, Y, and Z axis angular rates Signal; an acceleration generator for generating X, Υ, and Z axis acceleration signals; an angular increment and speed increment generator for converting the X, γ, and Z axis negative rate signals into digital angle increments And converting the X, γ, and Z axis acceleration signals into digital speed incrementers. 26. The carrier self-carrying positioning system according to claim 25, wherein the small inertial measurement component further comprises a thermal control device to convert the angular rate generator, acceleration generator and angular increment And the operating temperature of the speed increase generator is maintained at the set value. 2 j. The carrier self-carrying positioning system as described in the patent application range 26, wherein the thermal control device further includes a heat sensitive generator, a heater and a heat processor, wherein the heat sensitive generator and The angular rate generator, acceleration generator and angular increment and velocity increment generator work in parallel to generate a temperature signal so as to generate the angular rate generator, acceleration generator and angular increment and velocity increment. The working temperature of the device is maintained at the setting 486576 六、申請專利範圍 值。設定的溫度是一常值,可選擇在i 5 0卞和丨8 5下之間, 來自該熱敏感產生器產生的溫度信號,被輸出給該熱處理 器’該熱處理器使用該溫度信號、溫度刻度係數及該角速 率產生器和加速度產出器和角增量和速度增量產生器的預 定的工作溫度,來計算溫度控制指令並形成相應的驅動信 號給加熱器,來控制該加熱器產生足夠的熱量,保持該角 速率產生器和加速度產出器和角增量和速度增量產生器的 預定的工作溫度者。 2 8.如申請專利範圍2 6所述之載體自攜式定位系統,其 中’來自該角速率產生器產生的χ、γ、Ζ轴角速率信號是 模擬電壓信號,直接正比於載體的角速率,來自加速度產 出器產生的X、γ、Ζ軸加速度信號是模擬電壓信號,直接 正比於載體的加速度者。 2 9·如申請專利範圍2 7所述之載體自攜式定位系統,其 中,來自該角速率產生器產生的Χ、Υ、Ζ轴角速率信號是 模擬電壓信號,直接正比於載體的角速率,來自加速度產 出器產生的X、Υ、Ζ軸加速度信號是模擬電壓信號,直接 正比於載體的加速度者。 30·如申請專利範圍29所述之載體自攜式定位系統,其 中’該角增量和速度增量虞生器包含: 角度積分器和加速度積分器分別用來在預定的時間段 内積分X、Υ、Ζ軸角速 率模擬電壓信號和X、γ、ζ轴加速 度模擬電壓信號,以便積累X、Υ、Ζ轴角速率模擬電壓信 號和X、Υ、Ζ軸加速度模擬電壓信號,形成未補償的原始486576 6. Value of patent application scope. The set temperature is a constant value and can be selected between i 5 0 卞 and 丨 8 5. The temperature signal generated by the thermal sensitive generator is output to the thermal processor. The thermal processor uses the temperature signal and temperature. The scale coefficient and the predetermined operating temperature of the angular rate generator and acceleration generator and the angular and speed increment generators are used to calculate a temperature control instruction and form a corresponding drive signal to the heater to control the heater to generate Sufficient heat to maintain the predetermined operating temperature of the angular rate generator and acceleration generator and the angular increment and velocity increment generator. 2 8. The carrier self-carrying positioning system as described in the patent application range 26, wherein the χ, γ, and Z-axis angular rate signals from the angular rate generator are analog voltage signals, which are directly proportional to the angular rate of the carrier The X, γ, and Z axis acceleration signals generated by the acceleration generator are analog voltage signals that are directly proportional to the acceleration of the carrier. 29. The self-carrying positioning system of the carrier as described in the patent application scope 27, wherein the X, Y, and Z axis angular rate signals generated by the angular rate generator are analog voltage signals, which are directly proportional to the angular rate of the carrier X, Y, Z axis acceleration signals from the acceleration generator are analog voltage signals, which are directly proportional to the acceleration of the carrier. 30. The carrier self-contained positioning system as described in the patent application scope 29, wherein the angle increment and velocity increment generator include: an angle integrator and an acceleration integrator are respectively used to integrate X within a predetermined period of time. , Υ, and Z axis angular rate analog voltage signals and X, γ, and ζ axis acceleration analog voltage signals, so as to accumulate X, Υ, and Z axis angular rate analog voltage signals and X, Υ, and Z axis acceleration analog voltage signals, forming uncompensated the begining 第100頁 486576 六、申請專利範圍 角增量和速度增量,其中,該積分操作是為了消除在X、 Y、Z轴角速率模擬電壓#號和χ、γ、z轴加速度模擬電壓 信號中的非直接正比於載體角速率和加速度的噪聲信號, k南"is说嗓聲比’並消除在該X、Y轴角速率模擬電壓 信號和X、Y、Z轴加速度模擬電壓信號中的高頻噪聲; 復位器產生角度復位電壓脈沖和·速度復位電壓脈沖, 作為角度和速度的刻度,分別輸出給該角度積分器和加速 度積分器; 、角增量和速度增量測量器使用該角度復位電壓脈沖和 速度復位電壓脈沖,來測量該積累的X、γ、Z轴角速率模 擬電壓仏號和X、Y、Z轴加速度模擬電壓信號,獲得角增Page 100 486576 6. Angular increment and velocity increment of the patent application range, in which the integration operation is to eliminate the X, Y, and Z axis angular rate analog voltage signals # and the χ, γ, and z axis acceleration analog voltage signals. The noise signal that is not directly proportional to the angular velocity and acceleration of the carrier, knan " is said that the voice ratio is' and eliminated in the X, Y-axis angular velocity analog voltage signal and the X, Y, Z-axis acceleration analog voltage signal. High-frequency noise; The resetter generates angle reset voltage pulses and speed reset voltage pulses, which are used as angle and speed scales to output to the angle integrator and acceleration integrator respectively; and the angle increment and speed increment measuring devices use this angle The reset voltage pulse and the speed reset voltage pulse are used to measure the accumulated X, Y, and Z axis angular rate analog voltage signals and the X, Y, and Z axis acceleration analog voltage signals to obtain the angular increase. 量計數值和速度增量計數值,相應地作為角增量和速度增 量的數字量者。 31·如申請專利範圍3 0所述之載體自攜式定位系統,其 中’該角增量和速度增量測量器將所述積累的X、γ、Z轴 角增量和速度增量電壓值換算為實際的X、γ、Z轴角增量 和速度增量,其中,在所述角度積分器和加速度積分器 中’所述X、Y、z輛角速率模擬電壓信號和X、γ、z轴加速 度模擬電壓k號被分別復位,以便在所述每一個預定的時 間段的起點,從零開始積累者。The quantity count value and the speed increment count value are correspondingly used as the digital quantities for the angular increment and the speed increment. 31. The carrier self-carrying positioning system as described in the patent application scope 30, wherein the angle increment and speed increment measuring device will accumulate the accumulated X, γ, Z axis angle increment and speed increment voltage values Converted into actual X, γ, and Z axis angular increments and speed increments, where the X, Y, and Z angular velocity analog voltage signals and X, γ, The z-axis acceleration analog voltage k number is reset separately so that the accumulator starts from zero at the beginning of each predetermined period of time. 32·如申請專利範圍31所述之載體自攜式定位系統,其 中’所述復位器包含一振盪器,所述角度復位電壓脈沖和 速度復位電壓脈沖通過所述振盪器產生定時脈沖來實現的 者032. The carrier self-contained positioning system according to claim 31, wherein the reset device includes an oscillator, and the angle reset voltage pulse and the speed reset voltage pulse are realized by the timer generating a timing pulse. By 0 第101頁 六、申請專利範圍 33. 如申請專利範圍32所述之栽體自攜式定位系 . 中,用來測量積累的X、Y、Z輛角速率模系,,; Y、Z軸加速度模擬電壓信號的所述角增量和速二和旦 器’包含-模擬/數字轉換器’以便實際上將曰里二里 軸角增量和速度增量電壓值數字化為x、Y 量和速度增量的數字量者。 角曰 34. 如申請專利範圍33所述之载體自攜式定位系統,丈 中,所述角增量和速度增量產生器的角度積分器包含二角 度積分電路,接收並積分來自所述角放大電路的放大後的 X、 γ、z轴角速率模擬信號,形成積累的χ、γ、z軸角增量 信號,所述角增量和速度增量產生器的加速度積分器^含 加速度積分電路’接收並積分來自所述加速度放大電路的 放大後的X、Y、z轴加速度模擬信號,形成積累的χ、γ、z 轴速度增量信號者。 3 5·如申請專利範圍34所述之載體自攜式定位系統,其 中’所述角增量和速度增量產生器進一步包含一角放大電 路,用來放大X、Y、Z轴角速率模擬電壓信號,形成放大 後的X、Y、Z軸角速率模擬信號,和一加速度放大電路用 來放大X、Y、Z軸加速度模擬電壓信號,形成放大後的X、 Y、 Z轴加速度模擬信號者。 36·如申請專利範圍35所述之載體自攜式定位系統,其 中,所述角增量和速度增量產生器的角度積分器包含一角 度積分電路,接收並積分來自所述角放大電路的放大後的 X、Y、Z轴角速率模擬信號,形成積累的X、Y、Z軸角增量 1^· 第102頁 486576 六、申請專利範圍 信號,所述角增量和速度增量產生器的加速度積分器包含 加速度積分電路,接收並積分來自所述加速度放大電路的 放大後的X、γ、z轴加速度模擬信號,形成積累的χ、γ、z 轴速度增量信號者。 37.如申請專利範圍36所述之載體自攜式定位系統,其 中,所述角增量和速度增量產生器的模擬/數字轉換器進 一步包含一角模擬/數字轉換器,一速度模擬/數予轉換器 以及一輪入/輸出接口電路,其中,來自所述角度積分電 路積累的角增量和來自所述加速度積分電路的積累的速度 增量,被分別輸出給所述角模擬/數字轉換器和速度模擬/ 數字轉換器,積累的角增量由所述角模擬/數字轉換器’ 通過使用所述角復位電壓信號來測量積累的角增量,以便 形成角增量計數值,作為數字角增量電壓的一形式,該角 增量計數值被輸出給所述輸入/輸出接口電路,以便形成 數字X、:Y、z軸角增量電壓值,所述積累的速度增量由所 述速度模擬/數字轉換器,通過使用速度復位電壓信號來 測量積累的速度增量,以便形成速度增量計數值’作為數 字速度增量電壓的一形式,該速度增量計數值被輸出給輪 u 入/ 輸出接口電路,以便形成數字χ、γ、z軸速度增量電 壓值者。 3 8.如申請專利範圍3 7所述之載體自攜式定位系統’其 中,所述熱處理器包含連接與所述熱敏感產生器的一模擬 /數字轉換器、連接與所述加熱器的數字/模擬轉換器以及 連接與所述模擬/數字轉換器和數字/模擬轉換器的溫度控Page 101 VI. Application for patent scope 33. The self-carrying positioning system of the plant as described in application scope 32. For measuring the accumulated X, Y, and Z angular velocity mode systems, Y, Z axis The angular increment and the speed of the acceleration analog voltage signal are included in the analog-to-digital converter so as to actually digitize the angular and speed increment voltage values of the Lili axis into x, Y quantities, and Digital measure of speed increase. The angle is 34. The carrier self-carrying positioning system as described in the patent application range 33. In the middle, the angle integrator of the angle increment and speed increment generator includes a two angle integration circuit, which receives and integrates from the The amplified X, γ, and z-axis angular rate analog signals of the angle amplifier circuit form an accumulated χ, γ, and z-axis angular incremental signals, and the acceleration integrator of the angular and speed increment generators includes acceleration The integration circuit 'receives and integrates the amplified X, Y, and z-axis acceleration analog signals from the acceleration amplifier circuit to form an accumulated x, γ, and z-axis speed incremental signals. 3 5. The self-carrying positioning system of the carrier as described in the patent application range 34, wherein the said angular increment and velocity increment generator further includes an angular amplifier circuit for amplifying the X, Y, and Z axis angular rate analog voltages. Signals to form amplified X, Y, and Z axis angular rate analog signals, and an acceleration amplifier circuit for amplifying X, Y, and Z axis acceleration analog voltage signals to form amplified X, Y, and Z axis acceleration analog signals . 36. The carrier self-contained positioning system according to claim 35, wherein the angle integrator of the angle increment and speed increment generator includes an angle integration circuit that receives and integrates the angle from the angle amplifier circuit. The amplified X, Y, and Z axis angular rate analog signals form accumulated X, Y, and Z axis angular increments 1 ^ · Page 102 486576 6. Patent application range signals, the angular increment and velocity increment are generated The accelerometer integrator includes an acceleration integration circuit that receives and integrates the amplified X, γ, and z-axis acceleration analog signals from the acceleration amplifier circuit to form accumulated χ, γ, and z-axis speed incremental signals. 37. The carrier self-contained positioning system according to claim 36, wherein the analog / digital converter of the angular increment and speed increment generator further comprises an angular analog / digital converter and a speed analog / digital converter. A pre-converter and a round input / output interface circuit, wherein the angular increment accumulated from the angular integration circuit and the accumulated speed increment from the acceleration integration circuit are output to the angular analog / digital converter, respectively. And speed analog / digital converter, the accumulated angular increment is measured by the angular analog / digital converter 'by using the angle reset voltage signal to measure the accumulated angular increment to form an angular increment count value as a digital angle A form of incremental voltage, the angular increment count value is output to the input / output interface circuit to form a digital X,: Y, and z-axis angular incremental voltage value, and the accumulated speed increment is determined by the Speed analog / digital converter that measures the accumulated speed increment by using the speed reset voltage signal to form the speed increment count value as a form of digital speed increment voltage The velocity increment the count value is output to the wheel u / output interface circuit, so as to form a digital χ, γ, z-axis voltage value by velocity increment. 38. The carrier self-carrying positioning system according to claim 3, wherein the thermal processor includes an analog / digital converter connected to the heat sensitive generator, and a digital device connected to the heater. / Analog converter and temperature control connected to said analog / digital converter and digital / analog converter 第103頁 486576 六、申請專利範圍 制器’其中’所述模擬/數字轉換器輸入通過熱敏感產生 器產生的溫度電壓信號,由所述模擬/數字轉換器採樣該 溫度電壓信號’並數字化該電壓信號,並將該數字溫度信 號輸出給所述溫度控制器,所述溫度控制器使用來自上述 模擬/數字轉換器的數字溫度電壓信號,溫度標定係數以 及預定的上述角速率產器和加速產生器的工作溫度,來計 鼻數字溫度控制指令,並將該數字溫度控制指令送入上述 數字/模擬轉換器,所述數字/模擬轉換器將來自上述數字 溫度控制器的數字溫度控制指令轉變為模擬信號,並將該 模擬信號輸出給所述加熱器,以便產生適當的熱量以保證 所述IMU的預定小型慣性測量組件的工作溫度者。 39·如申請專利範圍38所述之載體自攜式定位系統,其 中,所述熱處理器進一步包含: 八 連接在上述熱感產生器和數字/模擬轉換器之間的第 一放大器電路,其中,從上述熱傳感產生器得到電壓信 號,被輸入到第一放大ϋ電路放大,並抑制電壓信穿中的 噪音’提南信號噪音比,放大的電壓信號輸入到所述模擬 /數字轉換器; 、 連接在所述數字/模擬轉換器和加熱器之間第二放大 器電路,用來放大從上述數字/模擬轉換器而來的輪入模 擬信號,給所述加熱器者。 ' 40.如申請專利範圍39所述之載體自攜式定位系統,其 中,所述熱處理器進一步包含一個輸入/輸出接π電路'連 接於所述模擬數字轉換器和數字轉換器與溫度控制器之Page 103 486576 VI. Patent application controller "wherein" the analog / digital converter inputs the temperature and voltage signal generated by the thermal sensitive generator, and the analog / digital converter samples the temperature and voltage signal and digitizes the Voltage signal, and output the digital temperature signal to the temperature controller, the temperature controller uses the digital temperature voltage signal from the analog / digital converter, a temperature calibration coefficient, and the predetermined angular rate generator and acceleration generation To calculate the working temperature of the device, and send the digital temperature control instruction to the digital / analog converter. The digital / analog converter converts the digital temperature control instruction from the digital temperature controller into An analog signal, and output the analog signal to the heater in order to generate appropriate heat to ensure the operating temperature of the predetermined small inertial measurement component of the IMU. 39. The carrier self-contained positioning system according to claim 38, wherein the thermal processor further comprises: a first amplifier circuit connected between the thermal sensor and the digital / analog converter, wherein, The voltage signal obtained from the thermal sensor generator is input to the first amplifier / amplifier circuit to amplify and suppress the noise in the voltage signal through the signal's signal-to-noise ratio, and the amplified voltage signal is input to the analog / digital converter; A second amplifier circuit connected between the digital / analog converter and the heater, and used to amplify the wheel-in analog signal from the digital / analog converter to the heater. '40. The carrier self-contained positioning system according to claim 39, wherein said thermal processor further comprises an input / output circuit, which is connected to said analog-to-digital converter and digital-to-digital converter and temperature controller. Of 第104頁 486576 六、申請專利範圍 其中’通過上述模擬/數字轉換器採樣上述電壓信 號’並數子化該採樣信號,然後,將該數字信號輸出給輸 入/輸出接口電路,上述溫度控制器,使用來自所述輸入/ 輸出接口電路的模擬/數字轉換器的數字溫度電壓信號, 溫度標定係數以及預定的上述角速率產器和加速產生器的 工作/3BL度’來计异數字溫度控制指令,並將該數字溫度控 制指令反饋上述給輸入/輸出接口電路,上述數字/模擬轉 換器將來自上述輸入/輸出接口電路的數字溫度控制指令 轉變為模擬信號,並將該模擬信號輸出給上述加熱器,以 便產生適當的熱量以保證所述小型慣性測量組件的預定的 工作溫度者。 41·如申請專利範圍2 5所述之載體自攜式定位系統,其 中’所述小型彳貝性測量組件布置在一盒子内的第一電路 板、第二電路板、第三電路板和控制電路板,其中,第一 電路板與第三電路板相連,產生X轴角速率敏感信號和Y轴 加速度敏感信號給控制電路板,第二電路板與第三電路板 相連,產生Y軸角速率敏感信號和X軸加速度敏感信號給控 制電路板,第三電路板與控制電路板相連,產生Z轴角速 率敏感信號和Z軸加速度敏感信號給控制電路板,控制電 路板通過第三電路板與第一電路板、第二電路板相連,處 理來自第一電路板、第二電路板、第三電路板的X、γ、z 軸角速率敏感信號和χ、γ、Z轴加速度敏感信號,以便產 生數字化的角度增量、速度增量、位置、速度、姿態和航 向測量值者。Page 104 486576 6. The scope of the patent application where 'the voltage signal is sampled through the analog / digital converter' and the sampled signal is digitized, and then the digital signal is output to the input / output interface circuit, the temperature controller, Using the digital temperature voltage signal from the analog / digital converter of the input / output interface circuit, the temperature calibration coefficient, and the predetermined / 3BL degree of the above-mentioned angular rate generator and acceleration generator 'to calculate different digital temperature control instructions, The digital temperature control instruction is fed back to the input / output interface circuit. The digital / analog converter converts the digital temperature control instruction from the input / output interface circuit into an analog signal, and outputs the analog signal to the heater. In order to generate appropriate heat to ensure a predetermined operating temperature of the small inertial measurement component. 41. The carrier self-carrying positioning system according to claim 25, wherein the first small circuit board, the second circuit board, the third circuit board, and the control unit are arranged in a box. Circuit board, where the first circuit board is connected to the third circuit board and generates X-axis angular rate sensitive signals and Y-axis acceleration sensitivity signals to the control circuit board, and the second circuit board is connected to the third circuit board to generate Y-axis angular rates Sensitive signals and X-axis acceleration-sensitive signals are sent to the control circuit board. The third circuit board is connected to the control circuit board to generate Z-axis angular rate-sensitive signals and Z-axis acceleration-sensitive signals to the control circuit board. The control circuit board communicates with the third circuit board through The first circuit board and the second circuit board are connected to process the X, γ, and z axis angular rate sensitive signals and the χ, γ, and Z axis acceleration sensitive signals from the first circuit board, the second circuit board, and the third circuit board, so that Produces digital angular increments, speed increments, position, speed, attitude, and heading measurements. 第105頁 、、申請專~^ ~-—— ^ ·如申請專利範圍41所述之載體自攜式定位系統,其 ’所述角速率產生器包含: 、 連接在第一電路板的X轴振動型角速率檢測單元 累—前端電路; 、 一連接在第二電路板的γ轴振動型角速率檢測單元和 第二前端電路; 一連接在第三電路板的Ζ軸振動型角速率檢測單元和 第三前端電路; 一 三個角信號回路電路,該電路分別為第一電路板、第 一電路板、第二電路板設置,連接在控制電路板上;Page 105, Application Special ~ ^ ~ ----- ^ · As the carrier self-carrying positioning system described in the patent application scope 41, the said angular rate generator includes:, X axis connected to the first circuit board The vibration-type angular rate detection unit is a front-end circuit; a gamma-axis vibration-type angular rate detection unit and a second front-end circuit connected to a second circuit board; a z-axis vibration-type angular rate detection unit connected to a third circuit board And a third front-end circuit; one or three angular signal loop circuits, which are respectively provided for the first circuit board, the first circuit board, and the second circuit board, and are connected to the control circuit board; =個振動控制電路,該電路分別為第一電路板、第二電路 板、第三電路板設置,包含在連接在控制電路板上; ,~振靈器用來為X轴振動型角速率檢測單元、γ轴振動 f角速率檢測單元、Ζ軸振動型角速率檢測單元、角信號 回路電路和振動控制電路提供參考拾取信號; 心 二個振動處理模塊,分別為第一電路板、第二電路 板第二電路板設置,連接在控制電路板者。 43·如申請專利範圍42所述之載體自攜式定位系統,其 中’上述加速度產生器包含: 一 X軸加速度計,位於第二電路板上並和控制電路板 的角增量和速度增量產生器相連;= A vibration control circuit, which is provided for the first circuit board, the second circuit board, and the third circuit board, and is included in the control circuit board; ~ the vibrator is used for the X-axis vibration type angular rate detection unit , Γ-axis vibration f angular rate detection unit, Z-axis vibration-type angular rate detection unit, angular signal loop circuit and vibration control circuit provide reference pickup signals; two vibration processing modules, namely the first circuit board and the second circuit board The second circuit board is provided and connected to the control circuit board. 43. The carrier self-contained positioning system according to claim 42, wherein the above-mentioned acceleration generator includes: an X-axis accelerometer, which is located on the second circuit board and controls the angular increment and the speed increment of the circuit board Generator connected 一Y轴加速度計,位於第一電路板上並和控制電路板 的角增量和速度增量產生器相連; 一 Z轴加速度計,它位於第三電路板上並和控制電路A Y-axis accelerometer, which is located on the first circuit board and connected to the angular increment and speed increment generator of the control circuit board; a Z-axis accelerometer, which is located on the third circuit board and connected to the control circuit 第106頁 486576 六、申請專利範圍 ~^^^-- 板的角增量和速度增量產生器相連者。 其 44·如申請專利範圍43所述之載體自攜式定位系統 中述第-前端電路、第二前端電路和第三前端電路, 用來=別條理X、Y、z轴振動型角速率檢測單元的輸出信 號,母一前端電路包含: 個阻杬轉換放大器電路,連接於相應的X、Z轴 振=:速率檢測單元,用以把振動運動信·號的阻抗,從 很局的水平,大於100兆歐姆,轉換為低阻抗小於⑽歐 姆’以便獲得兩路振動位移作於 里 W1Μ α ^ 其為表示慣性質量塊和 交流電麼信號’ $兩路振動位移信號被輸 入給振動控制電路; 二,高通濾波器電路,分別連接於相應的χ、γ、ζ轴 振動51 f速率檢測單元,用m除振動位移差分_號中殘 餘的振動驅動信號和噪聲以便形成過移U 信號給角信號回路電路者。 交旳搌動位移差为 4二,:If叉利7範圍44所述之載體自攜式定位系統,其 袢,包含至少一峑桩么 測早疋都是振動型器 件 夕 套振動的慣性質量塊,自拓烟却;立 應的广構和器#,如電容性信號讀出器;' 克里奥f斯效應檢測載體的角速率, 用 0速率㈣單元接收來自相應的振動 動信匕以便保持慣性質量塊的振動,以及驅 載ΐί:;盘信號,包含電容讀出激勵信號 Υ、ζ轴振動型角速率檢測單元分 而且,χ、 六、申請專利範圍 _____ =)檢測載體的χ、γ、z轴角速率 卜包含調制在載波參考_號上的出角速率引起的 旋’該信號輸出给第一、…一前姓i的角速率位移信 號,該信d =量塊的振動信號’包含振動位移信 路者。^輪出给第一、二、三前端電路的高通遽波器電 4中6, Ϊ'!請ί利範圍45所述之載體自攜式定位系統,其 型角、#ίζ振動控制電路分別接收來自χ、γ、ζ軸振動 自dn!單元的慣性質量塊的振動位移㈣,以及來 位2的叙—士,拾ί信號產生已知相位的慣性質量塊的 、數子#號,每一個振動控制電路包含··P.106 486576 VI. Scope of patent application ~ ^^^-The angle increase and speed increase generator of the board are connected. 44. The first front-end circuit, the second front-end circuit, and the third front-end circuit described in the carrier self-contained positioning system described in the patent application range 43 are used for the X-, Y-, and Z-axis vibration-type angular rate detection. The output signal of the unit, the female-front-end circuit includes: a resistance conversion amplifier circuit, connected to the corresponding X, Z axis vibration =: rate detection unit, used to change the impedance of the vibration motion signal from a very local level, Greater than 100 megaohms, converted to low impedance less than ⑽ohms 'in order to obtain two vibration displacements W1M α ^ which are signals representing the inertial mass and the alternating current signal' $ two vibration displacement signals are input to the vibration control circuit; , High-pass filter circuits, respectively connected to the corresponding χ, γ, and ζ-axis vibration 51 f rate detection units, and divide the residual vibration drive signal and noise in the vibration displacement difference _ number by m to form an over-shift U signal to the angular signal loop Circuit person. The difference in cross-motion displacement is 42: The self-carrying positioning system of the carrier as described in If Fork 7 range 44, which includes at least one pile, is the measured inertial mass of the vibrating device and the set of vibrations? Block, self-expansion smoke; Li Ying's wide structure and device #, such as capacitive signal readers; 'Clio fs effect to detect the angular rate of the carrier, using a 0 rate unit to receive the corresponding vibration signal In order to maintain the vibration of the inertial mass and the drive load: the disk signal, including the capacitive readout excitation signal, the ζ-axis vibration type angular rate detection unit, and, χ, VI, the scope of the patent application _____ =) of the detection carrier The χ, γ, and z-axis angular rates bu include the rotation caused by the outgoing angular rate modulated on the carrier reference _. This signal is output to the first, ... a previous angular velocity displacement signal i, the letter d = The vibration signal contains a vibration displacement pathfinder. ^ The high-pass wave generators in the first, second, and third front-end circuits are used in the 4th, 6th, and 4th! The carrier self-carrying positioning system described in the scope 45, its shape angle, # ίζ vibration control circuit respectively Receive the vibration displacement ㈣ from the inertial mass of the dn! Unit from the χ, γ, and ζ axes, and the 士-士 from position 2, pick the signal to generate a known phase of the inertial mass, number #, each A vibration control circuit contains ... ^ 一個放大器和加法器電路,連接於第一、二、三前端 兒路的阻抗轉換放大器電路,把兩路振動位移信號放大十 倍以上,以提高靈敏度,通過把中心錨梳的信號與旁邊錨 榇·的彳。號相減’來結合兩路振動位移信號,以形成振動位 移差動信號; 一個高通濾波器電路,連接於放大器和加法器電路, 以便從振動位移差動信號中除去殘餘振動驅動信號和噪 聲’產生過慮後的振動位移差動信號;^ An amplifier and adder circuit, connected to the impedance conversion amplifier circuits of the first, second, and third front-end circuits, amplifies the two-way vibration displacement signals by more than ten times to improve sensitivity. By combining the signal of the center anchor comb with the side anchor榇 · 彳. Subtraction 'to combine two vibration displacement signals to form a vibration displacement differential signal; a high-pass filter circuit connected to the amplifier and adder circuit to remove residual vibration drive signals and noise from the vibration displacement differential signal' Differential vibration displacement signal after generation; 一個解調器電路,連接於高通濾波器電路,以從振盪 器接收電容檢出激勵信號作為相位參考信號·,從高通濾波 器接收濾波後的振動位移差動信號,並提取過濾後的振動 仇移差動信號的同相部分用以產生已知相位的慣性質量塊 的位移信號;A demodulator circuit is connected to the high-pass filter circuit to detect the excitation signal from the capacitor as a phase reference signal, receive the filtered vibration displacement differential signal from the high-pass filter, and extract the filtered vibration signal. Shift the in-phase portion of the differential signal to generate a displacement signal of an inertial mass of known phase; 第108頁 486576 I " " ' " ~ 一---—------ 六、申請專利範圍 一^固低通滤波器’連接於解調器電路,以從輸入的慣 性質ΐ塊位移化说中除去南頻噪聲,形成低頻慣性質量塊 位移信號;. 一個模擬/數字轉換器,連接於低通濾波器,用以將 模擬低頻慣性質量塊位移信號,轉換為數字化低頻慣性質 量塊位移信號,並輸出給振動處理模塊; 一個數字模擬轉換器,對來自振動處理模塊所選的信 號幅度進行處理,以便形成具有正確幅度的振動驅動信° 號; ° 一個放大器,基於正確的頻率和幅度的振動驅動信 號,為X、Υ、ζ轴振動型角速率檢測單元產生和放大振動 驅動信號者。 47.如申請專 中,所述X、Υ 塊的振動通常 其中,所述振 數字轉換器的 號,用來搜索 頻率,鎖定幅 的高頻正弦信 以便使慣性質 48· 如申請專 中’所述振動 換(Fast FourPage 108 486576 I " " '" ~ I --- ------- VI. Patent application scope ^ a solid low-pass filter' is connected to the demodulator circuit to remove the inertial mass from the input Remove the south frequency noise in the block displacement theory to form a low frequency inertial mass block displacement signal. An analog / digital converter connected to a low-pass filter is used to convert the analog low frequency inertial mass block displacement signal into a digital low frequency inertial mass block displacement signal. The mass block displacement signal is output to the vibration processing module; a digital-to-analog converter processes the amplitude of the signal selected from the vibration processing module to form a vibration drive signal with the correct amplitude; ° an amplifier based on the correct Frequency and amplitude vibration drive signals are those that generate and amplify vibration drive signals for the X, Υ, and ζ-axis vibration-type angular rate detection units. 47. As in the application college, the vibration of the X and Υ blocks is usually the number of the vibration-digital converter, which is used to search the frequency and lock the high-frequency sine letter of the amplitude so as to make the inertial mass 48. The vibration change (Fast Four 利範圍4 6所述之載體自攜式定位系統,其 、Z轴振動型角速率檢測單元中的慣性質量 是由具有精確幅度的高頻正弦信號驅動的, 動處理模塊接收來自振動控制電路的模擬/ 已知相位的數字化低頻慣性質量塊位移信 具有最高質量因子(Q)值的頻率,鎖定該 度,產生振動驅動信號,包括具有精確幅度 號,給X、Y、Z軸振動型角速率檢测單元, 量塊振動在預定的諧振頻率下者。The self-carrying positioning system of the carrier according to the scope of benefit 46, wherein the inertial mass in the Z-axis vibration-type angular rate detection unit is driven by a high-frequency sinusoidal signal with a precise amplitude, and the dynamic processing module receives the vibration control circuit. Analog / known phase digital low frequency inertial mass block displacement signal with the highest quality factor (Q) value of the frequency, locks the degree, generates vibration drive signals, including accurate amplitude numbers, gives X, Y, and Z axis vibrational angular rates The detection unit is one in which the gauge block vibrates at a predetermined resonance frequency. 利範圍47所述之載體自攜式定位系統,其 處理模塊近一步包含一個離散快速富里^變 ier Transf〇rm,FFT)模塊,一個頻田率和幅The carrier self-carrying positioning system described in the profit scope 47, the processing module further includes a discrete fast Fourier transform (FFT) module, a frequency field rate and amplitude 第109頁 六、申請專利範圍 '~~ --—--- ,數據存儲陣模塊,一個最大值檢測邏輯模蜣及一個卩值 刀析和選擇邏輯模塊,以便找到具有最大Q值的頻率,生 Ύ J 八 <離散快速富里葉變換模塊用來變換來自振動運動控制 f路的模擬數字轉換器的數字化的低頻慣性質量塊的位移 k號’以便形成輸入慣性質量塊位移信號的頻幅上的幅度 數據·, 頻率和幅度數據存儲陣模塊,接收幅度和頻譜數據, 以形成一假幅度和頻譜數據陣; ,最大值檢測邏輯模塊,將來自幅度和頻譜數據陣的頻 譜數據陣的頻譜分割為一些頻譜段,並從當地頻譜段中選 擇出具有最大幅度的頻率;Page 109 6. The scope of patent application '~~ ------, data storage array module, a maximum value detection logic module and a threshold value analysis and selection logic module in order to find the frequency with the maximum Q value, Health J J < Discrete fast Fourier transform module is used to transform the digitized low-frequency inertial mass block displacement number k 'from the analog-to-digital converter of the vibration motion control f-path to form the frequency of the input inertial mass block displacement signal Amplitude data ·, Frequency and amplitude data storage array module, receiving amplitude and spectrum data to form a false amplitude and spectrum data array; and a maximum detection logic module that divides the spectrum of the spectrum data array from the amplitude and spectrum data array For some frequency bands, and select the frequency with the largest amplitude from the local frequency band; Q值分析和選擇邏輯模缘,在選出的頻率上進行q值分 析’通過計算幅度和頻帶寬度的比值,選擇頻率和幅度, 其中’計异用的頻帶寬度取每一個最大頻率點最大值的正 負二分之一之間者。 49. 一載體自攜式定位方法,包含: (a) 用一個慣性測量組件,敏感載體運動產生數字角 增量和對應於載體運動的速度增量; (b) 用一個尋北器’敏感地球磁場,以測量載體的航 向角;Q value analysis and selection of logical mode edge, and q value analysis on the selected frequency. 'By calculating the ratio of the amplitude and the frequency band width, select the frequency and the amplitude.' Between the plus and minus half. 49. A carrier self-contained positioning method, comprising: (a) using an inertial measurement component, the sensitive carrier motion generates a digital angular increment and a speed increment corresponding to the carrier motion; (b) using a north seeker's sensitive earth Magnetic field to measure the heading angle of the carrier; (c) 用一個速度產生器,測量載體相對於它在其上運 動的運輸面的載體相對速度,並且 (d)利用數字角增量和速度增量信號,航向角,用戶(c) using a speed generator to measure the relative speed of the carrier relative to the carrier on which it is moving, and (d) using digital angular and speed incremental signals, heading angle, user 第110頁 六'申請專利範圍 2對於運輸面的相對速度,在組合處理器中取得位置數據 5〇·如申請專利範圍49所述之載體自攜式定位方法,其 所述步驟(d)進一步包含: 測量(d· 〇利用數字角增量和速度增量信號計算慣性位置 (d.2)利用地球磁場測量計算航向角; (d · 3 )利用用戶相對於地面的相對速度,為卡疆s淪 ;器在里程計處理模塊中產生一相對位置誤差測量;w 波g (^ · 4)利用用戶相對於水面的相對速度,為卡爾曼濾 ' 在流速計處理模塊中產生一相對位置誤差測量; (d · 5)通過進行卡爾曼濾波計算的方法,估 位測晷却筆 丨丨只丨工心 、置誤差,以校正慣性定位測量者。 如申請專利範圍49所述之載體自攜式定位方法,其 ’在所述步驟(d)之後進一步包含一第一附加處理步 ’通過一無線通信裝置與其他用戶交換所獲得的位置信 息者。 ° •如申請專利範圍5 〇所述之載體自攜式定位方法,其 中 其中在所述步驟(d)之後進一步包含一第一附加處理 步驟’通過—無線通信裝置與其他用戶交換所獲得的位置 信息者。 53·如申請專利範圍49所述之載體自攜式定位方法,其 中’進一步包含—附加處理步驟,在地圖上顯示載體的位 置’並且通過利用位置信息存取地圖數據庫,顯示周圍環Page 110 6 'Application for patent scope 2 For the relative speed of the transportation surface, obtain position data in the combined processor 50. The self-carrying positioning method of the carrier as described in application patent scope 49, the step (d) of which is further Including: Measure (d · 〇 Calculate inertial position using digital angular increment and speed increment signals (d.2) Calculate heading angle using geomagnetic field measurement; (d · 3) Use relative velocity of the user relative to the ground for Kajiang The sensor generates a relative position error measurement in the odometer processing module; w wave g (^ · 4) uses the user's relative speed with respect to the water surface to generate a Kalman filter for the Kalman filter. Measurements; (d · 5) The Kalman filter calculation method is used to estimate the position of the measuring pen, and only the workmanship and setting errors are used to correct the inertial positioning of the surveyor. Carry the carrier as described in the scope of patent application 49 Positioning method, which further includes a first additional processing step after said step (d), who exchanges the obtained position information with other users through a wireless communication device. Please refer to the self-carrying positioning method of the carrier as described in the patent scope 50, wherein the step (d) further includes a first additional processing step 'pass-through wireless communication device and other users' obtained location information. 53. The method of self-carrying positioning of a carrier as described in the scope of application patent 49, further comprising 'additional processing steps, displaying the position of the carrier on the map' and accessing the map database by using position information to display the surrounding environment 第111頁 486576 --- —— ^— -—-——— 六、申請專利範圍 境信息。 5 4 ·如申請專利範圍5 〇所述之載體自攜式定位方法,其 中,進一步包含一附加處斑步驟’在地圖上顯示載體的位 置,並且通過利用位置信息存取地圖數據庫,顯示周圍環 境信息者。 5 5·如申請專利範圍5 1所述之載體自攜式定位方法,其 中,進一步包含一附加處理步驟,在地圖上顯示载體的位 置,並且通過利用位置信息存取地圖數據庫,顯示周圍環 境信息者。 5 6 ·如申請專利範圍5 2所述之載體自攜式定位方法,其 中,進一步包含一附加處理步驟,在地圖上顯示載體的位 置,並且通過利用位置信息存取地圖數據庫,顯示周圍環 境信息者。 57·如申清專利範圍49所述之載體自攜式定位方法,其 中5步驟(d.l)進一步包含以下步驟: (d· 1· 1)積分角增量為姿態數據,稱為姿態積分處 理; (d· 1 · 2 )利用姿態數據把測得的速度增量變換到一個 適當的導航坐標系,在該系中變換後的速度增量積分為速 度’稱為速度積分處理;並且 (d · 1 · 3 )積分導航系速度數據為位置數據,稱為位置 積分處理者。 58.如申請專利範圍49所述之載體自攜式定位方法,其 中’步騍(d.5)進一步包含以下步驟:Page 111 486 576 --- - ^ -------- Six, the scope of patent information environment. 5 4 · The self-carrying positioning method for a carrier as described in the scope of patent application 50, further comprising an additional spotting step of 'displaying the position of the carrier on the map, and accessing the map database by using position information to display the surrounding environment Informant. 5 5. The self-carrying positioning method for a carrier according to the scope of application for patent 51, further comprising an additional processing step, displaying the position of the carrier on a map, and accessing the map database by using position information to display the surrounding environment Informant. 5 6 · The self-carrying positioning method for a carrier as described in the scope of patent application 52, further comprising an additional processing step, displaying the position of the carrier on a map, and displaying the surrounding environment information by using the location information to access the map database By. 57. The carrier self-carrying positioning method as described in Shenqing Patent Scope 49, wherein step 5 (dl) further includes the following steps: (d · 1.1) The increment of the integration angle is attitude data, which is called attitude integration processing; (d · 1 · 2) Use the attitude data to transform the measured speed increment to an appropriate navigation coordinate system, in which the converted speed increment integral to speed is called speed integration processing; and (d · 1 · 3) The speed data of the integral navigation system is position data and is called a position integral processor. 58. The carrier self-carrying positioning method according to claim 49, wherein step d. (D.5) further includes the following steps: 第112頁 486576 六、申請專利範圍 ^一-:-— (d· 5 · 1)執行運動測試,用以確定載體是否停止,以 便起動零速修正; (d· 5· 2)根據從運動測步驟的載體運動狀態,形成 測量和時變矩陣;並且 (d· 5· 3)通過卡爾曼濾波器獲得ijju位置誤差的最優估 計者。 5 9·如申請專利範圍5 7所述之載體自攜式定位方法,其 中,步驟(d· 5)進一步包含以下步驟·· 八 (d· 5· 1)執行運動測試,用以確定載體是否停止,以 便起動零速修正; (d· 5. 2)根據從運動測步驟的載體運動狀態,形成成 測量和時變矩陣;並且 (d.5.3)通過卡爾曼遽波器獲得mu位置誤差的最優估 計者。 6〇·如申請專利範圍49所述之載體自攜式定位方法,其 中,步礴(D.3)進一步包含以下步驟: (d.3.1)將一輸入達在機體坐標系的速度轉換為表達 在導航发標系的速度; (d· 3.2)將所述變換後的速度與IMU得出的速度相比 較,得出速度差; (d. 3· 3)在一預定時間段内,積分該速度差者。 6 1 ·如申請專利範圍5了所述之載體自攜式定位方法,其 中,步褲(d.3)進一步包含以下步驟: (d.3.1)將一輸入達在機體坐標系的速度轉換為表達Page 112 486576 VI. Scope of patent application ^----(d · 5 · 1) Perform a motion test to determine whether the carrier is stopped in order to start zero speed correction; (d · 5 · 2) The carrier motion state of the step forms a measurement and a time-varying matrix; and (d · 5 · 3) obtains an optimal estimator of the ijju position error through a Kalman filter. 5 9 · The self-carrying positioning method of a carrier as described in the scope of patent application 5 7, wherein step (d · 5) further includes the following steps ·· Eight (d · 5 · 1) Perform a motion test to determine whether the carrier is Stop to start zero-speed correction; (d · 5.2) Form measurement and time-varying matrices based on the motion state of the carrier from the motion measurement step; and (d.5.3) obtain the Mu position error by the Kalman chirp The best estimator. 60. The method of self-carrying positioning of a carrier as described in the scope of application patent 49, wherein step (D.3) further includes the following steps: (d.3.1) converting an input speed in the body coordinate system into an expression Speed in the navigation system; (d · 3.2) Comparing the transformed speed with the speed obtained by the IMU to obtain the speed difference; (d. 3 · 3) Integrating the speed within a predetermined period of time Speed difference. 6 1 · The self-carrying positioning method for a carrier as described in the scope of patent application 5, wherein the step pants (d.3) further includes the following steps: (d.3.1) Converting an input speed in the body coordinate system to expression 第113頁 486576 六、申請專利範圍 在導航坐標系的速度; C d · 3 · 2 )將所述變換後的迷度與I mu得出的速度扭比 車交’得出速度差; (d.3.3)在一預定時間段内,積分該速度差者。 6 2·如申請專利範圍5 8所述之載體自攜式定位方法,其 中,步驟(d · 3 )進一步包含以下步驟: (d.3.1)將一輸入達在機體坐標系的速度轉換為表達 在導航坐標系的速度; (d.3.2)將所述變換後的速度與IMU得出的速度相比 較,得出速度差; (d· 3· 3)在一預定時間段内,積分該速度差者。 63.如申請專利範圍59所述之載體自攜式定位方法,其 中,步驟(d.3)進一步包含以下步驟: (d.3.1)將一輸入達在機體坐標系的速度轉換為表達 在導航坐標系的速度; (d· 3· 2)將所述變換後的速度與IMU得出的速度相比 較,得出速度差; (d.3.3)在一預定時間段内,積分該速度差者。 64·如申請專利範圍49所述之載體自攜式定位方法,其 中,所述速度產生器當運輸面是地面時為一里程計者。 65·如申請專利範圍63所述之載體自攜式定位方法,其 中,所述速度產生器當運輸面是地面時為一里程計者。 6 6·如申請專利範圍49所述之載體自攜式定位方法,其 中,,其中所述速度產生器當運輸面是水面時為—流速計 486576 六、申請專利範圍 者0 6 7. 中, 68. 中, 驟, 息者 如申請專利範圍63所述之載體自攜式定位方法,其 所述速度產生器當運輸面是水面時為一流速計者。 如申請專利範圍63所述之載體自攜式定位方法,1 在所述步驟(d)之後進一步包含一第一附加 牛、 通過-無線通信裝置與其他用戶交換所獲得的:置信 6 9·如申凊專利範圍6 3所述之載體自攜式定 、 中,進-步包含一附加處理步驟,在地圖2 置,並且通過利,用位置信息存取地圖數據頌不戟體的位 境信息者。 ,顯示周圍環 70.如中請專利範圍68所述之載體自擒式定位方法1 中,進一步包含一附加處理步驟,在地圖上 -、,、 置,並且通過利用位置信息存取地圖數據不載體的位 境信息者。 厍,顯示周圍環 71·如申請專利範圍63所述之載體自撝式定位 、 中,進一步包含第二附加處理步驟,在地圖2 位置,並且通過利用位置信息存取地圖數據頌不戰體的 環境信息者。 旱,顯示周圍 72·如申請專利範圍67所述之載體自攜式定办+、 中,其中進一步包含第二附加處理步驟, /、 长地圖上顧 體的位置,並且通過利用位置信息存取地圖 載 周圍環境信息者。 · 庫’顯示 73·如申請專利範圍68所述之載體自攜式定私+、 '位方法,其Page 113 486576 6. The speed of the patent application scope is in the navigation coordinate system; C d · 3 · 2) The speed difference obtained from the transformed aberration and I mu is compared with the vehicle speed to obtain the speed difference; (d .3.3) Integrate the speed difference within a predetermined period of time. 62. The self-carrying positioning method of a carrier as described in the scope of patent application 58, wherein step (d · 3) further includes the following steps: (d.3.1) converting an input speed in the body coordinate system into an expression The speed in the navigation coordinate system; (d.3.2) comparing the transformed speed with the speed obtained by the IMU to obtain a speed difference; (d · 3 · 3) integrating the speed within a predetermined period of time Poor. 63. The method of self-carrying positioning of a carrier as described in patent application range 59, wherein step (d.3) further includes the following steps: (d.3.1) converting an input speed in the body coordinate system into an expression in navigation The speed of the coordinate system; (d · 3 · 2) comparing the transformed speed with the speed obtained by the IMU to obtain a speed difference; (d.3.3) integrating the speed difference within a predetermined period of time . 64. The self-carrying positioning method for a carrier according to claim 49, wherein the speed generator is an odometer when the transportation surface is the ground. 65. The carrier self-carrying positioning method according to claim 63, wherein the speed generator is an odometer when the transportation surface is the ground. 6 6. The self-carrying positioning method of the carrier according to the scope of application patent 49, wherein the speed generator is a flow meter when the transportation surface is a water surface 486576 6. Those applying for a patent scope 0 6 7. 68. In step S20, the self-carrying positioning method for a carrier as described in the patent application 63, wherein the speed generator is a flow meter when the transportation surface is a water surface. According to the method of self-carrying positioning of a carrier as described in the scope of application patent 63, 1 after the step (d) further includes a first additional cattle, obtained through exchange with a wireless communication device with other users: confidence 6 9 · 如The self-contained carrier of the carrier described in patent scope 63, further, includes an additional processing step, which is placed on map 2 and uses the location information to access the map data to praise the position information of the inferior body. By. The surrounding ring 70 is displayed. As described in the patent claim 68, the carrier self-tapping positioning method 1 further includes an additional processing step on the map-,,, and, and accesses the map data by using position information. Location information of the carrier. Alas, displaying the surrounding ring 71. The carrier self-positioning as described in the scope of application patent 63, further includes a second additional processing step at the location of map 2 and accesses the map data by using location information Environmental informants. Drought, display surroundings 72. The carrier self-contained set up +, described in the patent application range 67, further includes a second additional processing step, /, the position of the body on the long map, and access by using position information Information on the surrounding environment. · Library 'display 73 · The carrier self-contained private +,' bit method described in the patent application range 68, which 第115頁 486576 六、申請專利範圍 中,進一步包含第二附加處理步驟,在地圖上顯示載體的 位置,並且通過利用位置信息存取地圖數據庫,顯示周圍 環境信息者。 74.如申請專利範圍69所述之載體自攜式定位方法,其 中,進一步包含第二附加處理步驟,在地圖上顯示載體的 位置,並且通過利用位置信息存取地圖數據庫,顯示周圍 環境信息者。Page 115 486576 6. The scope of patent application further includes a second additional processing step, displaying the location of the carrier on the map, and displaying the surrounding environment information by using the location information to access the map database. 74. The self-carrying positioning method for a carrier as described in the scope of application patent 69, further comprising a second additional processing step, displaying the position of the carrier on the map, and displaying the surrounding environment information by using the location information to access the map database . 第116頁Page 116
TW89126514A 2000-10-31 2000-12-08 Vehicle self-carried positioning method and system thereof TW486576B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/704,211 US6477465B1 (en) 1999-11-29 2000-10-31 Vehicle self-carried positioning method and system thereof

Publications (1)

Publication Number Publication Date
TW486576B true TW486576B (en) 2002-05-11

Family

ID=24828546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89126514A TW486576B (en) 2000-10-31 2000-12-08 Vehicle self-carried positioning method and system thereof

Country Status (1)

Country Link
TW (1) TW486576B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI409439B (en) * 2011-01-13 2013-09-21 Mitac Int Corp Fitness progress monitoring method for a user of a personal navigation device and related device thereof
US8700319B2 (en) 2010-10-22 2014-04-15 Mitac International Corp. Method of monitoring fitness levels with a personal navigation device and related device thereof
TWI680277B (en) * 2017-10-31 2019-12-21 芬蘭商亞瑪芬體育數字服務公司 Method and system for determining a direction of movement of an object
CN111121820A (en) * 2019-12-16 2020-05-08 南京理工大学 MEMS inertial sensor array fusion method based on Kalman filtering

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8700319B2 (en) 2010-10-22 2014-04-15 Mitac International Corp. Method of monitoring fitness levels with a personal navigation device and related device thereof
TWI409439B (en) * 2011-01-13 2013-09-21 Mitac Int Corp Fitness progress monitoring method for a user of a personal navigation device and related device thereof
TWI680277B (en) * 2017-10-31 2019-12-21 芬蘭商亞瑪芬體育數字服務公司 Method and system for determining a direction of movement of an object
US10708723B2 (en) 2017-10-31 2020-07-07 Amer Sports Digital Services Oy Method and system for determining a direction of movement of an object
US10999709B2 (en) 2017-10-31 2021-05-04 Amer Sports Digital Services Oy Method and system for determining a direction of movement of an object
US11743687B2 (en) 2017-10-31 2023-08-29 Suunto Oy Method and system for determining and tracking an indoor position of an object
CN111121820A (en) * 2019-12-16 2020-05-08 南京理工大学 MEMS inertial sensor array fusion method based on Kalman filtering
CN111121820B (en) * 2019-12-16 2022-04-01 南京理工大学 MEMS inertial sensor array fusion method based on Kalman filtering

Similar Documents

Publication Publication Date Title
TW577975B (en) Core inertial measurement unit
TW468035B (en) Micro inertial measurement unit
Poddar et al. A comprehensive overview of inertial sensor calibration techniques
US6671622B2 (en) Vehicle self-carried positioning method and system thereof
US6415223B1 (en) Interruption-free hand-held positioning method and system thereof
US6658354B2 (en) Interruption free navigator
EP3460399B1 (en) Methods, apparatuses, and computer programs for estimating the heading of an axis of a rigid body
CN101706284B (en) Method for increasing position precision of optical fiber gyro strap-down inertial navigation system used by ship
CN112595350B (en) Automatic calibration method and terminal for inertial navigation system
CN102980577A (en) Micro-strapdown altitude heading reference system and working method thereof
CN202974288U (en) Miniature strapdown navigation attitude system
CN102445200A (en) Microminiature personal combined navigation system and navigation positioning method thereof
CN105091907A (en) Estimation method of installation error of DVL direction in SINS and DVL combination
CN112197765B (en) Method for realizing fine navigation of underwater robot
CN103017764A (en) Autonomous navigation and attitude measurement device for high speed train
CN107677292A (en) Vertical line deviation compensation method based on gravity field model
CN109084755B (en) Accelerometer zero offset estimation method based on gravity apparent velocity and parameter identification
CN101581221A (en) Measurement while drilling system
TW486576B (en) Vehicle self-carried positioning method and system thereof
CN106679612B (en) A kind of non-linearity flexure based on inertia measurement matching deforms method of estimation
Shkel et al. Pedestrian inertial navigation with self-contained aiding
Weston et al. Strapdown inertial navigation technology
TW498169B (en) Interruption-free hand-held positioning method and system thereof
CN113959464B (en) Gyroscope-assisted accelerometer field calibration method and system
TW498170B (en) Self-contained/interruption-free positioning method and system thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees