TW593981B - Micro integrated global positioning system/inertial measurement unit system - Google Patents

Micro integrated global positioning system/inertial measurement unit system Download PDF

Info

Publication number
TW593981B
TW593981B TW90132453A TW90132453A TW593981B TW 593981 B TW593981 B TW 593981B TW 90132453 A TW90132453 A TW 90132453A TW 90132453 A TW90132453 A TW 90132453A TW 593981 B TW593981 B TW 593981B
Authority
TW
Taiwan
Prior art keywords
module
gps
measurement
signal
vector
Prior art date
Application number
TW90132453A
Other languages
Chinese (zh)
Inventor
Ching-Fang Lin
Hiram Mccall
Original Assignee
American Gnc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/911,571 external-priority patent/US20020008661A1/en
Application filed by American Gnc Corp filed Critical American Gnc Corp
Application granted granted Critical
Publication of TW593981B publication Critical patent/TW593981B/en

Links

Abstract

A micro integrated global positioning system (GPS)/inertial measurement unit (IMU) system, which is adapted to apply to output signals proportional to rotation and translational motion of a carrier and GPS measurements of the carrier, respectively from angular rate sensors, acceleration sensors, and GPS chipset, is employed with MEMS angular rate and acceleration sensors and GPS chipset, compared with a conventional IMU/GPS system, the system of the present invention uses an integrated processing scheme by means of digital closed loop control of the dither driver signals of the IMU, digital temperature control and compensation, the earth's magnetic field-based heading damping, robust error, and compact sensor and circuit architecture and dramatically shrinks the size of mechanical and electronic hardware and power consumption, meanwhile, obtains highly accurate motion measurements.

Description

593981 玖、發明說明: 【發明所屬之技術領域】 a 正式申請書,其預先申請號為·· 60/219,957,申請 曰期為· 2000年7月20日。 尺寸,測量系統,更進—步的講’是關於小 #、7、正口的全球疋位系統(GPS)/慣性測量組件(IMU)系 ί、#、ί f=在動態環境中對載體進行高準確度的、_化的 角速率、加速度、位置、速度、和姿態測量。 【先前技術】 運恃巾’麵或哪接衫被普遍制於確絲體的 IMU是’(·貝性導航系統(lnertlal navigati〇n吁你m,祕)的核心部 由1應,微處理器和相騎内置導航軟體構成,丽 的組成μ包括慣性感應器(角速率產生器和加速度產生器,傳 ΐΐίίΓίί加速度計或者角速率感應器和加速度感應器)和對 ίΐϊΐ電!'器件’基於從板上慣性感應器對載體的加速度和 率的測量,由微器數值解出牛頓運動方程,從而得到 載體侍位置、速度、和姿態。 一從原理上,IMU依賴於三個正交安裝的慣性角速率產生器和 =正,安裝的加速度產生,獲得三軸肖速率和加速度的測量 個正交安裝的慣㈣鱗產生奸三個正交安裝的加速 以及相應的支禮結構和電子電路,傳統上被稱為慣性測 置組件(Inertml Measurement Unit,IMU),傳統的〗^ 式IMU和捷聯式IMU。 J刀局十。 在平台式IMUt,角速率產生器和加速度產生器 穩定平台上,載體的姿態測量可直接從平台的結構中取、593981 发明 Description of the invention: [Technical field to which the invention belongs] a formal application, whose pre-application number is 60 / 219,957, and the application date is July 20, 2000. Dimensions, measurement systems, and more-'Speaking further' is about small #, 7, positive Global Positioning System (GPS) / Inertial Measurement Unit (IMU) system, #, ί f = to the carrier in a dynamic environment Perform highly accurate, angular velocity, acceleration, position, velocity, and attitude measurements. [Previous technique] The IMU of the face or which shirt is generally made of silk is "(· the basic navigation system (lnertlal navigati〇n appeals to you m, secret), the core is composed of 1 response, micro processing And the built-in navigation software of Xiangqi, Li's composition μ includes inertial sensors (angular rate generator and acceleration generator, transmission accelerometer or angular rate sensor and acceleration sensor), and pair of electricity! 'Device' based on From the measurement of the acceleration and rate of the carrier by the inertial sensor on the board, the Newton's equation of motion is solved by the microcomputer numerical value, so as to obtain the position, velocity, and attitude of the carrier. In principle, the IMU relies on three orthogonally mounted The inertial angular rate generator and = positive, the installed acceleration is generated, and the measurement of the triaxial shaw rate and acceleration is obtained. An orthogonally installed inertial scale generates three orthogonally installed accelerations, as well as corresponding support structures and electronic circuits. Traditionally called Inertml Measurement Unit (IMU), the traditional ^ type IMU and strapdown type IMU. J knife round ten. In the platform type IMUt, the angular rate generator and acceleration Generator on a stable platform, attitude measurement can be taken directly from the support structure platform,

載體的姿態角速率測量不能從平台中直接取得,而且 fiMU 中要有相應的高精度反饋控制回路。 σ ^ 5 593981 與=台式IMU相比,在捷聯式脑巾,肖速率產生器和加速 f生器直接於載體賴,捷連的肖辭產生脉加速度產生写 是用載體坐標系表達的角速率和加速度測量數據,姿 悲測置數據可通過一系列的計算取得。 傳統的IMU使科__難驗率魅^和加速度產生哭。 傳,的慣性角速率產生器包括鐵轉子陀螺和光學陀螺^ 積:ΐϊΐ ’ Ϊ力調諧陀螺,環形激光陀螺,光纖陀螺, ίΪ勺U夫螺’以及半球諧振陀鮮,傳統的角速率產 生為包括脈衝積分擺式加速度計,擺式陀螺加速度計等。 使用平σ SIMU的慣性導㈣紐常被化 ¥航系統,在框架式慣性導航系統巾,角 ’用以分離_器㈣體的轉動,、i而 性連接立ίτίί,ίϊ性導航系統中,域應器與載體架鋼 立ίϊ系ili!疋的航行系統中進行導航計算,在高速率中建 車, 系統ίΐί並===統的運動測量比捷聯式慣性導般 於定標,但―航线峨聯式慣性導航系統更易 更昂貴統比捷聯式慣性導航系統更複雜和 成為主要=貝可靠性和小尺寸,捷聯式慣性導航系統 6 593981 除了自容操作外’慣性導航系統還有提供全部答案和寬帶的 奴點。 然而’慣性導航系統昂貴,並且在長時間區間内其輸 使其性A降低’這意味著其位置誤差、速度誤差、和姿雜誤差 時間增加’該誤差的傳遞特性主要由很多誤差源導致,ϋ, ,螺漂移、加速度計偏差、錯排、重力擾動、初始位 差、以及定標因子誤差。 總體來講,改進慣性導航系統的準確性的方法包括使用 X丨貝性感應裔和利用外部感應器輻助慣性導航系統。 然而,現有的高精度慣性感應器非常昂貴,體積大,重量大。 最近GPS接收器被普遍由於輕助慣性導航系統,Gps是以衛星 ίίί的範圍的、及全天候的射毅位枚時系統,GPS 糸、、先起初為無數目限制的、適當裝備的用 提供精確的位置、速度、和關信息。M h糸統中 專用的GPS接收機是用戶使用全球定位系 咖嶋縣自織蹤追 、速度:和時間信息,但是沒有姿態信息,在良好的射 1^兄中^GPS信號傳播誤差和GPS衛星誤差,包括可選擇性,決 λ機線紐高錢㈣可能_不清,以及當gps “姻w比很低和載體運動劇烈日寺其性能表現降低。 隨著過去十年中高性能的GPS接收機的價格和 過相干啦技術提供載_位置和姿態 iDamti_GpsM在多天線上_差制高準· 這種方蝴據被轉換㈣信息, 而,結果的長期穩定性和相對低的價格,然 姿離持窄的帶寬,對陰影和擁擠敏感,對三軸 〜《 Κ®天朗翻’對紐度料態結果需要天 7 593981 線分離的足夠遠。 由於獨立的慣性導航系統和獨立的Gps接收機的内 的慣性導航㈣和獨讀挪接《不能滿足任 擾能力等等例如’健位、細的高敎度、高翻速率、抗干 運扞用中,獨立GPS接收機和獨立的慣性導銳系統的互補 將要提供 i ‘ 立的兩者之-的34種導g力不可能靠任何獨 整合的的GPS/IMU系統的優越性總結如下: 環路自輔助使 增強 使付在呆音和動態環境中跟縱信號的能力 f GPS錢暫時敎時’紐導航⑽* 而且減少再得到GPS信號的搜尋時間。 杈仏導航航彳5心, 被校二差和慣性感應_ 確的:置= 暫時核時,慣性導航系統能夠提供更準 GPS通過操縱,提供、並且使慣性 而消除了獨立的慣性導航系統在任務 進仃動牆準,從 傳統的IMU具有以下特點: 則斤要求的初始自準。 成本南。 尺寸大(體積、質量、和重量)。 大的功率消耗。 壽命短,和長的起動時間。 傳統的GPS設備系統可以分為兩類: 面 全功能的GPS接收機,包括顯千哭 GPS原始設備製造商機器模式,輪入/輪出介’ 傳統的整合的GPS/IMU系統同樣具有如下特徵· 8 593981 成本向。 尺寸大(體積、質量、和重量)。 大的功率消耗。 壽命短,和長的起動時間。 傳統的整合的GPS/IMU系統的現有缺陷限制了它們在正在出 現的成本敏感的商業中的應用,例如,汽車通訊中相位 控制,汽車導航,以及手提設備。 、 微IMU已經被發明,參閱AmericanGNcc〇rp〇rati〇l^另一項 美國專利申請,專利號是09/477151,標題是”微慣性測量組件”,、 微IMU利用 MEMS (Micro Electronic Mechanical System)角速率和The attitude angular rate measurement of the carrier cannot be directly obtained from the platform, and there must be a corresponding high-precision feedback control loop in the fiMU. σ ^ 5 593981 Compared with = Desktop IMU, in the strapdown brain towel, the Shaw rate generator and the acceleration generator are directly connected to the carrier, and the Jielian's Xiao word generates the pulse acceleration. The angle is written using the carrier coordinate system. Velocity and acceleration measurement data, attitude and position measurement data can be obtained through a series of calculations. The traditional IMU makes Ke __ difficult to test rate charm and acceleration cry. It is said that the inertial angular rate generator includes an iron rotor gyro and an optical gyro ^ Product: ΐϊΐ Ϊ Force-tuned gyro, ring laser gyro, fiber optic gyro, Ϊ spoon U-shaped helical screw, and hemispherical resonant gyro, the traditional angular rate generation is Including pulse integral pendulum accelerometer, pendulum gyro accelerometer and so on. The inertial navigation system using the flat σ SIMU is often used in navigation systems. In the frame-type inertial navigation system, the angle is used to separate the rotation of the body, and it is connected to the navigation system. Navigation calculations are performed in the navigation system of the field reactor and the carrier frame, and the vehicle is built at a high rate. The system's motion measurement is more accurate than the strapdown inertial guidance, but ―The route Elian inertial navigation system is easier and more expensive than the strapdown inertial navigation system. It is more complicated and has become the main = reliability and small size. Strapdown inertial navigation system 6 593981 In addition to self-contained operation, the inertial navigation system also There are slaves that provide full answers and broadband. However, 'the inertial navigation system is expensive, and its performance is reduced over a long period of time.' This means that its position error, speed error, and attitude and error error time increase. 'The transmission characteristics of this error are mainly caused by many error sources. ϋ,, screw drift, accelerometer deviation, misalignment, gravity disturbance, initial offset, and calibration factor error. In general, methods to improve the accuracy of inertial navigation systems include the use of X-ray sensors and the use of external sensors to assist inertial navigation systems. However, the existing high-precision inertial sensors are very expensive, bulky and heavy. Recently, GPS receivers have been widely used due to light-assisted inertial navigation systems. GPS is a satellite-based range and an all-weather firing time system. GPS 糸, initially, provides precision for an unlimited number of properly equipped devices. Location, speed, and related information. The dedicated GPS receiver in the Mh system is the user ’s self-tracking, speed: and time information using the global positioning system Kayu County, but there is no attitude information. In a good shot, the GPS signal propagation error and GPS Satellite errors, including selectivity, the possibility of deterministic lambda line and high cost may be unclear, and when the GPS ratio is very low and the carrier moves violently, its performance decreases. With the high performance GPS in the past decade The receiver's price and over-coherence technology provide carrier_position and attitude iDamti_GpsM on multiple antennas_ difference Micro Motion. This kind of data is converted into information, and the long-term stability of the result and the relatively low price. The attitude is narrow and has a narrow bandwidth. It is sensitive to shadows and congestion. For the three-axis ~ Κ®Tianlangfan ', the result of the material state needs to be far enough from the line 7 593981. Due to the independent inertial navigation system and independent GPS The inertial navigation of the receiver and the read-only connection "can not meet the ability of arbitrary interference, etc." such as' fitness, fine high degree, high turnover rate, anti-dry transportation, independent GPS receiver and independent Interaction of inertial guidance system The superiority of the 34 kinds of guiding forces that will provide i'li's two cannot be achieved by any independently integrated GPS / IMU system is summarized as follows: The loop self-assistance enables the enhancement to follow the dead sound and dynamic environment. The ability of the vertical signal f GPS time is temporarily 'New Navigation' * and it reduces the search time to get the GPS signal again. The navigation navigation system is 5 hearts, the difference between the calibration and the inertial sensing is correct. Set: = temporary check, The inertial navigation system can provide more accurate GPS through manipulation, provide, and eliminate inertia. The independent inertial navigation system can be used to advance the task during the mission. From the traditional IMU, it has the following characteristics: The initial self-alignment required by the cost. Large size (volume, mass, and weight). Large power consumption. Short life and long startup time. Traditional GPS equipment systems can be divided into two categories: Full-featured GPS receivers, including Xianqian GPS OEM machine mode, round-in / round-out 'The traditional integrated GPS / IMU system also has the following characteristics · 8 593981 Cost direction. Large size (volume, mass, and weight). Great work Consumption. Short life, and long start-up time. Existing deficiencies in traditional integrated GPS / IMU systems limit their use in emerging cost-sensitive businesses, such as phase control in automotive communications, car navigation, and mobile Equipment. Micro IMU has been invented, see AmericanGNcc〇rp〇rati〇l ^ Another US patent application, patent number 09/477151, titled "micro inertial measurement module", micro IMU using MEMS (Micro Electronic Mechanical System) angular rate and

加速度產生器,與傳統的IMU相比,微1^11;通過信號數位化、溫 度控制和補償、感應器誤差和錯排校正、姿態更新、及阻尼控^ 環,利用正反饋開環信號處理機制,得到高精度的運動測量數^康, 並極大地減小了機械和電子硬體尺寸和功率消耗。 MEMS,或者更簡單地,微機器,被認為是矽革命邏輯上的 下一步’人們預言,即將到來的階段將會不同以往,並且比簡單 地在芯片上堆放更多的晶體管更為重要,矽革命的下一個三十年 的里程碑將是在芯片上結合新型功能結構;它不僅使芯片思考, =且感覺、行動、以及通訊,與傳統的慣性感應器相比,MEMsAcceleration generator, compared with traditional IMU, micro 1 ^ 11; through signal digitization, temperature control and compensation, sensor error and misalignment correction, attitude update, and damping control ^, using positive feedback open-loop signal processing Mechanism to obtain high-precision motion measurement data, and greatly reduce the size and power consumption of mechanical and electronic hardware. MEMS, or more simply, micromachines, is considered to be the next logical step in the silicon revolution. 'People predict that the upcoming stage will be different from the past and more important than simply stacking more transistors on the chip. Silicon The next thirty-year milestone of the revolution will be the combination of new functional structures on the chip; it not only makes the chip think, but also feels, acts, and communicates. Compared with traditional inertial sensors, MEMs

慣性感應器為導航、致導、和控制系統提供了尺寸、價格、及可 靠性的巨大改進。 同時,GPS技術又有了新的領域,體積小、價格低的GPS芯片 組正在發展中,例如,MitelGP2000和GRF1/LX芯片組,它們小到 可以裝入手提電話和手提電腦中,但是仍然可以接收GPS衛星信 號’正在出現的商業電子設備計劃使用它們。 儘管MEMS角速率感應器和MEMS加速度計和GPS芯片組已 經商業化’並且具有小尺寸和低功耗的特點,但是它們還不具有 技術上的裝備,以傳統技術為基礎,來構造運行好、小尺寸、和 低功耗的集成GPS/IMU系統。 9 593981 本,明的一個主要目的是提供一個微小整合的Gps/IMU系 該系統麟提供紐度的動態環境巾顏的位置、速度、姿 悲、以及取向测量。 本發明的另一個主要目的是提供一個微小整合的GPS/IMU系 統’該系統成功地與MEMS慣性感應器和GPS芯片組技術相結合。 本^明的另一個主要目的是使來自地磁場探測器,例如磁位 計,的三軸地磁場向量測量數據參與穩定本發明系統的取向解。Inertial sensors provide significant improvements in size, price, and reliability for navigation, guidance, and control systems. At the same time, GPS technology has a new field. Small and low-cost GPS chipsets are being developed. For example, MitelGP2000 and GRF1 / LX chipsets are small enough to fit in mobile phones and laptops, but they can still be used. Receiving GPS satellite signals' Emerging commercial electronic devices plan to use them. Although MEMS angular rate sensors and MEMS accelerometers and GPS chipsets have been commercialized 'and have the characteristics of small size and low power consumption, they do not yet have technical equipment. Based on traditional technologies, they are constructed and run well. Small size, low power integrated GPS / IMU system. 9 593981 The main purpose of Ben Mingming is to provide a micro-integrated Gps / IMU system. This system provides dynamic measurement of position, speed, posture, and orientation of the environment. Another main object of the present invention is to provide a micro-integrated GPS / IMU system 'which has been successfully combined with MEMS inertial sensors and GPS chipset technology. Another main purpose of the present invention is to make the triaxial geomagnetic field vector measurement data from a geomagnetic field detector, such as a magnetometer, participate in stabilizing the orientation solution of the system of the present invention.

恩本發明的另一個目的是使用來自位置和姿態處理器的、由卡 f 波器校正的慣性速度和加速度,以辅助GPS接收機中GPS 衛^信號中的信號和載波的相跟蹤,以增強微小整合的(}1>8/][^1; 在咼度擁擠和動態環境中的運行性能。 鲁 本發明的另一個目的是利用差動GPS方法來改進GPS接收機 的位置和,度解的準確性,為了準確地確定Gps接收機的位置和速 度到厘米量級,GPS的載波相測量和差動GPS被使用。 本發明的另一個目的是在GPS接收機失鎖GPS信號時,自恰的 INS擴展GPS的答案,一旦GPS接收機重新得到信號,並估計接收 機的位置和速度,GPS接收機的輸出(位置和速度)被用以校正聞 的漂移的位置和速度。 本發明的另一個目的是數據鏈接被由於從GPS的參考站(GPS 接收機的位置已知)到微小整合的Gps/IMU系統傳送差動Gps的正 確數據,例如位置、速度、以及原始測量校正(贗區間、區間速率、 以及載,的相校正),使用差動卻咏載波的相測量,在固定積分 的不確定,後’ GPS定位的準確度在厘米量級,結果,微小整合的 GPS/IMU系統可由於高準確度的位置要求中。 ^發明的進一步目的是慣性導航系統通過提供準確的位置信 息以增加GPS載波相整數模糊度的分辨率。 本發明的另一個目的是卡爾曼濾波器被由於處理來自Gps接 收機的GPS相的測量數據以&GPS的贗區和區速率的測量數據,以 改善積分定位解的準確度。 10 的原是實时現相曼舰11,讀化删 穩=的是實時實現耐用的卡爾曼舰器,以消除可 _==構微小整合的 號。個角速率產生為’它產生正交三軸卜軸_7軸_2軸)電角速率信 號。個加速度產生為’它產生正交三離軸_咖2軸)電加速度信Another purpose of the present invention is to use the inertial velocity and acceleration corrected by the card waver from the position and attitude processor to assist the phase tracking of the signal in the GPS satellite signal and the carrier wave in the GPS receiver to enhance Micro-integrated (} 1 > 8 /] [^ 1; operating performance in congested and dynamic environments. Another object of the present invention is to use the differential GPS method to improve the position and resolution of the GPS receiver. In order to accurately determine the position and speed of the GPS receiver to the order of centimeters, GPS carrier phase measurement and differential GPS are used. Another object of the present invention is to automatically detect when the GPS receiver loses the GPS signal. The exact INS extends the answer of GPS. Once the GPS receiver regains the signal and estimates the position and speed of the receiver, the output (position and speed) of the GPS receiver is used to correct the position and speed of the drift. Another purpose is that the data link is transmitted from the GPS reference station (the position of the GPS receiver is known) to the micro-integrated Gps / IMU system to transmit the correct data of the differential GPS, such as position, speed, and raw measurement calibration. (Phase interval, interval rate, and phase correction), using the phase measurement of the differential but carrier wave, the uncertainty of the fixed integral, the accuracy of the GPS positioning is in the order of centimeters, and the result is a small integrated GPS The / IMU system may be required due to the high accuracy of the position. ^ A further object of the invention is to increase the resolution of the integer ambiguity of the GPS carrier phase by providing accurate position information. Another object of the present invention is Kalman filtering The device is used to process the GPS phase measurement data from the GPS receiver and the GPS and zone rate measurement data to improve the accuracy of the integral positioning solution. Removal and stabilization = is to realize the durable Kalman warship in real time to eliminate the number that can _ == construct micro-integration. The angular rate is generated as' It produces orthogonal three-axis Bu axis_7 axis_2 axis) electrical angle Rate signal. Acceleration is generated as ‘it produces orthogonal three off-axis _ coffee 2 axis) electrical acceleration signal

絲二量和速度增量產生11,它將三軸電肖速率信號轉換 角9里,二軸電加速度信號轉換為數位速度增量。 一個GPS芯片組’它接收Gps卯⑽祕哪㈣^信號,並且 ^共pHj^據’包括來自GPS衛星的GPS位置和速度數據、或 fGPS原始贗區、區速率、和載波的侧量數據和航行器和信 息。 、、旦二f地球磁場探測器,它產生載體坐標系中地球磁場向量電 測里#唬,包括地球磁場向量在載體坐標系中電測量乂、y、Z轴信 號。The wire two amount and the speed increment produce 11, which converts the three-axis electric shaw rate signal into an angle of 9 miles, and the two-axis electric acceleration signal is converted into a digital speed increment. A GPS chipset 'it receives GPS signals, and the total pH data' includes GPS position and speed data from GPS satellites, or fGPS raw data, zone rate, and carrier data and Aircraft and information. The second and third earth magnetic field detectors generate the earth magnetic field vector electric measurement in the carrier coordinate system, including the electric measurement of the 乂, y, and Z axis signals of the earth magnetic field vector in the carrier coordinate system.

一 一個^置和姿態處理器,它計算位置、姿態和取向角,結合 :軸角,量和三軸速度增量,GpS測量,地球磁場向量電測量,以 提供豐富和準確的載體運_量,以滿足各種需要。 【發明内容】 本發明提供了 一個微小整合的卻^觀系統,以結合來自微 慣性測量組=和GPS芯片組的原始運動測量數據,以提高位置、速 度'以及姿態,的精度’這些量僅為微慣性測量組件由原始測量 導出,以,出高度準確度的Gps/IMl^1合導航答案。 參考第一圖所示,一個載體的微小整合的GPS/IMU系統,由 體架構成,包括: 11 丄 率信號個角速率產生⑤5 ’它產生正交三軸卜軸,y軸,z轴)電角速 速度=加速度產生器10 ’它產生正交三軸(X軸,y軸,琳)電加 扣咕個GPS心片組匕接收GPS RF(Radio Frequency,射并苜、 ;ί诚並ΐί供GPS測量結果,包括來自GPS衛星的GPS位置和速 球磁場探測器96,它產生載體坐標系中地球磁 括地球磁場向量糊量在載體坐標系x、y、2軸^ -個位置和姿態處理獅,它計算位置、姿態和取向角,蜂 量和三軸速度增量,GPS測量結果,以及地球磁場向i 果,以提供豐f和準確的載體運_量結果,以滿足各 當絲^ 產生器5和加速度產生器1。對環境溫度的變化非 I敏感’為了提南測量精度,參見第二圖所示,本專利進 熱控制ϋ件10G,以便將角速率產生^,加速度產生哭 ,Γϊϊΐίϊϊ產生器6的工作溫度保持在奴值,值得指出的 率產麻盗5,加速度產生器10和角增量和速度增量產生 亙定的環境中,則可不用該熱控制器件1〇0。 依據如第一圖所不,本發明的小型慣性測量組件的優 案;1該ΪΪ制器件⑽進—步包含—熱敏感產生器15,—加敎哭20 以及一熱處理器30。 “ί^ί,15與角速率產生115 ’加速度產生器10和角增量 和速度增1產生H6並行ji作,來產生溫度錢, 生器5 ’加速度產生器10和角增量和速度增量產生器6的工作溫度 12 593981 可選擇在150F和185F之間, 保持在設定值,設定的溫度是一常值, 優選 176F (0.1F)。 來自熱敏感產生器15產生的溫度信號,被輸出給熱處理器 ,熱處理器30使用該溫度信號、溫度刻度係數及角速率產生器$ 和加速度^生器10和角增量和速度增量產生器6的預定的工作^ 度,來計算溫度控制指令並形成相應的驅動信號給加熱器2〇, 控制加熱H2G產生足夠的熱量’储肖速率產生㈤和加速度產生 器10和角增量和速度增量產生器6的預定的工作溫度。 3通常,從地磁罙測器96而來的、用載體坐標系表達的地磁 場向量測量的X、y、z軸電信號是模擬電壓信號。A positioning and attitude processor, which calculates position, attitude, and orientation angle, and combines: axis angle, quantity, and triaxial speed increments, GpS measurement, and vector measurement of the earth's magnetic field to provide a rich and accurate carrier transport_ Volume to meet various needs. [Summary of the Invention] The present invention provides a micro-integrated observation system to combine the original motion measurement data from the micro-inertial measurement group = and GPS chipset to improve the accuracy of position, velocity 'and attitude, these quantities are only The micro-inertial measurement component is derived from the original measurement to give a highly accurate Gps / IMl ^ 1 navigation answer. Referring to the first figure, a carrier's micro-integrated GPS / IMU system is composed of a body frame, including: 11 丄 rate signals and angular rate generation ⑤ 5 'It produces orthogonal three-axis bu-axis, y-axis, z-axis) Electrical angular velocity = acceleration generator 10 'It generates orthogonal three-axis (X-axis, y-axis, Lynn) electric plus buckle a GPS heart group to receive GPS RF (Radio Frequency, radio frequency, radio frequency;供 For GPS measurement results, including the GPS position from the GPS satellite and the speedball magnetic field detector 96, it generates a vector of the earth ’s magnetic field and the earth ’s magnetic field vector in the carrier coordinate system at the x, y, and 2 axes of the carrier coordinate system. Processing lion, it calculates the position, attitude and orientation angle, bee volume and triaxial speed increments, GPS measurement results, and the Earth's magnetic field, to provide abundant f and accurate carrier transport volume results to meet various needs ^ Generator 5 and acceleration generator 1. Non-I sensitive to changes in ambient temperature 'In order to improve the measurement accuracy of the South, see the second figure, the patented heat control file 10G, in order to generate the angular rate ^, acceleration Cry, the working temperature of Γϊϊΐίϊϊ generator 6 is maintained Slave value, it is worth pointing out that the rate of production of hemp 5, acceleration generator 10 and angular increment and velocity increment to generate a fixed environment, the thermal control device 100 can be omitted. According to the first figure, Advantages of the small-scale inertial measurement assembly of the present invention; 1 The fabricated device further includes-a thermally sensitive generator 15, plus a cry 20 and a thermal processor 30. "ί ^ ί, 15 and angular rate generation 115 'Acceleration generator 10 and angular increment and speed increase 1 generate H6 parallel work to generate temperature money, generator 5' Acceleration generator 10 and angular increment and speed increase generator 6 working temperature 12 593981 optional Between 150F and 185F, it is maintained at the set value, and the set temperature is a constant value, preferably 176F (0.1F). The temperature signal generated from the thermal sensitive generator 15 is output to the thermal processor, and the thermal processor 30 uses the temperature Signal, temperature scale factor and angular rate generator $ and acceleration generator 10 and predetermined operation of angular increment and speed increment generator 6 to calculate temperature control instructions and form corresponding driving signals to heater 2 〇, Control heating H2G production Enough heat 'storage rate generation chirp and acceleration generator 10 and angular increment and velocity increment generator 6 at the predetermined operating temperature. 3 Generally, it is from the geomagnetic detector 96 and is expressed in a carrier coordinate system. The X, y, and z axis electrical signals measured by the geomagnetic field vector are analog voltage signals.

【實施方式】 一本發明的系統可以進一步構成不同形態,如第三圖和第七圖 所示,優選方案的微集成GPS/IMU系統在物理上和結構上由第一 個電路板2,第二個電路板4,第三個電路板7,一個Gps芯片組板3, 和控,電路板9構成,並排在金屬立方盒内,如第十七圖所示。 、第塊電路板2與第二塊電路板7相連,通過它為控制信號板9 以產生X軸角速率感應信號和y軸加速度感應信號。 、第二塊電路板4與第三塊電路板7相連,通過它為控制信號板9 以產生y軸角速率感應信號和x軸加速度感應信號。[Embodiment] A system of the present invention can be further configured in different forms, as shown in Figures 3 and 7, the preferred solution of the micro-integrated GPS / IMU system is physically and structurally composed of the first circuit board 2, the Two circuit boards 4, a third circuit board 7, a GPS chipset board 3, and a control board and a circuit board 9 are formed side by side in a metal cube box, as shown in the seventeenth figure. The first circuit board 2 is connected to the second circuit board 7, and is used to control the signal board 9 to generate an X-axis angular rate sensing signal and a y-axis acceleration sensing signal. The second circuit board 4 is connected to the third circuit board 7 and is used to control the signal board 9 to generate a y-axis angular rate sensing signal and an x-axis acceleration sensing signal.

第二塊電路板7與控制電路板9相連,為控制電路板9產生轉由 角速率感應信號和z軸加速度信號。 GPS芯片組板3通過第三塊板7或直接於控制板9相連,為控制 電路板9¼供GPS位置和速度解或gps的原始測量數據,包括贗 區、區速率、和載波的相測量。 一控制電路板9於第一塊電路板2相連,通過第三塊電路板7於第 公塊”板4相連,於GPS芯片組板3相連,以處理分別從第一:第 二和第三塊板產生的X軸、γ軸和z轴的角速率感應信號和又軸、γ 軸軸的加速度感應信號,並處理從安裝在控制電路板9上的地 磁場探測器96產生的地磁場向量,並處理由(}1^板3產生的Gps位 13 593981 置和速度解或GPS原始測量數據,以產生數位角增量和速度增量, GPS/IMU的混合位置、速度、和姿態解。 組成參考第三圖和第十二圖所示,控制電路板9基本上由以下部分 七二個數健號處理11 (DSP)晶⑽,㈣本發明㈣統的所 有计异和控制任務;如第九圖所示。 個地磁場探測器96,包括一個磁位計,該磁位計為Dsp芯 91產生電地磁場向量測量信號。 一個特^應用積體電路(ASIC)芯片92,包括類比和數位電路 信j虎積體電路),用f路硬體方法進行信號處縣為 91長:供數據介面,如第四圖所示。 一個通訊模組98,在本發明的微集成GPS/IMU系統和外部用 戶之間提供輸入/輸出介面。 容的器93,與通訊模組98相連,以提供與外部用戶相兼 -,電源模組99 ’通過連接器93接收外部電源,並提供所有 弟一、第一、第三、和GPS板所需要的電源。 〜田Μ卜邵分組成: 動角速率探測單位21和一個與第一塊電路板2 端電路23,一個Y轴震動角速率探測單位41和-個與第 —塊電路板4相連的第二個前端電路43。 的第速率制單位71和—個與第三塊板7相連 三個角信號回路電路92卜該電路分別為第一 =中第三電路機置,包含在連接在上 三,控制電脚,該電路分別為第一電路板2、第二電 板、第二電路板7設置,包含在連接在控制電路板9上的Me 化法ϋϊΐ第四圖、及第九圖和第十二圖所示,本發明的優 化法案的角發生器5由以下部分組成: 的第 14 芯片92中; 一振盪裔925用來為X軸振動型角速率檢測單元21、γ軸振動 型角速率檢測單元4卜Z軸振動型角速率檢測單元7][、角信號回路 電路921和振動控制電路922提供參考拾取信號; 二。三個振動處理模組912,分別第一電路板第二電路板4、第 -電路板7没置,運行於連接在控制電路板9上的DSp (數位信號處 理器)芯片組91中。 一 X軸、γ軸和z轴角速率探測單位、41和71中的每一個結構 ,同,而它們的感應軸正教,χ軸角速率探測單位21用來探測載體 =向的角速率,γ軸角速率探測單位W用來探測載體γ方向的角 迷率,Ζ軸角速率探測單位71用來探測載體Ζ方向的角速率。 X軸Υ轴和Ζ轴角速率探測皁位21、41和71中的每一個都是 1、相應的支撐結構和方法,包括電容讀出法,和利用c〇ri〇lis 效應探測載體的角速率。 、X軸、丫軸和2軸角速率探測單位2卜41和71中的每一個都是 以下述方式接收信號: 所旦(1)來自振動控制電路922的振動驅動信號,以便保持慣性 貝夏塊的振動; 、 私>^(2)來自振盪器925的載波參考振盪信號,包含電容讀出激 勵1呂號0 、 與Υ、ζ軸振動型角速率檢測單元21、41及71分別利用動力 i ·(克里奥里斯力)檢測載體的χ、γ、ζ軸角速率,輸出如下信 ^1)角速率引起的信號,包含調制在載波參考振盪信 Ϊ位移信號,該信號輸出給第一、二、三前端電路23、43、 的向通濾波器電路232、432及732 ; 出仏it慣性質量塊的振動信號,包含振動位移信號,該信號輸 、、"弟一、二、三前端電路23、43、73的阻抗轉換放大器電路23i、 15 431及731 ; m宣塊的軸向’慣性質量塊的齒會接收到克】奧:里二 施加:ii=可向的扭力’該一 克里奥里斯力或加速度是命名與法國物理和數學家,叢 德得·克里奥頭(1792__,絲丨叫蚊數子^盍斯^ 斯力,作躲料計算_地__校正量 ^作用在一繞一點以固定角速率移動和徑向移動的物▲上:、 得以克里奥里斯力的基本方程可表達為 ^Coriolis ~ m^Coriolis ^2m{(bxV0scillati〇n) 其中’ 是檢測到的克里奥里斯力; μ是慣性質量塊的質量; ^Coriolis 是產生的克里奥里斯加速度; ώ是輸入的角速度; ^Oscillation 是慣性質量塊的振盪速度; 產生的克里奥里斯加速度正比於慣性質量塊的質量、輸入的 角速度和雜質魏的撼速度之積,慣性㈣塊的缝速度的 方向正交於輸入的角速度方向。 々第一:第二和第三個前端電路23、43和73的結構相同,分別 於第一 1第^和第三個電路板2、4行連接,它們分別調節振動型 角速率採測早元21、41和71的X轴、Y轴和Z轴的輸出信號。 參考第五圖所示,第一、第二和第三個前端電路23、幻和乃 進一步由以下部分構成: 轉阻放大器電路23卜431和731,它們連到對應的X軸、¥軸 車^上的角速率探測單元21、41和71,用來把振動信號的輸出阻 抗由南(大於100Μ歐姆)變到低(小於1〇〇歐姆),得到兩個振動位 移信號,這兩個信號是代表慣性元件於支撐梳之間位移的交流電 壓4號’匕們輸到振動控制電路922。 和z韩高上通電探路 它們聯_ 的信號送到角信號回路電路921。 ^所產生的過慮過 43和5==?Γ2通過第一、第二和第三個前端電路23、 來自#盪哭單W卜41和71的慣性元素振動信號,參考 ^自振^925的截止信號,產生相位已知魏贿性元素位移Ϊ 的2 ΓHX軸' Υ軸和2軸上的角速率探測單元2卜41和71 1 ΪΪ 換為可處理的慣性元素振動信號,參閱第 圖所不,振動控制電路922由以下部分構成·· -個二和求和電路9221 ’它們分別連到第一、第二和第 :=2路143和73的轉阻放大器電路231、431和73卜以放 敏ί产'αΙΤ:號,該振_移信號被放大10被以上,以加強 個振動位移信號以得到位移差動信號,從邊支 撐梳#號中減去中心支撐梳信號。 一個高通渡波器電路9222 ’它被聯到放大器和求和電路 3 = 動位移差動信號中的殘餘振動驅動信號和噪音, 形成過濾的振動位移差動信號。 固解^電路9223,它被接到高通濾波器電路9222,從振盪 ^9222^ϋ^止激勵信號作為相參考信號,從高通濾波器電 4匕濾的振動位移差動信號,並萃取出其同相部分,以 產生具有已知相的慣性元素位移信號。 一 了個,浐濾波器9225,它被接到解調電路9223,以除掉慣性 兀素差動錄巾的高触音,形成低麵性元素差動信號。 进-個類比/數位轉換器9224,它被接到低通濾波器9225,把低 頻慣性7L素差動類比信號變換為數位化的慣性元素位移信號,該 17 593981 信號在DSP芯片91中的模組912 (在下文中介 擇振具比動處1模__ 卜;=的換產=具軸有》 轴和Ζ軸上的振動型角速率探測單心、f Y姉冰上的振㈣肖料探 =2=1° 料具有精確振幅的正弦信號來驅 感穩定的χ轴、γ轴和ζ軸上的角速率測量, 軸、Υ軸和Ζ軸上的振動型角速率探測單元2卜41和71運 仃好的振動驅動信號是很關鍵的。 哭接收來自振動控制電路922的類比/數位轉換 J224的=口相位的數位化低頻慣性質量塊位移信號,以便於: (1) 搜索具有最高質量因子(Q)值的頻率; (2) 鎖定該頻率; ’ 頻正ϋ貞定it度,產生振動驅動信號,包括具有精確幅度的高 ’、3 h唬,、、、βΧ、Υ、Z軸振動型角速率檢測單元21、41及71, 以便使慣性質量塊振動在預定的諧振頻率下。 振動處理模組犯搜索和鎖定χ、γ、z軸振動型角速率檢測單 ^ 1及71的慣性質量塊的振動頻率和幅度,因此,數位化低 =性質量塊位移信號首先通過離散快速傅立葉變換,表達在頻 0晋上0 穩定相環和—個數位/類比轉換器被用來控制和 “ΐί七圖所示,振動處理模組912近—步包含—個離散快速傅 立葉、交換(Fast Fourier Transform,FFT)模組9121,一個頻率和幅 度數據存儲陣模組9122,一個最大值檢測邏輯模組9123及一個 值分析和選擇邏輯模組9124,以便找到具有最大q值的頻率。 離散快速傅立葉變換(FastFourierTransform,FFT)模組9121, 593981 變換來自織運動控制電路922_比數位觀器9224的數位化 的低頻慣性質量塊的位移信號,以便形成輸人慣 ^ 號的頻幅上的幅度數據。 尾4移^ 頻譜數據,以 頻率和幅度數據存儲陣模組9122,接收幅度和 形成一個幅度和頻譜數據陣。 最大值檢測邏輯模組9123,將來自幅度和頻譜數據陣的頻詳 數據陣的頻譜分割為一些頻譜段,並從當地頻譜段中且 最大幅度的頻率。 、 Q值分析#u選擇邏輯模組9124,在選出的頻率上進行Q值分 ,二通過計算幅度和頻帶寬度的比值,選擇頻率和幅度,其中,The second circuit board 7 is connected to the control circuit board 9 and generates a rotation angular velocity sensing signal and a z-axis acceleration signal for the control circuit board 9. The GPS chipset board 3 is connected through the third board 7 or directly to the control board 9 to provide the control circuit board 9¼ with the GPS position and speed solution or the raw measurement data of the GPS, including the phase measurement of the zone, zone rate, and carrier. A control circuit board 9 is connected to the first circuit board 2, a third circuit board 7 is connected to the male board 4, and a GPS chipset board 3 is connected to process the first, second, and third boards respectively. The X-axis, γ-axis, and z-axis angular rate sensing signals generated by the block and the acceleration signals of the axis and γ-axis axes, and process the geomagnetic field vector generated from the geomagnetic field detector 96 mounted on the control circuit board 9 And process the GPS position 13 593981 position and velocity solution or GPS raw measurement data generated by () 1 ^ board 3 to generate digital angular and velocity increments, GPS / IMU mixed position, velocity, and attitude solutions. As shown in the third and twelfth figures, the control circuit board 9 basically processes 11 (DSP) crystals with seven or two numbers in the following part, which is all the calculation and control tasks of the system of the present invention; The ninth figure is shown. A geomagnetic field detector 96 includes a magnetic potentiometer that generates an electrical geomagnetic field vector measurement signal for the Dsp core 91. A special application integrated circuit (ASIC) chip 92, including an analogy And digital circuit (integrated circuit), signal processing using f-way hardware method Length 91: Provides a data interface, as shown in the fourth figure. A communication module 98 provides an input / output interface between the micro-integrated GPS / IMU system of the present invention and an external user. The container 93, and the communication module The group 98 is connected to provide both external users and a power module 99 'to receive external power through the connector 93 and provide all the power required by the first, first, third, and GPS boards. ~ 田 M 卜Shao is composed of a dynamic angular rate detection unit 21 and a second-end circuit 23 connected to the first circuit board, a Y-axis vibration angular rate detection unit 41, and a second front-end circuit 43 connected to the first circuit board 4. The first speed system unit 71 and three angle signal loop circuits 92 connected to the third board 7 are respectively first and middle third circuit sets, which are included in the connection to the upper three to control the electrical pins. This circuit is provided for the first circuit board 2, the second circuit board, and the second circuit board 7, respectively, and includes the Membrane method connected to the control circuit board 9, the fourth diagram, the ninth diagram, and the twelfth diagram. It is shown that the angle generator 5 of the optimization bill of the present invention is composed of the following parts: In the 14th chip 92, an oscillator 925 is used for the X-axis vibration type angular rate detection unit 21, the γ-axis vibration type angular rate detection unit 4 and the Z-axis vibration type angular rate detection unit 7] [, the angular signal loop circuit 921 And the vibration control circuit 922 to provide a reference pickup signal; 2. Three vibration processing modules 912, the first circuit board, the second circuit board 4, and the-circuit board 7 are not disposed, and run on the DSp connected to the control circuit board 9 (Digital signal processor) in chipset 91. An X-axis, γ-axis, and z-axis angular rate detection unit, each structure of 41 and 71, the same, and their inductive axis orthodox, χ-axis angular rate detection unit 21 It is used to detect the angular rate of the carrier = direction, the γ-axis angular rate detection unit W is used to detect the angular rate of the carrier in the γ direction, and the Z-axis angular rate detection unit 71 is used to detect the angular rate of the carrier in the Z-direction. X-axis Z-axis and Z-axis angular rate detection soap levels 21, 41, and 71 are each 1. The corresponding support structure and method, including capacitance readout method, and detection of the angle of the carrier using the coriolis effect rate. , X-axis, Y-axis, and 2-axis angular rate detection units 2b 41 and 71 each receive a signal in the following manner: (1) A vibration drive signal from a vibration control circuit 922 to maintain inertia Bescia The vibration of the block; 私 私 (2) The carrier reference oscillation signal from the oscillator 925, including the capacitance read excitation 1 Lu No. 0, and the Υ, ζ-axis vibration-type angular rate detection units 21, 41, and 71 respectively use Power i · (Clioris force) detects the angular rate of the χ, γ, and ζ axes of the carrier, and outputs the following signal ^ 1) The signal caused by the angular rate includes a displacement signal modulated on the carrier reference oscillation signal, and the signal is output to the first The first, second, and third front-end circuits 23, 43, and the pass-through filter circuits 232, 432, and 732; the vibration signals of the inertial mass block, including the vibration displacement signal, are output, " Three front-end circuits 23, 43, 73 impedance conversion amplifier circuits 23i, 15 431, and 731; the axial direction of the inertial mass block of the m block will receive gram] O: Li II application: ii = directionable torque The one Creoles force or acceleration is named with French physics And mathematician, Cong Dede Creo head (1792__, silk 丨 called mosquito number ^ 盍 ^ s force, for the calculation of hiding material _ ground __ correction amount ^ acting around a point at a fixed angular rate and Radially moving objects ▲ Up: The basic equation of the Creoles force can be expressed as ^ Coriolis ~ m ^ Coriolis ^ 2m {(bxV0scillati〇n) where 'is the detected Creoles force; μ is the inertia The mass of the mass; ^ Coriolis is the generated Creoles acceleration; ώ is the angular velocity of the input; ^ Oscillation is the oscillation speed of the inertial mass; The generated Creoles acceleration is proportional to the mass of the inertial mass and the input angular velocity The product of the speed of the impurity Wei and the direction of the slit velocity of the inertial 速度 block is orthogonal to the direction of the input angular velocity. 々 First: The structure of the second and third front-end circuits 23, 43 and 73 is the same as that of the first, respectively. 1 The third and second circuit boards are connected in rows 2 and 4, which adjust the vibration-type angular rate to measure the X-axis, Y-axis, and Z-axis output signals of the early elements 21, 41, and 71. Refer to the fifth figure. , The first, second and third front-end circuits 23, magic and It is further composed of the following parts: Transimpedance amplifier circuits 23, 431, and 731, which are connected to the angular rate detection units 21, 41, and 71 on the corresponding X-axis and ¥ -axis vehicles, and are used to change the output impedance of the vibration signal from the south (Greater than 100 ohms) to low (less than 100 ohms), two vibration displacement signals are obtained. These two signals are AC voltage No. 4 'knobs representing the displacement between the inertial element and the support comb, which are input to the vibration control circuit. 922. The signals connected with z Han Gao to detect the signal are sent to the angle signal circuit 921. ^ Thus generated 43 and 5 ==? Γ2 through the first, second and third front-end circuits 23, the inertial element vibration signals from # 浪 哭 单 Wbu 41 and 71, refer to ^ self-vibrating ^ 925 The cut-off signal generates a 2 ΓHX-axis' phase with a known phase displacement of the bridging element Υ and the angular rate detection units 2b 41 and 71 1 上 on the two-axis. No, the vibration control circuit 922 is composed of the following two-a second summation circuit 9221 'They are connected to the first, second and third: = 2 143 and 73 transimpedance amplifier circuits 231, 431 and 73 In order to produce 'αΙΤ:', the vibration signal is amplified by more than 10 times to strengthen a vibration displacement signal to obtain a displacement differential signal. The center support comb signal is subtracted from the side support comb # number. A high-pass crossing wave circuit 9222 ′ is connected to the amplifier and the summing circuit 3 = residual vibration driving signal and noise in the dynamic displacement differential signal to form a filtered vibration displacement differential signal. Fix the circuit 9223, which is connected to the high-pass filter circuit 9222, and uses the oscillating ^ 9222 ^ ϋ ^ stop excitation signal as the phase reference signal, and the vibration-displacement differential signal filtered by the high-pass filter, and extracts it. In-phase part to generate inertial element displacement signals with known phases. One, the chirp filter 9225, which is connected to the demodulation circuit 9223 to remove the high touch sound of the inertial element differential recording and form a low surface element differential signal. An analog / digital converter 9224, which is connected to a low-pass filter 9225, converts the low-frequency inertial 7L prime differential analog signal into a digitalized inertial element displacement signal. The modulus of the 17 593981 signal in the DSP chip 91 Group 912 (In the following, we select 1 mode of the vibrating gear specific movement __ bu; = change of production = with shaft》 Vibration-type angular rate detection on the axis and the Z axis. Material detection = 2 = 1 ° Material has a precise amplitude sinusoidal signal to drive stable angular rate measurements on the x-axis, γ-axis, and ζ-axis, and vibration-type angular rate detection units on the axis, Υ-axis, and Z-axis The good 41 and 71 vibration drive signals are critical. The cry receives the analog / digital conversion J224 from the vibration control circuit 922 = digitized low-frequency inertial mass block displacement signal of the phase, in order to: (1) search for The frequency with the highest quality factor (Q) value; (2) Locking the frequency; 'Frequency positively determines the degree of it, and generates a vibration drive signal, including high-accuracy with high amplitude', 3 h, β, β, β, Z-axis vibration-type angular rate detection units 21, 41, and 71 so that the inertial mass can vibrate at At a predetermined resonance frequency, the vibration processing module searches and locks the vibration frequency and amplitude of the inertial mass blocks of the χ, γ, and z-axis vibration type angular rate detection units ^ 1 and 71. Therefore, the digitization is low = the displacement of the sexual mass block The signal is firstly expressed by a discrete fast Fourier transform to express a stable phase loop and a digital / analog converter at frequency 0 and up to 0. As shown in the figure below, the vibration processing module 912 includes a discrete step. Fast Fourier Transform (FFT) module 9121, a frequency and amplitude data storage array module 9122, a maximum detection logic module 9123, and a value analysis and selection logic module 9124, in order to find a module with a maximum q The frequency of the value. Discrete Fast Fourier Transform (FFT) modules 9121, 593981 transform the displacement signal from the digitized low-frequency inertial mass block of the weaving motion control circuit 922_ than the digital viewer 9224, so as to form the input inertia ^ Amplitude data on the frequency. The last 4 shifts ^ spectrum data, the array module 9122 is stored with frequency and amplitude data, and the amplitude is received to form an amplitude and Spectral data array. Maximum value detection logic module 9123, divides the frequency spectrum of the frequency detailed data array from the amplitude and spectral data array into some spectral segments, and from the local spectral segment with the largest amplitude frequency. Q value analysis # u Select logic module 9124 to perform Q score on the selected frequency. Secondly, select the frequency and amplitude by calculating the ratio between the amplitude and the bandwidth. Among them,

計算用的頻帶寬度取每一個最大頻率點最大值的正負二分^一之 間0 * Ϊ一步,振動處理模組912包含一個鎖相環9125,用作一個很 乍的V通;慮波為,以排斥所選頻率的嗓聲,及產生並鎖定選定頻 率的振動驅動信號。 如第八圖所示,三個角信號回路電路921接收來自X、Υ、Ζ軸 振動型,速率檢測單元21、41及71的角速率引起的信號,以及來 盪器=25的參考拾取信號,將角速率引起的信號變換為角速率 如第八圖所示8,第一電路板2、第二電路板4、第三電路板 7的每一個角信號回路電路921包含:The band width used for the calculation is between the positive and negative halves of the maximum value of each maximum frequency point ^ one. 0 * One step, the vibration processing module 912 includes a phase-locked loop 9125, which is used as a very V-pass; To exclude the voice of the selected frequency, and generate and lock the vibration drive signal of the selected frequency. As shown in the eighth figure, the three angular signal loop circuits 921 receive signals from the X, Y, and Z axis vibration types, the angular rate caused by the rate detection units 21, 41, and 71, and the reference pickup signal from the oscillator = 25 Transforming the signal caused by the angular rate into the angular rate is as shown in FIG. 8. Each of the angular signal loop circuits 921 of the first circuit board 2, the second circuit board 4, and the third circuit board 7 includes:

一二二個電壓放大器電路9211,用以放大來自相應的第一、二、 二電路23、43、73高通濾波器電路232的過濾後的角速率引起 的信號到至少1〇〇〇毫伏的程度,以形成放大後的角速率引起的信 號; 、一個放大和加法器電路9212,用以提取放大後的角速率信號 的差異,以產生差動的角速率信號; 一個解調器9213,連接於放大和加法器電路9212,用以從差 動的角速率信號和從振盪器925來的電容讀出激勵信號,提取同相 差動角速率信號的幅度; 19 593981 一個低通濾波器9214,連接於解調器9213,用以去除同相差 動角速率信號的幅度信號的高頻噪聲,以形成角速率信號輸出給 角增量和速度增量產生器6。 ^ 如第三圖所示,本發明的優選方案之加速度產生器1〇包含·· 一X軸加速度計42,它位於第二電路板4上並和控制電路板9 中的ASIC芯片92的角增量和速度增量產生器6相連; 一Y軸加速度計22,它位於第一電路板2上並和控制電路板9 中的ASIC芯片92的角增量和速度增量產生器6相連; 一Z軸加速度計72,它位於第三電路板7上並和控制電路板9 中的ASIC芯片92的角增量和速度增量產生器6相連。 如第一圖、第四圖及第十二圖所示,位置和姿態處理器⑽基 肇 本上由磁位計介面電路926, DSP芯片91,通訊模組98,連接器93, 及電源模組99構成。 如第二圖及第三圖所示,本發明的優選方案之熱敏感產生器 15進一步包含: 〜 第一熱敏感產生單元24,用來敏感X軸振動型角速率檢測單元 21和Y軸加速度計22的溫度; 第二熱敏感產生單元44,用來敏感γ軸振動型角速率檢測單元 41和X軸加速度計42的溫度; 第二熱敏感產生单元74,用來敏感Z軸振動型角速率檢測罝分 71和Z軸加速度計72的溫度; 、 籲 如第二圖及第三圖所示,本發明的優選方案之加熱器2〇進一 步包含: 第一加熱器25,它與X軸振動型角速率檢測單元21,γ軸加速 度計22及第一前端電路23相連,用來保持X軸振動型角速率檢測單 元21,Y轴加速度計22及第一前端電路23的預定的工作溫度 第二加熱器45,它與Y軸振動型角速率檢測單元41轴加速 度計42及第二前端電路43相連,用來保持γ軸振動型角速率檢測單 元41,X軸加速度計42及第二前端電路43的預定的工作溫度^ 20 593981 第二加熱斋75 ’它與Z軸振動型角速率檢測單元η,z軸加速 度計72及第二前端電路73相連,用來保持z軸振動型角速率檢測單 元71,Z軸加速度計72及第三前端電路73的預定的工作溫度。 如第二圖、第四圖和第九圖所示,本發明的優選方案之熱處 理器30進一步包含參個相同的熱控制電路923和運行在dsp芯片組 91的熱控制計算模組911。 ~ " 如第十圖所示,每一熱控制電路923進一步包含: 弟一放大态電路9231 ’它與相應的X、γ、z軸熱敏感產生單 =24、44和74相連,用來放大來自相應的χ、γ、ζ車由熱^感產生 單元24、44和74的信號並麼縮其中的噪聲,提高信號噪聲比; 一個類比/數位轉換器9232,連接於放大器電路My,用來採 # 樣咖度電壓彳§號,並將採樣的溫度電壓信號數位化為數位信號, 輸出給熱控制計算模組911 ; ° ~ 一個數位類比轉換器9233,用來將來自熱控制計算模組911的 數位溫度指令,轉換為類比信號; 、 第一放大器電路9234,用來接收並放大來自數位類比鲭拖哭 畑的類嶋u,咖_娜—、:、 75和閉合溫度控制回路。 熱控制计异模組911使用來自類比/數位轉換器9233的數彳办、、® 度電壓巧’温度奴綠以及舦社述肖鱗產生 率士生恭的工作溫度,來計算數位溫度指令,並將該數位溫度指 令送入一數位/類比轉換器9233。 十一圖所示,角增量和速度增量產生器6進一步包含一角 度,分=62〇,一加速度積分器630,一復位器640,角增量和速度 增量測量器650。 以 形 積分器620和加速度積分器630分別用來在預定的時間段 内積分亡軸角速率類比電壓信號和三轴加速度類比電壓信號 便積累三軸角速率類比電壓信號和三軸加速度類比 = 成未補償的原始角增量和速度增量。 21 593981 、*痒=ίί作是$ 了消除在三轴角速率類比電愿信號和三轴加 =類=齡號_的非直接正比於載體角速率和加速度的噪聲 信號噪聲比,並齡在三軸角速率類比縣信號和三 =度類比賴信號中的高頻嗓聲,㉟些三軸角速率類比電i ίίΐί 度類比電_號中的信號直接正比於載體角速率 復位器產生角度復位電壓脈衝和速度復位電壓脈衝 度和,度的刻度,分別輸出給角度積分脑咏加速度積分=30。 量和速度增制量腕()使用航独電舰衝和速度One or two voltage amplifier circuits 9211 are used to amplify the signals caused by the filtered angular rates from the corresponding first, second, and second circuits 23, 43, 73 high-pass filter circuits 232 to at least 1,000 millivolts. Degree to form a signal caused by the amplified angular rate; an amplifier and adder circuit 9212 to extract the difference in the amplified angular rate signal to generate a differential angular rate signal; a demodulator 9213, connected In the amplifier and adder circuit 9212, it is used to read the excitation signal from the differential angular rate signal and the capacitor from the oscillator 925 to extract the amplitude of the in-phase differential angular rate signal. 19 593981 A low-pass filter 9214, connected The demodulator 9213 is used to remove the high frequency noise of the amplitude signal of the in-phase differential angular rate signal to form an angular rate signal and output it to the angular increment and velocity increment generator 6. ^ As shown in the third figure, the acceleration generator 10 of the preferred embodiment of the present invention includes an X-axis accelerometer 42 which is located on the second circuit board 4 and the corner of the ASIC chip 92 in the control circuit board 9 The increment is connected to the speed increment generator 6; a Y-axis accelerometer 22, which is located on the first circuit board 2 and is connected to the angular increment and speed increment generator 6 of the ASIC chip 92 in the control circuit board 9; A Z-axis accelerometer 72 is located on the third circuit board 7 and is connected to the angular increment and speed increment generator 6 of the ASIC chip 92 in the control circuit board 9. As shown in the first picture, the fourth picture, and the twelfth picture, the position and attitude processor is based on a magnetic level meter interface circuit 926, a DSP chip 91, a communication module 98, a connector 93, and a power module. Group 99 is composed. As shown in the second and third figures, the heat-sensitive generator 15 of the preferred embodiment of the present invention further includes: ~ a first heat-sensitive generating unit 24 for sensitive X-axis vibration-type angular rate detection unit 21 and Y-axis acceleration The temperature of the meter 22; the second heat-sensitive generating unit 44 is used to sense the temperature of the γ-axis vibration type angular rate detection unit 41 and the X-axis accelerometer 42; the second heat-sensitive generating unit 74 is used to sense the Z-axis vibration type angle The speed detects the temperature of the minute 71 and the Z-axis accelerometer 72; As shown in the second and third figures, the heater 20 of the preferred embodiment of the present invention further includes: a first heater 25, which is connected to the X-axis The vibration-type angular rate detection unit 21, the gamma-axis accelerometer 22, and the first front-end circuit 23 are connected to maintain a predetermined operating temperature of the X-axis vibration-type angular rate detection unit 21, the Y-axis accelerometer 22, and the first front-end circuit 23. The second heater 45 is connected to the Y-axis vibration type angular rate detection unit 41, the axis accelerometer 42 and the second front-end circuit 43, and is used to maintain the γ-axis vibration type angular rate detection unit 41, the X-axis acceleration type 42 and the second Order of the front-end circuit 43 Operating temperature ^ 20 593981 Second heating frame 75 'It is connected to the Z-axis vibration type angular rate detection unit η, the z-axis accelerometer 72 and the second front-end circuit 73, and is used to maintain the z-axis vibration type angular rate detection unit 71, Z A predetermined operating temperature of the shaft accelerometer 72 and the third front-end circuit 73. As shown in the second diagram, the fourth diagram, and the ninth diagram, the thermal processor 30 of the preferred embodiment of the present invention further includes a same thermal control circuit 923 and a thermal control calculation module 911 running on the dsp chipset 91. ~ " As shown in the tenth figure, each thermal control circuit 923 further includes: a first-amplified state circuit 9231 'It is connected to the corresponding X, γ, and z-axis thermal sensitive generating units = 24, 44, and 74, and is used to: Amplify the signals from the corresponding χ, γ, and ζ car heat generating units 24, 44, and 74 and reduce the noise therein to improve the signal-to-noise ratio. An analog / digital converter 9232 is connected to the amplifier circuit My.来 采 # sample coffee degree voltage 彳 § number, and digitize the sampled temperature and voltage signal into a digital signal, and output it to the thermal control calculation module 911; ° ~ a digital analog converter 9233, which is used to The digital temperature command of the group 911 is converted into an analog signal. The first amplifier circuit 9234 is used to receive and amplify the analog signals from the digital analog mackerel, coffee, na, and 75, and close the temperature control loop. The thermal control meter module 911 uses the digital operating system from the analog / digital converter 9233, the voltage and temperature, and the operating temperature of the company ’s production scale to evaluate the digital temperature command. The digital temperature command is sent to a digital / analog converter 9233. As shown in the eleven figures, the angular increment and velocity increment generator 6 further includes an angle, minute = 62 °, an acceleration integrator 630, a resetter 640, and an angular increment and velocity increment measuring device 650. The shape integrator 620 and the acceleration integrator 630 are respectively used to integrate the dead axis angular rate analog voltage signal and the triaxial acceleration analog voltage signal within a predetermined period of time to accumulate the triaxial angular rate analog voltage signal and the triaxial acceleration analog = = Uncompensated raw angular and velocity increments. 21 593981 、 * itch = ί work is to eliminate the noise signal-to-noise ratio that is not directly proportional to the carrier angular rate and acceleration in the triaxial angular rate analog electric signal and triaxial plus = class = age number_. The three-axis angular rate analog county signal and the three-degree analog signal depend on the high-frequency voice. Some of the three-axis angular rate analog signals are directly proportional to the carrier angular rate resetter to generate an angle reset. The voltage pulse and speed reset the voltage pulse's degree, and degree scales, which are output to the angle integral brain yong acceleration integral = 30, respectively. Volume and speed increase the measurement wrist () using the hangar electric ship charge and speed

Life,來測量積累的三軸角速率類比電壓信號和三軸加 iiiii信號’獲得角增量計數值和速度增量計數值,相應 也作為角增1和速度增量的數位量。 "、 ASIC芯片中的與地磁場探測器介面電路926,即磁位 路,相連接的地磁場探測器96被用來產生地磁場向量測 發明的微小整合的GPS/IMU系統提供更多的取向信息。為本 L、如第一圖和第四圖所示,安裝在控制板9上的ASI^C芯片92上的 i磁場探測器介面電路926被用來控制地磁場探測器96的輸 探測器96的輸出信號,並把數位化地磁場向量 參閱第九圖所示’安裝在控制板9上的⑽芯片執行以处. 熱控制計算911,以形成熱控制裝置的控制回路。 此. =運動處理912,為角速率產生器形成振動驅動信號的控制回 位置、速度及姿態模組8卜處理數位角增量和速度 得^慣性位置、速度及·數據;從誤差估計器模纟】: 置、速度及姿態誤差的優化估計進行誤差校正,以得到 尚度準確的GPS/IMU的混合位置、速度及姿態數據。 誤差估計器模組82,處理來自位置、速^及姿態模誕 置、速度及姿態的答案’來自GPS芯片板3的Gps測量數據,1自 22 593981 磁取,計算模組83的磁取向數據,以產生優化的慣性位置、速度 及姿態誤差估,,這些結果反饋到位置、速度及姿態模組81。又 曰=取向計算模組83,接收來自控制板9上的ASIC芯片92上的地 磁場探f态介面電路926地磁場向量數據,調制和處理來自位置、 ^度及姿態模組81的角數據;為誤差估計器模組82計算磁取向數 通過,入/輸出通訊產生器由外部用戶管理輸入/輸出數據。 參閱第十二圖所示,為了使微小整合的GPS/IMU系統更容易 使用,位置和姿態處理器進一步由以下部分組成: 個LCD顯示器模組97,以緊湊的方式安裝在控制板9上,與 ㈣上Μ上的LCD介面電路927相連,為本專利的系統的運動測量 =驗供顯不,例如,位置、速度及姿驗據的數位、 的顯示。 -個快閃記憶體94,如第九圖所示,與卿芯片 為㈣和計算任務 憶體94旎夠在板上通過jaTG連接器編程。 、 行動tic(龍魏)峨鮮,聯合測試 標, 議,在本發明中,JTAG被由於在板上編程。 快閃記憶體是-種非揮發性存儲器⑼ 是因為當電源被除去時,它們仍麸侔之所以稱為NVM 相比它有非常顯著的二,息,與刪Μ 電壓就能在板上夠被擦淨和再編程。、Α錢體不需要特殊的 ,統上’ EPR〇M(可擦可編程僅讀存儲器)或快閃記憶 離開板子利用硬體編程器編程,再由插槽裝到板上 心 23 593981 、對應地,連接LCD顯示模組97與DSP芯片91A的LCD介面電路 91被安裝在控制板9上的ASIC芯片92上。 連接地磁場探測器96和DSP芯片91的地磁場探測器介面電路 926執行以下功能: 、胃感應電子類比磁場信號,該信號與來自地磁場探測器%的地 磁場成正比。 應用類比磁場信號以抑制電類比信號中的噪音,該 地磁場成正比。 / 把放大的信號轉換為三軸數位地磁場數據,再輸入到Dsp芯片 91中。 ^提供數據、地址及控制總線的連接和產生地址的解碼的功 月b,使DSP芯片91能夠使用地磁場探測器介面電路926和採集三 數位地磁場數據。 ’'一 十連接在DSP芯片91和LCD顯示模組97之間的LCD介面電路927 安裝在DSP芯片上的ASIC芯片92上,以提供數據/地址/控制總線的 ^接,並產生地址的解碼功能,使得DSp芯片91能夠使用1^;〇顯示 模組97,並輸出本發明的核IMU的運動測量結果,例如,位置、 速度及安態數據。 參考第十二圖所示,GPS芯片組板3的優化方案由一個gps RF(射頻)ic(積體電路)31,一個相關1€32和一個Gps微處理器33構 成。 jPS RF(射頻)IC(積體電路)31被用來接收來自GPS天線的Gps RF信號,並轉換和抽樣GPSRF信號,並給相關IC32提供符號和振 幅數位化的輸出。 相^IC32由於連接符號和振幅數位流和局部載體,編譯解擴 頻GPS信號,輸出1和Q(同相和90度相差)取樣到GPS微處理器33。 GPS微處理器33用來處理I和q取樣以形成Gps信號的跟蹤回 路’並付到GPS的原始測量和導航解。 如弟十四圖所示,GPS芯片組板3A的另一種模組由GPSRF(射 24 593981 頻)1C(積體電路)31A,一個相關IC32A,一個數位鏈接IC34A,一 個數據解調模組35A,和GPS微處理器33構成。 GPS RF(射頻)IC(積體電路)31A用來接收來自天線的GPS RF 信號’下轉換和抽樣GPSRF信號,並給相關IC32A提供符號和振 幅數位化的輸出。 相關IC32A利用適當的局部載波的輸入符號和振幅數位流,編 譯解擴頻GPS信號,輸出I和Q(同相和90度相差)取樣到GPS微處理 器33。Life, to measure the accumulated three-axis angular rate analog voltage signal and three-axis plus iiiii signal ’to obtain the angular increment count value and speed increment count value, which are also used as the digits of angular increment 1 and speed increment. "In the ASIC chip, the geomagnetic field detector interface circuit 926, which is a magnetic potential circuit, is connected to the geomagnetic field detector 96. The micro integrated GPS / IMU system invented by the geomagnetic field vector measurement provides more Orientation information. This is L. As shown in the first and fourth figures, the i magnetic field detector interface circuit 926 on the ASI ^ C chip 92 mounted on the control board 9 is used to control the input detector 96 of the geomagnetic field detector 96. The output signal and the digitized geomagnetic field vector are shown in the ninth figure, and the ⑽ chip installed on the control board 9 is executed. The thermal control calculation 911 forms a control loop of the thermal control device. This. = Motion processing 912, which forms a vibration drive signal for the angular rate generator to control the position, velocity, and attitude. The module processes digital angular increments and velocity to obtain the inertial position, velocity, and data; from the error estimator module纟]: Optimized estimation of position, speed, and attitude errors. Error correction is performed to obtain highly accurate GPS / IMU mixed position, speed, and attitude data. Error estimator module 82, which processes the answers from position, velocity, and attitude modes, speed and attitude, 'Gps measurement data from GPS chip board 3, magnetically retrieved from 22 593981, and calculates magnetic orientation data of module 83 In order to generate optimized inertial position, speed and attitude error estimates, these results are fed back to the position, speed and attitude module 81. Also called = orientation calculation module 83, which receives geomagnetic field vector data from the geomagnetic field detection interface circuit 926 on the ASIC chip 92 on the control board 9, and modulates and processes the angular data from the position, orientation, and attitude module 81 ; Calculate the magnetic orientation number for the error estimator module 82. The input / output communication generator manages the input / output data by an external user. Referring to the twelfth figure, in order to make the micro-integrated GPS / IMU system easier to use, the position and attitude processor is further composed of the following parts: An LCD display module 97 is mounted on the control board 9 in a compact manner. It is connected to the LCD interface circuit 927 on the LCD, and the motion measurement of this patented system = inspection display, for example, the digital and display of position, speed, and posture data. A flash memory 94, as shown in the ninth figure, and the Qin chip are used for computing and computing tasks. The memory 94 is sufficient for programming on the board through the jaTG connector. , Action tic (Long Wei) E Xian, joint test target, it is suggested that in the present invention, JTAG is programmed on the board. Flash memory is a kind of non-volatile memory. It is because they are still gluten when the power is removed. Compared with NVM, it has very significant advantages. Cleaned and reprogrammed. , A money body does not need special, uniform 'EPROM (Erasable Programmable Read-Only Memory) or flash memory leave the board and program with a hardware programmer, and then install it into the center of the board from the slot 23 593981, corresponding Ground, an LCD interface circuit 91 connecting the LCD display module 97 and the DSP chip 91A is mounted on the ASIC chip 92 on the control board 9. The geomagnetic field detector interface circuit 926, which connects the geomagnetic field detector 96 and the DSP chip 91, performs the following functions: The stomach senses an electronic analog magnetic field signal, which is proportional to the percentage of the geomagnetic field from the geomagnetic field detector. An analog magnetic field signal is applied to suppress noise in an electrical analog signal, which is proportional to the geomagnetic field. / The amplified signal is converted into three-axis digital geomagnetic field data, and then input to the Dsp chip 91. ^ Provides data, address and control bus connection and decoding function to generate address b, enables DSP chip 91 to use geomagnetic field detector interface circuit 926 and collect three-digit geomagnetic field data. '' A LCD interface circuit 927 connected between the DSP chip 91 and the LCD display module 97 is installed on the ASIC chip 92 on the DSP chip to provide data / address / control bus connections and generate address decoding The function enables the DSp chip 91 to use the display module 97 and output the motion measurement results of the nuclear IMU of the present invention, such as position, velocity, and safety data. Referring to the twelfth figure, the optimization scheme of the GPS chipset board 3 is composed of a GPS RF (Radio Frequency) IC (Integrated Circuit) 31, a related 1 € 32, and a Gps microprocessor 33. The jPS RF (Radio Frequency) IC (Integrated Circuit) 31 is used to receive the GPS RF signal from the GPS antenna, convert and sample the GPS RF signal, and provide the relevant IC 32 with digitized output of symbols and amplitude. The phase IC32 is connected to the symbol, amplitude digital stream and local carrier, compiles and despreads the GPS signal, and outputs 1 and Q (in-phase and 90-degree phase difference) to the GPS microprocessor 33 for sampling. The GPS microprocessor 33 is used to process the I and q samples to form a tracking circuit 'of the Gps signal and pass it to the GPS original measurement and navigation solution. As shown in Figure 14, the other module of the GPS chipset board 3A consists of GPSRF (24 593981 frequency) 1C (integrated circuit) 31A, a related IC32A, a digital link IC34A, and a data demodulation module 35A. And GPS microprocessor 33. The GPS RF (Radio Frequency) IC (Integrated Circuit) 31A is used to receive GPS RF signals from the antenna 'down-convert and sample the GPSRF signals, and provide the relevant IC32A with digitized output of symbols and amplitudes. Correlation IC 32A uses the input symbol and amplitude digital stream of the appropriate local carrier to decode and de-spread the GPS signal, and outputs I and Q (in-phase and 90-degree phase difference) samples to the GPS microprocessor 33.

數位鏈接IC34A用來接收來自差動GPS設備的數位鏈接rf信 號’把數位鏈接RF信號下轉換為數位鏈接正伽如咖出拙 Frequency,IF)信號,然後輸入到數位鏈接解調模組35A。 數位鏈接解調模組35A由於解調數位鏈接if信號,輸出Gps差 動校正數據到GPS微處理器33A。 GPS微處理器33A由於處理I和Q取樣和仰8差動數據,以形成 GPS信號的跟蹤回路,並導出Gps的導航解。 、進一步,來自位置姿態處理器的、被誤差估計器82校正的慣 性速度和加速度可以反饋到GPS微處理器33,以辅助Gps衛星信號 的編譯和載波的相跟蹤,以提高集成GPS/IMU在擁擠和高度動^° 的環境中的運行性能。 又μThe digital link IC34A is used to receive a digital link rf signal from a differential GPS device, down convert the digital link RF signal to a digital link positive frequency (IF) signal, and then input the digital link demodulation module 35A. The digital link demodulation module 35A outputs the GPS differential correction data to the GPS microprocessor 33A due to the demodulation of the digital link if signal. The GPS microprocessor 33A processes the I and Q sampling and elevation 8 differential data to form a GPS signal tracking loop and derives a GPS navigation solution. Further, the inertial velocity and acceleration corrected by the error estimator 82 from the position and attitude processor can be fed back to the GPS microprocessor 33 to assist in the compilation of GPS satellite signals and carrier phase tracking to improve the integrated GPS / IMU in Performance in crowded and highly dynamic environments. Again μ

如第十五®所示,位置、速度及姿態模續由_校正模組 =01 ’角速率補償模組8102 ’加速度補償模組1〇3,水 ,模組8104 ’準直旋轉向量計算模組娜,方向餘_陣計算又模As shown in Fifteenth®, the position, velocity, and attitude modes are continued by _correction module = 01 'angular rate compensation module 8102' acceleration compensation module 103, water, module 8104 'collimation rotation vector calculation module Zuna, the direction I_ matrix calculation

St ίίΐί載率計算模組_,位置速度更新模組麵,' 及女恶和取向角卒取模組81〇9。 圓錐校正模組_1由於接收來自角增量和速度增量 增量值和來自在高數據率(短間隔)的角速產 生;„和?速度產生器定標過程中原始角速率偏置,_輸入的數 位化的二軸肖增量值和原始肖速率偏置計算圓錐錄誤差 低的數據率下(長間隔)輸出三軸圓錐效應數據和三轴^角、辦量數 25 593981 模組 數據稱為三軸長間隔角增量值,它被輸入角速率補償 角速率補償模組81〇2由於接收來自圓錐校正模組$ 5應ΐί和三軸長間隔角增量值,及來自角速率產生器和 產生為定標過程中的角速率設備錯排參數和精細角速 =St ίίΐί load factor calculation module _, position speed update module face, 'and female evil and orientation horn purge module 8109. The cone correction module_1 receives the angular increment and velocity increment increment values and the angular velocity generated at a high data rate (short interval); and the original angular rate offset during the speed generator calibration process, _ Input the two-axis Shaw incremental value and the original Shaw rate offset to calculate the triangular cone effect data and tri-axis ^ angle and the number of data. Is the three-axis long interval angle increment value, which is input into the angular rate compensation angular rate compensation module 8102 due to receiving $ 5 from the cone correction module and the three-axis long interval angle increment value, and generated from the angular rate Parameters and fine angular velocity of the angular rate device during calibration

用圓錐效應誤差以補償長間隔角增量值中,角速率設備錯排參, 數丄精細僥速率偏置、和三軸長間隔角增量中圓錐校正標度因 確定的誤差,輸出實三軸角增量到準直旋轉向量計算模組81仍中。 準直旋轉向量計算模組8105由於接收來自角速率補'。 償的三軸角增量和來自地球和負載率補償模組_ 的^體的局域航行坐標(n坐標)相對於慣性坐標(i坐標)的旋轉速 向量;更新四元素數據組,它是—個代表載體轉角的' 數據組接到方向餘弦矩陣計算模組8106中。 μ ^方向餘弦矩陣計算模組8106通過使用更新的四元素數據組 算方向餘弦矩陣,接收來自誤差估計器82的姿態誤 估σ 計,以校正方向餘弦矩陣。 力炎化估 、、加速度補償模組8103通過使用加速度設備錯排和加速度 置補償在三軸速度增量中的確定的誤差,這裡補償ϋ 量被接到水平加速度計算模組8104。 们一釉速度^Use the cone effect error to compensate for the long interval angle increment value. The angular rate device is misaligned. The number of fine rate offsets, and the three-axis long interval angle increment. The shaft angle is incremented to the collimated rotation vector calculation module 81. The collimation rotation vector calculation module 8105 receives the angular velocity compensation due to the reception. Compensated triaxial angle increments and rotation speed vectors of the local navigational coordinates (n-coordinates) relative to the inertial coordinates (i-coordinates) of the ^ body from the earth and the load rate compensation module _; update the four-element data set, which is A 'data set representing the angle of the carrier is connected to the directional cosine matrix calculation module 8106. The μ ^ direction cosine matrix calculation module 8106 calculates a direction cosine matrix by using the updated four-element data set, and receives a pose misestimate σ calculator from the error estimator 82 to correct the direction cosine matrix. The force inflammation estimation and acceleration compensation module 8103 compensates the determined error in the three-axis speed increment by using the acceleration device misalignment and acceleration position. Here, the compensation amount is connected to the horizontal acceleration calculation module 8104. Our glaze speed ^

水平加速度計算模組8104由於接收補償的三軸速度增量,利 用來自加速度補償模組81〇3的補償的三軸速度增量和來自方向餘 弦矩陣計算模組81〇6的方向餘弦矩陣計算水平速度增量。 、 姿態和取向角萃取模組8109利用正確的方向餘^陣萃 GPS/IMU混合的姿態和取向角。 殂丨早卒取 ,位置速度更新模組8108接收來自水平加速度計算模組81〇4的 水平速度增1:,計算似和速度答案,接絲自縣估計模組82 的位置和速度誤差的優化估計,以補償位置和速度解中的誤差, 得到GPS/IMU的混合位置和速度數據。 口、 地球和負載率計算模組8107接收來自位置速度更新模組81〇8 26 ϊΐίίΐϊΐ答案’計算載體局域航行坐標(n坐標)相對於慣性坐 8^5。‘的旋轉速率向量,該向量接到準直旋轉向量計算模組 处差估計模組82建立1誤差模型和GPS誤差模型,以作A此 ,口 $,處理來自位置、速度和姿態模組81的位置、 欠、、、处 i=iGPs微處理器33的gps測量數據,及來自磁取向^算ϋ -ίϊ據,提供來自位置、速度和姿態模組81的位置、速/和次 悲的誤差的優化估計和GPS誤差。 X文 誤差估計器由卡爾曼濾波器實現,眾所周知,卡 =用=的系統和測量的統計性質生成系統狀態向量的以, 變化δ,1=是ΐϊ置的,在ί性非偏置估計類中它們具有最小的 下点\ k種估汁的性質只有在所用的數學模型適用的愔、、况 上此;==用中的任何不適當規範將使渡波器的結果 的卡 S 渡 = ϊ失莖咖的相曼舰器—、校正和分離失靈的t5 提供 的系統和測量模型優化,它不3 ;、、、卡爾曼濾波态只對特定 那聽波_|^報^^==皮不準, 的目的就是確保誤差協變矩_‘=,確度,濾波器積分 差統計,另外,濾波偏^通常由能,貫際的估計誤 靈所導致。 甶改交糸統和測虿模型或感應器失 被由卡爾曼_,該渡波器 餘量監視法能夠有效地檢測出r和軟^ 27 593981 監視法的一個好處是當濾波模型正確時,餘量列的統計分布就已 知’因此,在測量餘量時,很容易利用測試分布來生成測量數據 的編輯和分散性探測法的方案,當分散性被檢測到時,同樣的統 计可以由於調節濾波器和協變尺寸,第十六圖給出包括餘量監視 功能的财用的卡爾曼濾波器的實現方式。 。如第十六圖所示,GPS誤差補償模組82〇7收積來自GPS微處理 ,33的GPS測量數據;用來自更新狀態向量模組82〇9的Gps誤差變 I的優化估計,進行GPS測量數據的補償,正確的(31^測量數據被 送到處理模組8205。The horizontal acceleration calculation module 8104 receives the compensated three-axis speed increment, and uses the compensated three-axis speed increment from the acceleration compensation module 8103 and the direction cosine matrix from the direction cosine matrix calculation module 8106 to calculate the level. Speed increment. The attitude and orientation angle extraction module 8109 uses the correct direction to extract the attitude and orientation angle of the GPS / IMU mixture.殂 丨 Early death, the position and speed update module 8108 receives the horizontal speed increase 1: from the horizontal acceleration calculation module 8104, calculates the similar speed answer, and optimizes the position and speed error of the estimated module 82 from the county. Estimate to compensate for the errors in the position and velocity solutions to obtain the GPS / IMU mixed position and velocity data. The mouth, earth, and load factor calculation module 8107 receives the answer from the position and speed update module 8108 26. The calculation carrier ’s local navigation coordinates (n-coordinates) are relative to the inertia of 8 ^ 5. The rotation rate vector, which is connected to the collimation rotation vector calculation module. The deviation estimation module 82 establishes an error model and a GPS error model for the purpose of processing the data from the position, velocity, and attitude module 81. GPS, position, speed, and position i = iGPs microprocessor 33's gps measurement data, and from the magnetic orientation ^ 算 ϋ -ί data, provides the position, speed, and / or sadness from the position, speed, and attitude module 81 Optimal estimation of errors and GPS errors. The X-ray error estimator is implemented by a Kalman filter. It is well known that the card = uses the system and measured statistical properties to generate the system state vector. The change δ, 1 = is set. In the class of non-biased estimation They have the smallest down point. The properties of the k estimations are only applicable to the mathematical model used, and, in this case; == any improper specification in use will make the result of the wavelet card S 渡 = ϊ Lost-stem-caged phase-man warships—correction and optimization of the system and measurement model provided by t5, which does not work; it does not use 3; ,,, and Kalman filtering states only for specific listening waves _ | ^ 报 ^^ == 皮The purpose of inaccuracy is to ensure the error covariance moment _ '=, the accuracy, and the filter integral difference statistics. In addition, the filtering bias is usually caused by misleading energy and consistent estimates.甶 Change the system and measurement model or sensor loss by Kalman _. This wavelet margin monitoring method can effectively detect r and soft ^ 27 593981 One benefit of the monitoring method is that when the filtering model is correct, The statistical distribution of the quantity series is known '. Therefore, when measuring the margin, it is easy to use the test distribution to generate the measurement data editing and dispersion detection scheme. When dispersion is detected, the same statistics can be obtained due to Adjust the filter and covariant size. Figure 16 shows the implementation of a financial Kalman filter including a margin monitoring function. . As shown in the sixteenth figure, the GPS error compensation module 8207 collects GPS measurement data from the GPS microprocessing 33, and uses the optimized estimation of the Gps error I from the updated state vector module 8209 to perform GPS. The compensation of the measurement data is correct (31 ^) The measurement data is sent to the processing module 8205.

斤預處理模組8205接收來自GPS微處理器33的GPS衛星位置推 异表,來自GPS誤差補償模組8207的校正的GPS測量數據,來自位 置、速度,姿態模組81的INS解,GPS誤差補償模組8207進行態變 換矩陣計^ ’把結果和前-個狀態向量送到狀態向量預測模組 8206,計算的態變換矩陣同樣也被送到協變傳輸模組82〇2,預處 理,組8严根據計算的啦矩陣和測韻型計算測量矩陣和當前 測量向量,測量矩陣和計算的當前測量向量被送到計算測量 模組8208。 狀悲向置預測模組8206接收來自預處理模組82〇5的態變換矩 陣和前-個狀態向量,錢行當前相的態侧,酬的當前狀態 向量被送到計算測量餘量模組82〇8。 *The preprocessing module 8205 receives the GPS satellite position inference table from the GPS microprocessor 33, the corrected GPS measurement data from the GPS error compensation module 8207, the INS solution from the position, speed, and attitude module 81, and the GPS error Compensation module 8207 performs state transformation matrix calculation ^ 'The result and the previous state vector are sent to state vector prediction module 8206, and the calculated state transformation matrix is also sent to covariant transmission module 8202. Group 8 strictly calculates the measurement matrix and the current measurement vector according to the calculated matrix and the rhyme type. The measurement matrix and the calculated current measurement vector are sent to the calculation measurement module 8208. The state-oriented prediction module 8206 receives the state transformation matrix and the previous state vector from the preprocessing module 8205, the current side of the current phase of the money line, and the current state vector of the reward is sent to the calculation and measurement margin module. 82〇8. *

計算測量餘量模組8208接收來自狀態向量預測模組82〇6的預 測白曰勺當前,態向量和來自預處理模組8205的測量矩陣和當前測量 向f,计异測1餘量模組8208通過從當前測量向量中減去測量矩 陣與預測當驗態向量的麵來計算啦餘量,測錄量被送到 餘篁監視模組331以及更新狀態向量模組82Q9。 …餘量監視模組82〇1對來㈣算測量餘量模組咖的測量餘量 進打識別’識職準是啦餘量辭絲靖量變化的商是否大 於給定的雖’如果測1:餘量的平方除赠量變化贿大於給定 的閾值,當前_量絲可能導致卡_曼濾波㈣發散,當這種 28 593981 現象發生時,餘量監視模組331計算新的系統過程協變並拒絕當前 測量’如果測量餘量的平方除以餘數變化的商小於給定的閾值, 當前的測量結果可以被卡爾曼濾波器使用以得到當前導航解,而 不需要改變系統過程的當前協變,系統過程協變被送到協變傳輸 模組8202。 協變傳輸模組8202搜積來自餘量監視模組8201的系統過程協 變,來自預處理模組8205態變換矩陣,以及估計誤差的前一協變, 以計异估計誤差的當前協變,計算的估計誤差的當前協變被送到 計算優化增益模組8203。 計算優化增益模組8203接收來自協變傳輸模組82〇2的估計誤 差的當前協變,以計算優化增益,這個優化增益被送到協變更新 鲁 模組8204以及更新狀態向量模組339,協變更新模組8204更新估計_ 誤差協變,並將它送到協變傳輸模組82〇2。 更新狀態向量模組8209接收來自計算優化增益模組82〇3的優 化增益和來自計算測量餘量模組8208的測量餘量,更新狀態向量 模組8209計算狀態向量的當前估計,包括位置、速度及姿態誤差 和GPS誤差,並將它們送到誤差補償模組82〇7及位置速度姿1模組 81 〇 磁取向計算模組83接收來自ASIC芯片92上的地磁場探測介面 電路926和來自姿態和取向模組81或位置、速度及姿態模組82的伏 仰滾動角數據,並計算磁取向數據,磁取向計算模组83 # 行以下功能: ^丨夬閃^己隐體94中輸入地磁場探測器%的定福參數以生成標 定向量; μ 從ASIC芯片92上的地磁場探測介面電路926上接收三軸數位 化地f場Ϊ號以生成測量向量,該信號用體坐標表示; 和取向模組81或位置、速度及姿態模組82接收伏仰滾 動角數據,以生成從體坐標到水平坐標的變換矩陣; 利用定標向量補償測量向量; 29 將補償測量向量從體坐標變換到水平坐標,補償測量向量是 用水平坐標表示; 利用用水平坐標表示的測量向量計算磁取向數據,該數據速 度誤差估計器82。 如上所述,第一塊電路板2、第二塊電路板4、第三塊電路板7, GPS芯片組板3、及控制電路板9被安裝在金屬立方盒丨内,如第十 七圖所示,它是如第一圖的方塊圖所示的優化的微小整合的 GPS/IMU系統的優化透視和側視圖。 根據本發明的物理結構的第一個選擇模式,第一塊電路板2、 第二塊電路板4、第三塊電路板7、GPS芯片組板3、及控制電路板9 被相應地安裝在金屬立方盒1内,如第十八圖所示,在這個構型 中,第一塊電路板2和第二塊電路板4被安裝在頂部和底部,第三 塊電路板7和GPS芯片組板3被安裝在左或右,以便與第一塊電路板 2和第二塊電路板4以正交的方式相連,以得到三個角速率產生器 和加速度產生器的三個感應軸,控制電路板9被安裝在前端或後 端,以與第一塊電路板2、第二塊電路板4、第三塊電路板7、GPS 芯片組板3相連。 在以上所透露的第一塊電路板2、第二塊電路板4、第三塊電 路板7、GPS芯片組板3、及控制電路板9特殊構型中,第一塊電路 板2、第二塊電路板4、第三塊電路板7、Gps芯片組板3、及控制制 電,板9被安裝在金屬立方盒丨内,在一些應用中,本發明的核1]^11 的第一塊電路板2、第二塊電路板4、第三塊電路板7、GPS芯片組 板3、及控制電路板9被選擇地安裝,以得到平的金屬盒卜如第十 九圖所示,第三塊電路板7被垂直的安裝在平的金屬盒丨中,第一 塊,路板2、第二塊電路板4、GPS芯片組板3、及控制電路板9分布 在第二塊電路板7的兩旁。 曰以上所透露的本發明的實現被安裝在載體上,以提供運動測 I ’極端的振動和衝擊可以在微小整合的Gps/IMU系統的輸出中 導致附加的、沒有預料的誤差,如第二十圖所示,一個支撐架101 593981 和衝擊架105被用來減少微小整合的GPS/IMU系統的輪出中的極 端振動和,擊效應,支撐架101被直接固定到載體上,微小整合的 GPS/IMU系統通過四個振動架故定在支撐架1〇1上,如第二十一圖 所示,微小整合的GPS/IMU系統可以通過四個振動絕緣體1〇6安裝 在載體上。 x 如第二圖和第二十二圖所示,優化的熱感應產生器24八、 44A、74A進一步執行以下功能: 接收來自角速率探測單位21、4卜71的振動驅動器信號; 萃取角速率探測單位21、41、71的慣性元素的振動^率^ 、利用角速率探測單位21、41、71的慣性元素的振動頻率,通 過查詢MEMS頻率的溫度模型估計角速率探測單位2卜“、力的翁 運行溫度。這裡MEMS頻率的溫度模型通過對角速率探測單位 21、4卜71的多次測量而預先得到。 ^由ASIC芯片92上的熱控制電路923將操作溫度所得Dsp 芯片91 〇 【圖式簡單說明】 第二圖 第圖·疋一個方塊圖,它顯示了本發明優選方案的微小 整合的GPS/IMU系統的處理模組。 弟二圖 是一個方塊圖,它顯示了本發明優選方案的微小 整合的GPS/IMU系統的熱控制方法。 第四圖 是-個方塊圖,它顯示了本發明優選方案的微小 整合的GPS/IMU系統的伍塊電路板的連接。 是一個本發明上述優選方案的微小整合的The calculation and measurement margin module 8208 receives the prediction from the state vector prediction module 8206, the current state vector, the measurement matrix from the preprocessing module 8205, and the current measurement direction f. 8208 calculates the margin by subtracting the face of the measurement matrix and the predicted current state vector from the current measurement vector, and the measured amount is sent to the residual monitoring module 331 and the updated state vector module 82Q9. … The remaining amount monitoring module 8201 recognizes the measured remaining amount of the measured remaining amount module, and identifies whether the quotient of the remaining amount is greater than the given quotient. 1: The square of the balance is divided by the change of the bonus. The bribe is greater than a given threshold. The current measurement can cause the card-man filter to diverge. When this 28 593981 phenomenon occurs, the balance monitoring module 331 calculates a new system process. Covariate and reject the current measurement 'If the quotient of the square of the measurement margin divided by the remainder change is less than a given threshold, the current measurement result can be used by the Kalman filter to obtain the current navigation solution without changing the current of the system process Covariation, system process covariance is sent to covariance transmission module 8202. The covariant transmission module 8202 collects the system process covariations from the margin monitoring module 8201, the state transformation matrix from the preprocessing module 8205, and the previous covariance of the estimation error to account for the current covariance of the different estimation errors. The current covariance of the calculated estimation error is sent to the calculation optimization gain module 8203. The calculation optimization gain module 8203 receives the current covariance of the estimation error from the covariance transmission module 8202 to calculate the optimization gain. This optimization gain is sent to the covariance update module 8204 and the update state vector module 339. The covariance update module 8204 updates the estimation_error covariance and sends it to the covariance transmission module 8202. The update state vector module 8209 receives the optimized gain from the calculation optimization gain module 8203 and the measurement margin from the calculation measurement margin module 8208, and updates the current vector estimation module 8209 to calculate the current estimate of the state vector, including the position and velocity. And attitude errors and GPS errors, and send them to the error compensation module 8207 and the position velocity and attitude 1 module 81. The magnetic orientation calculation module 83 receives the geomagnetic field detection interface circuit 926 from the ASIC chip 92 and And orientation module 81 or position, velocity and attitude module 82, and calculate the magnetic orientation data. Magnetic orientation calculation module 83 # performs the following functions: ^ 丨 夬 闪 ^ The magnetic field detector% fixes the parameters to generate a calibration vector; μ receives a three-axis digitalized field f field Ϊ number from the geomagnetic field detection interface circuit 926 on the ASIC chip 92 to generate a measurement vector, and the signal is expressed in volume coordinates; and The orientation module 81 or the position, velocity and attitude module 82 receives the elevation and roll angle data to generate a transformation matrix from body coordinates to horizontal coordinates. The calibration vector is used to compensate the measurement vector. 29 The compensation measurement vector is transformed from the body coordinate to the horizontal coordinate, and the compensation measurement vector is expressed by the horizontal coordinate; the measurement vector expressed by the horizontal coordinate is used to calculate the magnetic orientation data, and the data velocity error estimator 82. As described above, the first circuit board 2, the second circuit board 4, the third circuit board 7, the GPS chipset board 3, and the control circuit board 9 are installed in a metal cube box, as shown in FIG. 17 As shown, it is an optimized perspective and side view of an optimized micro-integrated GPS / IMU system as shown in the block diagram of the first figure. According to the first selection mode of the physical structure of the present invention, the first circuit board 2, the second circuit board 4, the third circuit board 7, the GPS chipset board 3, and the control circuit board 9 are correspondingly mounted on Inside the metal cube box 1, as shown in the eighteenth figure, in this configuration, the first circuit board 2 and the second circuit board 4 are mounted on the top and bottom, the third circuit board 7 and the GPS chipset The board 3 is installed on the left or right so as to be connected orthogonally with the first circuit board 2 and the second circuit board 4 to obtain the three induction axes of the three angular rate generators and the acceleration generators. The circuit board 9 is installed at the front or rear end to be connected to the first circuit board 2, the second circuit board 4, the third circuit board 7, and the GPS chipset board 3. Among the special configurations of the first circuit board 2, the second circuit board 4, the third circuit board 7, the GPS chipset board 3, and the control circuit board 9 disclosed above, the first circuit board 2, the first Two circuit boards 4, a third circuit board 7, a Gps chipset board 3, and a control system. The board 9 is installed in a metal cube box. In some applications, the core of the invention 1] ^ 11 A circuit board 2, a second circuit board 4, a third circuit board 7, a GPS chipset board 3, and a control circuit board 9 are selectively installed to obtain a flat metal box, as shown in FIG. 19 The third circuit board 7 is vertically installed in a flat metal box. The first circuit board 2, the second circuit board 4, the GPS chipset board 3, and the control circuit board 9 are distributed in the second. Circuit board 7 on both sides. The implementation of the invention disclosed above is mounted on a carrier to provide kinematic measurement. Extreme vibrations and shocks can cause additional, unexpected errors in the output of the micro-integrated Gps / IMU system, such as the second As shown in Figure 10, a support frame 101 593981 and an impact frame 105 are used to reduce the extreme vibration and impact effects of the micro-integrated GPS / IMU system. The support frame 101 is directly fixed to the carrier. The micro-integrated The GPS / IMU system is fixed on the support frame 101 through four vibration frames. As shown in Figure 21, the micro-integrated GPS / IMU system can be installed on the carrier through four vibration insulators 106. x As shown in Figures 2 and 22, the optimized thermal induction generators 24, 44A, and 74A further perform the following functions: Receive vibration driver signals from angular rate detection units 21, 4 and 71; and extract angular rate Detect the vibration rate of the inertial element of the units 21, 41, and 71. Use the angular rate to detect the vibration frequency of the inertial element of the units 21, 41, and 71. Estimate the angular rate detection unit by querying the temperature model of the MEMS frequency. The operating temperature of the Weng. Here the temperature model of the MEMS frequency is obtained in advance through multiple measurements of the angular rate detection units 21, 4 and 71. ^ The thermal control circuit 923 on the ASIC chip 92 will obtain the Dsp chip 91 at the operating temperature. Brief description of the drawings] Figure 2 and Figure 2 · A block diagram showing the micro integrated GPS / IMU system processing module of the preferred solution of the present invention. The second figure is a block diagram showing the preferred embodiment of the present invention. Thermal control method of the micro-integrated GPS / IMU system of the solution. The fourth figure is a block diagram showing the circuit board of the micro-integrated GPS / IMU system of the preferred solution of the present invention. Connection. The present invention is a slight integration of the above-described preferred embodiment

GPS/IMU系統的控制板上的八沉芯片的功能方塊 圖。 A 第五圖:是-個本發明上述優選方案 =ir—、第二和第錢:板的前 第六圖··是-個本發明上述優選方案的微小整合的 31 593981 第七圖 第八圖: 第九圖: 第十圖: 第Η 圖 第十二圖 第十三圖 第十四圖 第十五圖 第十六圖 第十七圖 GPS/IMU系統的控制電路板上的ASIC芯片的振動 控制電路方塊圖。 :是一個本發明上述優選方案的微小整合的 GPS/IMU系統的控制板上的聊芯片_振動處理 模組方塊圖。 ,是一個本發明上述優選方案的微小整合的 GPS/IMU系統的控制板上的八亂芯片上的角庐號 回路電路方塊圖。 是-個方翻,它綱本發虹述優選方案的微 小整合的GP S/IMU系統的控制板上的D s p中的處理 模組。 是一個方塊圖,它說明本發明上述優選方案的熱 ^應產生器輸出類比電壓信號的另一個熱處理 器。 •是一個方塊圖,它說明本發明上述優選方案的 角速率產生器和加速度產生器輸出電壓信號的 另一個角增量和速度增量產生器。 :是一個方塊圖,它說明本發明上述優選方案的 控制板。 •是一個方塊圖,它說明本發明上述優選方案的 GPS芯片板的第一個方案。 •是一個方塊圖,它說明本發明上述優選方案的 具有差動GPS技術的GPS芯片組第二個方案。 :是一個本發明上述優選方案的位置、速度'、姿 態及取向模組的功能方塊圖。 :是一個本發明上述優選方案的誤差估計器的功 能方塊圖。 :是上述優選方案的微小整合的GPS/IMU的侧視 圖0 32 "圖=,優選方案的微小整合的GPS/IMU系統的 邛機械結構和電路板配置的第二種選擇模 々 式。 々九圖t述優選方帛的微小整合的GPS/IMU系統的 卩結構和電路板配置的第三種選擇模式,以 & 一 侍到平的盒子。 々十圖· f上述優選方案的微小整合的GPS/IMU系統的 第一 支架和振動安裝構圖。 十圖·疋上述優選方案的微小整合的GpS/IMU系統 第二•,另一種優化的支架和振動安裝構圖。Functional block diagram of the eight-sink chip on the control board of the GPS / IMU system. A Fifth picture: yes-the above-mentioned preferred solution of the present invention = ir-, second and third: the front sixth picture of the board ... yes-a slight integration of the above-mentioned preferred solution of the present invention 31 593981 seventh figure eighth Figure: Figure 9: Figure 10: Figure : Figure 12 Figure 13 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 17 of the ASIC chip on the control circuit board of the GPS / IMU system Block diagram of vibration control circuit. : It is a block diagram of a chat chip_vibration processing module on the control board of the micro integrated GPS / IMU system of the above preferred solution of the present invention. , Is a block diagram of a corner loop circuit on a haphazard chip on the control board of the micro integrated GPS / IMU system of the above-mentioned preferred solution of the present invention. It is a square, which outlines the processing module in the DSP on the control board of the slightly integrated GP S / IMU system of the preferred scheme. It is a block diagram illustrating another heat treatment device that outputs an analog voltage signal from the heat generator of the above-mentioned preferred embodiment of the present invention. • is a block diagram illustrating another angular increment and velocity increment generator of the output voltage signal of the angular rate generator and acceleration generator of the above-mentioned preferred embodiment of the present invention. : Is a block diagram illustrating the control board of the above-mentioned preferred embodiment of the present invention. • is a block diagram illustrating the first solution of the GPS chip board of the above-mentioned preferred solution of the present invention. • is a block diagram illustrating the second solution of the GPS chipset with differential GPS technology of the above-mentioned preferred solution of the present invention. : Is a functional block diagram of the position, velocity ', posture and orientation modules of the above-mentioned preferred solution of the present invention. : Is a functional block diagram of the error estimator of the above preferred solution of the present invention. : Is the side view of the above-mentioned micro-integrated GPS / IMU of the preferred scheme. Figure 0 32 " Figure =, the second option of the 邛 mechanical structure and circuit board configuration of the micro-integrated GPS / IMU system of the preferred scheme. Figure 9 illustrates the third option of the micro-integrated GPS / IMU system's structure and circuit board configuration, with the & flat box. Figure 10 · f The first bracket and vibration mounting composition of the micro integrated GPS / IMU system of the above preferred scheme. Figure 10: The micro-integrated GpS / IMU system of the above preferred scheme. Second. • Another optimized bracket and vibration installation composition.

-圖·是上述優選方案的微小整合的挪綱^系統 的另一種優化的熱感應產生器。 圖唬說明: ^金屬立方盒 4_第二個電路板 5-角速率產生器 7-第三個電路板 1〇_加速度產生器 20-加熱器 22-Y軸加速度計 2-第一個電路板 3、3A-GPS芯片組-Figure · is another optimized thermal induction generator of the above-mentioned micro-integrated mobile program system. Explanation of the diagram: ^ Metal cube box 4_second circuit board 5-angular rate generator 7-third circuit board 10_acceleration generator 20-heater 22-Y-axis accelerometer 2-first circuit Board 3, 3A-GPS chipset

6-角增量和速度增量產生器 9-控制電路板 15-熱敏感產生器 21-X軸振動角速率探測單位 23-第一個前端電路 24、24A-第一熱敏感產生單元 25-第一加熱器 30-熱處理器 3卜31A-GPSRF(射頻)ic(積體電路) 32、32A-相關 1C 3233、33A-GPS微處理器 35A-數據解調模組 41-Y轴振動角速率探測單位 42-X軸加速度計 43_第二個前端電路 44、44A-第二熱敏感產生單元 45-第二加熱器 71-Z轴震動角速率探測單位 72-Z軸加速度計 73-第三個前端電路 33 74、74A_第三熱敏感產生單元 75-第三加熱H ‘位置和姿態處理 81-位置、速度及姿態模組 “器 82_誤差估計器模組 83_磁取向計曾桓 91-數位信號處理器(DSp)晶片 #、、、、 92·特定應用積體電路(ASIC)芯片 93-連接器 94-快閃記憶體 95韻連接器 96-地球磁場探測哭 99-電源模組 101-支撐架 231、 431、731-阻抗轉換放大器電^ 232、 432、732-高通濾波器電路 97-LCD顯示器模、组 98-通訊模組6-Angle increment and speed increment generator 9- Control circuit board 15- Thermal sensitive generator 21- X-axis vibration angular rate detection unit 23- First front-end circuit 24, 24A- First thermal sensitive generating unit 25- First heater 30-thermal processor 3 31A-GPSRF (radio frequency) IC (integrated circuit) 32, 32A-related 1C 3233, 33A-GPS microprocessor 35A-data demodulation module 41-Y axis vibration angular rate Detection unit 42-X-axis accelerometer 43_ Second front-end circuit 44, 44A- Second heat-sensitive generating unit 45- Second heater 71-Z-axis vibration angular rate Detection unit 72-Z-axis accelerometer 73- Third Front-end circuits 33 74, 74A_ third heat-sensitive generating unit 75- third heating H 'position and attitude processing 81- position, speed and attitude module "device 82_error estimator module 83_ magnetic orientation meter 91-Digital signal processor (DSp) chip # ,,,, 92 · Application-specific integrated circuit (ASIC) chip 93-connector 94-flash memory 95 rhyme connector 96-earth magnetic field detection cry 99-power mode Group 101-support frame 231, 431, 731-impedance conversion amplifier electrical ^ 232, 432, 732-high-pass filter circuit 97-LCD display module Group communication module 98-

100-熱控制器件 105_衝擊架 339-更新狀態向量模組 630-加速度積分器 650-角增量和速度增量測量 912-振動處理模組 922-振動控制電路 925-振盪器 927-LCD介面電路 8102-角速率補償模組 8104-水平加速度計算模組100-thermal control device 105_shock frame 339-update state vector module 630-acceleration integrator 650-angle and speed increment measurement 912-vibration processing module 922-vibration control circuit 925-oscillator 927-LCD interface Circuit 8102-Angular Rate Compensation Module 8104-Horizontal Acceleration Calculation Module

331-餘量監視模組 620-角度積分器 640-復位器 911-熱控制計算模組 921-角信號回路電路 923-熱控制電路 926-磁位計介面電路 8101-圓錐校正模組 8103_加速度補償模組 。i 8105- 準直旋轉向量計算模組 8106- 方向餘弦矩陣計算模組 8107- 地球和負載率計算模組 8108- 位置速度更新模組 8109- 姿態和取向角萃取模組 8201 餘量監視模組 8202-協變傳輸模組 82〇4_協變更新模組 ·3-計算優化增益模組 34 593981 8207 82G6_狀態向量預测模組 祕更祕咖量留數模組 9121-離散快速傅立葉變換模組 9122_,率和幅度數據存儲陣模組 9123-最大值檢測邏輯模組 9211- 電壓放大器電路 9212- 放大和加法器電路 9221-放大器和求和電路 9223-解調電路 9225-低通濾波器 9227-放大器 9232-類比/數位轉換器 9234-第二放大器電路 9124 Q值分析和選擇邏輯模板 9125-鎖相環 ''' 9213- 解調器 9214- 低通濾波器 9222-鬲通濾波器電路 9224-類比/數位轉換器 9226-數位/類比轉換器 9231-第一放大器電路 9233-數位類比轉換器 9 A-控制電路板 35331-surplus monitoring module 620-angle integrator 640-resetter 911-thermal control calculation module 921-angle signal loop circuit 923-thermal control circuit 926-magnetometer interface circuit 8101-cone correction module 8103_acceleration Compensation module. i 8105- Collimation rotation vector calculation module 8106- Direction cosine matrix calculation module 8107- Earth and load factor calculation module 8108- Position speed update module 8109- Attitude and orientation angle extraction module 8201 Margin monitoring module 8202 -Covariant transmission module 8204_Covariant update module3-Computational optimization gain module 34 593981 8207 82G6_State vector prediction module Secret calculation module 9121- Discrete fast Fourier transform module Group 9122_, rate and amplitude data storage array module 9123-maximum detection logic module 9121-voltage amplifier circuit 9122-amplifier and adder circuit 9121-amplifier and summing circuit 9223-demodulation circuit 9225-low-pass filter 9227 -Amplifier 9232-Analog / digital converter 9234-Second amplifier circuit 9124 Q value analysis and selection logic template 9125-Phase-locked loop '' '9213- Demodulator 9124-Low-pass filter 9222- 鬲 -pass filter circuit 9224 -Analog / digital converter 9226-Digital / analog converter 9231-First amplifier circuit 9233-Digital analog converter 9 A-Control circuit board 35

Claims (1)

593981 拾、申請專利範圍: 1· 一 小整合的哪勒系統’由以下部分組成: -mi產轴、γ轴和ζ軸的電角速率信號; :ί 增 1;;度 if產 ===肖增量和把x軸、軸㈣加速度信號轉 一個GPS芯片組,提供至少來自—個Gps衛星的⑽ - 位置和姿態處,细數向角增量、數向速度增量、 GPS測置數據、及地磁場向量測量數據,計算位置、姿態和取向角 的測量數據者。 2.如專利申請範圍第1項所述之微小整合的Gps/IMU系統,其中的 GPS芯片纟GPSRF(射頻)IC(積體電路),一個相關1(:和一個哪微 處理器組成;其中593981 The scope of patent application: 1. A small integrated Neale system 'is composed of the following parts:-The electrical angular velocity signals of the mi-axis, γ-axis, and ζ-axis;: ί Increase 1 ;; degree if production === Xiao Zenghe turns the x-axis and axis ㈣ acceleration signals into a GPS chipset and provides at least ⑽-position and attitude from a Gps satellite, fine angular increments, digital velocity increments, GPS measurement data, and Geomagnetic field vector measurement data, calculation data of position, attitude and orientation angle. 2. The micro-integrated Gps / IMU system as described in item 1 of the scope of patent application, where the GPS chip is a GPSRF (radio frequency) IC (integrated circuit), a related 1 (: and which microprocessor is composed of; where GPS处(射頻)IC(積體電路)接收來自GPS天線GPS RF信號,向 下轉換和取樣RF GPS信號,給相關ic提供符號和幅度的數位輸出; 相關1C把符號和幅度數位輸出與適當的局部載波和信號聯繫 起來,解擴I和Q (同相和相差90度)取樣,並送到到GPS微處理器; GPS微處理器處理I和Q取樣,以形成GPS信號跟蹤回路,導出 GPS原始測量數據和導航解者。 3.如專利申請範圍第1項所述之微小整合的Gps/IMU系統,其中的 GPS芯片由GPSRF(射頻)IC(積體電路),一個相關ic,一個數據鍵 接1C,一個數據解調模組和一個GPS微處理器組成;其中 GPS RF(射頻)IC(積體電路)接收來自GPS天線GPS RF信號,向 下轉換和取樣RF GPS信號,給相關1C提供符號和幅度的數位輪出; 相關1C把符號和幅度數位輸出與適當的局部載波和信號聯繫 起來,解擴I和Q (同相和相差90度)取樣,並送到GPS微處理器^ 36 593981 埴或接IC接收來自差動GPS發射站的处信號,把处信號轉 換為正彳§唬,並送到數據解調模組; 理哭數據解賴組解調IF信號,輸出GPS絲細數據到GPS微處 微處理器處理工和牌樣和GPS差動相關數據,以形成挪 佗唬跟蹤回路,導出GPS導航解者。 )·如專利申請範圍第1項所述之微小整合的GPS/IMU系統,立中的 位置和姿態處理器由以下組成·· 、 :個ASIC芯片,由地磁場探測器介面電路組成,該介面電路 二二磁巧揼測器的地磁場向量電測量信號、數位化地磁場探測 ™、i磁场向畺電測量#號,以輸出數位化的地磁場向量數據; =DSP芯片,接收來自地磁場探測器介面電路的數位化的地 石豕向置數據’為微小整合的GPS/IMU系統執行計算和控制任務; 一個接收外部電源提供所需電壓的電源模組者。 5·如專利申請範圍第4項所述之微小整合的(}][^/1]^1;系統,豆 位置和姿態處理器進一步由以下組成: 八 一個通訊模組,提供微小整合的Gps/IMU系統和外部用戶之 間輸入/輸出介面;和 〜=連接器’連接通訊模組,提供與外部用戶兼容的適當的 官腳構型’進-步地’電源模組由連接器輸入外部電源者。 6. 如專利申睛範圍第2項所述之微小整合的GPS/IMU系统,直中的 位置和姿態處理器由以下組成: /、 :個ASIC芯片,由地磁場探測器介面電路組成,該介面電路 =31探測器的地磁場向量電測量信號,數位化地磁場探測 益的地磁%向量電測量信號,以輸出數位化的地磁場向量數據; …芯片’接收來自地磁場探測器介面電路的數位化的地 磁%向1數據’為微小整合的GPS/IMIL%統執行計算和控制任 一個接收外部電源提供所需電壓的電源模組者。 , 7. 如專利申請範圍第6項所述之微小整合的GPS/IMU系統,其中的 37 位置=姿態處理器進-步由以下、I且成: 之 間輸組和提供微小整合的gps/i_統和外部用戶 管腳3連ϊί牛ΐ接ί訊模組,提供與外部用戶兼容的適當的 8.如直,電源模組由連接器輸入外部電源者。 位置和卞1乾圍第6項所述之微小整合的GPS/IMU系統,苴中的 位置和安態處理器由以下組成: 几“甲的 护r制^^片由地磁场探測态介面電路組成,該介面電路 ί ,地磁場向量電測量信號,和數位化地磁^ 號’以輸出數位化的地磁場向量數據; 磁^ h t ^接收來自地磁場探測器介面電路的數位化的地 :5=j、整合的 GPS/__ 9 士复^收外^電源提供所需電壓的電源模組者。 位置°和姿態整合的G_u•其中的 #提供微小整合的簡灣統和外部用戶之 管腳=連接ϊ,組,提供與外部用戶兼容的適當的 10 4r ,電源模組由連接器輸入外部電源者。 的DS^由述之微小整合的GPS/_統,其中 回:而進行熱控制計算的方法; 動處理的方i 成動驅動信號的控_路而進行振動運 一無差估計她,轉處縣自錄、速度轉態模組的 38 593981 ^置、速度和姿態解數據,及來自Gps芯片的Gps測量·,為 ΪΐίϊΪ計算觀向數據,喊生狐位置、速度和姿態誤差的 據;I個輸入7輸出通訊產生器,管理與外部用戶的輸入/輪出數 取向计异模組,接收來自ASIC芯片上地磁場介面電路的數 場向量數據和來自位置、速度和姿態模組的俯仰滾動 角,為誤差估計器模組計算磁取向數據者。 專利申請範圍第6項所述之微小整合的GPS/IMU系統,盆中 的DSP芯片由以下部分構成: 八中 為形成熱控制方法的控制回路而進行熱控制計算的方法; 動處ί 發生器形成振動驅動信號的控制回路而進行振動運 卢辦2度和姿態模組,用與處理數位角增量和數位速 ^到慣性位置、速度及姿態數據,利用慣性位置、速度 解了H的優化估計進行誤紐正,以制位置、速度和姿態 位置H差估計模組,用與處理來自位置、速度和姿態模組的 哭汔ίί安恶解數據,來自GPS芯片的GPS測量,為誤差估Ϊ十 *磁取向數據,以產生慣性位置、速度和姿態誤差的優 據;和個輸入/輸出通訊產生器,理與外部用戶的輸入/輸出數 lit且 卩肖和滚動肖,為誤差估計雜組計算磁取向數據者。 > Λ t 地磁=向§丨减組,接絲自特錢、用频電路(asic)芯片上 路的數位化地磁場向量數據和來自位置、速度和姿 為幵/成熱控制方法的控制回路而進行熱控制計算的方法; 39 動處產生器形成振動驅動信號的控制回路而進行振動運 度增量以得5慣組’用與處理數位角增量和數位速 解; 町仪化估计進仃誕差校正,以得到位置、速度和姿態 位置、’用與處理來自位置、速度和姿態模組的 器ί袓ΐ&ίϊίϊ來自GP娜的GPS測量;為誤差估計 化估計I取向數據’以產生慣餘置、速度和姿態誤差的優 個輪入/輸出通訊產生器,管理與外部用戶的輸入/輸出數 據;和 上 地磁ϊ:Γίί ίϊ产來自,定應用積體電路(asic)芯片 能模喊錄地磁勒4鋪和來自健、速度和姿 俯仰肖’為誤差估計器模組計算磁取向數據者。 場探測器介;ΐ路 在地磁場探測器和聊芯片之間,地磁 ,收來自地磁場探測器的與地磁場成正比的電子類比 例的號抑制電子振動信號中一 DSpif的信賴換為三她位地磁場數據,概據被輸入到 ,供雜/地址/控機線的連接和產生地址解碼魏 Z芯片訪問地磁場探測器介面電路並接收三概位地磁場數據的 如專利申請範圍第6項所述之微小整合的Gps/IMu 接收來自地磁場探測器的與地磁場成正比的電子類比信號; 放大電子類比信號’抑制電子類比信號中的與地磁場不成比 例的噪音以形成放大信號; 把放大的信號轉換為三軸數位地磁場數據,該數據被輸入到 DSP芯片上; 提供數據/地址/控制總線連接和產生地址解碼功能,這裡的 DSP芯片訪問地磁場探測器介面電路並接收三軸數位地磁場數據 者0 15·如專利申請範圍第8項所述之微小整合的Gps/IMU系統,其中 地磁%探測為介面電路連接在地磁場探測器和DSP芯片之間,地磁 場探測器介面電路: 接收來自地磁場探測器的與地磁場成正比的電子類比信號; 放大電子類比信號,抑制電子類比信號中的與地磁場不成比 例的噪音以形成放大信號; 把放大的信號轉換為三軸數位地磁場數據,該數據 DSP芯片上; 提供數據/地址/控制總線連接和產生地址解碼功能,這裡的 DSP芯片訪問地磁場探測器介面電路並接收三車由數位地磁場數據 者。 16·如專利申請範圍第1 〇項所述之微小整合的Gps/I廳系、統,其中 地磁場探測II介面電路連接在地磁場探測器#nDsp芯片之間,地磁 場探測器介面電路: 接收來自地磁場探測器的與地磁場成正比的電子類比俨號; 放大電子類比錢,抑制電子類比信號中的與地磁場^比 例的噪音以形成放大信號; 大的錢轉換為三軸數位地磁場數據,該數據被輸入到 心片 fc., 提供數據/_:/控機_連接和產生地址解碼魏;這裡的 DSP芯片訪問地磁場探測器介面電路並接收三軸數位地磁場數據 593981 者。 17·如專利申請範圍第11項所述之微小整合的Gps/IMU系統,其中 地磁場探測器介面電路連接在地磁場探測器和DSp芯片之 場探測器介面電路: 接收來自地磁場探測器的與地磁場成正比的電子類比信號; 放大電子類比信號,抑制電子類比信號中的與地磁場比 例的噪音以形成放大信號; $放大的彳§號轉換為三軸數位地磁場數據,該數據被輸入到 DSP芯片上; 提供數據/地址/控制總線連接和產生地址解碼功能;這裡的The GPS (radio frequency) IC (integrated circuit) receives the GPS RF signal from the GPS antenna, down-converts and samples the RF GPS signal, and provides the digital output of the sign and amplitude to the relevant IC; the relevant 1C combines the digital output of the sign and amplitude with the appropriate The local carrier is connected to the signal, and the I and Q (in-phase and 90-degree difference) samples are despread and sent to the GPS microprocessor. The GPS microprocessor processes the I and Q samples to form a GPS signal tracking loop and derive the GPS original. Measurement data and navigation solver. 3. The micro-integrated Gps / IMU system as described in item 1 of the patent application scope, in which the GPS chip is composed of GPSRF (radio frequency) IC (integrated circuit), one related IC, one data key connected to 1C, and one data demodulation The module and a GPS microprocessor; the GPS RF (radio frequency) IC (integrated circuit) receives the GPS RF signal from the GPS antenna, down-converts and samples the RF GPS signal, and provides digital signout and amplitude to the relevant 1C digital wheels out Correlation 1C links the symbol and amplitude digital output with the appropriate local carrier and signal, despreads I and Q (in-phase and 90 degrees out of phase) samples, and sends them to the GPS microprocessor ^ 36 593981 埴 or receive IC from the difference The GPS transmitting station's signal is converted, and the signal is converted into positive signal and sent to the data demodulation module; the data processing module decodes the IF signal and outputs the GPS wire data to the GPS micro processor. Process the data of workers and cards and GPS differentials to form a tracking loop for bluffing and derive the GPS navigation solver. ) · The micro-integrated GPS / IMU system as described in item 1 of the patent application scope, the position and attitude processor in the center consists of the following: ASIC chip, composed of the geomagnetic field detector interface circuit, the interface The circuit ’s magnetic field vector electrical measurement signal, digital geomagnetic field detection ™, and magnetic field measurement # are used to output digital geomagnetic field vector data; = DSP chip receives the geomagnetic field The digitalized ground-rock data of the detector interface circuit is used to perform calculation and control tasks for the micro-integrated GPS / IMU system; a power module that receives external power to provide the required voltage. 5. The micro-integrated ()] [^ / 1] ^ 1; system as described in item 4 of the scope of patent application, the bean position and attitude processor is further composed of the following: Eight communication modules that provide micro-integrated Input / output interface between the Gps / IMU system and external users; and ~ = connector 'to connect the communication module, providing a proper official pin configuration compatible with external users. External power supply. 6. The tiny integrated GPS / IMU system as described in item 2 of the patent application scope, the straight position and attitude processor consists of the following: /,: an ASIC chip, interfaced by the geomagnetic field detector The circuit consists of the interface circuit = 31 geomagnetic vector electrical measurement signal of the detector, and the digital geomagnetic% vector electrical measurement signal of digital geomagnetic field detection to output digital geomagnetic field vector data;… the chip 'receives the geomagnetic field detection The digital geomagnetism of the interface circuit of the controller is 1 data 'for the integrated GPS / IMIL% micro-integration to perform calculations and control any power module that receives the external power supply to provide the required voltage. 7. Such as patent application The small integrated GPS / IMU system described in item 6, where 37 positions = attitude processor is further-the following, I and the following: between the group and the GPS / I_ system providing external integration and external user management Pin 3 is connected to the cattle module, providing appropriate compatibility with external users. For example, if the power module is connected to the external power supply through the connector, the location is the same as the small integration described in item 6. GPS / IMU system, the position and safety processor in the frame is composed of the following: Several "protector" plates are composed of a geomagnetic field detection interface circuit. The interface circuit is a vector measurement signal of the geomagnetic field. And digitized geomagnetic ^ number 'to output digitized geomagnetic field vector data; magnetic ^ ht ^ receives digitized ground from the geomagnetic field detector interface circuit: 5 = j, integrated GPS / __ 9 Shi Fu ^ Received ^ Power supply module that provides the required voltage. G_u with integrated position and attitude. # Of which provides micro-integration of Jane ’s system and external user pins = connections, groups, and provides appropriate compatible with external users. 10 4r, power module input external power from connector The source of DS ^ is described by the tiny integrated GPS / system, in which: the method of performing thermal control calculations; the processing method i becomes the control of the driving signal and the vibration is performed without any error to estimate her 38,593981 data, speed and attitude solution data of the self-recording and speed transition module of the county, and Gps measurement from the Gps chip. Calculate the attitude data for ΪΐίϊΪ, and call for the position, speed, and attitude errors of the fox. Data; I input 7 output communication generator, manages input / round out number orientation difference module with external users, receives vector data from geomagnetic field interface circuit on ASIC chip and data from position, velocity and attitude module , Which calculates the magnetic orientation data for the error estimator module. The tiny integrated GPS / IMU system described in item 6 of the patent application scope. The DSP chip in the basin is composed of the following: The eighth method of thermal control calculation to form the control loop of the thermal control method; Form the control circuit of the vibration drive signal to perform the vibration operation 2 degree and attitude module, and use it to process the digital angular increment and digital speed ^ to the inertial position, speed and attitude data, and use the inertial position and speed to solve the optimization of H The estimation is incorrectly adjusted, and the position, velocity, and attitude H difference estimation module is used to process the crying data from the position, velocity, and attitude modules. The GPS measurement from the GPS chip is used to estimate the error. Ϊ10 * magnetic orientation data to generate superior data for inertial position, speed, and attitude errors; and an input / output communication generator that manages the input / output number of external users and Li Xiao and rolling Xiao, which are error estimates Miscellaneous calculation of magnetic orientation data. > Λ t Geomagnetism = Subtracting to § 丨, connected to digital geomagnetic field vector data from special money, frequency circuit (asic) chip and control loop from position, velocity and attitude control method And the method of thermal control calculation; 39 dynamic generators form a control loop of vibration drive signals and perform vibration increments to get 5 inertia sets, which are used to deal with digital angular increments and digital speed solutions; Correct the position difference to obtain the position, velocity, and attitude. 'Use and process the GPS measurements from the position, velocity, and attitude modules. An excellent in / out communication generator that generates inertia, speed, and attitude errors, manages input / output data with external users; and geomagnetism: Γίί ί is produced from a fixed application integrated circuit (asic) chip. The analogue recording geomagnetic Le Ping 4 and from the Jian, speed and attitude pitch Xiao 'for the error estimator module to calculate magnetic orientation data. The field detector is introduced; Kushiro is between the geomagnetic field detector and the chip, and the geomagnetism is received from the geomagnetic field detector and is proportional to the geomagnetic field. The number of electronic proportional signals is suppressed. One DSpif trust is changed to three. The geomagnetic field data is input to the ground, for the connection of the miscellaneous / address / control line and the generation of address decoding. Wei Z chip accesses the geomagnetic field detector interface circuit and receives three geomagnetic field data. The micro-integrated Gps / IMu described in item 6 receives an electronic analog signal that is proportional to the geomagnetic field from the geomagnetic field detector; amplifies the electronic analog signal 'to suppress the noise in the electronic analog signal that is not proportional to the geomagnetic field to form an amplified signal Transform the amplified signal into three-axis digital geomagnetic field data, which is input to the DSP chip; Provide data / address / control bus connection and generate address decoding functions, where the DSP chip accesses the geomagnetic field detector interface circuit and receives Three-axis digital geomagnetic field data 0 15 · Slightly integrated Gps / IMU system as described in item 8 of the scope of patent application, where the geomagnetism% The detection is an interface circuit connected between the geomagnetic field detector and the DSP chip. The geomagnetic field detector interface circuit: receives the electronic analog signal proportional to the geomagnetic field from the geomagnetic field detector; amplifies the electronic analog signal and suppresses the electronic analog signal Noise that is not proportional to the geomagnetic field to form an amplified signal; convert the amplified signal into three-axis digital geomagnetic field data on the DSP chip; provide data / address / control bus connection and generate address decoding functions, here the DSP chip Visit the interface circuit of the geomagnetic field detector and receive three vehicles from the digital geomagnetic field data. 16. The micro-integrated Gps / I hall system and system as described in item 10 of the scope of patent application, wherein the geomagnetic field detection II interface circuit is connected between the geomagnetic field detector #nDsp chip, and the geomagnetic field detector interface circuit: Receives the electronic analog 俨 sign that is proportional to the geomagnetic field from the geomagnetic field detector; Amplifies the electronic analog money and suppresses the noise in the electronic analog signal in proportion to the geomagnetic field ^ to form an amplified signal; Large money is converted into a three-axis digital ground Magnetic field data, which is input to the heart chip fc., Provides data / _: / controller_ connection and generates address decoding Wei; the DSP chip here accesses the interface circuit of the geomagnetic field detector and receives three-axis digital geomagnetic field data 593981 . 17. The micro-integrated Gps / IMU system as described in item 11 of the scope of patent application, wherein the geomagnetic field detector interface circuit is connected to the geomagnetic field detector and the DSp chip field detector interface circuit: Electronic analog signals that are proportional to the geomagnetic field; Amplify the electronic analog signals and suppress the noise in the electronic analog signals that is proportional to the geomagnetic field to form an amplified signal; $ The amplified 彳 § number is converted into three-axis digital geomagnetic field data, which is Input to DSP chip; Provide data / address / control bus connection and generate address decoding function; here DSP芯片訪問地磁場探·介面電路並接收三軸數位地磁場數據 者0 18·如專利申請範圍第12項所述之微小整合的Gps/IMU系統, 地磁場探測器介面電路連接在地磁場探㈣器和贈芯片之間,ς磁 場探測器介面電路: 接收來自地磁場探測器的與地磁場成正比的電子類比信號; 放大電子類比信號,抑㈣子類比信號巾的與地磁場比 例的噪音以形成放大信號; 的信號轉換為三概位地磁場數據,該數據被輸入到 心片上,The DSP chip accesses the geomagnetic field exploration interface circuit and receives the three-axis digital geomagnetic field data. 0 18 The micro-integrated Gps / IMU system described in item 12 of the patent application scope. The geomagnetic field detector interface circuit is connected to the geomagnetic field detection. The magnetic field detector interface circuit between the instrument and the gift chip: Receives the electronic analog signal that is proportional to the geomagnetic field from the geomagnetic field detector; Amplifies the electronic analog signal to suppress the noise of the sub-analog signal towel in proportion to the geomagnetic field To form an amplified signal; the signal is converted into three-position geomagnetic field data, which is input to the heart slice, 提供數據/地址/控機線連接和產生地贿碼魏;這裡的 =SP芯片訪問地磁場探測器介面電路ii接收三概位地磁場數據 者0 19·如專利申請範圍第1〇項所述之微小整合的 位置、速度、姿態模組由以下部分構成·· 口 GPS/IMU系統,其中 組’接收來自角增量和速度增量產生器的數 ίΐ率產生器和加速度產生器定標過程的、在 原始;偏置計;角化角增量和 ,#弹月忒應々差,在長的間隔内、在降低的數據率 42 旦-:增I工間隔角增量值,· 置值和來自角速率產生哭 丄角枚正模組的長間隔角增 ^排參數和精細角速率。,的角速率設備 差、角速率設備鋩排夂童 角曰里的錐角效應誤 角增量和來自 性坐標时_):旋轉速率 轉角向里的四值數組,並輸出更新的四值數組·拍載體的疋 一個與更新的四值數組相關的斗曾 ===陣接‘ 度麵增量,利用來自加速 向餘弦矩陣計算===料自方向雜矩陣計算模組的方 和取;;和取向角萃取模組’利用校正的方向餘弦矩陣萃取姿態 速度二來自水平加速度計算模組的水平 以優; 、地球和負,率計算倾,接收來自位置速度更新模 和速度解’計算紐的局部航行坐標系(n fr 坐 f)職触杨量,軸量鮮錢轉向4=·=^ 20.如專利申請範圍第ii項所述之微小整合的Gps/IMu系統,其中 5939SI 位置、速度和姿態模組由以下部分構成·· 二個錐角校正模組,接收來自角增量 位化角增量和來自角速率產生料μ = f度心里產生器的數 短區間内的、高數產生器定標過程的、在 數據和角增量數據,該數據為長车 量值和來角校正模組的長間隔角增 迷半產生㈣加速度產生器定標過程的供 角速率配置,利用長間隔角增量的錐角效應ΐ 差角逮率5又備錯排參數、精細角速率偏詈,乃雜4—三、 子補償長間隔角增量值中的確定誤羞並輸出實角增量彳疋心因 二個準直旋轉向量計算模組,接收來角^償 角增量和^地球和負載率計算模組的載 frame)相對於慣性坐標(i frame) 轉角向量的四值數組’並輸出更新的更新的載體的旋 =固與更新的四值數__方向餘弦計算 :===陣接收來自誤差估計器的』 補償==罢利口速度設備錯排、加速度計偏置 平加速ϋί 其中所說的補償的速度增量連到水 一個水平加速度模組,接收補償的速度增量, j補償模組的補償的速度增量和來自方向餘芯= 向餘弦矩陣計算水平速度增量; ^杈、、且的方 和取if和取向角萃取模組,利用校正的方向餘弦矩陣萃取姿態 度4置ί gift 自水平加速度計算模組的水平速 “Lini速度解收來自誤差估計器的位置和速度 誤差的優化估計,補償位置和速度解中的誤差;和 44 地球和負载率計算模組 和速度解,計算的局部^^自位置速度更新模組的位置 位置_、: 整合的GPS_、統,其中 個錐肢正模組,接絲 _ 化角增量和來自聽率產生ϋ和加速產生11的數位 區間内的、高數據率的原始角速率偏過程的、在短 間隔置計算錐角效應誤差,在長的 數據為長間隔角增量值;、@錐纽應數據和角增量數據,該 個角速率補償模組,接. 量值和來自角速率產生哭 ’角权正拉、、且的長間隔角增 錯排參數和精細角速率酉,過程的角速率設備 差、角速率設備㈣m扯利用長間隔角增量的錐角效應誤 子補償長間隔角i:量4中的角,率偏置,及錐角校正定標因 角增量和模1’接收來自角速率補償模組的實 frame)相對於慣性坐7广计异減的體的局部航行坐標系(N 轉角向量的四,更新的載體的旋 的四值數組相關的方向餘弦計算矩陣,利用更新 冲 餘弦矩陣;接收來自誤差估計器的姿離誤差 的優^估計’校正方向餘弦矩陣; me 補償速’ _加速度設備錯排和加速度計偏置 ίΐίϋί 差;其中所說的補償的速度增量逹到水 μ 加速度她,減猶的速度增量,來自加速 又貝、且的補償的速度增量和來自方向餘弦矩陣計算模組的方 45 593981 向餘弦矩陣計算水平速度增量; 和取ίί和取向角萃取模組,细校正的方向餘弦矩陣萃取姿態 产辦㊁置收J自水平加速度計算模組的水平速 誕差的優化估計,補償位置和速度解中的誤差;和^疋度 地球和負鮮計算歡,接絲自位置速度更_ 和速度解’計算載_局部航行坐獅(n 1 f _)_轉速率向量’該向频準直娜向 者。Provide data / address / control line connection and generate ground bridging code; here = SP chip access to the geomagnetic field detector interface circuit ii receiving three approximate geomagnetic field data 0 19 · As described in item 10 of the scope of patent application The tiny integrated position, speed, and attitude modules are composed of the following parts: · GPS / IMU system, in which the group 'receives the numbers from the angular and speed increment generators. The calibration process of the rate generator and acceleration generator. In the original; offset meter; horn angle increment and the # 弹 月 忒 忒 should be different, in a long interval, at a reduced data rate of 42 den-: increase the interval angle increment value, The value and the long interval angle increment parameter and the fine angular rate from the angular rate generating module. Angular rate equipment difference, angular rate equipment, row angle, cone angle effect, misaligned angular increment and derived coordinates of child angles: rotation of the four-valued array of angular rotation angles, and output of the updated four-valued array · The carrier's 载体 a bucket related to the updated four-valued array has been === matrix connected 'degree surface increments, calculated from the acceleration to the cosine matrix === material from the direction matrix matrix calculation module; ; And Orientation angle extraction module 'Using the corrected direction cosine matrix to extract the attitude velocity 2 from the horizontal acceleration calculation module's level to be superior;, Earth and negative, rate calculation tilt, receive from the position velocity update module and velocity solution' calculation button The local navigation coordinate system (n fr, sitting f) touches the amount of work, and the amount of shaft is turned to 4 = · = ^ 20. The micro-integrated Gps / IMu system described in item ii of the patent application scope, where the 5939SI position, The speed and attitude module is composed of the following parts: Two cone angle correction modules that receive the angular increment from the angular increment and the angular rate from the angular rate generator μ = f degrees. Number generator calibration process In the data and angular increment data, this data is the angular rate configuration of the long vehicle interval value and the long interval angle increase module of the angle correction module. Cone angle effect ΐ Difference angle capture rate 5 with staggered parameters, fine angular rate bias 乃, miscellaneous 4-3, the sub-compensation of the long interval angle increment value to determine the error and output the real angle increment 彳 疋Two collimation rotation vector calculation modules that receive the angle ^ compensation angle increment and ^ earth and load factor calculation module's load frame) relative to the inertial coordinate (i frame) four-dimensional array of angle vectors' and output the updated The updated carrier's rotation = solid and updated four-valued number __ direction cosine calculation: === array receives from the error estimator. '' Compensation == high speed device misalignment, accelerometer offset flat acceleration ϋί which said The compensated speed increment is connected to a horizontal acceleration module that receives the compensated speed increment, the compensated speed increment of the j compensation module and the direction co-core = the horizontal velocity increment is calculated from the cosine matrix; And the sum of if and orientation angle Take the module, use the corrected direction cosine matrix to extract the attitude degree, and set the gift's horizontal velocity from the horizontal acceleration calculation module. The "Lini velocity solution" receives the optimal estimation of the position and velocity errors from the error estimator, and compensates for the position and velocity solutions. The error; and 44 Earth and load rate calculation module and speed solution, the calculated local position ^^ from the position speed update module position__: integrated GPS_, system, one of the cone limb positive module, wire_ Calculate the angular increment and the angular angular deviation from the original angular rate of the high data rate within the digital interval of 11 hearing rate generation and acceleration generation. Calculate the cone angle effect error at short intervals, and increase the long interval angle for long data. Measured value; @ cone button data and angular delta data, this angular rate compensation module, then. Measured value and long-angled angular misalignment parameters generated by the angular rate from the angular rate are positively pulled, and Fine angular rate 酉, process angular rate difference, angular rate device ㈣m use long taper angle increment cone error effect error to compensate long taper angle i: the angle of 4, rate offset, and taper angle correction Cause Increment and modulo 1 'receive a real frame from the angular rate compensation module) relative to the local navigation coordinate system of the inertial body 7 (N of the four of the rotation vector, the updated vector of the rotation of the vector of the four-valued array) To calculate the directional cosine matrix using the updated cosine matrix; receive the best estimate of the attitude deviation error from the error estimator 'corrected directional cosine matrix; me compensation speed' _ acceleration device misalignment and accelerometer bias ΐ ΐ ϋ ϋ difference; where The speed increase of the compensation is 逹 to the acceleration of the water μ, the speed increase of the minus, the speed increase of the compensation from the acceleration and the compensation, and the square 45 593981 from the direction cosine matrix calculation module to calculate the level Velocity increment; and extraction of orientation and orientation angle extraction module, finely-corrected direction cosine matrix extraction, attitude production office, acquisition and optimization of the horizontal velocity difference from the horizontal acceleration calculation module, and compensation of position and velocity solutions. Error; and ^ 疋 degrees of earth and negative fresh calculations, the wire speed from the position is more _ and the speed solution 'calculation load _ local sailing lion (n 1 f _) _ rotation rate to 'The collimator Na to the pilot's. 2^2·、如專利。申請範圍第10項所述之微小整合的Gps/iMu系統,其中 誤差估。十由卡爾曼;慮波裔構成,卡爾曼濾、波器由以下部分構成: -個GPS誤差補償模組,搜絲自肥微處㈣的Gps處理數 據,該數據被用差動GPS數據交替地校正,和來自更新狀態向量模 組的位置和速度校正值,以進行GPS誤差補償; 、2 ^ 2 ·, such as patents. The micro-integrated Gps / iMu system described in item 10 of the application scope, where the error is estimated. Ten is composed of Kalman; Kalman filter, Kalman filter, wave filter is composed of the following parts:-a GPS error compensation module, searching for Gps processing data from the fat micro-processing, the data is alternately used with differential GPS data Correction, and position and speed correction values from the updated state vector module for GPS error compensation; 一個預處理模組,接收來自GPS誤差補償模組校正的原始數據 和來自位,、速度和姿態模組的INS解;該預處理模組進行態變換 矩陣的,异,該結果與前一態向量一起被送到狀態向量預測模 組,計算,狀態向量變換矩陣也被送到協變傳播矩陣,預處理模 組根據計算的測量矩陣和測量模型計算測量矩陣和當前測量向、 量,測量矩陣和計算的當前測量向量被送到計算測量餘量模組; 其中, 、 狀態向量預測模組接收來自預處理模組的態變換矩陣和前一 個狀態向量,以進行當前相延遲的態預測,其中預測的當前狀態 向量被送到計异測量餘量模組; 计异測量餘量模組接收來自狀態向量預測模組的預測的當前 狀態向量和來自預處理模組的測量矩陣和當前測量向量,其中計 真測里餘里模組通過從當前測量向量中減去測量矩陣和預測的當 前狀態向量的乘積計算測量餘量,測量餘量被送到餘量監測模組 46 593981 以及更新狀態向量模組; 識別,識別準則是測量餘量測量餘量進行 的間值,當測量餘量的平方差的商是否大於給定 當前測量導致卡爾曼;慮波器的J里=臣商给定的間值時, 系統過程的新協變並拒絕者:f里▲測模組選擇性的計算 差的商小於給定的閾值時7去3♦虽測量餘量的平方除以餘量 前協變並利用當前測量,、得f:^皮器不需改變系統過程的當 到協變傳播模袓. 于到虽刖的航行解,系統過程協變被送A pre-processing module that receives the raw data corrected by the GPS error compensation module and the INS solution from the position, speed, and attitude modules; the pre-processing module performs the state transformation matrix, the difference is different from the previous state The vectors are sent to the state vector prediction module, and the state vector transformation matrix is also sent to the covariant propagation matrix. The preprocessing module calculates the measurement matrix and the current measurement direction, quantity, and measurement matrix based on the calculated measurement matrix and measurement model. And the calculated current measurement vector are sent to the calculation measurement margin module; wherein, the state vector prediction module receives the state transformation matrix and the previous state vector from the preprocessing module to perform the state prediction of the current phase delay, where The predicted current state vector is sent to the differentiating measurement margin module; the differentiating measurement margin module receives the predicted current state vector from the state vector prediction module and the measurement matrix and current measurement vector from the preprocessing module. Among them, the real-time measurement Lili module subtracts the product of the measurement matrix and the predicted current state vector from the current measurement vector. Calculate the measurement margin, and the measurement margin is sent to the margin monitoring module 46 593981 and the update status vector module. Identification, the recognition criterion is the interval between the measurement margin and the measurement margin, and the quotient of the square difference of the measurement margin Whether it is greater than the given current measurement leading to Kalman; when the J-wave of the wave filter is equal to the given value of the quotient, the new covariance of the system process and the rejector are: 7 to 3 at a given threshold. Although the square of the measurement margin is divided by the covariance before the margin and the current measurement is used, we get the f: ^ piper without changing the system process when the covariant propagation mode is reached. Yu Da Although the nagging navigation solution, the systematic process covariance was sent 差的當前_變計算估計誤 模組; ^扪怙彳决差的*别協變被送到計算優化增益 協辦計組接收來自協變計算模組的估計誤差的當前 增益’該結果被送到協變更新模組和更新狀離 ,協變更新模組更新估計誤差協變,並將其送到協^Poor current_variable calculation estimation error module; ^ 扪 怙 彳 determinate * not covariance is sent to the calculation optimization gain co-accounting group to receive the current gain of the estimation error from the covariance calculation module. The result is sent to Covariant update module and update state, covariant update module updates the estimation error covariance and sends it to the coordinator ^ 3狀,向錢組接收來自計算優化增益模組的優化增益和 來^計异f讀量模組的測量餘糧;更新狀態向量模組計算狀態 向1的當前估計,包括位置、速度和姿態誤差,並將之送到Gps 誤差補償模組和位置、速度和姿態模組者。 23·、如專利申請範圍第丨丨項所述之微小整合的Gps/IMU系統,其中 誤差估計器由卡爾曼濾波器構成,卡爾曼濾波器由以下部分構成: 一個GPS誤差補償模組,搜集來自GPS微處理器的GPS處理數 據’该數據被用差動GPS數據交替地校正,和來自更新狀態向量模 組的位置和速度校正值,以進行GPS誤差補償; 一個預處理模組,接收來自GPS誤差補償模組校正的原始數據 和來自位置、速度和姿態模組的INS解,該預處理模組進行態變換 矩陣的計算’該結果與前一狀態向量一起被送到狀態向量預測模 47 593981 二換矩陣也被送到協變傳播矩陣,預處理模 測量麵計算測量矩陣和當制量向、 其中“里車和β十异的虽前測量向量被送到計算測量餘糧模組; 她量預聰組接絲自猶理漁的態變難陣和前-個狀向置,以進行當前相延遲的態 向量被送到計算測量餘量模組; ^觸田别狀恶 壯能iifii量ΐ組接收來自狀態向量預測模組的預測的當前 算“〜的測量矩陣和當前測量向量,其中計 以及更新狀態向量模組; 里狀職里皿别权組 餘量測量模組進行對來自計算測量餘量模 > =信識ΐ準則是測量餘量的平方除以餘量差的商是否大ίΐϊ =旦ί:=平方除以餘量差的商大於給 閨ΐ時:卡爾曼濾波器不需改變系統過程= 到協ί傳播irr則里’铜當前的航行解,系統過程協變被送 箱考ΪΪ傳賴組搜絲自餘量監視模組的系統過程協變,來自 模組 計誤差的當前協變被蝴計算優化增益 計算優化增益模組接收來自協變計算模 ^ 5桓π優化增益’該結果被送到協變更新模組和更^^ :=,協變更新模組更新估計誤差協變,並將其送 更新狀態向量模組接收來自計算優化增益模組的優化增益和 48 593981 來”十异ΐ置,量模組的測量餘量,更新狀態向量模組計算狀態 向篁的當則估什,包括位置、速度和姿態誤差,並將之送到Gps 誤差補償模組和位置、速度和姿態模組者。 24·如專利申凊範圍第12項所述之微小整合的Gps/IMU系統,其中 誤差估計H由卡爾曼濾波ϋ構成,卡爾曼驗料以下部分構成·· -個GPS誤差補償模組,搜集來自⑽微處理器的Gps處理數 據,該數據被用差動GPS數據交替地校正,和來自更新狀態向量模 組的位置和速度校正值,以進行GPS誤差補償; ^固預處理模組,接收來自GPS誤差補償模組校正的原始數據 和來自位,、速度和姿態模組的薦解,該預處理模組進行態變換 ί陣3 ί ί壯ί ΐ與前一狀態向量一起被送到狀態向量預測模 、、且,什#的狀悲向1變換矩陣也被送到協變傳播矩陣,預處理模 組根據計算_量矩陣和測量模型計算測量矩陣和t前測量向 量’測量矩陣和計算的當制量向量觀断算餘量模组; 其中, '' 鱗量預測模組接收來自預處理模組的態變換矩陣和前-個狀悲向罝,以進行當前相延遲的態預測, 向量被送到計算測量餘量模組; 狀悲 ,模組接收來自狀態向量預測模組的預測的當前 狀悲向1和來自預處職雖和t前測 當前測量向量中減去測量矩陣和預測二當 別狀&向__計频量餘量,測量餘量 以及更新狀態向量模組; ^ m里瓜顺組 餘量測量模組進行對來自計算測量餘量模組的測 識別’識解贱測量餘量辭雜崎量 大J 糸統過程的新協變並拒絕當_量,當測量餘量的平 差的商小於給定_值時,卡爾魏波科需改㈣統過程的| 49 ,得到#前的航行解,祕過程協變被送到 協變傳触峻絲自餘量監視模祕 模組田則欠° #的估计誤差的當前協變被送到計算優化增益 _計算優ϊ增益模組接收來自觀計算模組·計誤差的當前 =,以計异優化增益’該結果觀_變更纏 協變更新模組更新估計誤差協變,並將其送到協變i 來自ίί接收來自計μ化增益模組的優化增益和 向旦里Ϊ、、且的測_量’更新狀態向量模組計算狀態 二:二:’匕括位置、速度和姿態誤差’並將之送到gps 决差補彳員杈組和位置、速度和姿態模組者。 =·、如專利σ申請範圍第19項所述之微小整合的GpS/IMU系統,其中 誤差估計$由卡爾曼濾波ϋ構成,卡_曼濾波器由以下部分構成: -個GPS誤差補償模組,搜集來自Gps微處理器的Gps處理數 ’邊數據被用差動GPS數據交替地校正,和來自更新狀態向量模 組的位置和速度校正值,以進行GPS誤差補償; 、 :個預處理模組’接收來自GPS誤差補償模組校正的原始數據 和來自位置、速度和姿態模組的腿解,該預處理 f陣,算’ ΐ結,前—狀態向量—起被送到狀態向量 、-且,计异的狀悲向1變換矩陣也被送到協變傳播矩陣,預處理模 組根據計算的測量矩陣和測量模型計算測量矩陣和#前測量向、 里,測里矩陣和计异的當前測量向量被送到計算測量餘量模組; 其中 ' ' 〃 ’ 狀態向量預測模組接收來自預處理模組的態變換矩陣和前一 個,巧量’ ^進行當前相延遲的態預測,其中預測的當前狀態 向量被送到計算測量餘量模組; 50 593981 狀態向前 算測量餘量模組通過從當前 測1向1,其中計 :;乘=測輪3, to the money group to receive the optimized gain from the calculation optimization gain module and calculate the measured surplus food from the different reading module; update the current vector module to calculate the current estimate of the state to 1, including position, velocity, and attitude errors And send it to the GPS error compensation module and the position, speed and attitude module. 23. · The micro-integrated Gps / IMU system as described in item 丨 丨 of the patent application scope, wherein the error estimator is composed of a Kalman filter, and the Kalman filter is composed of the following parts: A GPS error compensation module, which collects GPS processing data from GPS microprocessor 'This data is alternately corrected with differential GPS data, and the position and velocity correction values from the updated state vector module are used for GPS error compensation. A pre-processing module receives data from The raw data corrected by the GPS error compensation module and the INS solution from the position, velocity, and attitude modules. The preprocessing module calculates the state transformation matrix. The result is sent to the state vector prediction module together with the previous state vector. 593981 The two-transform matrix is also sent to the covariant propagation matrix. The pre-processing mode measurement surface calculates the measurement matrix and the equivalent quantity direction. Among them, the "ri-car and β ten-different previous measurement vectors are sent to the calculation measurement surplus module." The pre-concentration group is connected to the state-change array and the first-position orientation of Yuliyu, and the state vector for the current phase delay is sent to the calculation and measurement margin module; The state-of-the-enforcement group iifii receives the measurement matrix and current measurement vector of the current calculation from the state vector prediction module, and calculates and updates the state vector module. The module performs the calculation from the measurement margin modul.> = The belief criterion is whether the quotient of the square of the measurement margin divided by the margin difference is large. Ϊ́ϊ = Danί: = The quotient of the square divided by the margin difference is greater than the ratio Hours: Kalman filter does not need to change the system process = Propagate the current navigation solution of the copper to the ίirr, and the system process co-variance is sent to the box test. Change, the current covariance from the module meter error is calculated by the covariance calculation module. The optimized gain module receives from the covariance calculation module ^ 5 桓 π optimized gain. The result is sent to the covariance update module and more ^^: = The covariant update module updates the estimation error covariance and sends it to the update state vector module to receive the optimal gain and 48 593981 from the calculation and optimization gain module. State vector module The calculation of the state is usually estimated, including the position, speed, and attitude errors, and sent to the GPS error compensation module and the position, speed, and attitude modules. 24. As described in item 12 of the scope of patent application A small integrated Gps / IMU system, in which the error estimate H is composed of Kalman filter ϋ, Kalman test material is composed of the following parts ... a GPS error compensation module, collects GPS processing data from ⑽ microprocessor, the data It is alternately corrected with the differential GPS data, and the position and velocity correction values from the updated state vector module are used for GPS error compensation; the solid-state pre-processing module receives the raw data corrected from the GPS error compensation module and The position, velocity, and attitude of the module are recommended. The preprocessing module performs state transformations. Array 3 ί ί ί ΐ ΐ is sent to the state vector prediction module with the previous state vector. The transformation matrix to 1 is also sent to the covariant propagation matrix. The preprocessing module calculates the measurement matrix and the measurement vector before t according to the calculation_quantity matrix and the measurement model. Among them, the "scalar quantity prediction module receives the state transformation matrix and the previous shape from the preprocessing module to perform the current phase delay state prediction, and the vector is sent to the calculation and measurement margin module; Sad, the module receives the predicted current state from the state vector prediction module, and the current state of the current measurement vector is subtracted from the current measurement vector and the pre-measurement. The remaining margin, measurement margin, and update state vector module; ^ m Gua Shun group margin measurement module performs measurement identification from the calculation measurement margin module 'understand the basic measurement margin and miscellaneous large amount J The new covariance of the system process and rejects the equivalent amount. When the quotient of the adjustment of the measurement margin is less than the given value, Karl Weiboko needs to change the system process | 49 to get the navigation solution before #, the secret process agreement. The variable is sent to the covariant, the contact module, the self-remaining monitoring module, and the field co-variant. The current covariant of the ## estimation error is sent to the calculation optimization gain_Calculation excellent gain module receives the observation calculation module · Calculate the current error = to optimize the gain to calculate the difference The covariance update module updates the estimation error covariance and sends it to covariance i to receive the optimized gain from the Gain Gain module and measure the measured value to update the state vector. Module calculation state two: two: 'Dagger position, speed, and attitude errors' and send them to the GPS decision compensation team and position, speed, and attitude modules. = · The micro-integrated GpS / IMU system as described in item 19 of the patent σ application scope, where the error estimate $ is composed of Kalman filter ϋ, and the card_man filter is composed of the following:-a GPS error compensation module The GPS data collected from the GPS microprocessor's edge data is alternately corrected with differential GPS data, and the position and velocity correction values from the updated state vector module are used to compensate for GPS errors; The group 'receives the raw data corrected from the GPS error compensation module and the leg solutions from the position, velocity, and attitude modules. The preprocessing f matrix calculates the ΐ knot, and the front-state vector is sent to the state vector,- In addition, the singularity 1 transformation matrix of the difference calculation is also sent to the covariant propagation matrix. The pre-processing module calculates the measurement matrix and #forward measurement direction, distance, distance measurement matrix, and difference calculation according to the calculated measurement matrix and measurement model. The current measurement vector is sent to the calculation and measurement margin module; where the '' 〃 'state vector prediction module receives the state transformation matrix from the preprocessing module and the previous, smart quantity' ^ for the state of the current phase delay Measuring, wherein the predicted current state vector is measured to calculate the remaining modules; 50,593,981 state forward margin calculation module measured by measuring the current from 1 to 1, wherein the count:; = measuring wheel by 協t料的估計誤差的#前協變被送到計算優化增益 μ /异優化增减組接絲自協變計算模組的估計誤差的當前 以計算優化增益,該結果被送職變更新模組和更新狀態 組’賴更新餘更新估計誤差賴,並將其送到協變傳The pre-covariance of the estimated error of the co-variable material is sent to the calculation of the optimization gain μ / different optimization increase / decrease group wire auto-covariation calculation module's current estimation error to calculate the optimization gain, and the result is sent to the job change update module. Group and update status group 'Lai update update error update Lai and send it to covariant transmission 更新狀態向量模組接絲自計算優化增雜_優化增益和 來1計算測量餘量模組的測量餘量,更新狀態向量模組計算狀熊 ,量的當前估計,包括位置、速度和姿態誤差,並將之送到Gpg 誤差補償模組和位置、速度和姿態模組者。 26·、如專利申請範圍第2〇項所述之微小整合的GPS/IMU系統,其中 誤差估計器由卡爾曼濾波器構成,卡爾曼濾波器由以下部分構i: 一個GPS誤差補償模組,搜集來自GPS微處理器的(^處理數 據’該數據被用差動GPS數據交替地校正,和來自更新狀態向量模 51 593981 組的位置和速度校正值,以進行GPS誤差補償; 一個預處理模組,接收來自GPS誤差補償模組校正的原始數 和來自位,、速度和姿態模組的INS解,該預處理模組進行^變 矩陣的計算,該結果與前一狀態向量一起被送到狀態向量預測模、 組,計算^狀態向量變換矩陣也被送到協變傳播矩g,預處理模 組根據計算的測量矩陣和測量模型計算測量矩陣和當前測量向、 量,測量矩陣和計算的當前測量向量被送到計算測量餘量H. 其中 w , 狀悲向置預測模組接收來自預處理模組的態變換矩陣和一Update the state vector module to calculate and increase the noise and optimize the gain_optimize the gain and calculate the measurement margin of the measurement margin module. Update the state vector module to calculate the current state of the bear, including the current estimation of the amount, including position, velocity and attitude errors. And send it to the Gpg error compensation module and the position, velocity and attitude modules. 26. The micro-integrated GPS / IMU system as described in item 20 of the patent application scope, wherein the error estimator is composed of a Kalman filter, and the Kalman filter is composed of the following components: a GPS error compensation module, Collect the data from the GPS microprocessor (^ Processing data ') This data is alternately corrected with differential GPS data, and the position and velocity correction values from the updated state vector module 51 593981 group for GPS error compensation; a pre-processing module Group, receiving the original number corrected from the GPS error compensation module and the INS solution from the bit, speed, and attitude modules. The preprocessing module calculates the ^ variation matrix, and the result is sent to the previous state vector. The state vector prediction module and group are calculated. The state vector transformation matrix is also sent to the covariant propagation moment g. The preprocessing module calculates the measurement matrix and the current measurement direction, quantity, measurement matrix, and calculation based on the calculated measurement matrix and measurement model. The current measurement vector is sent to the calculation measurement margin H. Among them, the state prediction module receives a state transformation matrix and a 個,態向量,以進行當前相延遲的態預測,其中預測的當前狀離 向罝被送到計算測量餘量模組; 〜 ㈣二十if ίί量f且接收來自狀態向量預測模組的 ^悲向夏和來自預處理模組的測量矩陣和當前測量向量,1 异測罝餘量模組通過從當前測量向量中減去 ;^二 餘量測量模、組進行對來自計算測量 =畜識;準則是測量餘量的平方除以餘量差二 旦ίί ΐ平方除以餘量差的商大於給定的閾值日i,, The state vector to perform the current phase delay state prediction, where the predicted current state 罝 is sent to the calculation and measurement margin module; ~ ㈣ twenty if ί the amount f and receives ^ from the state vector prediction module ^ Bei Xiangxia and the measurement matrix and current measurement vector from the pre-processing module, 1 The heterogeneous measurement and margin module subtracts from the current measurement vector; ^ Two residual measurement modules and groups ; The criterion is that the square of the measurement margin divided by the margin difference is 2 ί ΐ The quotient of the square divided by the margin difference is greater than a given threshold day i, 差的商小於給定的閾值時,士猻@ 矛、乂餘里 前協變利用當前測量,得到一 2波f不,改變系統過程的當 協變傳播模組; 仵到田别的鈿行解;糸統過程協變被送到 預處自f 模組的系統過程協變’來自 模組; 拉物錢當前觀被送断算優化增益 汁开優化增盈核組接收來自協變計算模組的估計誤差的當前 52 593981 協變,以計算優化增益,該結果被送到協變更新模組和更新狀態 向量模組’協變更新模組更新估計誤差協變,並將其送到協變傳 播模組; X 更新狀態向量模組接收來自計算優化增益模組的優化增益和 來自計算測量餘量模組的測量餘量,更新狀態向量模組計算狀態 向量的當前估計,包括位置、速度和姿態誤差,並將之送到Gpg 誤差補償模組和位置、速度和姿態模組者。 27·如專利申請範圍第21項所述之微小整合的GPS/IMU系統,其中 誤差估計器由卡爾曼濾波器構成,卡爾曼濾波器由以下部分構成·· 一個GPS誤差補償模組,搜集來自GPS微處理器的GPS處理數 據,該數據被用差動GPS數據交替地校正,和來自更新狀態向量模 傷 組的位置和速度校正值,以進行GPS誤差補償; 一個預處理模組,接收來自GPS誤差補償模组校正的原始數據 和來自位置、速度和姿態模組的INS解,該預處理模組進行態變換 矩陣的計异,該結果與前一狀態向量一起被送到狀態向量預測模 組,計异的狀態向量變換矩陣也被送到協變傳播矩陣,預處理模 組根據計算的測量矩陣和測量模型計算測量矩陣和當前測量向 量,測量矩陣和計算的當前測量向量被送到計算測量餘量模組; 其中 ~ 狀態向量預測模組接收來自預處理模組的態變換矩陣和前一 個狀悲向量,以進行當前相延遲的態預測,其中預測的當前狀態 鲁 向量被送到計算測量餘量模組; ’ 計^測量餘量模組接收來自狀態向量預測模組的預測的當前 狀態向量和來自預處理模組的測量矩陣和當前測量向量,其中計 异測量餘量模纟且通過從當前測量向量中減去測量矩陣和預測的當 前狀態向量的乘積計算測量餘量,測量餘量被送到餘量監測模組 以及更新狀態向量模組; 餘ϊ測量模組進行對來自計算測量餘量模組的測量餘量進行 識別’識別準則是測量餘量的平方除以餘量差的商是否大於給定 53 旦餘篁的平方除以餘量差的商大於給定的間值時, 卡爾曼濾、波器的發散,餘量監測模組選擇性的計瞀 協變“的航行解,系統過程協變被送到 靜t傳她組搜集來自餘量監視模組的纽過程協變,來自 變換矩陣,和估計誤差的前一個協變以估3 模=祕心計算的估計誤麵變被送到計算優化^ Μ計异5增賴組接收來自協變計算模組·計誤差的者前 ^ 化增益’該結果被送到協變 ^ 協變更新模組更新估計誤差協變,並將其送 ^狀態向量池接絲自計算優化增益模組的優化 增益和 量模組的測量餘量,更新狀態向量模組計算狀能 ii 十,包括位置、速度和姿態誤差,並將之送到GP$ I差補>[員模組和位置、速度和姿態模組者。 其磁 11第ig項所述之微小整合的gps/imu系統’ 向量 裝載來自_記憶體的地磁場探·的定標參數以構成定標 ^收來自ASIC芯片上的地磁場探測器介 表不的三軸數位地磁場信號,以形成測量向量;α用體认 收來ΐί態和取向模組或位置、速度和姿態模組的俯仰和 補量!^ 坐標到水平坐標的變換矩陣’利用定標向量 54 到誤tig標表示的測量向量計算磁取向數據,該結果輸出 ^9·向ΐϋπ細第11項所述之則、整合的_嗎統,其磁 向量裝載來自閃蝶記憶體的地磁場探測器的定標參數以構成定標 ,收來自ASIC心片上的地磁場探測器介面電路 表不的三滅位地磁場錢,以形綱量向量; 心 f收來自姿態和取向模組或位置、速度和姿態模組的俯仰和 ^動角’以形成從體坐標到水平坐標的變換矩陣;When the difference quotient is less than the given threshold, Shi 狲 @lance, Yu Yuli Covariant uses the current measurement to get a 2-wave f, which changes the system process when the covariant propagation module; Solution; systemic process covariance is sent to the system process covariance pre-processed from the f module from the module; the current view of the pull money is sent to the calculation optimization gain juice to optimize the profit increase kernel group to receive from the covariance calculation module The current 52 593981 covariance of the group's estimated error is used to calculate the optimal gain. The result is sent to the covariance update module and the update state vector module. The covariance update module updates the estimated error covariance and sends it to the covariance. Variable propagation module; X updates the state vector module to receive the optimized gain from the calculation optimization gain module and the measurement margin from the calculation measurement margin module, and updates the current estimate of the state vector calculated by the state vector module, including position and velocity And attitude errors, and send them to the Gpg error compensation module and the position, velocity, and attitude modules. 27. The micro-integrated GPS / IMU system described in item 21 of the patent application scope, in which the error estimator is composed of a Kalman filter, and the Kalman filter is composed of the following parts: A GPS error compensation module, collected from The GPS processing data of the GPS microprocessor is alternately corrected with differential GPS data, and the position and velocity correction values from the updated state vector mold injury group are used for GPS error compensation; a pre-processing module receives data from The raw data corrected by the GPS error compensation module and the INS solution from the position, velocity, and attitude modules. The preprocessing module calculates the difference of the state transformation matrix. The result is sent to the state vector prediction module together with the previous state vector. Group, the different state vector transformation matrix is also sent to the covariant propagation matrix, the preprocessing module calculates the measurement matrix and the current measurement vector according to the calculated measurement matrix and the measurement model, and the measurement matrix and the calculated current measurement vector are sent to the calculation Measurement margin module; where ~ the state vector prediction module receives the state transformation matrix from the preprocessing module and the previous state To perform the state prediction of the current phase delay, in which the predicted current state vector is sent to the calculation measurement margin module; the 'calculation measurement margin module receives the predicted current state vector from the state vector prediction module and the The measurement matrix and the current measurement vector of the preprocessing module, wherein the difference measurement margin is modulated and the measurement margin is calculated by subtracting the product of the measurement matrix and the predicted current state vector from the current measurement vector. The measurement margin is sent to Margin monitoring module and update status vector module; Margin measurement module identifies the measurement margin from the calculation measurement margin module. The identification criterion is whether the quotient of the square of the measurement margin divided by the margin difference is greater than Given that the quotient of the square of the 53-degree residuals divided by the margin difference is greater than the given interval, the Kalman filter, the divergence of the wave filter, and the margin monitoring module selectively calculate the covariant "navigation solution. System The process covariance was sent to Jing Tuan and her group collected the new process covariance from the margin monitoring module, the transformation matrix, and the previous covariance of the estimated error to estimate 3 modes = secret calculation The estimated error change is sent to the calculation optimization ^ Calculates the 5 increase group before receiving the error from the covariance calculation module. Calculate the gain. The result is sent to the covariance ^ covariation update module to update the estimation error. Covariate and send it to the state vector pool. Calculate the optimization gain of the optimization gain module and the measurement margin of the quantity module. Update the state vector module to calculate the state energy ii. Include position, velocity, and attitude errors. And send it to the GP $ I difference compensation> [personnel module and position, speed and attitude module. Its micro integrated gps / imu system described in item 11 of the magnetic 11 'vector load from _memory The calibration parameters of the geomagnetic field detection and calibration are used to form a calibration ^ Receive the three-axis digital geomagnetic field signals from the geomagnetic field detector on the ASIC chip to form a measurement vector; α Use the body to recognize the states and orientation modes Pitch and complement of the group or position, velocity and attitude module! ^ Coordinate to horizontal coordinate transformation matrix 'uses the calibration vector 54 to the measurement vector represented by the wrong tig scale to calculate the magnetic orientation data, and the result is output ^ 9 · 向 ΐϋπ Detailed in item 11 The combined magnetic vector is loaded with the calibration parameters of the geomagnetic field detector from the Morpho Butterfly memory to form a calibration. The three-displacement geomagnetic field shown in the circuit of the geomagnetic field detector interface on the ASIC chip is collected. , In the form of a dimension vector; the heart f receives the pitch and motion angles from the attitude and orientation module or the position, velocity and attitude module to form a transformation matrix from body coordinates to horizontal coordinates; 利用定標向量補償測量向量; 旦.的測量向量從體坐標變換到水平坐標,以 里,该向量用水平坐標表示;及 到誤His標表示的測量向量計算磁取向數據,該結果輸出 範圍第η項所述之微小整合的GPS/IMU系統嗔 向量裝載來自閃爍記憶體的地磁場探測器的定標參數以構成定標The calibration vector is used to compensate the measurement vector; once the measurement vector is transformed from the body coordinate to the horizontal coordinate, the vector is represented by the horizontal coordinate; and the magnetic orientation data is calculated from the measurement vector represented by the incorrect His standard. The output range of the result is The micro-integrated GPS / IMU system described in item η Vector loads the calibration parameters of the geomagnetic field detector from the flash memory to form the calibration ,收來自ASIC芯片上的地磁場探測器介面電路的、用體 又不的二軸數位地磁場信號,以形成測量向量; 、、⑼ΐ收來自錢和取向模組或位置、速度和姿祕組的俯仰和 ^償測量2成從體坐標到水平坐標的變換矩陣,綱定標向量 將補償的測量向量從體坐標變換到水平 1,該向量用水平坐標表示;及 〗里门 ,用水平坐標表示的測量向量計算磁取向數該結 到誤差估計器者。 询出 31·如專利申請範圍第25項所述之微小整合的GPS/IMIL系統,其磁 55 593981 取向計算模組·· 向旦裝載來自閃爍記憶體的地磁場探測器的定標參數以構成定標 接收來自ASIC芯片上的地磁場探測器介面電路的、用 表示的三軸數位地磁場信號,以形成測量向量; 知 f收來自錢和取向模喊健、速度和聽模組的俯仰和 滾動角,以形成從體坐標到水平坐標的變換矩陣; 利用定標向量補償測量向量; 將補償的測量向量從體坐標變換到水平坐標,以形 量,該向量用水平坐標表示;及 、里阿 到誤ΪΞΪΪΪ標表示的測量向量計算磁取向數據,該結果輪出 32.如專利申請範圍第26項所述之微小整合的GPS/IMU系統,其磁 取向計算模組: … /、 旦裝載來自閃爍記憶體的地磁場探測器的定標參數以構成定標 向量; $ 一接收來自ASIC芯片上的地磁場探測器介面電路的、用體坐標 表示的三軸數位地磁場信號,以形成測量向量; 不 接收來自姿態和取向模組或位置、速度和姿態模組的俯仰和 滾動角,以形成從體坐標到水平坐標的變換矩陣; 利用定標向量補償測量向量; 鲁 曰將補彳員的測1向量從體坐標變換到水平坐標,以形成測量向 量;該向量用水平坐標表示;及 利用水平坐標表示的測量向量計算磁取向數據,該結 到誤差估計器者。 33·如專利申請範圍第27項所述之微小整合的Gps/IMU系統,其磁 取向計算模組: ^ 裝載來自閃爍記憶體的地磁場探測器的定標參數以構成定护 向量; $ 56 一接^來自ASIC芯片上的地磁場探測器介面電路的、用體坐 表示的三軸數位地磁場信號,以形成測量向量; 不 、接收來自姿態和取向模組或位置、速度和姿態模組的俯仰 滾動角’以形成從體坐標到水平坐標的變換矩陣; 口 利用定標向量補償測量向量; 將補償的測量向量從體坐標變換到水平坐標,以形成 量;該向制水平坐標表示;及 利用水平坐標表示的測量向量計算磁取向數據,該結 到誤差估計器者。 r則出 4·如f利申請範圍第1項、或第2項、或第3項、或第4項、或第1〇 ^、或第13^、或第16項、或第19項、或第22項、或第25項、或 弟28項、,或第31項所述之微小整合的Gps/IMU系統,進一步由保 速率產生器、加速度產生器和角增量和速度增量產生器的預 先確定的工作溫度的熱控制方法組成者。 35·如專利申請範圍第34項所述之微小整合的GPS/IMU系統,苴 控财法由_應產生器設備、加熱設備和誠理器組成、, 生溫度信號的熱錢m設備與肖速率產生師加速度 保持角速率產生器、加速度產生钟角增量和速 广、曰里產生态的預先設定溫度,該溫度是在150F和185F之間確定 ,:皿由應產生為设備產生的溫度信號輸入到熱處理器中,利 子i標f子、和角速率產生器和加速度產生器的 備的計算溫度控制命令,利用該命令產生加熱設 ===提供適當的熱量保持在微慣性測量組件中的預 L'ttT二請第1項、或第2項、或第3項、或第4項、或第10 ======= 57 593981 轴和Z軸的電加速度信號號是直接正比於載體的加速度的類比加 速度電壓信號;載體的體坐標中地磁場向量測量的X、Y、Z軸電 信號是類比電壓信號者。 37·如專利申請範圍第34項所述之微小整合的GPS/IMU系統,其中 角f生器的X軸、γ軸和z轴的電角速率信號是直接正比於微慣性 測里組件載體的角速率的類比角速率電壓信號;加速度產生器的X 軸、Y軸和Z軸的電加速度信號號是直接正比於載體的加速度的類 比加速度電壓信號;載體的體坐標中地磁場向量測量的χ、γ、z 軸電信號是類比電壓信號者。Receives two-axis digital geomagnetic field signals from the geomagnetic field detector interface circuit on the ASIC chip to form a measurement vector. Receives the money and orientation modules or the position, velocity, and posture groups. Elevation and compensation measurements are transformed into a transformation matrix from body coordinates to horizontal coordinates, and the scaling vector transforms the compensated measurement vector from body coordinates to level 1. This vector is represented by horizontal coordinates; and The measured vector represents the number of magnetic orientations that are bound to the error estimator. Inquiry 31. The micro-integrated GPS / IMIL system as described in item 25 of the patent application scope, its magnetic 55 593981 orientation calculation module ... Load the calibration parameters of the geomagnetic field detector from the flash memory to constitute The calibration receives the three-axis digital geomagnetic field signal from the geomagnetic field detector interface circuit on the ASIC chip to form a measurement vector. The information f is received from the money and orientation modes, such as the health, speed, and pitch of the listening module. Roll the angle to form a transformation matrix from body coordinates to horizontal coordinates; use the calibration vector to compensate the measurement vector; transform the compensated measurement vector from the body coordinate to the horizontal coordinate, and use the shape coordinate to represent the vector in horizontal coordinates; and Calculate the magnetic orientation data according to the measurement vector indicated by the wrong target. The result is 32. The micro-integrated GPS / IMU system described in item 26 of the patent application scope, its magnetic orientation calculation module:… / 、 Once loaded The calibration parameters of the geomagnetic field detector from the flash memory constitute a calibration vector; $ a receiving the geomagnetic field detector interface circuit from the ASIC chip, Three-axis digital geomagnetic field signals represented by body coordinates to form measurement vectors; do not receive pitch and roll angles from attitude and orientation modules or position, velocity, and attitude modules to form a transformation matrix from body coordinates to horizontal coordinates; The calibration vector is used to compensate the measurement vector; Lu Yue transforms the assistant's measurement 1 vector from body coordinates to horizontal coordinates to form a measurement vector; the vector is expressed in horizontal coordinates; and the measurement vector expressed in horizontal coordinates is used to calculate magnetic orientation data To the error estimator. 33. The micro-integrated Gps / IMU system described in item 27 of the patent application scope, whose magnetic orientation calculation module: ^ Loads the calibration parameters of the geomagnetic field detector from the flash memory to form the protection vector; $ 56 A three-axis digital geomagnetic field signal represented by a body sitting from the geomagnetic field detector interface circuit on the ASIC chip is connected to form a measurement vector; no, receive from the attitude and orientation module or position, velocity, and attitude module Pitch roll angle 'to form a transformation matrix from body coordinates to horizontal coordinates; use the calibration vector to compensate the measurement vector; transform the compensated measurement vector from the body coordinate to the horizontal coordinate to form the amount; the horizontal coordinate representation of the direction; And the magnetic orientation data is calculated using the measurement vector represented by the horizontal coordinate, which is to the error estimator. r is out of 4. If the scope of application is 1 or 2, or 3, or 4, or 1 ^, or 13 ^, or 16, or 19, Or the slightly integrated Gps / IMU system described in item 22, or item 25, or item 28, or item 31, further generated by a rate-keeping generator, acceleration generator, and angular and velocity increments Composer of a thermal control method for a predetermined operating temperature of the device. 35. The micro-integrated GPS / IMU system as described in item 34 of the patent application scope. The financial control method is composed of a generator device, a heating device, and a thermostat. The generator maintains the pre-set temperature of the angular rate generator for acceleration, the increase of the bell angle for acceleration, and the speed and wide-range state. The temperature is determined between 150F and 185F. The temperature of the dish should be generated for the device. The signal is input into the thermal processor, and the calculated temperature control command of the sharp index i, the angular rate generator and the acceleration generator are used to generate a heating device === to provide appropriate heat to maintain in the micro inertial measurement module. The pre-L'ttT of the second, please the first, or the second, or the third, or the fourth, or the 10th ======= 57 593981 axis and Z axis electrical acceleration signal number is directly proportional The analog acceleration voltage signal due to the acceleration of the carrier; the X, Y, and Z axis electrical signals measured by the geomagnetic field vector in the body coordinates of the carrier are those of the analog voltage signal. 37. The micro-integrated GPS / IMU system as described in item 34 of the patent application scope, wherein the electrical angular rate signals of the X-axis, γ-axis, and z-axis of the angle generator are directly proportional to the component carrier of the micro inertial measurement Analog angular rate voltage signal of angular rate; X, Y, and Z axis acceleration signals of the acceleration generator are analog acceleration voltage signals that are directly proportional to the acceleration of the carrier; χ of the geomagnetic field vector measured in the body coordinates of the carrier , Γ, z-axis electrical signals are analog voltage signals. 38·、如專利申請範圍第36項所述之微小整合的Gps/IMU系統,其中 角增量和速度增量產生器由以下部分構成:38. The micro-integrated Gps / IMU system as described in item 36 of the patent application scope, wherein the angular increment and velocity increment generator is composed of the following parts: 角度積分為和加速度積分器分別用來在預定的時間段内積分 ^、Υ、Z軸角速率類比電壓信號和X、Y、Z軸加速度類比電壓信 號以便積累X、Y、Z軸角速率類比電壓信號和χ、γ、z軸加速 度類比電壓“號,形成未補償的原始角增量和速度增量,其中, 该積分操作是為了消除在X、Y、Z軸角速率類比電壓信號和χ、γ、 Ζ軸加速度類比電難號中的非直接正比於載體角速率和加速度 的巧,提高信號噪聲比,並消除在該χ、γ、ζ軸角速率類 比電廢、γ、ζ軸加速度類比電壓信號中的高頻噪聲; 復位器產生角度復位電壓脈衝和速度復位電壓脈衝,作為角 度和速度,刻度,分別輸出給該角度積分器和加速度積分器,· ★ 5增里和速度增量測量器使用該角度復位電壓脈衝和速度復 ,電,衝,來測量該積累的χ、γ、ζ軸角速率類比電壓信號和X、 I、Ζ軸加速度類比賴信號,獲得角增量計數值和速度增量計數 值,相應地作為角增量和速度增量的數位量者。 第1項、或第2項、或第3項所述之微小整合的 =s_线,其巾微小整合的GPS/IMUt_絲在盒子里的 批二ί電,板、第二塊電路板、第三塊電路板、GPSS片组板、及 控制電路板組成;第-塊電路板與第三塊電路板連接,以產生輸 58 593981 出到控制電路板的X軸角感應信號和γ軸加速度感應信號,·第二 電路板與弟二塊電路板連接’以產生輸出到控制電路板的Υ轴角残 應#號和X轴加速度感應信號;第三塊電路板與控制電路板連接, ,產生輸出到控制電路板的Ζ軸角感應信號和ζ軸加速度感應信 號,GPS芯片組板與控制電路板相連,為控制電路板提供測 數據;控制電路板通過第三塊電路板與第_塊電路板/第二塊電 路板、及GPS芯片組板相連,以分別處理來自第一、第二和第三塊 ,的X軸Y軸和Z軸角感應#號和X軸、γ軸和z軸的加速度感廡/ 信號.去。 、心The angle integral and acceleration integrator are respectively used to integrate the ^, Υ, and Z-axis angular rate analog voltage signals and the X, Y, and Z-axis acceleration analog voltage signals within a predetermined period of time to accumulate the X, Y, and Z-axis angular rate analogs. The voltage signal and the χ, γ, and z-axis acceleration analog voltages form the uncompensated original angular increment and velocity increment, where the integration operation is to eliminate the X, Y, and Z-axis angular velocity analog voltage signals and χ , Γ, ζ axis acceleration analog electric distress numbers are not directly proportional to the angular velocity and acceleration of the carrier, improve the signal-to-noise ratio, and eliminate electrical waste, γ, ζ axis acceleration in the χ, γ, and ζ axis angular rate analogs. High-frequency noise in analog voltage signals; The resetter generates angle reset voltage pulses and speed reset voltage pulses, which are output to the angle integrator and acceleration integrator as angle, speed, and scale, respectively. The measuring device uses the angle reset voltage pulse and velocity complex, electricity, and impulse to measure the accumulated χ, γ, and ζ axis angular rate analog voltage signals and X, I, and Z axis acceleration analog signals. , To obtain the angular increment and velocity increment count values, which are correspondingly used as the digital quantities of the angular increment and the velocity increment. The minor integration of the item 1 or 2 or item 3 = s _ Cable, which is a small integrated GPS / IMUt_ wire in the box of the second battery, board, second circuit board, third circuit board, GPSS chip group board, and control circuit board; the first-block The circuit board is connected to the third circuit board to generate the X-axis angle sensing signal and the γ-axis acceleration sensing signal which are output to the control circuit board. 59.981 The second circuit board is connected to the second circuit board to generate output to The Z axis angle residual response # number of the control circuit board and the X-axis acceleration sensing signal; the third circuit board is connected to the control circuit board, and generates the Z-axis angle sensing signal and the ζ-axis acceleration sensing signal output to the control circuit board, GPS The chipset board is connected to the control circuit board to provide measurement data for the control circuit board; the control circuit board is connected to the _th circuit board / the second circuit board and the GPS chipset board through a third circuit board to separately process data from the First, second and third blocks, X axis Y axis And Z-axis angle sensing ## and X-axis, γ-axis and z-axis acceleration 庑 / signals. Go. 如專利申請範圍第4項、或第1〇項、或第13項、或第Μ項、或 巧項、或第22項、或第25項、或第28項、或第31項所述之微小 整合的⑽/IMU系統,其中微小整合的Gps/IMU系統由安裝在盒 子里的第塊電路板、第二塊電路板、第三塊電路板、芯片组 ,、及控制電路板組成;第—塊電路板與?三塊板連接,以 ^生^到控制電路板的X軸角感應錢和_加速度感應信 ^第一塊電路板鮮三塊電路板連接,以產生輸出到控制電路 ,的Y軸角感應信號和X軸加速度感應信號;第三塊板與控制 以產生輸出到控制電路板的Z軸角感應信號和2轴加 供二、、目了 ^GPS芯片、组板與控制電路板相連,為控制電路板提 i 數據;控制電路板通過第三塊電路板與第一塊電路板、 弟:塊電路板、及GPS芯片組板相連,以分別處理來自第一、第二 ㈣錢顧和你、轴的加 Ϊ利t請範圍第4〇項所述之微小整合的GPS/IMU系統,其中 上,琢探測器、八观芯片、電源模組被提供在電路板 上,及GPS芯片組提供在⑽芯片組上者。 範圍第41項所述之微小整合’S/IMU^,其中 的角產生裔由以下部分構成·· 連接在第一電路板的χ轴振動型角速率檢測單元和第一前 59 593981 '*ΠΟΓ , -連接在第二電路板的γ軸振動型角速率檢測單元 路; 示一 連接在第二電路板的ζ軸振動型角速率檢測單元和第 , 端電路; 一驾 端電路; 端電路; 板、;==電;接==:電路板、第二電路 在r在 -,盪器絲為X軸振動型角速率檢測單心 =供=,率檢測單元、㈣ 電路;s動=制ί # 4的3角所⑽小幽GP_ _,其中 嫩卿f路板的角增量 和速姻1_的角增量 量和第三輪上綱腸板的角增 4的4第巧所述之微小整合的gps/_、統,其中 r “探 率於=轉阻ί大器電路,連接於相應的x、γ、z軸振動型角速 ιοοΙ^^Γ絲用以把振動運動信號的阻抗,從很高的水平,大於 1〇〇兆_,轉換為低阻抗,小於觸歐姆,以便獲得兩路振動位 60 593981 唬,其為表示慣性質量塊和錨梳之間位移的交流電壓信號, 這兩路振動位移信號被輸入給振動控制電路; 二個面通濾波器電路,分別連接於相應的X、Y、Z轴振動型 ^率檢,單it,用以去除振動位移差分信號中殘餘的振動驅動 #唬和噪聲以便形成過濾後的振動位移差分信號給角信號回路電 路者。As described in item 4, or item 10, or item 13, or item M, or item 22, or item 25, or item 28, or item 31 of the scope of patent application Micro integrated ⑽ / IMU system, in which the micro integrated Gps / IMU system consists of the first circuit board, the second circuit board, the third circuit board, the chipset, and the control circuit board installed in the box; — A circuit board with? The three boards are connected to generate X-axis angle sensing signals to the control circuit board and _ acceleration sensing signals. The first circuit board is connected to the three circuit boards to generate Y-axis angle sensing signals that are output to the control circuit. And X-axis acceleration sensing signals; the third board is controlled to generate the Z-axis angle sensing signals output to the control circuit board, and the two axes are used for the second and second GPS chips, and the group board is connected to the control circuit board for control The circuit board provides i data; the control circuit board is connected to the first circuit board, the second circuit board, and the GPS chipset board through a third circuit board, so as to process the data from the first, the second, the second, the second, and the second. The axis is added to the GPS / IMU system in the micro-integrated range described in item 40. The upper detector, the eight-view chip, the power module are provided on the circuit board, and the GPS chipset is provided in the者 Chipset. The small integrated 'S / IMU ^ as described in the item 41 of the range, wherein the angle generation is composed of the following parts: · The χ-axis vibration type angular rate detection unit connected to the first circuit board and the first front 59 593981' * ΠΟΓ, A γ-axis vibration type angular rate detection unit connected to the second circuit board; a ζ-axis vibration type angular rate detection unit connected to the second circuit board and a first terminal circuit; a driver terminal circuit; a terminal circuit; a board ,; == 电; 接 ==: circuit board, second circuit at r at-, oscillator wire is X-axis vibration type angular rate detection single core = supply =, rate detection unit, ㈣ circuit; s 动 = 制 ί # 4 的 3 角 所 ⑽ 小 幽 GP_ _, where the angle increase of Nenqing f road plate and the angle increase of speed marriage 1_ and the angle of the upper round intestinal plate in the third round increase 4 4 It is a small integrated gps / _, system, where r "probability in = transimpedance, large circuit, connected to the corresponding x, γ, z-axis vibration-type angular velocity ιοοΙ ^^ Γ wire to use the vibration motion signal The impedance, from a very high level, greater than 100 mega_, is converted to a low impedance, less than the touch ohm, in order to obtain two vibration levels 60 593981 , Which is an AC voltage signal indicating the displacement between the inertial mass and the anchor comb. These two vibration displacement signals are input to the vibration control circuit; two surface-pass filter circuits are connected to the corresponding X, Y, and Z axes, respectively. Vibration type detection, single it, is used to remove residual vibration drive noise and noise in the vibration displacement differential signal so as to form a filtered vibration displacement differential signal to the angle signal loop circuit. 45.如專利申請範圍第43項所述之微小整合的Gps/iMu系統,其 :,所述x、γ、z軸振動型角速率檢測單元都是振動型哭件/包 ϋ-套振動的慣性質量塊,包括斯音又及相應的支擇結構 =㈣ΐϊ容性信號讀出11件’並且綱克里奥頭效應檢測 載,的角速率’每一X、Υ、ζ軸振動型角速率檢測單元接收來自 ^應的振動控制電路的振動驅動信號,以便保持慣性質量塊的振 動’以及來自振動器的載波參考振盪信號,包含 號ώ而且,X、Υ、Ζ軸振動型角速率檢測單元分^用 ί i里檢測載體的χ、γ、2軸角速率’輸出角速率引起的 ιίί出以侧在載波參考振盪信號上的角速率位移信號’該信 ,輸出給¥-、二、三前端電路的阻抗轉換放Ail電路, 性質,塊的振動信號’包含獅位健號,該錄輸丨給: 二、三前端電路的高通濾波器電路者。 、°45. The micro-integrated Gps / iMu system according to item 43 of the scope of patent application, wherein: the x-, γ-, and z-axis vibration-type angular rate detection units are all vibration-type crying pieces / bag-sleeve vibrations Inertial mass block, including Siyin and corresponding optional structure = ㈣ΐϊ Capacitive signal reads 11 pieces ', and angular rate of detection of Gang Creo head effect,' Angular rate of each X, Υ, ζ axis vibration type The detection unit receives a vibration drive signal from a vibration control circuit in order to maintain the vibration of the inertial mass and a carrier reference oscillation signal from the vibrator, and includes X, Y, and Z axis vibration type angular rate detection units. Detect the angular velocity of the carrier by using the χ, γ, and 2 axes of the carrier to output the angular velocity caused by the output angular rate, and output the signal to the angular velocity displacement signal on the carrier reference oscillation signal. The impedance conversion of the front-end circuit puts the Ail circuit in nature. The vibration signal of the block includes the lion number, and this record is input to: Two or three high-pass filter circuits of the front-end circuit. , ° 46.如專利申請範圍第43項所述之微小整合的GPS細 上述三個振動控制電路分別接收來自χ、γ、2軸 fe ‘、 測p的慣性質量塊的振動位移信號,以及來自“m: 取信號,產生已知她的慣性質量塊的位移的數 、1 : 振動控制電路包含: 纖乜唬,母-個 一個放大器和加法器電路,連接於第一、二、三 阻抗轉換放大器電路,把兩路振動位移信號放大十仵”埕 y敏度’通過把中心織的信號與旁邊顺的信^ ’ 3 S兩路振動位移信號,以形成振動位移差動信號; 、、、口 -個南猶波器電路’連接於放大||和加法器電路,以便從 61 593981 振動位移差動信號中除去殘餘振動驅動信號和噪聲,產生過濾後 的振動位移差動信號; —一個解調器電路,連接於高通濾波器電路,以從振盪器接收 電容檢出激勵信號作為相位參考信號,從高通濾波器接收濾波后 ,,動位移差動信號,並提取過濾後的振動位移差動信號的同相 部分用以產生已知相位的慣性質量塊的位移信號;46. The micro-integrated GPS device described in item 43 of the scope of patent application, the above three vibration control circuits respectively receive vibration displacement signals from χ, γ, 2 axis fe ', inertial mass of p, and "m : Take the signal, generate the number of known displacements of her inertial mass, 1: The vibration control circuit includes: fiber amplifier, female-to-one amplifier and adder circuit, connected to the first, second and third impedance conversion amplifier circuits Amplify the two-way vibration displacement signals by ten 仵 "敏 y sensitivity" by combining the center weaving signal with the side-shunted letter ^ '3 S two-way vibration displacement signals to form a vibration displacement differential signal; ,,,- A South Jewler circuit is connected to the amplifier || and the adder circuit to remove the residual vibration drive signal and noise from the 61 593981 vibration displacement differential signal to generate a filtered vibration displacement differential signal;-a demodulator The circuit is connected to the high-pass filter circuit. The excitation signal detected by the capacitor received from the oscillator is used as the phase reference signal. After receiving the filtering from the high-pass filter, the dynamic displacement differential signal Phase component of the differential signal after the vibration displacement, and the displacement signal extraction filter for generating the inertial mass of a known phase; 一巧,通濾波器’連接於解調器電路,以從輸入的慣性質量 塊位移信號巾除去高頻鱗,軸低頻慣性質量塊位移信號; 进一,類比/數位轉換器,連接於低通濾波器,用以將類比低頻 十貝性質量塊位移信號,轉換為數位化低頻慣性質量塊位移信號, 並輸出給振動處理模組; 、—一個數位類比轉換器,對來自振動處理模組所選的信號幅度 進行處理,以便形成具有正確幅度的振動驅動信號; 一個放大器,基於正確的頻率和幅度的振動驅動信號,為χ、 Υ、ζ軸振動型角速率檢測單元產生和放大振動驅動信號者。 47·、如專利申請範圍第43項所述之微小整合的Gps/IMu^、統,其中 所述振動處理模組近一步包含一個離散快速傅立葉變換 (FastFour^ , FFT)#^, 、、且,一個取大值檢測邏輯模組及一個〇值分析和選擇邏輯模组,以 便找到具有最大Q值的頻率,其中, 、、Coincidentally, the pass filter is connected to the demodulator circuit to remove the high-frequency scale and the low-frequency inertial mass block displacement signal from the input inertial mass block displacement signal. Further, the analog / digital converter is connected to the low-pass A filter for converting an analog low-frequency ten-mass mass block displacement signal into a digital low-frequency inertial mass block displacement signal and outputting it to a vibration processing module; a digital analog converter, The selected signal amplitude is processed to form a vibration drive signal with the correct amplitude; an amplifier generates and amplifies the vibration drive signal for the χ, Υ, and ζ-axis vibration-type angular rate detection units based on the correct frequency and amplitude vibration drive signal By. 47. The micro-integrated Gps / IMu system as described in item 43 of the patent application scope, wherein the vibration processing module further includes a discrete fast Fourier transform (FastFour ^, FFT) # ^,, and A logic module with a large value detection and a logic module with 0 value analysis and selection in order to find the frequency with the maximum Q value, where, ,, 槪傅立葉變換模組絲變換來自振動運動控制電路的 的數位化的低頻慣性質量塊的位移信號,以便形 成輸丨貝性貝里塊位移信號的頻幅上的幅度數據; 巧和幅度數據存儲陣模組,接收幅度和頻譜數據, 一個幅度和頻譜數據陣; 成 Q值分析和歡,麵㈣頻率上進行Q值分析,通 62 593981 過計算幅度和頻帶寬度的比值,選擇頻率和幅度,其中,計算用 的頻帶寬度取每一個最大頻率點最大值的正負二分之一之間者。 48·如專利申請範圍第43項所述之微小整合的gps/IMU系統,其中 所述振動處理模組近一步包含一個鎖相環,用作一個很窄的帶通 濾波器,以排斥所選頻率的噪聲,及產生並鎖定選定頻率的振動 驅動信號者;槪 Fourier transform module wire transforms the digitalized low-frequency inertial mass block displacement signal from the vibration motion control circuit to form the amplitude data in the frequency range of the input Bayi block displacement signal; and the amplitude data storage array Module, receiving amplitude and spectrum data, an array of amplitude and spectrum data; Q-value analysis and analysis, Q-value analysis at face frequency, pass 62 593981 After calculating the ratio of amplitude and frequency bandwidth, select frequency and amplitude, where , The frequency band width used for the calculation shall be one of plus and minus one-half of the maximum value of each maximum frequency point. 48. The micro-integrated gps / IMU system according to item 43 of the scope of patent application, wherein the vibration processing module further includes a phase-locked loop as a very narrow band-pass filter to exclude the selected Noise of frequency, and those who generate and lock the vibration drive signal of the selected frequency; 其中,所述三個角信號回路電路分別接收來自X、γ、Ζ軸振 動型角速率檢測單元的角速率引起的信號,以及來自所述振盪器 的參考拾取信號,將角速率引起的信號變換為角速率信號,第一 電路板、第二電路板、第三電路板的每一個角信號回路電路包含: 一個電壓放大器電路,用以放大來自相應的第一、二、三前 端電路高通濾波器電路的過濾後的角速率引起的信號到至少 愛伏的程度’以形成放大後的角速率引起的信號; 一個放大和加法器電路,用以提取放大後的角速率信號的差 異,以產生差動的角速率信號; 一個解調器,連接於放大和加法器電路,用以從差動的角速 率信號和從振盪器來的電容讀出激勵信號,提取同相差動角速率 信號的幅度; 一個低通濾波器,連接於解調器,用以去除同相差動角速率Wherein, the three angular signal loop circuits respectively receive signals caused by the angular rate from the X, γ, and Z-axis vibration-type angular rate detection units, and reference pickup signals from the oscillator, and transform the signals caused by the angular rate. For the angular rate signal, each angular signal loop circuit of the first circuit board, the second circuit board, and the third circuit board includes: a voltage amplifier circuit for amplifying high-pass filters from the corresponding first, second, and third front-end circuits The signal caused by the filtered angular rate of the circuit is at least volts to form the signal caused by the amplified angular rate; an amplifier and adder circuit is used to extract the difference of the amplified angular rate signal to produce a difference A dynamic angular rate signal; a demodulator connected to the amplifier and adder circuits to read the excitation signal from the differential angular rate signal and the capacitor from the oscillator to extract the amplitude of the in-phase differential angular rate signal; A low-pass filter connected to the demodulator to remove the in-phase differential angular rate b號的幅度仏號的咼頻噪聲,以形成角速率信號輸出給所述角辦 量和速度增量產生器者。 9 49·如專利申請範圍第43項所述之微小整合的GPS/IMU系統,其 中,進一步包含包含一熱控制器件,以便將所述角速率產生器二 加速度產生器和角增量和速度增量產生器的工作溫度保 ^ 值,該熱控制器件進一步包含·· 一熱敏感產生器,包含·· 第一熱敏感產生單元,用來敏感X軸振動型角速率檢 Y軸加速度計的溫度; ' + 7 第二熱敏感產生單元,用來敏感γ轴振動型角速率檢測單元和 63 593981 X軸加速度計的溫度; z轴加第速料’时觀雄振動㈣速報測單元和 一加熱器,包含: 及/二Sii目振?型角速率檢測單元,γ轴加速度計 及第-病^路相連’用來保持X轴振動型角速率檢測單元, 加速度計及第一前端電路的預定的工作溫度; 第二加熱器,它與Υ軸振動型角速率檢測 速度计及弟二刖知電路的預定的工作溫度,· -熱處理器’包含參個連接在所述^制 控制電路和熱控制計算模組,其中, 电格槪上的則的熱 每一熱控制電路進一步包含: 第-放大器電路,它與相應的x、γ、 * 連’用來放大來自相應的X、γ、姑r/立:: 早兀相 縮其中的噪聲,提高信;軸熱敏感產生单元的信號並壓 壓ri個換11 ’連接於放大11桃,絲採樣溫度電 ίίί算:f 壓信號數位化為數位信號,輸出給熱 声^個ϊίΐ比轉換器,用來將來自熱控制計算模組的數位溫 度指令,轉換為類比信號; 紙1酿 比來接收並放大來自數位類比轉換器的類 路;"便ιε動相應的第一、二、三加熱器和閉合溫度控制回 #,组使用來自類比/數位轉換器的數位溫度縣信 儿/ 皿度払疋糸數以及預定的上述角速率產生器和加速產生器的 64 593981 S換ίί算數位溫度指令’並將該數位溫度指令送入-數位/ 50.請範圍第43項所述之微小整合的ο·圓系統,並 ^使用導電環氧基樹脂將第三電路板彳 使用 非導電環氧基樹脂將第一電路板、第二電路板和:二3用 地與第,電路板粘接’這樣,第一電路板、第二電路板 ; 路板與第三電路板钻接’以便使用第三電路板作為内部連^板者。The amplitude noise of the number b is the frequency noise of the number, which forms an angular rate signal and outputs it to the angular vector and the speed increment generator. 9 49. The micro-integrated GPS / IMU system as described in item 43 of the scope of patent application, further comprising a thermal control device, so that the angular rate generator, the acceleration generator, and the angular increment and velocity increase The working temperature of the generator is maintained. The thermal control device further includes a heat-sensitive generator, including a first heat-sensitive generating unit for detecting the temperature of the X-axis vibration type angular rate and the Y-axis accelerometer. '+ 7 The second heat-sensitive generating unit is used to sense the temperature of the γ-axis vibration type angular rate detection unit and the temperature of 63 593981 X-axis accelerometer; z-axis plus first-rate material' Shiguanxiong vibration rapid-speed measurement unit and a heating The device includes: and / or a Sii eye vibration type angular rate detection unit, a γ-axis accelerometer and a first-path connection for maintaining an X-axis vibration type angular rate detection unit, an accelerometer, and a predetermined front-end circuit. Operating temperature of the second heater, which is linked to the predetermined operating temperature of the Z-axis vibration-type angular rate detection speed meter and the second-known circuit,-the thermal processor 'contains the parameters connected to the control system Circuit and thermal control calculation module, wherein each of the thermal control circuits on the electrical grid further includes: a-amplifier circuit, which is connected to the corresponding x, γ, * to amplify the corresponding X, γ, r / :: early shrinking of the noise therein, improving the signal; the signal of the shaft thermal sensitive generating unit and pressing ri for 11 'connected to the amplified 11 peach, the wire sampling temperature is calculated: f pressure signal Digitized into a digital signal and output to the thermoacoustic converter, which is used to convert the digital temperature command from the thermal control calculation module into an analog signal; Paper 1 is used to receive and amplify the digital analog converter from the digital analog converter. The analog circuits include the corresponding first, second, and third heaters and closed temperature control loops. The group uses the digital temperature from the analog / digital converter, and the number of predetermined temperature and the predetermined number of the above. The 64 593981 S of the angular rate generator and the acceleration generator is changed to calculate the digital temperature command 'and send the digital temperature command to -digital / 50. Please use the tiny integrated o-circle system described in the item 43 of the range, and ^ Use conductive epoxy The resin will be the third circuit board. The non-conductive epoxy resin will be used to bond the first circuit board, the second circuit board and the second circuit board to the first and second circuit boards. Thus, the first circuit board and the second circuit board; The board is drilled to the third circuit board so as to use the third circuit board as an internal connector. 6565
TW90132453A 2001-07-20 2001-12-25 Micro integrated global positioning system/inertial measurement unit system TW593981B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/911,571 US20020008661A1 (en) 2000-07-20 2001-07-20 Micro integrated global positioning system/inertial measurement unit system

Publications (1)

Publication Number Publication Date
TW593981B true TW593981B (en) 2004-06-21

Family

ID=34080967

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90132453A TW593981B (en) 2001-07-20 2001-12-25 Micro integrated global positioning system/inertial measurement unit system

Country Status (1)

Country Link
TW (1) TW593981B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707906B2 (en) 2005-12-05 2010-05-04 Institute For Information Industry Ergonomic inertial positioning systems and methods
TWI422825B (en) * 2010-05-07 2014-01-11 Chung Peng Su Method and apparatus for high-precision velocity estimation
US8855929B2 (en) 2010-01-18 2014-10-07 Qualcomm Incorporated Using object to align and calibrate inertial navigation system
US9229089B2 (en) 2010-06-10 2016-01-05 Qualcomm Incorporated Acquisition of navigation assistance information for a mobile station
TWI736749B (en) * 2017-03-30 2021-08-21 日商愛知製鋼股份有限公司 Ball rotation measurement system
TWI744231B (en) * 2015-05-13 2021-11-01 美商嘉速力微機電股份有限公司 Phase-based measurement and control of a gyroscope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707906B2 (en) 2005-12-05 2010-05-04 Institute For Information Industry Ergonomic inertial positioning systems and methods
US8855929B2 (en) 2010-01-18 2014-10-07 Qualcomm Incorporated Using object to align and calibrate inertial navigation system
TWI422825B (en) * 2010-05-07 2014-01-11 Chung Peng Su Method and apparatus for high-precision velocity estimation
US9229089B2 (en) 2010-06-10 2016-01-05 Qualcomm Incorporated Acquisition of navigation assistance information for a mobile station
TWI744231B (en) * 2015-05-13 2021-11-01 美商嘉速力微機電股份有限公司 Phase-based measurement and control of a gyroscope
TWI736749B (en) * 2017-03-30 2021-08-21 日商愛知製鋼股份有限公司 Ball rotation measurement system
US11125559B2 (en) 2017-03-30 2021-09-21 Aichi Steel Corporation Ball rotation amount measurement system

Similar Documents

Publication Publication Date Title
US6658354B2 (en) Interruption free navigator
US6415223B1 (en) Interruption-free hand-held positioning method and system thereof
US7162367B2 (en) Self-contained/interruption-free positioning method and system thereof
US6738714B2 (en) Vehicle self-carried positioning method and system thereof
US10337884B2 (en) Method and apparatus for fast magnetometer calibration
TW577975B (en) Core inertial measurement unit
US6671648B2 (en) Micro inertial measurement unit
CN100504295C (en) Mobile electronic three-dimensional compass
US6725173B2 (en) Digital signal processing method and system thereof for precision orientation measurements
EP2946167B1 (en) Method and apparatus for determination of misalignment between device and pedestrian
Yang Tightly coupled MEMS INS/GPS integration with INS aided receiver tracking loops
US20060287824A1 (en) Interruption free navigator
US6522992B1 (en) Core inertial measurement unit
US6596976B2 (en) Method and system for pointing and stabilizing a device
US20020008661A1 (en) Micro integrated global positioning system/inertial measurement unit system
US9752879B2 (en) System and method for estimating heading misalignment
CN108519090A (en) A kind of implementation method of the binary channels integrated attitude determination algorithm of the UKF algorithms based on optimization
CN105988129A (en) Scalar-estimation-algorithm-based INS/GNSS combined navigation method
TW593981B (en) Micro integrated global positioning system/inertial measurement unit system
Shkel et al. Pedestrian inertial navigation with self-contained aiding
TW498169B (en) Interruption-free hand-held positioning method and system thereof
Shang et al. Design and implementation of MIMU/GPS integrated navigation systems
TW479131B (en) Processing method for motion measurement
TW498170B (en) Self-contained/interruption-free positioning method and system thereof
US6611170B2 (en) Angular rate amplifier with noise shield technology