TW498170B - Self-contained/interruption-free positioning method and system thereof - Google Patents
Self-contained/interruption-free positioning method and system thereof Download PDFInfo
- Publication number
- TW498170B TW498170B TW90105239A TW90105239A TW498170B TW 498170 B TW498170 B TW 498170B TW 90105239 A TW90105239 A TW 90105239A TW 90105239 A TW90105239 A TW 90105239A TW 498170 B TW498170 B TW 498170B
- Authority
- TW
- Taiwan
- Prior art keywords
- speed
- module
- positioning
- disruptive
- autonomous
- Prior art date
Links
Landscapes
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
498170 五、發明說明(1) ^ ' -— 相關的專利申請: 、本申請書為正式申請書,其相關的預先申請之一 號為:6〇/172, 387,申請日期為:1999年12月17日,二 關的預先申請之二申請號為:6 〇 / 2 3 5,9 5 i ,申 二 2 0 0 0年9月26日。 月《』馬· 發明說明 本發明係關於一種定位方法和系統,更確切的講, 一種應用於地球表面的自主無中斷式定位方法和系統。本 ί明!! ί 3 ΐ有操作靈活性,可應用於手持和地球表面載 體,匕括工中,陸地,和水中載體,在地 度確定用戶的位置信息。 上以同精 目則大多數的載體導航器依靠全球定位系統(GPS, Global P〇sltioning System)。Gps 是一兩用的基於衛 生的,热線電導航系統,其為美國國防部所擁有,佈置及 私Ϊ為全世界商業用戶開放,用於提供精確的定位和 ^ 。不幸的是,G P S易於被阻塞和遮擋,特別是在 \5亡。因此GPS接收機常常不能不間斷地提供連續 白疋位t心’特別在城市區。對地球表面上的商業和科學 用途在城市區獲得連續的定位信息是很重要的。 ^充也償性導航系統(I N S, I n e r t i a 1 N a v i g a t i ο η s t em不需要接收任何外部高頻信號以輸出連續的定位 信心油然而,傳統慣性導航系統的成本,體積,功耗,和 位置漂移特性使其不能用於地球表面商業載體導航用途。 所以很有必要為地球表面商業載體的不中斷運行開發一種498170 V. Description of the invention (1) ^ '-— Related patent applications: This application is a formal application, and one of its related pre-applications is: 60/172, 387, and the application date is: December 1999 On the 17th, the second application number of the pre-application of Erguan was: 6 0/2 35, 9 5 i, and the application was submitted on September 26, 2000. The invention is about a positioning method and system, more specifically, an autonomous non-disruptive positioning method and system applied to the surface of the earth. This article has a flexible operation, which can be applied to handheld and earth surface carriers, knives, land, and underwater carriers to determine the user's location information on the ground. With the same essence, most of the carrier navigators rely on the Global Positioning System (GPS). Gps is a dual-use, health-based, hotline electric navigation system that is owned by the United States Department of Defense, is deployed and privately available to commercial users worldwide, and is used to provide accurate positioning and positioning. Unfortunately, G PS is prone to being blocked and obscured, especially at \ 5. As a result, GPS receivers often cannot provide continuous white space t ', especially in urban areas. It is important to obtain continuous location information in urban areas for commercial and scientific uses on the surface of the earth. ^ Compensatory navigation system (INS, Innertia 1 N avigati ο η st em does not need to receive any external high-frequency signals to output continuous positioning confidence oil. However, the cost, size, power consumption, and position of traditional inertial navigation systems The drift characteristics make it unsuitable for commercial use on the surface of the earth. Therefore, it is necessary to develop a kind of uninterrupted operation of the commercial surface of the earth.
498170 五、發明說明(2) 成本,體積,功耗,和漂移都合適的定位系統,其可用於 GP S信號不能得到的區域,如隧道,森林和市區,以及高 阻塞環境。 發明總結 本發明自主\無中斷式定位方法和系統之主要目的是 溶合從慣性測量裝置(I M U,I n e r t i a 1 M e a s u r e m e n t U n i t ),速度產生器,尋北器,和高度測量裝置的信息, 用硬件和軟件模塊,獲得高精度的自主\無中斷導航解, 以便為在地球表面上的用戶確定高精度的位置信息,包括 個人,空中,陸地,和水中載體。 依照本發明的自主\無中斷式定位方法與系統的另一 目的是確定用戶在地球表面上高精度的位置信息,比如在 沒有依靠G P S時精度優於百分之一的運動距離,其中慣性 測量裝置,速度產生器,和尋北器的輸出信號被處理以獲 得用戶在地球表面上高精度的位置信息。 依照本發明的自主\無中斷式定位方法與系統的又一 目的是確定用戶在地球表面上高精度的位置信息,其可通 過無線通信裝置與其他用戶交換載體位置信息。 依照本發明的自主\無中斷式定位方法與系統的又一 目的是確定用戶在地球表面上高精度的位置信息,其可通 過以位置信息訪問地圖數據庫,借助於顯示裝置提供地點 和周圍環境信息。 依照本發明的自主\無中斷式定位方法與系統的又一 目的是提供多個不同的用途,包括個人手持式,空中,陸498170 V. Description of the invention (2) Cost, volume, power consumption, and drift are suitable positioning systems, which can be used in areas where GP S signals cannot be obtained, such as tunnels, forests and urban areas, and high-blocking environments. Summary of the invention The main purpose of the autonomous \ non-disruptive positioning method and system of the present invention is to fuse information from inertial measurement devices (IMU, Inertia 1 M easurement Unit), speed generators, north seekers, and height measurement devices, Use hardware and software modules to obtain high-precision autonomous and non-disruptive navigation solutions to determine high-precision location information for users on the surface of the earth, including personal, aerial, land, and underwater carriers. Another purpose of the autonomous \ non-disruptive positioning method and system according to the present invention is to determine the high-precision location information of the user on the surface of the earth, such as the accuracy of movement distances better than one percent when GPS is not relied upon, among which inertial measurement The output signals of the device, speed generator, and north seeker are processed to obtain high-precision position information of the user on the surface of the earth. Another purpose of the autonomous \ non-disruptive positioning method and system according to the present invention is to determine the high-precision location information of a user on the surface of the earth, which can exchange carrier location information with other users through a wireless communication device. Another purpose of the autonomous \ non-disruptive positioning method and system according to the present invention is to determine the high-precision location information of the user on the surface of the earth, which can access the map database with the location information and provide the location and surrounding environment information by means of the display device . Another purpose of the autonomous \ non-disruptive positioning method and system according to the present invention is to provide multiple different uses, including personal handheld, aerial, land
第6頁 498170 五'發明說明(3) 地和鐵道,水中導航,通信,緊急救護,石油勘探,採 礦,及更多的用途。 依照本發明的自主\無中斷式定位方法與系統的又一 目的是提供以下功能: (a )自主導航。 (b)自主定位精度,在沒有GPS高頻信號時,優於百分 之一的運動距離。 (c )低成本,低功耗,重量輕。 (d )獨特的高性能卡爾曼濾波器。通過溶合從微核 I MU ( cor emocr oTM IMU),尋北器,速度產生器,和高度測 量裝置來的信息,它去除了從低成本的微核I M U所得到的 自由慣性定位解所固有的漂移。 (e )對尋北器,速度產生器,和高度測量裝置輸出噪 聲的平滑。 (f)創新的狀態變量選擇和卡爾曼濾波器(Kalman F i 1 t e r )測量設計,包括位置修正,相對位置修正,航向 修正,高度修正,和零速修正。 (g )自主的多載體停止測試和相關的零速修正。載體 不要求進行零速修正,但如果載體自己停止,系統可自主 地利用這個好處。 (h)先進的IMU---基於MEMS(MicroelectromechanicalPage 6 498170 Five 'invention description (3) Ground and railway, underwater navigation, communication, emergency rescue, oil exploration, mining, and more. Another purpose of the autonomous \ non-disruptive positioning method and system according to the present invention is to provide the following functions: (a) Autonomous navigation. (b) The accuracy of autonomous positioning is better than one-hundredth of the movement distance without GPS high-frequency signals. (c) Low cost, low power consumption, and light weight. (d) Unique high-performance Kalman filter. By merging information from the micronucleus I MU (cor emocr oTM IMU), north seeker, velocity generator, and height measuring device, it removes the inherent in free inertial positioning solutions obtained from the low-cost micronucleus IMU Drift. (e) Smoothing of the output noise of the north seeker, speed generator, and altitude measuring device. (f) Innovative state variable selection and Kalman filter (Kalman F i 1 t e r) measurement design, including position correction, relative position correction, heading correction, altitude correction, and zero speed correction. (g) Autonomous multi-carrier stop test and related zero speed correction. The carrier does not require zero speed correction, but if the carrier stops itself, the system can autonomously take advantage of this benefit. (h) Advanced IMU --- based on MEMS (Microelectromechanical
Systems)和ASIC(Application Specific Integrated C i r c u i t )的微核I M U :微小化長寬高和輕重量;高性能和 低成本;低功耗;在可靠性方面的特別改進。Systems) and ASIC (Application Specific Integrated Circuit) micro-core I M U: miniaturized length, width, height and light weight; high performance and low cost; low power consumption; special improvements in reliability.
第7頁 498170 五、發明說明(4) (i )地圖數據庫和軟件模塊,利用當前位置解,取得 周圍環境信息。 (j )顯示裝置和軟件模塊顯示用戶位置和周圍環境信 息。 為了達到上述目的,本發明提供了一個自主\無中斷 式定位方法與系統,其中一基於主IMU的自主\無中斷式定 位模塊用來敏感用戶的運動,以產生用戶自主\無中斷式 定位數據;一位置辅助被結合,提供可中斷的,間歇的, 或連續的定位數據,以辅助自主\無中斷式定位模塊達到 改善用戶自主\無中斷式定位數據的目的;並且植入一無 線通信裝置,以便與其他用戶交換位置信息;並且進一步 加入一顯示裝置,以通過以改進的用戶自主\無中斷式定 位信息訪問地圖數據庫,提供地點和周圍環境信息。 根據本發明,自主\無中斷式定位系統,可以接收, 但不依賴於GPS信號和DGPS (差分GPS)信號,以達到南精 度的定位解。沒有GPSDGPS信號,系統仍然提供高精度的 定位解,例如精度優於百分之一的運動距離。對於在地球 表面上的商業導航應用,這是一個合適的定位系統,其可 用於GPS信號不能得到的區域,如隧道,森林和市區,以 及高阻塞環境。 圖號說明: 1 -慣性測量組件 3 -導航處理器 5 -地圖數據庫 2 -尋北器 4 -無線通信裝置 6 -速度產生器Page 7 498170 V. Description of the invention (4) (i) The map database and software module use the current position solution to obtain the surrounding environment information. (j) The display device and the software module display the user position and the surrounding environment information. In order to achieve the above purpose, the present invention provides an autonomous \ non-disruptive positioning method and system, in which an autonomous \ non-disruptive positioning module based on a main IMU is used to sensitive user movement to generate user autonomous \ non-disruptive positioning data ; A position assistant is combined to provide interruptible, intermittent, or continuous positioning data to assist the autonomous \ non-disruptive positioning module to improve the user's autonomous \ non-disruptive positioning data; and implant a wireless communication device To exchange location information with other users; and further add a display device to provide location and surrounding environment information by accessing a map database with improved user autonomy \ non-disruptive positioning information. According to the present invention, the autonomous \ non-disruptive positioning system can receive, but does not rely on GPS signals and DGPS (Differential GPS) signals to achieve a South-accurate positioning solution. Without the GPSDGPS signal, the system still provides high-precision positioning solutions, such as moving distances with accuracy better than one percent. For commercial navigation applications on the surface of the earth, this is a suitable positioning system that can be used in areas where GPS signals are not available, such as tunnels, forests, and urban areas, as well as high-blocking environments. Explanation of drawing numbers: 1-Inertial measurement component 3-Navigation processor 5-Map database 2-North finder 4-Wireless communication device 6-Speed generator
498170 五、發明說明(5) 7 -顯示裝置 9 -高度測量裝置 31-INS計算模塊 3 3 -速度處理模塊 3 5 -卡爾曼濾波器 3 7 -動態模糊解模塊 62 -聲學速度產生器 6 4 -歷程計接口 8 -定位辅助裝置 10 -自主\無中斷式定位模塊 3 2 -磁傳感器處理模塊 3 4 -高度測量測量處理模塊 3 6 -衛星週期滑動檢測模塊 61-高頻(RF)速度產生器 63 -激光速度產生器 6 5 -流速計接口 3 1 1 -傳感器補償模塊 3 1 2 -慣性導航算法模塊 塊 塊 不對準 算模塊 矩陣形 塊 糊解模 索估計 模糊解 模塊 321-3 2 3 -3 3 2 -3 3 3 -3 5 2 -3 5 3 -371-3 7 3 -3 7 5 -3 7 6 - 硬鐵 航向 刻度 相對 測量 狀態 雙差 最小 次雙 超寬 補償模 計算模 係數和 位置計 和時變 估計模 寬道模 二乘搜 差寬道 道技術 3 7 8估計器庫 3 1 2 1 -姿態積分模塊 3 1 2 3 -位置模塊 3 5 3 2 -垂直濾波器 8 B -數據鍵 3 2 2 -軟鐵補償模塊 3 3 1 -變換模塊 誤差補償模塊 3 5 1 -運動測試模塊 成模塊 3 5 4 -GPS精度監視器 塊3 7 2 -模糊區域確定模塊 器3 7 4 -位置計算模塊 模塊 3 7 7 -L1和L2模糊解模塊 3 7 9 -相應權庫 3 1 2 2 -速度積分模塊 3 5 3 1 -水平濾波器 8A-GPS接收機 C2 -第一電路板498170 V. Description of the invention (5) 7-Display device 9-Height measurement device 31-INS calculation module 3 3-Velocity processing module 3 5-Kalman filter 3 7-Dynamic blur solution module 62-Acoustic speed generator 6 4 -History meter interface 8-Positioning assistance device 10-Autonomous and non-disruptive positioning module 3 2-Magnetic sensor processing module 3 4-Height measurement measurement processing module 3 6-Satellite periodic sliding detection module 61-High-frequency (RF) speed generation 63-Laser speed generator 6 5-Flowmeter interface 3 1 1-Sensor compensation module 3 1 2-Inertial navigation algorithm module Block misalignment calculation module Matrix block paste Mould estimation fuzzy solution module 321-3 2 3- 3 3 2 -3 3 3 -3 5 2 -3 5 3 -371-3 7 3 -3 7 5 -3 7 6-Hard iron heading scale relative measurement status Position meter and time-varying estimation mode wide track mode two search difference wide track technology 3 7 8 estimator library 3 1 2 1-attitude integration module 3 1 2 3-position module 3 5 3 2-vertical filter 8 B-data Key 3 2 2-Soft iron compensation module 3 3 1-Conversion module error compensation module 3 5 1-Motion test module into module 3 5 4-GPS accuracy monitor block 3 7 2-Fuzzy area determination module 3 7 4-Position calculation module module 3 7 7-L1 and L2 fuzzy solution module 3 7 9-Corresponding weight library 3 1 2 2-Speed integration module 3 5 3 1-Horizontal filter 8A-GPS receiver C2-First circuit board
第9頁 498170 五、發明說明(6) C4-第二電路板 C5-角速率產生器 C7-第三電路板 C9 -控制電路板 C6-角增量和速度增量產生器 C10 -加速度產出器 C15 -熱敏感產生器 C 1 8 -溫度數字化器 C 2 0 -加熱器 C 2 1 - X軸振動型角速率檢測單元 C22-Y軸加速度計 C23 -第一前端電路 C24-第一熱敏感產生單元C 25 -第一加熱器 C30 -熱處理器 C42-X軸加速度計 C 4 1 - Y軸振動型角速率檢測單元 C43-第二前端電路 C44-第二熱敏感產生單元 C45-第二加熱器 C61-角放大電路 C6 2-角度積分電路 C6 3-角模擬/數字轉換器 C65 -輸入/輸出接口電路C66 -振盪器 C67 -加速度放大電路 C68 -加速度積分電路 C 6 9 -速度模擬/數字轉換器 C 7 1 - Z軸振動型角速率檢測單元 C72-Z軸加速度計 C73 -第三前端電路 C74-第三熱敏感產生單元C 75 -第三加熱器 C 8 0 -位置和姿態處理機 C 8 1 -姿態和航向模塊 C 8 2 -位置、速度,姿態和航向模塊 C9 0-外部傳感器 C91-DSP芯片組 C 9 2-ASIC芯片 Cl 8 1-附加的放大器電路 C 182-模擬/數字轉換器 C 183 -輸入/輸出接口電路 498170 五、發明說明(7) C231、C431、C731-阻抗轉換放大器電路 C232、C432、C732〜高通濾波器電路 C301-第一放大器電路 C302-第二放 C3 0 3 -數字/模擬轉換器C3 04—模双大器電路 C305-輸入/輸出接口電路C3〇6_溫度控數制字器轉換器 C 6 2 0 -角度積分器 C 6 3 0 -加速度分ig C 6 4 0 -復位器 C 6 6 0、C 6 6 5 -放大器件 C 6 5 0 —角增量和速度增量測量器 C 8 1 1 -圓錐誤差補償模塊c 8 1 2 -角速率補償模塊 C 8 1 3 -加速度補償模塊 C 8 1 8 -垂直阻尼計算模塊 C 8 1 4 -水平加平速度計算模塊 C 8 1 5 -對準旋轉向量計算模塊 C 8 1 6 -方向餘弦陳計算模塊 C817 -安態和航向角提取模塊 C 8 1 9 -北向阻尼計算模塊c 9 1 1 -熱控制計算模塊 C912 -振動處理模塊 C921-角信號回路電路 C922 -振動控制電路 C923-熱控制電路 C 9 2 5 -振盪器 C 8 1 1 0 -東向阻尼計算模塊 C8 2 0 1 -圓錐誤差補償模塊C8 2 02 -角速率補償模塊 C 8 2 0 3 -加速度補償模 C 8 2 0 8 -位置速度更新模塊 C 8 2 0 4水平加平速度計算模塊 C 8 2 0 5 -對準旋轉向量計算模塊 C 8 2 0 6〜方向餘弦陳計算模塊 C 8 2 0 7 -地球和載體速率言十算模塊Page 9 498170 V. Description of the invention (6) C4-Second circuit board C5-Angular rate generator C7-Third circuit board C9-Control circuit board C6-Angular and speed increment generator C10-Acceleration output C15-Thermal sensitive generator C 1 8-Temperature digitizer C 2 0-Heater C 2 1-X-axis vibration type angular rate detection unit C22-Y-axis accelerometer C23-First front-end circuit C24-First thermal sensor Generating unit C 25-First heater C30-Thermal processor C42-X-axis accelerometer C 4 1-Y-axis vibration type angular rate detection unit C43-Second front-end circuit C44-Second heat-sensitive generating unit C45-Second heating C61-Angle amplifier circuit C6 2-Angle integration circuit C6 3-Angle analog / digital converter C65-Input / output interface circuit C66-Oscillator C67-Acceleration amplifier circuit C68-Acceleration integration circuit C 6 9-Speed analog / digital Converter C 7 1-Z-axis vibration-type angular rate detection unit C72-Z-axis accelerometer C73-Third front-end circuit C74-Third heat-sensitive generating unit C 75-Third heater C 8 0-Position and attitude processor C 8 1-Attitude and Heading Module C 8 2-Position, Speed, Attitude and Heading Module Block C9 0-External sensor C91-DSP chipset C 9 2-ASIC chip Cl 8 1-Additional amplifier circuit C 182-Analog / digital converter C 183-Input / output interface circuit 498170 V. Description of the invention (7) C231 , C431, C731-Impedance conversion amplifier circuit C232, C432, C732 ~ High-pass filter circuit C301-First amplifier circuit C302-Second amplifier C3 0 3-Digital / analog converter C3 04-Analog dual amplifier circuit C305-Input / Output interface circuit C3〇6_Temperature control digital word converter C 6 2 0-Angle integrator C 6 3 0-Acceleration points ig C 6 4 0-Reset device C 6 6 0, C 6 6 5-Amplifier Piece C 6 5 0 —Angle and speed incremental measuring device C 8 1 1 -Conical error compensation module c 8 1 2 -Angular rate compensation module C 8 1 3 -Acceleration compensation module C 8 1 8 -Vertical damping calculation module C 8 1 4-Horizontal leveling speed calculation module C 8 1 5-Alignment rotation vector calculation module C 8 1 6-Direction cosine Chen calculation module C817-Safety and heading angle extraction module C 8 1 9-Northbound damping calculation module c 9 1 1-Thermal control calculation module C912-Vibration processing module C921-Angle signal loop circuit C922-Vibration control Control circuit C923-Thermal control circuit C 9 2 5-Oscillator C 8 1 1 0-Eastbound damping calculation module C8 2 0 1-Cone error compensation module C8 2 02-Angular rate compensation module C 8 2 0 3-Acceleration compensation mode C 8 2 0 8-Position speed update module C 8 2 0 4 Horizontal leveling speed calculation module C 8 2 0 5-Alignment rotation vector calculation module C 8 2 0 6 ~ Direction cosine Chen calculation module C 8 2 0 7-Earth And carrier rate calculation module
第11頁 498170 五、發明說明(8) C8209- 姿 態 和 航 向 角提取 板塊 C9121- 離 散 快 速 富 里葉變 換模塊 C9 1 22- 頻 率 和 幅 度 數據存 儲陣模 塊 C9 1 23- 最 大 值 檢 測 邏輯模 塊 C9124- Q值分析和選擇邏輯模塊 C9125- 鎖 相 環 C92 1 1 - .電 壓放 大器 電 路 C921 1- 電 壓 放 大 器 電路 C9212- 放 大和 加法 器 電路 C921 3- 解 調 器 C9222- 高 通濾、 波器 電 路 C 9 2 2 1 - 放 大 器 和 加 法器電 路 C 9 2 2 3 - 解 調 器 電 路 C9224- 模 擬/數字轉換器 C 9 2 2 5 - 低 通 濾 波 器 C9226- 數 字模 擬轉 換 器 丨 C9227- 放 大 器 C9231- 第 一放 大器 電 路 C9232- 模 擬/數字轉換器 C9233- 數 字模 擬轉 換 器 C9234- 第 二 放 大 器 電路 優 選方案之 詳 細 說 明 本發明 為 地 球 表 面 用戶提 供了一 個 自主\ 無中 斷 式定 位 系統,其 包 含 一 基 於 主IMU的自主\ 無 中斷式定位模塊, 用 來敏感用 戶 的 運 動 以產生 用戶自 主\ 無中 斷式. 定 位數 據 ;一位置 辅 助 被 包 含 ,提供 可中斷 的 ’間歇的 ,或連續 的 定位數據 以 辅 助 白 主\無中斷式定位 模塊 ,達 到 改善 用 戶自主\無中斷式定位數據的目的; 植 入一 無線 通 信裝 置 ,以便與 其 他 用 戶 交 換位置 信息; 並且進- -步加入一顯 示 裝置,以 通 過 以 用 戶 定位信 息訪問 地丨 圖數據庫 ,提供地 點 和周圍環 境 信 息 0Page 11 498170 V. Description of the invention (8) C8209- Attitude and heading angle extraction plate C9121- Discrete fast Fourier transform module C9 1 22- Frequency and amplitude data storage array module C9 1 23- Maximum value detection logic module C9124- Q Value analysis and selection logic module C9125- PLL C92 1 1-. Voltage amplifier circuit C921 1- Voltage amplifier circuit C9212- Amplifier and adder circuit C921 3- Demodulator C9222- High-pass filter, waver circuit C 9 2 2 1-Amplifier and Adder Circuit C 9 2 2 3-Demodulator Circuit C9224- Analog / Digital Converter C 9 2 2 5-Low Pass Filter C9226- Digital Analog Converter 丨 C9227- Amplifier C9231- First Amplifier Circuit C9232- Analog / Digital Converter C9233- Digital Analog Converter C9234- Detailed Description of the Preferred Scheme of the Second Amplifier Circuit The present invention provides an autonomous \ non-disruptive positioning system for users on the surface of the earth It contains an autonomous IMU-based non-disruptive positioning module based on the main IMU, which is used to sensitive user movements to generate user-autonomous non-disruptive. Positioning data; a position assistant is included to provide interruptible 'intermittent, or continuous Positioning data to assist Baizhu \ non-disruptive positioning module to improve user autonomy \ non-disruptive positioning data; implant a wireless communication device to exchange location information with other users; and add a display device step-by-step To provide location and surrounding environment information by accessing the map database with user location information 0
第12頁 498170 五、發明說明(9) 用戶可以是個人,或空中,陸地,或水中載體。自主 式性能意味著本發明的系統在不接收外部高頻信號的條件 下可起作用。無中斷式性能意味著本發明的系統以很高的 數據率輸出位置數據,例如1 0 0赫茲。更進一步,地球表 面包括陸地,水中和大氣層内。 值得一提的是MEMS技術的迅速發展使得製造低成本, 輕重量,小體積,低功耗的陀螺和加速度計成為可能。 MEMS是微型機械電子系統的意思,或微型集成電子機械裝 置。ME MS裝置涉及到利用I C集成電路技術,生成可控的機 械和運動結構。MEMS包含微電子學和微機械加工集成的概 念。MEMS裝置成功的例子有,喷墨打印頭,汽車空氣袋打 開加速度計,和微型機器人。 微電子技術,在矽片上製作電子線路,是一種很成熟 的技術。微機械加工利用集成電路工業所發展起來的工藝 技術,在矽片上製作微小的傳感器和執行器。除了傳感器 的體積縮小了好幾個數量級外,集成電路可以被加到同一 矽片上,在一個矽片上產生整個系統。這一裝置·不僅使得 傳統的軍用和民用產品發生革命,而且產生了許多新的, 在沒有微小廉價的慣性傳感器時不可能有的商業應用。 與傳統的慣性器件相比,MEMS慣性器件為導引,導航 與控制系統在成本,體積,和可靠性方面提供了巨大的改 進,申請人發明了一種微核IMU(coremicroTM IMU),其為 π世界上最小的ΙΜΙΓ ,基於固態微機電系統(MEMS )和用 戶集成電路(A S I C )的結合。微核I M U是一完全自主的運Page 12 498170 V. Description of the invention (9) The user can be an individual, or air, land, or underwater carrier. Autonomous performance means that the system of the present invention can function without receiving external high-frequency signals. Non-disruptive performance means that the system of the present invention outputs position data at a very high data rate, such as 100 Hz. Furthermore, the surface of the earth includes land, water, and the atmosphere. It is worth mentioning that the rapid development of MEMS technology has made it possible to manufacture gyroscopes and accelerometers with low cost, light weight, small size, and low power consumption. MEMS means micro mechatronic system, or micro integrated electromechanical device. The ME MS device involves the use of IC integrated circuit technology to generate controllable mechanical and moving structures. MEMS encompasses the concepts of microelectronics and micromachining integration. Examples of successful MEMS devices are inkjet print heads, automotive airbag open accelerometers, and miniature robots. Microelectronics technology, making electronic circuits on silicon wafers, is a very mature technology. Micromachining uses process technology developed by the integrated circuit industry to make tiny sensors and actuators on silicon wafers. In addition to the reduction in the size of the sensor by several orders of magnitude, integrated circuits can be added to the same silicon chip to produce the entire system on a single silicon chip. This device not only revolutionized traditional military and civilian products, but also created many new commercial applications that would not have been possible without tiny and inexpensive inertial sensors. Compared with traditional inertial devices, MEMS inertial devices provide huge improvements in cost, volume, and reliability for guidance, navigation, and control systems. The world's smallest ΙΙΙΓ is based on a combination of solid-state microelectromechanical systems (MEMS) and user integrated circuits (ASICs). Microkernel I M U is a completely autonomous
第13頁 498170 五、發明說明(10) 動敏感組件。它提供三軸角增量,速度增量,和同步時間 基準,並且能夠承受高振動和加速度。微核I MU開闢了傳 統的I M U所不能應用的全方位的商業應用領域。它們包括 陸地導航,汽車,個人導航器,機器人,空中和海上載 體,無人載體,不同的通信,儀表,導引,導航,和控制 應用。 微核IMU僅一個立方英寸大,可用於地球表面的商業 ,包括手持式,空中,陸地,和水中載體。 微核I M U是本發明的優選,但本發明並不限於微核 3有這樣的性能指標的任何I MU都可應用於本發明的系 應用Page 13 498170 V. Description of the invention (10) Motion sensitive components. It provides three-axis angular increments, speed increments, and synchronized time references, and is able to withstand high vibrations and accelerations. The micro-core I MU opens up a full range of commercial application areas that traditional I M U cannot apply. They include terrestrial navigation, automobiles, personal navigators, robots, aerial and marine vehicles, unmanned vehicles, different communications, instrumentation, guidance, navigation, and control applications. The micronuclear IMU is only one cubic inch in size and can be used commercially on the surface of the earth, including handheld, aerial, terrestrial, and underwater carriers. Micro-kernel I M U is preferred in the present invention, but the present invention is not limited to micro-kernel 3 Any I MU with such performance indicators can be applied to the system of the present invention
IMU 統。 如第一圖所示,地球表面用戶的自主\無中斷式定位 系統包含一基於主I M U的自主\無中斷式定位模塊1 0,定位 辅助裝置8,無線通信裝置4,地圖數據庫5,和顯示裝置 Ί。 採用基於主IMU的自主\無中斷式定位模塊10,通過 IMU敏感用戶的運動測量,並且產生用戶自主\無中斷式定 位數據。 採用定位辅助裝置8,以提供可中斷的,間歇的,或 連續的定位數據,以辅助自主\無中斷式定位模塊,達到 改善用戶自主\無中斷式定位數據的目的; 採用無線通信裝置4,以便與其他用戶交換改善的用戶自 主\無中斷式定位位置信息; 採用地圖數據庫5,提供地圖數據,通過以改善的用IMU system. As shown in the first figure, the autonomous \ non-disruptive positioning system for users on the surface of the earth includes an autonomous \ non-disruptive positioning module based on the main IMU 10, positioning assistance device 8, wireless communication device 4, map database 5, and display Device Ί. Adopting the autonomous \ non-disruptive positioning module 10 based on the main IMU, through the motion measurement of IMU sensitive users, and generating user's autonomous \ non-disruptive positioning data. Use positioning assistance device 8 to provide interruptible, intermittent, or continuous positioning data to assist autonomous \ non-disruptive positioning module to achieve the purpose of improving user autonomous \ non-disruptive positioning data; use wireless communication device 4, In order to exchange improved user autonomy \ non-disruptive positioning location information with other users; Use map database 5 to provide map data,
第14頁 498170 五、發明說明(11) 戶自主\無中斷式定位信息訪問地圖數據庫,獲得地點和 周圍環境信息。 採用顯示裝置7,利用周圍環境信息,顯示改善的用 戶自主\無中斷式定位數據。 如果定位辅助裝置8能連續地輸出定位數據,它當然 可以用於本發明。如第二圖,定位辅助裝置8的優選為一 基於無線通信裝置4的高頻定位系統。 如果純慣性導航系統INS方法用於基於MEMS的IMU,包 括微核IMU,以產生自主\無中斷式定位數據,由於自主\Page 14 498170 V. Description of the invention (11) Household autonomous \ non-disruptive positioning information accesses the map database to obtain location and surrounding environment information. The display device 7 is used to display improved user autonomy \ non-disruptive positioning data using the surrounding environment information. If the positioning assistance device 8 can continuously output positioning data, it can of course be used in the present invention. As shown in the second figure, the positioning assistance device 8 is preferably a high-frequency positioning system based on the wireless communication device 4. If the pure inertial navigation system INS method is used for MEMS-based IMUs, including micro-core IMUs to generate autonomous \ non-disruptive positioning data,
無中斷式定位數據漂移,自主\無中斷式定位數據不能長 時間應用。在本發明的優選系統中,基於微核I M U建立了 一個慣性導航系統INS,其為基於主IMU的自主\無中斷式 定位模塊1 0的核心。 為了補償I N S的漂移誤差,在主自主\無中斷式定位模 塊1 0中集成了多個導航傳感器,如第五圖所示,包括: 慣性測量組件1 ,以測量用戶運動運動,對應用戶運動產 生數字角增量和速度增量信號。 尋北器2 ,以產生用戶的航向測量。 速度產生器6 ,以產生用戶相對地面的在身體系中的速度 數據。Non-disruptive positioning data drift, autonomous \ non-disruptive positioning data cannot be applied for a long time. In the preferred system of the present invention, an inertial navigation system INS is established based on the microkernel I M U, which is the core of the autonomous \ non-disruptive positioning module 10 based on the main IMU. In order to compensate the drift error of the INS, multiple navigation sensors are integrated in the main autonomous \ non-disruptive positioning module 10, as shown in the fifth figure, including: Inertial measurement component 1 to measure user motion, corresponding to user motion Digital angular and speed incremental signals. Northfinder 2 to generate the heading measurement for the user. The speed generator 6 is used to generate the speed data of the user in the body system relative to the ground.
高度測量裝置9,以產生用戶相對平均海平面的高度 測量。 導航處理器3,連接於慣性測量組件1,尋北器2,速 度產生器6,高度測量裝置9,和定位辅助裝置8 ,以接收An altitude measuring device 9 to generate a user's altitude measurement relative to the average sea level. Navigation processor 3, connected to inertial measurement unit 1, north seeker 2, speed generator 6, altitude measurement device 9, and positioning aid device 8 to receive
第15頁 498170 五、發明說明(12) 數字角增量和速度增量信號,航向測量,在身體系中的速 度數據,和從定位辅助裝置8来的中斷的,或間歇的,定 位數據,並執行以下任務: 用數字角和速度增量數據產生IMU位置,速度,和姿 m , 產生I M U位置,速度,和姿態的最優誤差估計,其被 反饋到慣性導航處理模塊,用於修正I M U位置,速度,和 姿態的數據誤差,以輸出修正的I MU位置,速度,和姿態 數據,作為用戶自主\無中斷式定位數據,或改進的用戶 自主\無中斷式定位數據,當有從定位辅助裝置8來的中斷 的,或間歇的,定位數據時; 尋北器2用以測量用戶的航向。速度產生器6用以測量 用戶相對地面的速度。高度測量裝置9用以產生用戶相對 平均海平面(M S L )的高度測量。 一自主的零速修正方法被用來自主地補償I N S誤差。 基於所建立的I N S誤差模型和其他傳感器誤差模型,速度 傳感器和零速修正用來壓制I N S誤差的增長。在導航處理 器3中構造一組合卡爾曼濾波器3 5,以估計和補償I N S誤差 和傳感器誤差。 速度產生器6用以產生用戶相對地面或水的速度測 量。如第六圖所示,速度產生器6的優選方案基於多普勒 效應原理,包括: 高頻(RF)速度產生器61 ,包括雷達; 聲學速度產生器62,包括聲納,及Page 15 498170 V. Description of the invention (12) Digital angle increment and speed increment signals, heading measurement, speed data in the body system, and interrupted or intermittent position data from the positioning aid device 8, And perform the following tasks: Generate IMU position, velocity, and attitude m using digital angular and velocity incremental data, generate optimal error estimates for IMU position, velocity, and attitude, which are fed back to the inertial navigation processing module to correct the IMU Position, velocity, and attitude data errors to output modified I MU position, velocity, and attitude data as user autonomous \ non-disruptive positioning data, or improved user autonomous \ non-disruptive positioning data, When the auxiliary device 8 is interrupted, or intermittent, when positioning data; the north finder 2 is used to measure the user's heading. The speed generator 6 is used to measure the speed of the user relative to the ground. The altitude measuring device 9 is used to generate a user's altitude measurement relative to the mean sea level (MSL). An autonomous zero-speed correction method is used to autonomously compensate the I N S error. Based on the established I N S error model and other sensor error models, the speed sensor and zero speed correction are used to suppress the I N S error growth. A combined Kalman filter 35 is constructed in the navigation processor 3 to estimate and compensate the I N S error and the sensor error. The speed generator 6 is used to generate a user's speed measurement relative to the ground or water. As shown in the sixth figure, the preferred solution of the velocity generator 6 is based on the Doppler effect principle, and includes: a high-frequency (RF) velocity generator 61 including a radar; an acoustic velocity generator 62 including a sonar, and
第16頁 498170 五、發明說明(13) 激光速度產生器6 3,包括激光雷達。 基於多普勒效應原理,通過敏感多普勒頻率,速度產 生器6可產生用戶相對地面的速度測量。多普勒效應是當 從速度產生器6發出的波,被運動物體反射,而產生頻率 偏移。在本發明的情況中,多普勒頻移由用戶相對地面的 運動產生,電波,激光,或聲波被地面所反射。 如果用戶相對地面的距離在縮小,波被壓縮。它們的 波長縮小,頻率增加。如果距離增加,效果相反。從地面 反射的波的多普勒頻移,可被計算為 Λ = 2Page 16 498170 V. Description of the invention (13) Laser speed generator 63, including lidar. Based on the principle of the Doppler effect, the velocity generator 6 can generate a user's velocity measurement with respect to the ground through a sensitive Doppler frequency. The Doppler effect is that when a wave emitted from the velocity generator 6 is reflected by a moving object, a frequency offset is generated. In the case of the present invention, the Doppler frequency shift is generated by the user's motion relative to the ground, and radio waves, lasers, or sound waves are reflected by the ground. If the user's distance from the ground is shrinking, the wave is compressed. Their wavelengths shrink and their frequencies increase. If the distance increases, the effect is reversed. The Doppler shift of the wave reflected from the ground can be calculated as Λ = 2
VrcosL ~λ~ 其中 A =地面回波多普勒頻移,赫茲 & =用戶速度,米秒 1 =速度4和波束視線之間的夾角 A =發射波長 如第六圖所示,速度產生器6進一步包含歷程計接口 64,這樣速度產生器6可以從裝在載體上的歷程計輸入歷 程計測量,當本發明的系統用於陸地車輛時。歷程計測量 可以被轉換為用戶相對地面的相對速度測量。 如第六圖所示,速度產生器6進一步包含流速計接口 6 5,這樣速度產生器6可以從裝在載體上的流速計輸入相 對水的速度測量,當本發明的系統用於水中航行器時。VrcosL ~ λ ~ where A = ground echo Doppler shift, Hertz & = user speed, msec 1 = angle between speed 4 and beam sight A = emission wavelength as shown in the sixth figure, speed generator 6 It further includes a history meter interface 64 so that the speed generator 6 can input the history meter measurement from the history meter mounted on the carrier, when the system of the present invention is applied to a land vehicle. The pedometer measurement can be converted into a user's relative speed measurement relative to the ground. As shown in the sixth figure, the speed generator 6 further includes a flowmeter interface 65, so that the speed generator 6 can input the speed measurement of relative water from the flowmeter mounted on the carrier. Time.
第17頁 498170 五、發明說明(14) 如第五圖所示,定位辅助裝置8可以是一個G P S接收機 8A,以接收可中斷的GPS高頻(RF)信號,產生GPS粗測量偽 距和偽距率,或用戶的GPS位置和速度數據給導航處理器 3,以及GPS的狀態指示表示GPS粗測量偽距和偽距率,或 用戶的GPS位置和速度是否可以得到。如果GPS信號可連續 得到,連續的G P S粗測量偽距和偽距率,或G P S位置和速 度,可以被結合到本發明中來。 如第六圖所示,優選的在導航處理器3上運行的實時 軟件進一步包含: (4.1) 一 INS計算模塊3 1 ,用從IMU1來的數字角增量和 速度增量信號產生慣性定位測量,包括I M U位置,速度, 和安悲數據, (4 · 2 ) —磁傳感器處理模塊3 2,以產生航向角; (4 · 3 ) —速度處理模塊3 3,用以為卡爾曼濾波器3 5產 生相對位置誤差測量; (4. 4 ) 一高度測量測量處理模塊3 4,用高度測量形成 一平均海拔高度數據類型;並且 (4 . 5 ) —集成卡爾曼濾波器3 5,用以通過進行卡爾曼 濾波計算的方式,估計慣性定位測量誤差,以校正慣性定 位測量誤差。 I MU 1和相關的I NS計算模塊3 1是本發明導航器的核 心。INS計算模塊31進一步包含 一傳感器補償模塊3 1 1,以校正數字角增量和速度增 量信號的誤差,其與用戶的運動成比例;並且Page 17 498170 V. Description of the invention (14) As shown in the fifth figure, the positioning assistance device 8 may be a GPS receiver 8A to receive an interruptible GPS high-frequency (RF) signal to generate a GPS rough measurement pseudorange and Pseudorange rate, or the user's GPS position and speed data to the navigation processor 3, and the GPS status indication indicates whether the GPS coarse measurement pseudorange and pseudorange rate, or whether the user's GPS position and speed are available. If the GPS signal can be obtained continuously, continuous G PS coarse measurement pseudorange and pseudorange rate, or GPS position and speed, can be incorporated into the present invention. As shown in the sixth figure, the preferred real-time software running on the navigation processor 3 further includes: (4.1) an INS calculation module 31, which generates inertial positioning measurements using digital angular and velocity incremental signals from IMU1 , Including IMU position, speed, and safety data, (4 · 2) — magnetic sensor processing module 3 2 to generate heading angle; (4 · 3) — speed processing module 3 3 for Kalman filter 3 5 Generate a relative position error measurement; (4. 4) an altitude measurement measurement processing module 34, using the altitude measurement to form an average altitude data type; and (4.5.)-Integrated Kalman filter 35 to pass through The calculation method of Kalman filter estimates the inertial positioning measurement error to correct the inertial positioning measurement error. I MU 1 and the related I NS calculation module 31 are the core of the navigator of the present invention. The INS calculation module 31 further includes a sensor compensation module 3 1 1 to correct the errors of the digital angular increment and velocity increment signals, which are proportional to the user's motion; and
第18頁 498170 五、發明說明(15) 一慣性導航算法模塊3 2 2以利用補償的數字角增量和 速度增量信號計算I N S位置,速度,和姿態。 如第五圖顯示了慣性導航算法模塊3 2 2。雖然I NS提供 了一種自主/無中斷式,無輻射,確定的,三維導航手 段,短時精確的位置信息,由於沒有補償的陀螺和加速度 計誤差,特別是低精度捷聯I N S系統,其表現出無界的位 置誤差。必須提供外部辅助信息以提高系統長期精度。在 本發明中多導航傳感器1 ,2,6,和9被用來辅助核心 I N S。尋北器2辅助用於航向更新。速度產生器6和零速修 正被用來抑制I N S誤差的增長。基於所建立的I N S誤差模型 和其他器件誤差模型,構造一個組合卡爾曼濾波器3 5來估 , 計和補償I N S誤差和傳感器誤差。本發明的組合系統被用 來確定用戶地球表面上的位置。 如第五圖所示本發明方塊圖,關鍵技術之一是當不能 得到GPS信號時,在系統算法中應用自動零速修正技術, 極大地減小積累導航誤差。慣性導航系統I N S,其為一位 置推算系統,其位置誤差以第三圖(A )所示的模式隨時間 增加。零速修正技術利用附加的零速信息,當用戶停止 時,復位導航器的速度測量。週期性的零速修正復位導致 如第三圖(B )所示的誤差模式。 有了零速修正復位,以及速度辅助,擴展誤差估計和 補償,慣性導航誤差的增長極大的減小。它隨時間的導航 誤差模式由第三圖(B )點線所示。本發明有效地補償了誤 差,保持了優於百分之一運動距離的導航精度。Page 18 498170 V. Description of the invention (15) An inertial navigation algorithm module 3 2 2 uses the compensated digital angular increment and velocity increment signals to calculate the I N S position, velocity, and attitude. Figure 5 shows the inertial navigation algorithm module 3 2 2. Although I NS provides an autonomous / non-disruptive, non-radiation, deterministic, three-dimensional navigation means, short-term accurate position information, due to uncompensated gyro and accelerometer errors, especially the low-precision strapdown INS system, its performance Unbounded position error. External auxiliary information must be provided to improve the long-term accuracy of the system. In the present invention, multiple navigation sensors 1, 2, 6, and 9 are used to assist the core I NS. Northfinder 2 is used for heading update. Speed generator 6 and zero speed correction are used to suppress the increase in I N S error. Based on the established I N S error model and other device error models, a combined Kalman filter 35 is constructed to estimate, calculate and compensate the I N S error and sensor error. The combined system of the present invention is used to determine a position on the surface of the earth of a user. As shown in the fifth block diagram of the present invention, one of the key technologies is to apply the automatic zero speed correction technology to the system algorithm when GPS signals cannot be obtained, which greatly reduces the accumulated navigation error. The inertial navigation system I N S is a position estimation system, and its position error increases with time in the pattern shown in the third figure (A). Zero speed correction technology uses additional zero speed information to reset the speed measurement of the navigator when the user stops. The periodic zero-speed correction reset results in an error mode as shown in the third figure (B). With zero speed correction reset, as well as speed assistance, extended error estimation and compensation, the increase in inertial navigation error is greatly reduced. Its navigation error pattern over time is shown by the third line (B). The invention effectively compensates for errors and maintains navigation accuracy better than one hundredth of a movement distance.
第19頁 498170 五、發明說明(16) 尋北器2的優選實現為一磁傳感器,例如磁力計和磁 通閥,敏感地球磁場以測量用戶的航行角。 第十一圖是一方塊圖,描述了磁傳感器及其處理模塊 3 2。磁傳感器檢測地球磁場的幅度和方向,並轉換其為電 信號信息,用於獲得磁北。 為了獲得真磁北,地球的磁場測量必須用測得的磁場 強度,軟鐵和硬鐵變換陣加以補償。 載體上的鐵質金屬隨著時間會磁化,誤導磁羅盤的讀 數。另外,一些裝置也會產生軟鐵扭曲。軟鐵可誤導或放 大已有的磁場,使得校正特別困難。 如第十二圖是一方塊圖,描述了速度產生器處理模塊 33 ° 如第七圖所示,I N S處理模塊3 1進一步包含傳感器補 償模塊3 1 1和慣性導航算法模塊3 1 2。 因為陀螺和加速度計的安裝不是準確地處於三個互相 垂直的方向,在用於慣性導航算法模塊3 1 2之前,I MU數據 必須加以校正。 例如,目前MEM S I MU是一低精度的微機械矽陀螺與加 速度計組件。因為MEMS傳感器對溫度和加速度很敏感,在 傳感器補償模塊的設計中構造了一組特殊的模塊。 MEMS陀螺簡化的誤差模型表示為: ^drft ^misalign ^ nonorth ^scale ^g ^random (^)Page 19 498170 V. Description of the invention (16) The north finder 2 is preferably implemented as a magnetic sensor, such as a magnetometer and a flux valve, which are sensitive to the earth's magnetic field to measure the user's navigation angle. Figure 11 is a block diagram illustrating the magnetic sensor and its processing module 3 2. The magnetic sensor detects the amplitude and direction of the earth's magnetic field and converts it into electrical signal information for obtaining magnetic north. In order to obtain true magnetic north, the magnetic field measurement of the earth must be compensated with the measured magnetic field strength, the soft iron and hard iron transform arrays. The ferrous metal on the carrier will magnetize over time, misleading the readings of the magnetic compass. In addition, some devices can cause soft iron distortion. Soft iron can mislead or amplify existing magnetic fields, making calibration particularly difficult. As the twelfth figure is a block diagram, describing the speed generator processing module 33 ° As shown in the seventh figure, the I NS processing module 3 1 further includes a sensor compensation module 3 1 1 and an inertial navigation algorithm module 3 1 2. Because the installation of the gyro and accelerometer is not exactly in three mutually perpendicular directions, the I MU data must be corrected before being used in the inertial navigation algorithm module 3 1 2. For example, the MEM S I MU is currently a low-precision micromechanical silicon gyroscope and accelerometer assembly. Because MEMS sensors are sensitive to temperature and acceleration, a special set of modules was constructed in the design of the sensor compensation module. The simplified error model of the MEMS gyroscope is expressed as: ^ drft ^ misalign ^ nonorth ^ scale ^ g ^ random (^)
第20頁 498170 五、發明說明(17) 這一 MEM SIMU誤差補償模型解釋如下。 (1 )穩定性誤差%,,也表示為漂移。對Μ E M S陀螺穩 定性誤差來說時間常數很大,這一效應建模為一常值零 偏。 (2 )不對準誤差‘_> ·,不對準誤差是器件敏感軸的實 際方向和該軸指定方向之間的偏差。這是一個常值角誤 差,通常在安裝時通過準確的裝配和校正技術,可使這一 誤差很小。 (3)不垂直誤差S nonorth 。這^一誤差指的是MEM SIMU本身 組裝的不精確性。I M U由三個微型陀螺組成,其應該被安 裝於三個理想的互相垂直的軸向。當一個陀螺的輸入軸傾 向於由其他兩個陀螺的輸入軸組成的平面時,產生了不垂 直誤差。該不垂直陀螺會檢測到關於其他兩個軸的角速度 分量。 (4 )刻度係數誤差心仏 。這一誤差以MEMS陀螺檢測到 的真實角速率的百分比來計算。刻度係數誤差在測得的角 速度幅值上,產生一個與測得的真實角速率成比例的誤 差。刻度係數誤差在大角速率時可產生顯著的導航誤差。 (5 )重力敏感誤差 \。 陀螺輸出由於加速度對器件的 作用而產生的輸出變化稱為重力敏感誤差。這個誤差在載 體機動中產生正比於比力大小的速率零偏誤差。比力等於 慣性加速度減去重力加速度。 (6 )隨機游走心· MEMS陀螺噪聲很大。在慣性導航 相同中,作用為一敏感到的角速率的積分器。實際的傳感Page 20 498170 V. Description of the invention (17) This MEM SIMU error compensation model is explained as follows. (1) Stability error%, also expressed as drift. The time constant is large for the MEMS gyroscope stability error, and this effect is modeled as a constant bias. (2) Misalignment error '_ > · Misalignment error is the deviation between the actual direction of the sensitive axis of the device and the specified direction of the axis. This is a constant angle error, which is usually made small by accurate assembly and calibration techniques during installation. (3) Non-vertical error S nonorth. This error refers to the inaccuracy of the MEM SIMU itself. I M U consists of three micro-gyros, which should be installed in three ideal perpendicular axes. When the input axis of one gyro is inclined to a plane composed of the input axes of the other two gyros, a non-vertical error occurs. The non-vertical gyro detects angular velocity components with respect to the other two axes. (4) Palpitation of scale factor error. This error is calculated as a percentage of the true angular rate detected by the MEMS gyroscope. The scale factor error produces an error proportional to the measured true angular rate on the measured angular velocity amplitude. Scale factor errors can produce significant navigation errors at high angular rates. (5) Gravity-sensitive error \. The change in output of the gyroscope output due to the effect of acceleration on the device is called gravity-sensitive error. This error produces a velocity bias error proportional to the magnitude of the specific force during carrier maneuver. Specific force is equal to inertial acceleration minus gravity acceleration. (6) Random walk heart · MEMS gyroscope is very noisy. In the same inertial navigation, it acts as a sensitive angular rate integrator. Actual sensing
第21頁 498170 五、發明說明(18) 器輸出 ,積分陀螺輸出中的噪聲,產生一個更平滑的信 號,在一個特定的誤差範圍内隨機游動。角隨機游走由補 償處理過程估計。 (7 )溫度敏感誤差· ME MS陀螺對溫度的變化很敏 感。它甚至可以被看作一個好的溫度傳感器。I N S中的導 航鼻法必須除去溫度引起的誤差。因此在I M U誤差處理中 我們必須提供一個溫度項,其在相同運行中可根據溫度變 化產生誤差數據。 類似地,MEM加速度計的誤差補償表示為: + ^misalign + ^nonorth + ^scale + + Vrandom + (T) 階微分方 該加速度計誤差項的定義與MEM陀螺類似 在實用中,I M U溫度的變化可以近似地用 程描述 Γ = -1(Γ-Γ,σ/)Page 21 498170 V. Description of the invention (18) The noise in the output of the gyro is integrated to produce a smoother signal, which randomly walks within a specific error range. The angular random walk is estimated by the compensation process. (7) Temperature-sensitive error. The ME MS gyro is sensitive to changes in temperature. It can even be regarded as a good temperature sensor. The nose method in I N S must remove errors due to temperature. Therefore, in the I M U error processing, we must provide a temperature term, which can generate error data according to temperature changes in the same operation. Similarly, the error compensation of the MEM accelerometer is expressed as: + ^ misalign + ^ nonorth + ^ scale + + Vrandom + (T) order derivative The definition of the error term of the accelerometer is similar to that of the MEM gyroscope. In practice, the change in IMU temperature Can be approximated by the procedure Γ = -1 (Γ-Γ, σ /)
LcLc
m-rQ 其中T表示IMU溫度,TO是初始溫度,tc是時間常 數,Tbal是IMU平衡溫度。參數tc和Tbal由IMU的熱傳輸特 性和環境溫度所決定,其可由校正獲得。溫度引起的誤差 可表示為 st^Kt{T-Tnom)m-rQ where T is the IMU temperature, TO is the initial temperature, tc is the time constant, and Tbal is the IMU equilibrium temperature. The parameters tc and Tbal are determined by the heat transfer characteristics of the IMU and the ambient temperature, which can be obtained by calibration. The error caused by temperature can be expressed as st ^ Kt (T-Tnom)
第22頁 498170 五、發明說明(19) 其中Tnom是校正IMU時的標稱溫度,Kt是溫度誤差係 數。第四圖顯示了典型的温度引起的MEM SIMU陀螺誤差。 如第十圖所示,慣性導航算法模塊3 1 2進一步包含: 一姿態積分模塊3 1 2 1 ,用以把角增量積分成姿態數 據; 一速度積分模塊3 1 2 2,通過使用姿態數據,轉換測量 到的速度增量於合適的導航坐標系,其中轉換後的速度增 量被積分為速度數據;並且 一位置模塊3 1 2 3,用以積分導航系的速度數據為位置, 數據。 如第十一圖所示,用以處理航向角的磁傳感器處理模 塊32進一步包含: 一硬鐵補償模塊3 2 1,用以接收數字地球磁場向量並 在地球磁場向量中補償硬鐵效應; 一軟鐵補償模塊3 2 2,用以在地球磁場向量中補償軟 鐵效應;並且 一航向計算模塊3 2 3,用以接收補償後的地球磁場向 量,和從慣性導航算法模塊3 1 2接收俯仰和橫滾角,並計 算航向數據。 如第十二圖,用以為卡爾曼濾波器3 5產生相對位置誤 差測量的速度產生器處理模塊3 3進一步包含: 一刻度係數和不對準誤差補償模塊3 3 2,用以補償在 速度測量中的刻度係數和不對準誤差;並且Page 22 498170 V. Description of the invention (19) where Tnom is the nominal temperature when correcting the IMU, and Kt is the temperature error coefficient. The fourth figure shows typical temperature-induced MEMS SIMU gyroscope errors. As shown in the tenth figure, the inertial navigation algorithm module 3 1 2 further includes: an attitude integration module 3 1 2 1 for integrating the angular increment into attitude data; a speed integration module 3 1 2 2 for using the attitude data The measured speed increase is converted into a suitable navigation coordinate system, wherein the converted speed increase is integrated into the speed data; and a position module 3 1 2 3 is used to integrate the speed data of the navigation system into position and data. As shown in the eleventh figure, the magnetic sensor processing module 32 for processing the heading angle further includes: a hard iron compensation module 3 2 1 for receiving a digital earth magnetic field vector and compensating the hard iron effect in the earth magnetic field vector; a The soft iron compensation module 3 2 2 is used to compensate the soft iron effect in the earth magnetic field vector; and a heading calculation module 3 2 3 is used to receive the compensated earth magnetic field vector and receive the pitch from the inertial navigation algorithm module 3 1 2 And roll angle, and calculate heading data. As shown in the twelfth figure, the speed generator processing module 3 3 for generating a relative position error measurement for the Kalman filter 3 5 further includes: a scale factor and misalignment error compensation module 3 3 2 for compensating the speed measurement Scale factors and misalignment errors; and
第23頁 498170 五、發明說明(20) 一變換模塊3 3 1 ,用以變換輸入的表示在機體系的輸 入速度為表示在導航坐標系的速度; 一相對位置計算模塊3 3 3,用以接收I MU速度和姿態數 據以及補償後的速度,以為卡爾曼濾波器3 5形成相對位置 測量。 如第六圖和第十三圖所示,卡爾曼濾波器模塊3 5進一 步包含: 一運動測試模塊3 5 1 ,用以確定載體是否自動停止; 一GPS精度監視器3 5 4,以確定是否可獲得GPS數據; 一測量和時變矩陣形成模塊3 5 2,用以根據從運動測 試模塊351來的載體運動狀態,和從GPS精度監視器3 5 4來 的GPS可獲得性,為狀態估計模塊3 5 3形成測量和時變矩 陣;並且 一狀態估計模塊3 5 3,用以濾波測量和獲得I M U定位誤 差的最優估計,包括I M U位置誤差,速度誤差,和姿態誤 差。 為了獲得I M U位置的最優估計,需要為卡爾曼濾波器 3 5建立一組誤差狀態方程。參考理想系統所確定的Ρ平台 與實際系統所決定的P C平台之間的關係定義為 C卜 Cp;C卜(I,cpb 其中1是單位矩陣。[Φ]是向量Φ的反對角陣。 0 Φ2 一 t 0 φχ Λ 一 Φχ 0Page 23, 498170 V. Description of the invention (20) A transformation module 3 3 1, which is used to transform the input speed of the on-board system to the speed in the navigation coordinate system; a relative position calculation module 3 3 3, which is used to: The IMU speed and attitude data and the compensated speed are received to form a relative position measurement for the Kalman filter 35. As shown in the sixth and thirteenth drawings, the Kalman filter module 3 5 further includes: a motion test module 3 5 1 to determine whether the carrier stops automatically; a GPS accuracy monitor 3 5 4 to determine whether GPS data can be obtained; a measurement and time-varying matrix forming module 3 5 2 is used to estimate the state according to the carrier motion state from the motion test module 351 and the GPS availability from the GPS accuracy monitor 3 5 4 Module 3 5 3 forms the measurement and time-varying matrix; and a state estimation module 3 5 3 is used to filter and measure and obtain the optimal estimation of IMU positioning error, including IMU position error, speed error, and attitude error. In order to obtain an optimal estimate of the I M U position, a set of error state equations needs to be established for the Kalman filter 3 5. The relationship between the P platform determined with reference to the ideal system and the PC platform determined by the actual system is defined as Cb Cp; Cb (I, cpb where 1 is the identity matrix. [Φ] is the anti-angular matrix of the vector Φ. 0 Φ2-t 0 φχ Λ-Φχ 0
498170 五、發明說明(21) 向量Φ由參考理想系統所確定的P平台與實際系統所 決定的P C平台之間的三個小角度組成·· 陀螺和加速度計模型表示為: 7ibc h 、、ωί 七 sb 其中Sb 和vb是一般化的陀螺和加速度計誤差。下標 B表示誤差是表達在機體系或傳感器系。 這樣,一般化的線性I N S誤差模型,以一階近似,可 表示為以下方程: mp^p 〇 十 AGP Ο 以向量方式表示為 φ = φχω^ρ + -sf 1國498170 V. Description of the invention (21) The vector Φ is composed of three small angles between the P platform determined by reference to the ideal system and the PC platform determined by the actual system. The gyro and accelerometer models are expressed as: Seven sb where Sb and vb are generalized gyro and accelerometer errors. The subscript B indicates that the error is expressed in the machine system or the sensor system. In this way, the generalized linear I N S error model, with a first-order approximation, can be expressed as the following equation: mp ^ p 〇 十 AGP Ο is expressed in a vector manner as φ = φχω ^ ρ + -sf
第25頁 498170 五、發明說明(22) 其中 cpbfb VP ^cpbVbPage 25 498170 V. Description of the invention (22) of which cpbfb VP ^ cpbVb
Cpbsb 這--般化的I N S誤差模型可以用來為不同的系統結 構導出特定的誤差模型。 在優選實現方案中狀態估計模塊3 53包含: (1 ) 一水平濾波器3 5 3 1 ,用以獲得水平I M U位置誤差的 估計;並且 (2 ) —垂直濾波器3 5 3 2,用以獲得垂直I MU位置誤差的 估計。 水平濾波器狀態向量的優選狀態向量包含以下變量: 1 . 關於X軸的位置誤差(r a d ) 2 . 4 關於Y軸的位置誤差(r a d ) 3 ·批χ速度誤差(F / s ) 4 · y 速度誤差(F / s ) 5· A x 傾斜誤差(rad) 6 . y 傾斜誤差(r a d )Cpbsb This generalized I N S error model can be used to derive specific error models for different system structures. In a preferred implementation, the state estimation module 3 53 includes: (1) a horizontal filter 3 5 3 1 to obtain an estimate of the horizontal IMU position error; and (2) —a vertical filter 3 5 3 2 to obtain Estimate of vertical I MU position error. The preferred state vector of the horizontal filter state vector contains the following variables: 1. Position error on the X axis (rad) 2. 4 Position error on the Y axis (rad) 3 · Batch χ speed error (F / s) 4 · y Speed error (F / s) 5 · A x tilt error (rad) 6. Y tilt error (rad)
第26頁 498170 五、發明說明(23) 航向誤差(rad) 8. Δχκ 9·〜 I 0 . ^ X II .ey y 12. sz z 13. Δθ 1 4 . asf 關於X的相對位置誤差(F T ) 關於Υ的相對位置誤差(F Τ ) 陀螺零偏誤差(R / s ) 陀螺零偏誤差(R / s ) 陀螺零偏誤差(R / s ) 速度產生器水平偏角(rad) 速度產生器刻度係數誤差 垂直濾波器的優選狀態向量包含以下變量 1 · Ael =高度誤差(F T ) 2. Δν2 = ζ速度誤差(F / s ) 3. Δζκ =ζ相對位置誤差(FT) 4 . εΑΖΒ =ζ加速度計零偏(F/s2) Δθν =速度產生器垂直偏角(rad) 狀態估計模塊3 5 3不時接收以下外部信息: (1 )已知的位置變化,從GPS接收機8獲得 從高度測量裝置9獲得; 從速度處理模塊33獲得; 從運動測試模塊3 5 1的零速修正 (2 )已知的高度變化 (3 )已知的位置變化 (4 )位置變化等於零 處理獲得;並且 (5 )已知航向,從磁傳感器處理模塊3 2獲得。 速度產生器6速度測量和I M U速度之間的差,分解到水平機 體坐標系,被迅速積分成相對位置的三個分量。Page 26, 498170 V. Description of the invention (23) Heading error (rad) 8. Δχκ 9 · ~ I 0. ^ X II .ey y 12. sz z 13. Δθ 1 4. Asf Relative position error of X (FT ) About the relative position error (F Τ) of gyro bias error (R / s) gyro bias error (R / s) gyro bias error (R / s) speed generator horizontal deflection angle (rad) speed generator The preferred state vector of the scale factor error vertical filter contains the following variables: 1 · Ael = height error (FT) 2. Δν2 = ζ speed error (F / s) 3. Δζκ = ζ relative position error (FT) 4. ΕΑZOB = ζ Accelerometer Offset (F / s2) Δθν = Speed Generator Vertical Offset Angle (rad) State Estimation Module 3 5 3 Occasionally receives the following external information: (1) Known position change, obtained from GPS receiver 8 from altitude Obtained from the measurement device 9; Obtained from the speed processing module 33; Obtained from the zero speed correction of the motion test module 3 51 (2) Known height change (3) Known position change (4) Position change equal to zero processing obtained; and ( 5) The known heading is obtained from the magnetic sensor processing module 32. The difference between the speed measurement of the speed generator 6 and the I M U speed is decomposed into a horizontal body coordinate system and quickly integrated into three components of relative position.
當在每一個卡爾曼更新間隔上,如每8秒,可獲得GPSGPS can be obtained at every Kalman update interval, such as every 8 seconds
第27頁 498170 五、發明説明(24) 數據時,XY相對位置,XYGPS*IN^*置之差,XYGPS*INS 速度之差,被提供給水平濾波器,Z相對位置,ZGPS和INS 位置之差,ZGPS和1\3速度之差,平均海拔高度和INS高度 之差,被提供給垂直濾波器。濾波器接著進行更新和I M U 位置修正。 當在每一個卡爾曼更新間隔上,如每8秒,不能獲得 GPS數據時,ΧΥ相對位置,被提供給水平濾波器,Ζ相對位 置,平均海拔高度和I N S高度之差,被提供給垂直濾波 器。滤、波器接者進行更新和I M U位置修正。 運動測試模塊3 5 1決定載體是否已經停止。如果載體 停止,一零位置變化施加於卡爾曼濾波器。停止的定義由 以下描述給出。假定卡爾曼濾波器更新間隔是八秒。對八 秒期間的運動進行分析,以確定載體是否在整個八秒上停 止。如果停止,置位停止標誌。在存在小的測量噪聲條件 下進行修正時’載體在接下來的八秒停止。一旦停止被置 位,當檢測到運動時,立即被復位,可能小於八秒。如果 停止被置位’只有連續八秒的無運動才可能把其置位。 運動測試模塊3 5 1包含: (1 ) 一速度產生器變化測試模塊,用以接收速度產生 器讀數,以减定用戶是否停止或重新起動; (2 ) —系統速度變化測試模塊,用以比較當前和前一 週期上系統速度的變化,以確定用戶是否停止或重新起 動; (3 ) —系統速度測試模塊,用以把系統速度的幅值與Page 27 498170 V. Description of the invention (24) In the data, the XY relative position, the difference between the XYGPS * IN ^ * settings, and the XYGPS * INS speed difference are provided to the horizontal filter, Z relative position, ZGPS and INS position. The difference, the difference between the ZGPS and 1 \ 3 speeds, and the difference between the average altitude and the INS altitude are provided to the vertical filter. The filter is then updated and I M U position corrected. When GPS data cannot be obtained at every Kalman update interval, such as every 8 seconds, the relative position of XY is provided to the horizontal filter, and the difference between the relative position of Z, the average altitude and the INS height is provided to the vertical filter. Device. Filter and wave receiver are updated and I M U position correction. The motion test module 3 5 1 determines whether the carrier has stopped. If the carrier stops, a zero position change is applied to the Kalman filter. The definition of stop is given by the following description. It is assumed that the Kalman filter update interval is eight seconds. The motion during the eight seconds is analyzed to determine if the carrier has stopped for the entire eight seconds. If stopped, the stop flag is set. When correction is made in the presence of small measurement noise, the 'carrier stops for the next eight seconds. Once Stop is set, it is reset immediately when motion is detected, which may be less than eight seconds. If the stop is set 'it is only possible to set it for eight seconds without motion. The motion test module 3 5 1 includes: (1) a speed generator change test module for receiving a speed generator reading to determine whether the user stops or restarts; (2) — a system speed change test module for comparison Changes in system speed over the current and previous cycles to determine if the user stopped or restarted; (3) — system speed test module, used to compare the amplitude of the system speed with
第28頁 498170 五、發明說明(25) 一預先定義的值進行比較,以確定用戶是否停止或重新起 動;並且 (4 ) 一姿態變化測試模塊,用以把系統姿態的幅值與 一預先定義的值進行比較,以確定用戶是否停止或重新起 動; 例如,在里程計測試中,在指定的八秒區間的開始, 速度產生器的輸入脈衝當讀如時進行累加。如果累加值在 八秒的任何時間上,超過一個預先指定的值,例如兩個脈 衝,停止被復位。 在系統速度測試中,每一個預先指定的區間,例如2 秒,平均X,Y,Z速度,由2秒内X,Y,Z位置變化決定, 分別與前2秒平均X,Y,Z速度進行比較。如果任何2秒的 變化在任何軸向超過一預先定義的值,例如0 . 1 F / S,該整 個八秒區間被定義為非停止。注意到,0 . 1 F / S的速度2秒 對應於0 . 2 F的允許的姿態擾動,約為2英寸。 在系統速度測試中,如果我們假定一個1 0 F S的系統速 度誤差幅值,我們可用這樣的判據: 每2秒比較平均X,Y,Z速度與前2秒的速度,復位停 止如果任何速度在幅值上大於1 0 F S。 履帶式載體上,只有一個里程計並且IMU裝在里程計 附近,載體可能提供鎖定這個履帶的方式進行轉彎,則里 程計無輸出且I M U速度很小。這種情形可由姿態變化測試 加以檢測。 置位停止的條件是在任何2秒和任何8秒區間内,總的Page 28 498170 V. Description of the invention (25) A pre-defined value is compared to determine whether the user has stopped or restarted; and (4) a posture change test module is used to compare the amplitude of the system posture with a pre-defined The values of the speed generator are compared to determine whether the user stopped or restarted. For example, in the odometer test, at the beginning of a specified eight-second interval, the input pulses of the speed generator are accumulated when read as such. If the accumulated value at any time of eight seconds exceeds a pre-specified value, such as two pulses, the stop is reset. In the system speed test, each pre-specified interval, such as 2 seconds, the average X, Y, and Z speed is determined by the X, Y, and Z position changes within 2 seconds, which are respectively different from the average X, Y, and Z speeds in the previous 2 seconds. Compare. If any 2-second change exceeds a predefined value in any axis, such as 0.1 F / S, the entire eight-second interval is defined as non-stop. Note that a speed of 0.1 F / S for 2 seconds corresponds to an allowable attitude disturbance of 0.2 F, which is about 2 inches. In the system speed test, if we assume a system speed error amplitude of 10 FS, we can use this criterion: compare the average X, Y, Z speed with the speed of the previous 2 seconds every 2 seconds, and the reset stops if any speed Greater than 10 FS in amplitude. On a tracked carrier, there is only one odometer and the IMU is installed near the odometer. The carrier may provide a way to lock the track to make a turn. The mileage meter has no output and the I M U speed is very small. This situation can be detected by the attitude change test. Set stop condition is the total of any 2 seconds and any 8 seconds interval
第29頁 498170 五、發明說明(26) 姿態變化小於一度。 GPS精度監視器3 5 4,從GPS接收機接收GPS狀態指示以 確定是否可獲得GPS數據; 在每一個卡爾曼濾波器更新區間内,例如八秒,X, Y,Z相對位置測量送給卡爾曼濾波器以進行一次更新。標 量方差=[H] [P] [HT]+R是這一測量的方差估計,可被用來 測試測量幅值的合理性。有三個這樣的標量,每個軸一 個。 有多種不同的高度測量裝置,例如氣壓裝置和雷達高 度計。氣壓高度計提供用戶相對平均海平面的高度。雷達 高度計提供用戶相對地形之上的高度。雷達高度計產生高 度稱為地形高度。為了產生用戶平均海平面的高度,當前 位置被用來查詢地圖數據庫,以獲得地形相對平均海平面 的高度。地形高度加上地形相對平均海平面的高度可用戶 相對平均海平面的高度。 如第一圖所示,用於地球表面的本發明自主/無中斷 式定位方法包含以下步驟: (1 )用一個主慣性測量組件I MU,敏感用戶運動,產生 對應於用戶運動的數字角增量和速度增量。 (2 )通過一個定位辅助器,提供可中斷的定位數據, 辅助基於主IMU的自主/無中斷式定位模塊。 (3 )利用運動測量,產生用戶的自主/無中斷式定位數 據,當可獲得可中斷的定位數據時,改進用戶自主/無中 斷式定位數據。Page 29 498170 V. Description of the invention (26) The attitude change is less than one degree. GPS accuracy monitor 3 5 4 receives GPS status indication from GPS receiver to determine whether GPS data is available; within each Kalman filter update interval, for example, eight seconds, X, Y, Z relative position measurement is sent to Carl Man filter for one update. Scalar variance = [H] [P] [HT] + R is an estimate of the variance of this measurement and can be used to test the reasonableness of the measured amplitude. There are three such scalars, one for each axis. There are many different types of altitude measuring devices, such as barometric devices and radar altimeters. The barometric altimeter provides the user's altitude relative to average sea level. The radar altimeter provides the user's altitude above the terrain. The height produced by the radar altimeter is called terrain altitude. To generate the user's average sea level height, the current location is used to query the map database to obtain the terrain's relative average sea level height. The height of the terrain plus the height of the terrain relative to the average sea level gives the user the height of the average sea level. As shown in the first figure, the present invention's autonomous / non-disruptive positioning method for the earth's surface includes the following steps: (1) Using a main inertial measurement unit I MU, sensitive user movement, generating a digital angular increase corresponding to user movement Volume and speed increments. (2) Provide an interruptible positioning data through a positioning assistant to assist the autonomous / non-disruptive positioning module based on the main IMU. (3) Use motion measurement to generate user's autonomous / non-disruptive positioning data, and when interruptible positioning data is available, improve user's autonomous / non-disruptive positioning data.
第30頁 498170 五、發明說明(27) (4) 通過無線通信裝置,與其他用戶交換改進的用戶 自主/無中斷式定位數據。 (5) 提供地圖數據,通過以改善的用戶自主\無中斷式 定位信息訪問地圖數據庫,獲得地點和周圍環境信息。 (6 )通過顯示裝置,利用所述周圍環境信息,顯示改 善的用戶自主\無中斷式定位數據。 在優選的應用中,步驟2公開如下: 2A.利用GPS接收機,通過GPS狀態指示,獲得GPS粗測 量或GPS位置和速度數據。 在優選的應用中,步驟2公開如下: 2 B.通過無線通信裝置,獲得定位數據。 如第五圖所示,步驟(3 )包含以下步驟: 3. 1用一磁傳感器敏感地球磁場,以測量用戶的航向角, 3. 2用一速度產生器測量用戶相對地面的相對速度, 3. 3測量用戶的高度,形成用戶數字形式的平均海拔高 度, 3 . 4混合數字角增量和速度增量信號,航向角,用戶相對 地面的相對速度,GPS粗測量或GPS位置和速度數據,產生 最優定位數據。 為了改進性能,步驟(6 )之後,本發明自主/無中斷式 定位處理進一步包含下面一個步驟: 用速度和加速度數據辅助GPS信號的碼和載波相位跟 蹤處理,以改進G P S接收機的抗阻塞和高動態能力。 步驟(3 . 4 )進一步包含以下優選模塊··Page 30 498170 V. Description of the invention (27) (4) Improve the user's autonomous / non-disruptive positioning data with other users through wireless communication devices. (5) Provide map data and obtain location and surrounding environment information by accessing the map database with improved user autonomous \ non-disruptive positioning information. (6) The display device uses the surrounding environment information to display improved user autonomous \ non-disruptive positioning data. In a preferred application, step 2 is disclosed as follows: 2A. Use a GPS receiver to obtain GPS rough measurements or GPS position and speed data through GPS status indication. In a preferred application, step 2 is disclosed as follows: 2 B. Obtaining positioning data through a wireless communication device. As shown in the fifth figure, step (3) includes the following steps: 3.1 Sensing the earth's magnetic field with a magnetic sensor to measure the heading angle of the user, 3.2 Measuring the relative speed of the user relative to the ground with a speed generator, 3 .3 measure the user's altitude to form the user's average altitude in digital form, 3.4 mixed digital angular and speed incremental signals, heading angle, relative speed of the user relative to the ground, GPS rough measurement or GPS position and speed data, Generate optimal positioning data. In order to improve the performance, after step (6), the autonomous / non-disruptive positioning process of the present invention further includes the following step: the speed and acceleration data are used to assist the GPS signal code and carrier phase tracking processing to improve the GPS receiver's High dynamic capability. Step (3.4) further includes the following preferred modules ...
第31頁 498170 五、發明說明(28) 3 . 4 · 1利用數字角增量和速度增量信號言十算慣性定位 測量; 3 · 4 · 2利用地球磁場測量計算航向角; 3. 4. 3利用用戶相對地面的相對速度,為卡爾曼濾波 器,在速度產生器處理模塊中,產生相對位置誤差測量, 3. 4. 4轉換高度測量為數字形式的用戶的平均海拔高 度, 3. 4. 5通過進行卡爾曼滤波計算,估計慣性定位測量 誤差,以校正慣性定位測量。 原理上講,步驟(3 · 4 · 1 )可稱為慣性導航系統處理。 慣性導航是一個通過積分速度計算位置,積分總加速度計 _ 算速度的過程。總加速度通過計算重力加速度和非重力力 加速度的和而求得。在現代I N S中,通過處於I N S計算機中 的一個利用來自一組三軸慣性角速率傳感器的輸入的軟件 積分功能,來提供姿態參考。三軸角速率傳感器和加速度 計安裝於I N S機箱中的同一剛性結構,每一個剛性傳感器 之間保持準確的對準。這樣的佈置被稱為捷聯式慣性導航 系統,因為慣性傳感器固連於機箱,即固連於I N S所安裝 的用戶。 在I NS計算模塊3 1中所運行的主要功能是:把角速率 積分成安悲’稱為安怨積分,利用安怨數據把測得的加速 | 度變換到一個適當的導航坐標系,在該系中加速度積分為 ® 速度,稱為速度積分;積分導航系速度為位置,稱為位置 積分。這樣,涉及三個積分功能,姿態,速度,和位置,Page 31 498170 V. Description of the invention (28) 3.4. 1 Uses digital angular increment and speed increment signals to calculate ten inertial positioning measurements; 3 4 4 Calculates the heading angle using geomagnetic field measurements; 3. 4. 3Using the user's relative speed with respect to the ground, it is a Kalman filter. In the speed generator processing module, a relative position error measurement is generated. 3.4. 4 Converts the height measurement to the user's average altitude in digital form. 3. 4 .5 By performing a Kalman filter calculation, the inertial positioning measurement error is estimated to correct the inertial positioning measurement. In principle, the steps (3 · 4 · 1) can be referred to as inertial navigation system processing. Inertial navigation is a process that calculates the position by integrating the speed, and integrates the total accelerometer to calculate the speed. The total acceleration is obtained by calculating the sum of the gravitational acceleration and the non-gravitational acceleration. In modern I NS, attitude reference is provided by a software integration function in the I NS computer that utilizes inputs from a set of three-axis inertial angular rate sensors. The three-axis angular rate sensor and accelerometer are installed in the same rigid structure in the I NS chassis, and each rigid sensor maintains accurate alignment. This arrangement is called strapdown inertial navigation system, because the inertial sensor is fixed to the chassis, that is, fixed to the user where the I N S is installed. The main function run in the I NS calculation module 31 is: Integrating the angular rate into safety scores is called safety scores, and the safety acceleration data is used to transform the measured acceleration | degrees into an appropriate navigation coordinate system. The acceleration integral in the system is ® speed, called speed integral; the integral navigation system speed is position, called position integral. In this way, three integration functions are involved, attitude, speed, and position,
第32頁 498170 精 驟積換積 稱 ,p成可 的步態變量,人為寫程 件下姿量增據引記。方 器以為增度數被標中分 性含稱度速置系,系積 慣包,速的 位擬系台度 與步據的後為虛台平速 證。一數得換據或平學的 保計進態測變數系為數統 以不1)姿把中且度學稱\ ^ ,略4為據系並速數此hitt 度忽·量數該;系個因在導 精可(3增態在理航一,示性 高差驟角妾,處導,動表慣 要誤步分用系分分 中運度式 29)需算,^利標積積 S的速聯 Η都計以12坐度3IN台的捷 S個其所1 1航速1 。在平球, | 一, 4 4導為4理 平地式 五每比 3 3的稱3處 水於形 度要求相 分處理; 到一個適當 分為速度, 為位置積分 其模擬一個 。載體相對 緊凑的向量 表示如下: 其中V為載體相對於地球的速度,表示在P系中。 //是表示在P系中的比力,或者變換到數學平台系中的 加速度計輸出。 G;?是表示在P系中的重力加速度。 是表示在P系中的數學平台系相對於地球系的角速 度。 是表示在P系中的地球自轉速率。 為了獲得I N S確定的速度方程,我們必須首先定義數 學平台系的運動。Page 32 498170 Accurate product replacement product is called, p becomes a possible gait variable, and the amount of posture increase is written by the author. The calculator thinks that the increase number is labeled as the differential speed system, which is integrated with the inertia package. The speed of the system is based on the platform and step data. One counts the change or the average guaranteed variable measurement system is the number system in the 1) posture, and the scientific degree is called \ ^, slightly 4 is the data system and the number of hits is measured. Reasons can be calculated (3 increments are in Lihang I, the indication of the sudden difference in angle of elevation is high, processing, and the table is used to misstep, and the system is divided into degrees, and the formula is 29). The speed coupling of the product S is calculated based on the speed of the 12 seats at 3IN stations. In the flat ball, the first, the 4 and the 4 guides are the four principles, and the flat ground is the ratio of 3 to 3. The water shape requires phase separation processing; to an appropriate dividing speed, for the position integration, it simulates one. The relatively compact vector of the carrier is expressed as follows: where V is the velocity of the carrier relative to the earth, and is represented in the P system. // is the specific force in the P system, or the accelerometer output converted to the math platform system. G;? Is the acceleration of gravity in the P system. Is the angular velocity of the mathematical platform system relative to the earth system in the P system. It is the earth's rotation rate in the P system. In order to obtain the velocity equation determined by I N S, we must first define the motion of the mathematical platform system.
第33頁 498170 五、發明說明(30) 在捷聯式I N S中的P系為一水平平台,所以它相對於當 地地理系N的位置可以用一個航向角α來描述。該平台系相 對於慣性系的角速度可表示為: 其中是P系相對於N系的角速度。 cr是?系相對於1^系的方向餘弦陣。 ω:η 是當地地理坐標系Ν系相對於地球系Ε系的角速 度。 由於Ρ系是一數學平台,我們可以定義它的運動。基 於上述方程,我們可獲得一個描述Ρ系相對於Ν系運動的方 程: + Qsin^ ά + ω, tgcp 我們定義必匕來獲得不同的I NS機械編排。類比於框架 式INS,我們讓=0獲得一個所謂的自由方位系統,讓<=QsinP 獲得一個所謂的游移方位系統。這樣我們完全定義了數學 平台的運動。 對自由方位系統 ά 對游移方位系統Page 33 498170 V. Description of the invention (30) The P system in strapdown I NS is a horizontal platform, so its position relative to the local geographic system N can be described by a heading angle α. The angular velocity of the platform system relative to the inertial system can be expressed as: where is the angular velocity of the P system relative to the N system. cr? The cosine array of the direction of the system relative to the 1 ^ system. ω: η is the angular velocity of the local geographic coordinate system N system relative to the earth system E system. Since the P system is a mathematical platform, we can define its motion. Based on the above equation, we can obtain an equation describing the motion of the P system relative to the N system: + Qsin ^ ά + ω, tgcp We define the necessary daggers to obtain different I NS mechanical arrangements. Analogous to the frame-type INS, we let = 0 obtain a so-called free bearing system, and let <= QsinP obtain a so-called moving bearing system. In this way we completely define the movement of the mathematical platform. For free bearing system ά For mobile bearing system
tg<Ptg < P
第34頁 498170 五、發明說明(31) 一旦定義了 P系的運動,我們有了一個確定的捷聯I N S 速度方程。進一步,我們可獲得一個二階,非線性,時 變,常微分方程作為I N S速度方程。 以地理緯度和經度的形式,I NS的位置積分方程可寫 成: V; ] λ = R +/2 (v^ sina +cos a) (Rn + A) cos ¢7 (Rn + A) cos ¢7 (vx cosa-vy sin a) 注意到,經度方程在地球的兩個極點是奇點。在極區 經度的計算會變得很困難。在實際中,如果需要極區的導 航或仿真,我們可以引進其他的位置表示變量。例如我們 可以N系相對於地心地球系E C E F系的方向餘弦陣C:作為位 置變量。這樣,位置方程表示為: C; =[<]C; 這是一個矩陣微分方程。其中是對應於向量 < 的 反對稱陣。這個微分方程沒有奇點,並且從C: 我們可以 計算表示為經度和緯度的位置。然而,在這個方程中,Page 34 498170 V. Description of the invention (31) Once the motion of the P system is defined, we have a certain strapdown I N S velocity equation. Further, we can obtain a second-order, nonlinear, time-varying, ordinary differential equation as the I N S velocity equation. In the form of geographic latitude and longitude, the position integral equation of I NS can be written as: V;] λ = R + / 2 (v ^ sina + cos a) (Rn + A) cos ¢ 7 (Rn + A) cos ¢ 7 (vx cosa-vy sin a) Note that the longitude equation is a singularity at the two poles of the earth. The calculation of longitude in the polar regions can become difficult. In practice, if navigation or simulation of the polar region is needed, we can introduce other position representation variables. For example, we can use the cosine array C: of the direction of the N series relative to the geocentric Earth system E C E F system as the position variable. In this way, the position equation is expressed as: C; = [<]C; This is a matrix differential equation. Where is an antisymmetric matrix corresponding to the vector <. This differential equation has no singularities, and from C: we can calculate the position expressed as longitude and latitude. However, in this equation,
第35頁 498170 五、發明說明(32) 有九個元素而只有三個自由度。因此在計算中,需要進行 一個規格化手續,以保持Cen 的規格化。既是,在每一個 積分步驟中,修正,,使其滿足 C; Cn 如果我們把I N S速度方程看作是一個非線性,時變系 統,P系中的比力/〃和重力加速度G〃可看作是該系統的 輸入。如果忽略重力異常,重力加速度可表示為Page 35 498170 V. Description of the invention (32) There are nine elements and only three degrees of freedom. Therefore, in the calculation, a normalization procedure is required to maintain the normalization of Cen. That is, in each integration step, modify so that it satisfies C; Cn If we consider the INS velocity equation as a nonlinear, time-varying system, the specific force / 〃 and gravity acceleration G 重力 in the P system can be seen Operation is the input to the system. If the gravity anomaly is ignored, the acceleration of gravity can be expressed as
Gp 其中g是正常的重力,其表示為 h g = ^〇[1 - 2A(-) + 5 sin2 φ] a 其中 A二1+f+m B=2.5m-f f =參考橢球的扁率Gp where g is normal gravity, which is expressed as h g = ^ 〇 [1-2A (-) + 5 sin2 φ] a where A = 1 + f + m B = 2.5m-f f = flatness of the reference ellipsoid
[jl = <3 L·/GM % =赤道重力 h =高度 Μ =地球質量 G=萬有引力常量[jl = < 3 L · / GM% = equatorial gravity h = height Μ = earth mass G = universal gravitational constant
第36頁 498170 五、發明說明(33) 在P系中的比力,/P ,是實際的加速度計輸出變換到數 學平台系: 尸:C;/6 其中广是加速度計輸出向量或比力表示在IMU或者機 體系中。為了進行這一變換,必須知道方向餘弦陣G 。 即必須獲得I MU系的姿態。在捷聯式I NS中,通過高速計算 獲得姿態。正是通過姿態計算和坐標變換,建立起了數學 平台。在捷聯式I N S的實現中,姿態計算最為關鍵。 原理上講,有許多種參數可以被用來表示一個剛體的 姿態。例如,歐拉角,方向餘弦陣,四元數,歐拉參數等 等。在實際中,方向餘弦陣和四元數最為常用於分析和計 算中的姿態表示。用方向餘弦陣表示,姿態微分方程可寫 為:P.36 498170 V. Explanation of the invention (33) The specific force in the P system, / P, is the actual accelerometer output transformed to the mathematical platform system: Corpse: C; / 6 where the wide is the accelerometer output vector or specific force Represented in the IMU or machine architecture. In order to perform this transformation, the directional cosine array G must be known. That is, the attitude of the I MU system must be obtained. In strapdown I NS, attitude is obtained through high-speed calculations. It was through attitude calculations and coordinate transformations that a mathematical platform was established. In the realization of strapdown I NS, attitude calculation is the most critical. In principle, there are many parameters that can be used to represent the attitude of a rigid body. For example, Euler angles, directional cosine arrays, quaternions, Euler parameters, etc. In practice, directional cosine arrays and quaternions are most commonly used for attitude representation in analysis and calculations. Expressed as a directional cosine matrix, the differential equation of the attitude can be written as:
亡»bP 這是一個矩陣微分方程 稱陣,其由下列方程所決定 是對應於向量 的反對 ,)i - cbp(K + cpnqe) 其中 是I MU中陀螺的輸出或表示在IMU自身系上的»» BP This is a matrix differential equation called matrix, which is determined by the following equation. It corresponds to the opposition of the vector.
第37頁 498170 五、發明說明(34) I M U相對於慣性空間的角速度。 這個姿態方程是一 9階,非線性,時變常微分方程。 然而在這個方程中,β有九個元素而只有三個自由度。 因此在計算中,需要進行一個規格化手續,以保持^的 規格化。既是,在每一個積分步驟中,修正G ,使其滿足 C;cf =/. 四元數表示由於其簡潔和效率被經常用於姿態計算。 四元數安怨方程表不為· ; 1 λ = —ωλ 2Page 37 498170 V. Description of the invention (34) The angular velocity of I M U relative to inertial space. This attitude equation is a 9th order, non-linear, time-varying ordinary differential equation. In this equation, however, β has nine elements and only three degrees of freedom. Therefore, in the calculation, a normalization procedure is required to maintain the normalization of ^. That is, in each integration step, G is modified to satisfy C; cf = /. The quaternion representation is often used for attitude calculations due to its simplicity and efficiency. The quaternion equation is not ·; 1 λ = —ωλ 2
其中λ 是列矩陣表示形式的四元數w是由角速度決定 的4 4矩陣 人Where λ is the quaternion of the column matrix representation w is a 4 4 matrix determined by the angular velocity person
四元數用四個參數來表示剛體的姿態,但剛體只有三 個自由度。因此四元數分量由下列關係約束: =1Quaternions use four parameters to represent the attitude of the rigid body, but the rigid body has only three degrees of freedom. The quaternion component is therefore constrained by the following relationship: = 1
第38頁 498170 五、發明說明(35) 滿足這一關係的四元數稱為規格化的四元數。在姿態 方程的積分中,四元數的規格化很簡單。四元數和方向餘 弦陣的關係表示如下·· Λ' [Λ 又 2 /ί3] + 'Λ 一乂3 义3 -义2 又0 Λ) Λ. -义2 一又〇 Λ) 為了把I N S模型表示成緊湊形式,我們引入一個向量 定義為: ν, a ν: φ a 人 φ λ 這樣I N S的計算模型可以寫為 X^Fx(X)^ ω^-F^X) cpbfb Ο +Page 38 498170 V. Description of Invention (35) Quaternions that satisfy this relationship are called normalized quaternions. Normalization of quaternions is simple in the integration of the attitude equation. The relationship between the quaternion and the direction cosine matrix is expressed as follows: The model is expressed in compact form. We introduce a vector defined as: ν, a ν: φ a person φ λ so that the calculation model of INS can be written as X ^ Fx (X) ^ ω ^ -F ^ X) cpbfb Ο +
Gp Ο 第39頁 498170 五、發明說明(36) C:Gp 〇 Page 39 498170 V. Description of the invention (36) C:
)ί - cK 如第十四圖所示,步驟(3·4·5)進一步包含: 3. 4. 5. 1執行運動測試,用以確定載體是否停止,以便起 動零速修正; 3. 4. 5. 2利用從GPS接收機來的GPS狀態指示,確定是否可 用G P S數據; 3. 4. 5. 3為卡爾曼濾波器形成測量方程和時變矩陣;並且 3. 4. 5. 4利用卡爾曼濾波器計算誤差狀態的估計。 第十三圖示出步驟(3 . 3 . 3 )形成測量的一優選實現流 程。 第十圖中的參數及變量定義描述如下:) ί-cK As shown in the fourteenth figure, step (3 · 4 · 5) further includes: 3. 4. 5. 1 Perform a motion test to determine whether the carrier is stopped to start zero speed correction; 5. 2 use GPS status indication from GPS receiver to determine whether GPS data is available; 3. 4. 5. 3 form measurement equations and time-varying matrix for Kalman filter; and 3. 4. 5. 4 use The Kalman filter calculates an estimate of the error state. The thirteenth figure shows a preferred implementation flow of steps (3.3.3) forming a measurement. The definitions of parameters and variables in the tenth figure are described as follows:
AD ΔΤ △D/ΔΤ SFC V〇DC 多普勒脈衝數。 多普勒脈衝數。 速度產生器指示的速度。 以脈衝數表示的刻度係數(F / s )。 計算的速度。 蝴and Δθ^,水平和垂直方向的速度產生器偏角估計。 PIT和ROL,I MU俯仰和橫滾角。 ,導航系統(遊移角叼的速度。AD ΔΤ ΔD / ΔΤ SFC V DC DC Doppler pulse number. Doppler pulse number. The speed indicated by the speed generator. Scale factor (F / s) in pulses. Calculated speed. Butterfly and Δθ ^, horizontal and vertical velocity generator deflection angle estimation. PIT and ROL, I MU pitch and roll angle. , Navigation system (travel angle 叼 speed.
AAC,計算的α和計算的航向角之和。使用PIT, ROL,AACAAC, the sum of the calculated α and the calculated heading angle. Use PIT, ROL, AAC
第40頁 498170 五、發明說明(37) 的坐標變換必需以當前高的導航速率進行。 如第十三圖,步驟(3·4·3)進一步包含: 3. 4. 3 . 1將測量的表達在機體坐標系的速度轉換為表 達在導航坐標系的速度; 3 . 4. 3 . 2將測量的的速度與I M U得出的速度相比較,得 出速度差; 3. 4.3. 3在一預定時間段内,積分該速度差。 在優選的應用中,步驟(2 )公開如下: 2C.通過一GPS接收機和一數據鏈,得到差分GPS定位數 據。 眾所周知,對L1和L2頻率,接收機的測量噪聲分別為 1 . 9 m m和2 . 4 m m,但對P Y和C A碼,接收機的測量噪聲分別 0.3m和3m。所以上述本發明實現方案用差分GPS(DGPS)載 波相位方法加以改進。 如第八圖,為了利用DGPS,定位辅助裝置8進一步包 含: 1 一 GPS接收機8A,稱為GPS運動接收機,用於接收GP.S 高頻信號,產生G P S粗測量(偽距,偽距率,和載波相 位),或者GPS位置和速度數據;並且 2 —數據鏈8B用於從GPS參考地點接收位置和速度GPS 粗測量(偽距和相位),以進行差分G P S定位。 為了提高性能,從導航測量器來的速度和加速度數 據,被反饋給GPS接收機,辅助GPS信號碼和載波相位的跟 蹤0Page 40 498170 V. Explanation of the invention (37) The coordinate transformation must be performed at the current high navigation rate. As shown in the thirteenth figure, step (3 · 4 · 3) further includes: 3. 4.3.1. Converting the measured expression speed in the body coordinate system to the speed expressed in the navigation coordinate system; 3.4.3. 2 Compare the measured speed with the speed obtained by the IMU to get the speed difference; 3. 4.3. 3 Integrate the speed difference over a predetermined period of time. In a preferred application, step (2) is disclosed as follows: 2C. Obtain differential GPS positioning data through a GPS receiver and a data link. As we all know, for L1 and L2 frequencies, the measurement noise of the receiver is 1.9 mm and 2.4 mm respectively, but for P Y and C A codes, the measurement noise of the receiver is 0.3 m and 3 m, respectively. Therefore, the above-mentioned implementation scheme of the present invention is improved by the differential GPS (DGPS) carrier phase method. As shown in the eighth figure, in order to use DGPS, the positioning assistance device 8 further includes: 1 A GPS receiver 8A, called a GPS motion receiver, is used to receive GP.S high-frequency signals and generate GPS rough measurements (pseudo-range, pseudo-range) Rate, and carrier phase), or GPS position and speed data; and 2—Data Link 8B is used to receive position and speed GPS coarse measurements (pseudorange and phase) from a GPS reference point for differential GPS positioning. In order to improve performance, the speed and acceleration data from the navigation measuring device are fed back to the GPS receiver to assist in tracking the GPS signal code and carrier phase.
498170 五、發明說明(38) 然而,GPS載波相位定位的高精度基於這樣的先決條 件,即相位模糊的求解。相位測量的固有模糊特性取決於 GP S接收機和衛星兩者。在理想的條件下,無載波相位跟 蹤誤差,知道接收機和衛星的真實位置,通過一個簡單的 數學計算可即時求解相位模糊。然而,實際存在著衛星星 歷誤差,GPS衛星時鐘誤差,大氣層傳播置後,多路徑效 應,接收機時鐘誤差,和從G P S碼和相位跟蹤回路來的在 距離測量中的接收機噪聲。因此,在此公開一種用於上述 D G P S實現方案的相位核糊解方法。 GPS接收機8A接收從GPS衛星來的GPS高頻信號,輸出 偽距,多普勒頻移,GPS衛星歷,以及大氣數據給卡爾曼 滤波器3 5。 相應地,如第九圖,在導航處理器3中運行的優選實 時軟件進一步包含 一新的衛星週期滑動檢測模塊3 6,接收來自GPS接收 機8 A的GPS測量,來自數據鏈8B的GPS參考測量,以確定是 否有新的GP S衛星進入視線或週期滑動發生;並且 一動態模糊解模塊37,接收來自GPS接收機8 A的GPS測 量,來自數據鏈8 B的GPS參考測量,當新的GPS衛星進入視 線或週期滑動發生時,它起作用,確定整周模糊。 對GPS測量,L1和L2的雙差標量方程為 r mr498170 V. Description of the invention (38) However, the high accuracy of GPS carrier phase positioning is based on the prerequisite condition, namely the solution of phase ambiguity. The inherent ambiguity of the phase measurement depends on both the GPS receiver and the satellite. Under ideal conditions, there is no carrier phase tracking error, the real position of the receiver and satellite is known, and the phase ambiguity can be solved immediately by a simple mathematical calculation. However, there are actually satellite ephemeris errors, GPS satellite clock errors, post-atmospheric propagation, multipath effects, receiver clock errors, and receiver noise in distance measurements from GPS signals and phase tracking loops. Therefore, a phase kernel paste method for the above D G P S implementation is disclosed herein. The GPS receiver 8A receives GPS high-frequency signals from GPS satellites and outputs pseudorange, Doppler shift, GPS satellite calendar, and atmospheric data to the Kalman filter 35. Accordingly, as shown in the ninth figure, the preferred real-time software running in the navigation processor 3 further includes a new satellite periodic slip detection module 36, which receives GPS measurements from the GPS receiver 8 A, and GPS references from the data link 8B Measure to determine if a new GPS satellite enters the line of sight or a periodic slip occurs; and a dynamic blurring module 37 receives GPS measurements from the GPS receiver 8 A and GPS reference measurements from the data link 8 B. When the new It works when a GPS satellite enters the line of sight or a periodic slip occurs, determining the entire week is blurred. For GPS measurements, the double difference scalar equations for L1 and L2 are r mr
第42頁 498170 五、發明說明(39) 其中(·)ι 表示雙差以(上一(乂一(.)丨+(.)丨的形式形成。 下標m和r表示兩個接收機,參考台和運動台。上標i 和j表示兩個不同的G P S衛星。P和Φ分別為偽距和相位長 度圍測量。厂是兩個天線,用戶GPS接收機和GPS衛星,在 名義時間上的相位中心幾何距離。&為名義幾何距離的修 正量。A表示波長。< 是雙差整模糊。|是L1和L2頻率電 離層效應的雙差殘數。 fk t是同溫層效應的雙差殘數。為相位中心變化的 雙差殘數。為多路徑效應的雙差殘數。窄道和寬道相 位長度的測量分別定義為Page 42 498170 V. Description of the invention (39) where (·) ι indicates that the double difference is formed in the form of (previous (乂 一 (.) 丨 + (.) 丨). The subscripts m and r indicate two receivers, Reference and sports stations. The superscripts i and j indicate two different GPS satellites. P and Φ are pseudorange and phase length range measurements respectively. The factory is two antennas, the user's GPS receiver and the GPS satellite, in nominal time. Phase center geometric distance. &Amp; is the correction of the nominal geometric distance. A represents the wavelength. ≪ is the double difference fuzzy. | Is the double difference residual of the ionospheric effect at the frequency of L1 and L2. Fk t is the stratosphere effect Double-difference residuals. Double-difference residuals with phase center changes. Double-difference residuals with multipath effects. Narrow and wide-channel phase length measurements are defined as
A /; 一 Λ A /ι+Λ φ,ί h /1 一 Λ Λ 對應整周模糊分別為 Ν'‘A /; One Λ A / ι + Λ φ, ί h / 1 One Λ Λ corresponds to the whole week ambiguity is Ν '‘
Knr« 所以窄道和寬道模糊的頻率分別為/w = /i*·/2 和 線性地幾何L1和L2方程,並且用G表示時段K上的時間, 順序平均的近似的雙差寬道模糊實數表示為Knr «So the frequency of the narrow and wide channels is / w = / i * · / 2 and the linear geometric L1 and L2 equations, and G is used to represent the time on the period K. The sequential averaged double difference wide channels Fuzzy real numbers are represented as
k ⑴ 第43頁 498170 五、發明說明(40) 近似的雙差窄道模糊實數表示為 其k ⑴ page 43 498170 V. Description of the invention (40) The approximate double-difference narrow-track fuzzy real number is expressed as
NiJ . nmr -UnJ -Φ7/ \ vv wmr l〇mr t Nij ; wmr 4ij-Pij-d ij \ wmr nmr pcw m • (h): k · (2) η Ρηυ fUnr k k , 表示電離層信號的觀測 fl fx •d Λ •d. ,和 ___ _____)// ___ ___ ^ 'f^hXmr 2mrt pCwm^A-f2 pClmr /t-/2 ΡΓ2/ Pc” ntr f'了0pc' mr七了pCl mr · 4和;lrt 分別為窄道和寬道模糊的 波長。並且,沒有電離層的偽距和相位長度模型分別定義 為 ? 2 ρ ϋ 一 f\" p(i__fl plJ riFmr ~~pL ~7l r\mr 75 ~7l r2mr d f:-fl • /2 fl 乂2-m < 如第九圖,當新的衛星週期滑動檢測模塊3 6工作時, 動態模糊解模塊37被起動。所以,來自GPS接收機8A的運 動台粗測量及多普勒頻移測量,和來自數據鏈8 B的參考粗NiJ. Nmr -UnJ -Φ7 / \ vv wmr l〇mr t Nij; wmr 4ij-Pij-d ij \ wmr nmr pcw m • (h): k · (2) η Ρηυ fUnr kk, which is the observation of the ionospheric signal fl fx • d Λ • d., and ___ _____) // ___ ___ ^ 'f ^ hXmr 2mrt pCwm ^ A-f2 pChemr / t- / 2 ΡΓ2 / Pc ”ntr f' 0pc 'mr seven pCl mr · 4 and; lrt are the narrow and wide channel blurred wavelengths respectively. Also, the pseudorange and phase length models without ionospheric layer are defined as? 2 ρ ϋ f \ " p (i__fl plJ riFmr ~~ pL ~ 7l r \ mr 75 ~ 7l r2mr df: -fl • / 2 fl 乂 2-m < As shown in the ninth figure, when the new satellite periodic slip detection module 36 is working, the motion blur solution module 37 is activated. Therefore, the GPS receiver receives Coarse measurement and Doppler frequency shift measurement of machine 8A, and reference coarse measurement from data link 8 B
第44頁Page 44
498170 五、發明說明(41) 測量,多普勒頻移測量,位置和速度,被輸入到動態模糊 解模塊3 7,以確定整周模糊。整周模糊被確定後,被輸入 卡爾曼濾波器3 5進一步改進G P S粗數據的測量精度。 如第十五圖至第十八圖表示了用於動態模糊解模塊3 7 的方法與過程。第十五圖表示了動態模糊解模塊3 7的過 程。當動態模糊解模塊37工作時,設置了一個搜索窗。該 搜索窗由若干時段組成,假定有N個時段。在搜索窗内, 採用一個中間模糊搜索策略I A S S,在每一個時段上搜索整 周板糊。 動態模糊解模塊3 7執行下列步驟: (a )當新的衛星週期滑動檢測模塊工作時,即新衛星 0 或週期滑動發生時,初始化動態模糊解模塊; (b )確定整周模糊,估計一個更精確的用戶導航解, 並且 (c )從動態模糊解模塊3 7送整模糊給卡爾曼濾、波器 35 〇 上述步驟(b )進一步包含以下步驟: (b. 1 )利用中間模糊搜索策略IASS和估計器庫,建立 一個模糊集並且確定模糊整週期;並且 (b · 2 )驗證和確認模糊整週期。 基本上,I A S S包含簡化的最小二乘法和超寬道技術。 在應用最小二乘法搜索模糊解之前,兩天線,參考台和運 _ 動台,共同可觀測的衛星可分為兩組: 主衛星,因為應用雙差方程,有最大高度角的衛星被498170 V. Description of the invention (41) Measurement, Doppler frequency shift measurement, position and velocity are input to the dynamic blur solution module 37 to determine the whole-cycle blur. After the whole-week blur is determined, it is input into the Kalman filter 3 5 to further improve the measurement accuracy of the G PS coarse data. Figures 15 through 18 show the method and process for the dynamic fuzzy solution module 37. Figure 15 shows the process of the dynamic fuzzy solution module 37. When the motion blur solution module 37 works, a search window is set. The search window consists of several periods, assuming N periods. In the search window, an intermediate fuzzy search strategy I A S S is used to search the whole week's paste in each period. The dynamic blur solution module 37 performs the following steps: (a) When the new satellite periodic slip detection module is working, that is, when the new satellite 0 or periodic slip occurs, the dynamic blur solution module is initialized; (b) determine the whole week blur, estimate an More accurate user navigation solution, and (c) send the whole blur to the Kalman filter and waver 35 from the dynamic blur solution module 37. The above step (b) further includes the following steps: (b. 1) using an intermediate fuzzy search strategy IASS and estimator library, establish a fuzzy set and determine the fuzzy integer period; and (b · 2) verify and confirm the fuzzy integer period. Basically, I A S S includes simplified least squares and ultra wide track techniques. Before applying the least square method to search the fuzzy solution, the two observable satellites with two antennas, the reference station and the mobile station can be divided into two groups: the main satellite, because the double difference equation is applied, the satellite with the maximum altitude angle is
第45頁 498170 五、發明說明(42) 定義為參考衛星。主衛星包括接著四個有較大高度的衛 星,這樣有四個獨立的雙差方程。 次衛星,其餘可觀測的衛星歸於次衛星類。 如第十六圖所示,IASS過程包含一個雙差寬道模糊解 模塊371,一個模糊區域確定模塊3 7 2,一個最小二乘搜索 估計器3 7 3,一個位置計算模塊3 7 4,一個次雙差寬道模糊 解模塊3 7 5,一個超寬道技術模塊3 7 6,和一個L 1和L 2模糊 解模塊3 7 7。 I A S S過程的第一步是在主雙差寬道模糊解模塊,解主 雙差寬道模糊。關於運動台位置的預先信息,從無電離層 的偽距測量獲得,和近似的雙差寬道相位長度測量(方程 1 )相結合形成即時方程。同時,關於運動台位置的預先信 息也可由導航處理器3的輸出給出。應用最小方差與預先 信息估計運動台位置和主雙差寬道模糊解。 在估計主雙差寬道模糊解之後,該估計的主雙差寬道 模糊解和相應的協因子陣被送入模糊區域確定模塊,在其 中,基於估計的雙差寬道模糊解和相應的協因子陣,建立 一個模糊搜索區域。該模糊搜索區域被送入最小二乘搜索 估計器。應用一個標準的最小二乘搜索方法,在最小二乘 搜索估計器中,搜索模糊集。並且,標準的最小二乘搜索 方法可被簡化,以加速模糊搜索。簡化的最小二乘搜索方 法定義為直接搜索模糊集,最小化二次型形式的殘差Page 45 498170 V. Description of Invention (42) Defined as a reference satellite. The main satellite consists of four satellites with larger altitudes followed by four independent double-difference equations. Sub-satellites, and the remaining observable satellites fall into the sub-satellite category. As shown in Figure 16, the IASS process includes a double-difference wide-channel fuzzy solution module 371, a fuzzy region determination module 3 7 2, a least square search estimator 3 7 3, a position calculation module 3 7 4, and a The second double-difference wide-channel fuzzy solution module 3 7 5, an ultra-wide-channel technical module 3 7 6, and an L 1 and L 2 fuzzy solution module 3 7 7. The first step of the I A S S process is to resolve the main double-difference wide-channel fuzzy solution module in the main double-difference wide-channel fuzzy solution module. The advance information about the position of the motion table is obtained from the ionosphere-free pseudorange measurement and combined with the approximate double-difference wide-track phase length measurement (Equation 1) to form an instant equation. At the same time, advance information about the position of the motion table can also be given by the output of the navigation processor 3. The minimum variance and prior information are used to estimate the motion station position and the main double-difference wide-channel fuzzy solution. After estimating the main double-difference wide-channel fuzzy solution, the estimated main double-difference wide-channel fuzzy solution and the corresponding co-factor matrix are sent to a fuzzy region determination module, in which, based on the estimated double-difference wide-channel fuzzy solution and the corresponding Cofactor matrix, build a fuzzy search area. The fuzzy search area is fed into a least square search estimator. Apply a standard least squares search method to search the fuzzy set in the least squares search estimator. Also, the standard least square search method can be simplified to speed up fuzzy searches. The simplified least squares search method is defined as a direct search of fuzzy sets to minimize the residuals of the quadratic form
第46頁 498170 五、發明說明(43) 其中、是雙差寬道模糊解實數的最優估計向量,心是 在搜索區域的雙差寬道模糊解向量,是對應於雙差寬道 模糊解估計的協因子陣,沒有統計或經驗測試因為估計器 庫將執行確認的任務。 確定的主雙差寬道模糊解被送給位置計算模塊,計算 運動台的位置。求得的運動台的位置送給次雙差寬道模糊 解模塊,應用寬道模糊確定的運動台的位置給次雙差寬道 相位測量,以球定次雙差寬道模糊解。Page 46 498170 V. Description of the invention (43) Among them, is the optimal estimation vector of the real number of the double-difference wide-channel fuzzy solution. Estimated cofactor matrices, no statistical or empirical tests because the estimator library will perform the task of confirmation. The determined main double-difference wide-channel fuzzy solution is sent to the position calculation module to calculate the position of the motion table. The obtained position of the motion table is sent to the sub-double-difference wide-channel fuzzy solution module, and the position of the motion table determined by the wide-channel blur is used to measure the phase of the second-double-difference wide-channel.
把求得的雙差寬道模糊解代入方程2,可求得近似的 雙差窄道模糊解。超寬道技術指出,如果寬道模糊解為偶 (奇),則相應的窄道模糊解為奇(偶),否則相反。應用超 寬道技術,可在寬道技術模塊中求得窄道模糊解。 所以,在L 1和L 2模糊解模塊中,L 1和L 2模糊解從寬道 模糊解和窄道模糊解的組合求得,其分別對應於By substituting the obtained double-difference wide-channel fuzzy solution into Equation 2, an approximate double-difference narrow-channel fuzzy solution can be obtained. The super wide-channel technique states that if the wide-channel fuzzy solution is even (odd), the corresponding narrow-channel fuzzy solution is odd (even), otherwise the opposite is true. By applying the ultra-wide-channel technology, a narrow-channel fuzzy solution can be obtained in the wide-channel technology module. Therefore, in the L 1 and L 2 fuzzy solution modules, the L 1 and L 2 fuzzy solutions are obtained from the combination of the wide-channel fuzzy solution and the narrow-channel fuzzy solution, which respectively correspond to
和with
Nj +Njj Wmr_nmr 2Nj + Njj Wmr_nmr 2
NlJ -N nmr w 2~NlJ -N nmr w 2 ~
如第十五圖,當從I A S S來的當前模糊集不同於上一時 段時,當前模糊集成為估計器庫3 78和相應權庫3 7 9的一個 新成員。當當前模糊集與在估計器庫3 7 8中的一個以前的 模糊集相同時,估計器庫3 7 8中的卡爾曼濾波器數目不 變。完整形式的估計器庫3 7 8和相應權庫3 7 9表示在第十八 圖中。 建立估計器庫和權庫的過程表示在第十七圖中,包含As shown in Figure 15, when the current fuzzy set from I A S S is different from the previous period, the current fuzzy integration is a new member of the estimator bank 3 78 and the corresponding weight bank 3 7 9. When the current fuzzy set is the same as a previous fuzzy set in the estimator library 3 78, the number of Kalman filters in the estimator library 3 78 is unchanged. The full form estimator library 3 7 8 and the corresponding weight library 3 7 9 are shown in the eighteenth figure. The process of building the estimator library and weight library is shown in Figure 17 and contains
第47頁 498170 五、發明說明(44) 以下步驟: 應用I ASS在搜索窗的第一時段搜索整模糊集。因為在 第一時段前估計器庫3 7 8中沒有成員,整模糊集成為估計 器庫的一個成員。基於模糊集和相位測量,估計運動台位 置確定的模糊解,接著在權庫中計算相應的權。權的計算 根據 Ά,(3) 7=1 其中〜(圳騎⑷綠2···,^Ν14 乘積的第一項可表示為 i = 1,2,. (4) _1_ "(2;^ det(cov(zk^))Page 47 498170 V. Description of the invention (44) The following steps: Apply I ASS to search the entire fuzzy set in the first period of the search window. Because there are no members in the estimator bank 3 7 8 before the first period, integer fuzzy integration is a member of the estimator bank. Based on the fuzzy set and phase measurement, the fuzzy solution determined by the position of the motion station is estimated, and then the corresponding weights are calculated in the weight library. The calculation of weights is based on Ά, (3) 7 = 1 where ~ (zhenqi ⑷green 2 ···, ^ Ν14 The first term of the product can be expressed as i = 1,2 ,. (4) _1_ "(2; ^ det (cov (zk ^))
-exp zTkoov(A0kYi 其被假設定義為高斯分布。方程4表明了〜ίΔφ1ΐΌ 的 累加特性,其中Ρ,«(Δφ1|Ν0代表測量序列 當前時刻G在單個模糊集Ν,.條件下的概率函數。換而言 之,權的計算不僅取決於當前時段的數據,而且取決於以 前時段的數據。det(·)和(·广 分別表示矩陣的行列式和逆。 ^是^時刻最優測量殘差,測量值減去最優計算值。-exp zTkoov (A0kYi, which is assumed to be defined as a Gaussian distribution. Equation 4 shows the cumulative characteristics of ~ ίΔφ1ΐΌ, where P, «(Δφ1 | N0 represents the probability function of the measurement sequence G at a single fuzzy set N ,. In other words, the calculation of the weight depends not only on the data of the current period, but also on the data of the previous period. Det (·) and (· wide denote the determinant and inverse of the matrix respectively. ^ Is the optimal measurement residual at time ^ , The measured value minus the optimal calculated value.
cov(M^) = _£^i:[是測量在L 時刻的方差陣。r是在每一個時 段滅1量的維數。對搜索窗的第一時段(y (k=l) 方程4 (概 率)成為cov (M ^) = _ £ ^ i: [is a matrix of variances measured at time L. r is the number of dimensions that disappears by 1 in each period. For the first period of the search window (y (k = l) Equation 4 (probability) becomes
第48頁 498170 五、發明說明(45) ^/(2^)rdet(cov(zkPj) •exp z[ c〇v (辦Γ、 1,2,···,Ζλ(5) 當然,在權庫3 7 9中唯一的權(D = 1方程3 )之值為1。在 這一時段中,最優的運動台位置為運動台的位置乘以相應 的權。基於最優的運動台位置和多普勒頻移,估計運動台 速度。Page 48 498170 V. Description of the invention (45) ^ / (2 ^) rdet (cov (zkPj) • exp z [c〇v (Office Γ, 1,2, ..., Zλ (5) Of course, in the right The value of the sole weight (D = 1 Equation 3) in library 3 7.9 is 1. In this period, the optimal stage position is the position of the stage multiplied by the corresponding weight. Based on the optimal stage position And Doppler shift to estimate the speed of the table.
在搜索窗的第二時段,用I ASS搜索模糊集。可能發生 兩種情形: 2 - 1 .當整周模糊集與前面某一時段時段1相同時,估 計器庫3 7 8中的卡爾曼濾波器的數目仍是1 ,如第十七圖下 半部所示。基於模糊集和相位測量時段2,可估計運動台 的位置模糊確定的解及累加性的計算在權庫中相應的權即 方程3和4,其中D=1。時段2的最優的運動台的位置等於運 動台的位置乘以相應的權自然,中這種情形下權值等於 1。基於最優的運動台位置和多普勒頻移,估計運動台速 度。In the second period of the search window, I ASS is used to search the fuzzy set. Two situations may occur: 2-1. When the whole week fuzzy set is the same as the period 1 in a certain period, the number of Kalman filters in the estimator library 3 7 8 is still 1, as shown in the lower half of the seventeenth figure Department shown. Based on the fuzzy set and phase measurement period 2, the solution of the position fuzzy determination of the motion station and the calculation of the accumulative accumulative weights in the weight base are Equations 3 and 4, where D = 1. The optimal position of the mobile station in period 2 is equal to the position of the mobile station multiplied by the corresponding weighted nature, in which case the weight is equal to 1. Based on the optimal mobile station position and Doppler frequency shift, the mobile station speed is estimated.
2 - 2 .當整周模糊集與前面某一時段時段1不同時,當 前模糊集估計器的一個新成員,即估計器庫3 7 8中的卡爾 曼濾波器的數目是2,如第十七圖上半部所示。基於每一 個模糊集和相同的相位測量時段2,可估計單個運動台位 置(模糊確定的解),在權庫中每一個相應權的計算基於方2-2. When the whole week fuzzy set is different from the previous period and period 1, a new member of the current fuzzy set estimator, that is, the number of Kalman filters in the estimator library 3 7 8 is 2, such as the tenth Shown in the upper half of the figure. Based on each fuzzy set and the same phase measurement period2, the position of a single motion station (the solution of fuzzy determination) can be estimated, and the calculation of each corresponding weight in the weight base is based on the square
第49頁 498170 五、發明說明(46) 程3和5 (其中D = 2 )。換而言之,當新的模糊集被求解時, 在權庫3 7 9中每一個相應的權從頭計算。時段2上,運動台 最優位置等於單個運動台位置乘以相應權的和。基於最優 的運動台位置和多普勒頻移,估計運動台速度。 對搜索窗的其餘時段,應用與步驟2相同的過程。在 搜索窗的最後一個時段,時段N,IASS搜索之後,估計器 庫3 7 8和權庫被完全建立,如第十八圖。如第十八圖所 示,在估計器庫中的每一個卡爾曼濾波器有它自己的模糊 集,其在搜索窗期間,由IASS選擇。所以,在估計器庫 3 7 8中卡爾曼濾波器的數目D是一個任意正整數,其取決於 搜索窗期間,從I ASS搜索來的不同的模糊集的數目。基於 _ 每一個模糊集和相位測量,可估計單個運動台位置模糊確 定的解,可累加計算在權庫中每一個相應權的基於方程3 和5。因此,運動台最優位置等於單個運動台位置乘以相 應權的和。基於最優的運動台位置和多普勒頻移,估計運 動台速度。按照這個手續,直到滿足一個判據,該判據定 義為: ^(ao;|n>c 其中C是一個很大的不確定數,以保證模糊集足夠的 魯棒。這一判據滿足之後,估計器庫3 7 8和權庫3 7 9停止工 作,輸出所選擇的整模糊給卡爾曼濾波器,如第十八圖。_ 在確認期間,從搜索窗的第一時段到當估計器庫3 7 8和權 庫3 7 9停止工作的時段,估計器庫3 7 8和權庫3 7 9識別正確Page 49 498170 V. Description of the invention (46) Processes 3 and 5 (where D = 2). In other words, when the new fuzzy set is solved, each corresponding weight in the weight library 379 is calculated from the beginning. During period 2, the optimal position of the sports table is equal to the position of a single sports table times the sum of corresponding weights. Based on the optimal mobile station position and Doppler frequency shift, the mobile station speed is estimated. For the rest of the search window, the same procedure as in step 2 is applied. In the last period of the search window, period N, after the IASS search, the estimator bank 3 7 8 and the weight bank are completely established, as shown in Figure 18. As shown in Figure 18, each Kalman filter in the estimator library has its own fuzzy set, which is selected by IASS during the search window. Therefore, the number of Kalman filters in the estimator library 3 7 8 is an arbitrary positive integer, which depends on the number of different fuzzy sets searched from I ASS during the search window. Based on each fuzzy set and phase measurement, the solution of the fuzzy determination of the position of a single motion station can be estimated, and each corresponding weight in the weight library can be accumulated and calculated based on equations 3 and 5. Therefore, the optimal position of the sports table is equal to the sum of the weights of the individual sports tables. Based on the optimal mobile station position and Doppler frequency shift, the mobile station speed is estimated. Follow this procedure until a criterion is satisfied, which is defined as: ^ (ao; | n > c where C is a large uncertainty number to ensure that the fuzzy set is sufficiently robust. After this criterion is satisfied, The estimator library 3 7 8 and the weight library 3 7 9 stop working and output the selected integer blur to the Kalman filter, as shown in Figure 18. _ During the confirmation period, from the first period of the search window to the current estimator Library 3 7 8 and weight library 3 7 9 stopped working period, the estimator library 3 7 8 and weight library 3 7 9 are identified correctly
第50頁 498170 五、發明說明(47) 的整周模糊集,並實時估計運動台的位置。估計器庫3 7 8 和權庫3 7 9的一個重要特性是權庫中對應於估計器庫3 7 8中 正確的整周模糊的權趨近於一,而其他,對應於其餘的模 糊集,收斂於零。所以,正確的被選擇的整周模糊集是有 接近於一的權的整周模糊集。在整個過程中,當新的衛星 或週期滑動發生,動態模糊解模塊3 7將啟動工作。 優選的IMU1是一小型IMU,其中,内置了一位置和姿 態處理機。該位置和姿態處理機可替代上述公開的I N S計 算模塊3 1。該小型I M U公開如下。 通常,一個慣性測量組件用來測量載體的運動參數。 從原理上講,慣性測量組件依賴於三個正交安裝的慣性角 _ 速率產生器和三個正交安裝的加速度產生器,獲得三軸角 速率和加速度信號。三個正交安裝的慣性角速率產生器和 三個正交安裝的加速度產生器以及相應的支撐結構和電子 電路,傳統上被稱為慣性測量組件I MU。傳統的慣性測量 組件可分為平台式慣性測量組件和捷聯式慣性測量組件。 在平台式慣性測量組件中,角速率產生器和加速度產生器 被安裝在一穩定平台上。載體的姿態測量可直接從平台的 結構中取得。然而,載體的姿態角速率測量不能從平台中 直接取得。而且,平台式慣性測量組件中要有相應的高精 度反饋控制回路。 與平台式慣性測量組件相比,在捷聯式慣性測量組件 ® 中,角速率產生器和加速度產生器直接於載體固聯,角速 率產生器和加速度產生器的輸出信號被表達在載體坐標系Page 50 498170 V. The whole week fuzzy set of the description of the invention (47), and estimate the position of the moving platform in real time. An important feature of the estimator library 3 7 8 and the weight library 3 7 9 is that the weights in the weight library that correspond to the correct whole-cycle blur in the estimator library 3 7 8 are closer to one, while the other ones correspond to the remaining fuzzy sets. , Converges to zero. Therefore, the correct selected weekly fuzzy set is a weekly fuzzy set with a weight close to one. During the whole process, when a new satellite or periodic sliding occurs, the dynamic blurring module 37 will start to work. The preferred IMU1 is a small IMU in which a position and attitude processor is built. This position and attitude processor can replace the above-discussed I NS calculation module 31. The small I M U is disclosed below. Usually, an inertial measurement component is used to measure the motion parameters of the carrier. In principle, the inertial measurement component relies on three orthogonally mounted inertial angle _ rate generators and three orthogonally mounted acceleration generators to obtain triaxial angular rate and acceleration signals. Three orthogonally mounted inertial angular rate generators and three orthogonally mounted acceleration generators, along with corresponding supporting structures and electronic circuits, have traditionally been referred to as the inertial measurement unit I MU. Traditional inertial measurement components can be divided into platform-type inertial measurement components and strap-down inertial measurement components. In the platform type inertial measurement unit, the angular rate generator and the acceleration generator are installed on a stable platform. The attitude measurement of the carrier can be obtained directly from the structure of the platform. However, the attitude angular rate measurement of the carrier cannot be taken directly from the platform. In addition, the platform-type inertial measurement component must have a corresponding high-precision feedback control loop. Compared with the platform type inertial measurement module, in the strapdown inertial measurement module ®, the angular rate generator and acceleration generator are directly connected to the carrier, and the output signals of the angular rate generator and acceleration generator are expressed in the carrier coordinate system.
第51頁 498170 五、發明說明(48) 内。載體的姿態和姿態角速率信號可通過一系列計算取 得。 傳統的慣性測量組件使用不同種類的角速率產生器和 加速度產生器。傳統的角速率產生器包括鐵轉子陀螺和光 學陀螺,例如,液浮積分陀螺,動力調諧陀螺,環形激光 陀螺,光纖陀螺,靜電陀螺,約瑟夫陀螺,以及半球諧振 陀螺等。傳統的角速率產生器包括脈衝積分擺式加速度 計,擺式陀螺加速度計等。Page 51 498170 V. Description of the invention (48). The attitude and attitude angular rate signals of the carrier can be obtained through a series of calculations. Traditional inertial measurement components use different kinds of angular rate generators and acceleration generators. Traditional angular rate generators include iron rotor gyros and optical gyros, such as liquid floating integral gyros, dynamic tuning gyros, ring laser gyros, fiber optic gyros, electrostatic gyros, Joseph gyros, and hemispherical resonance gyros. Traditional angular rate generators include pulse integral pendulum accelerometers, pendulum gyro accelerometers, and so on.
傳統的慣性測量組件的信號處理方法、機械結構、電 子電路隨所使用的不同種類的陀螺和加速度計而不同。由 於傳統的陀螺和加速度計具有大的體積、大的功率消耗、 可移動的部件,所以要求具有複雜的反饋控制回路以便獲 得穩定的運動測量。例如,動力調諧陀螺和加速度計需要 力再平衡回路以便使移動部件保持再零位置。通常在基於 動力調諧陀螺和加速度計的慣性測量組中,使用脈衝調制 力再平衡回路。因此,通常傳統的慣性測量組件具有以下 特點.: •成本局 •尺寸大(體積、重量)The signal processing method, mechanical structure, and electronic circuit of traditional inertial measurement components vary with different types of gyroscopes and accelerometers used. Because traditional gyroscopes and accelerometers have large volume, large power consumption, and movable components, they require complex feedback control loops in order to obtain stable motion measurements. For example, power-tuned gyroscopes and accelerometers require a force-rebalancing loop to keep moving parts in a zero-return position. Pulse-modulated force rebalance circuits are commonly used in inertial measurement groups based on dynamically tuned gyros and accelerometers. Therefore, traditional inertial measurement components usually have the following characteristics: • Cost control • Large size (volume, weight)
•大的功率消耗 •壽命短 •長的起動時間 傳統的慣性測量組件的這些缺點極大地限制了它們應 用在一些正在出現的商業應用場合,例如,移動通信的相• Large power consumption • Short life • Long start-up time These shortcomings of traditional inertial measurement components have greatly limited their use in emerging commercial applications, such as mobile communication
第52頁 498170 五、發明說明(49) 控陣天線、汽車導航、以及一些手持式設備。 新的慣性慣性傳感器技術正在出現。採用微機電系統 (Microelectromechanical System, MEMS)技術的慣性傳 感器,與傳統慣性傳感器相比,可極大提高制導、導航、 控制系統的成本、尺寸和可靠性。 微機電系統可簡單地稱之為微機械。微機電系統被認 為是圭革命的下一個符合邏輯的步驟。這一步驟要比在矽 片上集成更多的晶體管不同而且更加重要。未來30年,這 場矽片革命的本質是給矽片結構引入新的革命,使矽片不 僅可思考,而且可敏感,執行動作,以及通信。Page 52 498170 V. Description of the invention (49) Array antenna, car navigation, and some handheld devices. New inertial inertial sensor technology is emerging. Compared with traditional inertial sensors, inertial sensors using microelectromechanical system (MEMS) technology can greatly increase the cost, size, and reliability of guidance, navigation, and control systems. Micro-electro-mechanical systems can be simply referred to as micro-mechanics. Micro-electro-mechanical systems are considered to be the next logical step in the Guinea's revolution. This step is different and more important than integrating more transistors on the silicon. The essence of this silicon revolution in the next 30 years is to introduce a new revolution in silicon structure, making silicon not only thinkable, but also sensitive, perform actions, and communicate.
目前已經發展出各種MEMS角速率傳感器,來滿足對低 成本且可靠的角速率傳感器的需求,應用領域從汽車到消 費電子產品。單軸ME MS角速率傳感器基於線諧振原理,比 如調諧叉,或者結構模態諧振原理,比如振動環。更有盛 者,多軸MEMS角速率傳感器可基於張力彈簧懸掛的轉動剛 性轉子的角諧振原理。現有的大多數ME MS角速率傳感器是 基於靜電驅動的調諧音叉方法。Various MEMS angular rate sensors have been developed to meet the demand for low cost and reliable angular rate sensors in applications ranging from automotive to consumer electronics. The uniaxial ME MS angular rate sensor is based on the principle of linear resonance, such as a tuning fork, or the principle of structural modal resonance, such as a vibrating ring. Even better, multi-axis MEMS angular rate sensors can be based on the angular resonance principle of a rotating rigid rotor suspended by a tension spring. Most of the existing ME MS angular rate sensors are based on electrostatically driven tuning tuning fork methods.
大多數MEMS加速度計是力反饋類型,使用閉環電容敏 感和靜電施力方法。例如,助佩公司的加速度計就是一典 型,它具有單矽片結構,包括張力擺及其電容信號讀出裝 ‘置和扭力器。模擬器件公司的MEMS加速度計採用片内 BIM0S工藝製作的集成多層矽結構,包括精密電壓參考 器,本地振盪器,放大器,解調器,力反饋回路,及自檢 電路。Most MEMS accelerometers are force feedback types, using closed-loop capacitive sensing and electrostatic force methods. For example, the accelerometer of the company is a typical one, which has a single silicon structure, including a tension pendulum and its capacitive signal readout device and a torque device. Analog Devices' MEMS accelerometer uses an integrated multilayer silicon structure manufactured on-chip BIM0S process, including precision voltage reference, local oscillator, amplifier, demodulator, force feedback loop, and self-test circuit.
第53頁 498170 五、發明說明(50) 雖然從商業市場上已可獲得微小尺寸、低功率消耗的 Μ E M S角速率傳感器和加速度計,然而,沒有高性能、微小 尺寸、低功率消耗的慣性測量組件。 目前,MEMS器件利用微電子電路的底層結構來產生微 小尺寸的複雜機械。這些機械可具有許多功能,包括敏 感、通信及執行。這些MEMS器件可廣泛地應用於各類商業 系統。 製造小型慣性測量組件的困難在於使用低成本、低精 度的角速率傳感器和加速度計製造IMU,該IMU具有: •低成本 •小尺寸 φ •輕重量 •低功率消耗 •無損壞期/長的使用壽命 •立即起動特性 •大的動態範圍 •高靈敏度 •高穩定性 •南精度 為了達到上述的高性能,許多難點需要解決,如: (1 )能獲得微小的角速率傳感器和加速度計。目 前,最小的角速率傳感器和加速度計就是MEMS角速率傳感 · 器和加速度計。 (2 )需設計相應的機械結構。Page 53 498170 V. Description of the invention (50) Although the MEMS angular rate sensor and accelerometer with small size and low power consumption are available from the commercial market, there is no high performance, small size, and low power consumption inertial measurement. Components. Currently, MEMS devices make use of the underlying structure of microelectronic circuits to produce complex machinery with tiny dimensions. These machines can have many functions, including sensitivity, communication, and execution. These MEMS devices can be widely used in various commercial systems. The difficulty in manufacturing small inertial measurement components is to use a low-cost, low-accuracy angular rate sensor and accelerometer to manufacture the IMU, which has: • Low cost • Small size φ • Light weight • Low power consumption • No damage period / long use Lifetime • Immediate start characteristics • Large dynamic range • High sensitivity • High stability • South accuracy In order to achieve the above-mentioned high performance, many difficulties need to be solved, such as: (1) Can obtain tiny angular rate sensors and accelerometers. Currently, the smallest angular rate sensors and accelerometers are MEMS angular rate sensors and accelerometers. (2) The corresponding mechanical structure needs to be designed.
第54頁 498170 五、發明說明(51) (3 )需設計相應的電子電路。 (4 )滿足相應的熱設計要求以便補償MEMS傳感器的 熱效應。 (5 )相應的電子電路的尺寸和功耗應當大大縮小。 本專利的I M U優選使用角速率產生器和加速度產出器,例 如,MEMS角速率器件陣列或陀螺陣列,以便產生載體的三 軸角速率信號;Μ E M S加速度產出器陣列或加速度計陣列, 以便產生載體的三軸加速度信號。載體的運動測量,如姿 態和航向角,通過處理來自角速率產生器的三軸角速率信 號和來自加速度產出器的三軸加速度信號取得。 在本專利中,角速率產生器和加速度產出器的輸出信 _ 號被處理獲得高精度的載體角度增量和速度增量數字信 號,進一步經過處理取得在動態環境下載體的高精度位 置、速度、姿態和航向測量值。 如第十九圖,本專利之小型慣性測量組件包括一角速 率產生器C5,來產生三軸(X,Υ,Ζ軸)角速率信號;一 加速度產出器C10,來產生三軸(X,Υ,Ζ軸)加速度信 號;一角增量和速度增量產生器C6,用來將三軸角速率信 號轉換為數字角度增量和將三軸加速度信號轉換為數字速 度增量。 進 一步,一位置和姿態處理機C 8 0被包含在本專利之 小型慣性測量組件中,它使用三軸數字角度增量和三軸數 ® 字速度增量計算位置、速度、姿態和航向測量值,以便提 供豐富的運動測量滿足不同用戶的需要。Page 54 498170 V. Description of the invention (51) (3) The corresponding electronic circuit needs to be designed. (4) Meet the corresponding thermal design requirements in order to compensate the thermal effects of the MEMS sensor. (5) The size and power consumption of the corresponding electronic circuit should be greatly reduced. The IMU of this patent preferably uses an angular rate generator and an acceleration generator, such as an MEMS angular rate device array or a gyro array, in order to generate a triaxial angular rate signal of the carrier; the MEMS acceleration generator array or the accelerometer array, so Generate a triaxial acceleration signal for the carrier. The motion measurements of the carrier, such as attitude and heading angle, are obtained by processing the three-axis angular rate signal from the angular rate generator and the three-axis acceleration signal from the acceleration generator. In this patent, the output signals of the angular rate generator and acceleration generator are processed to obtain high-precision digital signals of the carrier's angular increment and velocity increment, and further processed to obtain the high-precision position of the download body in a dynamic environment, Speed, attitude, and heading measurements. As shown in Figure 19, the small inertial measurement component of this patent includes an angular rate generator C5 to generate three-axis (X, Υ, Z-axis) angular rate signals; an acceleration generator C10 to generate three-axis (X, (Z axis, Z axis) acceleration signal; one-angle increment and speed increment generator C6 is used to convert the three-axis angular rate signal into digital angular increment and the three-axis acceleration signal into digital velocity increment. Further, a position and attitude processor C 80 is included in the small inertial measurement unit of this patent, which uses three-axis digital angle increments and three-axis number® word speed increments to calculate position, velocity, attitude, and heading measurements In order to provide rich motion measurement to meet the needs of different users.
第55頁 498170 五、發明說明(52) 位置和姿態處理機C80進一步包含兩個可選擇的執行 模塊z (1)姿態和航向模塊C81 ,用來產生姿態和航向角; (2 )位置、速度,姿態和航向模塊C 8 2,用來產生位 置、速度和姿態角。 選擇執行姿態和航向模塊C 8 1使小型慣性測量組件具 有航向姿態參考系統(Attitude Heading Reference System, ARHS)功能。選擇執行位置、速度,姿態和航向 模塊C 8 2使小型慣性測量組件具有慣性導航系統 (Inertial Navigation System, INS)功能。 通常,角速率產生器C 5和加速度產出器C 1 0對環境溫 籲 度變化非常敏感。為了提高測量精度,如第二十圖,本專 利進一步包含一熱控制器件,以便將角速率產生器C 5,加 速度產出器C10和角增量和速度增量產生器C6的工作溫度 保持在設定值。值得指出的是如果角速率產生器C 5,加速 度產出器10和角增量和速度增量產生器C6工作在一溫度恆 定的環境中,則可不用該熱控制器件。 依據如第二十六圖所示的本發明的小型慣性測量組件 的優選方案,該熱控制器件進一步包含一熱敏感產生器 C1 5,一加熱器C20以及一熱處理器C30。 熱敏感產生器C15與角速率產生器C5 ,加速度產出器 C10和角增量和速度增量產生器C6並行工作,來產生溫度 _ 信號,以便以便將角速率產生器5,加速度產出器C 1 0和角 增量和速度增量產生器C 6的工作溫度保持在設定值。設定Page 55 498170 5. Invention description (52) The position and attitude processor C80 further includes two optional execution modules z (1) attitude and heading module C81 for generating attitude and heading angle; (2) position and speed The attitude and heading module C 8 2 is used to generate position, speed and attitude angle. Selecting the Attitude and Heading Module C 8 1 enables the small inertial measurement module to have an Attitude Heading Reference System (ARHS) function. Selecting the execution position, speed, attitude, and heading Module C 8 2 enables inertial navigation system (INS) functions for small inertial measurement components. Generally, the angular rate generator C 5 and the acceleration generator C 10 are very sensitive to changes in ambient temperature appeal. In order to improve the measurement accuracy, as shown in the twentieth chart, this patent further includes a thermal control device in order to maintain the working temperature of the angular rate generator C 5, the acceleration generator C 10 and the angular and speed increment generator C 6 at Set value. It is worth pointing out that if the angular rate generator C5, the acceleration generator 10 and the angular and speed increment generator C6 operate in a constant temperature environment, the thermal control device may not be used. According to a preferred solution of the small inertial measurement module of the present invention as shown in Fig. 26, the thermal control device further includes a heat sensitive generator C1 5, a heater C20, and a heat processor C30. The thermal sensitive generator C15 works in parallel with the angular rate generator C5, the acceleration generator C10 and the angular and velocity incremental generator C6 to generate a temperature_ signal in order to convert the angular rate generator 5, the acceleration generator The operating temperature of C 1 0 and the angular and speed increment generator C 6 is maintained at the set value. set up
第56頁 498170 五、發明說明(53) 的溫度是一常值,可選擇在丨5 〇 F和丨8 5 F之間,優選丨7 6 f (0 · 1 F )。 來自熱敏感產生器C15產生的溫度信號,被輸出給教 ,熱處理器C3〇使用該溫度信號、溫度刻度。係熱數 量ίϊΐ產6 和加速度產出器C10和角增量和速度增 ί ί ί Γ f 的工作溫度,來計算溫度控制指令並形 ί驅動#號給加熱器C20,來控制加熱器C20產生足 ” f ,保持角速率產生器C5和加速度產出器。。和角 增I和速度增量^生器C6的預定的工作溫度。 角 角速率產生器C 5和加速度產出器C 1 0的溫度特性泉 性夂Ζ ί ί :系列角速率產生器和加速度產出器的溫度特 性參數標定過程得到。 又讨 致7 At Ϊ心十圖’當沒有熱處理器c 3 0和加熱器c 2 0時, 1?由,環士兄溫度變化所引起的角速率產生器和加 ^ X產出器測量誤差,本發明的小型慣性測量組 ,用來接收來自熱敏感產生器⑴產生 向模icf如輸,出-數子溫度信號給位置、速度,姿態和航 I尨/ ^ 。如弟二十圖,該溫度數字化器C18可優選為〆 板擬/數字轉換器C182。 ^f二t二位置、速度’姿態和航向模塊C82使用來自 A : T 器018的角速率產生器C5和加速度產出器C10的 二:=私查詢角速率產生器C5和加速度產出器cl〇 晉由二>數’補償輸入的數字角度增量和數字速度增 、…效應誤差,使用補償後的數字角度增量和數字速Page 56 498170 V. Description of the invention (53) The temperature is a constant value and can be selected between 5o F and 8 5 F, preferably 7 6 f (0 · 1 F). The temperature signal from the thermal sensitive generator C15 is output to the teaching, and the thermal processor C30 uses the temperature signal and temperature scale. The amount of heat is generated by 6 and the acceleration generator C10 and the angular increase and speed increase. Ί Γ f Calculates the temperature control instruction and drives the ## to the heater C20 to control the heater C20 to produce "", Keep the angular rate generator C5 and the acceleration generator ... and the predetermined operating temperature of the angular increaser I and the speed increaser C6. The angular angular rate generator C5 and the acceleration generator C1 0 The temperature characteristics of the spring are: 系列 The temperature characteristic parameters of the series of angular rate generators and acceleration generators are obtained during the calibration process. Again, 7 At At 心 十 图 'When there is no heat processor c 3 0 and heater c 2 0, 1? Measurement errors of angular rate generators and X-ray generators caused by changes in the temperature of the ring brother. The small inertial measurement group of the present invention is used to receive icf from the thermally sensitive generator. For example, the output-number temperature signal is given to position, speed, attitude, and flight I 尨 / ^. As shown in Figure 20, the temperature digitizer C18 can be preferably a pseudo-board analog / digital converter C182. ^ F2t2 Position, speed 'attitude and heading module C82 uses from A: T device 0 18 of the angular rate generator C5 and the acceleration generator C10: = Privately query the angular rate generator C5 and the acceleration generator cl0. The number of digital angle increments and digital speed increments of the compensation input, … Effect error, using compensated digital angular increment and digital speed
498170 五、發明說明(54) 度增量在姿態和航向處理器C 8 0中計算姿態和航向角。 在多數應用場合,角速率產生器C5和加速度產出器 C10的輸出信號是模擬電壓信號。來自角速率產生器C5產 生的三軸角速率模擬電壓信號直接正比於載體的角速率, 來自加速度產出器C 1 0產生的三軸加速度模擬電壓信號直 接正比於載體的加速度。 當角速率產生器C5和加速度產出器C10輸出的模擬電 壓信號太弱,以致角增量和速度增量產生器C 6不能讀取 時,如第二十三圖和第二十四圖所示,角增量和速度增量 產生器C6可使用放大器件C660和C665,以便放大角速率產 生器C 5和加速度產出器C 1 0輸出的模擬電壓信號,並壓縮 0 其中的噪聲。 如第二十二圖,角增量和速度增量產生器C6進一步包 含一角度積分器C620,一加速度積分器C630,一復位器 C640 ,角增量和速度增量測量器C650。 角度積分器C 6 2 0和加速度積分器C 6 3 0分別用來在預定 的時間段内積分三軸角速率模擬電壓信號和三軸加速度模 擬電壓信號,以便積累三軸角速率模擬電壓信號和三軸加 速度模擬電壓信號,形成未補償的原始角增量和速度增 量。該積分操作是為了消除在三軸角速率模擬電壓信號和 三軸加速度模擬電壓信號中的非直接正比於載體角速率和 加速度的噪聲信號,提高信號噪聲比,並消除在三軸角速鲁 率模擬電壓信號和三軸加速度模擬電壓信號中的高頻噪 聲。這些三軸角速率模擬電壓信號和三軸加速度模擬電壓498170 V. Description of the invention (54) Increments in degrees are calculated in the attitude and heading processor C80. In most applications, the output signals of the angular rate generator C5 and the acceleration generator C10 are analog voltage signals. The triaxial angular rate analog voltage signal generated by the angular rate generator C5 is directly proportional to the angular rate of the carrier, and the triaxial acceleration analog voltage signal generated by the acceleration generator C 10 is directly proportional to the acceleration of the carrier. When the analog voltage signals output by the angular rate generator C5 and the acceleration generator C10 are too weak, so that the angular increment and velocity increment generator C 6 cannot be read, as shown in Figures 23 and 24 As shown, the angular increment and velocity increment generator C6 can use amplifier devices C660 and C665 to amplify the analog voltage signals output by the angular rate generator C 5 and the acceleration generator C 1 0 and compress the noise therein. As shown in the twenty-second figure, the angle increment and speed increment generator C6 further includes an angle integrator C620, an acceleration integrator C630, a resetter C640, and an angular increment and speed increment measurer C650. The angle integrator C 6 2 0 and the acceleration integrator C 6 3 0 are respectively used to integrate the three-axis angular rate analog voltage signal and the three-axis acceleration analog voltage signal within a predetermined period of time, so as to accumulate the three-axis angular rate analog voltage signal and The three-axis acceleration simulates voltage signals to form uncompensated original angular increments and velocity increments. This integration operation is to eliminate the noise signals that are not directly proportional to the carrier angular rate and acceleration in the three-axis angular rate analog voltage signal and the three-axis acceleration analog voltage signal, to improve the signal-to-noise ratio, and to eliminate the three-axis angular rate lubricity High-frequency noise in analog voltage signals and triaxial acceleration analog voltage signals. These triaxial angular rate analog voltage signals and triaxial acceleration analog voltages
第58頁 498170 五、發明說明(55) 信號中的信號直接正比於載體角速率和加速度。 復位器產生角度復位電壓脈衝和速度復位電壓脈衝, 作為角度和速度的刻度,分別輸出給角度積分器C 6 2 0和加 速度積分器C 6 3 0。Page 58 498170 V. Description of the invention (55) The signal in the signal is directly proportional to the angular velocity and acceleration of the carrier. The resetter generates an angle reset voltage pulse and a speed reset voltage pulse, which are output as angle and speed scales to the angle integrator C 6 2 0 and the acceleration integrator C 6 3 0, respectively.
角增量和速度增量測量器C 6 5 0使用角度復位電壓脈衝 和速度復位電壓脈衝,來測量積累的三軸角速率模擬電壓 信號和三軸加速度模擬電壓信號,獲得角增量計數值和速 度增量計數值,相應地作為角增量和速度增量的數字量。 為能輸出實際的角增量和速度增量,作為輸出角增量和速 度增量電壓值輸出的另外一種選擇,角增量和速度增量測 量器C650將角增量和速度增量電壓值換算為實際的角增量 和速度增量。 在角度積分器C 6 2 0和加速度積分器C 6 3 0中,三軸角速 率模擬電壓信號和三軸加速度模擬電壓信號被分別復位, 以便在每一個預定的時間段的起點,從零開始積累。 如第二十四圖,復位器C 6 4 0可以是一振盪器C 6 6 ,它 產生定時脈衝,作為角度復位電壓脈衝和速度復位電壓脈 衝。在一些應用場合,振盪器C 6 6用特定電路制成,如專 用集成電路(A S I C )和印刷電路板。The angular increment and velocity increment measurer C 6 50 uses the angular reset voltage pulse and the velocity reset voltage pulse to measure the accumulated three-axis angular rate analog voltage signal and the three-axis acceleration analog voltage signal to obtain the angular increment count value and The speed increment count value is corresponding to the digital quantity of the angular increment and the speed increment. In order to be able to output the actual angular increment and velocity increment, as another option for outputting the angular increment and velocity increment voltage value output, the angular increment and velocity increment measurer C650 measures the angular increment and velocity increment voltage values. Converted to actual angular and speed increments. In the angle integrator C 6 2 0 and the acceleration integrator C 6 3 0, the three-axis angular rate analog voltage signal and the three-axis acceleration analog voltage signal are respectively reset so as to start from zero at the beginning of each predetermined time period. accumulation. As shown in the twenty-fourth figure, the resetter C 6 40 may be an oscillator C 6 6 which generates a timing pulse as an angle reset voltage pulse and a speed reset voltage pulse. In some applications, the oscillator C 6 6 is made of a specific circuit, such as an application specific integrated circuit (AS IC) and a printed circuit board.
如第二十五圖,用來測量積累的三軸角速率模擬電壓 信號和三釉加速度模擬電壓信號的角增量和速度增量測量 器C 6 5 0,可用一模擬/數字轉換器C6 5 0實現。換一方式 說,模擬/數字轉換器C 6 5 0實際上將原始角增量和速度增 量電壓值數字化為角增量和速度增量的數字量。As shown in the twenty-fifth figure, the angular increment and velocity increment measuring device C 6 5 0 for measuring the accumulated three-axis angular rate analog voltage signal and three-glaze acceleration analog voltage signal can use an analog / digital converter C6 5 0 to achieve. Said another way, the analog / digital converter C 6 50 actually digitizes the original angular increment and velocity increment voltage values into digital quantities of angular increment and velocity increment.
第59頁 498170 五、發明說明(56) 如第二十九圖和第三十三圖所示,角增量和速度增量 產生器C6的放大器C660和C66 5可分別用一角放大電路C61 和加速度放大電路C 67實現。角放大電路C 61和加速度放大 電路C 6 7分別放大三軸角速率模擬電壓信號和三軸加速度 模擬電壓信號,形成放大後的三軸角速率模擬電壓信號和 三軸加速度模擬電壓信號。 角增量和速度增量產生器C6的角度積分器C620和加速 度積分器C630可分別用一角度積分電路C 62和加速度積分 電路C 68實現。角度積分電路C 62和加速度積分電路C 68分 別接收並積分來自角放大電路C 6 1和加速度放大電路C 6 7的 放大後的三軸角速率模擬電壓信號和三轴加速度模擬電壓 _ 信號,形成積累的三軸角速率模擬電壓信號和三轴加速度 模擬電壓信號。 角增量和速度增量產生器C6的模擬/數字轉換器C650 進一步包含一角模擬/數字轉換器C63,一速度模擬/數字 轉換器C69以及一輸入/輸出接口電路C65。 來自角度積分電路C62的積累的角增量和來自加速度 積分電路C 6 8的積累的速度增量,被分別輸出給角模擬/數 字轉換器C63和速度模擬/數字轉換器C69 ^ 積累的角增量由角模擬/數字轉換器C 6 3,通過使用角 復位電壓信號來測量積累的角增量,以便形成角增量計數 值,作為數字角增量電壓的一形式。該角增量計數值被輸鲁 出給輸入/輸出接口電路C65,以便形成數字三軸角增量電 壓值。Page 59 498170 V. Description of the invention (56) As shown in Figure 29 and Figure 33, the amplifiers C660 and C66 of the angular increment and velocity increment generator C6 can use a corner amplifier circuit C61 and The acceleration amplifier circuit C 67 is implemented. The angular amplifying circuit C 61 and the acceleration amplifying circuit C 6 7 respectively amplify the three-axis angular rate analog voltage signal and the three-axis acceleration analog voltage signal to form an amplified three-axis angular rate analog voltage signal and a three-axis acceleration analog voltage signal. The angle integrator C620 and the acceleration integrator C630 of the angular increment and velocity increment generator C6 can be implemented by an angle integrating circuit C 62 and an acceleration integrating circuit C 68, respectively. The angle integration circuit C 62 and the acceleration integration circuit C 68 respectively receive and integrate the amplified three-axis angular rate analog voltage signal and the three-axis acceleration analog voltage signal from the angle amplifier circuit C 6 1 and the acceleration amplifier circuit C 6 7 to form Accumulated triaxial angular rate analog voltage signals and triaxial acceleration analog voltage signals. The analog / digital converter C650 of the angular increment and speed increment generator C6 further includes an angular analog / digital converter C63, a speed analog / digital converter C69, and an input / output interface circuit C65. The accumulated angular increment from the angle integration circuit C62 and the accumulated speed increment from the acceleration integration circuit C 6 8 are output to the angular analog / digital converter C63 and the speed analog / digital converter C69, respectively. The amount is measured by the angle analog / digital converter C 6 3, and the accumulated angle increment is measured by using the angle reset voltage signal to form an angle increment count value as a form of the digital angle increment voltage. The angular increment count value is input to the input / output interface circuit C65 to form a digital three-axis angular increment voltage value.
第60頁 498170 五、發明說明(57) 積累的速度增量由速度模擬/數字轉換器C 6 3,通過使 用速度復位電壓信號來測量積累的速度增量,以便形成速 度增量計數值,作為數字速度增量電壓的一形式。該速度 增量計數值被輸出給輸入/輸出接口電路C6 5,以便形成數 字三軸速度增量電壓值。 如第二十圖和第二十六圖,為了實現給具有模擬電壓 輸出的熱敏產生器C15和具有模擬輸入的加熱器C20的熱處 理C30的靈活調整,熱處理器C30可以由如圖26所示的數字 化反饋控制回路來實現。 如第二十六圖,熱處理器C30包含連接與熱敏感產生 器C 1 5的一模擬/數字轉換器C 3 0 4、連接與加熱器C 2 0的數 籲 字/模擬轉換器C 3 0 3以及連接與模擬/數字轉換器C 3 0 4和數 字/模擬轉換器C 3 0 3的溫度控制器C3 0 6。模擬/數字轉換器 C304輸入通過熱敏感產生器C15產生一溫度電壓信號,由 模擬/數字轉換器C 3 0 4採樣該溫度電壓信號,並數字化該 電壓信號,並將該數字溫度信號輸出給一溫度控制器 C 3 0 6 ° 溫度控制器C 3 0 6,使用來自模擬/數字轉換器C 3 0 4的 數字溫度電壓信號,溫度標定係數以及預定的上述角速率 產器和加速產生器的工作溫度,來計算數字溫度控制指 令,並將該數字溫度控制指令送入一數字/模擬轉換器 C3 0 3。 _ 數字/模擬轉換器C 3 0 3將來自上述數字溫度控制器 C 3 0 6的數字溫度控制指令轉變為模擬信號,並將該模擬信Page 60 498170 V. Description of the invention (57) Accumulated speed increment The speed analog / digital converter C 6 3 uses the speed reset voltage signal to measure the accumulated speed increment to form a speed increment count value as A form of digital speed incremental voltage. This speed increment count value is output to the input / output interface circuit C65 to form a digital three-axis speed increment voltage value. As shown in the twentieth and twenty-sixth figures, in order to realize the flexible adjustment of the thermal treatment C30 for the thermal generator C15 with an analog voltage output and the heater C20 with an analog input, the thermal processor C30 can be shown in Figure 26 Digital feedback control loop to achieve. As shown in the twenty-sixth figure, the thermal processor C30 includes an analog / digital converter C 3 0 4 connected to the thermal sensitive generator C 1 5 and a digital / analog converter C 3 0 connected to the heater C 2 0. 3 and a temperature controller C3 0 6 connected to the analog / digital converter C 3 0 4 and the digital / analog converter C 3 0 3. The analog / digital converter C304 input generates a temperature voltage signal through the thermal sensitive generator C15. The analog / digital converter C304 samples the temperature voltage signal, digitizes the voltage signal, and outputs the digital temperature signal to a Temperature controller C 3 0 6 ° The temperature controller C 3 0 6 uses the digital temperature voltage signal from the analog / digital converter C 3 0 4, the temperature calibration coefficient and the predetermined operation of the above-mentioned angular rate generator and acceleration generator. Temperature to calculate a digital temperature control instruction, and send the digital temperature control instruction to a digital / analog converter C303. _ Digital / analog converter C 3 0 3 converts the digital temperature control instruction from the above digital temperature controller C 3 0 6 into an analog signal, and converts the analog signal
第61頁 498170 五、發明說明(58) 號輸出給一加熱器C20,以便產生適當 明之I MU的預定的工作溫度。 …、ΐ以保A本舍 進一步,如第二十七圖,如要士為成+ 斗沾啻厭片厭咕丄2s 禾由熱感應產生器C15產 生的電壓信壓號太弱,以至於模擬/數字轉 讀別,則熱處理C30進一步包含一連接在:裔C30不月b 數字/模擬轉換器_之間的第一 ί;以^ 樣,從熱傳感產生器C15得到電壓信號,輪入到第一放大 器電路C 3 0 1放大,並抑制電壓信號中的噪音,提高信號噪 音比,放大的電壓信號輸入到模擬/數字轉換器c 3 〇 4。 一 4又地’加熱器C 2 0需要特殊驅動電流信號,在這種 情況下,如第二十八圖,熱處理C 30進一步包含連接在數 字/模擬轉換器C303和加熱器C20之間第二放大器電路 C302。第二放大器電路C 3 02放大從數字/模擬轉換器C303 而來的輸入模擬信號,給加熱器C 2 0。 換言之,在數字/模擬轉換器C 3 0 3中將由溫度控制器 C 3 0 6而來的數字化溫度命令轉換成模擬信號,該信號輸入 到放大器電路C3 0 2。 如第二十九圖所示,有時需要一個輸入/輸出接口電 路C 3 0 5把模擬數字轉換器C 3 0 4和數字轉換器c 3 〇 3與溫度控 制器C 3 0 6連接起來。在這種情況下,如第二十九圖所 示,通過模擬/數字轉換器C304採樣上述電壓信號’並數 字化該採樣信號,然後,將該數字信號輸出給輸入/輸出 接口電路C305。 如上所述,溫度控制器C 3 0 6,使用來自模擬/數字轉Page 61 498170 V. Description of Invention (58) is output to a heater C20 in order to generate a predetermined operating temperature of the I MU appropriately. …, Take Yi Bao A as a further step, as shown in the twenty-seventh figure, if the important person is to be successful + Dou Zhan 啻 hate film hate 2s and the voltage signal generated by the thermal induction generator C15 is too weak, so that Analog / digital transcoding, the heat treatment C30 further includes a first connection between: C30 not month b digital / analog converter_; in the same way, a voltage signal is obtained from the thermal sensor generator C15, The input to the first amplifier circuit C 3 01 amplifies and suppresses noise in the voltage signal, improves the signal-to-noise ratio, and the amplified voltage signal is input to the analog / digital converter c 3 04. The heater C 2 0 needs a special drive current signal. In this case, as shown in Figure 28, the heat treatment C 30 further includes a second connection between the digital / analog converter C303 and the heater C20. Amplifier circuit C302. The second amplifier circuit C 3 02 amplifies the input analog signal from the digital / analog converter C303 to the heater C 2 0. In other words, the digital temperature command from the temperature controller C 3 0 6 is converted into an analog signal in the digital / analog converter C 3 0 3, and the signal is input to the amplifier circuit C 3 0 2. As shown in Fig. 29, an input / output interface circuit C305 is sometimes required to connect the analog-to-digital converter C304 and the digital converter c3003 to the temperature controller C306. In this case, as shown in Fig. 29, the above-mentioned voltage signal is sampled by the analog / digital converter C304 and the sampled signal is digitized, and then the digital signal is output to the input / output interface circuit C305. As mentioned above, the temperature controller C 3 0 6
第62頁 498170 五 '發明說明(59) ~~ 一--一~ 換器C 3 〇 4的數字溫度電壓传垆,1痒挪十於批 =角速率產器和加速產ίί的:t;;係;=;;、! 指令,並將該數字溫度控制指令輸出以數輸子: 電路C3 0 5。數字/模擬轉換器C3〇3將來自輸入/輸 模字溫ί控制指令轉變為模擬信號,並將該 註Ϊ ί Ϊ ΤΜΪ ;加熱器C2°,以便產生適當的熱量以保 。本备明之I M U的預定的工作溫度。 =第三十圖所示,如上所述,另一方面,第二十圖及 圖至第二十九圖中的熱處理C30和加熱器⑽可用 產生器C15連接模擬/數字轉換器C182來實現,以便 | 自熱弋產生器C15的電壓信號。如果由熱敏生器ci5 祙、電ΐ彳_!號太弱,以至於模擬/數字轉換器c 1 8 2不能 二—為如第二十—圖所示,一附加的放大器電路C 181可連 熱敏產生器C15和模擬/數字轉換器C182之間,以便放 $唬,壓縮信號中的嗓聲,提高信號噪聲比,經過放大 im號,被送人模擬/數字轉換器cm。通過模擬/數字 I二二/8 2採樣輪入的信號,將該放大後的信號數字化為 子。就’輸出該數字信號給姿態航向處理器C 8 〇。 —Μ ί 一方面,—輸入/輸出接口電路c 183可接在模擬/數 二轉換fCl 82和姿態航向處理器C8〇之間。這樣,如第十 圖及第一十四圖所示,通過模擬/數字轉換器C182採樣 =入的放大後的信號,並將該信號數字化為數字信號,在 給姿態航向處理器C8〇之前輪出該數字信號給輸入/輸 出接口電路C1 83。Page 62 498170 Five 'invention description (59) ~~ One--One ~ Digital temperature and voltage transmission of the converter C 3 〇4, 1 ticks move = batch rate = angular rate generator and accelerated production: t; ; 系; = ;;,! Instruction, and output the digital temperature control instruction as a digital input: circuit C3 0 5. The digital / analog converter C3 03 converts the control command from the input / input analog word temperature into an analog signal, and converts the note ί Ϊ ΤΜΪ; the heater C2 °, in order to generate appropriate heat to ensure. The predetermined operating temperature of this note I M U. = As shown in Figure 30, as described above, on the other hand, heat treatment C30 and heater 图 in Figure 20 and Figures 29 to 29 can be realized by connecting the generator C15 to an analog / digital converter C182. So that the voltage signal of the self-heating generator C15. If the thermal sensor ci5 祙 and electric ΐ 彳 _! Are too weak, so that the analog / digital converter c 1 8 2 cannot be two—as shown in the twentieth—the additional amplifier circuit C 181 can It is connected between the thermal generator C15 and the analog / digital converter C182, so as to reduce noise, compress the voice in the signal, and improve the signal-to-noise ratio. The amplified im number is sent to the analog / digital converter cm. The amplified signal is digitized by analog / digital I / 2/2/8 2 sampling of the input signal. The digital signal is outputted to the attitude heading processor C8. —Μ ί On the one hand, the input / output interface circuit c 183 may be connected between the analog / digital conversion fCl 82 and the attitude heading processor C80. In this way, as shown in the tenth and fourteenth figures, the amplified signal is sampled by the analog / digital converter C182, and the signal is digitized into a digital signal. This digital signal is output to the input / output interface circuit C1 83.
第63頁 498170 五、發明說明(60) 如第十九圖所示,通過角增量和速度增量產生器C6, 產生並輸出了數字三軸角增量電壓值或真實值和三軸數字 速度增量電壓值或真實值。 為適應來自角增量和速度增量產生器C6的數字三軸角 增量電壓值和數字三軸速度增量電壓值,如第二十五圖所 示,姿態航向處理器C 8 1包含一圓錐誤差補償模塊C 8 1 1, 其中,以高速率(短周期)將來自角增量和速度增量產生器 C6的輸入/輸出電路C 65的數字三軸角增量電壓值,以及來 自一角速率和加速度產生器標定過程的粗速角率偏置,輸 入到圓錐誤差補償模塊C 8 1 1。在該圓錐誤差補償模塊中, 使用上述輸入的三軸角增量電壓值和粗角速度偏置計算圓 0 錐效誤差,以較低的速率(長周期)輸出上述三軸圓錐效應 誤差和長周期的三軸角增量電壓值。 姿態航向處理器C 8 1進一步包含一角速率補償模塊 C812和一對準旋轉向量計算模塊C815。其中,來自上述圓 錐誤差補償模C8 1 1的上述圓錐效應誤差和三軸長周期角增 量電亞值,以及來自上述角速率和加速度產生器標定過程 的角速率產生器安裝失準角參數,精角速率偏置誤差項, 角速率產生器刻度係數,圓錐校正刻度係數,輸入到上述 角速率補償模塊C 8 1 2,以便使用輸入的圓錐效應誤差,角 速率產生器的安裝失準角,精角速率偏置誤差項以及圓校 錐正刻度係數,來補償上述輸入的三軸長周期角增量電壓 _ 值,使用上述角速率產生器的刻度係數來將上述補償之後 的三軸長周期角增量雷壓值轉換成實際的三軸長周期角增Page 63 498170 V. Description of the invention (60) As shown in the nineteenth figure, through the angular increment and speed increment generator C6, a digital three-axis angular incremental voltage value or real value and three-axis numbers are generated and output. Speed increment voltage value or true value. In order to adapt the digital triaxial angular incremental voltage value and digital triaxial speed incremental voltage value from the angular increment and speed increment generator C6, as shown in the twenty-fifth figure, the attitude course processor C 8 1 includes a Conical error compensation module C 8 1 1, where the digital tri-axis angular incremental voltage value from the input / output circuit C 65 of the angular increment and velocity increment generator C 6 at a high rate (short period), and from one corner The coarse velocity angular rate offset of the velocity and acceleration generator calibration process is input to the cone error compensation module C 8 1 1. In this cone error compensation module, use the input three-axis angular incremental voltage value and rough angular velocity offset to calculate the circle 0 cone effect error, and output the three-axis cone effect error and long period at a lower rate (long period). Incremental triaxial angle voltage value. The attitude course processor C 81 further includes an angular rate compensation module C812 and an alignment rotation vector calculation module C815. Among them, the above-mentioned cone effect error and triaxial long period angular incremental electrical sub-values from the above-mentioned cone error compensation module C8 1 1 and the angular rate generator misalignment angle parameters from the above-mentioned angular rate and acceleration generator calibration process, Fine angular rate offset error term, angular rate generator scale factor, cone correction scale factor, input to the above-mentioned angular rate compensation module C 8 1 2 in order to use the input cone effect error, angular rate generator installation misalignment angle, The precise angular rate offset error term and the positive calibration coefficient of the circular cone are used to compensate the three-axis long-period angular incremental voltage _ value input above. The scale factor of the angular rate generator is used to compensate the three-axis long period after the compensation. The angular incremental lightning pressure value is converted into an actual three-axis long period angular increase
第64頁 498170 五、發明說明(61) 量值,並將上述實際的三軸長周期角增量值出到一對準旋 轉向量計算模塊C81 5。 姿態航向處理器C 8 1進一步包含一加速度補償模塊 C813和水平加平速度計算模塊C814。其中,來自的角增量 和速度增量產生器C6的輸入/輸出電路C65的三軸速度增量 電壓值,以及來自上述角速率產生器和加速度產生標定過 程加速度器件的安裝失準角,加速度偏置誤差,加速度器 件的刻度係數,輸入到一加速度補償模塊C 8 1 3,使用加速 度器件刻度係數將輸入的三軸速度增量電壓值囀換為實際 的三軸速度增量值,使用輸入的加速度器安裝失準和加速 度偏置誤差項,補償上述三軸速度增量中的確定性誤差,鲁 將補償之後的三軸速度增量輸出到一水平加平速度計算模 塊C814 〇 在對準旋轉向量計算模塊C 8 1 5中,使用來自上述角速 率補償模塊C 8 1 2的三軸角增量,來自一東向阻尼計算模塊 C 8 1 1 0的的東向阻尼角增量,來自一北向阻尼計算模塊 C 8 1 9的北向阻尼角增量,來自一垂直阻尼計算模塊C 8 1 8的 垂直阻尼角速率,更新一四元數,該四元數是一向量,用 以表示上述載體的旋轉運動,該更新之後的四元數被送入 一方向餘弦陳計算模塊C 8 1 6,以便使用該更新後四元數的 計算一方向餘弦矩陣。 該計算的方向餘弦陳被輸出給一水平加速度計算模塊 _ C814和一姿態和航向角提取模塊C817,以便使用來自方向 餘弦陳計鼻模塊C 8 1 6的方餘弦矩陣計鼻安悲和航向角。Page 64 498170 V. Description of the invention (61) Measurement value, and output the above-mentioned actual three-axis long period angle increment value to an alignment rotation vector calculation module C81 5. The attitude course processor C 81 further includes an acceleration compensation module C813 and a horizontal leveling speed calculation module C814. Among them, the three-axis speed increment voltage value from the input / output circuit C65 of the angular increment and speed increment generator C6, and the installation misalignment angle and acceleration of the acceleration device from the above-mentioned angular rate generator and acceleration generation calibration process Offset error, scale factor of the acceleration device, input to an acceleration compensation module C 8 1 3, use the acceleration device scale factor to change the input three-axis speed increment voltage value to the actual three-axis speed increment value, use the input The accelerometer installation misalignment and acceleration offset error terms compensate for the deterministic errors in the above-mentioned three-axis speed increments, and Lu outputs the compensated three-axis speed increments to a horizontal leveling speed calculation module C814. In the vector calculation module C 8 1 5, the three-axis angular increments from the above-mentioned angular rate compensation module C 8 1 2 are used, and the eastward damping angular increments from an eastward damping calculation module C 8 1 1 0 are derived from a northbound damping. The northbound damping angle increment of the calculation module C 8 1 9 is derived from a vertical damping angular rate of a vertical damping calculation module C 8 1 8, and a quaternion is updated. Is the number of a vector representing the rotational movement of the carrier in use, quaternion after the update is sent in one direction cosine calculation module Chen C 8 1 6, in order to use the update computation after a quaternion direction cosine matrix. The calculated directional cosine Chen is output to a horizontal acceleration calculation module C814 and an attitude and heading angle extraction module C817 to use the square cosine matrix from the directional cosine Chen meter nose module C 8 1 6 to calculate nose relief and heading angle. .
第65頁 498170 五、發明說明(62) 補償之後的三軸速度增量被輸出到水平加平速度計算 模塊C 8 1 4。其中,使用來自上述加速度補償模塊c 8丨4的三 軸速度增量和來自上述方向餘弦矩陳計算模塊C816的方向 餘弦陳計算水平速度增量。 水平速度增量被輸出到上述東向阻尼速率計算模塊 C8110,其中,使用來自上述水平加速度計算模塊㈡“的 北向水平速度增量,計算東向阻尼角速率增量。 水平速度增量被輸出到上述東向阻尼速率計算模塊 C 8 1 9 ’其中,使用來自上述水平加速度計算模塊^^ 8丨4的東 向水平速度增量,計算北向阻尼角速率增量。Page 65 498170 V. Description of the invention (62) The three-axis speed increment after compensation is output to the horizontal leveling speed calculation module C 8 1 4. Among them, the three-axis speed increment from the above-mentioned acceleration compensation module c 8 丨 4 and the direction cosine moment from the above-mentioned direction cosine moment calculation module C816 are used to calculate the horizontal speed increment. The horizontal velocity increment is output to the above-mentioned eastbound damping rate calculation module C8110, wherein the northbound horizontal velocity increment from the above-mentioned horizontal acceleration calculation module ㈡ "is used to calculate the eastbound damping angular rate increment. The horizontal velocity increment is output to the above-mentioned eastbound The damping rate calculation module C 8 1 9 ′ wherein the eastward horizontal velocity increase from the above-mentioned horizontal acceleration calculation module ^^ 8 丨 4 is used to calculate the northward damping angular rate increase.
來自上述姿態和航向角提取模塊C817計算出來的航向 角以及來自一外部傳感器C 9 0的測量出來的航向角被輸入 給垂直阻尼速率計算模塊C 8 1 8,以便計算垂直阻尼角速率 增量。 東向阻尼角速率增量、北向阻尼角速率增量及垂直阻 尼角速率增量被反饋給上述對準旋轉向量計算模塊C 8 1 5, 以便阻尼姿態和航向角誤差的漂移。The heading angle calculated from the above attitude and heading angle extraction module C817 and the measured heading angle from an external sensor C 90 are input to the vertical damping rate calculation module C 8 1 8 to calculate the vertical damping angular rate increment. The easting damping angular rate increment, the northing damping angular rate increment, and the vertical damping angular rate increment are fed back to the above-mentioned alignment rotation vector calculation module C 8 1 to damp the drift of attitude and heading angle errors.
或者,為適應來自角增量和速度增量產生器C6的數字 ^轴角增量實際值和數字三軸速度增量實際值,如第三十 三®所示,以高速率(短周期)輸入來自角增量和速度增量 產生器C6的數字三軸角增量值,以及來自一角速率和加速 度產生器襟定過程的粗速角率偏置,到一圓錐誤差補償模 塊C 8 1 1 ’在該圓錐誤差補償模塊中,使用上述輸入的三軸 角增量值和粗角速度偏置計算圓錐效誤差,以較低的速率 498170 五、發明說明(63) (長周期)輸出上述三軸圓錐效應誤差和長周期的三軸角增 量值,給一角速率補償模塊C 8 1 2。 來自上述圓錐誤差補償模C 8 1 1的上述圓錐效應誤差和 三軸長周期角增量值,以及來自上述角速率和加速度產生 器標定過程的角速率產生器安裝失準角參數,精角速率偏 置誤差項,及圓錐校正刻度係數,被輸入到上述角速率補 償模塊C 8 1 2,使用輸入的圓錐效應誤差,角速率產生器的 安裝失準角,精角速率偏置誤差項以及圓校錐正刻度係 數,來補償上述輸入的三軸長周期角增量值,並將上述實 際的三軸長周期角增量值出到一對準旋轉向量計算模塊 C815 ° 來自的角增量和速度增量產生器C6的三軸速度增量, 以及來自上述角速率產生器和加速度產生標定過程加速度 器件的安裝失準角,加速度偏置誤差,被輸入到一加速度 補償模塊C 8 1 3,使用輸入的加速度器安裝失準角加速度偏 置誤差項,補償上述三軸速度增量中的確定性誤差,將補 償之後的三軸速度增量輸出到一水平加平速度計算模塊 C814 ° 接下來的模塊使用來自角速率補償模塊C 8 1 2的補償後 的角增量值和來自加速度補償模塊C 8 1 3的三軸速度增量, 計算姿態和航向角。對上述處理模塊,這些接下來的處理 模塊與前面所述的模塊是相同的。 如果使用溫度補償方法,為適應來自角增量和速度增 量產生器C6的數字三軸角增量電壓值和數字三軸速度增量Alternatively, to accommodate the digital ^ axis angular increment actual value and digital three-axis velocity incremental actual value from the angular increment and velocity increment generator C6, as shown in Figure 33®, at a high rate (short cycle) Input the digital three-axis angular increment value from the angular increment and velocity increment generator C6, and the coarse angular velocity offset from the angular rate and acceleration generator setting process, to a cone error compensation module C 8 1 1 'In this cone error compensation module, the three-axis angular increment value and the coarse angular velocity offset input above are used to calculate the cone effect error at a lower rate of 498170. 5. Description of the invention (63) (long cycle) outputs the above three axes The conical effect error and the long-period three-axis angular increment give the angular rate compensation module C 8 1 2. The above-mentioned cone effect error and the three-axis long period angle increment value from the above-mentioned cone error compensation module C 8 1 1 and the angular rate generator installation misalignment angle parameters from the above-mentioned angular rate and acceleration generator calibration process, the fine angular rate The offset error term and the cone correction scale coefficient are input to the above-mentioned angular rate compensation module C 8 1 2 using the input cone effect error, the installation misalignment angle of the angular rate generator, the fine angular rate offset error term, and the circle. Correct the positive scale factor of the taper to compensate the input three-axis long period angle increment value, and output the actual three-axis long period angle increment value to an angle increment from the rotation vector calculation module C815 °. The three-axis speed increment of the speed increment generator C6, and the installation misalignment angle and acceleration offset error of the acceleration device from the above-mentioned angular rate generator and acceleration generation calibration process are input to an acceleration compensation module C 8 1 3, Use the input accelerometer to install the misalignment angular acceleration offset error term to compensate for the deterministic error in the above-mentioned three-axis speed increments and will compensate the subsequent three-axis Degree increment output to a horizontal leveling speed calculation module C814 ° The next module uses the compensated angular increment value from the angular rate compensation module C 8 1 2 and the three-axis speed increment from the acceleration compensation module C 8 1 3 Calculate attitude and heading angle. For the above processing modules, these subsequent processing modules are the same as those described previously. If the temperature compensation method is used, in order to adapt the digital triaxial angular increment voltage value and digital triaxial velocity increment from the angular increment and velocity increment generator C6
第67頁 498170 五、發明說明(64) 電壓值,如第二十 以高速率(短周期) 的數字三軸角增量 生器標定過程的粗 C 8 1 1 ,在該圓錐誤 增量電壓值和粗角 率(長周期)輸出上 增量電壓值,給一 三轴 產生 率偏 數, 傳感 C812 率產 據; 角, 上述 生器 壓值 器的 變化 出到 來自 長周 器標 置誤 及來 器器 ,計 生器 使用 精角 輸入 的刻 轉換 溫度 所引 一對 上述 期角 定過 差項 自輸 的刻 算角 的當 輸入 速率 的三 度係 成實 特性 起的 準旋 圓錐 增量 程的 ,角 入輸 度係 速率 前溫 的圓 偏置 軸長 數來 際的 數據 誤差 轉向 一圖 輸入 電壓 速角 差補 速度 述三 角速 誤差 電亞 角速 速率 出接 數, 產生 度查 錐效 誤差 周期 將上 三轴 補償 ,並 量計 、第 來自 值, 率偏 償模 偏置 軸圓 率補 補償 值, 率產 產生 口電 被輸 器的 找到 應誤 項以 角增 述補 長周 三轴 將上 算模 三十二圖及第三 的角增量和速度 以及來自一角速 置,到一 塊中,使 計算圓錐 錐效應誤 償模塊C8 模C81 1的 以及來自 生器安裝 器刻度係 路C 183的 入到上述 當前溫度 角速率產 差,角速 及圓校錐 量電壓值 償之後的 期角增量 長周期角 述實際的 塊C815 。 圓錐誤 用上述 效誤差 差和長 12 ° 上述圓 上述角 失準角 數,圓 數字溫 角速率 ;使用 生器的 率產生 正刻度 ;使用 三轴長 值,使 增量值 三車由長 十三圖所示。 增量產生器C 6 率和加速度產 差補償模塊 輸入的三軸角 ,以較低的速 周期的三軸角 錐效應 速率和 參數, 錐校正 度信號 補償模 計算出 溫度特 器的安 係數, 上述角 周期角 用角速 中的由 周期角 誤差和 加速度 精角速 刻度係 和溫度 塊 的角速 性數 裝失準 來補償 速率產 增量雷 率產生 於溫度 增量值Page 67 498170 V. Description of the invention (64) The voltage value, such as the coarse C 8 1 1 at the twentieth high-speed (short cycle) digital triaxial angle incremental generator calibration process, is incorrectly incrementing the voltage at this cone. Value and coarse angular rate (long period) output the incremental voltage value, give a triaxial generation rate deviation, sense the C812 rate of production data; the angle, the change of the above-mentioned bio-voltage value comes from the long-period device standardization Mistakes to the device, the family planning device uses the precise angle input of the incision conversion temperature to induce a pair of the above-mentioned angles to determine the difference term from the input angle of the input angle, when the input rate of the three-degree system into the real characteristics of the quasi-cone increase In the range, the angular input and output are based on the temperature of the circular offset axis length before the temperature. The data error is transferred to a graph. Input voltage, speed, angular difference, and compensation speed are described. The cone effect error period will be compensated on the upper three axes, and the meter, the first value, the rate offset compensation mode, the offset value of the circle roundness compensation value, and the rate of error generated when the teleporter is found should be supplemented by angles. The three axes will be on the 32nd figure of the calculation module and the third angular increment and speed, as well as from an angular speed. In one block, the calculation of the cone effect will be miscompensated for the module C8 and module C81 1 and from the scale system of the biological installer. The actual block C815 is described in the phase angle increment and long period angle after the input of the current temperature angular velocity difference, the angular velocity, and the circular correction cone voltage value of the road C 183. The cone misuses the above-mentioned error error difference and the length of the above-mentioned circle, the above-mentioned angle misalignment angle, the round number temperature angular rate; using the rate of the generator to generate a positive scale; using the three-axis length value, the incremental value of the three cars from the long thirteen As shown. The triaxial angle input by the incremental generator C 6 rate and acceleration production difference compensation module uses the triaxial angular cone effect rate and parameters of the lower speed period, and the cone correction degree signal compensation module calculates the safety coefficient of the temperature device. The angular cycle angle is compensated by the angular rate and the angular rate of the angular block of the temperature block in the angular velocity.
第68頁 498170 五、發明說明(65)Page 68 498170 V. Description of the invention (65)
來自的角增量和速度增量產生器C6的三軸速度增量電 壓值,以及來自上述角速率產生器和加速度產生標定過程 加速度器件的安裝失準角,加速度偏置誤差,加速度器件 的刻度係數,及來自輸入輸出接口電路C 1 8 3的數字溫度信 號和溫度傳感器器的刻度係數,被輸入到一加速度補償模 塊C 8 1 3,計算加速度產生器的當前溫度;使用計算出的加 速度產生器的當前溫度查找到加速度產生器的溫度特性數 據;使用加速度器件刻度係數將輸入的三軸速度增量電壓 值轉換為實際的三軸速度增量值;使用輸入的加速度器安 裝失準,角加速度偏置誤差項,補償上述三軸速度增量中 的確定性誤差;使用加速度產生器的溫度特性數據補償三 軸長周期速度增量值中的由於溫度變化所引起的誤差,將 補償之後的三軸速度增量輸出到一水平加平速度計算模塊 C814 〇 接下來的模塊使用來自角速率補償模塊C 8 1 2的補償後 的角增量值和來自加速度補償模塊C 8 1 3的三軸速度增量, 計算姿態和航向角。對上述處理模塊,這些接下來的處理 模塊與前面所述的模塊是相同的。The three-axis speed increment voltage value from the angular increment and velocity increment generator C6, and the installation misalignment angle, acceleration offset error, and acceleration scale of the acceleration device from the above-mentioned angular rate generator and acceleration generation calibration process The coefficient, and the digital temperature signal from the input and output interface circuit C 1 8 3 and the scale coefficient of the temperature sensor are input to an acceleration compensation module C 8 1 3 to calculate the current temperature of the acceleration generator; using the calculated acceleration to generate The current temperature of the accelerometer finds the temperature characteristic data of the acceleration generator; the acceleration device scale factor is used to convert the input three-axis speed increment voltage value into the actual three-axis speed increment value; using the input accelerometer installation error, angle The acceleration bias error term compensates for the deterministic error in the above-mentioned three-axis speed increment; the temperature characteristic data of the acceleration generator is used to compensate for the error caused by the temperature change in the three-axis long-period speed increment value, which will compensate the subsequent Three-axis speed increment output to a horizontal leveling speed calculation module C814 〇 Incremental angle after the module using the compensated angular rate compensation module from C 8 1 2 and a three-axis acceleration compensating speed increase from module C 8 1 3 calculated attitude and heading angle. For the above processing modules, these subsequent processing modules are the same as those described previously.
如果使用溫度補償方法,為適應來自角增量和速度增 量產生器C6的數字三軸角增量實際值和數字三軸速度增量 實際值,如第二十一圖、第三十二圖及第三十三圖所示, 姿態航向處理器C 8 1進一步可被修改,以便以高速率(短周 期)輸入來自的角增量和速度增量產生器C6的數字三軸角 增量值,以及來自一角速率和加速度產生器標定過程的粗If the temperature compensation method is used, in order to adapt to the actual value of the digital three-axis angular increment and the actual value of the digital three-axis velocity increment from the angular increment and speed increment generator C6, as shown in Figures 21 and 32 As shown in Figure 33, the attitude and orientation processor C 8 1 can be further modified to input the digital three-axis angular increment value from the angular increment and velocity increment generator C6 at a high rate (short cycle). , As well as from the calibration process of an angular rate and acceleration generator.
第69頁 498170 五、發明說明(66) 速角率偏置,到一圓錐誤差補償模塊C 8 1 1 ,在該圓錐誤差 補償模塊中,使用上述輸入的三軸角增量值和粗角速度偏 置計算圓錐效誤差,以較低的速率(長周期)輸出上述三軸 圓錐效應誤差和長周期的三軸角增量值,給一角速率補償 模塊C812 。Page 69 498170 V. Description of the invention (66) The angular velocity offset is to a cone error compensation module C 8 1 1. In this cone error compensation module, the three-axis angular increment value and the coarse angular velocity deviation entered above are used. Set the conical effect error to output the triaxial conical effect error and the long axis triaxial angle increment value at a lower rate (long period), and give an angular rate compensation module C812.
來自上述圓錐誤差補償模C 8 1 1的上述圓錐效應誤差和 三軸長周期角增量值,以及來自上述角速率和加速度產生 器標定過程的角速率產生器安裝失準角參數,精角速率偏 置誤差項,圓錐校正刻度係數,及來自輸出接口電路C 1 8 3 的數字溫度信號和溫度傳感器器的刻度係數,被輸入到上 述角速率補償模塊C 8 0 2,計算角速率產生器的當前溫度; 使用計算出的角速率產生器的當前溫度查找到角速率產生 器的溫度特性數據;使用輸入的圓錐效應誤差,角速率產 生器的安裝失準角,精角速率偏置誤差項以及圓校錐正刻 度係數,來補償上述輸入的三軸長周期角增量值;使用角 速率產生器的溫度特性數據補償三軸長周期角增量值中的 由於溫度變化所引起的誤差,並將上述實際的三軸長周期 角增量值出到一對準旋轉向量計算模塊C 8 1 5。The above-mentioned cone effect error and the three-axis long period angle increment value from the above-mentioned cone error compensation module C 8 1 1 and the angular rate generator installation misalignment angle parameters from the above-mentioned angular rate and acceleration generator calibration process, the fine angular rate The bias error term, the cone correction scale factor, and the digital temperature signal from the output interface circuit C 1 8 3 and the scale factor of the temperature sensor are input to the above-mentioned angular rate compensation module C 8 02 to calculate the angular rate generator. Current temperature; Use the calculated current temperature of the angular rate generator to find the temperature characteristic data of the angular rate generator; Use the input cone effect error, the installation misalignment angle of the angular rate generator, the fine angular rate offset error term, and The positive calibration coefficient of the round calibration cone is used to compensate the three-axis long period angle increment value input above; the temperature characteristic data of the angular rate generator is used to compensate the error caused by the temperature change in the three-axis long period angle increment value, and The above-mentioned actual three-axis long period angle increment value is output to an alignment rotation vector calculation module C 8 1 5.
來自輸入/輸出電路C 65的三軸速度增量,以及來自上 述角速率產生器和加速度產生標定過程加速度器件的安裝 失準角,加速度偏置誤差,及來自輸入輸出接口電路C 183 的數字溫度信號和溫度傳感器器的刻度係數,被輸入到一 加速度補償模塊C 8 1 3,計算加速度產生器的當前溫度;使 用計算出的加速度產生器的當前溫度查找到加速度產生器Three-axis speed increment from the input / output circuit C 65, and the misalignment angle, acceleration offset error, and digital temperature from the input-output interface circuit C 183 from the angular rate generator and acceleration generation calibration process The signal and the scale factor of the temperature sensor are input to an acceleration compensation module C 8 1 3 to calculate the current temperature of the acceleration generator; use the calculated current temperature of the acceleration generator to find the acceleration generator
第70頁 498170 五、發明說明(67) 的溫度特性數據;使用輸入的加速度器安裝失準角加速度 偏置誤差項,補償上述三轴速度增量中的確定性誤差;使 用加速度產生器的溫度特性數據補償三軸長周期速度增量 值中的由於溫度變化所引起的誤差,將補償之後的三軸速 度增量輸出到一水平加平速度計算模塊C 8 1 4。 ^ 接下來的模塊使用來自角速率補償模塊C 8 1 2的補償後 t+ ^增量值和來自加速度補償模塊C 8 1 3的三軸速度增量, 镇Γ姿態和航向角。對上述處理模塊,這些接下來的處理 與前面所述的模塊是相同的。Page 70 498170 V. The temperature characteristic data of the description of the invention (67); Use the input accelerometer to install the misalignment angular acceleration offset error term to compensate the deterministic error in the above three-axis speed increment; use the temperature of the acceleration generator The characteristic data compensates for errors caused by temperature changes in the three-axis long-period speed increment value, and outputs the three-axis speed increment after compensation to a horizontal leveling speed calculation module C 8 1 4. ^ The following module uses the compensated t + from the angular rate compensation module C 8 1 2 and the delta value and the three-axis speed increment from the acceleration compensation module C 8 1 3, the attitude and the heading angle. For the above processing modules, these subsequent processing are the same as those described previously.
如第三十四圖所示,位置速度姿態處理模塊C 8 2包含: 器C8l〜圓錐誤差補償模塊C8201 ,該模塊與姿態航向處理 1的圓錐誤差補償模塊C 8 1 1 —樣。 C8 處 硬 C8 處 處 1 角速率補償模塊C 8 2 0 2,該模塊與姿態航向處理器 勺角速率補償模塊C812 —樣。 。 硬考r對準旋轉向量計算模塊[8 2 〇 5 ’該模塊與姿熊航向 @ C 8 1的角速率補償模塊C 8 1 5 —樣。 α 器^1^餘弦陳計算模塊C82〇6,該模塊與姿態航向處 的角速率補償模塊c 8 1 6 —樣。 1的^ζ速/補償模塊C8 2 0 3 ’該模塊與姿態敘向處理器 刀°速度補償模塊C 8丨3 一樣。 ^As shown in the thirty-fourth figure, the position speed and attitude processing module C 8 2 includes: a device C8l to a cone error compensation module C8201, which is the same as the cone error compensation module C 8 1 1 for attitude heading processing 1. C8 hard C8 everywhere 1 Angular Rate Compensation Module C 8 2 0 2 This module is the same as the Attitude Heading Processor Scoop Angular Rate Compensation Module C812. . Hard test r alignment rotation vector calculation module [8 2 0 5 ’This module is the same as the angular rate compensation module C 8 1 5 of the attitude bear heading @ C 8 1. The α ^^^ cosine calculation module C8206 is the same as the angular rate compensation module c 8 1 6 at the attitude heading. 1 ^ ζ speed / compensation module C8 2 0 3 ′ This module is the same as the attitude directional processor knife ° speed compensation module C 8 丨 3. ^
硬ίί平速度計算模塊C82 04,該模塊與姿能航向 〜^的水平加平速度計算模塊c 8丨4〜樣。 心 現器二態:又向角提取模塊C8 2 09 ’該模塊輿姿能航命 81的姿態和航向角提取模塊C817〜樣。文心The hard leveling speed calculation module C82 04 is similar to the horizontal and leveling speed calculation module c 8 丨 4 ~ of the posture energy heading ~ ^. Two-state of the presenter: again the orientation angle extraction module C8 2 09 ′ This module can perform the attitude of the life command 81 and the orientation angle extraction module C817 ~. Oncidium
第71頁 498170Page 71 498170
五、發明說明(68) 一位置速度更新模塊C8208,該模塊接收來 平速度計算模塊C 8 2 0 4,計算位置和速度。 ^十加 一地球和載體速率計算模塊C82 0 7,該模塊接 署 速度更新模塊C8 2 0 8的位置和速度,計算載體從導I f 系到慣性坐標系的旋轉角速率’並將旋轉角速率輸入^ 旋轉向量計算模塊C8 2 0 5。 + 為了滿足不同的應用系統需求,如第二十九圖和第四 十四圖所示’按照外部用戶要求的格式,如Rs_ 2 3 2申行通 信標準,RS-4 2 2申行通信標準,pCI/ISA總線標準,1553 總線標準,在輸入/輸出接口電路C65和輸入/輸出接口電 路C 305中’組裝數字三軸角增量電壓信號,數字三軸速/度 增量電壓信號,以及數字溫度信號。 為了滿足不同的應用系統需求,如第四十二圖和第四 十四圖所示,按照外部用戶要求的格式,如r s — 2 3 2申行通 信標準,RS-4 2 2申行通信標準,PCI/ISA總線標準,1553 總線標準,在輸入/輸出接口電路C65和輸入/輸出接口電 路C 305中,組裝數字三轴角增量電壓信號,數字三軸速度 增量電壓信號,以及數字溫度信號。 如上所述,本發明達到小型I MU的關鍵技術之一是採 用微小角速率產生器,其中,採用M EMS技術的微小角速率 產生器及相應的機械結構和電路板布局,如以下所示: 本發明達到小型I M U的關鍵技術之一是設計功耗很低 的小型電路,其中,傳統的A S I C技術可被用來將複雜的電 路縮小到一石夕片。V. Description of the invention (68) A position speed update module C8208, which receives the level speed calculation module C 8 2 0 4 and calculates the position and speed. ^ Ten plus one Earth and carrier velocity calculation module C82 0 7, which is connected to the position and velocity of the velocity update module C8 2 0 8 to calculate the rotational angular rate of the carrier from the guided I f system to the inertial coordinate system 'and the rotation angle Rate input ^ Rotation vector calculation module C8 2 0 5. + In order to meet the requirements of different application systems, as shown in Figure 29 and Figure 44, according to the format required by external users, such as Rs_ 2 3 2 application communication standard, RS-4 2 2 application communication standard , PCI / ISA bus standard, 1553 bus standard, in the input / output interface circuit C65 and the input / output interface circuit C 305 'assemble digital triaxial angle incremental voltage signals, digital triaxial speed / degree incremental voltage signals, and Digital temperature signal. In order to meet the requirements of different application systems, as shown in Figure 42 and Figure 44, according to the format required by external users, such as rs — 2 3 2 application communication standard, RS-4 2 2 application communication standard , PCI / ISA bus standard, 1553 bus standard, in the input / output interface circuit C65 and the input / output interface circuit C 305, assembling a digital triaxial angle incremental voltage signal, a digital triaxial speed incremental voltage signal, and a digital temperature signal. As mentioned above, one of the key technologies of the present invention to achieve a small I MU is to use a micro angular rate generator. Among them, the micro angular rate generator using M EMS technology and the corresponding mechanical structure and circuit board layout are as follows: One of the key technologies of the invention to achieve a small IMU is to design a small circuit with very low power consumption. Among them, traditional ASIC technology can be used to reduce complex circuits to one chip.
第72頁 498170 五、發明說明(69) 現有的用 動慣性質量塊 率。克里奥里 理。 克里奥里 和振動的慣性 率施加到和振 接收到克里奥 向的扭力。該 被測量。 克里奥里 蓋斯佩德.得. 定了它的克里 校正量。克里 移動和徑向移 得以克里奥里 來製造微小角速率產生器的MEMS技術使用振 ,通過克里奥里斯效應,感應載體的角速 斯效應是一般振動型角速率傳感器的工作原 斯效應可解釋為,當一角速率施加到一平移 質量塊,則會產生克里奥里斯力。當一角速 盪的慣性質量塊的軸向,慣性質量塊的齒會 里斯力。該克里奥里斯力可產生沿傳感器軸 扭力正比於施加的角速率。進而,角速率可 斯力或加速度是命名與法國物理和數學家, 他在1 8 3 5年假 克里奥里斯(1792-1843 奥里斯力,作為在彈道計算時對地球旋轉的 奥里斯加速度作用在一繞一點以固定角速率 動的物體上。 斯力的基本方程可表達為 triolis maPage 72 498170 V. Description of the invention (69) Existing active inertial mass block rate. Creole. The inertia rate of the Creole and vibration is applied to the harmonic and receives the torque in the Creole direction. The is measured. Creole Gaspard got his Kerry correction set. Cree movement and radial movement use Creole's MEMS technology to make tiny angular rate generators using vibration. Through the Creoles effect, the angular velocity effect of the induction carrier is the working principle of general vibration type angular rate sensors. The effect can be explained as the application of an angular velocity to a translational mass, which produces a Creoles force. When the angular mass of the inertial mass is in the axial direction, the teeth of the inertial mass will have a Reese force. This Creoles force produces a torque along the sensor axis that is proportional to the applied angular velocity. Furthermore, the angular rate cosmic force or acceleration is named after the French physicist and mathematician, who faked Creoles (1792-1843 Orris force in 1835) as the effect of Orris acceleration on the rotation of the earth during the ballistic calculation. On an object moving at a fixed angular velocity around a point. The basic equation of Sri Lankan force can be expressed as triolis ma
Coriolis 2τη{ώ x V0scillation) 其中 ,斤—·,是檢測到的克里奥里斯力; 爪是慣性質量塊的質量; 是產生的克里奥里斯加速度; 6 是輸入的角速度; 是慣性質量塊的振盪速度· 產生的克里奥里斯加速度正比於慣性質量塊的質量Coriolis 2τη {ώ x V0scillation) where, jin— · is the detected Creoles force; claw is the mass of the inertial mass; is the resulting Creoles acceleration; 6 is the input angular velocity; is the inertial mass Oscillating speed · The resulting Creoles acceleration is proportional to the mass of the inertial mass
第73頁 498170 五、發明說明(70) 輸入的角速度和慣性質量塊的振盪速度之積。慣性質量塊 的振盪速度的方向正交於輸入的角速度方向。 振動型速率產生器的主要問題是差的精度、靈敏度和 穩定性。不像ME MS加速度產生器是一種被動器件,微機械 振動型角速率產生器是一種主動傳感器。因此,應當發明 相應的高性能的電路和控制,以便更加有效地使用現有的 微機械振動型角速率產生器,達到高性能的角速率測量, 來滿足小型I M U的需求。 因此。為了獲得振動型角速率檢測單元的角速率敏感 信號,振動驅動信號必需首先饋入振動型角速率檢測單 元,以便驅動慣性質量塊的振動,並能保持慣性質量塊恆 定的動量。振動驅動信號的質量是一 Μ E M S角速率產生器的 整體性能的關鍵。 如第三十五圖和第三十六圖所示,分別顯示了第三十 二圖所示本發明的小型慣性測量組件之機械結構和電路板 布局的透視圖和切面圖。該小型慣性測量組件包含佈置在 金屬正六面體C1内的第一電路板C2、第二電路板C4、第三 電路板C7和控制電路板C9。 第一電路板C1與第三電路板C7相連,產生X軸角速率 敏感信號和Υ軸加速度敏感信號給控制電路板C 9。 第二電路板C4與第三電路板C7相連,產生Υ軸角速率 敏感信號和X軸加速度敏感信號給控制電路板C 9。 第三電路板C7與控制電路板C9相連,產生Ζ軸角速率 敏感信號和Ζ轴加速度敏感信號給控制電路板C 9。Page 73 498170 V. Description of the invention (70) The product of the input angular velocity and the oscillation speed of the inertial mass. The direction of the oscillating speed of the inertial mass is orthogonal to the direction of the input angular velocity. The main problems with vibration-type rate generators are poor accuracy, sensitivity, and stability. Unlike the ME MS acceleration generator, which is a passive device, the micromechanical vibration-type angular rate generator is an active sensor. Therefore, corresponding high-performance circuits and controls should be invented in order to more effectively use the existing micro-mechanical vibration-type angular rate generators to achieve high-performance angular rate measurements to meet the needs of small I M U. therefore. In order to obtain the angular rate sensitive signal of the vibration-type angular rate detection unit, the vibration drive signal must first be fed into the vibration-type angular rate detection unit in order to drive the vibration of the inertial mass and maintain the constant momentum of the inertial mass. The quality of the vibration drive signal is key to the overall performance of a MEMS angular rate generator. As shown in Fig. 35 and Fig. 36, a perspective view and a sectional view showing the mechanical structure and the circuit board layout of the small inertial measurement module of the present invention shown in Fig. 32, respectively. The small inertial measurement unit includes a first circuit board C2, a second circuit board C4, a third circuit board C7, and a control circuit board C9 arranged in a metal regular hexahedron C1. The first circuit board C1 is connected to the third circuit board C7, and generates X-axis angular velocity-sensitive signals and y-axis acceleration-sensitive signals to the control circuit board C9. The second circuit board C4 is connected to the third circuit board C7, and generates a Z-axis angular rate sensitive signal and an X-axis acceleration sensitive signal to the control circuit board C9. The third circuit board C7 is connected to the control circuit board C9, and generates a Z-axis angular velocity-sensitive signal and a Z-axis acceleration-sensitive signal to the control circuit board C9.
第74頁 498170 五、發明說明(71) 控制電路板C9通過第三電路 知、击 旁饰水白馀 _丨,、弟一電路板C2和第 一電路板C4相連,處理來自第一電路板以、 币 C4、第三電路板C7的X、Y、Z軸角逯桌描^:一电路板Page 74 498170 V. Description of the invention (71) The control circuit board C9 is known through the third circuit, and the white circuit board is connected to the first circuit board C2 and the first circuit board C2. X, Y, and Z axis angles of the coin C4 and the third circuit board C7
半敏感信號和X、γ、7 軸加速度敏感信號,以便產生數字化的^Λ L 丁 1匕的角度增詈、i亲声撿 量、位置、速度、姿態和航向測量值。 1 足度增 如第三十七圖所示,本發明的小刑憎 7小坦慣性測量組件的優 選方案之角速率產生器C5包含: ^ ^ 一連接在第一電路板C 2的X軸振動型角速 C21和第一前端電路C23 ; 干懷、』早tl 一連接在第二電路板C4的Y軸振動型角速率檢測 C41和第二前端電路C43 ; ' 一連接在第三電路板C7的Z軸振動型角速率檢測單元 C71和第三前端電路C73 ; 三個角信號回路電路C921 ,該電路分別為第一電路板 C2、弟一電路板C4、弟二電路板C7設置,包含在連接在控 制電路板09上的八31(:芯片092中; & 三個振動控制電路C 9 2 2,該電路分別為第一電路板 C2、第二電路板C4、第三電路板C7設置,包含在連接在控 制電路板C9上的八8 1(:芯片〇92中; 一振盪器C925用來為X軸振動型角速率檢測單元C21、 Y軸振動型角速率檢測單元C4 1、Z軸振動型角速率檢測單 元C71、角信號回路電路C921和振動控制電路C 9 2 2提供參 考拾取信號; 三個振動處理模塊C 9 1 2,分別為第一電路板C 2、第二Semi-sensitive signals and X-, γ-, and 7-axis acceleration-sensitive signals in order to generate digitally-increased angle increments, i-acoustic measurements, position, velocity, attitude, and heading measurements. 1 As shown in the thirty-seventh figure, the angular rate generator C5, which is the preferred solution of the small penetrative inertia measurement module of the present invention, includes: ^ ^ An X axis connected to the first circuit board C 2 Vibration-type angular velocity C21 and first front-end circuit C23; Gan Huai, "early tl-connected to the Y-axis vibration-type angular rate detection C41 and second front-end circuit C43 of the second circuit board C4; '-connected to the third circuit board C7 Z-axis vibration type angular rate detection unit C71 and third front-end circuit C73; three angular signal circuit circuits C921, which are respectively set for the first circuit board C2, the first circuit board C4, and the second circuit board C7, including In the 831 (: chip 092) connected to the control circuit board 09, & three vibration control circuits C 9 2 2 are respectively the first circuit board C2, the second circuit board C4, and the third circuit board C7. The setting is included in the 8 8 1 (: chip 0 92) connected to the control circuit board C9; an oscillator C925 is used for the X-axis vibration type angular rate detection unit C21, the Y-axis vibration type angular rate detection unit C4 1, Z-axis vibration-type angular rate detection unit C71, angular signal circuit C921, and vibration control Circuit C 9 2 2 provides a reference pickup signal; three vibration processing modules C 9 1 2 are the first circuit board C 2 and the second
第75頁 498170 五、發明說明(72) 電路板C4、第三電路板C7設置,運行於連接在控制電路板 C9上的DSP (數字信號處理器)芯片组C91中。 第——前端電路C23、第二前端電路C43和第三前端電路 C 7 3在結構上是一致的,用來分別條理X、γ、z軸振動型角 速率檢測單元的輸出信號。每一前端電路包含: 一個阻抗轉換放大器電路C231、C431及C731,分別連 接於相應的X、Y、Z軸振動型角速率檢測單元C 2 1、C 4 1及 C 7 1,用以把振動運動信號的阻抗,從很高的水平,大於 1 0 0兆歐姆,轉換為低阻抗,小於1 〇 〇歐姆,以便獲得兩路 振動位移信號,其為表示慣性質量塊和銷梳之間位移的交Page 75 498170 V. Description of the invention (72) The circuit board C4 and the third circuit board C7 are arranged and run in a DSP (digital signal processor) chipset C91 connected to the control circuit board C9. The first front-end circuit C23, the second front-end circuit C43, and the third front-end circuit C 7 3 are structurally identical, and are used to organize the output signals of the X, γ, and z-axis vibration type angular rate detection units, respectively. Each front-end circuit includes: an impedance conversion amplifier circuit C231, C431, and C731, respectively connected to the corresponding X, Y, and Z-axis vibration-type angular rate detection units C 2 1, C 4 1 and C 7 1 for vibration The impedance of the motion signal is converted from a very high level, greater than 100 megaohms, to a low impedance, less than 1000 ohms, in order to obtain two vibration displacement signals, which represent the displacement between the inertial mass and the pin comb. cross
流電壓信號,這兩路振動位移信號被輸入給振動控制電路 C9 2 2 ; 一個高通濾波器電路C2 3 2、C43 2及C7 3 2,分別連接於 相應的X、Y、Z軸振動型角速率檢測單元C 2 1、C 4 1及C 7 1 , 用以去除振動位移差分信號中殘餘的振動驅動信號和噪聲 以便形成過濾後的振動位移差分信號給角信號回路電路 C921 〇 X、Y、Z軸振動型角速率檢測單元C21、C41及C71,除 了其敏感軸被正交配置外,在結構上是一致的。X軸振動 型角速率檢測單元C 2 1用來檢測載體沿X軸的角速率,Y軸 振動型角速率檢測單元C 2 1用來檢測載體沿Y軸的角速率,Current voltage signal, these two vibration displacement signals are input to the vibration control circuit C9 2 2; a high-pass filter circuit C2 3 2, C43 2 and C7 3 2 are connected to the corresponding X, Y, Z axis vibration type angles The rate detection units C 2 1, C 4 1 and C 7 1 are used to remove residual vibration driving signals and noise from the vibration displacement differential signals so as to form filtered vibration displacement differential signals to the angular signal loop circuit C921 〇X, Y, The Z-axis vibration-type angular rate detection units C21, C41, and C71 are identical in structure except that their sensitive axes are arranged orthogonally. The X-axis vibration type angular rate detection unit C 2 1 is used to detect the angular rate of the carrier along the X axis, and the Y axis vibration type angular rate detection unit C 2 1 is used to detect the angular rate of the carrier along the Y axis.
Z軸振動型角速率檢測單元c 2 1用來檢測載體沿Z軸的角速 率0 X、Y、Z軸振動型角速率檢測單元C 2 1、C 4 1及C 7 1都是Z-axis vibration-type angular rate detection unit c 2 1 is used to detect the angular velocity of the carrier along the Z-axis. 0 X, Y, and Z-axis vibration-type angular rate detection units C 2 1, C 4 1 and C 7 1 are all
第76頁 498170 五、發明說明(73) 振動型器件,包含至少一套振動的慣性質量塊,包括調諧 音叉及相應的支撑結構和器件,如電容性信號讀出器件, 並且利用克里奥里斯效應檢測載體的角速率。 每一X、Y、Z軸振動型角速率檢測單元C21、C41及C71 接收如下信號: (1 )來自振動控制電路C 9 2 2的振動驅動信號,以便 保持慣性質量塊的振動; (2)來自振動器C925的載波參考振盪信號,包含電 容讀出激勵信號。 X、Y、Z軸振動型角速率檢測單元C21、C41及C71分別 利用動力學(克里奥里斯力)檢測載體的X、γ、Z軸角速 率,輸出如下信號: (1 )角速率引起的信號,包含調制在載波參考振盪 4吕號上的角速率位移信號’該信號輸出給第一、二、三前 端電路C23、C43、C73的高通濾波器電路C232、C432及 C 7 3 2 ; (2 )慣性質量塊的振動信號,包含振動位移信號, 該信號輸出給第一、二、三前端電路C23、C43、C73的阻 抗轉換放大器電路C231、C431及C731 ; 三個振動控制電路C 9 2 2分別接收來自X、Y、Z轴振動 型角速率檢測單元C21、C41及C71的慣性質量塊的振動位 移信號,以及來自振盪器C 9 2 5的參考拾取信號,產生已知 相位的慣性質量塊的位移信號。 為了將來自X、Y、Z軸振動型角速率檢測單元C21、Page 76 498170 V. Description of the invention (73) Vibration-type device, including at least one set of vibrating inertial mass, including tuning tuning fork and corresponding supporting structure and device, such as capacitive signal readout device, and using Creoles The effect detects the angular rate of the carrier. Each X, Y, and Z-axis vibration-type angular rate detection units C21, C41, and C71 receive the following signals: (1) a vibration drive signal from a vibration control circuit C 9 2 2 so as to maintain the vibration of the inertial mass; (2) Carrier reference oscillation signal from vibrator C925, including capacitive readout excitation signal. The X, Y, and Z-axis vibration-type angular rate detection units C21, C41, and C71 use the kinetics (Clioris force) to detect the X, γ, and Z axis angular rates of the carrier, respectively, and output the following signals: (1) caused by the angular rate The signal includes the angular rate displacement signal modulated on the carrier reference oscillation number 4 Lu '. This signal is output to the high-pass filter circuits C232, C432, and C 7 3 2 of the first, second, and third front-end circuits C23, C43, and C73; (2) The vibration signal of the inertial mass includes a vibration displacement signal, and the signal is output to the impedance conversion amplifier circuits C231, C431, and C731 of the first, second, and third front-end circuits C23, C43, and C73; three vibration control circuits C 9 2 2 Receive the vibration displacement signals from the inertial masses of the X, Y, and Z-axis vibration-type angular rate detection units C21, C41, and C71, and the reference pickup signal from the oscillator C 9 2 5 to generate inertia with a known phase The displacement signal of the mass. In order to convert the angular rate detection unit C21 from the X, Y, and Z axis vibration type,
第77頁 498170 五、發明說明(74) ^^- C 4 1及C 7 1的慣性質量塊的振動位移信號,變換為容易产j 的慣性質量塊的振動位移信號,如第四十二圖所示,^理 控制電路C9 22包含: '動 一個放大器和加法器電路C 9 2 2 1,連接於第一、二、 三前端電路C23、C43、C73的阻抗轉換放大器電路㈡^、 C4 3 1及C73 1,把兩路振動位移信號放大十倍以上,以提高 靈敏度,通過把中心錨梳的信號與旁邊錨梳的信號相減y7 來結合兩路振動位移彳㊂號’以形成振動位移差動信號; 一個高通濾波器電路C 9 2 2 2,連接於放大器和加法器 電路C 9 2 2 1,以便從振動位移差動信號中除去殘餘振動|區 動信號和噪聲,產生過濾後的振動位移差動信號; 一個解調器電路C 9 2 2 3,連接於高通濾波器電路 C 9 2 2 2,以從振盪器C 9 2 5接收電容檢出激勵信號作為相位 參考信號,從高通濾波器C 9 2 2 2接收濾波後的振動位移差 動物號’並提取過濾、後的振動位移差動信號的同相部分用 以產生已知相位的慣性質量塊的位移信號; 一個低通濾波器C 9 2 2 5,連接於解調器電路c 9 2 2 3,以 從輸入的慣性質量塊位移信號中除去高頻噪聲,形成低頻 慣性質量塊位移信號; 一個模擬/數字轉換器C 9 2 2 4,連接於低通濾波器 C 9 2 2 5 ’用以將模擬低頻慣性質量塊位移信號,轉換為數 子化低頻慣性質量塊位移信號,並輸出給振動處理模塊 C912 ; 一個數字模擬轉換器C 9 2 2 6,對來自振動處理模塊Page 77 498170 V. Description of the invention (74) ^^-The vibration displacement signals of the inertial masses of C 4 1 and C 7 1 are converted into the vibration displacement signals of the inertial masses that are easy to produce j, as shown in Figure 42. As shown, the control circuit C9 22 includes: 'An amplifier and an adder circuit C 9 2 2 1 connected to the first, second, and third front-end circuits C23, C43, and C73 impedance conversion amplifier circuits ㈡, C4 3 1 and C73 1. Amplify the two-way vibration displacement signals by more than ten times to improve sensitivity. By subtracting y7 from the signal of the center anchor comb and the signal of the side anchor comb to combine the two-way vibration displacement 彳 ㊂ 'to form the vibration displacement. Differential signal; a high-pass filter circuit C 9 2 2 2 connected to the amplifier and adder circuit C 9 2 2 1 to remove the residual vibration from the vibration-displacement differential signal | zone motion signals and noise, resulting in filtered Vibration displacement differential signal; a demodulator circuit C 9 2 2 3 is connected to the high-pass filter circuit C 9 2 2 2 to receive a capacitor detection excitation signal from the oscillator C 9 2 5 as a phase reference signal from the high-pass Filter C 9 2 2 2 Receive Filter And the in-phase portion of the filtered, vibration-differential differential signal is used to generate the displacement signal of the inertial mass of a known phase; a low-pass filter C 9 2 2 5 is connected to the demodulation Circuit c 9 2 2 3 to remove high frequency noise from the input inertial mass block displacement signal to form a low frequency inertial mass block displacement signal; an analog / digital converter C 9 2 2 4 connected to a low-pass filter C 9 2 2 5 'is used to convert the analog low-frequency inertial mass block displacement signal into a digitalized low-frequency inertial mass block displacement signal and output it to the vibration processing module C912; a digital-to-analog converter C 9 2 2 6 Module
第78頁 498170 五、發明說明(75) C9 1 2所選的信號幅度進行處理,以便形成具有正確幅度的 振動驅動信號。 一個放大器C9227,基於正確的頻率和幅度的振動驅 動信號,為X、Y、Z轴振動型角速率檢測單元、C41及 C 7 1產生和放大振動驅動信號。 X、Y、Z軸振動型角速率檢測單元C2i、C41&C7i中的 慣性質量塊的振動是由具有精確幅度的高頻正弦信號驅動 的。提供給X、γ、z轴振動型角速率檢測單元C21、c41及 C 7 1的局性能的振動驅動化號對X、γ、Z軸角速率測量值的 靈敏度和穩定度起非常重要的作用。 振動處理模塊C912接收來自振動控制電路⑺“的模擬 /數字轉換器C9 2 2 4的已知相位的數字化低頻慣性質量塊位 移信號,以便於: ' (1)搜索具有最高質量因子(q)值的頻率; (2 )鎖定該頻率; (3 )鎖定幅度,產生振動驅動信號,包括具有精確 幅度的高頻正弦信號,給X、Y、z軸振動型角速率檢測單 = C2 1、C41及C71,以便使慣性質量塊振動在預定的諧振 頻罕下。 振動處理模塊C912搜索和鎖定χ、γ、z軸振 ,檢=單元C21、C41AC71的慣性質量塊的振動頻率和幅 度。因此,數字化低頻慣柯槪e ^ A 4 ^ 1員改質Ϊ塊位移信號首先通過離散 快速畐立埃變換,表達在頻谱上。 狀 離散快速富立埃變換县4 ^ 兴尺叶鼻離散富立埃變換的有效算Page 78 498170 V. Description of the invention (75) C9 1 2 The selected signal amplitude is processed to form a vibration drive signal with the correct amplitude. An amplifier C9227 generates and amplifies vibration drive signals for the X, Y, and Z-axis vibration-type angular rate detection units, C41, and C 71 based on vibration drive signals of the correct frequency and amplitude. The vibration of the inertial masses in the X, Y, and Z-axis vibration-type angular rate detection units C2i, C41 & C7i is driven by a high-frequency sinusoidal signal with a precise amplitude. The vibration-driven oscillating number of the local performance provided to the X, γ, and z-axis vibration-type angular rate detection units C21, c41, and C 7 1 plays a very important role in the sensitivity and stability of the X, γ, and Z-axis angular rate measurements. . The vibration processing module C912 receives a digital low-frequency inertial mass block displacement signal of known phase from the analog / digital converter C9 2 2 4 of the vibration control circuit ⑺, in order to: '(1) search for the highest quality factor (q) value (2) lock the frequency; (3) lock the amplitude to generate a vibration drive signal, including a high-frequency sinusoidal signal with precise amplitude, for X, Y, and z-axis vibration-type angular rate detection sheets = C2 1, C41, and C71 in order to make the inertial mass vibrate at a predetermined resonance frequency. The vibration processing module C912 searches and locks the χ, γ, and z-axis vibrations, and detects the vibration frequency and amplitude of the inertial mass of the units C21 and C41AC71. The low-frequency invariant Ke 槪 e ^ A 4 ^ 1-member modified Ϊ block displacement signal is first expressed in the frequency spectrum by discrete fast Filie transform. Shaped discrete fast Fourier transform Effective calculation of transformation
第79頁 ㈣170 五、發明說明(76) 連續信號 /ir ^它極大地降低了離散富立埃變換的計算量。離散富立 埃,換用來近似表達離散信號的富立埃變換。^ ^ “ 的昌立埃變換或頻譜被定義為: ^〇*α>)= Γ x(t)e^i〇)tdt 離散信號X(nT)的N個採樣的離散富立埃變換由下式給 定: -j(〇Tnk Χ^ω)^γ^χ{ηΤ)β 其中,a = 2;r/iv:r,τ是内採樣時間間隔。FFT的本質是 區分疊加在一起的不同頻率的波。 將數字化低頻慣性質量塊位移信號通過離散快速富立 埃變換表達在頻譜上後,Q分析被應用在頻譜上,以便確 定具有全局最大Q值的頻率。鎖定X、Y、Z軸振動型角速率 檢測單元C21、C41及C71的慣性質量塊振動在具有全局最 大Q值的頻率,可降低功率消耗,取消許多影響激勵模式 的因素。Q值是慣性質量塊的基本幾何尺度、材料特性及 環境條件的函數。 一鎖相環路和數字模擬轉換器近一步用來控制和穩定 選定的頻率和幅度。 如第四十四圖所示,振動處理模塊C 912近一步包含一 個離散快速富里葉變換(Fast Fourier Transform, FFT) 模塊C 9 1 2 1,一個頻率和幅度數據存儲陣模塊c 9 1 2 2,一個Page 79 ㈣170 V. Description of the invention (76) Continuous signal / ir ^ It greatly reduces the amount of computation of the discrete Fourier transform. Discrete Fourier transform, the Fourier transform used to approximate the discrete signal. ^ ^ "The Chang Lie transform or spectrum is defined as: ^ 〇 * α >) = Γ x (t) e ^ i〇) tdt The discrete Fourier transform of N samples of the discrete signal X (nT) is given by Given by the formula: -j (〇Tnk χ ^ ω) ^ γ ^ χ {ηΤ) β where a = 2; r / iv: r, τ is the inner sampling time interval. The essence of FFT is to distinguish the differences that are superimposed together. Waves of frequency. After the digital low-frequency inertial mass block displacement signal is expressed on the frequency spectrum by discrete fast Fourier transform, Q analysis is applied to the frequency spectrum in order to determine the frequency with the global maximum Q value. Lock the X, Y, and Z axes The inertial mass of the vibration-type angular rate detection units C21, C41, and C71 vibrate at a frequency with a global maximum Q value, which can reduce power consumption and eliminate many factors that affect the excitation mode. The Q value is the basic geometric scale and material of the inertial mass. A function of characteristics and environmental conditions. A phase-locked loop and digital-to-analog converter are further used to control and stabilize the selected frequency and amplitude. As shown in Figure 44, the vibration processing module C 912 further includes a discrete fast Fourier Transform (FFT) module C 9 1 2 1, of a frequency and amplitude of the data storage array module c 9 1 2 2, a
第80頁 4981 /υ 、發明說明(77) 值檢測邏輯模塊㈢丨23及一個Q值分析和選擇邏輯模塊 C9124,以便找到具有最大Q值的頻率。 散快速富里葉變換(Fast Fourier Transform, a极塊C9121 ’變換來自振動運動控制電路㈢“的模擬 子轉換為C 9 2 2 4的數字化的低頻慣性質量塊的位移信 =’以便形成輸入慣性質量塊位移信號的頻幅上的幅度數 據0 頻率和幅度數據存儲陣模塊C 9 1 2 3,接收幅度和頻譜 數據,=以形成一個幅度和頻譜數據陣。Page 80 4981 / υ, invention description (77) value detection logic module ㈢ 丨 23 and a Q value analysis and selection logic module C9124 in order to find the frequency with the largest Q value. Fast Fourier Transform, a pole block C9121 'Transforms the analog from the vibration motion control circuit ㈢' into a C 9 2 2 4 digitized low-frequency inertial mass block displacement letter = 'to form the input inertial mass Amplitude data on the frequency amplitude of the block shift signal 0 The frequency and amplitude data storage array module C 9 1 2 3 receives the amplitude and spectrum data, so as to form an array of amplitude and spectrum data.
最大值檢測邏輯模塊C 9 1 2 3,將來,自幅度和頻譜數據 ^的頻睹數據陣的頻譜分割為一些頻譜段,並從當地頻譜 丰又中選擇出具有最大幅度的頻率。 Q值分析和選擇邏輯模塊c 9丨2 4,在選出的頻率上進行 Qjt分析,通過計算幅度和頻帶寬度的比值,選擇頻率和 巾田度。其中’計算用的頻帶寬度取每一個最大頻率點最大 值的正負二分之一之間。 進一步,振動處理模塊C912包含一個鎖相環C9 125, 用作一個很窄的帶通濾波器,以排斥所選頻率的噪聲,及 產生並鎖定選定頻率的振動驅動信號。The maximum value detection logic module C 9 1 2 3, in the future, the frequency spectrum of the frequency array from the amplitude and spectrum data is divided into some frequency bands, and the frequency with the largest amplitude is selected from the local frequency spectrum. The Q value analysis and selection logic module c 9 丨 2 4 performs Qjt analysis on the selected frequency. By calculating the ratio of the amplitude and the frequency band width, the frequency and the field degree are selected. Among them, the frequency band width for calculation is between plus and minus one-half of the maximum value of each maximum frequency point. Further, the vibration processing module C912 includes a phase-locked loop C9 125, which is used as a very narrow band-pass filter to exclude noise of a selected frequency, and to generate and lock a vibration driving signal of the selected frequency.
三個角信號回路電路C 9 2 1接收來自X、Y、Z軸振動型 角速率檢測單元C21 、C41及C71的角速率引起的信號,以 及來自振盪器C925的參考拾取信號,將角速率引起的信號 是換為角速率信號。如第三十三圖,第一電路板C2、第二 電路板C 4、第三電路板c 7的每一個角信號回路電路c 921包The three angular signal loop circuits C 9 2 1 receive signals caused by the angular rate from the X, Y, and Z-axis vibration-type angular rate detection units C21, C41, and C71, and a reference pickup signal from the oscillator C925, which causes the angular rate The signal is replaced by an angular rate signal. As shown in the thirty-third figure, each of the angular signal loop circuit c 921 of the first circuit board C2, the second circuit board C 4, and the third circuit board c 7 includes 921 packets.
498170 五、發明說明(78) 含: 一個電壓放大器電路C 9 2 1 1 ,用以放大來自相應的第 一、二、三前端電路C23、C43、C73高通濾波器電路C232 的過濾後的角速率引起的信號到至少丨〇 〇 〇毫伏的程度,以 形成放大後的角速率引起的信號; 一個放大和加法器電路C 9 2 1 2,用以提取放大後的角 速率信號的差異,以產生差動的角速率信號; 二個解調器C 9 2 1 3,連接於放大和加法器電路c 9 2丨2, 用=從差動的角速率信號和從振盪器c 9 2 5來的電容讀出激 勵信號’提取同相差動角速率信號的幅度;498170 V. Description of the invention (78) Contains: A voltage amplifier circuit C 9 2 1 1 to amplify the filtered angular rate from the corresponding first, second and third front-end circuits C23, C43, C73 high-pass filter circuit C232 The induced signal is at least 1000 millivolts to form an amplified angular rate induced signal; an amplifier and adder circuit C 9 2 1 2 is used to extract the difference in the amplified angular rate signal to Generate a differential angular rate signal; two demodulator C 9 2 1 3, connected to the amplifier and adder circuit c 9 2 丨 2, with = from the differential angular rate signal and from the oscillator c 9 2 5 The capacitive readout excitation signal 'extracts the amplitude of the in-phase differential angular rate signal;
一個低通濾波器C 9 2 1 4,連接於解調器c 9 2丨3,用以去 同相差動角速率栺號的幅度信號的高頻噪聲,以形成角 逑率信號輸出給角增量和速度增量產生器C6。 曰如第二十九圖及第三十圖所示,本發明的小型慣性須 X組件的優選方案之加速度產生器C10包含: 一X軸加速度計C42,它位於第二電路板以上並和栌 電路板C9中的AS 1C芯片C92的角增量和速度增量產生器^ 相連; ° —Y軸加速度計C22,它位於第一電路板C2上並和 電路板C9中的ASIC芯片C92的角增量和速度增量產 ;; 相連; 裔L 0 一Z軸加速度計C72,它位於第三電路板C7上並和 電路板C9中的AS 1C芯片C92的角增量和速度增量產生器^制 相連。 wA low-pass filter C 9 2 1 4 is connected to the demodulator c 9 2 丨 3 to remove the high-frequency noise of the amplitude signal of the in-phase differential angular rate 差 to form the angular 形成 rate signal and output it to the angular amplifier. Amount and speed increment generator C6. As shown in Figures 29 and 30, the acceleration generator C10 of the preferred scheme of the small inertial whisker X component of the present invention includes: an X-axis accelerometer C42, which is located above the second circuit board and is The angular increment and speed increment generator of the AS 1C chip C92 in the circuit board C9 are connected; ° —Y-axis accelerometer C22, which is located on the first circuit board C2 and is connected to the angle of the ASIC chip C92 in the circuit board C9 Increment and velocity increment production ;; connected; L 0-Z-axis accelerometer C72, which is located on the third circuit board C7 and the angular increment and velocity increment generator of the AS 1C chip C92 in the circuit board C9 ^ System connected. w
第82頁 498170 五、發明說明(79) 如第二十圖、第三十六圖和第三十七圖所示, 的小型慣性測量組件的優選方案之熱敏感產生器 步包含: 第一熱敏感產生單元C24,用來敏感X軸振動型 檢測單元C 2 1和Y軸加速度計c 2 2的溫度; 第二熱敏感產生單元C44,用來敏感γ軸振動型 欢剛單元C 4 1和X軸加速度計c 4 2的溫度; ^三熱敏感產生單元C74,用來敏感Z軸振動型 双 <則單元C 7 1和Z軸加速度計(;7 2的溫度; 如第二十圖和第三十七圖所示,本發明的小型 、、a件的優選方案之加熱器c 2 〇進一步包含: C2 第一加熱器C25,它與X軸振動型角速率檢測單 X紅:Y轴加速度計C22及第一前端電路C23相連,用 端#振動型角速率檢測單元(:21,γ轴加速度計C22及 電路C23的預定的工作溫度; C41,5 : :口 ί ΞC?5 ’匕與Υ軸振動型角速率檢測單 Υ轴# 速又计C42及第二前端電路C43相連,用 端電振角速率檢測單元^1,x軸加速度計C42及 電路C43的預定的工作溫度; ⑺,第,加熱HC75,它與Z軸振動型角速率檢測單 2轴掩叙】加速度计C72及第三前端電路C73相連,用 端電 角速率檢測單元⑺,Z軸加速度計m及 寬路C 7 3的預定的工作溫度。 如第二十圖,第二十九圖,第三十圖,第三十 本發明 5進― 角速率 角速率 角速率 慣性測 元 來保持 第一前 元 來保持 第二前 元 來保持 第三前 九圖和Page 82 498170 V. Description of the invention (79) As shown in the twentieth, thirty-sixth and thirty-seventh figures, the heat sensitive generator step of the preferred solution of the small inertial measurement component includes: the first heat The sensitive generating unit C24 is used to sensitively detect the temperature of the X-axis vibration type detecting unit C 2 1 and the Y-axis accelerometer c 2 2; the second thermal sensitive generating unit C44 is used to sensitively detect the gamma-axis vibration type rigid unit C 4 1 and The temperature of the X-axis accelerometer c 4 2; ^ Three thermal-sensitive generating unit C74 is used to sensitive the Z-axis vibration type double < then the unit C 7 1 and the Z-axis accelerometer (; 7 2 temperature; as shown in Figure 20) As shown in FIG. 37, the small-sized, a-piece heater c 2 〇 of the present invention further includes: C2 a first heater C25, which is related to the X-axis vibration type angular rate detection unit X red: Y The axis accelerometer C22 is connected to the first front-end circuit C23, and the terminal # vibration-type angular rate detection unit (21, the predetermined operating temperature of the gamma axis accelerometer C22 and the circuit C23; C41, 5 :: 口 ί ΞC? 5 ' The dagger is connected to the y-axis vibration type angular rate detection single y-axis # speed meter C42 and the second front-end circuit C43. Electrical vibration angular rate detection unit ^ 1, the predetermined operating temperature of the x-axis accelerometer C42 and the circuit C43; The three front-end circuits C73 are connected, and the terminal electrical angular rate detection unit ⑺, the Z-axis accelerometer m, and the predetermined working temperature of the wide path C 7 3 are shown in Fig. 20, 29, 30, and Thirty-three inventions of this invention-angular rate angular rate angular rate inertial measurement unit to maintain the first pre-element to maintain the second pre-element to maintain the third pre-nine graph and
第83頁 498170 五、發明說明(80) -一 理w十圖,本發明的小型慣性測量組件的優選方案之熱處 進一步包含參個相同的熱控制電路C9 2 3和運行在 芯片組C 9 1的熱控制計算模塊c 9 i J。 row如第三十七圖和第四十三圖所示,每一熱控制電路 L 9 “進一步包含: 第一放大器電路C 9231 ,它與相應的X、γ、z轴埶敏感 產生皁元C24、C44和C74相連,用來放大來自相應的乂、 、口,熱敏感產生單元C 24、C44和C 74的信號並壓縮其中 的σ眾聲,提高信號噪聲比; ’ 個模擬/數字轉換器C 9 2 3 2,連接於放大器電路 il l,用來採樣溫度電壓信號,並將採樣的溫度電壓信 號數子化為數字信號,輸出給熱控制計算模塊c 9 1 ^ . r擬轉換器C 9 2 3 3,用來將來'自熱控制計算 杈塊C9 U的數子溫度指令,轉換為模擬信號; 擬棘ΐ 二電路C92 34,用來接收並放大來自數字模 擬轉換益C 9 2 3 3的模擬信號,以便驅動相應的第一、二、 二加熱器C25、$45、C75和閉合溫度控制回路。 &數= =二板塊C911使用來自模擬/數字轉換器C9233 ,溫度標定係數以及預定的上述角速 ί f i ί ΐ 生器的卫作溫度,來計算數字溫度指令, 並將=數子溫度指令送入一數字/模擬轉換器c92 33。 為了得到一高性能、全功能的小型IMU,本發明的小 广t“生測j組件的優選方案之第一電路板^、第二電路板 C4、弟二電路板C7和控制電路板C9的一特別封裝方法如下Page 83 498170 V. Description of the invention (80)-a picture of ten, the heat of the preferred solution of the small inertial measurement module of the present invention further includes the same thermal control circuit C9 2 3 and the chipset C 9 1 Thermal control calculation module c 9 i J. As shown in Figure 37 and Figure 43, each thermal control circuit L 9 "further includes: a first amplifier circuit C 9231, which is sensitive to the corresponding X, γ, and z axes to generate the saponin C24 , C44 and C74 are connected to amplify the signals from the corresponding 乂, 口, and ,, the heat-sensitive generating units C 24, C44, and C 74 and compress the σ sounds among them to improve the signal-to-noise ratio; C 9 2 3 2 is connected to the amplifier circuit il l, and is used to sample the temperature voltage signal, and digitize the sampled temperature voltage signal into a digital signal, and output it to the thermal control calculation module c 9 1 ^. R pseudo converter C 9 2 3 3, used to calculate the digital temperature instruction of the self-heating control block C9 U in the future, and convert it into an analog signal; the analog circuit C92 34 is used to receive and amplify the digital analog conversion benefit C 9 2 3 3 analog signals in order to drive the corresponding first, second, and second heaters C25, $ 45, C75 and closed temperature control loop. &Amp; number = = two blocks C911 uses the analog / digital converter C9233, temperature calibration coefficients and predetermined The above angular speed ί fi ί ΐ Wei Zuo temperature, to calculate the digital temperature command, and send the = digital temperature command to a digital / analog converter c92 33. In order to obtain a high-performance, full-function small IMU, the Xiaoguang t "生 测 j A preferred packaging method of the first circuit board ^, the second circuit board C4, the second circuit board C7, and the control circuit board C9 is as follows:
第84頁 498170 五、發明說明(81) 所述: 如第三十 發明的小型慣 樹脂將第三電 基樹脂將第一 行地與 換 C4和控 C7作為 便減小 以 路板C9 樹脂和 聲水平 速度造 第三電 句話說 制電路 内部連 尺寸。 共地方 與第三 支撐結 和熱梯 成的結 五圖、第 性測量組 路板C7粘 電路板C2 路板C7粘 ,以這種 板C9與第 接板,因 式將第一 電路板C7 構能形成 度。另外 構變形引 三十一圖和第三十二圖所示,在本 件的優選方案中,使用導電環氧基 接於移支撐結構,使用非導電環氧 、第二電路板C4和控制電路板C 9平 接。 方式將第一電路板C2、第二電路板 三電路板C 7粘接,使用第三電路板 此,可避免内部連接線的需要,以 電路板C2、第二電路板C4和控制電 組裝成了 一圓形,以便導電環氧基 一連續的地極。這樣可降低電子噪 ,這種組裝方式也可以降低由於加 起的I M U失準角的變4匕。Page 84 498170 V. Description of the invention (81): The small conventional resin of the thirtieth invention uses the third electric-based resin to replace the first line with C4 and control C7 as the road board C9 resin and The sound level velocity makes the third electric sentence internally connected to the circuit size. There are a total of five knots formed with the third supporting junction and the hot ladder. The first measurement group circuit board C7 is bonded to the circuit board C2 and the circuit board C7 is bonded. With this board C9 and the first connection board, the first circuit board C7 is factored. Formation energy formation. In addition, as shown in Figure 31 and Figure 32, in the preferred scheme of this piece, a conductive epoxy group is used to connect the mobile support structure, and a non-conductive epoxy, a second circuit board C4, and a control circuit board are used. C 9 is connected flat. The first circuit board C2, the second circuit board C3, and the third circuit board C7 are bonded together. The third circuit board is used to avoid the need for internal connection wires. The circuit board C2, the second circuit board C4, and the control circuit are assembled A circular shape, so that the conductive epoxy is a continuous ground. This can reduce the electronic noise, and this assembly method can also reduce the variation due to the added I M U misalignment angle.
第85頁 498170 圖式簡單說明 圖不說明 第一圖:為一方塊圖,顯示了依照本發明優選實現方案的 述本發明優選實現方案的 主 第二 第一 第三 第四 第五 案的 第六 案的 第七 現方 第八 第二 第九 案的 第十 案的 第十 方案 第十 方案 第十 \無中斷式定位方法與系統( 圖:為一方塊圖,顯示了上 替代模式。 圖:顯示了純I N S和辅助I N S 圖:顯示了溫度引起的MEMS 圖:為一方塊圖,顯示了依 基於主IMU的自主\無中斷式 圖:為一方塊圖,顯示了依 速度產生器。 圖:為一方塊圖,顯示了本 案的導航處理器之處理模塊 圖:為一方塊圖,顯示了上 替代模式。 圖:為一方塊圖,顯示了依 包括DGPS的導航處理器之處 圖:為一方塊圖,顯示了依 慣性導航處理之處理模塊。 一圖:為一方塊圖,顯示了依照上述本發明優 的磁通閥的處理。 二圖:為一方塊圖,顯示了依照上述本發明優 的多普勒雷達的處理。 三圖:為一方塊圖,顯示了依照上述本發明優 的特性對比。 角速度傳感器誤差 照上述本發明優選 定位模塊。 照上述本發明優選 發明系統結構第二 〇 述本發明優選實現 照上述本發明優選 理模塊。 照上述本發明優選 特性。 實現方 實現方 優選實 方案的 實現方 實現方 選實現 選實現 選實現498170 Schematic illustration of the diagram does not explain the first diagram: is a block diagram showing the first, second, third, fourth, and fifth aspects of the preferred implementation of the present invention according to the preferred implementation of the present invention. The seventh present party in the sixth case, the eighth, second, and ninth cases, the tenth plan, the tenth plan, the tenth plan, and the tenth non-disruptive positioning method and system (Figure: is a block diagram showing the upper alternative mode. Figure : Shows pure INS and auxiliary INS diagrams: shows temperature-induced MEMS diagrams: is a block diagram showing an autonomous \ non-disruptive diagram based on the main IMU: is a block diagram showing a speed-dependent generator. : Is a block diagram showing the processing module diagram of the navigation processor in this case: is a block diagram showing the upper alternative mode. Figure: is a block diagram showing the location of the navigation processor including DGPS: A block diagram showing a processing module based on inertial navigation processing. A figure: is a block diagram showing the processing of an excellent magnetic flux valve according to the present invention described above. The above-mentioned processing of the superior Doppler radar of the present invention. Figure 3 is a block diagram showing the characteristic comparison according to the above-mentioned superiority of the present invention. The angular velocity sensor error is based on the above-mentioned preferred positioning module of the present invention. The second aspect of the present invention is preferably implemented according to the above-mentioned present invention. The preferred features of the present invention are as described above. The implementer implements the preferred solution.
第86頁 498170 圖式簡單說明 方案的相對位 第十四圖:為 方案的卡爾曼 第十五圖:為 圖。 弟十六圖·為 的中間模糊搜 第十七圖:為 的成形估計器 第十八圖:為 的完整的成形 第十九圖:為 方案的小型慣 第二十圖:顯 之處理模塊及 置測量的計算。 一方塊圖,顯示了依照上述本發明優選實現 遽波器的計鼻。 本發明飛行中模糊解技術的新處理過程流程 第二十 圖 案之處理模塊 第二十二圖: 案之角增量和 速度產生器輸 第二十三圖: 案之另一角增 和加速度產生 第二十四圖: 依照本 索策略 依照本 過程流 依照本 估計器 一方塊 性測量 示了本 相應的 顯示了 及相應 顯示了 速度增 出電壓 顯示了 量和速 器輸出 顯示了 發明飛行 流程圖。 發明飛行 程圖。 發明飛行 形式。 圖,顯示 組件的處 發明的小 熱控制處 本發明的 的熱補償 本發明的 量產生器 信號。 本發明的 度增量產 電壓信號 本發明的 中模糊解技術的新處理過程 中模糊解技術的新處理過程 中模糊解技術的新處理過程 了依照上述本發明優選實現 理模塊。 型慣性測量組件的優選方案 理模塊。 小型慣性測量組件的優選方 處理模塊。 小型慣性測量組件的優選方 ,用來處理速率產生器和加 小型慣性測量組件的優選方 生器,用來處角速率產生器 0 小型慣性測量組件的優選方Page 86 498170 Illustration of the relative position of the scheme. Figure 14: Kalman for the scheme. Figure 15: For the graph. Sixteenth figure · The middle fuzzy search for the seventeenth figure: the forming estimator for the eighteenth figure: the complete shaping for the nineteenth figure: the small customary scheme for the solution Set measurement calculations. A block diagram showing the nosepiece of a preferred implementation of an oscillating wave device in accordance with the present invention. The new processing flow of the in-flight blurring technology of the present invention. The processing module of the twentieth pattern. Figure 22: The angular increment and velocity generator of the case are lost. The 23rd graph: The other angular increment and acceleration of the case are generated. Twenty-four pictures: According to the Benson strategy, according to this process, according to this estimator, a block measurement shows the corresponding display and the corresponding display of the speed increase voltage, the amount of display, and the output of the speed device. Invent flight chart. Invent the form of flight. The figure shows the location of the component. The small thermal control area of the invention. The thermal compensation of the invention. The quantity generator signal of the invention. The incremental voltage signal of the present invention is a new processing process of the medium fuzzy solution technology of the present invention. A new processing process of the medium fuzzy solution technology of the present invention implements the preferred implementation of the processing module according to the invention described above. Preferred inertial measurement module. The preferred processing module for small inertial measurement components. Preferred method for small inertial measurement components, used to process rate generators and preferred generators for small inertial measurement components, used to handle angular rate generators 0 Preferred methods for small inertial measurement components
第87頁 498170 圖式簡單說明 案之另一角增量和速度增量產生器,用來處理角速率產生 器和加速度產生器輸出電壓信號。 第二十五圖:顯示了本發明的小型慣性測量組件的優選方 案之另一角增量和速度增量產生器,用來處理角速率產 生器和加速度產生器輸出電壓信號。 第二十六圖:顯示了本發明的小型慣性測量組件的優選方 案之熱處理器,用來處理熱敏感產生器輸出的模擬電壓信 號。 第二十七圖:顯示了本發明的小型慣性測量組件的優選方 案之另一熱處理器,用來處理熱敏感產生输出的模擬電壓 信號。 第二十八圖:顯示了本發明的小型慣性測量組件的優選方 案之另一熱處理器,用來處理熱敏感產生輸出的模擬電壓 信號。 第二十九圖:顯示了本發明的小型慣性測量組件的優選方 案之處理模塊。 第三十圖:顯示了本發明的小型慣性測量組件的優選方案 之溫度數字化器,用來處理熱敏感產生器輸出的模擬電壓 信號。 第三十一圖:顯示了本發明的小型慣性測量組件的優選方Page 87 498170 The diagram simply illustrates another angular increment and velocity increment generator of the scheme, which is used to process the output voltage signals of the angular rate generator and the acceleration generator. Figure 25: It shows another angular increment and velocity increment generator of the preferred embodiment of the small inertial measurement module of the present invention, which is used to process the output voltage signals of the angular rate generator and the acceleration generator. Twenty-sixth figure: A thermal processor showing a preferred embodiment of the small inertial measurement module of the present invention for processing an analog voltage signal output from a thermally sensitive generator. Twenty-seventh figure: shows another preferred thermal processor of the small inertial measurement module of the present invention, which is used to process the analog voltage signal of the thermally sensitive output. Figure 28: Another thermal processor showing a preferred embodiment of the small-scale inertial measurement module of the present invention is used to process an analog voltage signal of a thermally sensitive output. Figure 29: A processing module showing a preferred embodiment of the small inertial measurement module of the present invention. Figure 30: A temperature digitizer showing a preferred solution of the small-scale inertial measurement module of the present invention, which is used to process the analog voltage signal output by the heat-sensitive generator. Figure 31: A preferred method of the small inertial measurement module of the present invention is shown
第88頁 498170 圖式簡單說明 案之另一溫度數字化器,用來處理熱敏感產生器輸出的模 擬電壓信號。 第三十二圖:顯示了本發明的小型慣性測量組件的優選方 案之處理模塊及相應的熱補償處理模塊。 第三十三圖:顯示了本發明的小型慣性測量組件的優選方 案之姿態和航向處理模塊。 第三十四圖:顯示了本發明的小型慣性測量組件的優選方 案之位置速度姿態和航向處理模塊。Page 88 498170 Schematic description Another temperature digitizer is used to process the analog voltage signal output by the thermal sensitive generator. Figure 32: A processing module and a corresponding thermal compensation processing module of the preferred embodiment of the small inertial measurement module of the present invention are shown. Figure 33: The attitude and heading processing module showing the preferred scheme of the small inertial measurement module of the present invention. Figure 34: A position velocity attitude and heading processing module showing a preferred solution of the small inertial measurement module of the present invention.
第三十五圖:顯示了本發明的小型慣性測量組件的優選方 案之機械結構和電路板布局的透視圖。 第三十六圖:顯示了本發明的小型慣性測量組件的優選方 案之切面圖。 i第三十七圖:顯示了本發明的小型慣性測量組件的優選方 I案之内部四塊電路板之間的連接圖。 i第三十八圖:顯示了本發明的小型慣性測量組件的優選方 案之第1 ,2 ,3 ,4電路板的前端電路的框圖。 第三十九圖:顯示了本發明的小型慣性測量組件的優選方 案之第3電路板的AS 1C芯片的框圖。Figure 35: A perspective view showing the mechanical structure and circuit board layout of the preferred embodiment of the small inertial measurement module of the present invention. Figure 36: A cross-sectional view showing a preferred embodiment of the small-scale inertial measurement module of the present invention. i Figure 37: A connection diagram between four internal circuit boards of the preferred solution I of the small inertial measurement module of the present invention. i Fig. 38: A block diagram showing the front-end circuits of the first, second, third, and fourth circuit boards of the preferred embodiment of the small inertial measurement module of the present invention. Figure 39: A block diagram showing an AS 1C chip of the third circuit board of the preferred embodiment of the small inertial measurement module of the present invention.
第θ十圖:顯示了本發明的小型慣性測量組件的優選方案 之第3電路板的DSP芯片組里運行的處理模塊。 第四十一圖:顯示了本發明的小型慣性測量組件的優選方 案之第3電路板的ASIC芯片的角信號回路電路的框圖。Figure θ10: shows the processing module running in the DSP chipset of the third circuit board of the preferred scheme of the small inertial measurement module of the present invention. Fig. 41 is a block diagram showing an angular signal loop circuit of an ASIC chip of a third circuit board of a preferred embodiment of the small inertial measurement module of the present invention.
第89頁 498170 圖式簡單說明 第四十二圖:顯示了本發明的小型慣性測量組件的優選方 案之第3電路板的ASIC芯片的抖動運動控電路的框圖。 第四十三圖:顯示了本發明的小型慣性測量組件的優選方 案之第3電路板的A S I C芯片的熱控制電路框圖。 第四十四圖:顯示了本發明的小型慣性測量組件的優選方 案之第3電路板的D S P里運行的抖動運動處理模塊。Page 89 498170 Brief description of the drawings Figure 42: A block diagram showing a dithering motion control circuit of the ASIC chip of the third circuit board of the preferred embodiment of the small inertial measurement module of the present invention. Fig. 43 is a block diagram showing the thermal control circuit of the AS IC chip of the third circuit board of the preferred embodiment of the small inertial measurement module of the present invention. Forty-fourth figure: A dithering motion processing module running in the DSP of the third circuit board of the preferred embodiment of the small inertial measurement module of the present invention is shown.
第90頁Chapter 90
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/740,539 US7162367B2 (en) | 1999-11-29 | 2000-12-18 | Self-contained/interruption-free positioning method and system thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
TW498170B true TW498170B (en) | 2002-08-11 |
Family
ID=24976946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90105239A TW498170B (en) | 2000-12-18 | 2001-03-05 | Self-contained/interruption-free positioning method and system thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW498170B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI382153B (en) * | 2008-05-05 | 2013-01-11 | Universal Scient Ind Shanghai | A navigation method for adjusting accumulated errors |
CN111256744A (en) * | 2020-02-27 | 2020-06-09 | 苏州海之博电子科技有限公司 | Calibration method of linear output position sensor |
CN113364655A (en) * | 2021-04-30 | 2021-09-07 | 北京航天发射技术研究所 | DSP-based reliable communication system and communication method of inertial north-seeking component |
CN113884977A (en) * | 2021-08-17 | 2022-01-04 | 中国电子科技集团公司第二十九研究所 | Correction method for one-dimensional interferometer direction finding cone effect |
-
2001
- 2001-03-05 TW TW90105239A patent/TW498170B/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI382153B (en) * | 2008-05-05 | 2013-01-11 | Universal Scient Ind Shanghai | A navigation method for adjusting accumulated errors |
CN111256744A (en) * | 2020-02-27 | 2020-06-09 | 苏州海之博电子科技有限公司 | Calibration method of linear output position sensor |
CN111256744B (en) * | 2020-02-27 | 2021-06-29 | 苏州海之博电子科技有限公司 | Calibration method of linear output position sensor |
CN113364655A (en) * | 2021-04-30 | 2021-09-07 | 北京航天发射技术研究所 | DSP-based reliable communication system and communication method of inertial north-seeking component |
CN113884977A (en) * | 2021-08-17 | 2022-01-04 | 中国电子科技集团公司第二十九研究所 | Correction method for one-dimensional interferometer direction finding cone effect |
CN113884977B (en) * | 2021-08-17 | 2023-09-08 | 中国电子科技集团公司第二十九研究所 | Correction method for one-dimensional interferometer direction-finding conical effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6658354B2 (en) | Interruption free navigator | |
US6415223B1 (en) | Interruption-free hand-held positioning method and system thereof | |
US7162367B2 (en) | Self-contained/interruption-free positioning method and system thereof | |
US6671622B2 (en) | Vehicle self-carried positioning method and system thereof | |
US20060287824A1 (en) | Interruption free navigator | |
US6459990B1 (en) | Self-contained positioning method and system thereof for water and land vehicles | |
Aggarwal | MEMS-based integrated navigation | |
Yang | Tightly coupled MEMS INS/GPS integration with INS aided receiver tracking loops | |
EP0026626B1 (en) | Autonomous navigation system | |
US20150330791A1 (en) | Inertial device, method, and program | |
CN102445200A (en) | Microminiature personal combined navigation system as well as navigating and positioning method thereof | |
CN105043415A (en) | Inertial system self-aligning method based on quaternion model | |
CN105091907A (en) | Estimation method of installation error of DVL direction in SINS and DVL combination | |
CN112197765B (en) | Method for realizing fine navigation of underwater robot | |
KR100571120B1 (en) | Three dimentional survey system which use the laser apparatus | |
Bose et al. | Modern inertial sensors and systems | |
Shkel et al. | Pedestrian inertial navigation with self-contained aiding | |
JP2019158881A (en) | Magnetic-inertial global positioning system | |
TW498170B (en) | Self-contained/interruption-free positioning method and system thereof | |
Weston et al. | Strapdown inertial navigation technology | |
TW498169B (en) | Interruption-free hand-held positioning method and system thereof | |
Martin | Overcoming the challenges of low-cost inertial navigation | |
TW486576B (en) | Vehicle self-carried positioning method and system thereof | |
CN114137592A (en) | Switching method and system for fusion positioning of multi-source sensor | |
TW593981B (en) | Micro integrated global positioning system/inertial measurement unit system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |