TWI422825B - Method and apparatus for high-precision velocity estimation - Google Patents

Method and apparatus for high-precision velocity estimation Download PDF

Info

Publication number
TWI422825B
TWI422825B TW99114717A TW99114717A TWI422825B TW I422825 B TWI422825 B TW I422825B TW 99114717 A TW99114717 A TW 99114717A TW 99114717 A TW99114717 A TW 99114717A TW I422825 B TWI422825 B TW I422825B
Authority
TW
Taiwan
Prior art keywords
signal
estimated
value
state
displacement
Prior art date
Application number
TW99114717A
Other languages
Chinese (zh)
Other versions
TW201140063A (en
Inventor
Chung Peng Su
Ting En Lee
Original Assignee
Chung Peng Su
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Peng Su filed Critical Chung Peng Su
Priority to TW99114717A priority Critical patent/TWI422825B/en
Publication of TW201140063A publication Critical patent/TW201140063A/en
Application granted granted Critical
Publication of TWI422825B publication Critical patent/TWI422825B/en

Links

Description

高精度速度估測方法及其裝置 High-precision speed estimation method and device thereof

本發明是有關於一種速度估測方法及其裝置,特別是有關於可高精度估測飛行載具的速度估測方法與裝置。 The present invention relates to a speed estimation method and apparatus thereof, and more particularly to a speed estimation method and apparatus for accurately estimating a flight vehicle.

由於飛行載具的位置與速度直接影響飛行載具的控制,且飛行載具較精確的速度通常無法直接由一般的速度感測器直接偵測獲得,而必需由其他可獲得的變數(variables)予以推算;例如,美國專利US 4,167,330揭露使用二個方向的無線電波經接收後,計算其時間的延遲以估測直升機的速度;然而由於會受到天候或地形地貌的影響,特別是小量移動時其估測的準確性不高;且更未將直升機加速度在機體三軸(X,Y,Z)的加速度分量的影響加入計算,使其實用上有相當限制。再者,如台灣專利TW I294376則揭露使用二個加速度計,用以量測車輛的縱向加速度與側向加速度,再利用積分以求出車輛運動的速度;雖然此方法可以免去直接量測速度,但藉由加速度積分則受限於積分起始點(boundary)的速度精確度,容易因直流偏移量的累加而造成大的誤差,若運用於飛行載具時,難以達到精確的目的。由如台灣專利TWI531657,揭露使用全球定位系統處理器接收全球定位系統(Global positioning system,GPS)原始觀測量及慣性傳感器接收慣性測量值,以 求出速度和加速度信息;此方法雖具有迴饋補償,可以提高速度估測的精確度,但對於雜訊消除及未能修正飛行載具機體的三維加速度分量,致使精確度仍有不足。 Since the position and speed of the flying vehicle directly affect the control of the flying vehicle, and the speed of the flying vehicle is usually not directly detected by the general speed sensor, it must be obtained by other available variables. For example, US Patent No. 4,167,330 discloses the use of radio waves in two directions to receive a delay in time to estimate the speed of the helicopter; however, due to weather or terrain, especially during small movements. The accuracy of the estimation is not high; and the influence of the acceleration of the helicopter on the three-axis (X, Y, Z) of the body is not added to the calculation, which makes it practically limited. Furthermore, Taiwan Patent TW I294376 discloses the use of two accelerometers to measure the longitudinal acceleration and lateral acceleration of the vehicle, and then use the integral to determine the speed of the vehicle's motion; although this method can eliminate the direct measurement speed. However, the acceleration integral is limited by the speed accuracy of the integral starting point, which is easy to cause large errors due to the accumulation of the DC offset. If it is applied to a flying vehicle, it is difficult to achieve an accurate purpose. According to the Taiwan patent TWI531657, it is disclosed that the global positioning system (GPS) raw observation and the inertial sensor receiving inertial measurement value are received by using a global positioning system processor, The speed and acceleration information is obtained. Although this method has feedback compensation, the accuracy of the speed estimation can be improved. However, for the noise cancellation and the failure to correct the three-dimensional acceleration component of the flight vehicle body, the accuracy is still insufficient.

承上所述,在習知技術上飛行載具可使用衛星導航以透過衛星的訊號取得不同時間點之位移值,或者使用全球定位系統以獲得飛行載具的位移值,再利用位移值的微分運算以獲得速度值;另一種習知技術係使用慣性量測計(inertial measurement unit,IMU)量測獲得加速度值,再加以積分運算,以獲得速度值。然而,不管微分運算或是積分運算,都會有因高頻雜訊或低頻直流漂移(初始值)的現象而造成運算上的誤差,使得精確的速度值不易得到。又如美國專利US 6,205,400揭露利用全球定位系統、慣性量測計及高度計,並利用卡曼濾波器以濾除雜訊,以獲得飛行載具的位置、姿態、速度及加速度等資訊。然而,由於衛星導航系統或全球定位系統測量到的飛行載具位移值具有一定的誤差,當對位移值進行的微分運算時,將會使誤差值擴大、雜訊放大,使速度估測上仍難以精確。若飛行載具改用加速度計測量加速度值,雖然可以避免地形地貌影響衛星訊號的接收的困難,但以積分加速度的運算方式所取得的速度值與位移值,會因為偏移誤差量的累積而造成時間越久偏移誤差越大越大的現象。王修平在1994年著作”適應式卡曼濾波器應用於飛行目標追蹤系統之研究”與林泳成在2007年著作”利用類神經網路發展混合式INS/GPS整合式定位及定向演算法之研究”,分別提出了卡曼濾波器需要經過長時間調整變因(variance)與複變因 (covariance),才能較為精確,這是相當耗費時間與費用的工作,尤其當飛行載具(受控系統)變更,一切的細微調整(fine tuning)工作均需要重新設定。因此,如何發展有效的精確的速度估測器,是一項非常重要得技術;特別是電腦化控制的無人飛行載具(unmanned aerial vehicles,UAVs)或自主無人飛行載具的應用中,精確的速度估測值對於控制效能極為重要,沒有良好的速度估測能力,不但無法達到高性能的移動或是飛行控制,也將會增加潛藏的飛行危機;因此如何精確估測出無人飛行載具的位移值、速度值與加速度值,為亟需解決之問題。 As mentioned above, in the prior art, the flying vehicle can use satellite navigation to obtain the displacement values at different time points through the signals of the satellites, or use the global positioning system to obtain the displacement values of the flying vehicles, and then use the differential value of the displacement values. The operation obtains the velocity value; another conventional technique uses an inertial measurement unit (IMU) to obtain an acceleration value, and then integrates the operation to obtain a velocity value. However, regardless of the differential operation or the integral operation, there is an operational error due to high frequency noise or low frequency DC drift (initial value), making accurate speed values difficult to obtain. For example, U.S. Patent No. 6,205,400 discloses the use of a global positioning system, an inertial gauge, and an altimeter, and uses a Kalman filter to filter out noise to obtain information on the position, attitude, velocity, and acceleration of the flying vehicle. However, since the displacement value of the flight vehicle measured by the satellite navigation system or the global positioning system has a certain error, when the differential value is calculated, the error value will be enlarged and the noise will be amplified, so that the speed estimation is still Hard to be precise. If the flight vehicle uses an accelerometer to measure the acceleration value, although it is possible to avoid the difficulty of the terrain and terrain affecting the reception of the satellite signal, the speed value and the displacement value obtained by the integral acceleration calculation method may be due to the accumulation of the offset error amount. The longer the time is, the larger the offset error is. In 1994, Wang Xiuping wrote "Adaptive Kalman Filter for Flight Target Tracking System" and Lin Yongcheng's 2007 book "Using Neural Networks to Develop Hybrid INS/GPS Integrated Positioning and Orientation Algorithms" , respectively, proposed that the Kalman filter needs to adjust the variance and complex factors over a long period of time. (covariance), can be more accurate, which is quite time-consuming and costly work, especially when the flight vehicle (controlled system) changes, all fine tuning work needs to be reset. Therefore, how to develop an effective and accurate speed estimator is a very important technology; especially in the application of computerized unmanned aerial vehicles (UAVs) or autonomous unmanned aerial vehicles, accurate Speed estimates are extremely important for control performance. Without good speed estimation capabilities, not only can high performance mobile or flight control be achieved, but also hidden flight crises; therefore, how to accurately estimate unmanned aerial vehicles Displacement values, velocity values, and acceleration values are issues that need to be addressed.

有鑑於上述習知技術之問題,本發明之目的就是在提供高精度的速度估測方法,以解決飛行載具測量速度值時,誤差過大所產生的問題。 In view of the above-mentioned problems of the prior art, the object of the present invention is to provide a high-precision speed estimation method to solve the problem caused by excessive error when the flying vehicle measures the speed value.

根據本發明之主要目的之一,提出一種高精度速度估測方法,可由先前時間量測獲得的位移量測信號的數值與加速度量測信號的數值,估測當下時間的估測速度的數值;其中,位移量測信號係由飛行載具的位移感測器感測後送出的信號、加速度量測信號係由飛行載具的加速度感測器感測後送出的信號;包含下列步驟:S1:接收飛行載具的加速度感測器傳送的先前時間(時間為n-1)之加速度量測信號,加速度量測信號的加速度數值,以積分式阿爾發-貝他-加瑪 (integral α-β-γ)濾波處理,可產生先前時間(n-1)之一預估狀態信號(state prediction signal),該預估狀態信號的數值包含有預估位移數值(predicting displacement)、預估速度數值(predicting velocity)及預估加速度數值(predicting acceleration);S2:根據先前時間之位移量測信號的數值與預估位移信號數值,比較獲得當下時間(時間為n)的位移誤差值(predicting displacement error);其中,位移誤差值可以採用位移量測信號的數值加權減去預估位移信號數值,但不予以限定;S3:根據該位移誤差值,以微分式阿爾發-貝他-加瑪(differential α-β-γ)濾波處理,並產生當下時間之一預估修正狀態信號(predictably correcting signal),該預估修正狀態信號至少包含一預估修正位移信號數值(predictably correcting displacement)、一預估修正速度信號數值(predictably correcting velocity)及一預估修正加速度信號數值(predictably correcting acceleration);S4:根據當下時間之該預估修正狀態信號與先前時間之該預估狀態信號,組合後產生當下時間之一估測狀態信號(state estimating signal),該估測狀態信號的數值至少包含有當下時間之估測速度 信號(estimating velocity)的數值,其中,估測速度信號的數值可以採用預估速度信號的數值加權加上預估修正速度信號的數值,但不予以限定。 According to one of the main purposes of the present invention, a high-precision speed estimation method is proposed, which can estimate the value of the estimated speed of the current time from the value of the displacement measurement signal obtained by the previous time measurement and the value of the acceleration measurement signal; The displacement measurement signal is sent by the displacement sensor of the flight vehicle, and the acceleration measurement signal is sent by the acceleration sensor of the flight vehicle; the following steps are included: S1: The acceleration measurement signal of the previous time (time is n-1) transmitted by the acceleration sensor receiving the flight vehicle, and the acceleration value of the acceleration measurement signal, in integral Alpha-Beta-Gama (integral α-β-γ) filtering process, which can generate a state prediction signal of a previous time (n-1), the value of the predicted state signal includes a predicting displacement, Predicting velocity and predicting acceleration; S2: Comparing the value of the measured signal from the previous time with the estimated displacement signal value, and obtaining the displacement error value of the current time (time n) (predicting displacement error); wherein the displacement error value may be weighted by the numerical value of the displacement measurement signal minus the estimated displacement signal value, but is not limited; S3: according to the displacement error value, the differential Alpha-Beta- Differential alpha-β-γ filtering process and generating a predictive correcting signal for at least one of the current time, the predicted corrected state signal including at least a predictive correcting displacement value Predictably correcting velocity and a predictive corrected acceleration signal value (predictabl) y correcting acceleration); S4: according to the estimated correction state signal of the current time and the predicted state signal of the previous time, combined to generate a state estimating signal of the current time, the estimated state signal The value contains at least the estimated speed of the current time The value of the estimated velocity, wherein the value of the estimated velocity signal may be a numerical weighting of the estimated velocity signal plus a value of the estimated correction velocity signal, but is not limited.

對於不同的應用,本發明之高精度速度估測方法,進一步在步驟S4中,該估測狀態信號的數值可包含有當下時間之估測位移信號(estimating displacement)的數值,其中,估測位移信號的數值可以採用預估位移信號的數值加權加上預估修正位移信號的數值,但不予以限定;或進一步該估測狀態信號的數值可包含有當下時間之估測加速度信號(estimating acceleration)的數值,其中,估測加速度信號的數值可以採用預估加速度信號的數值加權加上預估修正加速度信號的數值,但不予以限定。 For different applications, the high-precision velocity estimation method of the present invention, further in step S4, the value of the estimated state signal may include a value of an estimated displacement signal of the current time, wherein the estimated displacement The value of the signal may be weighted by the numerical value of the estimated displacement signal plus the value of the estimated corrected displacement signal, but is not limited; or the value of the estimated state signal may include an estimated acceleration signal of the current time. The value of the estimated acceleration signal may be a numerical weighting of the estimated acceleration signal plus a value of the estimated corrected acceleration signal, but is not limited.

為求更精確估測飛行載具的估測速度的數值,本發明之高精度速度估測方法在步驟S1進一步可將量測獲得的加速度量測信號的加速度數值,先經過重力加速度在笛卡爾座標X-Y-Z軸上的重力加速度值分量進行修正;其中,修正方法可採用以加速度量測信號的加速度數值扣除重力加速度在X-Y-Z軸上的重力加速度值分量,但不予以限定。 In order to more accurately estimate the value of the estimated speed of the flight vehicle, the high-precision speed estimation method of the present invention can further measure the acceleration value of the acceleration measurement signal obtained in step S1 first by gravity acceleration in Descartes. The gravity acceleration component on the coordinate XYZ axis is corrected. The correction method may use the acceleration value of the acceleration measurement signal to subtract the gravity acceleration component of the gravity acceleration on the XYZ axis, but is not limited.

根據本發明之另一個主要目的,提出一種高精度速度估測裝置,係用於飛行載具,用於接收飛行載具之加速度感測器產生的加速度量測信號與位移感測器產生的 位移量測信號,以產生一估測狀態信號,此估測狀態信號至少包含有飛行載具的估測速度信號;該速度估測裝置包含:狀態預估器、第一運算單元、狀態修正器及第二運算單元;其中,狀態預估器具有積分式阿爾發-貝他-加瑪(α-β-γ)濾波處理功能,可將加速度量測信號的加速度量測數值,經過計算處理後產生一預估狀態信號,該預估狀態信號包括有預估位移信號、預估速度信號及預估加速度信號;預估位移信號可為一狀態向量(state vector),具有X-Y-Z方向之預估位移數值;預估速度信號可為一狀態向量,具有X-Y-Z方向之預估速度位移數值;預估加速度信號可為一狀態向量,具有X-Y-Z方向之預估加速度數值;其中,第一運算單元係連接於狀態預估器,可接收該位移量測信號與該預估位移信號,經比較後輸出一位移誤差信號;位移誤差信號可為一狀態向量,具有X-Y-Z方向之預估位移數值;其中,狀態修正器係連接於該第一運算單元與該第二運算單元,具有微分式阿爾發-貝他-加瑪濾波處理功能,可接收該位移誤差信號產生一預估修正狀態信號,該預估修正狀態信號至少包含一預估修正位移信號、一預估修正速度信號及一預估修正加速度信號;其中,預估修正位移信號可為一向量,具有X-Y-Z方向之預估修正位移數值;預估修正速度信號可為一向量,具有X-Y-Z方向之預估修正速度位移數值;預估修正加速度信號可 為一向量,具有X-Y-Z方向之預估修正加速度數值;其中,該第二運算單元係連接於該狀態預估器與該狀態修正器,可接收該預估狀態信號與該預估修正狀態信號,組合後產生一估測狀態信號,該估測狀態信號包含一估測速度信號。 According to another main object of the present invention, a high-precision speed estimating device is provided for a flying vehicle for receiving an acceleration measuring signal generated by an acceleration sensor of a flying vehicle and a displacement sensor Displacement measuring signal to generate an estimated state signal, the estimated state signal comprising at least an estimated speed signal of the flying vehicle; the speed estimating device comprising: a state predictor, a first computing unit, and a state corrector And a second operation unit; wherein the state predictor has an integral Alpha-beta-gamma (α-β-γ) filter processing function, and the acceleration measurement value of the acceleration measurement signal is subjected to calculation processing An estimated state signal is generated, the predicted state signal includes an estimated displacement signal, a predicted velocity signal, and a predicted acceleration signal; the estimated displacement signal can be a state vector having an estimated displacement in the XYZ direction. The estimated speed signal can be a state vector having a predicted velocity displacement value in the XYZ direction; the predicted acceleration signal can be a state vector having an estimated acceleration value in the XYZ direction; wherein the first operational unit is connected to The state predictor can receive the displacement measurement signal and the estimated displacement signal, and compare and output a displacement error signal; the displacement error signal can be a state vector The estimated displacement value of the XYZ direction; wherein the state corrector is connected to the first operation unit and the second operation unit, and has a differential Alpha-beta-gamma filter processing function, and can receive the displacement error signal Generating an estimated correction state signal, the predicted correction state signal includes at least an estimated corrected displacement signal, an estimated corrected velocity signal, and an estimated corrected acceleration signal; wherein the estimated corrected displacement signal is a vector having The estimated correction displacement value in the XYZ direction; the estimated correction speed signal can be a vector with an estimated corrected velocity displacement value in the XYZ direction; the estimated corrected acceleration signal can be a vector having an estimated corrected acceleration value in the XYZ direction; wherein the second computing unit is coupled to the state predictor and the state corrector to receive the estimated state signal and the estimated corrected state signal, The combination generates an estimated status signal, the estimated status signal including an estimated speed signal.

對於不同的應用,本發明之高精度速度估測裝置,其中第二運算單元產生之估測狀態信號,進一步可包含一估測位移信號或一估測加速度信號。 For different applications, the high-precision speed estimating device of the present invention, wherein the estimated state signal generated by the second computing unit, may further comprise an estimated displacement signal or an estimated acceleration signal.

為求更精確估測飛行載具的估測速度的數值,本發明之高精度速度估測裝置,其中該狀態預估器進一步具有加速度量測信號修正功能,可將加速度量測信號以重力加速度值在該飛行載具上笛卡爾座標X-Y-Z三個軸上的重力加速度分量進行修正。 In order to more accurately estimate the value of the estimated speed of the flying vehicle, the high-precision speed estimating device of the present invention further includes an acceleration measuring signal correction function for accelerating the acceleration measuring signal by gravity acceleration The value is corrected for the gravitational acceleration component on the three axes of the Cartesian coordinates XYZ on the flight carrier.

承上所述,依本發明之高精度速度估測方法及其裝置,其可具有下述優點: As described above, the high-precision speed estimation method and apparatus thereof according to the present invention can have the following advantages:

(1)本發明之高精度速度估測方法及其裝置可藉由UAV之加速度感測器所量測得到的加速度信號的加速度數值,及UAV飛行載具之位移感測器所量測得到的位移信號的位移數值,藉由積分式α-β-γ濾波處理計算與微分式α-β-γ濾波處理計算,可得到預估狀態信號與預估修正狀態信號,經由組合後可產生高精度的估測速度數值;藉此可精密的操控UAV,改善先前技術使用卡曼濾波器無法達到的精密度的缺點。 (1) The high-precision speed estimation method and apparatus of the present invention can be measured by the acceleration value of the acceleration signal measured by the UAV acceleration sensor and the displacement sensor of the UAV flight vehicle. The displacement value of the displacement signal is calculated by the integral α-β-γ filtering process and the differential α-β-γ filtering process, and the estimated state signal and the estimated correction state signal can be obtained, and the combination can generate high precision. Estimated speed values; this allows for precise manipulation of the UAV, improving the shortcomings of prior art techniques that cannot be achieved with the Kalman filter.

(2)本發明之高精度速度估測方法及其裝置,可將UAV之加速度感測器所量測得到的加速度信號的加速度 數值扣除重力加速度值在UAV的X-Y-Z三個軸上的重力加速度分量,進行修正;再經由積分式α-β-γ濾波處理計算,以可得到精確的預估狀態信號;藉此改善先前技術未考量重力加速度的影響之缺點。 (2) The high-precision speed estimation method and apparatus of the present invention can measure the acceleration of the acceleration signal measured by the UAV acceleration sensor The value is subtracted from the gravitational acceleration component of the gravity acceleration value on the XYZ three axes of the UAV, and corrected by the integral α-β-γ filtering process to obtain an accurate predicted state signal; thereby improving the prior art. Consider the shortcomings of the effects of gravity acceleration.

請參閱第1圖,其係為本發明之高精度速度估測裝置之方塊圖。該圖中,此高精度速度估測裝置包含狀態預估器21、狀態修正器23、第一運算單元22以及第二運算單元24。其中,狀態預估器21接收加速度感測器11所量測產生的加速度量測信號,該加速度量測信號具有加速度量測的數值。在具體應用上,飛行載具的加速度感測器11,可採用一維的加速度感測器(accelerator),或三維的慣性量測單元(inertial measurement unit,IMU)(如第6圖的慣性量測單元31);當飛行載具使用的加速度感測器11為一維的加速度感測器時,加速度量測的數值為在現在取樣時間的X方向的加速度數值a 0;稱為先前時間(n-1)的加速度數值a 0(n-1)。若飛行載具使用的加速度感測器11為三維的慣性量測單元(IMU)時,加速度量測的數值為在先前時間(n-1)取樣時間的加速度數值a 0(n-1)向量,該a 0(n-1)向量具有X-Y-Z的加速度分量;為便於後續說明,後續的數值符號均為具有X-Y-Z方向分量的數值向量,且以位移的數值、速度的數值及加速度的數值,分別代表位移信號的數值向量、速度信號的數值向量及加速度信號的數值向量,以維簡便。 Please refer to FIG. 1 , which is a block diagram of the high-precision speed estimating device of the present invention. In the figure, the high-precision velocity estimating device includes a state predictor 21, a state corrector 23, a first arithmetic unit 22, and a second arithmetic unit 24. The state predictor 21 receives the acceleration measurement signal generated by the acceleration sensor 11 , and the acceleration measurement signal has a value of the acceleration measurement. In a specific application, the acceleration sensor 11 of the flying vehicle can adopt a one-dimensional acceleration sensor or a three-dimensional inertial measurement unit (IMU) (such as the inertia amount of FIG. 6). The measuring unit 31); when the acceleration sensor 11 used by the flying vehicle is a one-dimensional acceleration sensor, the value of the acceleration measurement is the acceleration value a 0 in the X direction at the current sampling time; The acceleration value a 0 ( n -1) of n -1). If the acceleration sensor 11 used by the flying vehicle is a three-dimensional inertial measurement unit (IMU), the value of the acceleration measurement is the acceleration value a 0 ( n -1) vector at the sampling time of the previous time (n-1). The a 0 ( n -1 ) vector has an acceleration component of XYZ; for ease of explanation, the subsequent numerical symbols are numerical vectors having XYZ direction components, and the values of the displacement, the velocity, and the acceleration are respectively The numerical vector representing the displacement signal, the numerical vector of the velocity signal, and the numerical vector of the acceleration signal are simple and convenient.

狀態預估器21具有積分式阿爾發-貝他-加瑪(α-β-γ)濾波功能,可將加速度量測信號的數值a 0(n-1),經過計算處理後產生先前時間(時間為n-1)的預估狀態信號,該預估狀態信號包括有預估位移信號、預估速度信號及預估加速度信號;預估位移信號的數值d P (n-1)、預估速度信號的數值ν P (n-1)及預估加速度信號的數值a P (n-1),以向量集合為預估狀態信號的數值X P (n-1)(為狀態向量,state vector),即如式(1)所示:X P (n-1)=[d p (n-1)ν P (n-1)a p (n-1)] T (1) The state predictor 21 has an integral Alpha-beta-gamma (α-β-γ) filtering function, which can calculate the value a 0 ( n -1) of the acceleration measurement signal to generate a previous time ( The estimated state signal of time n-1), the estimated state signal includes an estimated displacement signal, an estimated speed signal, and an estimated acceleration signal; the estimated displacement signal value d P ( n -1), an estimate The value of the velocity signal ν P ( n -1) and the value of the predicted acceleration signal a P ( n -1), with the vector set as the value of the predicted state signal X P ( n -1) (for the state vector, state vector ), as shown in equation (1): X P ( n -1) = [ d p ( n -1) ν P ( n -1) a p ( n -1)] T (1)

其中,X P (n-1)為先前時間的預估狀態信號的數值的狀態向量;d P (n-1)為先前時間的預估位移信號的數值;ν P (n-1)為先前時間的預估速度信號的數值;a P (n-1)為先前時間的預估加速度信號的數值。 Where X P ( n -1) is the state vector of the value of the predicted state signal of the previous time; d P ( n -1) is the value of the estimated displacement signal of the previous time; ν P ( n -1) is the previous The value of the estimated velocity signal for time; a P ( n -1) is the value of the estimated acceleration signal for the previous time.

第一運算單元22可接收狀態預估器21產生的先前時間的預估位移信號的數值d P (n-1),及飛行載具的位移感測器12所量測產生的先前時間(n-1)的位移量測信號,該位移量測信號具有位移量測信號的數值d 0(n-1)。在具體應用上,飛行載具的位移感測器12可感測飛行載具的位置,由位置而產生位移量測信號;該位置可由地面所發射的定位座標信號或由全球定位系統產生的座標信號所產生,不為限定。同樣的,位移量測的數值d 0(n-1)可為一維或多維,仍以向量為表示。先前時間的感測狀態信號的數值X 0(n-1),包含有位移量測的數值d 0(n-1)、速度量測的數值及加速度量測信號的數值a 0(n-1),由於 飛行載具不與地面接觸,無法由其他裝置感測出飛行載具的速度,因此由位移量測信號的數值d 0(n-1)與加速度量測信號的數值a 0(n-1)組合成感測狀態信號的數值,如式(2)所示:X 0(n-1)=[d 0(n-1)0 a 0(n-1)] T (2) The first operation unit 22 can receive the value d P ( n -1) of the estimated displacement signal of the previous time generated by the state predictor 21, and the previous time generated by the displacement sensor 12 of the flight vehicle (n a displacement measurement signal of -1) having a value d 0 ( n -1) of the displacement measurement signal. In a specific application, the displacement sensor 12 of the flight vehicle can sense the position of the flight vehicle and generate a displacement measurement signal from the position; the position can be a coordinate coordinate signal transmitted by the ground or a coordinate generated by the global positioning system. The signal is generated and is not limited. Similarly, the value d 0 ( n -1) of the displacement measurement can be one-dimensional or multi-dimensional, and is still represented by a vector. The value X 0 ( n -1) of the sensing state signal of the previous time, including the value d 0 ( n -1) of the displacement measurement, the value of the velocity measurement, and the value of the acceleration measurement signal a 0 ( n -1 ), since the flying vehicle is not in contact with the ground, the speed of the flying vehicle cannot be sensed by other devices, so the value d 0 ( n -1 ) of the displacement measuring signal and the value of the acceleration measuring signal a 0 ( n ) -1) A value combined into a sensing state signal, as shown in equation (2): X 0 ( n -1) = [ d 0 ( n -1) 0 a 0 ( n -1)] T (2)

其中,X 0(n-1)為先前時間的感測狀態信號的數值之狀態向量;d 0(n-1)為先前時間的位移量測的數值;a 0(n-1)為先前時間的加速度量測信號的數值。 Where X 0 ( n -1) is the state vector of the value of the sensing state signal of the previous time; d 0 ( n -1) is the value of the displacement measurement of the previous time; a 0 ( n -1) is the previous time The value of the acceleration measurement signal.

第一運算單元22可接收先前時間的預估位移信號的數值d P (n-1)與先前時間位移量測信號的數值d 0(n-1)時,可運算比較二者數值上的差距,輸出一當下時間的位移誤差信號;同樣,此位移誤差信號的數值△d(n)可為一向量,具有X-Y-Z方向之預估位移數值;並以狀態向量表示為△X(n)=[△d(n)0 0] T 。當比較二者數值上的差距可採用加權(weighting)相減比較或單純相減,不為限定。為較清楚說明,在第1圖中,以單純的位移量測信號的數值d 0(n-1)與預估位移信號的數值d P (n-1)相減,以產生位移誤差信號的數值△d(n),如式(3)所示:△d(n)=d 0(n-1)-d p (n-1) (3) When the first operation unit 22 can receive the value d P ( n -1) of the estimated displacement signal of the previous time and the value d 0 ( n -1) of the previous time displacement measurement signal, the difference between the two values can be calculated and compared. And outputting a displacement error signal of the current time; likewise, the value Δ d ( n ) of the displacement error signal may be a vector having an estimated displacement value in the XYZ direction; and expressed as a state vector as Δ X ( n )=[ Δ d ( n )0 0] T . When comparing the difference between the two values, weighting subtraction comparison or simple subtraction can be used, which is not limited. For the sake of clarity, in Fig. 1, the value d 0 ( n -1) of the simple displacement measurement signal is subtracted from the value d P ( n -1) of the estimated displacement signal to generate a displacement error signal. The value Δ d ( n ) is as shown in the formula (3): Δ d ( n ) = d 0 ( n -1) - d p ( n -1) (3)

其中,△d(n)為當下時間的位移誤差信號的數值;d 0(n-1)為先前時間的位移量測信號的數值;d P (n-1)為先前時間的預估位移信號的數值。 Where Δ d ( n ) is the value of the displacement error signal at the current time; d 0 ( n -1) is the value of the displacement measurement signal of the previous time; d P ( n -1) is the estimated displacement signal of the previous time The value.

狀態修正器23具有微分式阿爾發-貝他-加瑪濾波處理功能,可接收位移誤差信號的數值(以狀態向量表示△X(n))產生一預估修正狀態信號,預估修正狀態信號的數值為F.△X(n),其中F為增益矩陣(gain matrix),係由微分式阿爾發-貝他-加瑪濾波處理後計算產生。預估修正狀態信號F.△X(n)包含有預估修正位移信號、預估修正速度信號及預估修正加速度信號;其中,預估修正位移信號的向量,具有X-Y-Z方向之預估修正位移數值;預估修正速度信號可為一向量,具有X-Y-Z方向之預估修正速度位移數值;預估修正加速度信號可為一向量,具有X-Y-Z方向之預估修正加速度數值。 The state corrector 23 has a differential Alpha-beta-gamma filter processing function, and can receive the value of the displacement error signal (indicated by the state vector Δ X ( n )) to generate an estimated correction state signal, and estimate the corrected state signal. The value is F. Δ X ( n ), where F is a gain matrix, which is calculated by differential Alpha-beta-gamma filtering. Estimated correction status signal F.X ( n ) includes an estimated corrected displacement signal, an estimated corrected speed signal, and an estimated corrected acceleration signal; wherein, the vector of the corrected corrected displacement signal has an estimated corrected displacement value in the XYZ direction; the estimated corrected speed signal It can be a vector with an estimated corrected velocity displacement value in the XYZ direction; the estimated corrected acceleration signal can be a vector with an estimated corrected acceleration value in the XYZ direction.

第二運算單元24可接收狀態預估器21輸出的先前時間的預估狀態信號與狀態修正器23輸出的預估修正狀態信號,將預估狀態信號的數值X P (n-1)與預估修正狀態信號的數值F.△X(n)進行組合,產生當下時間的估測狀態信號;其中,估測狀態信號的數值X(n)包含有估測速度信號的數值,或進一步包含估測位移信號的數值與估測加速度信號的數值;估測狀態信號的數值X(n),為精確的估測飛行載具的估測速度,或進一步包含精確的估測飛行載具的估測位移、估測加速度。其中預估狀態信號與預估修正狀態信號組合的方式可以採用不同的方法,如單純的相加計算或使用加權相加,均不予以限定;為較清楚說明,在第1圖中,以單純的預估速度信號的數值加上預估修正速度信號的數值,以產生精確的估測速度信號的數值,如式(4)所示: X(n)=X P (n-1)+△X P (n)=X P (n-1)+F.△X(n) (4) The second operation unit 24 can receive the predicted state signal of the previous time output by the state predictor 21 and the estimated correction state signal output by the state corrector 23, and compare the value of the predicted state signal X P ( n -1) with the correcting the estimated state of the signal values F. Δ X ( n ) is combined to generate an estimated state signal for the current time; wherein the estimated state signal value X ( n ) contains the value of the estimated velocity signal, or further includes the estimated displacement signal value and estimate The value of the acceleration signal; the value X ( n ) of the estimated state signal is an accurate estimate of the estimated speed of the flight vehicle, or further includes an accurate estimate of the estimated displacement of the flight vehicle, the estimated acceleration. The method of combining the predicted state signal with the estimated correction state signal may adopt different methods, such as simple addition calculation or weighted addition, which are not limited; for clear description, in the first figure, in the simple The value of the estimated speed signal plus the value of the estimated corrected speed signal to produce an accurate estimate of the speed signal value, as shown in equation (4): X ( n ) = X P ( n -1) + △ X P ( n )= X P ( n -1) + F . △ X ( n ) (4)

其中,X(n)為當下時間的估測狀態信號的數值;X P (n-1)為先前時間的預估狀態信號的數值;△X P (n)=F.△X(n)為當下時間的預估修正狀態信號的數值;F為微分式阿爾發-貝他-加瑪濾波處理功能計算出的增益矩陣;△X(n)為當下時間的位移誤差信號的數值的狀態向量。 Where X ( n ) is the value of the estimated state signal for the current time; X P ( n -1) is the value of the predicted state signal of the previous time; Δ X P ( n ) = F . △ X ( n ) is the value of the estimated correction state signal of the current time; F is the gain matrix calculated by the differential Alpha-beta-gamma filter processing function; Δ X ( n ) is the displacement error signal of the current time The state vector of the value.

由於不同時間的飛行載具飛行時,可能不一定與海平面平行,如第7圖所示,飛行載具以俯仰角度θ飛行,重力加速度g在飛行載具的笛卡爾座標X-Y-Z三個軸上產生重力加速度分量;為能使狀態預估器21能精確的產生預估狀態信號,狀態預估器21具有加速度量測信號修正功能,可將加速度感測器11輸出的加速度量測信號以重力加速度值在該飛行載具上笛卡爾座標三個軸上的重力加速度分量進行修正,如在飛行載具的X軸上修正如式(5): Since the flight vehicles at different times may not necessarily be parallel to the sea level when flying, as shown in Figure 7, the flight vehicle flies at a pitch angle θ, and the gravitational acceleration g is on the three axes of the Cartesian coordinate XYZ of the flight vehicle. The gravity acceleration component is generated; in order to enable the state predictor 21 to accurately generate the predicted state signal, the state predictor 21 has an acceleration measurement signal correction function, and the acceleration measurement signal output by the acceleration sensor 11 can be gravity The acceleration value is corrected for the gravitational acceleration component on the three axes of the Cartesian coordinates on the flight carrier, as corrected on equation X (5) on the X-axis of the flight vehicle:

其中,a 0(n-1)為先前時間經修正後的加速度量測信號的數值;(n-1)為先前時間加速度感測器11輸出的加速度量測信號的數值;g為重力加速度而θ(n-1)為先前時間飛行載具的俯仰角度。 Where a 0 ( n -1) is the value of the acceleration measurement signal corrected in the previous time; ( n -1) is the value of the acceleration measurement signal output by the previous time acceleration sensor 11; g is the gravitational acceleration and θ( n -1) is the pitch angle of the previous time flight vehicle.

全球定位系統32有不同應用系統,對於較佳的應用實施例,全球定位系統32可為差分全球定位系統(Differential GPS,DGPS);DGPS係利用附近的已知參考座標點,來修正全球定位系統的誤差,再將此即時(real time)誤差值加入本身座標運算的考慮,以可獲得精確的飛行載具的座標位置。在本實施例之全球定位系統32係採用差分全球定位系統DGPS為實現。 The global positioning system 32 has different application systems. For a preferred application embodiment, the global positioning system 32 can be a differential global positioning system (DGPS); the DGPS system uses nearby known reference coordinate points to correct the global positioning system. The error, and then add this real time error value to the consideration of its own coordinate operation, in order to obtain the coordinates of the coordinates of the flying vehicle. The global positioning system 32 in this embodiment is implemented using a differential global positioning system DGPS.

對於不同的飛行載具配備,全球定位系統32也可為廣域增強差分全球定位系統(Wide Area Augmentation System GPS,WAAS-DGPS),WAAS-DGPS可以校正由電離層干擾、時序控制不正確以及衛星軌道錯誤等因素所造成的GPS訊號誤差,以可獲得更精確的飛行載具的座標位置。 For different flight vehicle configurations, Global Positioning System 32 can also be Wide Area Augmentation System GPS (WAAS-DGPS). WAAS-DGPS can correct for ionospheric interference, incorrect timing control, and satellite orbits. GPS signal error caused by factors such as errors to obtain a more accurate coordinate position of the flying vehicle.

運用本發明之高精度速度估測裝置於估測飛行載具的估測速度的高精度速度估測方法,如下敘述:S0:飛行載具的加速度感測器11可將飛行載具的加速度量測信號輸出至狀態預估器21;飛行載具的位移感測器12可將飛行載具的位移量測信號輸出至第一運算單元22;S1:狀態預估器21接收飛行載具的加速度感測器11傳送的先前時間的加速度量測信號,其加速度量測信號的數值a 0(n-1)以積分式阿爾發-貝他-加瑪濾波處理後,產生先前時間之預估狀態信號,該預估狀態信號的數值的狀態向量X P (n-1),包含有預估位移數值d P (n-1)、預估速度數值ν P (n-1)及預估加速度數值 a P (n-1);S2:根據先前時間之位移量測信號的數值d 0(n-1)與預估位移信號數值d P (n-1),比較獲得當下時間(時間為n)的位移誤差值△d(n);位移誤差值△d(n)可以採用式(3)的方式,由位移量測信號的數值d 0(n-1)減去預估位移信號數值d P (n-1);S3:根據當下時間的位移誤差值△d(n),以狀態向量表示為△X(n),以微分式阿爾發-貝他-加瑪濾波處理後,計算出增益矩陣F;由F.△X(n)計算獲得當下時間的預估修正狀態信號的數值,該預估修正狀態信號包含有預估修正位移信號數值、預估修正速度信號數值及預估修正加速度信號數值,用以修正預估狀態信號的數值;S4:根據當下時間之預估修正狀態信號的數值的狀態向量F.△X(n)與先前時間之預估狀態信號的數值的狀態向量X P (n-1),由式(4)組合後產生當下時間之估測狀態信號的數值的狀態向量X(n);該估測狀態信號的數值包含有當下時間之估測速度信號的數值。 A high-precision speed estimation method for estimating an estimated speed of a flying vehicle using the high-precision speed estimating device of the present invention is as follows: S0: an acceleration sensor 11 of the flying vehicle can accelerate the flying vehicle The measurement signal is output to the state predictor 21; the displacement sensor 12 of the flight vehicle can output the displacement measurement signal of the flight vehicle to the first operation unit 22; S1: the state predictor 21 receives the acceleration of the flight vehicle The acceleration measurement signal of the previous time transmitted by the sensor 11 has the value a 0 ( n -1) of the acceleration measurement signal processed by the integral Alpha-beta-gamma filter, and the predicted state of the previous time is generated. Signal, the state vector X P ( n -1) of the value of the predicted state signal, including the estimated displacement value d P ( n -1), the estimated velocity value ν P ( n -1), and the estimated acceleration value a P ( n -1); S2: The current time (time is n) is obtained by comparing the value d 0 ( n -1) of the displacement measurement signal with the estimated displacement signal value d P ( n -1) according to the previous time. displacement error value △ d (n); mode displacement error value △ d (n) may be employed formula (3) by the displacement The measured signal value d 0 (n -1) signal by subtracting the estimated value of the displacement d P (n -1); S3 : displacement of the time of the error value △ d (n), the state vector is expressed as △ X (n After the differential Alpha-beta-gamma filter processing, the gain matrix F is calculated; from F.X ( n ) calculates the value of the estimated correction state signal obtained at the current time, and the estimated correction state signal includes the estimated corrected displacement signal value, the estimated corrected speed signal value, and the estimated corrected acceleration signal value for correcting Estimating the value of the status signal; S4: Correcting the state vector F of the value of the status signal based on the current time estimate. Δ X ( n ) and the state vector X P ( n -1) of the value of the predicted state signal of the previous time, the state vector X ( n ) of the value of the estimated state signal of the current time is combined by the formula (4) The value of the estimated status signal contains the value of the estimated speed signal for the current time.

對於不同的應用,本發明之高精度速度估測方法,進一步在步驟S4中,該估測狀態信號的數值可包含有當下時間之估測位移信號的數值,其中,估測位移信號的數值可以採用預估位移信號的數值加上預估修正位移信號的數值;或進一步該估測狀態信號的數值可包含有當下時間之估測加速度信號的數值,其中,估測加速度信號的數值可以採用預估加速度信號的數值加上預估修正 加速度信號的數值。 For different applications, the high-precision speed estimation method of the present invention further includes, in step S4, the value of the estimated state signal may include a value of the estimated displacement signal of the current time, wherein the value of the estimated displacement signal may be The value of the estimated displacement signal is added to the value of the estimated corrected displacement signal; or the value of the estimated state signal may include the value of the estimated acceleration signal at the current time, wherein the value of the estimated acceleration signal may be Estimate the value of the acceleration signal plus the estimated correction The value of the acceleration signal.

為求更精確估測飛行載具的估測速度的數值,本發明之高精度速度估測方法在步驟S1進一步可將量測獲得的加速度量測信號的加速度數值a 0(n-1),先經過重力加速度在笛卡爾座標X-Y-Z軸上的重力加速度值分量進行修正;其中,修正方法可採用如式(5)之計算。 In order to more accurately estimate the value of the estimated speed of the flight vehicle, the high-precision speed estimation method of the present invention further measures the acceleration value a 0 ( n -1) of the acceleration measurement signal obtained in step S1, First, the gravity acceleration component on the Cartesian coordinate XYZ axis is corrected by gravity acceleration; wherein the correction method can be calculated as Equation (5).

請參閱第6圖,為本發明之高精度速度估測裝置之一個具體實施例的方塊圖,本實施例係使用於一無人操控飛機(UAV),如圖,無人操控飛機裝設有一慣性量測單元(IMU)31與一全球定位系統(Global positioning system,GPS)32,分別為第1圖中加速度感測器11與位移感測器12的具體實施;慣性量測單元31依據取樣時間,可量測UAV的X-Y-Z三軸的加速度量測信號,加速度量測信號的數值為(n-1);全球定位系統32依據取樣時間,可將座標轉換成為位移量測信號,位移量測信號的數值為d 0(n-1)。 Please refer to FIG. 6 , which is a block diagram of a specific embodiment of the high-precision speed estimating device of the present invention. The embodiment is used for an unmanned aircraft (UAV). As shown in the figure, an unmanned aircraft is equipped with an inertia amount. The measurement unit (IMU) 31 and a global positioning system (GPS) 32 are respectively embodied in the acceleration sensor 11 and the displacement sensor 12 in FIG. 1; the inertia measurement unit 31 is based on the sampling time. The UAV XYZ three-axis acceleration measurement signal can be measured, and the value of the acceleration measurement signal is ( n -1); the global positioning system 32 converts the coordinate into a displacement measurement signal according to the sampling time, and the value of the displacement measurement signal is d 0 ( n -1).

高精度速度估測裝置包含:狀態預估濾波器(previous state predicting filter)33、位移信號組合器(displacement signal assembler)34、狀態修正濾波器(state correcting filter)36及估測信號組合器(estimation signal assembler)35;其中,狀態預估濾波器33設有一積分式阿爾發-貝他-加瑪(α-β-γ)濾波器,積分式α-β-γ濾波器可將在時間n-1時,慣性量測單元31輸出的加速度信號的量測數值(n-1),先經由式(5)以重力加速度分量進行修 正後,再傳送至積分式α-β-γ濾波器計算處理,以產生一預估狀態信號,此預估狀態信號的狀態向量為X P (n-1),包括有預估位移信號的數值d P (n-1)、預估速度信號的數值ν P (n-1)及預估加速度信號的數值a P (n-1);在此說明為,UAV所裝設的慣性量測單元31為三維量測單元,可輸出X-Y-Z軸的加速度信號,因此預估位移信號的數值d P (n-1)、預估速度信號的數值ν P (n-1)及預估加速度信號的數值a P (n-1)均為X-Y-Z的分量的向量集合。 The high-precision velocity estimating device includes: a state state predicting filter 33, a displacement signal assembler 34, a state correcting filter 36, and an estimated signal combiner (estimation) Signal assembler) 35; wherein the state prediction filter 33 is provided with an integral Alpha-beta-gamma (α-β-γ) filter, and the integral α-β-γ filter can be used at time n- At 1 o'clock, the measured value of the acceleration signal output by the inertial measurement unit 31 ( n -1), first corrected by the gravity acceleration component via equation (5), and then transmitted to the integral α-β-γ filter calculation process to generate an estimated state signal, the state of the predicted state signal The vector is X P ( n -1), including the value d P ( n -1) of the estimated displacement signal, the value of the estimated velocity signal ν P ( n -1), and the value of the predicted acceleration signal a P ( n -1); Here, the inertial measurement unit 31 installed in the UAV is a three-dimensional measurement unit that can output an acceleration signal of the XYZ axis, so the value of the displacement signal is estimated to be d P ( n -1), and an estimate is made. value of the speed signal ν P (n -1) and the estimated value of the acceleration signal a P (n -1) are the XYZ components of the set of vectors.

位移信號組合器34為一減法器,可將位移量測信號的數值d 0(n-1)與預估位移信號的數值d P (n-1)相減,產生位移誤差信號的數值△d(n),即如式(3)所示,若以狀態向量表示則為△X(n)=[△d(n)0 0] T The displacement signal combiner 34 is a subtractor that subtracts the value d 0 ( n -1) of the displacement measurement signal from the value d P ( n -1) of the estimated displacement signal to generate a value Δ d of the displacement error signal. ( n ), that is, as shown in the equation (3), if represented by a state vector, it is Δ X ( n )=[Δ d ( n )0 0] T .

狀態修正濾波器36設有一微分式阿爾發-貝他-加瑪濾波器,可將位移誤差信號的數值△X(n)產生一預估修正狀態信號,預估修正狀態信號的數值為F.△X(n),其中F為增益矩陣,係由微分式阿爾發-貝他-加瑪濾波器計算產生,預估修正狀態信號的數值F.△X(n)可用於修正狀態預估濾波器33輸出之預估狀態信號的狀態向量X P (n-1)。 State correction filter 36 is provided with a derivative of formula alpha - beta - Gama filter, the value may △ X (n) to generate a displacement error signal estimate correction state signal, correcting the estimated value of the status signal F.X (n), where F is the gain matrix based differential expression of alpha - generating Gama filter calculation, the estimated value of the state of the correction signal F - beta. Δ X ( n ) can be used to correct the state vector X P ( n -1) of the predicted state signal output by the state prediction filter 33.

估測信號組合器35為一加法器,可將預估狀態信號的數值X P (n-1)與預估修正狀態信號的數值F.△X(n),相加後產生一估測狀態信號的數值X(n),如式(4)所示。在本實施例,估測狀態信號包含估測位移信號、估測速度信號與估測加速度信號。 The estimated signal combiner 35 is an adder that can estimate the value of the predicted state signal X P ( n -1) from the value of the predicted corrected state signal F . Δ X ( n ), added to produce a value X ( n ) of the estimated state signal, as shown in equation (4). In this embodiment, the estimated state signal includes an estimated displacement signal, an estimated velocity signal, and an estimated acceleration signal.

其中,d(n)為估測位移信號的數值、ν(n)為估測速度信號的數值與a(n)為估測加速度信號的數值。 Where d ( n ) is the value of the estimated displacement signal, ν( n ) is the value of the estimated velocity signal and a ( n ) is the value of the estimated acceleration signal.

於第8圖說明本發明之高精度速度估測方法運用於本實施例的步驟,如下敘述:S1:計算出預估狀態信號的數值之狀態向量;包含下列步驟:S11:加速度量測信號的數值(n-1),先經由式(5)以重力加速度分量進行修正;S12:修正後的加速度信號的量測數值a 0(n-1),由積分式α-β-γ濾波器計算處理;S13:產生先前時間之預估狀態信號,該預估狀態信號的數值的狀態向量X P (n-1),包含有預估位移信號的數值d P (n-1)、預估速度信號的數值ν P (n-1)及預估加速度信號的數值a P (n-1);S2:計算出位移誤差值之狀態向量,包含下列步驟:S21:由先前時間之位移量測信號的數值d 0(n-1)與預估位移信號的數值d P (n-1),以式(3)進行相減;S22:產生位移誤差值△d(n),以狀態向量表示 為△X(n);S3:計算出預估修正狀態信號的數值,包含下列步驟:S31:位移誤差值狀態向量△X(n)以微分式阿爾發-貝他-加瑪濾波器處理後,計算出增益矩陣F;S32:計算獲得當下時間的預估修正狀態信號的數值△XP(n)=F.△X(n);該預估修正狀態信號包含有預估修正位移信號數值、預估修正速度信號數值及預估修正加速度信號數值;S4:計算出估測狀態信號的數值,包含下列步驟:S41:根據預估修正狀態信號的數值的狀態向量△X P (n)與預估狀態信號的數值的狀態向量X P (n-1),以式(4)相加;S42:產生估測狀態信號的數值的狀態向量X(n);包含有估測位移信號的數值d(n)、估測速度信號的數值ν(n)與估測加速度信號的數值a(n)。 FIG. 8 illustrates a step of applying the high-precision velocity estimation method of the present invention to the steps of the present embodiment, as follows: S1: calculating a state vector of the value of the estimated state signal; and including the following steps: S11: acceleration measurement signal Numerical value ( n -1), first corrected by gravity acceleration component via equation (5); S12: measured value a 0 ( n -1) of the corrected acceleration signal, calculated by integral α-β-γ filter S13: generating an estimated state signal of the previous time, the state vector X P ( n -1) of the value of the predicted state signal, including the value d P ( n -1) of the estimated displacement signal, and the estimated speed signal The value ν P ( n -1) and the value of the predicted acceleration signal a P ( n -1); S2: Calculate the state vector of the displacement error value, including the following steps: S21: measuring the signal by the displacement of the previous time The value d 0 ( n -1) and the value d P ( n -1) of the estimated displacement signal are subtracted by the equation (3); S22: the displacement error value Δ d ( n ) is generated, which is represented by the state vector as Δ X ( n ); S3: Calculate the value of the estimated correction state signal, including the following steps: S31: Displacement error value state vector △ X ( n ) is processed by differential Alpha-beta-gamma filter, and then calculated Output gain matrix F ; S32: Calculate the value of the estimated correction state signal obtained at the current time ΔX P (n)= F . △ X ( n ); the estimated correction state signal includes an estimated corrected displacement signal value, a predicted corrected speed signal value, and a predicted corrected acceleration signal value; S4: calculating a value of the estimated state signal, comprising the following steps: S41: The state vector Δ X P ( n ) according to the value of the estimated correction state signal and the state vector X P ( n -1) of the value of the estimated state signal are added by the formula (4); S42: generating the estimation A state vector X ( n ) of the value of the state signal; a value d ( n ) containing the estimated displacement signal, a value ν( n ) of the estimated velocity signal, and a value a ( n ) of the estimated acceleration signal.

請參閱第2及第3圖,該二圖說明為位移信號組合器34輸出之位移誤差信號的數值△X(n)(步驟S22)、狀態修正濾波器36輸出的預估修正狀態信號的數值△XP(n)=F.△X(n)(步驟S32)、估測信號組合器35輸出的估測狀態信號的數值的狀態向量X(n)(步驟S42),在不同時間下之變化過程;第2圖中,n-1時間的狀態,由預估狀態的數值X(n-1)經由預估修正狀態的數值△XP(n-1)=F.△X(n-1)與n時間的預估狀態的數值X P (n) 組合成為估測狀態的數值X(n);在n時間,由預估狀態的數值X(n)經由預估修正狀態信號的數值△XP(n)=F.△X(n)與n時間的預估狀態的數值X P (n+1)組合成為估測狀態的數值X(n+1);以下類推。第3圖中,n-1時間的狀態,由位移誤差值△X(n-1)經由預估修正狀態的數值F.△X(n-1)組合成與n時間的預估修正狀態的數值△X P (n);在n時間,由位移誤差值△X(n)經由預估修正狀態的數值F.△X(n)組合成與n+1時間的預估修正狀態的數值△X P (n+1);以下類推;由此位移誤差值△X(n)經由時間的遞移,逐漸趨向減少,或稱為位移誤差愈來愈小,估測的速度值愈接近真實的速度值。 Please refer to FIGS. 2 and 3, which illustrate the value Δ X ( n ) of the displacement error signal outputted by the displacement signal combiner 34 (step S22) and the value of the estimated correction state signal output by the state correction filter 36. △X P (n)= F . Δ X ( n ) (step S32), the state vector X ( n ) of the value of the estimated state signal output by the estimated signal combiner 35 (step S42), the process of changing at different times; in the second figure, n The state of -1 time, the value of the estimated state X ( n -1) via the estimated correction state ΔX P (n-1) = F . Δ X ( n -1) is combined with the value X P ( n ) of the estimated state of n time to become the estimated value X ( n ); at n time, the estimated value X ( n ) is estimated Correct the value of the status signal △X P (n)= F . Δ X ( n ) is combined with the value X P ( n +1) of the estimated state of n time to become the value X ( n +1) of the estimated state; In Fig. 3, the state of the n-1 time is determined by the displacement error value Δ X ( n -1) via the value F of the estimated correction state. Δ X ( n -1) is combined with the value Δ X P ( n ) of the estimated correction state with n time; at time n, the value F of the corrected correction state is obtained from the displacement error value Δ X ( n ). Δ X ( n ) is combined into a value Δ X P ( n +1) of the estimated correction state with n+1 time; the following analogy; thus the displacement error value Δ X ( n ) gradually decreases toward the time by the recursion of time The displacement error, or the displacement error, is getting smaller and smaller, and the estimated velocity value is closer to the true velocity value.

此也可由第4圖與第5圖說明,此二個圖為估測信號組合器35(相當本發明高精度速度估測裝置之第二運算單元)輸出的估測速度值、真實的速度值以及有雜訊的速度值之第一比較圖與第二比較圖,由此可以看出透過本實施例之高精度速度估測方法與裝置,能夠有效的改善雜訊,並且的取得與真實的速度相近之結果。 This can also be illustrated by FIG. 4 and FIG. 5, which are estimated speed values and true speed values output by the estimated signal combiner 35 (which is equivalent to the second arithmetic unit of the high-precision speed estimating device of the present invention). And the first comparison map and the second comparison graph of the speed value of the noise, it can be seen that the high-precision speed estimation method and device of the embodiment can effectively improve the noise, and the acquisition and the real The result of similar speed.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.

11‧‧‧加速度感測器(acceleration measurer) 11‧‧‧Acceleration measurer

12‧‧‧位移感測器(displacement measurer) 12‧‧‧displacement measurer

21‧‧‧狀態預估器(previous state predictor) 21‧‧‧ state predictor

22‧‧‧第一運算單元(first computing unit) 22‧‧‧first computing unit

23‧‧‧狀態修正器(state corrector) 23‧‧‧state corrector

24‧‧‧第二運算單元(second computing unit) 24‧‧‧second computing unit

31‧‧‧慣性量測單元(IMU) 31‧‧‧Inertial Measurement Unit (IMU)

32‧‧‧全球定位系統(Global positioning system,GPS) 32‧‧‧Global Positioning System (GPS)

33‧‧‧狀態預估濾波器(previous state predicting filter) 33‧‧‧previous state predicting filter

34‧‧‧位移信號組合器(displacement signal assembler) 34‧‧‧displacement signal assembler

35‧‧‧估測信號組合器(estimation signal assembler) 35‧‧‧ Estimation signal assembler

36‧‧‧狀態修正濾波器(state correcting filter) 36‧‧‧state correcting filter

S11~S42‧‧‧步驟方塊 S11~S42‧‧‧Steps

第1圖 係為本發明之高精度速度估測裝置之方塊圖; 第2圖 係為本發明之狀態預估器之預測狀態向量與估測狀態向量在不同時間下之變化流程;第3圖 係為本發明之狀態修正器之預測狀態修正向量與估測狀態修正向量在不同時間下之變化流程;第4圖 係為本發明實施例之估測信號組合器輸出的速度值、真實的速度值以及有雜訊的速度值之第一比較圖;第5圖 係為本發明實施例之估測信號組合器輸出的速度值、真實的速度值以及有雜訊的速度值之第二比較圖;第6圖 係為本發明之高精度速度估測裝置實施例之方塊圖;第7圖 係為飛行載具在飛行過程之受力示意圖;以及第8圖 係為本發明之高精度速度估測方法之實施步驟流程圖。 Figure 1 is a block diagram of the high-precision speed estimating device of the present invention; 2 is a flow chart of the state of the predictor of the state predictor of the present invention and the state of the estimated state vector at different times; FIG. 3 is a state corrective vector of the state corrector of the present invention and the estimated state correction The change process of the vector at different times; the fourth figure is the first comparison chart of the speed value, the real speed value and the speed value of the noise signal of the estimated signal combiner of the embodiment of the invention; A second comparison diagram of the speed value, the real speed value, and the speed value of the noise signal outputted by the estimated signal combiner according to the embodiment of the present invention; FIG. 6 is a high precision speed estimating apparatus embodiment of the present invention. Block diagram; Figure 7 is a schematic diagram of the force of the flight vehicle during flight; and Figure 8 is a flow chart of the implementation steps of the high-precision speed estimation method of the present invention.

11‧‧‧加速度感測器(acceleration measurer) 11‧‧‧Acceleration measurer

12‧‧‧位移感測器(displacement measurer) 12‧‧‧displacement measurer

21‧‧‧狀態預估器(previous state estimator) 21‧‧‧ state predictor (previous state estimator)

22‧‧‧第一運算單元(first computing unit) 22‧‧‧first computing unit

23‧‧‧修正器(corrector) 23‧‧‧corrector

24‧‧‧第二運算單元(second computing unit) 24‧‧‧second computing unit

Claims (10)

一種高精度速度估測裝置,係用於飛行載具,用於接收飛行載具之一加速度感測器產生之一加速度量測信號與一位移感測器產生之一位移量測信號,以產生一估測狀態信號;包含:一狀態預估器、一第一運算單元、一狀態修正器及一第二運算單元;其中,該狀態預估器具有積分式阿爾發-貝他-加瑪(α-β-γ)濾波處理功能,可接收該加速度量測信號,產生一預估狀態信號,該預估狀態信號至少包含一預估位移信號、一預估速度信號及一預估加速度信號;其中,該第一運算單元係連接於該狀態預估器,具有位移比較功能,可接收該位移量測信號與該預估位移信號,經比較後輸出一位移誤差信號;其中,該狀態修正器係連接於該第一運算單元與該第二運算單元,具有微分式阿爾發-貝他-加瑪濾波處理功能,可接收該位移誤差信號產生一預估修正狀態信號,該預估修正狀態信號至少包含一預估修正位移信號、一預估修正速度信號及一預估修正加速度信號;其中,該第二運算單元係連接於該狀態預估器與該狀態修正器,可接收該預估狀態信號與該預估修正狀態信號,組合後產生一估測狀態信號,該估測狀態信號至少包含一估測速度信號。 A high-precision speed estimating device is used for a flying vehicle for receiving an acceleration measuring signal generated by an acceleration sensor of a flying vehicle and a displacement measuring signal generated by a displacement sensor to generate An estimated state signal; comprising: a state predictor, a first arithmetic unit, a state corrector, and a second arithmetic unit; wherein the state predictor has integral Alpha-beta-gamma ( The α-β-γ) filtering processing function can receive the acceleration measurement signal to generate an estimated state signal, and the estimated state signal includes at least an estimated displacement signal, a predicted speed signal, and a predicted acceleration signal; The first operation unit is connected to the state predictor and has a displacement comparison function, and can receive the displacement measurement signal and the estimated displacement signal, and compare and output a displacement error signal; wherein the state corrector Connected to the first operation unit and the second operation unit, having a differential Alpha-beta-gamma filter processing function, and receiving the displacement error signal to generate an estimated correction state signal, The estimated correction state signal includes at least an estimated corrected displacement signal, an estimated corrected speed signal, and an estimated corrected acceleration signal; wherein the second computing unit is coupled to the state predictor and the state corrector, Receiving the estimated state signal and the estimated correction state signal, combined to generate an estimated state signal, the estimated state signal comprising at least one estimated speed signal. 如申請專利範圍第1項所述之高精度速度估測裝置,其中該狀態預估器具有加速度量測信號修正功能,可將加速度量測信號以重力加速度值在該飛行載具上笛卡爾座標三個軸上的重力加速度分量進行修正。 The high-precision speed estimating device according to claim 1, wherein the state predictor has an acceleration measuring signal correcting function, and the acceleration measuring signal can be a Cartesian coordinate on the flying vehicle with a gravity acceleration value. The gravitational acceleration components on the three axes are corrected. 如申請專利範圍第1項所述之高精度速度估測裝置,其中該第二運算單元產生之估測狀態信號,進一步包含一估測位移信號。 The high-precision speed estimating device according to claim 1, wherein the estimated state signal generated by the second computing unit further comprises an estimated displacement signal. 如申請專利範圍第1項所述之高精度速度估測裝置,其中該第二運算單元產生之估測狀態信號,進一步包含一估測加速度信號。 The high-precision speed estimating device according to claim 1, wherein the estimated state signal generated by the second computing unit further comprises an estimated acceleration signal. 如申請專利範圍第1項所述之速度估測裝置,其中該飛行載具之該加速度感測器係由一慣性量測單元所構成,該狀態預估器可接收該慣性量測單元產生之該加速度量測信號。 The speed estimating device according to claim 1, wherein the acceleration sensor of the flying vehicle is constituted by an inertial measuring unit, and the state predictor can receive the inertial measuring unit. The acceleration measurement signal. 如申請專利範圍第1項所述之高精度速度估測裝置,其中該飛行載具之該位移感測器係由一座標定位系統所構成,該第一運算單元可接收該座標定位系統產生之該位移量測信號。 The high-precision speed estimating device according to claim 1, wherein the displacement sensor of the flying vehicle is constituted by a positioning positioning system, and the first computing unit can receive the coordinate positioning system. The displacement measurement signal. 如申請專利範圍第6項所述之高精度速度估測裝置,其中該飛行載具之座標定位系統係選自差分全球定位系統及廣域增強差分全球定位系統二者之一。 The high-precision speed estimating device according to claim 6, wherein the coordinate positioning system of the flying vehicle is selected from the group consisting of a differential global positioning system and a wide-area enhanced differential global positioning system. 一種高精度速度估測方法,係使用申請專利範圍第1項之速度估測裝置,由先前時間量測獲得的一位 移量測值與一加速度量測值,估測當下時間的一估測速度信號的數值;該速度估測方法包含下列步驟:S1:根據先前時間之一該加速度量測信號的數值,以積分式阿爾發-貝他-加瑪濾波處理,並產生先前時間之一預估狀態信號的數值,該預估狀態信號的數值至少包含一預估位移信號的數值、一預估速度信號的數值及一預估加速度信號的數值;S2:根據先前時間之該位移量測信號的數值,與該預估位移信號的數值,比較獲得當下時間的一位移誤差值;S3:根據該位移誤差值,以微分式阿爾發-貝他-加瑪濾波處理,並產生當下時間之一預估修正狀態信號的數值,該預估修正狀態信號的數值至少包含一預估修正位移信號的數值、一預估修正速度信號的數值及一預估修正加速度信的數值;S4:根據當下時間之該預估修正狀態信號與先前時間之該預估狀態信號,組合後產生當下時間之一估測狀態信號,該估測狀態信號的數值至少包含有當下時間之估測速度信號的數值。 A high-precision speed estimation method using a speed estimation device of the first application scope of the patent, one obtained from previous time measurement The displacement measurement value and the acceleration measurement value are used to estimate the value of an estimated speed signal at the current time; the speed estimation method comprises the following steps: S1: integrating the value of the acceleration measurement signal according to one of the previous times to integrate Alpha-beta-gamma filter processing, and generating a value of one of the previous time state signals, the value of the predicted state signal includes at least a value of the estimated displacement signal, a value of the estimated speed signal, and a value of the estimated acceleration signal; S2: comparing the value of the displacement measurement signal according to the previous time with the value of the estimated displacement signal to obtain a displacement error value of the current time; S3: according to the displacement error value, The differential Alpha-Beta-Gama filter process generates a value of the estimated correction state signal for one of the current times, and the value of the estimated correction state signal includes at least a value of the estimated corrected displacement signal, and an estimated correction The value of the speed signal and the value of an estimated corrected acceleration signal; S4: the estimated state signal according to the estimate of the current time and the predicted state signal of the previous time, Generating one signal present time estimated state of engagement, the value of the estimated state signal including at least the numerical value of the estimated velocity signal present time. 如申請專利範圍第8項所述之高精度速度估測方法,其中,步驟S1之先前時間的該加速度量測信號的數值,進一步先經過飛行載具上笛卡爾座標X-Y-Z軸上的一重力加速度值分量進行修正。 The high-precision speed estimation method according to claim 8, wherein the value of the acceleration measurement signal at the previous time of step S1 further passes through a gravity acceleration on the XYZ axis of the Cartesian coordinate on the flying carrier. The value component is corrected. 如申請專利範圍第8項所述之高精度速度估測方法,其中,步驟S4之該估測狀態信號的數值進一步包含有當下時間之估測位移信號的數值、估測加速度信號的數值之一或其組合。 The high-precision speed estimation method according to Item 8 of the patent application, wherein the value of the estimated state signal of step S4 further includes one of a value of the estimated displacement signal at the current time and a value of the estimated acceleration signal. Or a combination thereof.
TW99114717A 2010-05-07 2010-05-07 Method and apparatus for high-precision velocity estimation TWI422825B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99114717A TWI422825B (en) 2010-05-07 2010-05-07 Method and apparatus for high-precision velocity estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99114717A TWI422825B (en) 2010-05-07 2010-05-07 Method and apparatus for high-precision velocity estimation

Publications (2)

Publication Number Publication Date
TW201140063A TW201140063A (en) 2011-11-16
TWI422825B true TWI422825B (en) 2014-01-11

Family

ID=46760207

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99114717A TWI422825B (en) 2010-05-07 2010-05-07 Method and apparatus for high-precision velocity estimation

Country Status (1)

Country Link
TW (1) TWI422825B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839358B2 (en) * 2012-03-29 2016-01-06 三菱電機株式会社 Helicopter satellite communication system, helicopter-mounted communication device, ground station communication device, communication method, and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW593981B (en) * 2001-07-20 2004-06-21 American Gnc Corp Micro integrated global positioning system/inertial measurement unit system
TW200705838A (en) * 2005-07-25 2007-02-01 Aqtrack Technologies Inc Method and apparatus for accelerating correlation processing of GPS signal
TW200912357A (en) * 2007-09-04 2009-03-16 Mediatek Inc Positioning system and method thereof
TW200916730A (en) * 2007-10-12 2009-04-16 Di Chiu Augmented navigation system and method of a moving object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW593981B (en) * 2001-07-20 2004-06-21 American Gnc Corp Micro integrated global positioning system/inertial measurement unit system
TW200705838A (en) * 2005-07-25 2007-02-01 Aqtrack Technologies Inc Method and apparatus for accelerating correlation processing of GPS signal
TW200912357A (en) * 2007-09-04 2009-03-16 Mediatek Inc Positioning system and method thereof
TW200916730A (en) * 2007-10-12 2009-04-16 Di Chiu Augmented navigation system and method of a moving object

Also Published As

Publication number Publication date
TW201140063A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
US7979231B2 (en) Method and system for estimation of inertial sensor errors in remote inertial measurement unit
EP3136047B1 (en) Position and attitude estimation device, image processing device, and position and attitude estimation method
US8560234B2 (en) System and method of navigation based on state estimation using a stepped filter
CA3003298A1 (en) Gnss and inertial navigation system utilizing relative yaw as an observable for an ins filter
JP5742450B2 (en) Position calculation method and position calculation apparatus
JP2012173190A (en) Positioning system and positioning method
JP5164645B2 (en) Method and apparatus for repetitive calculation control in Kalman filter processing
RU2564380C1 (en) Correction method of strap-down inertial navigation system
JP2020056701A (en) Navigation device, flight assisting information generation method, and flight assisting information generation program
CN111751857A (en) Vehicle pose estimation method, device, storage medium and system
JP6488860B2 (en) Gradient estimation apparatus and program
WO2020146128A1 (en) In-motion initialization of accelerometer for accurate vehicle positioning
RU2564379C1 (en) Platformless inertial attitude-and-heading reference
JP2014240266A (en) Sensor drift amount estimation device and program
JP5022747B2 (en) Mobile body posture and orientation detection device
CN113566850B (en) Method and device for calibrating installation angle of inertial measurement unit and computer equipment
CN114526731A (en) Inertia combination navigation direction positioning method based on moped
AU2020104248A4 (en) Integrated gps and inertial navigation system for industrial robots
CN111197994B (en) Position data correction method, position data correction device, computer device, and storage medium
CN116576849A (en) Vehicle fusion positioning method and system based on GMM assistance
CN117053782A (en) Combined navigation method for amphibious robot
TWI422825B (en) Method and apparatus for high-precision velocity estimation
JP7201219B2 (en) Positioning device, velocity measuring device, and program
CN110736459A (en) Angular deformation measurement error evaluation method for inertial quantity matching alignment
KR20120062519A (en) Device for alignment of inertial navigation system using bias and navigation system thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees