TW566077B - Electromagnetic wave absorption material and an associated device - Google Patents

Electromagnetic wave absorption material and an associated device Download PDF

Info

Publication number
TW566077B
TW566077B TW091121158A TW91121158A TW566077B TW 566077 B TW566077 B TW 566077B TW 091121158 A TW091121158 A TW 091121158A TW 91121158 A TW91121158 A TW 91121158A TW 566077 B TW566077 B TW 566077B
Authority
TW
Taiwan
Prior art keywords
electromagnetic wave
wave absorbing
absorbing material
carbon
patent application
Prior art date
Application number
TW091121158A
Other languages
Chinese (zh)
Inventor
Tadashi Fujieda
Kishifu Hidaka
Shinzo Ikeda
Mitsuo Hayashibara
Noriyuki Taguchi
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of TW566077B publication Critical patent/TW566077B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
    • H05K9/0029Shield cases mounted on a PCB, e.g. cans or caps or conformal shields made from non-conductive materials intermixed with electro-conductive particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
    • H05K9/0031Shield cases mounted on a PCB, e.g. cans or caps or conformal shields combining different shielding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1423Monolithic Microwave Integrated Circuit [MMIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/004Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

The purpose of the present invention is to provide an easy-to-manufacture electromagnetic wave absorption material usable from submillimeter wave region to millimeter wave region with an excellent radio wave absorbing performance and a variety of usage thereof. The present invention is characterized by an electromagnetic wave absorption material comprised of a dispersions of at least one of the materials: a multi-layer hollow globule of carbon, a schungite carbon, and the schungite ore; mixed into a matter having a high electrical resistivity. The invention is further characterized by an electronic device, an optical transmission module, an optical reception module, a high frequency telecommunication equipment, and a stop-free automated tollgate system, wherein at least a part of their board, electronic element, and circuit wiring are covered with said electromagnetic wave absorption material.

Description

566077 A7 B7 五、發明説明(1 ) 發明範圍 本發明係關於新穎的電磁波吸收材料及相關器件。本 發明特別係關於不同物件,如:用於1至300GHz帶毫米波 的電磁波吸收材料,使用這樣的吸收材料的印刷電路板、 電子裝置、用於電子裝置的框架、用於光學傳輸或接收的 模組、自動化關卡和高頻聯絡設備。 以前技術之描述 近年來,因爲微處理器的增進跨距和迅速提高的1C 和LSI操作頻率造就了電子設備的高速處理。提高的頻率 使得更多裝置更容易發射非所欲雜訊。 但在電信領域中,目前使用下一代多介質行動通訊 (2GHz)、無線LAN(2至3 0GHz)和光纖上的高速電信網絡。此 外,亦使用ITS(智慧傳輸系統)中之ETC(自動化電子訊號收 集)系統中的5.8GHz和AHS(先進漫遊高速系統)中的76GHz 。因此,預期使用範圍會朝較高頻率迅速膨脹。 提高無線電波頻率更能緩和雜訊形式的訊號釋出。同 時,最近的電子裝置因爲其中的能量消耗較低而窄化了雜 訊限度,因爲電子裝置的微小化及於其中緊密排列而使得 裝置內部的雜訊-週遭品質欠佳,導致因EMI(電磁干擾)造 成的故障問題。 在這些情況下,基本上採取將吸收電磁波的材料裝於 電子裝置内部以降低裝置內部之EMI的方式。目前使用的 一種電磁波吸收材料是一種絕緣有機物(如:橡膠和樹脂)和 本紙張尺度適用中國國家標準(CNS )八4規格(210X297公釐) 丨丨— l·—·裝丨丨 (請先閱讀背面之注意事項再填寫本頁) 杯 經濟部智慧財產笱員工消費合作社印製 -4- 566077 A7 B7 _ 五、發明説明(2 ) 磁性耗材(如:具有尖晶晶體結構的柔軟磁性金屬氧化物和 柔軟的磁性金屬)之複合板。這些技巧揭示於日本專利公開 特許案第 7-212079、9-111421、11-354973、11-16727 號.·等 〇 但是,根據Snoek的底限(threshold)定律,具有尖晶晶 體結構的柔軟磁性金屬氧化物於GHz帶的相對磁導性大幅 降低。此意謂這樣的金屬氧化物作爲電磁波吸收材料的可 用頻率範圍不超過數GHz。另一方面,柔軟的磁性金屬中 ,使用渦流抑制效應,使得其中的顆粒變成厚度比表層厚 度來得高的扁平形狀,其作爲電磁波吸收材料的定限頻率 可擴展高至約10GHz。但這樣的磁性材料因爲其內稟重量而 無法使用大量電磁波吸收劑。 曰本專利公開特許案第200 1 -35 8493號提出一種整體化 的電磁波吸收材料,其由細粒磁性材料和陶瓷構成,及使 用該整體化吸收材料的物件或設備,如:印刷電路板、電 子裝置、電子裝置框架、光學傳輸或吸收模組、自動化關 卡和局頻聯絡設備。 但該磁性物質的電磁波吸收效能仍無法令人滿意。因 此,近年來對於使用範圍高至微米波範圍並具極佳效能的 電磁波吸收材料的發展一直有需求存在。雖然根據該曰本 專利公開特許案第200 1 -358493號的電磁波吸收材料用於高 至5.8GHz次毫米波範圍能夠令人滿意,但該材料於超出此 頻率的毫米波範圍之使用效能無法令人滿意。 發明槪述 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 1·裝· 訂 經濟部智慧財產局員工消費合作社印製 -5- 566077 A7 B7 五、發明説明(3) 本發明的目的是要提出一種電磁波吸收材料,其在次 毫米波範圍至毫米波範圍內(其中,無線電波頻率由1至 3 00GHz)具有極佳的電磁波吸收效能,其易製造且質輕。此 目的另包括提出不同應用及具該電磁波吸收的系統,特別 是電子裝置、光學傳輸或吸收模組和不停息關卡,其沒有 因電磁波干擾而造成的故障情況。 本發明的發明者發現到:相較於以介電損耗爲基礎的 電磁波吸收材料(即,以碳爲基礎的物質(如,碳黑細粒、石 墨、炭、碳微捲物和碳毫微管)混入絕緣有機材料(如:橡膠 和樹脂)中之分散物)),由多層中空碳球粒混入絕緣有機材 料中之分散液構成的電磁波吸收材料在用於毫米波範圍的 效能極佳。因爲存在於天然次石墨礦石(下文中稱爲次石墨 碳)中的該多層中空球粒含於天然次石墨礦石中,所以,使 用這樣的材料作爲電磁波吸收材料的困難度較低。特別地 ,基於發現到這樣的粒狀物在毫米波範圍內(頻率是3 0至 300GHz)的吸收性高而完成本發明。 用於此處的較佳次石墨碳的孔隙度是1.5至45 %、厚度 0.1 5至0·25奈米,形狀爲球狀或扁平狀或它們的組合。至於 天然次石墨礦石,較佳內容物是25至35 %次石墨碳、3至 5%A1〇3、1 至 3%Fe2〇3 + Fe〇、0.5 至 2%K2、0.2 至 1.0% 硫、0.2 至0.5%自由水和0.3%或較低的Ti〇2、Mg〇、Ca〇、Na2〇和 Mn〇。 本發明之特徵在於:電磁波吸收材料包括:碳和次石 墨碳的多層中空球(粒)之一;或多層中空球和次石墨碳之一 本紙張尺度適用中國國家標準(CNS ) Α4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) C· 訂 經濟部智慧財產笱員工消費合作社印製 -6 - 566077 A7 B7 五、發明説明(4 ) ’該多層中空球含有至少一種碳毫微管、金屬組份和自由 水;或次石墨礦石。 本發明中的電磁波吸收材料以混入電阻値比多層中空 球粒或次石墨碳爲高的物質中之分散物爲佳。此分散中, 多層中空球粒和次石墨碳量以相對於這樣的高阻抗物質計 之5至50重量%爲佳。此高阻抗物質以選自橡膠、絕緣性高 的聚合物和絕緣性無機材料爲佳。 本發明中的電磁波吸收材料以多層中空球粒或次石墨 碳含量程度變動者爲佳,使得性質依存性會自電磁波入射 平面朝內部降低。藉此,吸收間接入射的電磁波的效能能 夠適應頻率範圍寬廣的電磁波。 電阻性高的材料可以含有下列至少一者:磁性金屬, 其主要構份是鐵(Fe)、鈷(Co)和鎳(Ni)中之至少一者;選自 包括氧化物、氮化物和碳化物中之至少一種化合物,其中 ,主要構份是鐵(Fe)、鈷(Co)、鎳(Ni)、鋁(A1)、矽(Si)、鈦 (Ti) '鋇(Ba)、錳(Μη)、鋅(Zn)和鎂(Mg)中之至少一者;及 一種以碳爲基礎的物質,其含有碳黑、石墨、焦炭和碳微 捲物中之至少一者。藉此,電磁波吸收材料的吸收效能更 獲改善。 本發明特徵在於:電磁波吸收材料包含電磁波吸收細 粒和電阻値比該電磁波吸收細粒來得高的物質,其中,該 電磁波吸收材料於無線電波頻1GHz時的回行損失(反射係數 )是-3.5dB或以上(絕對値),於無線電波頻6GHz時的回行損 失(反射係數)是-20dB或以上。該電磁波吸收材料細粒以由 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -7- 566077 A7 B7 五、發明説明(5 ) 該電磁波吸收材料構成爲佳。調整複合物中的該電磁波吸 收材料厚度和該電磁波吸收細粒組成,可獲致這樣的回行 損失程度。 視各物件而定,本發明的電磁波吸收材料可藉不同的 適當方法用於基本上述於下文中的許多物件。該吸收材料 以混入該絕緣材料中的分散物形式以塗層或膠合片形式施 用或藉注膜方式以接近完整形狀施用。 (1) 印刷電路板,其中,該電路板的至少一個表面、一 個佈線表面和其沒有電力佈線的背面全數或一部分被直接 塗覆層或形成片的膜所覆蓋,其中的覆層和膜由本發明之 電磁波吸收材料構成。 (2) 電子裝置,其中,置於其上的電子元件被具有本發 明之電磁波吸收材料的罩所覆蓋。 (3) 電子裝置,其中,其印刷電路板和該印刷電路板上 的電子元件被具有本發明之電磁波吸收材料的罩所覆蓋, 或者,其中,金屬框架的內表面有一個開口備有本發明之 電磁波吸收材料。 (4) 光傳輸或光接收模組,其中,至少其發光元件或其 光接收元件中的一者具有光電轉化裝置用於高速電信網絡 ,及至少其中的傳輸電路或其中的接收電路被配備有本發 明所描述之電磁波吸收材料的組件所覆蓋。 (5) 自動化關卡,包含位於屋頂的通行關卡、入口天線( 位於該通行關卡入口並面對接近該關卡的通行運輸工具)和 出口天線(位於該關卡出口並面對離開該關卡的通行運輸工 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) C. 訂 經濟部智慧財產局員工消費合作社印製 -8- .經濟部智慧財產局員工消費合作社印製 566077 A7 B7 五、發明説明(7) 圖1,包括圖1(a)及圖1(b),是次石墨碳的型式圖,此 次石墨碳包含本發明之電磁波吸收材料。 圖2 ’包括圖2(a)及圖2(b),所示者是本發明之電磁波 吸收材料和比較例之複合相對介電常數及複合相對介電常 數的適應範圍。 圖3 ’包括圖3(a)及圖3(b),所示者是在回行損失試驗 中,不同材料有金屬背襯時,於相同中央頻率的回行損失 計算結果。 圖4,包括圖4(a),圖4(b)及圖4(c),是不同厚度之有金 屬背襯的材料之回行損失計算結果。 圖5是配備由本發明之電磁波吸收材料構成之電磁波吸 收層的印刷電路板截面圖。 圖6,包括圖6(a)及圖6(b),是電磁波吸收覆層截面圖 ’其位於印刷電路板上,使得會產生雜訊的半導體元件被 封住。 圖7,包括圖7(a)及圖7(b),是由本發明之電磁波吸收 材料構成的電子裝置框架截面圖。 圖8是本發明的一個實施例中之光學傳輸模組截面圖。 圖9是本發明的一個實施例中之框架已移除的光學傳輸 模組截面圖。 圖10是本發明另一實施例中之2層結構光學傳輸模組的 截面圖。 圖11是第一種光學傳輸-接收模組構造中之光學傳 輸-接收模組平面圖。 本紙張尺度適用中國國家標準(CNS )八4規格(2丨0><297公釐) ^------1T------線 (請先閲讀背面之注意事項再填寫本頁) -10- 566077 A7 B7 五、發明説明(8) 圖12是截面圖,顯示配備電子通行收集系統(ETC)的自 動化關卡構造’其中,關口屋頂和承載圓柱體施以本發明 的電磁波吸收材料。 11 13是本發明的多層結構無線電波吸收器截面圖。 圖14是一個備有本發明之電磁波吸收材料之高頻聯絡 裝置實施例中的毫米波傳輸—接收裝置截面圖。 主要元件對照 經濟部智慧財產局員工消費合作社印製 1 電磁波吸收材料 2 電路線 3 印刷電路板 4 絕緣層 5 金屬罩 6 1C 8 光學傳輸模組 9 有護套的光纖 10 LD 11 傳輸電路 12 電路板 13 光導引物 14 金屬框架 18 接收線路 19 PD 21 入口天線 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) ^-- (請先閲讀背面之注意事項再填寫本頁) 、?τ •線· -11 - 566077 A7 — 五、發明説明(9) 22 出口天線 23 運輸工具上的設備 24 道路表面 25 關卡屋頂 27 直波 28 反射波 29 運輸工具 30 運輸工具 31 無線電波吸收器 32 入射波 33 金屬板 34 半導體裝置 35 扁平電路板 36 金屬基板 37 同軸線 38 金屬蓋 39 側壁 詳細說明 (實施例1) (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 圖1是天然次石墨礦石中所含次石墨碳型式圖,其由多 層中空小碳粒(稱爲球粒)構成。如圖1(b)所示者,此球粒內 部含有小量碳毫微管(CNT)、金屬(Cu、Ni、V、Cl·、Co、Mn 和Ti)和自由水。這些金屬以矽酸鹽、硫化物和氧化物形式 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -12- 566077 Α7 Β7 五、發明説明(1() 存在於其中:天然次石墨礦石含有以重量計之28至32%次石 墨碳和57至66%Si〇2、3至5%Ah〇3、1至3%Fe2〇3 + Fe〇、0.5至 2%K2〇、0.2至1.0%硫' 0.2-0.5%自由水和0.3%或以下TiCb、 Mg〇、Ca〇、Na2〇和Mn〇。 圖2所示者是片狀電磁波吸收材料於頻率範圍的相對介 電常數。該吸收材料片製自:碳黑(下文中縮寫成C B)和碳 毫微管(下文中縮寫成CNT)(相對於黏合劑樹脂各爲20重量 份)和天然次石墨礦石,它們硏磨成1至30微米粉末(下文中 稱爲次石墨),以70重量份加至液態黏合劑樹脂(其中,次石 墨和黏合劑樹脂的重量比約20份)中。這些材料經混合和捏 和成膏,之後以刮塗法或滾筒成型法製成片。次石墨中空 內部直徑是3奈米,外部直徑約22.5奈米。 圖中,(a)是於6GHz的性質,(b)是於10GHz的性質;各 頻率屬毫米波範圍內。圖中的陰影區域是使複合相對介電 常數的回行損失爲-20dB或以上的範圍。如此處所示者,次 石墨的複合相對介電常數落在每一檢測頻率的適應範圍內 。相對於此,相較於CB和CNT的複合介電常數之落在適 應範圍內的實數部分(ε "),虛數部分(ε ’)過大,它們的一 些回行損失(反射係數)低於-20dB。滿足回行損失的複合相 對介電常數範圍不低於-20dB,賦與本發明特徵的範圍使得 在10GHz頻率的實數部分(ε ’)値是1〇,虛數部分(ε ")是4至 6,使得在10GHz頻率的實數部分(ε ’)値是75,虛數部分(ε ")是 10至 13。 以塗漆形式使用時,可以在製得該膏之後,以噴灑、 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) ----------^-- (請先閲讀背面之注意事項再填寫本頁) 訂 線 經濟部智慧財產局員工消費合作社印製 -13- 566077 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(1令 浸泡和澆塗方式施用。 可作爲黏合劑的材料有:以聚酯爲基礎的樹脂、以聚 氯乙烯爲基礎的樹脂 '聚胺基甲酸酯樹脂、以纖維素爲基 礎的樹脂及這些樹脂的共聚物;環氧樹脂、酚樹脂、以醯 胺爲基礎的樹脂、以醯亞胺爲基礎的樹脂、尼龍、丙烯酸 系樹脂、合成橡膠和其他類似聚合型絕緣材料;及主要構 份爲氧化鋁、氧化矽之類的無機絕緣材料。此實施例中, 丙烯酸和聚醯胺的樹脂混合物作爲黏合劑。 可單獨使用經純化的次石墨碳,其中,使用,如··氫 氟酸,溶解天然次石墨礦石中所含的次石墨碳以外的礦物 構份得到該經純化的碳。相對於此方式,也可以藉由使得 次石墨碳負載磁性金屬顆粒(包括F e、C 〇和N i中之至少一 者)地改善電磁波吸收效能。 經硏磨的天然次石墨礦石粉末中所含的次石墨碳具有 如圖1所示呈種子形狀的破碎球粒結構;物質(如:CNT)通 常位於結構內部,與種子分離。被賦與與天然次石墨相同 結構之人工製造的碳也有相同效果。也可以對經硏磨的天 然次石墨礦石粉末在惰性氣體環境中進行熱處理,以改變 其複合相對介電常數,以改善電磁波吸收效能。較佳溫度 是 500至 1000°C。 複合相對介電常數以由網絡分析儀(HP 8720C)和同軸線 構成的測定系統測得。校正系統,使得測得之自由空間的 穿透性和介電常數等於1,將試樣置於同軸線中,使用兩個 接點測定參數Sm和S21 ;之後,使用Nicolson-Ross和Weir 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X297公釐) ---------1衣------IT------線 (請先閲讀背面之注意事項再填寫本頁) -14 - 566077 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明( 法得到相對介電常數。 相符類型之具金屬背襯的電磁波吸收器的吸收機構可 以包括表面反射的波和吸收器中產生的多重反射波之間的 臨界偶合造成的多途徑反射效果及吸收器内的介電損失造 成的衰減。通常,一般入射的回行損失(R.L.,單位是dB)以 下面描述的式(1)和(2)表示 R.L =-20/^|zirt-l/Zirt + l| (1) (其中,Zin ••吸收器的特徵阻抗) Z- = (!/ E r)05 tanh(j2nft e Γ0*5) ( 2 ) (其中,ε r :複合介電常數(ε ε,+j ε ’’),f :頻率 (Hz),t :吸收器厚度(米)) 圖3是比較圖,用以顯不不同電磁波吸收材料於用於回 行損失檢測之相同中央頻率之回行損失的厚度依存性。圖 (a)中的中央頻率是6GHz,(b)是10GHz。各電磁波吸收材料 厚度亦示於圖中。圖3(a)中,於6GHz,CNT的回行損失是_ 6dB,CB-13dB,次石墨碳-21dB ;圖 3(b)中,於 10GHz,CNT 的回行損失是-6dB,CB-17dB,次石墨碳-40dB。此顯示次 石墨碳的回行損失最大,即,於這兩個頻率,在這些材料 中,吸收電磁波效能最佳。毫米波範圍中,CNT和CB因爲 展現此範圍內可被接受的效能,所以可單獨或與本發明之 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨OX297公釐) 裝 訂 I I I 線 f請先閲讀背面之注意事項再填寫本頁j -15- 566077 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明( 材料倂用。 圖4是顯示不同電磁波吸收材料於不同厚度的回行損失 計算結果。雖然各者的中央頻率回行損失不同,次石墨於 每一厚度的吸收效果均最佳。各個圖中,(a)代表1·5毫米後 ,(b)2.0毫米,(c)2.5毫米。 圖顯示在(a)1.5毫米厚,CNT回行損失是-6dB,CB-17dB,次石墨碳- 40dB ; (b)2.0毫米厚,CNT的回行損失是-6dB,CB-17dB,次石墨碳-27dB ; (c)2.5 毫米,於 6GHz, CNT-6dB,CB-14dB,次石墨碳-22dB。這些顯示次石墨碳於 各頻率的回行損失最大,指出其具有最佳的電磁波吸收效 能。在毫米波範圍內,CNT和CB因爲展現此範圍內可被接 受的效能,所以可單獨或與本發明之材料倂用。 此外,由這些知道本發明之包括次石墨碳的材料於6 GHz無線電波頻的回行損失是- 3.5dB / 1 GHz,於10 GHz是-4·0 dB,於6 GHz的回行損失是-20 dB或以上。 (實施例2) 圖5是備有由本發明之電磁波吸收材料構成之電磁波吸 收層的印刷電路板。包含形成於絕緣板上之電路佈線2的印 刷電路板3有一絕緣層4的一面上有電路佈線2形成,另一面( 其背面)沒有佈線。一部分該絕緣層4上和一部分該反應上 ’或者二者的全數上,施以由經硏磨的天然次石墨碳礦粉 末和黏合劑樹脂構成的材料,以於其上提供電磁波吸收層 。其施用方式是將該材料直接塗覆或塗佈或者施以該材料 本紙張尺度適用中國國家標準(CNS〉A4規格(210X297公釐) ----------裝------訂------線 f請先閲讀背面之注意事唄再填寫本頁,> -16- 566077 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明( 片。該塗層或片的厚度以0.1至1.0毫米爲佳,但可視產生的 頻率和吸收電磁波的速率而設計。藉此,得以抑制產生的 雜訊(如:自印刷電路板發射出因電話線路誤接而產生的干 擾現象)。特定言之,以極可信賴的方式,使得多層印刷電 路板高密度和高整體化,此印刷電路板由在半導體至少一 個主要表面上的第一個線路層、在該第一個線路層表面上 形成的絕緣表層和基本上與該第一個線路層經由在該絕緣 表層上的連接孔連接的第二個線路層構成,該第二層重覆 層合於該第一個線路層上。在每個外側排列電磁波吸收層 會改善對於電磁的吸收效能和對於由外界輸入的電磁波的 遮蔽效能。 (實施例3) 圖6是用於排列於印刷電路板上之半導體的電磁波吸收 罩,使得會產生雜訊的半導體元件被其封住。此用以顯示 電磁波吸收罩的排列構形,就本發明而言,其置於印刷電 路板上,使得可能產生雜訊的來源(如:微處理器或系統 LSI)可被該罩封住。圖6(a)所示構造中,本發明的電磁波吸 收層位於金屬罩5內側,用以遮蔽由外界輸入的電磁波及用 以吸收內部發射的電磁波。金屬罩5使用鍍銅材料、銅和鍍 金的材料或不銹鋼。圖6(b)所示者是使用本發明的電磁波吸 收材料藉注模法製得的罩。電磁波吸收材料製成的罩與外 界隔絕地以膠或類似方式固定於印刷電路板3上。 藉由這些實施方法,半導體元件發射的電磁波被受到 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ---------辦衣------1T------0 (請先閲讀背面之注意事項再填寫本頁) -17- 經濟部智慧財產局員工消費合作社印製 566077 A7 一 _______B7_ 五、發明説明(1今 抑制的內部干擾充份吸收。 (實施例4) 圖7是電子裝置截面圖,其中,位於印刷電路板上的 IC6被由本發明之電磁波吸收材料構成的電子裝置框架封住 。圖7(a)所示者是用於電子裝置的金屬框架內部備有本發明 之電磁波吸收材料層的例子,其中的電磁波吸收材料層藉 '塗覆或注模法製得。圖7(b)所示者是藉注模法由本發明之電 磁波吸收材料形成的電子裝置框架。因此,這些實例中, 使得裝置框架具有吸收電磁波的功能,而使得電子裝置內 的電磁波干擾受到抑制。 (實施例5) 圖8是本發明之光學傳輸模組組件截面圖。光學傳輸模 組8由有護套的光纖9、光導引物1 3、LD 1 0、傳輸電路11和 電路板1 2構成。此傳輸電路11另包含LD驅動器(其驅動 LD 10)和發光二極體、雷射輸出單元和正反電路。實施上, 這樣的構造伴隨鉛框和電線,但在圖中省略未示。隨著傳 輸速率提高,激發LD 10電子訊號的頻率變高,造成光學傳 輸模組內發射高頻電磁波。此電磁波導致雜訊,此會損及 模組中的其他元件和組件。 此實施例中,光學傳輸模組置於模具中並以倒在金屬 框架中的樹脂混合物固定,之後以金屬罩住,以金屬框架 14提供涵蓋該模組外側的完整密封,其中,該樹脂-混合 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) I I私衣 I 訂— — I n ^ (請先閲讀背面之注意事項再填寫本頁) -18- 566077 A7 B7 五、發明説明(1合 物由經硏磨的該天然次石墨礦石粉末(相當於40至80重量% 樹脂,視前述頻率和該樹脂混合物吸收電磁波的速率調整) 組成。藉此,不僅保護元件和板免於水氣和氣體的損害, 同時抑制傳輸模組內的雜訊干擾並完全防止雜訊發射至模 組外,藉此吸收和遮蔽電磁波。 圖9是光學傳輸模組截面圖。因爲金屬框架14非必要, 所以,可藉轉移模具而形成的樹脂混合物封住結構,此如 圖9所示者。此結構可降低成本,但吸收和遮蔽電磁波的效 果略爲降低。 圖10是一種光學傳輸-接收模組的截面圖。用以確保 接線不會短路,可以利用如圖10所示的2-層構造。此接線部 分先以不含有任何經硏磨天然次石墨礦石粉末的樹脂密封 ;其上以含有經硏磨天然次石墨礦石粉末的樹脂混合物密 封,以形成該2層結構。 此實施例出示LD10和傳輸線路11。但光學接收模組以 這些備有光接收線路和接收器線路的單元代替。 (實施例6) 圖11是光學傳輸接收模組平面圖,其中,光學傳輸模 組形成於電路板12上。光學傳輸-接收模組17作爲光學傳 輸和光學接收模組。光學傳輸部分由有護套的光纖9、光導 引器13、LD 10、傳輸線路11和電路板12組成。此傳輸電路 由驅動雷射的LD驅動器、雷射輸出單元和正反電路構成。 光學接收部分由有護套的光纖9、光導引器13、PD19、接收 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ----------裝-- (請先閲讀背面之注意事項再填寫本頁) 訂 線 經濟部智慧財產局員工消費合作社印製 -19- 566077 A 7 B7 五、發明説明(1》 器線路18和電路板12組成。此接收線路由具有事先放大功 會g的PRE-IC、由測定時間的CDRLSI和均一放大器、SAW 窄帶濾器和AOD偏壓控制線路構成。實施上,此構造伴隨 鉛框和線路,但圖中未示。 如前述者,傳輸-接收模組的傳輸模組和接收模組在 其中爲整體時,光學傳輸單元和光學接收單元之間的雜訊 發射和干擾會引發內部雜訊干擾問題。 爲防止雜訊干擾,慣用光學傳輸-接收模組使用金屬 遮蔽板介於光學傳輸單元和光學接收單元之間,或者將模 組封於金屬包裝中,以使一者位於傳輸模組中,另一者位 於接收模組中。這些構造會以大且昂貴(因使用昂貴的金屬 包裝之故)的方式連接至大和質重模組。根據本發明之構造 不僅防止模組内的雜訊干擾,同時也使其微小化和降低成 本。 根據本發明,可提供可用於高速電信網絡的設備,如 :光學傳輸模組、光學接收模組或由光學傳輸單元和光學 接收單元構成的光學傳輸-接收模組;由於吸收材料的能 力,使得它們得以抑制內部雜訊干擾和發射至外部的雜訊 ,以獲致小尺寸和降低重量並以高速傳輸及具有高敏感度 (實施例7) 圖12是截面圖,所示者是配備電子通行收集系統(ETC) 的關卡基本構造,運輸工具通過該關卡’此ETC交換路側 本紙張尺度適用中國國家標準(CNS〉A4規格(210X297公釐) ----------裝-- (請先閲讀背面之注意事項再填寫本頁) 訂 線 經濟部智慧財產局員工消費合作社印製 -20- 經濟部智慧財產局員工消費合作社印製 566077 A7 B7 五、發明説明(1令 聯絡設備和運輸工具上的設備之間的資訊。 如圖12所示者,通行收集所須資訊於入口天線21、出 口天線22和運輸工具上的設備於5.8GHz頻率交換。出口天 線22發射的無線電波(直波27)因爲道路表面24和關卡屋頂25 的天花板或承載圓柱造成的多路徑反射現象而寬化。此造 成一連串運輸工具的流向鑑別問題,其中,雖然出口天線 22發射的無線電波(直波27)被運輸工具A29載有之運輸工具 上的設備所接收,但道路表面24反射的反射波28被之後的 運輸工具B30上的設備所接收。故障可歸因於無線電干擾, 如:可能是鄰近交通線上的運輸工具干擾。這些問題可藉 由在結構組件(如:能夠反射電磁波的關卡屋頂25和能夠反 射電磁波而使得反射波被吸收的承載圓柱體)表面施用電磁 波吸收材料而解決。此應用中,該電磁波吸收材料的製備 和施用方式爲:例如,使用溶劑使含有該經硏磨天然次石 墨礦石粉末(相當於樹脂的50至85重量%)的樹脂混合物呈液 態或片,之後將此液態材料施用於所欲結構組件上,及將 成片的材料膠合於所欲結構組件上。 用於慣用技術中之ETC的無線電波吸收材料被製成數 十公分厚的整體板形式。此特徵引發裝設問題,如:難施 用於複雜形狀上,此處須要塗漆型或軟性片狀的電磁波吸 收材料層類型。本發明的電磁波吸收材料1由樹脂混合物組 成,其含有經硏磨天然次石墨礦石粉末,視此處所選的樹 脂而定。其得以以塗漆或軟性片形式施用。 由樹脂混合物(含有經硏磨天然次石墨礦石粉末)的無線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 裝 訂 線 (請先閲讀背面之注意事項再填寫本頁) -21 - 經濟部智慧財產局員工消費合作社印製 566077 A7 B7 五、發明説明( 電波吸收器3 1可製成如圖1 3所示的單層或多層結構。製得 的層使得對於入射波3 2的特徵阻抗自無線電波的入射平面 朝金屬板3 3 (—種完美的反射器)逐漸降低時,此多層結構有 效地改善吸收入射波的效能。爲實現此變化,複合相對介 電常數自無線電波入射平面朝金屬板33逐漸提高程度須足 夠;此可藉由改變經硏磨天然次石墨礦石粉末與樹脂的塡 充比例而達成。施用的標的物是金屬時,不須金屬板。圖 1 3所不無線電波吸收器3 1爲三層。 各層中,多層中空碳球粒與樹脂的充塡比是5重量%或 以下,複合相對介電常數過低,無法得到可被接受的電磁 波吸收效能。因此,就確保樹脂混合物流動性的觀點,各 層的此比例以至多50重量%或以下爲佳。 (實施例8) 圖14是毫米波傳輸-接收設備的截面圖,其爲高頻傳 輸設備的一個實施例。半導體裝置34的平整面(如··用於傳 輸-接收的MMIC)和扁平電路板35(連接此半導體裝置)位於 以金屬基板36上,其爲框架底部,形成傳輸-接收電路; 輸入-輸出訊號經由同軸線37連接至天線(未示)。金屬蓋( 以框架的側壁與基板36分離)形成框架頂。框架的側壁材料 可爲金屬、玻璃、氧化鋁和其他非金屬中之任何者。此基 板36製自非金屬(如:塑膠或氧化鋁),但其有MMIC和扁平 電路板位於其上的表面的一部分可以藉電鍍或澱積法形成 的金屬覆蓋。面對框架內部之蓋38的頂板施以含有經硏磨 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) II —. 批衣 I1T— ! I— (請先閲讀背面之注意事項再填寫本頁} -22- 566077 A7 B7 五、發明説明(2() 天然次石墨礦石粉末的樹脂混合物,此樹脂混合被製成塗 漆調合物或片。塗漆調合物中的樹脂混合物施於該頂部, 片則是膠合於其上。藉此,避免來自框架內之傳輸-接收 電路之傳輸側的所不欲發射侵入接收側,減少傳輸側和接 收側之間的相互干擾。 —裝 II 訂 線 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 ‘紙 ) A4 規格(21(^29ϋ -23-566077 A7 B7 V. Description of the invention (1) Scope of the invention The present invention relates to novel electromagnetic wave absorbing materials and related devices. The invention relates in particular to different objects, such as: electromagnetic wave absorption materials for 1 to 300 GHz with millimeter waves, printed circuit boards using such absorption materials, electronic devices, frames for electronic devices, optical transmission or reception Modules, automation levels, and high-frequency communication equipment. Description of the prior art In recent years, high-speed processing of electronic devices has been created due to the increased span of microprocessors and the rapidly increasing 1C and LSI operating frequencies. The increased frequency makes it easier for more devices to emit unwanted noise. However, in the field of telecommunications, next-generation multi-media mobile communications (2GHz), wireless LANs (2 to 30GHz), and high-speed telecommunications networks over fiber are currently used. In addition, 5.8GHz in ETC (Automated Electronic Signal Collection) system in ITS (Intelligent Transmission System) and 76GHz in AHS (Advanced Roaming High Speed System) are also used. Therefore, the range of use is expected to expand rapidly towards higher frequencies. Increasing the frequency of radio waves can more mitigate the release of noise signals. At the same time, the recent electronic devices have narrowed the noise limit because of their lower energy consumption. Because of the miniaturization of electronic devices and their tight arrangement in them, the noise inside the device-the surrounding quality is not good, resulting in EMI (electromagnetic) Interference). In these cases, it is basically to adopt a method of mounting electromagnetic wave absorbing materials inside the electronic device to reduce the EMI inside the device. An electromagnetic wave absorbing material currently in use is an insulating organic substance (such as rubber and resin) and this paper size is applicable to China National Standard (CNS) 8-4 specification (210X297 mm) 丨 丨 — l · — · 装 丨 丨 (please first Read the notes on the back and fill out this page) Cup of Intellectual Property of the Ministry of Economic Affairs 笱 Printed by Employee Consumer Cooperatives -4- 566077 A7 B7 _ V. Description of the invention (2) Magnetic consumables (such as soft magnetic metal with spinel crystal structure oxidation Materials and soft magnetic metal). These techniques are disclosed in Japanese Patent Laid-Open Nos. 7-212079, 9-111421, 11-354973, 11-16727, etc. However, according to Snoek's threshold law, soft magnetic properties with a spinel crystal structure The relative magnetic permeability of metal oxides in the GHz band is greatly reduced. This means that the usable frequency range of such a metal oxide as an electromagnetic wave absorbing material does not exceed several GHz. On the other hand, in a soft magnetic metal, the eddy current suppression effect is used to make the particles therein have a flat shape with a thickness greater than the thickness of the surface layer, and its fixed frequency as an electromagnetic wave absorbing material can be extended up to about 10 GHz. However, such magnetic materials cannot use a large amount of electromagnetic wave absorbers because of their intrinsic weight. Japanese Patent Publication No. 200 1 -35 8493 proposes an integrated electromagnetic wave absorbing material, which is composed of a fine-grained magnetic material and ceramic, and an object or equipment using the integrated absorbing material, such as a printed circuit board, Electronic devices, electronic device frames, optical transmission or absorption modules, automated checkpoints and local frequency communication equipment. However, the electromagnetic wave absorption efficiency of the magnetic substance is still unsatisfactory. Therefore, in recent years, there has been a demand for the development of electromagnetic wave absorbing materials with a range of use up to the micro wave range and excellent performance. Although the electromagnetic wave absorbing material according to the Japanese Patent Publication No. 200 1 -358493 can be used satisfactorily in the millimeter wave range up to 5.8 GHz, the use efficiency of the material in the millimeter wave range beyond this frequency cannot make People are satisfied. Description of the invention This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) (Please read the precautions on the back before filling out this page) 5- 566077 A7 B7 V. Description of the invention (3) The object of the present invention is to propose an electromagnetic wave absorbing material which has excellent performance in the sub-millimeter wave range to the millimeter wave range (wherein the radio wave frequency is from 1 to 300 GHz). Its electromagnetic wave absorption performance is easy to manufacture and lightweight. This purpose also includes proposing different applications and systems with the electromagnetic wave absorption, especially electronic devices, optical transmission or absorption modules, and non-stop checkpoints, which have no failure conditions caused by electromagnetic wave interference. The inventors of the present invention have found that, compared to electromagnetic wave absorbing materials based on dielectric loss (ie, carbon-based materials such as carbon black fine particles, graphite, carbon, carbon micro-rolls, and carbon nano Tube) mixed with insulating organic materials (such as: rubber and resin) dispersion)), electromagnetic wave absorbing material composed of multiple layers of hollow carbon spheres mixed with insulating organic material dispersion in the millimeter wave range of excellent performance. Since the multilayer hollow spheres present in the natural sub-graphite ore (hereinafter referred to as sub-graphite carbon) are contained in the natural sub-graphite ore, the difficulty of using such a material as an electromagnetic wave absorbing material is low. In particular, the present invention has been completed based on the finding that such particulate matter has high absorption in the millimeter wave range (frequency is 30 to 300 GHz). The preferred sub-graphite carbon used herein has a porosity of 1.5 to 45%, a thickness of 0.1 5 to 0.25 nm, and a spherical or flat shape or a combination thereof. As for natural sub-graphite ore, the preferred contents are 25 to 35% sub-graphite carbon, 3 to 5% A103, 1 to 3% Fe203 + Fe0, 0.5 to 2% K2, 0.2 to 1.0% sulfur, 0.2 to 0.5% free water and 0.3% or less of Ti02, Mg0, Ca0, Na2O and Mn0. The invention is characterized in that the electromagnetic wave absorbing material includes: one of multilayer hollow spheres (grains) of carbon and sub-graphite carbon; or one of multilayer hollow spheres and sub-graphite carbon. X 297 mm) (Please read the notes on the back before filling this page) C. Ordered by Intellectual Property of the Ministry of Economic Affairs 印 Printed by Employee Consumer Cooperatives -6-566077 A7 B7 V. Description of the invention (4) 'The multilayer hollow ball contains At least one carbon nanotube, metal component and free water; or hypographite ore. The electromagnetic wave absorbing material in the present invention is preferably a dispersion mixed with a substance having a higher resistance ratio than the multilayer hollow spheres or sub-graphite carbon. In this dispersion, the amount of the multilayer hollow spheres and the sub-graphite carbon is preferably 5 to 50% by weight based on such a high-resistance substance. The high-impedance substance is preferably selected from rubber, a highly insulating polymer, and an insulating inorganic material. The electromagnetic wave absorbing material in the present invention is preferably a multi-layer hollow spheroid or a sub-graphite carbon content, so that the property dependency will decrease from the plane of the electromagnetic wave incident toward the inside. Thereby, the efficiency of absorbing indirectly incident electromagnetic waves can be adapted to a wide range of electromagnetic waves. A highly resistive material may contain at least one of the following: a magnetic metal whose main constituent is at least one of iron (Fe), cobalt (Co), and nickel (Ni); selected from the group consisting of oxides, nitrides, and carbides At least one compound among them, wherein the main constituents are iron (Fe), cobalt (Co), nickel (Ni), aluminum (A1), silicon (Si), titanium (Ti), barium (Ba), and manganese ( At least one of Mn), zinc (Zn), and magnesium (Mg); and a carbon-based substance containing at least one of carbon black, graphite, coke, and carbon microvolumes. Thereby, the absorption efficiency of the electromagnetic wave absorbing material is further improved. The invention is characterized in that the electromagnetic wave absorbing material includes electromagnetic wave absorbing fine particles and a substance having a higher resistance than the electromagnetic wave absorbing fine particles, wherein the return loss (reflection coefficient) of the electromagnetic wave absorbing material at a radio frequency of 1 GHz is -3.5 dB or more (absolute 値), the return loss (reflection coefficient) at a radio frequency of 6 GHz is -20 dB or more. The fine particles of the electromagnetic wave absorbing material are in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm) for this paper size (please read the precautions on the back before filling this page). -566077 A7 B7 V. Description of the Invention (5) The electromagnetic wave absorbing material is preferably constituted. Such a degree of return loss can be obtained by adjusting the thickness of the electromagnetic wave absorbing material and the composition of the electromagnetic wave absorbing fine particles in the composite. Depending on each article, the electromagnetic wave absorbing material of the present invention can be applied to many articles basically as described above and below by various suitable methods. The absorbent material is applied in the form of a coating or a glued sheet in the form of a dispersion mixed into the insulating material or in a nearly complete shape by means of a film. (1) A printed circuit board, wherein at least one surface of the circuit board, a wiring surface, and its back surface without power wiring are all or partly covered by a direct coating layer or a film forming a sheet, wherein the coating layer and the film are made of The invention is composed of an electromagnetic wave absorbing material. (2) An electronic device in which an electronic component placed thereon is covered with a cover having the electromagnetic wave absorbing material of the present invention. (3) An electronic device in which a printed circuit board and electronic components on the printed circuit board are covered by a cover having the electromagnetic wave absorbing material of the present invention, or wherein an inner surface of a metal frame has an opening provided with the present invention Electromagnetic wave absorbing material. (4) An optical transmission or light receiving module, wherein at least one of its light emitting elements or its light receiving elements has a photoelectric conversion device for a high-speed telecommunication network, and at least a transmission circuit therein or a reception circuit therein is equipped with The components of the electromagnetic wave absorbing material described in the present invention are covered. (5) Automated checkpoints, including a pass on the roof, an entrance antenna (located at the entrance of the pass and facing a transit vehicle close to the checkpoint), and an exit antenna (located at the exit of the checkpoint and facing the exit transportation tool) Paper size applies Chinese National Standard (CNS) Α4 specification (210X297 mm) (Please read the precautions on the back before filling out this page) C. Order printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives -8-. Intellectual Property of the Ministry of Economic Affairs Printed by the Bureau ’s Consumer Cooperatives 566077 A7 B7 V. Description of the invention (7) Figure 1, including Figures 1 (a) and 1 (b), is a type diagram of graphitic carbon. This time, the graphitic carbon contains the electromagnetic wave absorption of the present invention Figure 2 'includes Figures 2 (a) and 2 (b). The ones shown are the composite relative permittivity of the electromagnetic wave absorbing material of the present invention and the comparative example and the applicable range of the composite relative permittivity. Figure 3' Including Figure 3 (a) and Figure 3 (b), the one shown is the calculation result of the return loss at the same center frequency when different materials have metal backing in the return loss test. Figure 4, including Figure 4 ( a), Figure 4 (b) and Figure 4 (c ) Is the calculation result of the return loss of materials with metal backings of different thicknesses. Figure 5 is a cross-sectional view of a printed circuit board equipped with an electromagnetic wave absorbing layer composed of the electromagnetic wave absorbing material of the present invention. Figure 6, including Figure 6 (a) And Fig. 6 (b) is a sectional view of the electromagnetic wave absorbing coating layer, which is located on the printed circuit board, so that the semiconductor element that generates noise is sealed. Fig. 7, including Figs. 7 (a) and 7 (b), Is a cross-sectional view of a frame of an electronic device composed of the electromagnetic wave absorbing material of the present invention. Fig. 8 is a cross-sectional view of an optical transmission module in an embodiment of the present invention. Fig. 9 is an optical frame with a removed optical frame in an embodiment of the present invention. Cross-sectional view of a transmission module. Fig. 10 is a cross-sectional view of a two-layer structure optical transmission module in another embodiment of the present invention. Fig. 11 is a plan view of the optical transmission-reception module in the structure of the first optical transmission-reception module. . This paper size is applicable to China National Standard (CNS) 8-4 specifications (2 丨 0 > < 297 mm) ^ ------ 1T ------ line (please read the precautions on the back before filling (This page) -10- 566077 A7 B7 V. Description of the invention (8) Figure 12 is a cut The figure shows the structure of an automated level equipped with an electronic traffic collection system (ETC), in which the entrance roof and the carrying cylinder are applied with the electromagnetic wave absorbing material of the present invention. 11 13 is a cross-sectional view of the multilayer structure radio wave absorber of the present invention. Figure 14 It is a cross-sectional view of a millimeter wave transmission-receiving device in an embodiment of a high-frequency communication device equipped with the electromagnetic wave absorbing material of the present invention. The main components are printed against the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 1 Electromagnetic wave absorbing materials 2 Circuit wires 3 Printing Circuit board 4 Insulation layer 5 Metal cover 6 1C 8 Optical transmission module 9 Sheathed optical fiber 10 LD 11 Transmission circuit 12 Circuit board 13 Light guide 14 Metal frame 18 Receiving line 19 PD 21 Entrance antenna This paper size applies to China National Standard (CNS) Α4 Specification (210X297mm) ^-(Please read the precautions on the back before filling this page),? Τ • Line · -11-566077 A7 — V. Description of Invention (9) 22 Export Antenna 23 Equipment on vehicles 24 Road surfaces 25 Checkpoint roofs 27 Straight waves 28 Reflected waves 29 Transportation vehicles 30 Transportation Tool 31 Radio wave absorber 32 Incident wave 33 Metal plate 34 Semiconductor device 35 Flat circuit board 36 Metal substrate 37 Concentric axis 38 Metal cover 39 Side wall detailed description (Example 1) (Please read the precautions on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Figure 1 is a type graph of sub-graphite carbon contained in natural sub-graphite ore, which is composed of multilayer hollow small carbon particles (called pellets). As shown in Fig. 1 (b), the inside of the pellet contains a small amount of carbon nanotubes (CNTs), metals (Cu, Ni, V, Cl ·, Co, Mn, and Ti) and free water. These metals are in the form of silicates, sulfides, and oxides. This paper is sized to the Chinese National Standard (CNS) A4 (210X297 mm) -12- 566077 A7 B7 V. Description of the invention (1 () exists in: natural secondary Graphite ore contains 28 to 32% by weight graphitic carbon and 57 to 66% Si02, 3 to 5% Ah03, 1 to 3% Fe2O3 + Fe0, 0.5 to 2% K2O, 0.2 To 1.0% sulfur '0.2-0.5% free water and 0.3% or less of TiCb, Mg0, Ca0, Na2O and Mn0. Figure 2 shows the relative dielectric constant of the sheet-shaped electromagnetic wave absorbing material in the frequency range. The absorbent sheet is made of carbon black (hereinafter abbreviated as CB) and carbon nanotubes (hereinafter abbreviated as CNT) (20 parts by weight relative to the binder resin) and natural sub-graphite ore, which are honed into 1 to 30 micron powder (hereinafter referred to as secondary graphite) is added to the liquid binder resin (in which the weight ratio of the secondary graphite and the binder resin is about 20 parts) in an amount of 70 parts by weight. These materials are mixed and kneaded into Paste, and then made into a sheet by blade coating or roll forming. The inner diameter of the secondary graphite hollow is 3 nm, and the outer diameter is about 2 In the figure, (a) is a property at 6 GHz, and (b) is a property at 10 GHz; each frequency belongs to the millimeter wave range. The shaded area in the figure is the return loss of the composite relative dielectric constant as -20dB or above. As shown here, the composite relative permittivity of the sub-graphite falls within the range of each detection frequency. In contrast, the composite permittivity of CB and CNT falls in the range of The real part (ε ") and imaginary part (ε ') in the adaptation range are too large, and some of their return loss (reflection coefficient) is lower than -20dB. The compound relative permittivity range that meets the return loss is not lower than- 20dB, the range given to the feature of the present invention is such that the real number part (ε ') 値 at 10GHz frequency is 10, and the imaginary number part (ε ") is 4 to 6, such that the real number part (ε') 値 at 10GHz frequency is 75, the imaginary part (ε ") is 10 to 13. When it is used in the form of lacquer, it can be sprayed after the paste is made. This paper size applies the Chinese National Standard (CNS) A4 specification (210 × 297 mm)- --------- ^-(Please read the note on the back first Please fill in this page again) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs -13- 566077 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (1 order soaking and pouring. Can be used as The materials of the binder are: polyester-based resin, polyvinyl chloride-based resin 'polyurethane resin, cellulose-based resin and copolymers of these resins; epoxy resin, phenol Resins, fluorene-based resins, fluorimide-based resins, nylon, acrylic resins, synthetic rubber, and other similar polymeric insulation materials; and inorganic insulation such as alumina and silica material. In this embodiment, a resin mixture of acrylic acid and polyamide is used as a binder. The purified hypographite carbon may be used alone, and the purified carbon may be obtained by dissolving mineral components other than the hypographite carbon contained in the natural hypographite ore using, for example, hydrofluoric acid. In contrast to this method, it is also possible to improve the electromagnetic wave absorption performance by making the sub-graphite carbon support magnetic metal particles (including at least one of Fe, Co, and Ni). The sub-graphite carbon contained in the honed natural sub-graphite ore powder has a broken pellet structure in the shape of a seed as shown in Fig. 1; a substance (such as CNT) is usually located inside the structure and separated from the seed. Artificial carbon that has been given the same structure as natural sub-graphite has the same effect. It is also possible to heat-treat the natural sub-graphite ore powder in an inert gas environment to change its composite relative dielectric constant and improve the electromagnetic wave absorption efficiency. The preferred temperature is 500 to 1000 ° C. The composite relative permittivity was measured with a measurement system consisting of a network analyzer (HP 8720C) and a coaxial line. Calibrate the system so that the measured free space permeability and dielectric constant are equal to 1. Place the sample in the coaxial line and use two contacts to determine the parameters Sm and S21; then, use Nicolson-Ross and Weir paper Standards apply to China National Standards (CNS) A4 specifications (210X297 mm) --------- 1 clothing ------ IT ------ line (please read the precautions on the back before (Fill in this page) -14-566077 Printed A7 B7 by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (method to obtain the relative permittivity. The absorption mechanism of a metal backed electromagnetic wave absorber of a suitable type may include surface reflection The multi-path reflection effect caused by the critical coupling between the wave and the multiple reflection wave generated in the absorber and the attenuation caused by the dielectric loss in the absorber. Generally, the general incident return loss (RL, unit is dB) is less than The formulas (1) and (2) described above indicate that RL = -20 / ^ | zirt-l / Zirt + l | (1) (where, the characteristic impedance of Zin •• absorber) Z- = (! / E r ) 05 tanh (j2nft e Γ0 * 5) (2) (where ε r: composite permittivity (ε ε, + j ε ''), f: frequency (Hz), t: Absorber thickness (m)) Figure 3 is a comparison chart to show the thickness dependence of different electromagnetic wave absorbing materials on the return loss of the same central frequency used for return loss detection. Figure (a The center frequency in) is 6GHz, and (b) is 10GHz. The thickness of each electromagnetic wave absorbing material is also shown in the figure. In Figure 3 (a), at 6GHz, the return loss of CNT is _ 6dB, CB-13dB, sub-graphite Carbon -21dB; In Figure 3 (b), at 10GHz, the return loss of CNT is -6dB, CB-17dB, and subgraphite carbon -40dB. This shows that the return loss of subgraphite carbon is the largest, that is, between these two Frequency. Among these materials, the electromagnetic wave absorption efficiency is the best. In the millimeter wave range, CNT and CB show acceptable performance in this range, so they can be used alone or with the paper size of the present invention to apply the Chinese National Standard (CNS). A4 specification (2 丨 OX297mm) Binding III thread f Please read the notes on the back before filling in this page j -15- 566077 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 5. Description of Invention (Material use). Figure 4 shows different electromagnetic wave absorbing materials in different thicknesses. Line loss calculation results. Although the center frequency return loss of each is different, the absorption effect of sub-graphite in each thickness is the best. In each figure, (a) represents 1.5 mm, (b) 2.0 mm, ( c) 2.5 mm. The graph shows that (a) 1.5 mm thick, the CNT return loss is -6dB, CB-17dB, and sub-graphite carbon-40dB; (b) 2.0 mm thick, the CNT return loss is -6dB, CB -17dB, sub-graphite carbon -27dB; (c) 2.5mm, at 6GHz, CNT-6dB, CB-14dB, subgraphite carbon -22dB. These show that graphitic carbon has the largest return loss at various frequencies, indicating that it has the best electromagnetic wave absorption performance. In the millimeter wave range, CNT and CB can be used alone or in combination with the materials of the present invention because they exhibit acceptable performance in this range. In addition, from these known materials, the return loss at 6 GHz radio frequency of the material including hypographite carbon is -3.5dB / 1 GHz, at 10 GHz is -4.0 dB, and the return loss at 6 GHz is -20 dB or more. (Embodiment 2) Fig. 5 is a printed circuit board provided with an electromagnetic wave absorbing layer composed of the electromagnetic wave absorbing material of the present invention. A printed circuit board 3 including a circuit wiring 2 formed on an insulating board has an insulating layer 4 formed on one side with the circuit wiring 2 and no wiring on the other side (the back side). A part of the insulating layer 4 and a part of the reaction layer or both are applied with a material composed of a honed natural subgraphite carbon powder and a binder resin to provide an electromagnetic wave absorbing layer thereon. The application method is to directly coat or apply the material to the material. The paper size is applicable to Chinese national standards (CNS> A4 specification (210X297 mm)) ---------- installation ---- --Order ------ line f Please read the notice on the back before filling in this page, > -16- 566077 Printed by A7 B7, Consumer Cooperative of Intellectual Property Bureau, Ministry of Economic Affairs The thickness of the coating or sheet is preferably from 0.1 to 1.0 mm, but it can be designed according to the generated frequency and the rate of absorbing electromagnetic waves. As a result, it can suppress the generated noise (for example, from the printed circuit board, the wrong connection due to the telephone line) Interference phenomenon). In particular, in a highly reliable manner, the multilayer printed circuit board has a high density and high integration. The printed circuit board consists of a first wiring layer on at least one major surface of a semiconductor, An insulating surface layer formed on the surface of the first circuit layer and a second circuit layer that is basically connected to the first circuit layer via a connection hole in the insulating surface layer, the second layer is repeatedly laminated on the On the first circuit layer. On each outer row The electromagnetic wave absorbing layer improves the electromagnetic absorption efficiency and the shielding effect for electromagnetic waves input from the outside. (Embodiment 3) FIG. 6 is an electromagnetic wave absorption cover for a semiconductor arranged on a printed circuit board, so that noise may be generated. The semiconductor element is sealed by it. This is used to show the arrangement of the electromagnetic wave absorbing cover. For the purpose of the present invention, it is placed on a printed circuit board, so that sources of noise (such as a microprocessor or a system LSI) may be generated. It can be sealed by the cover. In the structure shown in FIG. 6 (a), the electromagnetic wave absorbing layer of the present invention is located inside the metal cover 5 to shield the electromagnetic waves input from the outside and to absorb the internally emitted electromagnetic waves. The metal cover 5 is used Copper-plated material, copper and gold-plated material or stainless steel. The one shown in Figure 6 (b) is a cover made by injection molding using the electromagnetic wave absorbing material of the present invention. The cover made of electromagnetic wave absorbing material is sealed with plastic or rubber from the outside. It is fixed to the printed circuit board 3 in a similar manner. With these implementation methods, the electromagnetic waves emitted by semiconductor elements are subjected to the Chinese paper standard (CNS) A4 specification ( 210X297 mm) --------- Doing clothes ------ 1T ------ 0 (Please read the notes on the back before filling this page) -17- Intellectual Property Bureau, Ministry of Economic Affairs Printed by the employee consumer cooperative 566077 A7 A _______B7_ V. Description of the invention (1) The internal interference suppressed is fully absorbed. (Embodiment 4) Figure 7 is a cross-sectional view of an electronic device in which IC6 on a printed circuit board is developed by the present invention The electronic device frame composed of electromagnetic wave absorbing material is sealed. The one shown in Fig. 7 (a) is an example of an electromagnetic wave absorbing material layer of the present invention provided in a metal frame for an electronic device, wherein the electromagnetic wave absorbing material layer is coated by It is made by overmolding or injection molding. The one shown in Fig. 7 (b) is an electronic device frame formed by the electromagnetic wave absorbing material of the present invention by injection molding. Therefore, in these examples, the device frame is provided with a function of absorbing electromagnetic waves, and the electromagnetic wave interference in the electronic device is suppressed. (Embodiment 5) FIG. 8 is a sectional view of an optical transmission module assembly of the present invention. The optical transmission module 8 is composed of a sheathed optical fiber 9, a light guide 1, 3, LD 10, a transmission circuit 11, and a circuit board 12. The transmission circuit 11 further includes an LD driver (which drives the LD 10) and a light emitting diode, a laser output unit, and a forward-reverse circuit. In practice, such a structure is accompanied by a lead frame and an electric wire, but is not shown in the figure. As the transmission rate increases, the frequency of the LD 10 electronic signal becomes higher, causing high-frequency electromagnetic waves to be emitted in the optical transmission module. This electromagnetic wave causes noise, which can damage other components and components in the module. In this embodiment, the optical transmission module is placed in a mold and fixed with a resin mixture poured into a metal frame, and then covered with a metal cover, and the metal frame 14 provides a complete seal covering the outside of the module, where the resin- The size of this paper is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) II. Private clothing I order — I n ^ (Please read the precautions on the back before filling this page) -18- 566077 A7 B7 V. Invention Explanation (1 composition consists of this natural sub-graphite ore powder (equivalent to 40 to 80% by weight of resin, adjusted according to the aforementioned frequency and the rate at which the resin mixture absorbs electromagnetic waves). This not only protects components and boards from Due to the damage of water and gas, while suppressing the noise interference in the transmission module and completely preventing the noise from being emitted outside the module, thereby absorbing and shielding electromagnetic waves. Figure 9 is a sectional view of the optical transmission module. Because the metal frame 14 It is not necessary, so the structure can be sealed by the resin mixture formed by transferring the mold, as shown in Figure 9. This structure can reduce the cost, but the effect of absorbing and shielding electromagnetic waves is slightly Lowered. Figure 10 is a cross-sectional view of an optical transmission-reception module. To ensure that the wiring will not be short-circuited, a 2-layer structure as shown in Figure 10 can be used. This wiring part is first not to contain any honed natural secondary The resin sealing of the graphite ore powder; it is sealed with a resin mixture containing the honed natural sub-graphite ore powder to form the two-layer structure. This embodiment shows the LD10 and the transmission line 11. However, the optical receiving module is provided with these (Embodiment 6) Figure 11 is a plan view of an optical transmission and reception module, in which the optical transmission module is formed on the circuit board 12. The optical transmission-reception module 17 serves as an optical transmission and Optical receiving module. The optical transmission part is composed of sheathed optical fiber 9, light guide 13, LD 10, transmission line 11 and circuit board 12. This transmission circuit consists of an LD driver that drives the laser, a laser output unit and The positive and negative circuits are formed. The optical receiving part is composed of sheathed optical fiber 9, light guide 13, PD19, and the size of this paper is applicable to China National Standard (CNS) A4 specification (210X297 mm) --- ------- Installation-- (Please read the precautions on the back before filling this page) Printed by the Intellectual Property Bureau Employee Consumer Cooperative of the Ministry of Economic Affairs-19- 566077 A 7 B7 V. Description of Invention (1) The circuit 18 and the circuit board 12. The receiving circuit is composed of a PRE-IC with a pre-amplification function, a CDRLSI and a uniform amplifier for measuring time, a SAW narrowband filter, and an AOD bias control circuit. In practice, this structure is accompanied by lead Frames and lines, but not shown in the figure. As mentioned above, when the transmission module and the reception module of the transmission-reception module are integrated, noise emission and interference between the optical transmission unit and the optical reception unit will cause Internal noise interference. In order to prevent noise interference, the conventional optical transmission-reception module uses a metal shielding plate between the optical transmission unit and the optical reception unit, or the module is enclosed in a metal package so that one is located in the transmission module and the other One is located in the receiving module. These constructions are connected to Yamato's heavy modules in a large and expensive way (due to the use of expensive metal packaging). The structure according to the present invention not only prevents noise interference in the module, but also miniaturizes and reduces costs. According to the present invention, a device that can be used in a high-speed telecommunication network, such as an optical transmission module, an optical receiving module, or an optical transmission-receiving module composed of an optical transmission unit and an optical receiving unit, can be provided; They are able to suppress internal noise interference and noise transmitted to the outside, so as to obtain a small size, reduce weight, transmit at high speed, and have high sensitivity (Embodiment 7). FIG. 12 is a cross-sectional view, which is shown with electronic traffic collection The basic structure of the level of the system (ETC), the means of transportation pass the level 'This ETC exchange roadside This paper size applies to Chinese national standards (CNS> A4 specification (210X297 mm) ---------- install-- Please read the precautions on the back before filling out this page) Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs-20 Printed by the Employee ’s Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 566077 A7 B7 V. Description of the invention Information between the equipment on the vehicle. As shown in Figure 12, the necessary information is collected on the entrance antenna 21, the exit antenna 22, and the equipment on the vehicle at 5.8GHz. The radio wave (straight wave 27) emitted by the exit antenna 22 is widened due to the multipath reflection phenomenon caused by the ceiling or bearing cylinder of the road surface 24 and the checkpoint roof 25. This causes a series of transportation flow identification problems, among which, Although the radio wave (straight wave 27) emitted by the exit antenna 22 was received by the equipment on the vehicle carried by the vehicle A29, the reflected wave 28 reflected by the road surface 24 was received by the equipment on the subsequent vehicle B30. Failure Can be attributed to radio interference, such as possible interference from vehicles in the vicinity of the traffic line. These problems can be caused by structural components such as the level roof 25 that can reflect electromagnetic waves and the bearing cylinder that can reflect electromagnetic waves. It is solved by applying an electromagnetic wave absorbing material on the surface. In this application, the electromagnetic wave absorbing material is prepared and applied by, for example, using a solvent to make the honed natural sub-graphite ore powder (equivalent to 50 to 85% by weight of the resin) ) The resin mixture is in a liquid or tablet form, and this liquid material is then applied to the desired structural group And the sheet material is glued to the desired structural component. The radio wave absorbing material used in the conventional technology of ETC is made in the form of a monolithic plate with a thickness of tens of centimeters. This feature causes installation problems such as: difficulty For complex shapes, a lacquer-type or flexible sheet-like electromagnetic wave absorbing material layer type is required here. The electromagnetic wave absorbing material 1 of the present invention is composed of a resin mixture, which contains a honing natural sub-graphite ore powder, depending on the choice here It can be applied in the form of lacquer or flexible sheet. It is made of resin mixture (containing hoared natural sub-graphite ore powder). This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm). (Please read the precautions on the back before filling this page) -21-Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 566077 A7 B7 V. Description of the invention (The radio wave absorber 3 1 can be made as shown in Figure 1 3 Single or multilayer structure. The resulting layer makes the characteristic impedance of the incident wave 3 2 gradually decrease from the incident plane of the radio wave toward the metal plate 3 3 (a perfect reflector). This multilayer structure effectively improves the efficiency of absorbing the incident wave. In order to achieve this change, it is sufficient that the composite relative permittivity is gradually increased from the plane of incidence of the radio wave toward the metal plate 33; this can be achieved by changing the charge ratio of the honing natural sub-graphite ore powder and resin. When the object to be applied is metal, no metal plate is required. The radio wave absorber 31 shown in Fig. 13 has three layers. In each layer, the filling ratio of the multilayer hollow carbon spheres to the resin is 5% by weight or less, and the relative permittivity of the composite is too low to obtain acceptable electromagnetic wave absorption performance. Therefore, from the viewpoint of ensuring the fluidity of the resin mixture, this ratio of each layer is preferably at most 50% by weight or less. (Embodiment 8) Fig. 14 is a sectional view of a millimeter wave transmission-reception device, which is an embodiment of a high-frequency transmission device. The flat surface of the semiconductor device 34 (such as MMIC for transmission-reception) and the flat circuit board 35 (connected to this semiconductor device) are located on a metal substrate 36 which is the bottom of the frame to form a transmission-reception circuit; input-output The signal is connected to an antenna (not shown) via a coaxial line 37. A metal cover (separated from the base plate 36 by the side wall of the frame) forms the top of the frame. The side wall material of the frame may be any of metal, glass, alumina, and other non-metals. This substrate 36 is made of non-metal (such as plastic or alumina), but it has MMIC and a part of the surface on which the flat circuit board is located, and it can be covered by metal formed by electroplating or deposition. The top plate of the cover 38 facing the inside of the frame is honed. This paper is dimensioned to fit Chinese National Standard (CNS) A4 (210X297 mm). II —. Approval I1T —! Refill this page} -22- 566077 A7 B7 V. Description of the invention (2 () Natural resin mixture of sub-graphite ore powder, this resin mixture is made into paint blend or sheet. The resin mixture in the paint blend is applied At the top, the film is glued to it. This prevents unwanted emissions from the transmission side of the transmission-receiving circuit in the frame from entering the receiving side, reducing mutual interference between the transmitting side and the receiving side. II Ordering (please read the notes on the back before filling this page) Printed on 'paper' by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A4 Specification (21 (^ 29ϋ -23-

Claims (1)

566077 A8 B8 C8 D8 六、申請專利範圍1 1. 一種電磁波吸收材料,其包含多層中空碳球粒。 --^-- (請先閱讀背面之注意事項再填寫本頁) 層中空碳球粒的電磁波吸收材料,其中該 球粒含有於其中形成的碳毫微管、金屬構份和自由水中之 至少一'者。 3 · —種電磁波吸收材料,其包含次石墨碳。 4·—@包含次石墨碳的電磁波吸收材料,其中該次石墨 碳合有於其中形成的碳毫微管、金屬構份和自由水中之至 少一者。 5·如申請專利範圍第4項之電磁波吸收材料,其中該金 屬構份由選自金屬、金屬矽酸鹽、金屬硫化物和金屬氧化 物中之一或多種材料構成。 6·如申請專利範圍第4項之電磁波吸收材料,其中該金 屬構份由選自Cu、Ni、V、Cr、Co、Μη和Ti中之一或多種 材料構成。 7. —種電磁波吸收材料,其包含次石墨礦石。 線 8·如申請專利範圍第1至7項中任一項之電磁波吸收材料 ’其中s亥電5&波吸收材料尙包含電阻値比該多層中空球粒 經濟部智慧財產局員工消費合作社印製 或該次石墨碳來得高的物質,該電磁波吸收材料是該物質 之複合物。 9·一種電磁波吸收材料,其包含電磁波吸收物質細粒和 電阻値比該電磁波吸收物質細粒來得高的物質,其中該電 磁波吸收材料的無線電波回行損失不低於-3<5dB/ lGHz。 10.—種其電磁波吸收材料包含電磁波吸收物質細粒和 電阻値比該電磁波吸收物質細粒來得高的物質,其中該電 -24 - 本紙張尺度適用中國國家襟準(CNS ) A4規格(210X297公釐) 經濟部智慧財產局員工消費合作社印製 566077 A8 B8 C8 D8 六、申請專利範圍 2 磁波吸收材料的無線電波於6GHz頻率的回行損失不低於-20dB ° 11. 如申請專利範圍第8項之電磁波吸收材料,其中該高 電阻物質含有橡膠、絕緣聚合型材料和無機絕緣材料中之 至少一者。 12. 如申請專利範圍第9或10項之電磁波吸收材料,其中 該高電阻値物質含有橡膠、絕緣聚合型材料和無機絕緣材 料中之至少一者。 13. 如申請專利範圍第8項之電磁波吸收材料,其中該多 層中空球粒、該次石墨碳和含括於該次石墨礦石中的次石 墨碳含量是以該電磁波吸收材料總重計之5至50重量%。 14. 如申請專利範圍第9或10項之電磁波吸收材料,其 中,該電磁波吸收物質細粒含量是以該電磁波吸收材料總 重計之5至50重量%。 15. 如申請專利範圍第8項之電磁波吸收材料,其中該多 層中空球粒和該次石墨碳含量分成數個等級,使得特徵阻 抗由電磁波入射面朝內部降低。 16. 如申請專利範圍第9或10項之電磁波吸收材料,其中 該電磁波吸收物質細粒含量分成數個等級,使得特徵阻抗 由電磁波入射面朝內部降低。 17. 如申請專利範圍第8項之電磁波吸收材料,其中該 吸收材料尙包括下列任何一者:磁性金屬,主要構份是Fe 、Co和Ni中之至少一者;選自氧化物、氮化物和碳化物中 的一種化合物,其中,它們的主要構份是Fe、Co、Ni、A1 ---------^------、玎------^ (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -25- 566077 A8 B8 C8 D8 六、申請專利範圍3 、Sl、Ti ' Ba、Μη、Zn和Mg中之至少一者;或以碳爲基 礎的物質’其含有碳黑、石墨、炭和碳微捲物中之至少一 者。 (請先閱讀背面之注意事項再填寫本頁) 18·如申請專利範圍第9或1〇項之電磁波吸收材料,其中 S亥吸收材料尙包括下列任何一者:磁性金屬,主要構份是 Fe、Co和Ni中之至少一者;選自氧化物、氮化物和碳化物 中的一種化合物,其中,它們的主要構份是Fe、Co、Ni、 A1、Si、Ti ' Ba ' Μη、Zn和Mg中至少一者;或以碳爲基 礎的物質’其含有碳黑、石墨、炭和碳微捲物中之至少一 者。 19·一種印刷電路板,其包含有電路線佈於其上的絕緣 板 目< 電路佈線至少一部分被絕緣層所覆蓋,其中該絕緣 板的至少一個表面,其上具該佈線電路的一個表面和其背 面具有電磁波吸收材料構成的層,此電磁波吸收材料是如 申請專利範圍第1至1 8項中任何一項所述的電磁波吸收材料 〇 經濟部智慧財產局員工消費合作社印製 20.—種電子裝置,包含電子元件位於印刷電路板上, s亥電子元件被金屬罩所覆蓋,其中該金屬罩的至少一部分 內表面被施以電磁波吸收材料,此電磁波吸收材料是如申 請專利範圍第1至1 8項中任何一項所述的電磁波吸收材料。 21·—種電子裝置,包含印刷電路板、位於該印刷電路 板上的電子裝置’該印刷電路板和該電子裝置被金屬罩所 覆盡’其中該金屬罩的至少一部分內表面被施以電磁波吸 收材料,此電磁波吸收材料是如申請專利範圍第1至丨8項中 -26- 本紙張从適用中關家標準(CNS )八4祕(210X297公釐) 經濟部智慧財產局員工消費合作社印製 566077 A8 B8 C8 D8 六、申請專利範圍 4 任何一項所述的電磁波吸收材料。 22.—種具開口的金屬罩,其中該金屬罩的至少一部分 內表面施有如申請專利範圍第1至1 8項中任何一項所述的電 磁波吸收材料。 2 3 · —種光學傳輸或光學接收模組,包含至少發光元件 或接收光的元件,及至少有傳輸電路或接收電路位於其上 ,其中至少一部分該電路板、該元件和該電路被如申請專 利範圍第1至1 8項中任何一項所述的電磁波吸收材料所覆蓋 〇 2 4. —種光學傳輸或光學接收模組,包含至少發光元件 或接收光的元件,及至少有傳輸電路或接收電路位於其上 ,其中至少一部分該電路板、該元件和該電路被金屬罩所 覆蓋’該金屬罩的至少一部分內表面由具有如申請專利範 圍第1至1 8項中任何一項所述的電磁波吸收材料之元件形成 〇 25·—種光學傳輸或光學接收模組,包含至少發光元件 或接收光的元件,及至少有傳輸電路或接收電路位於其上 ,其中至少一部分該電路板、該元件和該電路被具有如申 請專利範圍第丨至丨8項中任何一項所述的電磁波吸收材料之 元件所覆蓋,該元件的外表面被金屬罩所覆蓋。 26·—種如申請專利範圍第23至25項中任何一項之光學 傳輸或光學接收模組,其中至少一部分該電路板、該元件 和該電路被絕緣樹脂所覆蓋,該絕緣樹脂表面施有該電磁 波吸收材料。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -27- ---------^------1T-------線 (請先閱讀背面之注意事項再填寫本頁) 566077 ABCD 夂、申請專利範圍 5 27. —種自動化關卡,包含位於屋頂的通行關卡、λ 口 天線(位於該通行關卡入口並面對接近該關卡的通行運輪1工 具)和出口天線(位於該關卡出口並面對離開該關卡的通行運 輸工具)和自動化的通行收集系統(路側聯絡設備和該通行運 輸工具承載之運輸工具上的設備之間資訊的交換),其中該 通行關卡之結構元件表面和附近區域會反射電磁波、該通 行關卡之面對運輸工具側的表面及至少一部分用於該入口 天線和該出口天線之承載圓柱體的表面施有如申請專利範 圍第1至1 8項中任何一項所述的電磁波吸收材料。 28·—種高頻聯絡裝置,包含高頻電路元件位於和調整 於框架內部,其中至少該框架內壁和至少一部分該內壁施 有如申請專利範圍第1至1 8項中任何一項所述的電磁波吸收 材料。 f.-- (請先閱讀背面之注意事項再填寫本頁) 、1T 線 經濟部智慧財產局員工消費合作社印製 -28- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 566077第91121158號專利申請案 、 中文說明書修正頁 A7 民國92年1〇月3日修正1 B7 五、發明説明(6) I I 裝 —訂— I I I線 (請先閲讀背面之注意事項再填寫本頁) 具)和自動化的通行收集系統(改變路側聯絡設備和該通行運 輸工具承載之運輸工具上的設備之間的資訊),其中該通行 關卡之結構元件表面和附近區域(反射電磁波)、該通行關卡 之面對運輸工具側的表面及至少一部分用於該入口天線和 該出口天線之承載圓柱體的屋頂表面施有本發明所述的電 磁波吸收材料。 (6)—種高頻通訊裝置,包含放置的高頻電路元件和天 線皆位於框架內部,其中,至少該框架內壁和至少一部分 該內壁備有本發明描述的電磁波吸收材料。 根據本發明,提出一種經濟的電磁波吸收材料,其吸 收效能比以前技術之由以碳爲基礎的材料構成的介電損耗 型電磁波吸收材料更佳。 經濟部智慧財產局員工消費合作社印製 此外,根據本發明,電子裝置中的電磁波干擾因使用 吸收性可用於半毫米波範圍至毫米波範圍的電磁波吸收材 料而充份抑制。因此,提供可用於高速電信網絡的裝置, 如:半導體裝置、光學傳輸模組、光學接收模組或光學傳 輸-接收模組和高頻電信設備;此源自於抑制內部雜訊干 擾和雜訊傳輸至外部、小尺寸和重量減輕、於高速傳輸下 工作及感度高的吸收材料所提供的能力。 此外,根據本發明,能夠提供自動化的通行關卡,會§ 夠交換聯絡設備和運輸工具上的設備之間的資訊,而不會 有電磁波干擾。 圖式簡單說明 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)566077 A8 B8 C8 D8 VI. Application for Patent Scope 1 1. An electromagnetic wave absorbing material, which includes multiple layers of hollow carbon pellets. -^-(Please read the precautions on the back before filling this page) Electromagnetic wave absorbing material of hollow carbon pellets, where the pellets contain at least the carbon nanotubes, metal components and free water formed in them. One's. 3-An electromagnetic wave absorbing material containing sub-graphite carbon. 4 · — @ An electromagnetic wave absorbing material containing sub-graphite carbon, wherein the sub-graphite carbon has at least one of a carbon nanotube, a metal component, and free water formed therein. 5. The electromagnetic wave absorbing material according to item 4 of the application, wherein the metal component is composed of one or more materials selected from the group consisting of metal, metal silicate, metal sulfide, and metal oxide. 6. The electromagnetic wave absorbing material according to item 4 of the application, wherein the metal component is composed of one or more materials selected from the group consisting of Cu, Ni, V, Cr, Co, Mn and Ti. 7. An electromagnetic wave absorbing material comprising sub-graphite ore. Line 8: If the electromagnetic wave absorbing material of any of the items 1 to 7 of the scope of the patent application, where s 5 and the wave absorbing material 尙 contains electrical resistance, than the multilayer hollow spheres printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy Or the secondary graphite-derived substance is high, and the electromagnetic wave absorbing material is a composite of the substance. 9. An electromagnetic wave absorbing material comprising fine particles of an electromagnetic wave absorbing substance and a substance having a higher resistance than the fine particles of the electromagnetic wave absorbing substance, wherein the radio wave return loss of the electromagnetic wave absorbing material is not less than -3 < 5 dB / lGHz. 10.—A kind of electromagnetic wave absorbing material including fine particles of electromagnetic wave absorbing material and electric resistance, which are higher than the fine particles of electromagnetic wave absorbing material, in which the electric-24-this paper size is applicable to China National Standard (CNS) A4 specification (210X297 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 566077 A8 B8 C8 D8 VI. Patent Application Scope 2 The return loss of radio waves of magnetic wave absorbing materials at the frequency of 6GHz is not less than -20dB ° 11. The electromagnetic wave absorbing material according to item 8, wherein the high-resistance substance contains at least one of rubber, an insulating polymer-type material, and an inorganic insulating material. 12. The electromagnetic wave absorbing material according to claim 9 or 10, wherein the high-resistance plutonium substance contains at least one of rubber, an insulating polymer-type material, and an inorganic insulating material. 13. The electromagnetic wave absorbing material according to item 8 of the patent application, wherein the content of the multilayer hollow spheres, the secondary graphitic carbon, and the secondary graphitic carbon contained in the secondary graphite ore is 5 times the total weight of the electromagnetic wave absorbing material. To 50% by weight. 14. The electromagnetic wave absorbing material according to claim 9 or 10, wherein the content of fine particles of the electromagnetic wave absorbing substance is 5 to 50% by weight based on the total weight of the electromagnetic wave absorbing material. 15. The electromagnetic wave absorbing material according to item 8 of the patent application, wherein the multi-layer hollow spheres and the secondary graphite carbon content are divided into several levels, so that the characteristic impedance is reduced from the electromagnetic wave incident surface toward the inside. 16. The electromagnetic wave absorbing material according to item 9 or 10 of the patent application scope, wherein the fine particle content of the electromagnetic wave absorbing substance is divided into several levels, so that the characteristic impedance is reduced from the incident surface of the electromagnetic wave toward the inside. 17. The electromagnetic wave absorbing material according to item 8 of the patent application scope, wherein the absorbing material 尙 includes any of the following: a magnetic metal whose main component is at least one of Fe, Co, and Ni; selected from oxides and nitrides And carbide, a compound in which their main constituents are Fe, Co, Ni, A1 --------- ^ ------, 玎 ------ ^ (Please Please read the notes on the back before filling this page) This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) -25- 566077 A8 B8 C8 D8 VI. Patent application scope 3, Sl, Ti 'Ba, Μη At least one of Zn, Zn and Mg; or a carbon-based substance 'which contains at least one of carbon black, graphite, carbon, and carbon microvolumes. (Please read the precautions on the back before filling in this page.) 18 · If the electromagnetic wave absorbing material in the scope of patent application No. 9 or 10, the absorbing material S includes any of the following: magnetic metal, the main component is Fe At least one of Co, Ni, and Ni; a compound selected from oxides, nitrides, and carbides, wherein their main constituents are Fe, Co, Ni, A1, Si, Ti'Ba 'Mη, Zn And Mg; or a carbon-based substance 'which contains at least one of carbon black, graphite, carbon, and carbon microvolumes. 19. A printed circuit board comprising an insulation board on which circuit wires are laid < at least a part of a circuit wiring is covered by an insulation layer, wherein at least one surface of the insulation board has a surface on which the wiring circuit is provided And its back has a layer made of electromagnetic wave absorbing material, which is the electromagnetic wave absorbing material as described in any one of the items 1 to 18 of the scope of patent application 〇 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 20. An electronic device includes an electronic component located on a printed circuit board, and the electronic component is covered by a metal cover, wherein at least a part of an inner surface of the metal cover is coated with an electromagnetic wave absorbing material, and the electromagnetic wave absorbing material is as The electromagnetic wave absorbing material according to any one of 18 to 18. 21 · —An electronic device comprising a printed circuit board, an electronic device located on the printed circuit board, 'the printed circuit board and the electronic device are covered by a metal cover', wherein at least a part of the inner surface of the metal cover is subjected to electromagnetic waves Absorptive material, this electromagnetic wave absorbing material is as described in the scope of application for patents Nos. 1 to 8-8. The paper is printed from the application of Zhongguanjia Standard (CNS) No. 8 (210X297 mm). System 566077 A8 B8 C8 D8 VI. The electromagnetic wave absorbing material according to any one of the scope of patent application 4. 22. A metal cover with an opening, wherein at least a part of the inner surface of the metal cover is coated with the electromagnetic wave absorbing material according to any one of claims 1 to 18 of the scope of patent application. 2 3 · — An optical transmission or optical receiving module, including at least a light emitting element or a light receiving element, and at least a transmission circuit or a receiving circuit located thereon, at least a part of which is the circuit board, the element and the circuit as claimed Covered by the electromagnetic wave absorbing material described in any one of the items 1 to 18 of the patent scope. 4. An optical transmission or optical receiving module, including at least a light emitting element or a light receiving element, and at least a transmission circuit or The receiving circuit is located thereon, at least a part of the circuit board, the component and the circuit are covered by a metal cover. At least a part of the inner surface of the metal cover is provided with a material as described in any one of claims 1 to 18 of the scope of patent application. The components of the electromagnetic wave absorbing material are formed. An optical transmission or optical receiving module includes at least a light-emitting element or a light-receiving element, and at least a transmission circuit or a receiving circuit is located thereon. At least a part of the circuit board, the The element and the circuit are provided with an element having an electromagnetic wave absorbing material as described in any one of the patent application scope items 丨 to 丨 8. The outer surface of the element is covered by a metal cover. 26 · —An optical transmission or optical receiving module according to any one of claims 23 to 25, wherein at least a part of the circuit board, the component, and the circuit are covered with an insulating resin, and the surface of the insulating resin is The electromagnetic wave absorbing material. This paper size applies to China National Standard (CNS) A4 specification (210X297 mm) -27- --------- ^ ------ 1T ------- line (please read the back first (Please pay attention to this page and fill in this page again) 566077 ABCD 夂 、 Scope of patent application 5 27. —A kind of automatic checkpoint, including the pass checkpoint on the roof, λ antenna (located at the entrance of the pass checkpoint and facing the passership close to the checkpoint 1 Tools) and exit antennas (located at the exit of the checkpoint and facing the means of transportation leaving the checkpoint) and automated traffic collection systems (exchange of information between roadside communication equipment and equipment on the means of transport carried by the means of transport), Among them, the surface of the structural element of the passing checkpoint and the nearby area will reflect electromagnetic waves, the surface of the passing checkpoint facing the vehicle side and at least a part of the surface of the bearing cylinder used for the entrance antenna and the exit antenna shall be applied as The electromagnetic wave absorbing material according to any one of items 1 to 18. 28 · —A high-frequency communication device, including high-frequency circuit elements located and adjusted inside a frame, wherein at least an inner wall of the frame and at least a part of the inner wall are applied as described in any one of claims 1 to 18 of the scope of patent application Electromagnetic wave absorbing material. f .-- (Please read the precautions on the back before filling this page), printed by the Consumer Cooperative of the Intellectual Property Bureau of the 1T Line Ministry of Economics-28- This paper size applies to the Chinese National Standard (CNS) Α4 specification (210X297 mm) 566077 Patent Application No. 91121158, Chinese Manual Amendment Page A7 Amended on October 3, 1992 1 B7 V. Description of Invention (6) II Binding-Binding-III Line (Please read the notes on the back before filling this page )) And an automated traffic collection system (changing information between roadside communication equipment and equipment on the vehicle carried by the traffic vehicle), where the surface of the structural elements of the traffic checkpoint and nearby areas (reflected electromagnetic waves), the traffic The surface of the checkpoint facing the vehicle side and at least a part of the roof surface of the bearing cylinder used for the entrance antenna and the exit antenna are coated with the electromagnetic wave absorbing material according to the present invention. (6) A high-frequency communication device including high-frequency circuit components and antennas placed inside the frame, wherein at least an inner wall of the frame and at least a part of the inner wall are provided with the electromagnetic wave absorbing material described in the present invention. According to the present invention, an economical electromagnetic wave absorbing material is proposed which has better absorption efficiency than the dielectric loss type electromagnetic wave absorbing material made of a carbon-based material in the prior art. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs In addition, according to the present invention, electromagnetic wave interference in an electronic device is sufficiently suppressed by using an electromagnetic wave absorbing material having an absorptivity that can be used in the half-millimeter wave range to the millimeter wave range. Therefore, provide devices that can be used in high-speed telecommunication networks, such as: semiconductor devices, optical transmission modules, optical receiving modules or optical transmission-receiving modules and high-frequency telecommunication equipment; this is derived from the suppression of internal noise interference and noise Capability provided by transmission to the outside, small size and weight reduction, high speed transmission and high sensitivity absorbent materials. In addition, according to the present invention, it is possible to provide an automated checkpoint that will be able to exchange information between contact equipment and equipment on a vehicle without electromagnetic interference. Schematic description This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm)
TW091121158A 2002-02-15 2002-09-16 Electromagnetic wave absorption material and an associated device TW566077B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038237A JP3922039B2 (en) 2002-02-15 2002-02-15 Electromagnetic wave absorbing material and various products using the same

Publications (1)

Publication Number Publication Date
TW566077B true TW566077B (en) 2003-12-11

Family

ID=27678159

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091121158A TW566077B (en) 2002-02-15 2002-09-16 Electromagnetic wave absorption material and an associated device

Country Status (4)

Country Link
US (3) US6818821B2 (en)
JP (1) JP3922039B2 (en)
KR (1) KR100657641B1 (en)
TW (1) TW566077B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622338B2 (en) 2013-01-25 2017-04-11 Laird Technologies, Inc. Frequency selective structures for EMI mitigation
CN112341807A (en) * 2020-10-29 2021-02-09 中国石油化工股份有限公司 Microcrystalline graphite ore-nylon 6 composite material

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723299B1 (en) 2001-05-17 2004-04-20 Zyvex Corporation System and method for manipulating nanotubes
JP3922039B2 (en) * 2002-02-15 2007-05-30 株式会社日立製作所 Electromagnetic wave absorbing material and various products using the same
US20040034177A1 (en) 2002-05-02 2004-02-19 Jian Chen Polymer and method for using the polymer for solubilizing nanotubes
US6905667B1 (en) 2002-05-02 2005-06-14 Zyvex Corporation Polymer and method for using the polymer for noncovalently functionalizing nanotubes
US7035308B1 (en) * 2002-10-28 2006-04-25 Science Applications International Corporation Method and system for countering laser technology
US7419601B2 (en) * 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
ES2291859T3 (en) * 2003-03-07 2008-03-01 Seldon Technologies, Llc PURIFICATION OF FLUIDS WITH NANOMATERIALS.
US7479516B2 (en) 2003-05-22 2009-01-20 Zyvex Performance Materials, Llc Nanocomposites and methods thereto
US7129422B2 (en) * 2003-06-19 2006-10-31 Wavezero, Inc. EMI absorbing shielding for a printed circuit board
EA009102B1 (en) * 2003-08-14 2007-10-26 Эвальд Деркен Аг Reflective layer
DE10345157B4 (en) * 2003-09-29 2009-01-08 Qimonda Ag Thermally conductive packaging of electronic circuit units
US7507036B2 (en) * 2004-03-25 2009-03-24 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Connection arrangement for optical communication systems
CN100438739C (en) * 2004-06-10 2008-11-26 鸿富锦精密工业(深圳)有限公司 Anti wearing electromagnetic interference layer
US7296576B2 (en) 2004-08-18 2007-11-20 Zyvex Performance Materials, Llc Polymers for enhanced solubility of nanomaterials, compositions and methods therefor
JP2006114877A (en) * 2004-09-15 2006-04-27 Suzuki Sogyo Co Ltd Electromagnetic wave absorption sheet, lamination thereof, and electromagnetic wave absorptivity housing using these
CN100542798C (en) * 2004-12-09 2009-09-23 中国科学院电子学研究所 A kind of microwave attenuation material of sintering temperature and low
US7688246B2 (en) * 2005-05-10 2010-03-30 Fuji Xerox Co., Ltd. Radio wave absorber, electromagnetic field measurement system and radiated immunity system
JP4575247B2 (en) * 2005-07-11 2010-11-04 株式会社東芝 High frequency packaging equipment
DE102005034166A1 (en) * 2005-07-21 2007-02-01 Osram Opto Semiconductors Gmbh Housing for an electromagnetic radiation-emitting optoelectronic component, electromagnetic radiation-emitting component and method for producing a housing or a component
CN101415813B (en) 2006-02-03 2013-04-10 微芯片生物工艺学股份有限公司 Microfluidic devices
US7310067B1 (en) 2006-05-23 2007-12-18 Research In Motion Limited Mobile wireless communications device with reduced interfering RF energy into RF metal shield secured on circuit board
DE602006005142D1 (en) * 2006-05-23 2009-03-26 Research In Motion Ltd A mobile wireless communication device having an absorber for reducing energy radiated from an RF component
US8134084B2 (en) * 2006-06-30 2012-03-13 Shin-Etsu Polymer Co., Ltd. Noise-suppressing wiring-member and printed wiring board
DE102006047691A1 (en) * 2006-10-09 2008-04-17 Siemens Audiologische Technik Gmbh Absorption of electromagnetic radiation in hearing aids
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
DE102007013617B4 (en) * 2007-03-21 2023-06-22 Vitesco Technologies GmbH electronic component
JP4748529B2 (en) * 2007-03-22 2011-08-17 古河電気工業株式会社 Magnetic material
EP2131642A1 (en) * 2007-03-29 2009-12-09 Kabushiki Kaisha Asahi Rubber Electromagnetic shield sheet and rfid plate
JP5362205B2 (en) * 2007-04-24 2013-12-11 Ntn株式会社 High frequency electronic component materials
US8013775B2 (en) * 2007-04-30 2011-09-06 Viasat, Inc. Radio frequency absorber
US20090079447A1 (en) * 2007-09-20 2009-03-26 Azurewave Technologies, Inc. Testing system for a radio frequency module
US20090104405A1 (en) * 2007-10-17 2009-04-23 Honeywell International Inc. Laminated printed wiring board with controlled spurious rf emission capability/characteristics
CN101466252B (en) * 2007-12-21 2011-11-30 清华大学 Electromagnetic shielding layer and preparation method thereof
JP4748538B2 (en) * 2008-03-27 2011-08-17 古河電気工業株式会社 Method for manufacturing magnetic material
JP2010080911A (en) * 2008-04-30 2010-04-08 Tayca Corp Wide band electromagnetic wave absorbing material and method of manufacturing same
TWI419643B (en) * 2008-05-23 2013-12-11 Zhen Ding Technology Co Ltd Pcb substrate having a pcb base film and pcb having the pcb substrate
US20100296527A1 (en) * 2008-09-25 2010-11-25 Ofs Fitel Llc Passively modelocked fiber laser using carbon nanotubes
US8692716B2 (en) * 2008-10-20 2014-04-08 Board Of Trustees Of The University Of Arkansas Nano and micro based antennas and sensors and methods of making same
KR20100072383A (en) * 2008-12-22 2010-07-01 한국전자통신연구원 Apparatus equipped with electromagnetic absorber
CA2750484A1 (en) 2009-02-17 2010-12-16 Applied Nanostructured Solutions, Llc Composites comprising carbon nanotubes on fiber
EP2401416B1 (en) 2009-02-27 2021-03-17 Applied NanoStructured Solutions, LLC Low temperature carbon nanotube growth using gas-preheat method
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
WO2010144183A1 (en) 2009-04-24 2010-12-16 Lockheed Martin Corporation Cnt-based signature control material
KR101696207B1 (en) 2009-04-27 2017-01-13 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Cnt-based resistive heating for deicing composite structures
CN101883477A (en) * 2009-05-04 2010-11-10 富准精密工业(深圳)有限公司 Shell and manufacturing method thereof
JP5823393B2 (en) 2009-08-03 2015-11-25 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc Incorporation of nanoparticles into composite fibers
KR101045403B1 (en) * 2009-10-15 2011-06-30 세종대학교산학협력단 Noiseproof structure for inter-layer noise of a construction
WO2011126518A2 (en) 2009-11-23 2011-10-13 Applied Nanostructured Solutions, Llc Cnt-tailored composite air-based structures
KR20120117978A (en) 2009-11-23 2012-10-25 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
EP2513250A4 (en) 2009-12-14 2015-05-27 Applied Nanostructured Sols Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
CA2785803A1 (en) 2010-02-02 2011-11-24 Applied Nanostructured Solutions, Llc Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
KR101787645B1 (en) 2010-03-02 2017-10-23 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
WO2011109485A1 (en) 2010-03-02 2011-09-09 Applied Nanostructured Solutions,Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
CN101853727B (en) * 2010-05-21 2011-11-09 山东大学 Iron-carbon nano composite electromagnetic wave absorption material and preparation method thereof
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
WO2012024658A2 (en) 2010-08-20 2012-02-23 IntegenX, Inc. Integrated analysis system
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
AU2011302314A1 (en) 2010-09-14 2013-02-28 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
WO2012040004A1 (en) 2010-09-22 2012-03-29 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
CA2782976A1 (en) 2010-09-23 2012-03-29 Applied Nanostructured Solutions, Llc Cnt-infused fiber as a self shielding wire for enhanced power transmission line
CN102093613B (en) * 2011-01-05 2012-06-06 江苏省金肯科技实业股份有限公司 Diamond element carbon black for rubber and preparation method thereof
US8569631B2 (en) * 2011-05-05 2013-10-29 Tangitek, Llc Noise dampening energy efficient circuit board and method for constructing and using same
TWI558657B (en) * 2011-09-08 2016-11-21 淡水河谷公司 Application of carbon nanotubes on agglomerates of fine ore to increase the mechanical strength
US20150136604A1 (en) 2011-10-21 2015-05-21 Integenx Inc. Sample preparation, processing and analysis systems
US10865440B2 (en) 2011-10-21 2020-12-15 IntegenX, Inc. Sample preparation, processing and analysis systems
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
RU2485729C1 (en) * 2012-03-20 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Method for production of magnetic composition
KR101417270B1 (en) * 2012-05-08 2014-07-08 현대자동차주식회사 Hybrid filler for shielding electromagnetic wave and manufacturing method of the same
JP2013247020A (en) * 2012-05-28 2013-12-09 Toyota Boshoku Corp Operation switch
CN102856663B (en) * 2012-08-24 2014-07-23 电子科技大学 Metamaterial, broadband and infrared wave-absorbing structural material
KR101223506B1 (en) * 2012-09-05 2013-01-21 김영욱 Seet to radiate heat and block electromagnetic waves of mobile
KR101218309B1 (en) * 2012-09-05 2013-01-09 김영욱 Seet to radiate heat and block electromagnetic waves of mobile
ITRM20120495A1 (en) 2012-10-16 2014-04-17 Univ Roma "GNP POLYMERIC NANOCOMPOSITES FOR THE REDUCTION OF ELECTROMAGNETIC INTERFERENCES"
US20140197352A1 (en) * 2013-01-11 2014-07-17 Sabic Innovative Plastics Ip B.V. Methods and compositions for energy dissipation
US9307631B2 (en) * 2013-01-25 2016-04-05 Laird Technologies, Inc. Cavity resonance reduction and/or shielding structures including frequency selective surfaces
US8952503B2 (en) 2013-01-29 2015-02-10 International Business Machines Corporation Organic module EMI shielding structures and methods
KR101454595B1 (en) * 2013-05-14 2014-11-17 만고산업 (주) Nonwoven having shungite for shieding electromagnetic wave and manufacturing method thereof
US20150043162A1 (en) * 2013-08-12 2015-02-12 Wah Hong Industrial Corp. Central processing unit casing
US9541678B2 (en) * 2013-11-13 2017-01-10 Arc Technologies, Inc. Multi-layer absorber
CN110560187B (en) 2013-11-18 2022-01-11 尹特根埃克斯有限公司 Cartridge and instrument for sample analysis
US10208332B2 (en) 2014-05-21 2019-02-19 Integenx Inc. Fluidic cartridge with valve mechanism
US9839133B2 (en) 2014-06-04 2017-12-05 Apple Inc. Low-area overhead connectivity solutions to SIP module
CN104084576B (en) * 2014-06-30 2016-03-23 北京师范大学 Six side's phase cobalt/graphene composite materials, preparation method and absorbing property
CN104084575B (en) * 2014-06-30 2016-03-23 北京师范大学 Emission in Cubic cobalt/graphene composite material, preparation method and absorbing property
CN104117683B (en) * 2014-07-01 2016-03-23 北京师范大学 Six side's phase cobalt-nickel alloy nano-cluster-graphene composite materials, Preparation Method And The Use
CN104043840B (en) * 2014-07-01 2016-03-23 北京师范大学 Emission in Cubic cobalt-nickel alloy nano-cluster-graphene composite material, Preparation Method And The Use
CN204104291U (en) * 2014-10-15 2015-01-14 昆山雅森电子材料科技有限公司 Slimming high-transmission electromagnetic absorption screened film
EP3209410A4 (en) 2014-10-22 2018-05-02 IntegenX Inc. Systems and methods for sample preparation, processing and analysis
JP6616653B2 (en) * 2014-12-03 2019-12-04 国立大学法人 東京大学 Electromagnetic wave absorber and paste for film formation
EP3029771B1 (en) * 2014-12-03 2019-10-16 The University of Tokyo Electromagnetic wave absorber and film forming paste
US10624214B2 (en) * 2015-02-11 2020-04-14 Apple Inc. Low-profile space-efficient shielding for SIP module
WO2016135689A1 (en) * 2015-02-27 2016-09-01 Valgimigli Andrea Composite shielding material
KR101715466B1 (en) * 2015-03-23 2017-03-14 신라대학교 산학협력단 Method for fabricating carbon-based composites and carbon-based composites using the same
KR102374414B1 (en) * 2015-04-24 2022-03-15 엘지이노텍 주식회사 Structure for shielding electromagnetic waves
WO2017156529A1 (en) * 2016-03-11 2017-09-14 Flex-Cable Bendable shielded bus bar
JP6791698B2 (en) * 2016-09-27 2020-11-25 国立大学法人 東京大学 Shungite purification method
US9953930B1 (en) * 2016-10-20 2018-04-24 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and method for manufacturing the same
US11121095B2 (en) * 2016-12-21 2021-09-14 Mitsubishi Electric Corporation Semiconductor device having electromagnetic wave absorbing layer with heat dissipating vias
CN106807948B (en) * 2017-02-20 2019-07-05 南京三乐集团有限公司 A kind of preparation method of the effective microwave attenuation film of velocity modulation
JP6985588B2 (en) * 2017-04-07 2021-12-22 富士通株式会社 Electronic devices and electromagnetic wave absorbers
FR3066643B1 (en) * 2017-05-16 2020-03-13 Stmicroelectronics (Grenoble 2) Sas ELECTRONIC BOX PROVIDED WITH A LOCAL VENT-FORMING SLOT
DE102017222983A1 (en) * 2017-12-18 2019-06-19 Bayerische Motoren Werke Aktiengesellschaft Process for producing a fiber composite component
US11391899B2 (en) * 2018-02-07 2022-07-19 Lumentum Operations Llc Thermal interface for riding heatsink
US20210320461A1 (en) * 2018-07-12 2021-10-14 Samtec, Inc. Lossy material for improved signal integrity
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
WO2021173412A1 (en) * 2020-02-26 2021-09-02 Ticona Llc Circuit structure
WO2021173408A1 (en) 2020-02-26 2021-09-02 Ticona Llc Electronic device
KR20220147110A (en) 2020-02-26 2022-11-02 티코나 엘엘씨 Polymer Compositions for Electronic Devices
US11728065B2 (en) 2020-07-28 2023-08-15 Ticona Llc Molded interconnect device
CN112117545B (en) * 2020-09-02 2021-08-06 南京航空航天大学 Polarization reconfigurable multifunctional frequency selective wave absorber based on water
US11728559B2 (en) 2021-02-18 2023-08-15 Ticona Llc Polymer composition for use in an antenna system
WO2022210013A1 (en) 2021-04-02 2022-10-06 三菱エンジニアリングプラスチックス株式会社 Resin composition and molded body
KR102488005B1 (en) 2021-05-07 2023-01-13 한국자동차연구원 Millimeter wave shielding and absorption composite material
JP2023000572A (en) * 2021-06-18 2023-01-04 兵庫県公立大学法人 Electromagnetic wave absorber
WO2023069031A1 (en) * 2021-10-21 2023-04-27 Antalya Bilim Universitesi Rektorlugu A shungite based thin film polymer for electromagnetic field protection and its production method
CN115954682B (en) * 2023-02-28 2023-09-12 湖南博翔新材料有限公司 Light wave-absorbing material and application thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977591A (en) * 1952-09-17 1961-03-28 Howard A Tanner Fibrous microwave absorber
US3721982A (en) * 1970-11-10 1973-03-20 Gruenzweig & Hartmann Absorber for electromagnetic radiation
JPS5418755B2 (en) * 1973-03-07 1979-07-10
US5786785A (en) * 1984-05-21 1998-07-28 Spectro Dynamics Systems, L.P. Electromagnetic radiation absorptive coating composition containing metal coated microspheres
JPH0650799B2 (en) * 1986-11-19 1994-06-29 喜之 内藤 Radio wave absorber
JPH0228399A (en) * 1988-07-18 1990-01-30 Shinwa Internatl Kk Radio wave absorbing material and manufacture thereof
SE463769B (en) * 1989-04-19 1991-01-21 Diab Barracuda Ab Camouflage material of PVC CELL PLASTIC WITH CLOSED CELLS
JP2660647B2 (en) 1992-10-21 1997-10-08 株式会社巴川製紙所 Radio wave absorber
JP3401650B2 (en) 1994-01-20 2003-04-28 エヌイーシートーキン株式会社 Electromagnetic interference suppressor
EP0689262B1 (en) * 1994-06-23 1999-12-01 Takenaka Corporation Wave absorber composition, radio wave absorber member, radio wave absorber and method for producing wave absorber member
US5487432A (en) * 1995-02-22 1996-01-30 Thompson; Jon E. Subsurface tool
JPH09111421A (en) 1995-10-20 1997-04-28 Tokin Corp High electric resistance magnetic material and its production
TW410542B (en) * 1997-03-14 2000-11-01 Hitachi Maxell Wave absorber
JPH1116727A (en) 1997-06-25 1999-01-22 Sumitomo Metal Ind Ltd High-resistance magnetic thin film
JPH11290435A (en) 1998-04-14 1999-10-26 Jiyouno Tetsuhisa Radio wave absorbing shielding and air purifying composition
RU2157256C2 (en) * 1998-05-19 2000-10-10 Общество с ограниченной ответственностью "Минеральная продукция" Means for making protection against geopathogenous influence
JPH11354973A (en) 1998-06-04 1999-12-24 Hitachi Metals Ltd Electromagnetic wave absorber
EP0986294A3 (en) * 1998-09-04 2000-05-17 TDK Corporation Electric wave absorber
JP3869147B2 (en) 1999-03-25 2007-01-17 関東鋼線株式会社 Electromagnetic wave absorbing sheet
JP3925835B2 (en) 2000-04-10 2007-06-06 株式会社日立製作所 Electromagnetic wave absorber, its production method and various uses using it
JP3922039B2 (en) * 2002-02-15 2007-05-30 株式会社日立製作所 Electromagnetic wave absorbing material and various products using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622338B2 (en) 2013-01-25 2017-04-11 Laird Technologies, Inc. Frequency selective structures for EMI mitigation
CN112341807A (en) * 2020-10-29 2021-02-09 中国石油化工股份有限公司 Microcrystalline graphite ore-nylon 6 composite material

Also Published As

Publication number Publication date
KR100657641B1 (en) 2006-12-13
US7239261B2 (en) 2007-07-03
US6818821B2 (en) 2004-11-16
KR20030076919A (en) 2003-09-29
US20030155143A1 (en) 2003-08-21
US20050035896A1 (en) 2005-02-17
JP2003243878A (en) 2003-08-29
JP3922039B2 (en) 2007-05-30
US20040146452A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
TW566077B (en) Electromagnetic wave absorption material and an associated device
JP3925835B2 (en) Electromagnetic wave absorber, its production method and various uses using it
US7218266B2 (en) Electromagnetic wave absorber, method of manufacturing the same and appliance using the same
EP3085215B1 (en) Electromagnetic interference (emi) shielding products using titanium monoxide (tio) based materials
KR101067731B1 (en) Electromagnetic interference inhibitor, antenna device and electronic communication apparatus
TWI278278B (en) Electromagnetic waves absorber
EP3460813A1 (en) Wireless power transmission apparatus for vehicle
CN100455178C (en) Electromagnetic wave noise suppressor, structural body with electromagnetic wave noise suppressing function, and process for producing them
US10374307B2 (en) High-frequency antenna element and high-frequency antenna module
EP2136613B1 (en) Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
JP2003124011A (en) Electromagnetic wave absorber and product using the same
KR100849496B1 (en) Composition for complex sheet with thermal dissipation, emi shielding and absorption in target frequency range, and products manufactured therefrom
JP4446593B2 (en) Electromagnetic wave absorber
JP5720358B2 (en) Radio wave suppression sheet, electronic device including the sheet, and radio wave suppression component
JP3893252B2 (en) Optical transmitter / receiver module and manufacturing method thereof
JP2001156487A (en) Electromagnetic wave absorber and its manufacturing method
JP2000244167A (en) Electromagnetic-wave-disturbance preventive material
CN116200120A (en) Composite wave-absorbing sizing material and preparation method thereof
WO2022092137A1 (en) Electromagnetic wave absorbing sheet
JP4446585B2 (en) Resin composite and radiation noise suppression substrate using the same
JP2000232297A (en) Electromagnetic wave absorber
JP4714841B2 (en) Radio wave absorber material and radio wave absorber
JP2000232293A (en) Electromagnetic wave absorber
JP2000091783A (en) Laminated wide-band wave absorber
CN117956774A (en) Composite wave-absorbing material and preparation method thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees