TW552326B - Czochralski pullers and pulling methods for manufacturing monocrystalline silicon ingots by controlling temperature gradients at the center and edge of an ingot-melt interface - Google Patents

Czochralski pullers and pulling methods for manufacturing monocrystalline silicon ingots by controlling temperature gradients at the center and edge of an ingot-melt interface Download PDF

Info

Publication number
TW552326B
TW552326B TW89103608A TW89103608A TW552326B TW 552326 B TW552326 B TW 552326B TW 89103608 A TW89103608 A TW 89103608A TW 89103608 A TW89103608 A TW 89103608A TW 552326 B TW552326 B TW 552326B
Authority
TW
Taiwan
Prior art keywords
heat shield
crucible
heater
heat
ingot
Prior art date
Application number
TW89103608A
Other languages
Chinese (zh)
Inventor
Jae-Gun Park
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/320,102 external-priority patent/US6146459A/en
Priority claimed from KR19990038990A external-priority patent/KR100331552B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Application granted granted Critical
Publication of TW552326B publication Critical patent/TW552326B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)

Abstract

Czochralski pullers are modified to grow perfect monocrystalime silicon ingots that are free of vacancy agglomerates and interstitial agglomerates by modifying components of the Czochralski puller to produce a temperature gradient at ingot-melt interface that is greater than about 2.5 degrees Kelvin per millimeter at ingot axis and is also at least about equal to the temperature gradient at a diffusion h from the cylindrical edge of the ingot. By producing a temperature gradient at ingot-melt interface that is greater than about 2.5 degrees Kelvin per millimeter at ingot axis and that is also at least about equal to the temperature gradient at a diffusion length from the diffusion edge, an ingot-melt interface that is planar or is ex relative to the silicon melt may be produced. The ingot so pulled is sliced into a plurality of pure silicon wafers that may include point defects but that are free of vacancy agglomerates and interstitial agglomerates.

Description

552326 A7552326 A7

經濟部智慧財產局員工消費合作社印製 五、發明說明() 發明變屋 本發明關於微電子製造方法及裝置,尤其是關於石夕晶 疑製造方法及藉此方法其製造之矽晶錠及晶圓。 發明堂屋· 積體電路已廣泛地使用於消費品及商業應用。積體電 路一般係由單結晶矽製造。因為積體電路之集積密度持續 增加,大體而言,提供用於積體電路之高品質的單結晶半 導體材料的重要性逐漸增加。積體電路一般係藉由製造單 結晶碎之大晶鍵、切割晶鍵成晶圓、在曰曰圓上進行許多微 電子製造加工,並接著將晶圓切割成個別之經封裝的積體 電路來製造。因為矽晶錠之純度及結晶度對於最終由此晶 錠製造之積體電路裝置的性能有很大的影響,已逐漸地努 力於製造具有減少之瑕疵量的晶錠及晶圓。 現在將描述習知製造年結晶砍•晶疑之方法。這此方法 之概論可參見Wolf及Tauber所著之教科書的第1章, “ Silicon Processing for the VLSI Era,第 1 冊,pr〇cess ,1986,第1_35頁,此部分揭露内容係併入 本說明書中以供參考。在製造單結晶石夕時,電子級聚石夕物 係轉化成早結晶砍晶鍵。例如石央岩之多結晶秒係經精煉 以用於製造電子級的多結晶矽。接著藉由切克勞斯基(切 克勞斯基(CZ))或浮動區(FZ)技術使經精煉之多結曰曰曰 矽生長成單一晶體之晶錠。因為本發明係關於利用cz技術 製造^夕晶旋,現在將描述此一技術。切克勞斯基生長方法 包含在一界面處,自一液相開始之原子結晶固化作 特 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ---一---^-----裝--- (請先閱讀背面之注意事項再填寫本頁) 552326 A7 五、發明說明(2) 定言之,在一坩堝中放置一 該量之多結晶石夕炫化。使具有二=級多結晶石夕,並使 衣μ h ί丄 在位向公差之種晶矽下降 至矽熔融物中。接著在一控 日日7卜降 在一-般使種晶及 閱 起速率-般相對上較快,以致於能 ^= 低以致能形成所欲之二:直: =r:tr率來維持,作業係持續至熔融 物接近耗盡,在此時形成一尾部。 圖式簡單說明: =圖為切克勞斯基(切克勞斯基)拉晶器 =所:圍,基拉晶裝置10。包含加熱爐· 訂 控制11及以電腦為主的控制系統。切 斯基加熱爐-般係指魅加崎。熱區 熱器刚、可由石英製成之掛咖、可由石墨製成之承受号 108及可裱繞如所示之第一方向112 η。。冷卻套筒或通口 132係藉由例如水冷卻之外部= 置來冷卻。擋熱板114可提供額外的熱分佈。 冷卻套管或口 132係藉由例如水冷卻之外部冷卻方式 冷卻。擋=板U4可提供額外的熱分佈。熱組件1〇2係充填 熱吸收物質116以提供額外的熱分佈。 拉晶機構包含如所示般以與方向112相反之方向122繞 轴旋轉的拉晶軸12〇。拉晶轴120在末端包含軒日曰曰座 籽晶座偷支樓-籽晶124,此籽晶係由掛购6中之㈣ 物126上拉出來以形成一晶錠。 本紙張尺度適用中國國家標準(CNS)A4 ^7210 X 297公t 552326 A7 ------- B7 五、發明說明(3) 外圍環境控制系統可包含室外殼體130、冷卻套管132 及其他未顯示之流量控制器及真空抽氣系統。以電腦為主 的控制系統可用於控制加熱元件、拉晶器及其他電子及機 械元件。 為了生長出單結晶矽晶錠,籽晶124係與矽熔融物126 接觸並逐漸地以軸向向上拉出。矽熔融物126冷卻及固化成 單結晶石夕發生在晶錠128及炼融物126之間的界面130。如第 1圖所示,界面13〇相對於熔融物126呈凹面。 實際的矽晶錠不同於理想的單結晶晶錠,因為包含瑕 疵及缺陷。這些缺陷在製造積體電路裝置時是不理想的。 這些缺陷一般可區分為點缺陷或集聚缺陷(三度空間缺 陷)。點陷缺陷具有二種一般形式:空穴點缺陷及間隙點 缺。在空穴點缺陷中’一石夕原子在石夕晶袼中錯過一正常 位置此空八點產生空穴點缺陷。另一方面,若在非晶格 位置(間隙位置)發現一原子,其產生間隙點缺陷。 經濟部智慧財產局員工消費合作社印製 i J---:-----_-裝—— (請先閱讀背面之注意事項再填寫本頁) 點缺陷一般形成於石夕熔融物126及固態石夕128之間的界 面130。然而,因為晶鍵128持續地上拉,界面部分開始冷 卻。在冷卻期間,空六點缺陷及間隙點缺陷的擴散造成缺 陷結合並形成空穴集聚體或間隙集聚體。集聚體為因為點 缺陷的結合產生的三度空間(大)結構。間隙集聚體亦稱 為位錯缺陷或D-缺陷。集聚體有時候亦以檢測此類缺陷的 技術來命名。因此,空穴集聚體有時候稱為結晶起因之微 粒(COP)、雷射散射X光斷層攝影(LST)缺陷或流體 圖案缺陷(FPD )。間隙缺陷亦已知為大位錯(lid )集聚Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the Invention () The invention changes the house The invention relates to a microelectronic manufacturing method and device, especially to a susceptible manufacturing method by Shi Xijing and the silicon ingots and crystals manufactured by the method. circle. Invention Halls · Integrated circuits have been widely used in consumer products and commercial applications. Integrated circuits are generally made of monocrystalline silicon. As the integrated density of integrated circuits continues to increase, in general, the importance of providing high-quality single-crystalline semiconductor materials for integrated circuits has gradually increased. Integrated circuits are generally produced by manufacturing single crystal broken large crystal bonds, cutting the crystal bonds into wafers, performing many microelectronic manufacturing processes on the circle, and then cutting the wafer into individual packaged integrated circuits. To make. Because the purity and crystallinity of silicon ingots have a great impact on the performance of integrated circuit devices ultimately manufactured from the ingots, efforts have been gradually made to produce ingots and wafers with reduced defects. Now, the method of crystallization and suspicion in the manufacturing year will be described. For an overview of this method, see Chapter 1 of the textbook by Wolf and Tauber, "Silicon Processing for the VLSI Era, Volume 1, prcess, 1986, pages 1-35. The disclosure in this section is incorporated into this specification. For reference. In the manufacture of monocrystalline stone, the electronic grade polylithic system is converted into early crystalline chopping bonds. For example, the polycrystalline second system of Shiyangyan is refined to make electronic grade polycrystalline silicon. Then borrow Cheklaussky (CZ) or Floating Zone (FZ) technology enables refined multi-junction silicon to grow into single crystal ingots. Because the present invention relates to manufacturing using cz technology ^ Crystallization, this technology will now be described. The Cheklaussky growth method involves the solidification of atomic crystals starting from a liquid phase at an interface as a special paper. The standard for Chinese papers (CNS) A4 (210 X 297 mm) --- A --- ^ ----- install --- (Please read the precautions on the back before filling out this page) 552326 A7 V. Description of the invention (2) In conclusion, the first A quantity of polycrystalline stone is placed in the crucible. Crystal stone, and make the seed crystal silicon in the in-position tolerance drop to the silicon melt. Then in a controlled day 7 at a time-the seed crystal and the pick-up rate-generally relatively Faster, so that it can be ^ = low, so that it can form the second one: straight: = r: tr rate to maintain, the operation system continues until the melt is almost exhausted, at this time a tail is formed. The diagram simply explains: = The picture shows the crystal pulling device of Cheklauski (Czechowski) = so: Wai, Kira crystal device 10. Including heating furnace · order control 11 and computer-based control system. Chesky heating furnace- Generally refers to the charm Kasaki. The hot zone heater is rigid, the hanging coffee can be made of quartz, the bearing number 108 can be made of graphite, and the first direction 112 η can be mounted as shown. 132 is cooled by external means such as water cooling. The heat shield 114 may provide additional heat distribution. The cooling jacket or port 132 is cooled by external cooling means such as water cooling. The shield = plate U4 may provide additional Heat distribution. The thermal module 102 is filled with a heat absorbing substance 116 to provide additional heat distribution. The crystal pulling mechanism contains as shown The pulling crystal shaft 12 which rotates around the axis in the direction 122 opposite to the direction 112. The pulling crystal shaft 120 includes a seed crystal stand at the end of the Xuanri Day seed seat-seed crystal 124, and this seed system is purchased from 6 The object 126 is pulled up to form a crystal ingot. The paper size applies to the Chinese National Standard (CNS) A4 ^ 7210 X 297 male t 552326 A7 ------- B7 V. Description of the invention (3) Peripheral environment control The system may include an outdoor housing 130, a cooling jacket 132, and other flow controllers and vacuum extraction systems not shown. Computer-based control systems can be used to control heating elements, crystal pullers, and other electronic and mechanical components. In order to grow a single-crystal silicon ingot, the seed crystal 124 is brought into contact with the silicon melt 126 and gradually pulled up in the axial direction. The silicon melt 126 is cooled and solidified to form a single crystal stone at the interface 130 between the ingot 128 and the melt 126. As shown in FIG. 1, the interface 13 is concave with respect to the melt 126. The actual silicon ingot differs from the ideal single crystal ingot because it contains flaws and imperfections. These defects are not ideal when manufacturing integrated circuit devices. These defects can be generally classified as point defects or cluster defects (third-degree spatial defects). There are two general forms of pitting defects: hole point defects and gap point defects. Among the hole point defects, a stone evening atom misses a normal position in the stone evening crystal, and this empty eight points generates a hole point defect. On the other hand, if an atom is found at an amorphous lattice position (gap position), it causes a gap point defect. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs i ---: -----_- pack ---- (Please read the precautions on the back before filling this page) Point defects are generally formed in the molten material of Shixi 126 and The interface 130 between the solid Shi Xi 128. However, because the crystal bond 128 is continuously pulled up, the interface portion starts to cool. During cooling, the diffusion of void six-point defects and interstitial point defects causes defect combinations to form void aggregates or interstitial aggregates. Aggregates are three-dimensional (large) structures resulting from the combination of point defects. Interstitial aggregates are also called dislocation defects or D-defects. Agglomerates are sometimes named after technologies that detect such defects. Therefore, hole aggregates are sometimes referred to as crystalline origin particles (COP), laser scattering tomography (LST) defects, or fluid pattern defects (FPD). Gap defects are also known as large dislocation clusters

經濟部智慧財產局員工消費合作社印製 552326 A7 _ B7 五、發明說明() 體。在上述Wolf及Tauber之教科書中第2章提供單結晶石夕 中缺陷的討論,該部分揭露内容併入本說明書中以供參考。 已知可能需要控制許多參數以致能生長具有少數缺陷 的局純度晶旋。例如’已知控制軒晶之上拉速率及加熱區 結構的溫度梯度。Voronkov的理論發現到V相對於G之比率 (稱為V/G)可測定晶錠中的點缺陷的聚集度,其中v為晶 錠的上拉速率及G為晶錠-熔融物界面的溫度梯度。Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 552326 A7 _ B7 V. Description of Invention (). A discussion of defects in monocrystalline stones is provided in Chapter 2 of the above textbooks by Wolf and Tauber. The disclosures in this section are incorporated in this specification for reference. It is known that many parameters may need to be controlled to enable the growth of locally pure crystal spins with a small number of defects. For example, it is known to control the Xuanjing pull-up rate and the temperature gradient of the heating zone structure. Voronkov's theory found that the ratio of V to G (called V / G) can determine the degree of aggregation of point defects in the ingot, where v is the pull-up rate of the ingot and G is the temperature of the ingot-melt interface gradient.

Voronkov的理論係詳細地描述於Voronkov之,,:TAe Mechanism of Swirl Defects Formation in Silicon” , Journal of Crystal Growth,第 59期,1982,第 625-643 頁。Voronkov's theory is described in detail in Voronkov, "TAe Mechanism of Swirl Defects Formation in Silicon", Journal of Crystal Growth, No. 59, 1982, pp. 625-643.

Voronkov之理論的應用可發現於本案發明人之發表 文獻中’文獻題目為 Effect of Crystal Defects on Device C/mracierW/c/’,發表於第二屆矽材料先進科學及技術國 際研討會,11月25-29號,1996,第519頁。在第15圖中, 在本申請案中重製為第2圖,圖示說明空穴及間隙聚集度 可顯示為V/G的函數。Voronkov之理論顯示出空穴/間隙 混合物在晶圓中的產生可藉由V/G來測定。更特別地,對 低於臨界比率之V/G比率而言,會形成富含間隙的晶錠。 然而’對南於臨界比率之γ/G比率而言,會形成富含空穴 的晶鍵。 儘管許多物理學家、材料科學家及其他學者進行理論 研究,以及切克勞斯基拉晶裝置之製造商進行實際研究, 仍有降低單結晶石夕晶圓中缺陷密度的需要。最終需要為不 含空穴及間隙集聚體的純石夕晶圓。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ---,---^------裝--- (請先閱讀背面之注意事項再填寫本頁) 552326 A7 B7 五、發明說明() 發明摘要 本發明提供改良切克勞斯基拉晶裝置的方法及經如此 改良切克勞斯基拉晶裝置,以致能生長不含空穴集聚體及 間隙集聚體的完美單結晶矽晶錠,其係藉由改良切克勞斯 基拉晶裝置的元件以供在晶鍵> 溶融物界面處產生一溫度 梯度,其大於約2.5QK/毫米晶錠軸且至少約等於由晶錠之 圓柱形邊緣開始之擴散長度處的溫度梯度。藉由在晶錠-熔融物界面處產生一溫度梯度,其大於約2.5QK/毫米晶錠 軸且至少約等於由晶錠之圓柱形邊緣開始之擴散長度處的 溫度梯度,可產生相對於矽熔融物呈平面或凸面的晶錠-熔融物界面。經如此上拉之晶錠係切割成許多可能包含點 缺陷但不含空穴集聚體及間隙集聚體的純矽晶圓。 經濟部智慧財產局員工消費合作社印製 ---·---^-----裝--- (請先閱讀背面之注意事項再填寫本頁) 根據本發明之切克勞斯基拉晶裝置包含一外殼體及位 在外殼體内之用於容納矽熔融物的坩堝。在外殼體内,鄰 接坩堝處設有籽晶座。在外殼體内,在坩堝周圍設有加熱 器。在外殼體内,在加熱器周圍設有熱組件。在坩堝及籽 晶座之間設有擋熱板且在擋熱板及籽晶座之間設有冷卻套 管。提供將籽晶座上拉離開坩堝的裝置,藉此由矽熔融物 中上拉單結晶矽晶錠。單結晶矽晶錠具有一軸及一圓柱狀 邊緣。矽熔融物及晶錠在其等之間界定一晶錠-熔融物界 面。 本發明亦提供用於切克勞斯基拉晶裝置之擋熱板,其 含有環狀擋熱板外殼體,其包含内部及外部擋熱板外殼體 壁及傾斜的擋熱板外殼體底板及延伸於内部及外部擋熱板 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 552326 五 經濟部智慧財產局員工消費合作社印製 A7 發明說明(6) 外"又體土之間的擋熱板外殼頂部。擋熱板外殼體内含有絕 緣材料。一 ± _ 知tl件係配置以供支撐擋熱板外殼體於 . 勞斯基拉晶裝置之掛禍内。内部及外部擒熱板壁較佳為垂 直的内部及外部擋熱板壁, 以及擋熱板外殼體頂部較佳A 傾斜的擔熱板外殼體頂部。 為 在一具體實施例中,支撐元件包含至少一延 二熱:外殼體的支撐臂。此至少一支撐臂可為中空及其内 4可3有㈣材料。在另_具體實施例中,支撐元件為環 =的支撐70件。環狀支撐元件可含有内部及外部支擇元件 』’其間含有絶緣材料。環狀支樓元件内亦可具 ° %狀(件可為傾斜的。亦可提供如上述之擒熱板, :檔熱板外殼體及供她熱板外 之位擋熱板之位置、擔熱板之構造、加熱器 應用至加孰琴之:之構造、㈣之位置、熱組件之構造及 融物之界面產^源中至少一者係經選擇以供在晶旋-炫 座生—溫度梯度,其大於約2·5°Κ/毫来曰於4丄 二至:約等於由晶錠之圓柱形邊緣開始之擴散長度i的溫 又呆又。根據本發明之另一方面,擒熱板之位置、擒教: 之構造、加熱器之位置、冷卻套管之構造、掛禍之:晉、 熱組件之構造及應用至加熱器之能源中至少 :供產生相對於一平面―=: 母一上述參數可個別地改變。例如,掛禍包含1禍 本紙張尺錢财關規格⑽X 297公爱 ---.---^------裝--- (請先閱讀背面之注意事項再填寫本頁) 552326 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(7) 頂部及一 3#場底部以及擔熱板包含一擔熱板頂部及一擔熱 板底部。擋熱板的位置較佳係藉由改變擋熱板底部及坩堝 頂部之間的距離來選擇。 擋熱板之構造可藉由在擋熱板底部提供擋熱板外罩來 選擇。播熱板外罩較佳包含位在坩禍内的環狀擋熱板外殼 體’其包含内部及外部擔熱板外殼體壁、傾斜之擔熱板外 殼體底板及延伸於内部及外部擋熱板外殼體壁之擋熱板外 殼體頂部。擋熱板外殼體内較佳含有絕緣材料。傾斜之擋 熱板外殼體界定一與水平面之角度且擋熱板之構造較佳地 亦藉由改變此角度來選擇。 傾斜之播熱板外殼體底板與水平面產生一第一角度, 且傾斜之擋熱板外殼體頂部與水平面產生一第二角度。内 部壁長度、第-角度及第二角度中至少一者較佳地係經選 擇以供在晶錠-熔融物界面、在晶錠軸處產生一溫度梯度, 其至少約等於由晶鍵之圓柱形邊緣開始之擴散長度處的溫 度梯度。 加熱器亦含有一加熱器頂部及加熱器底部,以及加熱 器之位置較佳地係藉由改變掛禍頂部及加熱器頂部之間的 距離來選擇。加熱器之位置及掛禍之位置亦可同時相對於 外殼而軸向地改變。 冷卻套管亦含有-冷卻套管頂部及冷卻套管底部及冷 卻套管的位置較佳係藉由改變掛禍了頁部及冷卻套管底部之 間的距離來選擇。熱組件含有上部熱組件外殼體及下部執 組件外殼體,各自充填熱吸收材料。熱組件之構造較佳地 (請先閱讀背面之注音?事項再填寫本頁) 裝 -10- 552326 A7 B7 五、發明說明(9) 圖式之簡聲 第1圖為用於生長單結晶石夕晶鍵之切克勞斯基拉晶裝 置的概要圖; 弟2圖係圖示說明Vronokov的理論; 第3 A-3 E圖說明晶圓製造之概要,該晶圓在中心處 具有富含空穴之區域及界於富含空穴之區域及晶圓邊緣之 間的純質區域; 第4 A - 4 E圖說明晶圓製造之概要,該晶圓不含集聚 體; 第5圖說明根據本發明之經改良的切克勞斯基拉晶裝 置及改良方法; 第6圖圖示說明為距離之函數的習知徑向溫度梯度與 根據本發明為距離之函數的徑向溫度梯度之間的比較; 第7圖圖示說明根據本發明,在為擋熱板底部及坩堝 頂部之間距離的函數之溫度梯度的改變中觀察到的趨勢; 第8圖圖示說明根據本發明,在為坩堝頂部及加熱器 頂部之間距離的函數之溫度梯度的改變中觀察到的趨勢; 經濟部智慧財產局員工消費合作社印製 ------:-----裝--- C請先閱讀背面之注音?事項再填寫本頁} 第9圖圖示說明根據本發明,在為坩堝及外殼之間距 離的函數之溫度梯度的改變中觀察到的趨勢; 第10圖圖示說明根據本發明,在為掛場頂部及冷卻套 管底部之間距離的函數之溫度梯度的改變中觀察到的趨 勢; 第11圖圖示說明根據本發明,在為自上部熱組件外殼 體移除之熱吸收材料量之函數的溫度梯度的改變中觀察到 ^紙張尺度適用中國國家標準(CNS)^^^^_x 297公爱)----—- -12 - 552326 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(3 的趨勢; 第12圖為流程圖’說明根據本發明組合地改變參數的 步驟; 第13圖為第5圖之擋熱板的放大圖; 第14A-14D圖為根據本發明之擋熱板的具體實施例 的局部透視圖。 較佳具體實施例的詳纟 本發明於下文中將參考顯示本發明之較佳實施例的後 附圖式更詳盡地說明。然而,本發明可以任何不同之形式 具體實施,且不應解釋為拘限於本說明書中敘述之實施 例,相反地,此等具體實施例係提供以使得說明書之揭露 内容更詳盡及完整,且充分地傳達本發明之範圍讓熟習是 項技術者知曉。在整個說明書中,同樣的編號意指同樣的 元件。 概述一富含空穴及完4的晶圓 現在參考第3A-3E圖,說明根據美國專利申請案第 08/989,591號之半純晶圓製造的概述,該晶圓具有⑴位於 中心部分之富含空穴區域,其可能含有空穴集聚體以及⑺ 界於备含空八區域及晶圓邊緣之間的純質區域,其不含空 穴集聚體及間隙集聚體。如第3A圖所示,這些富含空穴之 晶圓的製造可以Vron〇k〇v理論之概述開始。Vr〇n〇k〇v理論 係圖示地㈣於第3A圖中。如自邊_)開始及結束於中心 (c)之直線所示’根據美國專利申請案第刪9,591號之發 明已發現到,若上拉速率相對於晶旋嘴融物界面處之溫 本紙張尺度適用中國國家標準(CNs)A4規格(21〇 x 297公釐) -------^------裝--- (請先閱讀背面之注意事項再填寫本頁) . -13- 552326 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(坊 梯度的比率,稱為V/G,維持大於自邊緣E之擴散長度處的 (V/G)!,確認為點a,並小於中心c處之(v/G)2,則可製造 一半純晶圓,其具有位在中心處之富含空穴的區域及介於 富含空穴的區域與晶圓邊緣之間的純質區域。特定言之, V/G將在晶録:中橫跨晶圓徑向地改變,且一般將自晶圓中 心向晶圓邊緣減少,因為晶圓之中心及邊緣處的熱特性之 差異。因此,一例示晶圓由中心至邊緣(E)具有如第3A 圖所示之徑向V/G範圍。 在矽晶鍵及晶圓之製造中的決定性考量為晶圓中集聚 體的形成,無論是空穴集聚體或間隙集聚體。已知集聚體 係因最初製造過程中形成之點缺陷的結合而形成。點缺陷 濃度一般係藉由石夕晶鍵及石夕溶融物之間界面的條件來測 定。接著,當晶錠進一步上拉時,擴散及冷卻決定點缺陷 之結合以形成集聚體。 如第3B圖所示,根據根據美國專利申請案第 08/989,591號之發明,已發現到存在一臨界空穴點缺陷濃 度[V]*以及一臨界間隙點缺陷濃度[〗]*,低於該等臨界濃度 則點缺陷將不會結合成集聚體。根據本發明已發現到若在 晶圓之周圍區域的點缺陷濃度維持低於此等臨界濃度,則 畜含空穴之區域係形成在晶圓之中心,但純質區域係形成 於界於富含空穴區域與晶圓邊緣之間。因此,如第3B圖所 不’検跨晶圓之空穴濃度係維持在低於臨界空穴點缺陷濃 度m*,除了接近晶圓中心處之外。如第3C圖所示,富含 空穴之區域[V]係形成於中心處,但富含空穴之區域 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公 ---.---:------裝— (請先閱讀背面之注音?事項再填寫本頁) _ -14 - 552326 經濟部智慧財產局員工消費合作社印製 之 A7The application of Voronkov's theory can be found in the publication published by the inventor of this case, 'The document titled Effect of Crystal Defects on Device C / mracierW / c /' was presented at the 2nd International Conference on Advanced Science and Technology in Silicon Materials, November 25-29, 1996, p. 519. In Fig. 15, it is reproduced as Fig. 2 in this application, illustrating that the degree of accumulation of holes and gaps can be displayed as a function of V / G. Voronkov's theory shows that the generation of the cavity / gap mixture in the wafer can be measured by V / G. More specifically, for V / G ratios below the critical ratio, gap-rich ingots are formed. However, for a γ / G ratio that is south of the critical ratio, a hole-rich crystal bond is formed. Despite theoretical research by many physicists, materials scientists, and other scholars, as well as practical research by manufacturers of Cheklaussky crystal devices, there is still a need to reduce the density of defects in single crystal wafers. The final need is a pure stone wafer without voids and interstitial aggregates. This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) ---, --- -------(Please read the precautions on the back before filling this page) 552326 A7 B7 V. Description of the invention () Summary of the invention The present invention provides a method for improving the Cheklaussky crystal device and the Cheklaussky crystal device is improved so that it can grow void-free aggregates and interstitial aggregates. The body is a perfect single crystal silicon ingot, which is modified by the elements of the Cheklaussky crystal device for generating a temperature gradient at the crystal bond > melt interface, which is greater than about 2.5 QK / mm ingot axis And at least approximately equal to the temperature gradient at the diffusion length starting from the cylindrical edge of the ingot. By generating a temperature gradient at the ingot-melt interface that is greater than about 2.5 QK / mm ingot axis and at least approximately equal to the temperature gradient at the diffusion length from the cylindrical edge of the ingot, relative to silicon The ingot-melt interface of the melt is a flat or convex surface. The ingot thus pulled up is cut into many pure silicon wafers which may contain point defects but not contain cavity aggregates and interstitial aggregates. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -------- ^ ----- install --- (please read the precautions on the back before filling this page) The crystal device includes an outer shell and a crucible located in the outer shell for containing a silicon melt. In the shell, a seed crystal seat is provided adjacent to the crucible. Inside the housing, a heater is provided around the crucible. Inside the housing, a thermal assembly is provided around the heater. A heat shield is provided between the crucible and the seed base, and a cooling jacket is provided between the heat shield and the seed base. A device is provided for pulling up the seed holder from the crucible, thereby pulling up the single crystal silicon ingot from the silicon melt. The single crystal silicon ingot has an axis and a cylindrical edge. The silicon melt and ingot define a crystal ingot-melt interface between them. The invention also provides a heat shield plate for a Cheklausra crystal device, which comprises a ring-shaped heat shield shell body, which includes internal and external heat shield shell walls, a sloped heat shield shell bottom plate, and Extends to the internal and external heat shields. The paper size is applicable to Chinese National Standard (CNS) A4 (210 X 297 mm) 552326. Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7. Dirt between the tops of the heat shield shell. The heat shield housing contains insulating material. One ± _ know tl pieces are configured to support the heat shield shell in the accident of the Lauszkila crystal device. The inner and outer heat-receiving plate walls are preferably vertical inner and outer heat-shielding plate walls, and the top of the heat-shielding plate outer body is preferably A inclined the top of the heat-transfer plate outer body. In a specific embodiment, the support element includes at least one extension heat: a support arm of the outer shell. The at least one support arm may be hollow and hollow. In another embodiment, the support element is a ring of support 70 pieces. The ring-shaped supporting element may include internal and external selective elements "" with an insulating material therebetween. The ring-shaped branch building element can also have a °% shape (the pieces can be inclined. The heat-trapping plate as described above can also be provided: the position of the heat-shielding plate and the heat-shielding plate outside the heat-shielding plate, At least one of the structure of the hot plate, the application of the heater to the Jiaqin: the structure, the location of the heat source, the structure of the thermal component, and the interface source of the melt is selected for crystal-hyun seat- The temperature gradient, which is greater than about 2.5 ° K / millisecond, is about 4: 2 to: The temperature is approximately equal to the diffusion length i from the cylindrical edge of the ingot. According to another aspect of the present invention, The position of the hot plate, the structure of the heater, the location of the heater, the structure of the cooling jacket, the trouble: the structure of the heat module, and the energy applied to the heater. At least: for generating relative to a plane-= : The above parameters can be changed individually. For example, hanging accidents include 1 paper rule, paper money, financial specifications ⑽X 297 public love ---.--- ^ ------ install --- (Please read first Note on the back, please fill out this page again) 552326 Printed by the Consumer Property Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (7) Top and 1 # Field bottom The heat sink and the heat sink include a heat sink top and a heat sink bottom. The position of the heat shield is preferably selected by changing the distance between the bottom of the heat shield and the top of the crucible. The structure of the heat shield can be borrowed It is selected by providing a heat shield cover at the bottom of the heat shield. The heat shield cover preferably includes a ring-shaped heat shield outer casing located in the crucible, which includes the inner and outer heat transfer plate outer walls, and an inclined load. The bottom plate of the hot plate outer shell and the top of the heat shield outer shell extending from the inner and outer heat shield outer shell walls. The heat shield outer shell preferably contains an insulating material. The inclined heat shield outer shell defines an angle to the horizontal plane And the structure of the heat shield is also preferably selected by changing this angle. The bottom plate of the slanted heat shield plate and the horizontal plane create a first angle, and the top of the slanted heat shield plate and the horizontal plane create a second angle. At least one of the inner wall length, the first angle, and the second angle is preferably selected for generating a temperature gradient at the ingot-melt interface at the ingot axis, which is at least approximately equal to that by the crystal bond. Start with a cylindrical edge The temperature gradient at the diffusion length. The heater also contains a heater top and heater bottom, and the position of the heater is preferably selected by changing the distance between the top of the heater and the top of the heater. The position and the location of the accident can also be changed axially relative to the casing at the same time. The cooling jacket also contains-the top of the cooling jacket and the bottom of the cooling jacket and the position of the cooling jacket are preferably changed by changing the page of the accident The distance between the bottom of the cooling sleeve and the bottom of the cooling sleeve. The thermal module contains the upper thermal module casing and the lower handle module casing, which are each filled with a heat absorbing material. The structure of the thermal module is better (please read the note on the back? (Fill in this page) Pack -10- 552326 A7 B7 V. Description of the invention (9) Brief description of the figure The first picture is a schematic diagram of a Cheklaszkyra crystal device for growing single crystal stones and crystal bonds; brother Figure 2 illustrates Vronokov's theory; Figures 3 A-3 E illustrate the general outline of wafer manufacturing. The wafer has a cavity-rich region at the center, a cavity-rich region, and a wafer edge. Pure region between Figures 4 A-4 E illustrate the outline of wafer manufacturing, the wafer does not contain aggregates; Figure 5 illustrates an improved Cheklaszkyra crystal device and modification method according to the present invention; Figure 6 illustrates the figure Comparison between a conventional radial temperature gradient as a function of distance and a radial temperature gradient as a function of distance according to the invention; Figure 7 illustrates between the bottom of the heat shield and the top of the crucible according to the invention Trends observed in changes in temperature gradient as a function of distance; Figure 8 illustrates the trends observed in changes in temperature gradient as a function of distance between crucible top and heater top according to the present invention; Ministry of Economic Affairs Printed by the Intellectual Property Bureau's Consumer Cooperatives ------: ----- install --- C Please read the phonetic on the back? Matters need to be refilled on this page} Figure 9 illustrates the trend observed in the change in temperature gradient as a function of the distance between the crucible and the shell according to the present invention; Figure 10 illustrates the trend according to the present invention. Observed trends in changes in temperature gradient as a function of distance between the top of the field and the bottom of the cooling jacket; Figure 11 illustrates the function of the amount of heat absorbing material removed from the upper thermal module housing according to the present invention Observed in the change of temperature gradient ^ Paper size applies Chinese National Standard (CNS) ^^^^ _ x 297 public love) -------- -12-552326 Printed by A7 B7, Consumer Cooperative of Intellectual Property Bureau, Ministry of Economic Affairs 3, the trend of the invention (3); Figure 12 is a flowchart illustrating the steps of changing parameters in combination according to the present invention; Figure 13 is an enlarged view of the heat shield of Figure 5; Figures 14A-14D are according to the present invention Partial perspective view of a specific embodiment of a heat shield. Details of preferred embodiments The present invention will be described in more detail below with reference to the following drawings showing preferred embodiments of the present invention. However, the present invention Can any The form is specifically implemented, and should not be construed as limited to the embodiments described in this specification. On the contrary, these specific embodiments are provided to make the disclosure of the specification more detailed and complete, and fully convey the scope of the present invention. Those skilled in the art are aware of this. Throughout the description, the same numbers refer to the same components. Overview A wafer that is rich in holes and finished 4 is now referred to in Figures 3A-3E, illustrating that according to US Patent Application No. 08 / Overview of the fabrication of semi-pure wafer No. 989,591. This wafer has a hole-rich region located in the center of the wafer, which may contain hole aggregates and a pure region bounded between the empty space region and the wafer edge. Qualitative regions, which do not contain hole aggregates and interstitial aggregates. As shown in Figure 3A, the fabrication of these hole-rich wafers can begin with an overview of Vron〇k〇v theory. Vr〇n〇k〇v The theory is shown graphically in Figure 3A. As shown by the straight line starting from the edge_) and ending at the center (c) 'According to the invention of US Patent Application No. 9,591 has been found, if the pull-up rate is relatively At the crystal melt interface The paper size of this paper applies the Chinese National Standard (CNs) A4 specification (21 × 297 mm) ------- ^ ------ install --- (Please read the precautions on the back before filling (This page). -13- 552326 Printed by A7 B7, Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (the ratio of the gradient of the square, called V / G, is maintained greater than (V / G at the diffusion length from edge E) ) !, confirmed as point a, and less than (v / G) 2 at center c, a half-pure wafer can be manufactured with a hole-rich region at the center and a hole-rich region Pure area between the area and the edge of the wafer. In particular, V / G will change radially across the wafer in the crystal record: and will generally decrease from the center of the wafer to the edge of the wafer because the wafer Difference in thermal characteristics at the center and edges. Therefore, an example wafer has a radial V / G range from the center to the edge (E) as shown in FIG. 3A. The decisive consideration in the manufacture of silicon bonds and wafers is the formation of aggregates in the wafer, whether they are hole aggregates or interstitial aggregates. Aggregates are known to be formed by a combination of point defects formed during the initial manufacturing process. The concentration of point defects is generally determined by the conditions of the interface between the stone bond and the melt. Then, as the ingot is further pulled up, diffusion and cooling determine the combination of point defects to form aggregates. As shown in FIG. 3B, according to the invention according to US Patent Application No. 08 / 989,591, it has been found that a critical hole point defect concentration [V] * and a critical gap point defect concentration [〖] * exist, which are lower than At these critical concentrations, point defects will not be combined into aggregates. According to the present invention, it has been found that if the point defect concentration in the area around the wafer is maintained below these critical concentrations, the area containing holes is formed in the center of the wafer, but the pure area is formed in the boundary between the rich Between the cavity-containing area and the edge of the wafer. Therefore, as shown in FIG. 3B, the hole concentration across the wafer is maintained below the critical hole point defect concentration m *, except for near the center of the wafer. As shown in Figure 3C, the cavity-rich area [V] is formed at the center, but the cavity-rich area is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 male ---. ---: ------ install— (Please read the phonetic on the back? Matters before filling out this page) _ -14-552326 A7 printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs

BY 五、發明說明(12) 外部至晶圓邊緣的區域係不含空穴集聚體並因此以[P]表 示(純質或完美)。 再次參考第3B圖,就間隙而言,由晶圓之中心c至晶 圓之邊緣E的擴散長度1^對應於點a的間隙濃度係維持在低 於臨界間隙濃度[I]*。界於晶圓之擴散長度L!及邊緣e之 間,即使在晶錠-熔融物界面處之間隙濃度最初高於臨界間 隙濃度[I]*,擴散將容許間隙空穴擴散至晶錠之外且在結 晶成長期間不會形成集聚體。就8吋之晶圓而言,擴散長度 h—般介於約2·5至3公分。因此,如第3C圖所示,形成具 有位在中心處之富含空穴區域[V]及界於富含空穴區域[ν] 及邊緣之間的完美區域之半純晶圓。較佳地,介於富含空 穴區域[V]及邊緣之間的純質區域至少占36%晶圓區 域,且更佳地,至少占60%晶圓區域。 為了形成第3C圖的晶圓,V/G必須在點&處維持大於 (V/G)〗並在中心C處小於或等於(V/G)2。為了維持維持 之比率界於此二臨界值之間,需考慮二熱相關因子。首先, 由晶圓之中心C至晶圓之擴散長度a形成之捏向溫度梯产〇 必須維持在這些值之内。因此,在中心處之V/q^又 (V/G)2以致於將空穴集聚體限制於富含空穴的區域。、^ 者,在由邊緣開始之擴散長度Li處的V/G必須唯持^再 (V/G)1,以致能避免間隙集聚體。因此,加熱爐、孰^上 佳地應設計成在晶BI之中心及晶圓之擴散長 車乂 變化,以致於使V/G維持(V/G)2及(V/G)i之間。 ° 第二因子為當晶圓由籽晶開始自炼 上拉至晶尾結 本紙張尺度適用中國國家標準(CNS)A4規格(2ΐ〇^Γ^· ---.---1------裝--- (請先閱讀背面之注意事項再填寫本頁) 訂, 經濟部智慧財產局員工消費合作社印製 552326 A7 -^_____________B7____ 五、發明說明(3 束時,G將軸向地改變。更特別地,晶錠之增加熱質、熔 融物之增加熱質及其他熱相關因子在晶錠自熔融物中上拉 時,一般將造成G降低。因此,為了使V/G在第一及第二臨 界值之間,在晶錠由熱區加熱爐内的矽熔融物上拉時,調 整上拉速率分布。 藉由晶疑上拉時控制V/G,可將空穴集聚體拘限在接 近如第3D圖所示之晶錠之軸a的富含空穴之區域[v]。間隙 集聚體未形成’所以富含空穴之區域[V]外側之晶錠區域係 稱為[P]以意指純質或完美。亦如第3D圖所示,此產生多數 半純晶圓,其具有位於中心之包含空穴集聚體的富含空穴 區域[V]及界於富含空穴區域及晶圓邊緣之間的不含空穴 集聚體及間隙集聚體的純質區域。 富含空穴之區域[V]之直徑在每個晶圓中皆相同。由單 一晶錠形成之多數晶圓的識別可由識別號發現,第3D圖中 Ί才示5己之ID,其一般為標記在每一晶圓上的字母數字碼。 此18個字元區域可用於識別這些晶圓為皆來自單一晶錠。 第3E圖说明當晶鍵由熔融物上拉時,用於維持v/g界 於二臨界值之上拉速率分布。因為當晶疑由炫融物上拉 時,G—般會降低,上拉速率一般亦會降低以維持V/g界於 二臨界值之間。為了容許預期的加工變數,V/G較佳係維 持在第一及第二臨界比率之間的中間值。因此,較佳為維 持一防護帶區以容許加工變數。 、 第4A-4E圖對應於第3 A_3E圖並說明根據美國專利申 請案第08/989,591號來控制上拉速率分布以形成純所 $ /日曰 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公f ) -16- —.---^-----裝— (請先閱讀背面之注意事項再填寫本頁) ·- 552326 經濟部智慧財產局員工消費合作社印製 A7 五、發明說明(3 仏及曰曰圓。如第4A圖所示,若V/G在晶圓中心C及由晶圓 邊緣E開始之擴散長度之間維持在較緊的公差範圍内,可 預=整個晶圓上空穴集聚體及間隙集聚體的形成。因此, 々,苐4B圖所示,在晶圓之中心(晶旋之轴a),v/g之比 率係維持低於將形成空穴集聚體的臨界比率(V/G)2。同樣 地’ V/G係維持高於將形成間隙集聚體之臨界比率(V/G)!。 因此’形成第4C圖之不含間隙集聚體及空穴集聚體的純質 矽[p]。純質晶錠與一組純質晶圓一同顯示於第4D圖中。純 貝曰日圓之上拉速率係顯示於第4E圖中。 基拉晶奘詈 現在參考第5圖,現在將描述根據本發明之經改良的切 克勞斯基拉晶裝置。如第5圖所示,經改良之切克勞斯基拉 晶裝置200包含加熱爐' 結晶上拉機構、環境控制器及以電 腦為主的控制系統。切克勞斯基加熱爐一般係指熱區加熱 爐。熱區加熱爐包含加熱器2〇4、可由石英製成之坩堝2〇6、 可由石墨製成之承受器208及以如圖所示之方向212環繞軸 旋轉的轉動轴210。 冷卻套管或通口 232係藉由例如水冷卻之外部冷卻法 來冷卻。擋熱板214可提供額外的熱分佈。熱組件2〇2内包 含熱吸收材料216以提供額外的熱分佈。 結晶上拉機構含有可依與所示方向212相反之方向222 環繞軸旋轉的結晶上拉軸220。結晶上拉軸在末端包含籽晶 座220a。籽晶座220a承接由坩堝206内之熔融物226上拉之 籽晶224以形成晶錠228。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ---,---1-----I 裝--- (請先閱讀背面之注意事項再填寫本頁) . -17- 552326 A7 經濟部智慧財產局員工消費合作社印製 五、發明說明( 外圍環境控制系統可包含室外殼體230、冷卻套管232 及其他未顯示之流量控制器及真空抽氣系統。以電腦為主 的控制系統可用於控制加熱元件、拉晶器及其他電子及機 械元件。 為了生長出單結晶矽晶錠,籽晶224係與矽熔融物226 接觸並逐漸地藉由結晶上拉軸220或其他用於將籽晶座拉 離結晶坩堝之習知裝置以軸向向上拉出。矽熔融物226冷卻 及固化成單結晶矽發生在晶錠220a及熔融物226之間的界 面 220。 根據本發明,擋熱板214之位置、擋熱板214之構造、 加熱器204之位置、冷卻套管202之構造、坩堝206之位置、 熱組件202之構造及應用至加熱器204之能源中至少一者係 經選擇以供在晶錠-溶融物之界面產生一溫度梯度,其大於 約2·5°K/宅米晶旋轴,以點a表示,且至少約等於由晶鍵之 圓柱形邊緣開始之擴散長度處的溫度梯度,以點B表示。 換句話說,這些參數可經控制以致能產生相對於矽熔融物 226呈平面或凸面的晶旋_溶融物界面,如第5圖所示。 亦如第5圖所示,習知擋熱板可藉由在擋熱板底部增添 擋熱板外罩234來改良。擋熱板外罩234較佳為充填例如碳 化鐵素體之保溫材料。擋熱板外罩234之外形尺寸亦可改 變,將於下文中詳細描述。 根據本發明亦可提供熱組件材料216之改良。更明確 地,如第5圖所示,熱組件外殼體202包含上部熱組件外殼 體202a及下部熱組件外殼體202b。可自上部熱組件外殼體 (請先閱讀背面之注音?事項再填寫本頁) 裝 Ί8- 552326 A7 B7 五、發明說明(1 202a移除熱吸收材料216’ 一般為碳化鐵素體。在一具體實 施例中,熱吸收材料係由整個上部熱組件外殼體202a移除。 首先說明在晶錠-熔融物之界面產生一溫度梯度,其大 於約2·5°Κ/毫米晶錠軸且至少約等於由晶錠之圓柱形邊緣 開始之擴散長度處的溫度梯度的理想性之理論討論。接 著,將說明可改變之每一參數的考量因子。最後,將說明 參數組合的改變。 理論討論 重述製造完美矽之討論的要點,並再次參考第4Β圖, 其已顯示出要獲得完美的矽,半徑⑴及在晶錠-熔融物界面 的軸(ζ)溫度梯度應保持在[V]*及[I]*之間,對應於點c之界 於由晶錠之軸至由晶錠之圓柱狀邊緣開始的擴散長度及由 第4Β圖之點Ε的距離。因此: (V/C)! <V/G(r) <(V/G)2 (1),以及 (V/C)! <V/G(z) <(V/C)2 (2) 定義 AV/G = (V/C)2 - (V/G)i (3) 經濟部智慧財產局員工消費合作社印製 為界於軸及由圓柱形邊緣開始之擴散長度之間的V/g差 異,可獲得下述結果: △ V/G = V(l/G2 - 1/GD = V〔( GrG2 )/( G! · G2)〕⑷ △ G、Gl-G2 (5) 接著’為了使方程式(4)中的△ V/G最小化,應維持下述關 係: △ G,e 〇 (6) -19- ---.---^------裝--- (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 552326 經濟部智慧財產局員工消費合作社印製 Α7 Β7 五、發明說明(巧 G2 Q 2.5 (7) 合併方程式(5)及(6)產生: G2 G Gi 〇 簡言之,方程式(8)說明在晶錠-熔融物之界面的溫度 梯度應至少約等於由晶錠之圓柱形邊緣開始之擴散長度處 的溫度梯度。簡言之,方程式(7)說明在晶錠-熔融物之界 面的溫度梯度應晶大於約2·5°Κ/毫米晶錠軸(中心)。 方程式(7)係基於實驗觀察而得,因為上拉速率ν之實 際較低限制為約0.4毫米/分鐘。在上拉速率低於此速率 時’晶錠可能自籽晶座掉落。再者,(V/G)2之實際較低限 制為約0· 16毫米/°K。因此,在晶鍵軸處的溫度梯度應大於 約2·5°Κ/毫米。 已發現到,根據本發明,當在晶錠_熔融物之界面的溫 度梯度應晶大於約2·5°Κ/毫米晶錠軸(對應於第5圖中的點 Α)且亦至少約等於由晶錠之圓柱形邊緣開始之擴散長度 處的溫度梯度(對應於第5圖中的點Β)時,第5圖之晶錠-熔融物界面230將相對於矽熔融物226呈平面或凸面,如第5 圖所示。 品質上,已發現完美碎可藉由與晶鍵中心相較,增加 晶錠邊緣之加熱至高於補償邊緣冷卻效應之程度來產生。 再者,應維持在中心處之特定最低溫度梯度。當此二標準 皆符合時,可產生完美的矽。 由熱傳觀點來看,根據本發明已發現到,與由熔融物 226傳至晶録;228之熱相較,在坩堝206中應有更多的熱由熔 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -20- . :----- -裝— C請先閲讀背面之注意事項再填寫本頁) 訂·· 552326 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(坊 融物226傳至空氣236。換句話說,與液體/固體界面相較, 應有更多的熱傳送通過液體/空氣界面。為了達到此較佳 的傳送,來自加熱器204之額外的熱應經由空氣236達到晶 錠228之邊緣。 第6圖說明徑向梯度G為由晶錠之中心(軸)C至邊緣E 之距離D的函數。如實線所示,根據本發明,在中心C處的 晶錠-熔融物界面的梯度為至少約等於由圓柱形邊緣E開始 之擴散長度1^處的梯度。此與習知溫度梯度相反,如第6 圖之虛線所示,習知之溫度梯度在由邊緣E開始之擴散長 度處係較晶錠之中心C處高出許多。 參數變化 如上所述,根據本發明,擋熱板之位置214、擋熱板214 之構造、加熱器204之位置、冷卻套管232之構造、坩堝206 之位置、熱組件202之構造及應用至加熱器204之能源中至 少一者係經選擇以供在晶錠-熔融物之界面產生一溫度梯 度,其大於約2.5°K/毫米晶錠軸且至少約等於由晶錠之圓 柱形邊緣開始之擴散長度處的溫度梯度。在下述說明中, 在前文中以G2表示之晶鍵:軸處的溫度梯度將以Gh表示。 現將描述這些參數個別的選擇。熟習是項技術者將瞭解 到,每一參數之實際值係依特定製造商及欲改良之切克勞 斯基拉晶裝置之型號而改變。再者,對已有的切克勞斯基 拉晶裝置而言,多組參數可產生上述結果。 現在將描述擋熱板214之位置的選擇。如第5圖所示, 坩堝206包含一坩堝頂部及一坩堝底部以及擋熱板214包含 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -21- I J---:-----鬌-裝—— (請先閱讀背面之注音?事項再填寫本頁) · 經濟部智慧財產局員工消費合作社印製 552326 A7 __----^~-— B7__—___ 五、發明說明($ 一擋熱板頂部及一擋熱板底部。擋熱板的位置係藉由改變 擋熱板底部及坩堝頂部之間的距離來選擇。此距離在第$ 圖中以a表示。第7圖圖示說明aG,&g“之變化趨勢為距 離a的函數。如圖所示,此二量之間可能為非線性關係。 現在將描述擋熱板214構造之改良。如第5圖所示,習 知擋熱板構造可藉由在擋熱板底部提供擋熱板外罩234來 改良。擋熱板外罩234較佳係充填例如碳化鐵素體之保溫材 料。擋熱板外罩234之外形尺寸亦可改變,將於下文中詳細 描述。 現在將描述加熱器204位置的改良。如第5圖所示,加 熱^§ 204各有一加熱裔頂部及加熱器底部。加熱器之位置係 藉由改變坩堝頂部及加熱器頂部之間的距離來改變。此距 離在第5圖中以b表示。G+。及△ G,變化上所觀察到的趨勢 為距離b的函數,顯示於第8圖中。 根據本發明,加熱器204之位置及坩堝206之位置可同 時相對於外殼230而軸向地改變。尤其,在改變坩堝頂部及 加熱器頂部之間的距離b後,界於坩堝206及外殼230之間的 距離d可改變。第9圖圖示說明當維持距離b為定值時,△ G’及之變化趨勢為距離d的函數。 現在將說明冷卻套管位置之改良。如第5圖所示,冷卻 套管232含有一冷卻套管頂部及冷卻套管底部。根據本發 明,冷卻套管的位置可藉由改變坩堝頂部及冷卻套管底部 之間的距離而改變。此距離在第5圖中以c表示。第10圖圖 示說明在Gt及△ G’變化上所觀察到的趨勢為距離c的函 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -22- ---.---:------裝—— (請先閱讀背面之注意事項再填寫本頁)BY V. Description of the Invention (12) The area from the outside to the edge of the wafer is free of hole aggregates and is therefore represented by [P] (pure or perfect). Referring to FIG. 3B again, in terms of the gap, the diffusion length 1 ^ from the center c of the wafer to the edge E of the wafer is corresponding to the gap concentration maintained at the critical gap concentration [I] *. Bounded between the diffusion length L! And edge e of the wafer, even if the gap concentration at the ingot-melt interface is initially higher than the critical gap concentration [I] *, the diffusion will allow gap holes to diffuse beyond the ingot And no aggregates are formed during crystal growth. For an 8-inch wafer, the diffusion length h is typically between about 2.5 and 3 cm. Therefore, as shown in FIG. 3C, a semi-pure wafer having a hole-rich region [V] at the center and a perfect region bounded between the hole-rich region [ν] and the edge is formed. Preferably, the pure region between the cavity-rich region [V] and the edge occupies at least 36% of the wafer area, and more preferably, it occupies at least 60% of the wafer area. In order to form the wafer of Figure 3C, V / G must remain greater than (V / G) at the point & and less than or equal to (V / G) 2 at the center C. In order to maintain the ratio between these two critical values, two thermal correlation factors need to be considered. First, the pinch temperature ladder formed from the center C of the wafer to the diffusion length a of the wafer must be maintained within these values. Therefore, V / q ^ (V / G) 2 at the center is such that the hole aggregate is restricted to a region rich in holes. In addition, V / G at the diffusion length Li starting from the edge must only hold ^ (V / G) 1 so that gap agglomerates can be avoided. Therefore, the heating furnace and the heater should be designed to change in the center of the crystal BI and the diffusion length of the wafer, so that V / G is maintained between (V / G) 2 and (V / G) i. . ° The second factor is that when the wafer is pulled from the seed crystal to the end of the wafer, the paper size applies the Chinese National Standard (CNS) A4 specification (2ΐ〇 ^ Γ ^ · ---.--- 1 --- --- Equipped --- (Please read the notes on the back before filling this page) Order, printed by the Intellectual Property Bureau Employee Consumer Cooperatives of the Ministry of Economic Affairs 552326 A7-^ _____________ B7____ 5. Description of the invention (for 3 bundles, G will be axial More specifically, the increase in thermal mass of the ingot, the increase in thermal mass of the melt, and other thermal-related factors will generally cause G to decrease when the ingot is pulled from the melt. Therefore, in order to make V / G in Between the first and second critical values, when the ingot is pulled from the silicon melt in the heating zone heating furnace, the pull-up rate distribution is adjusted. By controlling V / G during the pull-up of the crystal, holes can be gathered The body is confined to the cavity-rich region [v] near the axis a of the ingot shown in FIG. 3D. The interstitial aggregate is not formed, so the cavity-rich region [V] is outside the ingot region. Called [P] to mean pure or perfect. Also as shown in Figure 3D, this produces most semi-pure wafers with a hole-containing aggregate in the center Hole-rich region [V] and the pure region without hole aggregates and interstitial aggregates bounded between the hole-rich region and the wafer edge. The diameter of the hole-rich region [V] It is the same in each wafer. The identification of most wafers formed by a single ingot can be found by the identification number. The 5D ID is shown in Figure 3D, which is generally an alphanumeric number marked on each wafer. This 18-character region can be used to identify these wafers as coming from a single ingot. Figure 3E illustrates that when the crystal bond is pulled up from the melt, it is used to maintain the v / g boundary above the two critical value pull rate. Distribution. Because when the crystal is pulled up by the melt, the G will generally decrease, and the pull-up rate will generally decrease to maintain the V / g boundary between two critical values. In order to allow the expected processing variables, V / G It is preferable to maintain the middle value between the first and second critical ratios. Therefore, it is preferable to maintain a guard band region to allow processing variables. Figures 4A-4E correspond to Figures 3A-3E and illustrate that according to the US patent Application No. 08 / 989,591 to control the pull-up rate distribution to form a pure paper China National Standard (CNS) A4 Specification (210 X 297 male f) -16- —.--- ^ ----- install— (Please read the precautions on the back before filling this page) ·-552326 Ministry of Economic Affairs Wisdom Printed by A7 of Consumer Property Cooperative of the Property Cooperative. V. Description of the invention (3 仏 and 圆 circle. As shown in Figure 4A, if V / G is maintained between the center of wafer C and the diffusion length from wafer edge E, Within a tighter tolerance range, it can be predicted that the formation of cavity aggregates and gap aggregates on the entire wafer. Therefore, as shown in Figure 4B, the center of the wafer (axis a), v / g The ratio is maintained below the critical ratio (V / G) 2 at which hole aggregates will be formed. Similarly, the 'V / G system is maintained above the critical ratio (V / G)! That will form interstitial aggregates !. Therefore, 'Pure silicon [p] without interstitial aggregates and hole aggregates in Fig. 4C is formed. The pure ingot is shown together with a set of pure wafers in Figure 4D. The pull rate of pure Japanese Yen is shown in Figure 4E. Kira crystals Referring now to FIG. 5, an improved Cheklaszky crystal device according to the present invention will now be described. As shown in Fig. 5, the modified Cheklaszkyra crystal device 200 includes a heating furnace 'crystal pull-up mechanism, an environmental controller, and a computer-based control system. A Cheklaussky furnace is generally a hot zone furnace. The hot zone heating furnace includes a heater 204, a crucible 206 made of quartz, a holder 208 made of graphite, and a rotating shaft 210 rotating around the shaft in a direction 212 as shown in the figure. The cooling jacket or port 232 is cooled by an external cooling method such as water cooling. The heat shield 214 may provide additional heat distribution. Thermal module 202 contains a heat absorbing material 216 to provide additional heat distribution. The crystal pull-up mechanism includes a crystal pull-up shaft 220 that can rotate around an axis in a direction 222 opposite to the direction 212 shown. The crystal pull-up shaft includes a seed crystal holder 220a at the end. The seed crystal holder 220a receives the seed crystal 224 pulled up by the melt 226 in the crucible 206 to form an ingot 228. This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) ---, ----------------------- I (Please read the precautions on the back before filling this page) -17- 552326 A7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the Invention (The peripheral environment control system may include outdoor casing 230, cooling jacket 232, and other unshown flow controllers and vacuum extraction systems. The computer-based control system can be used to control heating elements, crystal pullers and other electronic and mechanical components. In order to grow single crystal silicon ingots, the seed crystal 224 is in contact with the silicon melt 226 and is gradually pulled up by the crystal The shaft 220 or other conventional device for pulling the seed seat away from the crystal crucible is pulled up axially. The silicon melt 226 cools and solidifies into single crystal silicon, which occurs at the interface 220 between the ingot 220a and the melt 226 According to the present invention, the position of the heat shield 214, the structure of the heat shield 214, the location of the heater 204, the structure of the cooling jacket 202, the location of the crucible 206, the structure of the thermal assembly 202, and the energy applied to the heater 204 At least one of them is selected for The ingot-melt interface produces a temperature gradient that is greater than approximately 2.5 ° K / home rice crystal rotation axis, expressed as point a, and at least approximately equal to the temperature at the diffusion length from the cylindrical edge of the crystal bond The gradient is represented by point B. In other words, these parameters can be controlled so that a crystal-melt interface that is flat or convex with respect to the silicon melt 226 can be generated, as shown in Figure 5. Also as shown in Figure 5. It is shown that the conventional heat shield can be improved by adding a heat shield cover 234 to the bottom of the heat shield. The heat shield cover 234 is preferably filled with a heat insulating material such as ferrite. The outer size of the heat shield cover 234 It can also be changed, which will be described in detail below. According to the present invention, an improvement of the thermal module material 216 can also be provided. More specifically, as shown in FIG. 5, the thermal module housing 202 includes an upper thermal module housing 202 a and a lower thermal Module outer casing 202b. The upper thermal module outer casing (please read the note on the back? Matters before filling out this page) Decoration 8- 552326 A7 B7 V. Description of the invention (1 202a Remove the heat-absorbing material 216 'Generally iron carbide Body. In a specific implementation The heat absorbing material is removed from the entire upper thermal component outer casing 202a. First, a temperature gradient is generated at the ingot-melt interface, which is greater than about 2.5 ° K / mm ingot axis and is at least approximately equal to A theoretical discussion of the ideality of the temperature gradient at the diffusion length starting from the cylindrical edge of the ingot. Next, the considerations for each parameter that can be changed will be explained. Finally, the change of the parameter combination will be explained. The theoretical discussion restates manufacturing perfection The main points of the discussion of silicon, and referring again to Figure 4B, it has been shown that to obtain perfect silicon, the radius ⑴ and the axis (ζ) temperature gradient at the ingot-melt interface should be maintained at [V] * and [I ] *, The distance corresponding to the boundary of point c from the axis of the ingot to the cylindrical edge of the ingot and the distance from point E in Figure 4B. So: (V / C)! ≪ V / G (r) < (V / G) 2 (1), and (V / C)! ≪ V / G (z) < (V / C) 2 (2) Definition AV / G = (V / C) 2-(V / G) i (3) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy as bounded between the axis and the diffusion length starting from the cylindrical edge The difference of V / g can be obtained as follows: △ V / G = V (l / G2-1 / GD = V [(GrG2) / (G! · G2)] ⑷ △ G, Gl-G2 (5) Then 'in order to minimize Δ V / G in equation (4), the following relationship should be maintained: △ G, e 〇 (6) -19- ---.--- ^ ------ install- -(Please read the precautions on the back before filling this page) This paper size applies Chinese National Standard (CNS) A4 (210 X 297 public love) 552326 Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives A7 Β7 V. Invention Explanation (Clear G2 Q 2.5 (7) Combining equations (5) and (6) produces: G2 G Gi 〇 In short, equation (8) states that the temperature gradient at the ingot-melt interface should be at least approximately equal to Temperature gradient at the diffusion length from the cylindrical edge of the ingot. In short, equation (7) shows that the temperature gradient at the ingot-melt interface should be More than about 2.5 ° K / mm ingot axis (center). Equation (7) is based on experimental observations, because the actual lower limit of the pull-up rate ν is about 0.4 mm / min. The pull-up rate is lower than At this rate, the ingot may fall from the seed seat. Furthermore, the actual lower limit of (V / G) 2 is about 0 · 16 mm / ° K. Therefore, the temperature gradient at the axis of the crystal bond should be greater than About 2.5 ° K / mm. It has been found that according to the present invention, when the temperature gradient at the ingot_melt interface should be greater than about 2.5 ° K / mm ingot axis (corresponding to Figure 5) Point A) and at least approximately equal to the temperature gradient at the diffusion length from the cylindrical edge of the ingot (corresponding to point B in Fig. 5), the ingot-melt interface 230 in Fig. 5 will be opposite The silicon melt 226 is flat or convex, as shown in Figure 5. In terms of quality, it has been found that the perfect break can be generated by increasing the heating of the ingot edge to a degree higher than the compensation edge cooling effect compared with the center of the crystal bond. Furthermore, a specific minimum temperature gradient at the center should be maintained. When both of these criteria are met, perfection can be achieved From the point of view of heat transfer, according to the present invention, it has been found that compared with the heat transferred from the melt 226 to the crystal record 228, there should be more heat in the crucible 206 from the melting paper size applicable to the Chinese country Standard (CNS) A4 specification (210 X 297 mm) -20-. : ----- -Installation — C Please read the notes on the back before filling in this page). Cooperative printed A7 B7 V. Invention description (Fang Rongwu 226 was transmitted to air 236. In other words, there should be more heat transfer through the liquid / air interface than the liquid / solid interface. To achieve this better transfer, additional heat from the heater 204 should reach the edge of the ingot 228 via the air 236. Figure 6 illustrates the radial gradient G as a function of the distance D from the center (axis) C to the edge E of the ingot. As shown by the solid line, according to the present invention, the gradient of the ingot-melt interface at the center C is at least approximately equal to the gradient at the diffusion length 1 ^ from the cylindrical edge E. This is contrary to the conventional temperature gradient. As shown by the dotted line in Fig. 6, the conventional temperature gradient is much higher at the diffusion length starting from the edge E than at the center C of the ingot. The parameter changes are as described above. According to the present invention, the position of the heat shield 214, the structure of the heat shield 214, the location of the heater 204, the structure of the cooling jacket 232, the location of the crucible 206, the structure of the thermal assembly 202, and its application to At least one of the energy sources of the heater 204 is selected to generate a temperature gradient at the ingot-melt interface, which is greater than about 2.5 ° K / mm ingot axis and is at least approximately equal to starting from the cylindrical edge of the ingot The temperature gradient at the diffusion length. In the following description, the crystal bond represented by G2 in the foregoing: the temperature gradient at the axis will be represented by Gh. Individual selection of these parameters will now be described. Those skilled in the art will understand that the actual value of each parameter varies depending on the specific manufacturer and the model of the Cheklauskira crystal device to be improved. Furthermore, for existing Cheklaussky crystal devices, multiple sets of parameters can produce the above results. The selection of the position of the heat shield 214 will now be described. As shown in FIG. 5, the crucible 206 includes a crucible top and a crucible bottom, and the heat shield 214 includes the paper size applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -21- I J --- : ----- 鬌-装 —— (Please read the note on the back? Matters before filling out this page) · Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 552326 A7 __---- ^ ~ -— B7 __—___ V. Description of the invention ($ One heat shield top and one heat shield bottom. The position of the heat shield is selected by changing the distance between the bottom of the heat shield and the top of the crucible. This distance is indicated by a in the first figure Fig. 7 illustrates that the change trend of aG, & amp "is a function of the distance a. As shown in the figure, the two quantities may be a non-linear relationship. The improvement of the structure of the heat shield 214 will now be described. As shown in Fig. 5, the structure of the conventional heat shield can be improved by providing a heat shield cover 234 at the bottom of the heat shield. The heat shield cover 234 is preferably filled with a heat insulating material such as ferrite. The heat shield The outer dimensions of the plate cover 234 can also be changed and will be described in detail below. The heater 204 position will now be described As shown in Figure 5, heating ^ § 204 each has a heating top and a heater bottom. The position of the heater is changed by changing the distance between the crucible top and the heater top. This distance is on the fifth It is represented by b. G +. And △ G in the figure. The observed trend in the change is a function of the distance b and is shown in Fig. 8. According to the present invention, the position of the heater 204 and the position of the crucible 206 can be relative to each other. The housing 230 changes axially. In particular, after changing the distance b between the crucible top and the heater top, the distance d between the crucible 206 and the housing 230 can be changed. Figure 9 illustrates when the distance b is maintained When it is a fixed value, Δ G ′ and its change tendency are a function of the distance d. The improvement of the position of the cooling jacket will now be described. As shown in FIG. 5, the cooling jacket 232 includes a top of the cooling jacket and a bottom of the cooling jacket. According to the present invention, the position of the cooling jacket can be changed by changing the distance between the crucible top and the bottom of the cooling jacket. This distance is represented by c in Figure 5. Figure 10 illustrates the Gt and △ G 'The observed trend in change is The paper size of the letter from c applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -22- ---.---: ------ installed-(Please read the note on the back first (Fill in this page again)

J^T 552326 經濟部智慧財產局員工消費合作社印製 Α7 Β7 五、發明說明(3 數。 根據本發明亦提供熱組件材料216材料之改良。更明確 地,如第5圖所示,熱組件外殼體202含有上部熱組件外殼 體202a及下部熱組件外殼體2〇2b。熱吸收材料216,一般為 碳化鐵素體,可自上部熱組件外殼體2〇2a移除。在一具體 實施例中,熱吸收材料係自整個上部熱組件外殼體2〇2衫多 除。第11圖圖不自兄明G巾心及△ G’變化上所觀察到的趨勢及 自上部熱組件外殼體202a移除的熱吸收材料216量。 參數之組合改# 如上所述,切克勞斯基拉晶裝置之各個參數可個別獨 立地改變Gw及AG1。因此,嘗試錯誤法及/或模擬法可 用於改變所有參數以獲得AG,e 0及G*心g 2.5。 根據本發明,已發現到下述步驟可用於進行改良切克 勞斯基拉晶裝置。參考第12圖,在方塊1210,擋熱板之位 置&、擋熱板之設計及加熱器之位置b中至少一者係經選擇 以供在晶鍵-溶融物界面處、在晶旋轴處產生一溫度梯度, 其至少約等於自圓柱形邊緣開始之擴散長度處的溫度梯 度。更佳地,擋熱板214之位置a、擋熱板214之結構及加熱 器之位置b皆經選擇以使AG’降至最低。不幸地,在此過程 中,在軸Go處的溫度梯度亦可能降低。 接著,在方塊1210 ’冷卻套管232之位置、熱組件202 中熱吸收材料216之量及坩堝206之位置d係經改良以供在 晶鍵溶融物界面處、在晶鍵軸處產生一溫度梯度,其大於 約2·5°Κ/毫米。更佳地,冷卻套管距離c、熱吸收材料之量 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -23- ---.---1-----裝--- (請先閱讀背面之注意事項再填寫本頁) · 552326 A7 一 ‘ B7__ 五、發明說明(乃 及離d皆經改良以使G中心最大化。 不幸在方塊1210中的Gt,。最大化可能造成△〇,增 加因此在方塊1220,進行關於是否AG,仍低於或約等 於零式右答案為是,則切克勞斯基拉晶裝置已最適 化右答案為否,則在方塊1230降低熱源,並再次進行方 塊1200及1210之操作直至,低於約零。 擔熱板之设计 已發現到第5圖之播熱板214的設計對切克勞斯器拉晶 為、之性能有深遠的影響。因此,現在將說明播熱板214之詳 細設計。 第13圖為第5圖之播熱板川及環繞播熱板2M之元件 的放大圖。如第13圖所示,擋熱板214較佳包含位在坩堝2〇6 内的環狀擋熱板外罩或外殼體234。環狀擋熱板外殼體234 可包含經碳塗覆之碳化矽及較佳包含内部擋熱板外殼體壁 1310、外部擋熱板外殼體壁132〇、傾斜的擋熱板外殼體底 板1330及亦較佳為傾斜的擋熱板外殼頂部134〇。擋熱板外 殼體内含有例如碳化鐵素體之絕緣材料136〇。一支撐元件 1350支撐環狀擋熱板外殼體234於坩堝206内。支撐元件 1350亦可包含經碳塗覆的碳化矽。 如第13圖所示,内部及外部擋熱板壁131〇及132〇分別 較佳為垂直的内部及外部擋熱板壁。擋熱板外殼體底板 1330及擋熱板外殼體頂部1340較佳為傾斜的,與水平面分 別呈負度V及3。 根據本發明已發現到,相對於晶錠228之邊緣處,可改 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) —;—:------裝— (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 -24- 552326 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(气 變環狀擋熱板外殼體234之許多物理參數來改變晶錠228之 中心處的溫度梯度。可改變的參數為底板1330的角度V、 頂部1340之角度3、内壁1310之長度a、内壁1310及外壁1320 之間的距離b'外壁丨320之長度c、坩堝206及内壁1310之間 的距離d,及界於坩堝頂部及傾斜之底板133〇之間的距離e。 一般而言’環狀擋熱板外殼體234内包含絕緣材料。相 對於晶鍵208,絕緣材料1360隔絕來自加熱器204的熱。絕 緣材料1360可保存由晶錠208輻射出來的熱。 特定言之,當增加V並維持所有其他變數相等時,在 點X、在環狀擋熱板外殼體内壁131 〇及底板1330之交界處的 溫度可增加。在鄰近晶錠228之點y處的溫度亦可增加,因 為來自晶錠228之熱保留增加。再者,若長度&相對於長度c 增加,可能發生保留更多來自晶錠228之熱,以致於在點χ 處之溫度可能增加且在點b處的溫度可能增加,但在晶錠 228之中心處的溫度梯度可能減少。 擋熱板外殼體234相對於坩堝206之位置,在第丨3圖中 以d表示,亦會影響切克勞斯基拉晶裝置的性能。尤其,當 d增加時,由晶錠之熱輻射造成的熱保留可能更多,以致於 在點χ及點y處的溫度可能增加。再者,在晶錠228之中心及 邊緣之間的溫度梯度的差異可能降低且晶錠中心處之溫度 亦可能降低。最後,界於擋熱板外殼體234及坩堝2〇6之間 的距離,如第13圖中的e,亦可能改變。特別地,當擋熱板 外殼體234相對於坩堝206向上移動,藉此減少距晶錠 之中心處的溫度梯度可能增加且晶錠中心與晶錠邊緣相較 ——.---^-----_-裝—— (請先閱讀背面之注意事項再填寫本頁) 訂··J ^ T 552326 Printed by the Consumers ’Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (3 digits. According to the present invention, the improvement of the thermal assembly material 216 is also provided. More specifically, as shown in FIG. 5, the thermal assembly The outer casing 202 includes an upper thermal module outer casing 202a and a lower thermal module outer casing 202b. The heat absorbing material 216, which is generally ferrite, can be removed from the upper thermal module outer casing 202a. In a specific embodiment In the figure, the heat absorbing material is removed from the entire upper thermal module outer casing 202. Figure 11 shows the trends observed in the change of the G and the G's heart and △ G 'from the upper thermal module outer casing 202a. The amount of heat-absorbing material removed was 216. As described above, the parameters of the Cheklaussky crystal device can be changed independently and independently of Gw and AG1. Therefore, the trial and error method and / or simulation method can be used for Change all parameters to obtain AG, e 0, and G * heart g 2.5. According to the present invention, it has been found that the following steps can be used to perform an improved Cheklaszkyra crystal device. Referring to FIG. 12, at block 1210, heat blocking Location & of heat shield At least one of the design and the position b of the heater is selected to generate a temperature gradient at the crystal bond-melt interface and at the crystal rotation axis, which is at least approximately equal to the temperature at the diffusion length from the cylindrical edge Gradient. More preferably, the position a of the heat shield 214, the structure of the heat shield 214, and the location b of the heater are selected to minimize AG '. Unfortunately, during this process, the The temperature gradient may also decrease. Next, at block 1210 ', the position of the cooling jacket 232, the amount of the heat absorbing material 216 in the thermal assembly 202, and the position of the crucible 206 are modified to be provided at the crystal bond melt interface, at the crystal A temperature gradient is generated at the key axis, which is greater than about 2.5 ° K / mm. More preferably, the distance between the cooling sleeve c and the amount of heat absorbing material The paper size is applicable to China National Standard (CNS) A4 (210 X 297) (Mm) -23- ---.--- 1 ----- pack --- (Please read the precautions on the back before filling out this page) · 552326 A7 a 'B7__ V. Description of the invention (even d has been modified to maximize the center of G. Unfortunately for Gt in block 1210, maximizing may cause △ 〇, increase so in block 1220, proceed to check whether AG is still below or approximately equal to zero. Right answer is yes, then the Cheklaszkyra crystal device has been optimized. Right answer is no, then reduce the heat source at block 1230, and Perform the operations of blocks 1200 and 1210 again until it is lower than about zero. The design of the heat-bearing plate has been found that the design of the heat-seeding plate 214 in Fig. 5 has a profound impact on the performance of the crystal pulling device. Therefore, the detailed design of the heat spreading plate 214 will now be described. FIG. 13 is an enlarged view of the elements of the heat spreading plate 2 and the heat spreading plate 2M of FIG. 5. As shown in FIG. 13, the heat shield 214 preferably includes a ring-shaped heat shield cover or outer shell 234 located in the crucible 206. The annular heat shield shell 234 may include carbon-coated silicon carbide and preferably includes an inner heat shield shell wall 1310, an outer heat shield shell wall 132 °, an inclined heat shield shell bottom plate 1330, and Also preferred is the sloped heat shield housing top 134. The outer plate of the heat shield contains an insulating material 1360 such as ferrite. A support element 1350 supports the annular heat shield case 234 in the crucible 206. The support element 1350 may also include carbon-coated silicon carbide. As shown in Fig. 13, the inner and outer heat shield walls 1310 and 1320 are preferably vertical inner and outer heat shield walls, respectively. The bottom plate 1330 of the heat shield casing and the top portion 1340 of the heat shield casing are preferably inclined and have negative degrees V and 3 from the horizontal plane, respectively. According to the present invention, it has been found that, relative to the edge of the ingot 228, the paper size can be changed to apply the Chinese National Standard (CNS) A4 specification (210 X 297 mm) —; —: ------ packing — ( Please read the precautions on the back before filling out this page) Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs -24- 552326 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 Many physical parameters of the outer shell 234 change the temperature gradient at the center of the ingot 228. The parameters that can be changed are the angle V of the bottom plate 1330, the angle 3 of the top 1340, the length a of the inner wall 1310, the distance between the inner wall 1310 and the outer wall 1320. Distance b 'the length c of the outer wall 320, the distance d between the crucible 206 and the inner wall 1310, and the distance e bounded by the crucible top and the inclined bottom plate 133. In general, the' ring-shaped heat shield case 234 Contains insulating material. Insulating material 1360 insulates heat from heater 204 relative to crystal bond 208. Insulating material 1360 preserves heat radiated from ingot 208. Specifically, when increasing V and maintaining all other variables equal ,in X. The temperature at the junction of the inner wall 131 of the annular heat shield shell and the bottom plate 1330 can increase. The temperature at the point y adjacent to the ingot 228 can also increase because the heat retention from the ingot 228 increases. Or, if the length & increases with respect to the length c, it may happen that more heat from the ingot 228 is retained, so that the temperature at the point χ may increase and the temperature at the point b may increase, but in the ingot 228 The temperature gradient at the center may be reduced. The position of the heat shield shell 234 relative to the crucible 206 is represented by d in Fig. 3, which also affects the performance of the Cheklaskira crystal device. In particular, when d increases At this time, the heat retention caused by the thermal radiation of the ingot may be more, so that the temperature at points χ and y may increase. Furthermore, the difference in temperature gradient between the center and edges of the ingot 228 may be reduced And the temperature at the center of the ingot may also decrease. Finally, the distance between the heat shield outer body 234 and the crucible 206, such as e in Figure 13, may also change. In particular, when the heat shield The outer case 234 moves upward relative to the crucible 206, whereby The temperature gradient at the center of the ingot with a small distance may increase and the center of the ingot is compared with the edge of the ingot ——.--- ^ -----_- pack—— (Please read the precautions on the back before filling in this Page) Order ...

552326 A7 經濟部智慧財產局員工消費合作社印製 五、發明說明(5 下,二者之間的溫度梯度差異亦可能增加。 因此,可改變所有參數以供在晶錠一熔融物界面處產 生-溫度梯度,其大於約2·5〇κ/毫米晶旋軸且至少約等於 由晶錠之圓柱形邊緣開始之擴散長度處的溫度梯度。 第14A-14D圖亦說明支撺元件135〇的不同構造,其亦 影響克勞斯基拉晶器的熱特性。第14a_i4d圖為擒熱板 214之部分透視圖。如第14A圖所示,支樓元件工⑽可包 含一或多個支撐臂1410。或者,如第14β圖所示,支撐元 件1350可為環狀支撐元件142()。環狀支撐元件⑽内可 含-或多個窗U143G。窗口143G可為開口或石英窗。如 所示’環狀支撐元件可為傾斜的。 如第14C圖所示,支撐臂1410可為中空支撐臂141〇, 其中含有絕緣材料。同樣地,如第14D圖所示,環狀支撐 元件1420可為内含有絕緣材料145㈣巾空環狀支撐元件 1420。可瞭解到支撐元件不需要連接到環狀擔熱板外殼 234之外壁處。相反地,連接位置可在外壁及内壁之間改雙 已發現到,在支撐元件141G或1420中添加絕緣材料 分別產生中空的支撐元件141〇,及142〇,可使加熱器2〇4與 鍵228絕緣,並可提供來自晶旋表面之較快熱傳。因此, 晶鍵中心之溫度梯度可增加且晶錠中,晶錠邊緣相較 下,一者之間的溫度梯度差異亦可降低。 當改良切克勞斯基拉晶裝置以提供一溫度梯度,溟 於約2·5°Κ/毫米晶錠軸且至少約等於由晶旋之圓柱形邊緣 開始之擴散長度處的溫度梯度,已發現調整ν、&及。可強 包 圖 體 變 以 晶 在 其大 緣 ---.---:------裝—— (請先閱讀背面之注音?事項再填寫本頁) -26- 552326 A7 五、發明說明( 勢地在晶錠-熔融物界面產生—溫度梯度,其在轴處之溫度 梯度大於在由圓柱形邊緣開始之擴散長度處的溫度梯度。 再者在支撐H肖整及提供絕材料可使減之溫度梯度 較高。因此,在設計擋熱板214時,可增Μ、心以降低 △ G。接者,可降低3及添加絕緣材料以獲得足夠的高〇中 心。環狀擔熱板外殼體之-種設計為包含具有長度c 125匪 之外壁1320、長度a55mm之内壁131〇、7·4ππη之距離似 度之角度V。 在圖式及說明書中,已揭露本發明之典型較佳實施 例,雖然應用特定的術語,其係以一般性及描述性之觀點 來應用而非為了限制的目的,本發明之範圍已記載於下述 申請專利範圍中。 --·---:-----裝-----r---訂- (請先閱讀背面之注意事項再填寫本頁)552326 A7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (5, the temperature gradient difference between the two may also increase. Therefore, all parameters can be changed for generation at the ingot-melt interface- Temperature gradient, which is greater than about 2.5 ° K / mm crystal rotation axis and is at least approximately equal to the temperature gradient at the diffusion length starting from the cylindrical edge of the ingot. Figures 14A-14D also illustrate the difference between the support element 135 °. Structure, which also affects the thermal characteristics of Krauszilla crystals. Figures 14a_i4d are partial perspective views of the heat-receiving plate 214. As shown in Figure 14A, the component elements of the branch building may include one or more support arms 1410 . Or, as shown in FIG. 14β, the supporting element 1350 may be a ring-shaped supporting element 142 (). The ring-shaped supporting element ⑽ may contain-or multiple windows U143G. The window 143G may be an opening or a quartz window. As shown 'The ring-shaped support element may be inclined. As shown in FIG. 14C, the support arm 1410 may be a hollow support arm 1410, which contains an insulating material. Similarly, as shown in FIG. 14D, the ring-shaped support element 1420 may be Contains insulation material 145 空 empty ring Support element 1420. It can be understood that the support element does not need to be connected to the outer wall of the annular heat transfer plate shell 234. On the contrary, the connection position can be changed between the outer wall and the inner wall. It has been found that the support element 141G or 1420 is added The insulating materials generate hollow support elements 141 and 142 respectively, which can insulate the heater 204 and the bond 228 and provide a faster heat transfer from the surface of the crystal spin. Therefore, the temperature gradient in the center of the crystal bond can be increased And in the ingot, the temperature gradient difference between the two can be reduced when the edge of the ingot is compared. When the Cheklauszky crystal device is modified to provide a temperature gradient, it is about 2.5 ° K / mm. The temperature gradient at the axis of the ingot axis and at least approximately equal to the diffusion length starting from the cylindrical edge of the crystal spin has been found to adjust ν, & -: ------ Load—— (Please read the note on the back? Matters before filling out this page) -26- 552326 A7 V. Description of the invention (Potentially generated at the ingot-melt interface—temperature gradient, which The temperature gradient at the axis is greater than that starting from the cylindrical edge The temperature gradient at the bulk length. Furthermore, the temperature gradient can be reduced when supporting H-shaping and providing insulation materials. Therefore, when designing the heat shield 214, M can be increased to reduce △ G. Then, It can be lowered by 3 and add insulation material to obtain a sufficient height. The center of the outer body of the ring-shaped heat transfer plate is designed to include the outer wall 1320 with a length of c 125, the inner wall 131 with a length of 55 mm, and a distance of 7 · 4ππη. Degree V. In the drawings and description, typical preferred embodiments of the present invention have been disclosed. Although specific terminology is applied, it is applied from a general and descriptive point of view and not for the purpose of limitation. The scope is described in the following patent application scope. -· ---: ----- install ----- r --- order- (Please read the precautions on the back before filling this page)

經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -27-Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper is sized to the Chinese National Standard (CNS) A4 (210 X 297 mm) -27-

Claims (1)

552326 i公告552326 i announcement 六、申請專利範園 第89103608號專利申請案申請專利範圍修正本 91年06月 一種用於生長單結晶矽晶錠之切克勞斯基拉晶裝置的 擋熱板,該切克勞斯基拉晶裝置包含容納矽熔融物之 坩堝,該擋熱板包含·· 環狀擋熱板外殼體,其包含内部及外部擋熱板外 殼體壁及傾斜的擋熱板外殼體底板及延伸於内部及外 部擋熱板外殼體壁之間的擋熱板外殼頂部,該擋熱板 外殼體内含有絕緣材料;以及 一支撐元件,係配置以供支撐擋熱板外殼體於切 克勞斯基拉晶裝置之坩堝内。 如申請專利範圍第1項之擋熱板,其中該内部及外部 擔熱板外殼體壁為垂直的内部及外部擋熱板外殼體 壁’及其中該擋熱板外殼頂部為傾斜的擋熱板外殼頂 部。 如申請專利範圍第1項之擋熱板,其中該支撐元件包 含: 1. (請先閲讀背面之注意事項再填寫本頁) 2 至少一延伸至該環狀擋熱板外殼體的支撐臂。 如申請專利範圍第3項之擋熱板,其中至少一支撐臂 為至少一内含有絕緣材料的中空支撐臂。 如申請專利範圍第i項之擋熱板,其中該支撐元件包 含: 一環狀支撐元件。 6·如申請專利範圍第5項之擋熱板,其中環狀支撐元件 4. 5. 本紙張尺度⑽〉謂公楚) .、可| -28- 552326 A8 B8 _ C8 ---------------------------------------------------------- D8_ 7T、申凊專利範圍 包含内部及外部切元件壁,該壁之間含有絕緣材 料。 7·如申請專利範圍第5項之擔熱板,其中環狀支撲元件 内包含至少一窗口。 8. 如申請專利範圍第5項之檔熱板,其中該環狀支撑元 件為傾斜的環狀支撐元件。 9. 如申δ月專利範圍第工項之擔熱板,其中該切克勞斯拉 曰曰器亦包含用於將籽晶座自坩堝拉起的裝置,藉此由 夕溶融物中上拉出一單結晶石夕晶旋,該單結晶石夕晶鍵 具有一軸及一圓柱狀邊緣,該矽熔融物及晶錠在二者 之間界定一晶錠-熔融物界面;以及 其中擔熱板外殼體頂部為傾斜的擔熱板外殼體頂 部,内部擋熱板外殼體壁具有内部壁長度,傾斜之擋 熱板外殼體底板與水平面產生一第一角度,且傾斜之 擋熱板外殼體頂部與水平面產生一第二角度,内部壁 長度、第一角度及第二角度中至少一者地係經選擇以 供在晶錠-熔融物界面、在晶錠軸處產生一溫度梯度, 其至少等於由晶錠之圓柱形邊緣開始之擴散長度處的 溫度梯度。 10· —種用於生長單結晶矽晶錠的切克勞斯基拉晶裝 置,包含: 一外殼; 一位在外殼内的坩塌,供容納石夕溶融物; 一位在外殼内的籽晶座,鄰接坩堝; 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) (請先閲讀背面之注意事項再填窝本頁) •、可丨 -29- 552326 A8 B8 ^---^____D8______ 六、申請專利範圍 (請先閲讀背面之注意事項再填寫本頁) 一位在外殼内的加熱器,環繞坩堝;以及 一位在坩堝内的環狀擋熱板外殼體,包含内部及 外部擋熱板外殼體壁及傾斜的擋熱板外殼體底板及 延伸於内部及外部擋熱板外殼體壁之間的擋熱板外 殼頂部,該擋熱板外殼體内含有絕緣材料;以及一 支撐元件,其供支撐擋熱板外殼體於坩堝内。 U·如申請專利範圍第10項之切克勞斯基拉晶裝置,其 中該内部及外部擋熱板外殼體壁為垂直的内部及外 部擋熱板外殼體壁,及其中該擋熱板外殼頂部為傾斜 的擋熱板外殼頂部。 如申請專利範圍第ι〇項之切克勞斯基拉晶裝置,其 進一步包含: 一位在外殼内的熱組件,其環繞加熱器; 其中支撐元件支撐環擋熱板外殼體由熱組件至# 禍内。 13.如申請專利範圍第1〇項之切克勞斯基拉晶裳置,其 中該支撐元件包含: Λ 至少一延伸至該環狀擋熱板外殼體的支撑臂。 14·如申請專利範圍第13項之切克勞斯基拉晶裂置,其中 至少一支撐臂為至少一内含有絕緣材料的ψ办 臂。 &支撐 15·如申請專利範圍第1()項之切克勞斯基拉晶 |罝,其中 該支樓元件包含: 一環狀支撐元件。 本紙張尺度適用中國國家標準(CNS) M規格⑵〇><297公爱)"' --- -30. 552326 A8 B8 C8 D8 、申請專利範圍 16.如申請專利範圍第15項之切克勞斯基拉晶裝置,其 (請先閲讀背面之注意事項再填寫本頁) 中環狀支撐元件包含内部及外部支撐元件壁,該壁之 間含有絕緣材料。 17·如申請專利範圍第15項之切克勞斯基拉晶裝置,其 中環狀支撐元件内包含至少一窗口。 18·如申請專利範圍第15項之切克勞斯基拉晶裝置,其 中該環狀支撐元件為傾斜的環狀支撐元件。 19·如申請專利範圍第12項之切克勞斯基拉晶裝置,其 中熱組件包含上部熱組件外殼體及下部熱組件外殼 體,該下部熱組件外殼體充填有熱吸收材料及上部熱 組件外殼體係至少部分未充填熱吸收材料。 、可I 20·如申請專利範圍第19項之切克勞斯基拉晶裝置,其 中上部熱組件外殼體不含熱吸收材料。 21·如申請專利範圍第1〇項之切克勞斯基拉晶裝置,進 一步包含用於將籽晶座自坩堝拉起的裝置,藉此由石夕 熔融物中上拉出一單結晶矽晶錠,該單結晶矽晶錠具 有一軸及一圓柱狀邊緣,該矽熔融物及晶錠在二者之 間界定一晶錠_熔融物界面;以及 其中擋熱板外殼體頂部為傾斜的擋熱板外殼體頂 部’内部擋熱板外殼體壁具有内部壁長度,傾斜之擔 熱板外设體底板與水平面產生一第一角度,且傾斜之 擔熱板外殼體頂部與水平面產生一第二角度,内部壁 長度、第一角度及第二角度中至少一者地係經選擇以 供在晶旋·熔融物界面、在晶鍵軸處產生一溫度梯度,6. Application for Patent Fanyuan No. 89103608 Patent Application Application for Patent Scope Amendment June, 91 A heat-shielding plate of a Cheklaszkyra crystal device for growing single crystal silicon ingots. The crystal pulling device includes a crucible containing a silicon melt, and the heat shield includes an annular heat shield shell, which includes internal and external heat shield shell walls, a sloped heat shield shell bottom plate, and an internal extension. And the top of the heat shield shell between the outer heat shield shell wall, the heat shield shell contains an insulating material inside, and a support element configured to support the heat shield shell in Cheklaskila The crucible of the crystal device. For example, the heat shield of item 1 of the patent scope, wherein the inner and outer heat transfer plate outer wall is a vertical inner and outer heat shield outer wall 'and the top of the heat shield is an inclined heat shield The top of the case. For example, the heat shield of the first patent application scope, where the support element includes: 1. (Please read the precautions on the back before filling this page) 2 At least one support arm extending to the outer shell of the annular heat shield. For example, the heat shield of item 3 of the patent application, wherein at least one support arm is at least one hollow support arm containing an insulating material. For example, the heat shield of item i of the patent application scope, wherein the support element includes: a ring-shaped support element. 6 · For example, the heat shield of item 5 of the scope of patent application, in which the ring-shaped support element 4. 5. This paper size ⑽> is known as Chu). 、 可 | -28- 552326 A8 B8 _ C8 ------ -------------------------------------------------- -D8_ 7T, the patent application scope includes the internal and external cutting element walls, and the wall contains insulating material. 7. The heating plate according to item 5 of the patent application, wherein the ring-shaped branch element includes at least one window. 8. The heat-shielding plate according to item 5 of the patent application, wherein the ring-shaped support element is an inclined ring-shaped support element. 9. For example, the heat-loading plate of the δ month patent scope of the project, wherein the Checlaus puller also includes a device for pulling the seed seat from the crucible, thereby pulling up from the melt A single crystal stone crystal spin is formed, the single crystal stone crystal bond has an axis and a cylindrical edge, the silicon melt and the ingot define a crystal ingot-melt interface between the two; and a heat bearing plate therein The top of the outer shell is the top of the inclined heat-shielding outer shell, the inner heat-shielding outer shell wall has an inner wall length, the bottom of the inclined heat-shield outer shell forms a first angle with the horizontal plane, and the top of the inclined heat-shield outer shell Generate a second angle with the horizontal plane, at least one of the length of the internal wall, the first angle, and the second angle is selected for generating a temperature gradient at the ingot-melt interface and at the ingot axis, which is at least equal to Temperature gradient at the length of the diffusion from the cylindrical edge of the ingot. 10 · A Cheklausra crystal device for growing single crystal silicon ingots, comprising: a shell; a crucible in the shell for containing the molten material of the evening eve; a seed in the shell Crystal base, adjacent to the crucible; This paper size applies to the Chinese National Standard (CNS) A4 size (210X297 mm) (please read the precautions on the back before filling in this page) •, 丨 -29- 552326 A8 B8 ^- -^ ____ D8______ 6. Scope of patent application (please read the precautions on the back before filling out this page) A heater in the shell surrounds the crucible; and a ring-shaped heat shield shell in the crucible, including the interior And the outer heat shield shell wall, the inclined heat shield shell bottom plate, and the top of the heat shield shell extending between the inner and outer heat shield shell walls, the heat shield shell containing an insulating material inside; and A support element is provided for supporting the heat shield outer body in the crucible. U. The Cheklaszkyra crystal device according to item 10 of the patent application, wherein the inner and outer heat shield shell walls are vertical inner and outer heat shield shell walls, and the heat shield shell The top is the top of the slanted heat shield housing. For example, the Cheklaszkyra crystal device of the scope of the patent application, further comprising: a thermal component in the casing, which surrounds the heater; wherein the supporting element supports the ring heat shield casing from the thermal component to # Within the disaster. 13. The Cheklauskira crystal dress according to item 10 of the application, wherein the supporting element comprises: Λ at least one supporting arm extending to the outer shell of the annular heat shield. 14. As shown in claim 13 of the patent application, the Cheklauskira crystal is cracked, in which at least one supporting arm is at least one ψ arm containing an insulating material. & Support 15. The cheklauszkyra crystal according to item 1 () of the patent application | 罝, wherein the branch element includes: a ring-shaped support element. This paper size applies the Chinese National Standard (CNS) M Specification ⑵〇 > < 297 Public Love) " '--- -30.552326 A8 B8 C8 D8, patent application scope 16. If the number of patent application scope item 15 The Cheklaussky crystal device, (Please read the precautions on the back before filling out this page) The ring-shaped support element includes internal and external support element walls with insulating material between the walls. 17. The Cheklaszkyra crystal device according to item 15 of the patent application, wherein the annular support element includes at least one window. 18. The Cheklaszkyra crystal device according to item 15 of the scope of patent application, wherein the ring-shaped support member is an inclined ring-shaped support member. 19. The Cheklaszkyra crystal device according to item 12 of the application, wherein the thermal module includes an upper thermal module casing and a lower thermal module casing, and the lower thermal module casing is filled with a heat absorbing material and an upper thermal module. The shell system is at least partially unfilled with a heat-absorbing material. May, I 20 · As in the case of the Cheklauszkyra crystal device under the scope of patent application No. 19, the upper thermal component outer casing does not contain a heat absorbing material. 21. The Cheklauszkyra crystal device according to item 10 of the patent application scope, further comprising a device for pulling up the seed crystal holder from the crucible, thereby pulling out a single crystalline silicon from the molten material of Shixi An ingot, the single-crystal silicon ingot has an axis and a cylindrical edge, and the silicon melt and the ingot define an ingot_melt interface between the two; and the top of the heat shield shell is an inclined barrier The top of the hot plate outer shell's inner heat shield outer wall has an internal wall length, the inclined heat sink plate outer body bottom plate and the horizontal plane create a first angle, and the inclined heat sink plate outer body top and the horizontal plane create a second angle Angle, at least one of the length of the inner wall, the first angle, and the second angle is selected to generate a temperature gradient at the crystal spin-melt interface and the crystal bond axis, -31- 552326 A8 B8 C8 D8 、申請專利範圍 其至少等於由晶錠之圓柱形邊緣開始之擴散長度處 的溫度梯度。 22· —種用於生長單結晶矽晶錠的切克勞斯基拉晶裝置, 包含: 一外殼; 一位在外殼内的坩堝,供容納矽熔融物; 一位在外殼内的籽晶座,鄰接坩堝; 一位在外殼内的加熱器,環繞坩堝; 一界於坩堝及籽晶座之間的擋熱板; 一界於擋熱板及籽晶座之間的冷卻套管;以及 一位在外殼内的熱組件,環繞加熱器,該熱組件 包含:上部熱組件外殼體及下部熱組件外殼體,該 下部熱組件外殼體充填有熱吸收材料及上部熱組件 外殼體係至少部分未充填熱吸收材料。 23 ·如申請專利範圍第22項之切克勞斯基拉晶裝置,其中 該擋熱板由上部熱組件外殼體延伸至界於坩堝及籽晶 座之間。 24· —種用於生長單結晶矽晶錠的切克勞斯基拉晶裝置, 包含: 一外殼; 一位在外殼内的坩堝,供容納矽熔融物; 一位在外殼内的籽晶座,鄰接坩堝; 一位在外殼内的加熱器,環繞坩堝; 一界於掛塌及籽晶座之間的擋熱板; 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 、^τ— -32- 552326 A8 B8 C8 _ D8 --------- 六、申請專利範園 一界於擔熱板及籽晶座之間的冷卻套管;以及 一用於將籽晶座自坩堝拉起的裝置,藉此由矽熔 融物中上拉出一單結晶矽晶錠,該單結晶矽晶錠具 有一軸及一圓柱狀邊緣,該矽熔融物及晶錠在二者 之間界定一晶錠-溶融物界面; 擋熱板之位置、擋熱板之構造、加熱器之位置、冷 卻套管之構造、坩堝之位置、熱組件之構造及應用至 加熱器之能源中至少一者係經選擇以供在晶錠-熔融 物之界面產生一溫度梯度,其大於2·5〇κ/亳米晶錠軸 且至少等於由晶錠之圓柱形邊緣開始之擴散長度處的 溫度梯度。 25·如申請專利範圍第24項之切克勞斯基拉晶裝置,其中 坩堝包含一坩堝頂部及一坩堝底部,其中擋熱板包含 一擔熱板頂部及一擋熱板底部且其中擋熱板的位置係 藉由改變擋熱板底部及坩堝頂部之間的距離來選擇。 26·如申請專利範圍第24項之切克勞斯基拉晶裝置,其中 擋熱板包含一擋熱板頂部及一擔熱板底部且擔熱板之 構造可藉由在擔熱板底部提供擋熱板外罩來選擇。 27.如申請專利範圍第24項之切克勞斯基拉晶裝置,其中 擋熱板外罩包含位在坩堝内的環狀擋熱板外殼體,其 包含内部及外部擋熱板外殼體壁、傾斜之擋熱板外殼 體底板及延伸於内部及外部擋熱板外殼體壁之擔熱板 外殼體頂部,擋熱板外殼體内含有絕緣材料。 28·如申請專利範圍第24項之切克勞斯基拉晶裝置,其中 本紙張尺度賴中國國家標準_ M規格⑵GX297公^ ' (請先閲讀背面之注意事項再填寫本頁)-31- 552326 A8 B8 C8 D8, patent application scope It is at least equal to the temperature gradient at the diffusion length from the cylindrical edge of the ingot. 22 · A Cheklaszkyra crystal device for growing single crystal silicon ingots, comprising: a shell; a crucible in the shell for containing silicon melt; a seed seat in the shell Adjacent to the crucible; a heater in the shell surrounding the crucible; a heat shield between the crucible and the seed holder; a cooling jacket between the heat shield and the seed holder; and a A thermal component located in the casing surrounds the heater. The thermal component includes: an upper thermal component casing and a lower thermal component casing. The lower thermal component casing is filled with a heat absorbing material and the upper thermal component casing system is at least partially unfilled. Heat absorbing material. 23 · The Cheklaszkyra crystal device according to item 22 of the patent application scope, wherein the heat shield extends from the upper shell of the thermal module to the boundary between the crucible and the seed holder. 24 · A kind of Cheklausra crystal device for growing single crystal silicon ingots, comprising: a shell; a crucible in the shell for containing silicon melt; a seed seat in the shell , Adjacent to the crucible; a heater in the shell, which surrounds the crucible; a heat shield between the hanging and the seed seat; This paper size applies to China National Standard (CNS) A4 (210X 297 mm) (Please read the precautions on the back before filling this page), ^ τ— -32- 552326 A8 B8 C8 _ D8 --------- VI. Apply for a patent Fanyuan is in the heat-bearing plate and seed crystal A cooling jacket between the seats; and a device for pulling the seed seat from the crucible, thereby pulling out a single crystal silicon ingot from the silicon melt, the single crystal silicon ingot having a shaft and a Cylindrical edge, the silicon melt and the ingot define an ingot-melt interface between the two; the position of the heat shield, the structure of the heat shield, the location of the heater, the structure of the cooling jacket, the crucible At least one of the location, the structure of the thermal assembly, and the energy source applied to the heater is selected For the ingot - the interface of the melt to produce a temperature gradient, which is greater than 2 · 5〇κ / millimeters at least equal to the ingot axis and a cylindrical ingot of an edge length beginning at the diffusion temperature gradient. 25. The Cheklaszkyra crystal device according to item 24 of the patent application, wherein the crucible includes a crucible top and a crucible bottom, wherein the heat blocking plate includes a top of a heat carrying plate and a bottom of the heat blocking plate and heat is blocked therein. The position of the plate is selected by changing the distance between the bottom of the heat shield and the top of the crucible. 26. The Cheklaszkyra crystal device according to item 24 of the patent application, wherein the heat shield comprises a top of the heat shield and a bottom of the heat shield, and the structure of the heat shield can be provided at the bottom of the heat shield Heat shield cover to choose. 27. The Cheklauszkyra crystal device according to item 24 of the patent application, wherein the heat shield cover includes a ring-shaped heat shield shell located inside the crucible, which includes the inner and outer heat shield shell walls, The inclined bottom plate of the heat shield shell and the top of the heat bearing plate shell extending from the inner and outer heat shield shell walls. The heat shield shell contains an insulating material. 28. If you want to apply for the Cheklaussky crystal device in the scope of patent application No. 24, the paper size depends on the Chinese national standard _ M size ⑵ GX297 public ^ (Please read the precautions on the back before filling this page) -33- 552326 A8 Βδ C8 D8 六、申請專利範圍 傾斜之擔熱板外殼體界定一與水平面之角度且擔熱板 之構造係藉由改變該角度來選擇。 (請先閲讀背面之注意事項再填寫本頁) 29.如申請專利範圍第24項之切克勞斯基拉晶裝置,其中 掛禍包含一 i#塥頂部及一財竭底部,其中加熱器含有 一加熱器頂部及加熱器底部,以及其中加熱器之位置 係猎由改變掛竭頂部及加熱裔頂部之間的距離來選 擇。 30·如申請專利範圍第24項之切克勞斯基拉晶裝置,其中 加熱器之位置及坩堝之位置可同時相對於外殼而軸向 地改變。 訂丨 31·如申請專利範圍第24項之切克勞斯基拉晶裝置,其中 坩堝包含一坩堝頂部及一坩堝底部,其中冷卻套管含 有一冷卻套管頂部及冷卻套管底部,且其中冷卻套管 的位置係藉由改變坩堝頂部及冷卻套管底部之間的距 離來選擇。 32·如申請專利範圍第24項之切克勞斯基拉晶裝置,其中 熱組件含有上部熱組件外殼體及下部熱組件外殼體, 各自充填熱吸收材料,且其中熱組件之構造係藉由自 上部熱組件外殼體移除至少部分熱吸收材料來選擇。 33.如申請專利範圍第24項之切克勞斯基拉晶裝置,其中 擋熱板之位置、擋熱板之結構及加熱器之位置中至少 者係經選擇以供在晶旋-溶融物界面處、在晶銳軸處 產生一溫度梯度,其至少等於自圓柱形邊緣開始之擴 散長度處的溫度梯度,以及其中冷卻套管之結構、坩-33- 552326 A8 Βδ C8 D8 6. Scope of patent application The outer shell of the inclined heat sink defines an angle to the horizontal plane and the structure of the heat sink is selected by changing the angle. (Please read the precautions on the back before filling out this page) 29. For the Cheklauszkyra crystal device under the scope of application for patent No. 24, the accidents include an i # 塥 top and an exhausted bottom, where the heater A heater top and a heater bottom are included, and the position of the heater is selected by changing the distance between the exhausted top and the heating top. 30. As in the case of the Cheklausra crystal device of the scope of application for patent No. 24, the position of the heater and the position of the crucible can be changed axially with respect to the casing at the same time. Order 丨 31. As in the application of the No. 24 scope of the patent application, the crucible includes a crucible top and a crucible bottom, wherein the cooling sleeve includes a cooling sleeve top and a cooling sleeve bottom, and wherein The position of the cooling jacket is selected by changing the distance between the crucible top and the bottom of the cooling jacket. 32. The Cheklauszkyra crystal device according to item 24 of the application, wherein the thermal module includes an upper thermal module casing and a lower thermal module casing, each of which is filled with a heat absorbing material, and the structure of the thermal module is determined by The selection is made by removing at least a portion of the heat absorbing material from the upper thermal module housing. 33. The Cheklaszkyra crystal device according to item 24 of the patent application, wherein at least one of the position of the heat shield, the structure of the heat shield, and the position of the heater is selected to be used in the crystal spin-melt product. At the interface, a temperature gradient is generated at the crystal sharp axis, which is at least equal to the temperature gradient at the diffusion length from the cylindrical edge, and the structure and crucible of the cooling sleeve therein -34- 552326 A8 Β8 C8 D8 申請專利範圍 (請先閲讀背面之注意事項再填寫本頁) 塌之位置及熱組件之構造中至少一組係經選擇以供在 晶旋-溶融物界面處、在晶鍵軸處產生一溫度梯度,其 大於2·5°Κ/毫米。 、?τ— 34.如申請專利範圍第33項之切克勞斯基拉晶裝置,其中 坩竭包含一坩堝頂部及一坩堝底部以及擔熱板包含一 擋熱板頂部及一擋熱板底部,其中加熱器含有一加熱 器頂部及加熱器底部,其中擔熱板的位置係藉由改變 擋熱板底部及坩堝頂部之間的距離來選擇,其中加熱 器之位置係藉由改變掛竭頂部及加熱器頂部之間的距 離來選擇’其中擔熱板之位置、擔熱板之構造及加熱 器之位置皆經選擇以供在晶錠-熔融物界面處、在晶錠 軸處產生一溫度梯度,其大於圓柱形邊緣處的溫度。 35·如申請專利範圍第34項之切克勞斯基拉晶裝置,其中 坩堝包含一坩堝頂部及一坩堝底部,其中加熱器含有 一加熱器頂部及加熱器底部,其中冷卻套管含有一冷 卻套管頂部及冷卻套管底部,其中熱組件含有上部熱 組件外殼體及下部熱組件外殼體,各自充填熱吸收材 料,其中加熱器之位置係藉由改變坩堝頂部及加熱器 頂部之間的距離來選擇,其中加熱器之位置及坩禍之 位置亦可同時相對於外殼而軸向地改變,其中冷卻套 管的位置係藉由改變坩堝頂部及冷卻套管底部之間的 距離來選擇,其中熱組件之構造係藉由自上部熱組件 外殼體移除至少部分熱吸收材料來選擇,以及其中冷 卻套管之構造、掛竭之位置、加熱器及掛禍之位置及 -35- 552326 A8 B8 C8 D8 、申清專利範圍 熱組件之構造皆經選擇以供在晶錠_熔融物界面處、在 晶旋軸處產生一溫度梯度,其大於2·5〇κ/毫米。 36· —種用於生長單結晶矽晶錠的切克勞斯基拉晶裝置, 包含: 一外殼; 一位在外殼内的坩禍,供容納石夕溶融物; 一位在外殼内的籽晶座,鄰接坩堝; 一位在外殼内的加熱器,環繞坩堝; 一界於坩堝及籽晶座之間的擋熱板; 一界於擋熱板及籽晶座之間的冷卻套管;以及 一用於將籽晶座自坩堝拉起的裝置,藉此由矽熔 融物中上拉出一單結晶矽晶錠,該單結晶矽晶錠具 有一軸及一圓柱狀邊緣,該矽熔融物及晶錠在二者 之間界定一晶錠-熔融物界面; 擋熱板之位置、擋熱板之構造、加熱器之位置、 冷卻套管之構造、坩堝之位置、熱組件之構造及應 用至加熱器之能源中至少一者係經選擇以供產生相 對於矽熔融物呈平面或凸面的晶錠-熔融物界面。 37.如申請專利範圍第36項之切克勞斯基拉晶裝置,其中 掛堝包含一坩堝頂部及一坩堝底部以及擋熱板包含一 擋熱板頂部及一擔熱板底部,其中擋熱板的位置係藉 由改變擋熱板底部及坩堝頂部之間的距離來選擇。 38·如申請專利範圍第36項之切克勞斯基拉晶裝置,其中 擋熱板包含一擋熱板頂部及一擋熱板底部,且其中擒 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁)-34- 552326 A8 Β8 C8 D8 Patent application scope (please read the precautions on the back before filling this page) At least one of the collapsed position and the structure of the thermal module is selected for the crystal spin-melt interface, A temperature gradient is generated at the crystal bond axis, which is greater than 2.5 ° K / mm. 34. The Cheklauszkyra crystal device according to item 33 of the patent application, wherein the crucible includes a crucible top and a crucible bottom, and the heat transfer plate includes a heat shield top and a heat shield bottom. The heater includes a heater top and a heater bottom. The position of the heat-carrying plate is selected by changing the distance between the bottom of the heat shield and the top of the crucible. The position of the heater is changed by changing the exhausted top. And the distance between the top of the heater to choose 'where the position of the heat-bearing plate, the structure of the heat-bearing plate, and the position of the heater are selected for generating a temperature at the ingot-melt interface and at the ingot axis Gradient, which is greater than the temperature at the edge of the cylinder. 35. The Cheklaszkyra crystal device according to item 34 of the patent application, wherein the crucible includes a crucible top and a crucible bottom, wherein the heater includes a heater top and a heater bottom, and the cooling jacket contains a cooling The top of the sleeve and the bottom of the cooling sleeve, where the thermal component contains the upper thermal component outer casing and the lower thermal component outer casing, each filled with a heat absorbing material, wherein the position of the heater is changed by changing the distance between the crucible top and the top of the heater The position of the heater and the position of the crucible can also be changed axially relative to the casing at the same time. The position of the cooling sleeve is selected by changing the distance between the crucible top and the bottom of the cooling sleeve. The structure of the thermal module is selected by removing at least part of the heat absorbing material from the upper thermal module casing, and the structure of the cooling jacket, the position of the exhaustion, the position of the heater and the accident, and -35- 552326 A8 B8 The structure of C8 D8 and Shenqing patent scope thermal components have been selected to generate a temperature ladder at the ingot_melt interface and at the crystal rotation axis. , Which is greater than 2 · 5〇κ / mm. 36 · —A Cheklauskira crystal device for growing single crystal silicon ingots, comprising: a shell; a crucible in the shell for containing the molten material of the evening eve; a seed in the shell Crystal holder, adjacent to the crucible; a heater in the shell, surrounding the crucible; a heat shield between the crucible and the seed holder; a cooling jacket between the heat shield and the seed holder; And a device for pulling the seed seat from the crucible, thereby pulling a single crystal silicon ingot from the silicon melt, the single crystal silicon ingot having an axis and a cylindrical edge, the silicon melt And the ingot define an ingot-melt interface between the two; the position of the heat shield, the structure of the heat shield, the location of the heater, the structure of the cooling jacket, the location of the crucible, the structure and application of the thermal assembly At least one of the energy sources to the heater is selected to produce an ingot-melt interface that is planar or convex with respect to the silicon melt. 37. The Cheklaszkyra crystal device according to item 36 of the patent application, wherein the hanging pot includes a crucible top and a crucible bottom, and the heat blocking plate includes a heat blocking plate top and a heat carrying plate bottom, wherein heat blocking The position of the plate is selected by changing the distance between the bottom of the heat shield and the top of the crucible. 38. The Cheklauszkyra crystal device according to item 36 of the patent application, wherein the heat-shielding plate includes a top of the heat-shielding plate and a bottom of the heat-shielding plate, and the size of the paper is applicable to Chinese National Standard (CNS) Α4 Specifications (210 X 297 mm) (Please read the notes on the back before filling this page) -36- 552326 39 A8 B8 C8 D8 申請專利範圍 熱板之構造可藉由在播熱板底部提供擔熱板外罩來選 擇。 如申請專利範圍第38項之切克勞斯基拉晶裝置,其 中擋熱板外罩包含位在坩堝内的環狀擋熱板外殼 體,其包含内部及外部擋熱板外殼體壁、傾斜之擋熱 板外殼體底板及延伸於内部及外部擋熱板外殼體壁 之擋熱板外殼體頂部,擋熱板外殼體内含有絕緣材 料。 40·如申請專利範圍第39項之切克勞斯基拉晶裝置,其 中傾斜之擋熱板外殼體界定一與水平面之角度且擋 熱板之構造係亦藉由改變該角度來選擇。 41·如申請專利範圍第36項之切克勞斯基拉晶襞置,其 中坩堝包含一坩堝頂部及一坩堝底部,其中加熱器含 有一加熱器頂部及加熱器底部,以及加熱器之位置係 藉由改變坩堝頂部及加熱器頂部之間的距離來選擇。 42·如申請專利範圍第41項之切克勞斯基拉晶裝置,其 中加熱器之位置及坩堝之位置可同時相對於外殼而 軸向地改變。 43·如申請專利範圍第36項之切克勞斯基拉晶裝置,其 中掛禍包含一 J#竭頂部及一掛禍底部,其中冷卻套管 含有一冷卻套管頂部及冷卻套管底部,及其中冷卻套 管的位置係藉由改變坩堝頂部及冷卻套管底部之間 的距離來選擇。 44·如申請專利範圍第36項之切克勞斯基拉晶裳置,其-36- 552326 39 A8 B8 C8 D8 Patent Application Scope The structure of the hot plate can be selected by providing a heat plate cover on the bottom of the heat plate. For example, the Cheklauszkyra crystal device of claim 38, wherein the heat shield cover includes a ring-shaped heat shield shell inside the crucible, which includes the inner and outer heat shield shell walls, the inclined The bottom plate of the heat shield shell and the top of the heat shield shell extending from the inner and outer heat shield shell walls. The heat shield shell contains an insulating material. 40. As in the case of the Cheklauszkyra crystal device in the scope of patent application No. 39, the inclined heat shield case defines an angle to the horizontal plane and the structure of the heat shield is also selected by changing the angle. 41. The Cheklauskira crystal set according to item 36 of the patent application, wherein the crucible includes a crucible top and a crucible bottom, wherein the heater includes a heater top and a heater bottom, and the position of the heater is Select by changing the distance between the top of the crucible and the top of the heater. 42. As in the case of the Cheklausra crystal device of the scope of application for patent No. 41, the position of the heater and the position of the crucible can be changed axially with respect to the casing at the same time. 43. The Cheklaszkyra crystal device according to item 36 of the application for a patent, wherein the hanging accident includes a J # exhausted top and a hanging accident bottom, wherein the cooling jacket includes a cooling jacket top and a cooling jacket bottom, and The position of the cooling sleeve is selected by changing the distance between the crucible top and the bottom of the cooling sleeve. 44. If the application of the item 36 in the scope of the patent application, (請先閲讀背面之注意事項再填寫本頁)(Please read the notes on the back before filling this page) -37- 552326 A8 B8 C8 _____ D8 六、申請專利範圍 中熱組件含有上部熱組件外殼體及下部熱組件外殼 體’各自充填熱吸收材料,且其中熱組件之構造係藉 由自上部熱組件外殼體移除至少部分熱吸收材料來 選擇。 45· 種改良切克勞斯基拉晶裝置以供生長完美單结晶 矽晶錠的方法,該矽晶錠不含空穴集聚體及間隙集聚 體’該切克勞斯基拉晶裝置包含一外殼,一位在外殼 内供容納矽熔融物的坩堝,一位在外殼内鄰接坩堝的 軒晶座’一位在外殼内環繞坩堝的加熱器,一位在外 殼内環繞加熱器的熱組件,一界於坩堝及籽晶座之間 的擔熱板,一界於擔熱板及籽晶座之間的冷卻套管; 以及一用於將籽晶座自坩堝拉起的裝置,藉此由矽熔 融物中上拉出一單結晶矽晶錠,該單結晶矽晶錠具有 一軸及一圓柱狀邊緣,該矽熔融物及晶錠在二者之間 界定一晶錠-熔融物界面,該改良切克勞斯基拉晶裝置 以供生長完美單結晶石夕晶旋之方法包含下述步驟: 選擇擋熱板之位置、擋熱板之構造、加熱器之位 置、冷卻套管之構造、掛禍之位置、熱組件之構造及 應用至加熱器之能源中至少一者係經選擇以供在晶錠 -熔融物之界面產生一溫度梯度,其大於2·5〇κ/亳米晶 錠轴且至少等於由晶錠之圓柱形邊緣開始之擴散長度 處的溫度梯度。 46·如申請專利範圍第45項之方法,其中坩堝包含一坩 堝頂部及一坩堝底部,其中擋熱板包含一擋熱板頂部 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公爱) (請先閲讀背面之注意事項再填寫本頁)-37- 552326 A8 B8 C8 _____ D8 VI. In the scope of the patent application, the thermal module contains the upper thermal module casing and the lower thermal module casing, each of which is filled with a heat absorbing material, and the structure of the thermal module is formed from the upper thermal module casing. The body is selected by removing at least a portion of the heat absorbing material. 45 · A method for improving a Cheklaszkyra crystal device for growing a perfect single crystal silicon crystal ingot, the silicon crystal ingot does not contain cavity aggregates and interstitial aggregates' A shell, a crucible for containing the silicon melt in the shell, an Xuanjing seat adjacent to the crucible in the shell ', a heater surrounding the crucible in the shell, and a thermal component surrounding the heater in the shell, A heat bearing plate between the crucible and the seed base, a cooling jacket between the heat bearing plate and the seed base; and a device for pulling the seed base from the crucible, thereby A single-crystal silicon ingot is pulled up from the silicon melt. The single-crystal silicon ingot has an axis and a cylindrical edge. The silicon melt and the ingot define an ingot-melt interface between the two. The method of improving the Cheklaussky crystal device for growing a perfect single crystal stone crystal spin includes the following steps: selecting the position of the heat shield, the structure of the heat shield, the location of the heater, the structure of the cooling jacket, The location of the accident, the structure of the thermal assembly, and the ability to apply to the heater At least one of them is selected to produce a temperature gradient at the ingot-melt interface, which is greater than the 2.50k / mm rice ingot axis and at least equal to the diffusion length from the cylindrical edge of the ingot Temperature gradient. 46. The method according to item 45 of the scope of patent application, wherein the crucible includes a crucible top and a crucible bottom, and the heat shield includes a heat shield top. (Please read the notes on the back before filling this page) -38- 552326 A8 B8 C8 D8 、申請專利範圍 及一擋熱板底部,以及其中該選擇步驟包含藉由改變 (請先閲讀背面之注意事項再填寫本頁) 擋熱板底部及坩堝頂部之間的距離來選擇擋熱板的 位置的步驟。 ^如申請專利範圍第45項之方法,其中擔熱板包含一 擋熱板頂部及一擋熱板底部,且其中該選擇步驟包含 藉由在擋熱板底部提供擋熱板外罩來選擇擋熱板之 構造的步驟。 •、可| 48·如申請專利範圍第47項之方法,其中擔熱板外罩包 含位在坩堝内的環狀擋熱板外殼體,其包含内部及外 部擋熱板外殼體壁、傾斜之擋熱板外殼體底板及延伸 於内部及外部擋熱板外殼體壁之擋熱板外殼體頂 部,該擋熱板外殼體内含有絕緣材料,其中傾斜之擋 熱板外殼體界定一與水平面之角度,且其中該選擇步 驟進一步包含藉由改變該角度來選擇擋熱板之構造 的步驟。 49·如申请專利範圍第45項之方法,其中掛禍包含一掛 禍頂部及一坩堝底部,其中加熱器含有一加熱器頂部 及加熱器底部,以及其中該選擇步驟包含藉由改變坩 禍頂部及加熱器頂部之間的距離來選擇加熱器之位 置的步驟。 50·如申請專利範圍第49項之方法,其中該選擇步驟進 一步包含同時相對於外殼而軸向地改變加熱器之位 置及坩堝之位置的步驟。 51.如申請專利範圍第45項之方法,其中坩堝包含一掛 -39- 552326 A8 B8 C8 _______________D8 申請專利範園 堝頂部及一坩堝底部,其中冷卻套管含有一冷卻套管 頂部及冷卻套管底部,及其中該選擇步驟包含藉由改 (請先閲讀背面之注意事項再填寫本頁) 交掛堝頂部及冷4卩套管底部之間的距離來選擇冷卻 套管的位置的步驟。 A如申請專利範圍第45項之方法,其中熱組件含有上 部熱組件外殼體及下部熱組件外殼體,各自充填熱吸 收材料,且其中該選擇步驟包含藉由自上部熱組件外 殼體移除至少部分熱吸收材料來選擇熱組件之構造 的步驟。 53·如申明專利範圍第45項之方法,其中該選擇步驟包 含下述步驟: 首先,選擇擋熱板之位置、擋熱板之結構及加熱 w之位置中至少一者以供在晶旋溶融物界面處、在晶 錠軸處產生一溫度梯度,其至少等於自圓柱形邊緣開 始之擴散長度處的溫度梯度;以及 接著,選擇冷卻套管之結構、坩堝之位置及熱組 件之構造中至少一組以供在晶錠-熔融物界面處、在晶 錠軸處產生一溫度梯度,其大於2·5°Κ/亳米。 54.如申請專利範圍第53項之方法,其中該坩堝包含一 坩堝頂部及一坩堝底部,其中該擋熱板包含一擋熱板 頂部及一擋熱板底部,其中加熱器含有一加熱器頂部 及加熱器底部,其中擋熱板的位置係藉由改變擋熱板 底部及坩堝頂部之間的距離來選擇,其中擋熱板之構 造係藉由在擋熱板底部提供擋熱板外罩來選擇,以及 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) -40- 552326 A8 B8 C8 ____D8___ 六、申請專利範圍 其中加熱1§之位置係藉由改變坩堝頂部及加熱器頂 部之間的距離來選擇;以及 其中首先選擇之步驟包含選擇擔熱板之位置、擔 熱板之構造及加熱器之位置皆經選擇以供在晶錠-熔 融物界面處、在晶錠軸處產生一溫度梯度,其大於圓 柱形邊緣處的溫度梯度的步驟。 55·如申請專利範圍第54項之方法,其中該坩堝包含一 坩堝頂部及一坩堝底部,其中加熱器含有一加熱器頂 部及加熱器底部,其中冷卻套管含有一冷卻套管頂部 及冷卻套管底部熱組件含有上部熱組件外殼體及下 部熱組件外殼體,其中各自充填熱吸收材料加熱器之 位置係藉由改變掛塌頂部及加熱器頂部之間的距離 來選擇,其中加熱器之位置及坩堝之位置係同時相對 於外殼而軸向地改變,其中冷卻套管的位置係藉由改 變坩堝頂部及冷卻套管底部之間的距離來選擇,其中 熱組件之構造係藉由自上部熱組件外殼體移除至少 部分熱吸收材料來選擇的步驟;以及 其中接著選擇之步驟包含冷卻套管之構造、掛竭 之位置、加熱器及坩堝之位置及熱組件之構造皆經選 擇以供在晶鍵>熔融物界面處、在晶錠軸處產生一溫度 梯度,其大於2·5°Κ/毫米。 56· —種改良切克勞斯基拉晶裝置以供生長完美單結晶 矽晶錠的方法,該矽晶錠不含空穴集聚體及間隙集聚 體,該切克勞斯基拉晶裝置包含一外殼,一位在外殼 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁)-38- 552326 A8 B8 C8 D8, the scope of patent application, and the bottom of a heat shield, and the selection step includes changes (please read the precautions on the back before filling this page) between the bottom of the heat shield and the top of the crucible Steps to select the position of the heat shield. ^ The method according to item 45 of the patent application scope, wherein the heat transfer plate includes a heat shield top and a heat shield bottom, and the selection step includes selecting a heat shield by providing a heat shield cover at the bottom of the heat shield Steps of plate construction. • , 可 | 48 · The method according to item 47 of the patent application, wherein the heat-carrying plate cover comprises a ring-shaped heat-shielding plate outer body located in the crucible, which includes the inner and outer heat-shielding plate outer wall, the inclined shield The bottom plate of the hot plate outer shell and the top of the heat shield outer shell extending from the inner and outer heat shield outer shell walls. The heat shield outer shell contains an insulating material, wherein the inclined heat shield outer shell defines an angle with the horizontal plane. And, the selecting step further includes a step of selecting a structure of the heat shield by changing the angle. 49. The method according to item 45 of the patent application, wherein the accident includes a disaster top and a crucible bottom, wherein the heater includes a heater top and a heater bottom, and wherein the selecting step includes changing the crucible top by And the distance between the top of the heater to select the location of the heater. 50. The method of claim 49, wherein the selecting step further includes a step of simultaneously changing the position of the heater and the position of the crucible axially with respect to the casing. 51. The method according to item 45 of the scope of patent application, wherein the crucible includes a hanging-39- 552326 A8 B8 C8 _______________D8 patent application Fanyuan pot top and a crucible bottom, wherein the cooling jacket contains a cooling jacket top and a cooling jacket The bottom, and the selection step includes the step of selecting the location of the cooling jacket by changing the distance between the top of the cauldron and the bottom of the cooling jacket (please read the notes on the back before filling this page). A The method according to item 45 of the patent application, wherein the thermal module includes an upper thermal module casing and a lower thermal module casing, each of which is filled with a heat absorbing material, and wherein the selecting step includes removing at least the upper thermal module casing from the upper thermal module casing. Part of the heat absorbing material to select the structure of the thermal module. 53. The method of claim 45, wherein the selection step includes the following steps: First, select at least one of the position of the heat shield, the structure of the heat shield, and the position of the heating w for melting in the crystal spin. A temperature gradient is generated at the object interface and at the axis of the ingot, which is at least equal to the temperature gradient at the diffusion length from the cylindrical edge; and then, the structure of the cooling jacket, the position of the crucible and the structure of the thermal component are selected at least One set for generating a temperature gradient at the ingot-melt interface and at the ingot axis, which is greater than 2.5 ° K / 亳 m. 54. The method of claim 53, wherein the crucible includes a crucible top and a crucible bottom, wherein the heat shield includes a heat shield top and a heat shield bottom, and the heater includes a heater top And the bottom of the heater, where the position of the heat shield is selected by changing the distance between the bottom of the heat shield and the top of the crucible, and the structure of the heat shield is selected by providing a heat shield cover at the bottom of the heat shield , And this paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -40- 552326 A8 B8 C8 ____D8___ Sixth, the scope of patent application where the heating 1§ position is changed by changing between the crucible top and the top of the heater And the first selection step includes selecting the position of the heat-carrying plate, the structure of the heat-carrying plate, and the position of the heater are all selected for generating an ingot-melt interface and an ingot axis. Temperature gradient, which is a step larger than the temperature gradient at the edge of the cylinder. 55. The method of claim 54, wherein the crucible includes a crucible top and a crucible bottom, wherein the heater includes a heater top and a heater bottom, and the cooling sleeve includes a cooling sleeve top and a cooling jacket. The thermal assembly at the bottom of the tube contains the outer casing of the upper assembly and the outer casing of the lower assembly. The positions of the respective heaters filled with heat absorbing material are selected by changing the distance between the top of the collapse and the top of the heater. The position of the heater The position of the crucible and the crucible are changed axially with respect to the shell at the same time. The position of the cooling sleeve is selected by changing the distance between the crucible top and the bottom of the cooling sleeve. The structure of the thermal component is The step of selecting at least a part of the heat absorbing material of the component outer casing to select; and the subsequent selection steps include the structure of the cooling jacket, the position of exhaustion, the position of the heater and crucible, and the structure of the thermal component are selected for use in A crystal gradient occurs at the interface of the melt and at the axis of the ingot, which is greater than 2.5 ° K / mm. 56 · A method for improving a Cheklaszkyra crystal device for growing a perfect single-crystal silicon ingot, the silicon crystal ingot does not contain void aggregates and interstitial aggregates, and the Cheklaussky crystal device includes One case, one case. The paper size of the case applies the Chinese National Standard (CNS) Α4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page) -41- 552326 A8 B8 C8 ___D8 六、申請專利範圍 内供容納矽熔融物的坩堝,一位在外殼内鄰接坩堝的 籽晶座,一位在外殼内環繞坩堝的加熱器,一位在外 殼内環繞加熱器的熱組件,一界於坩堝及籽晶座之間 的擋熱板,一界於擋熱板及籽晶座之間的冷卻套管; 以及一用於將籽晶座自坩螞拉起的裝置,藉此由矽溶 融物中上拉出一單結晶矽晶錠,該單結晶矽晶錠具有 一軸及一圓柱狀邊緣,該矽熔融物及晶錠在二者之間 界定一晶錠-熔融物界面,該改良切克勞斯基拉晶裝置 以供生長完美單結晶石夕晶錠之方法包含下述步驟: 選擇擋熱板之位置、擋熱板之構造、加熱器之位 置、冷卻套管之構造、坩堝之位置、熱組件之構造及 應用至加熱器之能源中至少一者以供產生相對於矽 熔融物呈平面或凸面的晶錠_熔融物界面。 57·如申請專利範圍第56項之方法,其中坩堝包含一坩 堝頂部及一坩堝底部,其中擋熱板包含一擋熱板頂部 及一擋熱板底部,以及其中該選擇步驟包含藉由改變 擋熱板底部及坩堝頂部之間的距離來選擇擋熱板的 位置的步驟。 58. 如申請專利範圍第56項之方法,其中擋熱板包含一 擋熱板頂部及一擋熱板底部,且其中該選擇步驟包含 藉由在擋熱板底部提供擋熱板外罩來選擇擔熱板之 構造的步驟。 59. 如申請專利範圍第56項之方法,其中撐熱板外罩包 含位在掛堝内的環狀擔熱板外殼體,其包含内部及外 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) .訂· -42- 552326 A8 B8 C8 ___D8 六、申請專利範圍 部擋熱板外殼體壁、傾斜之擋熱板外殼體底板及延伸 於内部及外部擋熱板外殼體壁之擋熱板外殼體頂 4θ亥擔熱板外设體内含有絕緣材料,其中傾斜之擔 熱板外设體界疋一與水平面之角度,且其中該選擇步 驟進一步包含藉由改變該角度來選擇擋熱板之構造 的步驟。 6〇·如申請專利範圍第56項之方法,其中㈣包^ 禍頂部及-賴部,其中加熱器含有一加熱器頂部 及加熱器底部,以及其中該選擇步驟包含藉由改變掛 堝頂部及加熱器頂部之間的距離來選擇加熱器之位 置的步驟。 ^.如中請專利範圍第6G項之方法,其中該選擇步驟進 步包3同時相對於外殼而軸向地改變加熱器之位 置及掛禍之位置的步驟。 62.如申請專利範圍第56項之方法,其中掛禍包含一掛 堝頂部及一掛禍底部,其中冷卻套管含有一冷卻套管 頂部及冷卻套管底部,及其中該選擇步驟包含藉由改 變掛禍頂部及冷卻套管底部之間的距離來選擇冷卻 套管的位置的步驟。 队如申請專利範圍第56項之方法,其中件含u 部熱組件外殼體及下部熱組件外殼體,各自充填轨吸 收材料,且其中該選擇步驟包含藉由自上部熱組件外 殼體移除至少部分熱吸收材料來選擇熱組件之構造 的步驟。 ^準- (請先閱讀背面之注意事項再填寫本頁)-41- 552326 A8 B8 C8 ___D8 6. Crucibles for holding silicon melt within the scope of the patent application, one is a seed holder adjacent to the crucible in the shell, one is a heater that surrounds the crucible in the shell, and one is in the shell. A thermal component surrounding the heater, a heat shield plate between the crucible and the seed seat, a cooling jacket between the heat shield plate and the seed seat; and A pulling device, whereby a single-crystal silicon ingot is pulled up from a silicon melt, the single-crystal silicon ingot has an axis and a cylindrical edge, and the silicon melt and the ingot define a space therebetween. Ingot-melt interface, the improved Cheklauszkyra crystal device for growing a perfect single crystal stone ingot includes the following steps: selecting the position of the heat shield, the structure of the heat shield, and the heater At least one of the position, the structure of the cooling jacket, the position of the crucible, the structure of the thermal assembly, and the energy applied to the heater to generate an ingot_melt interface that is flat or convex with respect to the silicon melt. 57. The method of claim 56 in which the crucible includes a crucible top and a crucible bottom, wherein the heat shield includes a heat shield top and a heat shield bottom, and wherein the selecting step includes changing a heat shield The distance between the bottom of the hot plate and the top of the crucible to select the position of the heat shield. 58. The method of claim 56 in which the heat shield includes a heat shield top and a heat shield bottom, and wherein the selecting step includes selecting a load by providing a heat shield cover at the bottom of the heat shield. Steps in the construction of the hot plate. 59. For the method of applying for the scope of patent No. 56, wherein the heat-supporting plate cover comprises a ring-shaped heat-carrying plate outer body which is located in a hanging pot, which includes the inside and outside. The paper size is applicable to the Chinese National Standard (CNS) A4 specification ( 210X297 mm) (Please read the precautions on the back before filling out this page). Order · -42- 552326 A8 B8 C8 ___D8 VI. Patent application scope The heat shield shell wall, the sloped heat shield shell bottom plate and The heat-shielding plate outer body top extending on the inner and outer heat-shielding plate outer wall 4θ 亥 heat-bearing plate peripheral body contains insulating material, wherein the inclined heat-bearing plate outer body boundary is at an angle to the horizontal plane, and where The selecting step further includes a step of selecting a structure of the heat shield by changing the angle. 60. The method according to item 56 of the patent application, wherein the top and bottom parts are included, wherein the heater includes a heater top and a heater bottom, and wherein the selecting step includes changing the top and The distance between the tops of the heaters to select the location of the heater. ^. The method according to item 6G of the patent application, wherein the selection step includes the step of simultaneously changing the position of the heater and the position of the heater axially with respect to the casing at the same time. 62. The method according to item 56 of the application, wherein the accident comprises a top of the hanging pot and a bottom of the accident, wherein the cooling jacket comprises a top of the cooling jacket and a bottom of the cooling jacket, and wherein the selecting step includes by Steps to change the distance between the top of the accident and the bottom of the cooling jacket to select the location of the cooling jacket. If the team applies for the method of item 56 of the patent scope, wherein each of the components includes a u thermal module outer casing and a lower thermal module outer casing, each of which is filled with a rail absorbing material, and wherein the selecting step includes removing at least the upper thermal module casing from the upper thermal module casing. Part of the heat absorbing material to select the structure of the thermal module. ^ Quasi- (please read the notes on the back before filling this page) -43- 552326 A8 B8 C8 六、申請專利範圍 64·如申w月專利I巳圍第56項之方法,其中該選擇步驟包 含下述步驟: 百先,選擇擋熱板之位置、擋熱板之結構及加熱 斋之位置中至少一者以供在晶錠_熔融物界面處、在晶 錠軸處產生一溫度梯度,其至少等於自圓柱形邊緣開 始之擴散長度處的溫度梯度;以及 接著,選擇冷卻套管之結構、坩堝之位置及熱組 件之構造中至少一組以供在晶錠_熔融物界面處、在晶 錠軸處產生一溫度梯度,其大於2·5〇κ/亳米。 65·如申請專利範圍第64項之方法,其中該坩堝包含一 掛竭頂部及-掛塌底部,其中該擒熱板包含一擋熱板 頂部及一擋熱板底部,其中加熱器含有一加熱器頂部 及加熱器底部,其中擋熱板的位置係藉由改變擋熱板 底部及坩堝頂部之間的距離來選擇,其中擋熱板之構 造係藉由在擋熱板底部提供擋熱板外罩來選擇,以及 其中加熱器之位置係藉由改變坩堝頂部及加熱器頂 部之間的距離來選擇;以及 其中首先選擇之步驟包含選擇擋熱板之位置、擋 熱板之構造及加熱器之位置皆經選擇以供在晶錠_熔 融物界面處、在晶鍵軸處產生一溫度梯度,其大於圓 柱形邊緣處的溫度梯度的步驟。 66.如申請專利範圍弟65項之方法,其中該掛竭包含一 坩堝頂部及一坩堝底部,其中加熱器含有一加熱器頂 部及加熱器底部’其中冷卻套管含有一冷卻套管頂部 本紙張尺度適用中國國家標準(CNS) Α4規格U10X297公釐) (請先閲讀背面之注意事项再填寫本頁) _訂丨 -44- 552326 A8 B8 C8 D8六、申請專利範圍 ^ 及冷卻套管底部熱組件含有上部熱組件外殼體及下 部熱組件外殼體,其中各自充填熱吸收材料加熱器之 位置係藉由改變坩竭頂部及加熱器頂部之間的距離 來選擇,其中加熱器之位置及坩堝之位置係同時相對 於外殼而軸向地改變,其中冷卻套管的位置係藉由改 變坩堝頂部及冷卻套管底部之間的距離來選擇,其中 熱組件之構造係藉由自上部熱組件外殼體移除至少 部分熱吸收材料來選擇的步驟;以及 其中接著選擇之步驟包含冷卻套管之構造、掛禍 之位置、加熱器及坩堝之位置及熱組件之構造皆經選 擇以供在晶錠-溶融物界面處、在晶錠軸處產生一溫产 梯度,其大於2.5°K/毫米。 本紙張尺度適用中國國家標準(CNS) Α4規格U10 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂丨 45--43- 552326 A8 B8 C8 VI. Application for patent scope 64 · The method of item 56 of the patent application I, including the following steps: Baixian, choose the position of the heat shield, heat shield At least one of the structure and the position of heating for generating a temperature gradient at the ingot_melt interface and at the ingot axis, which is at least equal to the temperature gradient at the diffusion length from the cylindrical edge; and then , Choose at least one of the structure of the cooling jacket, the position of the crucible, and the structure of the thermal assembly for generating a temperature gradient at the ingot_melt interface and at the ingot axis, which is greater than 2.5 · κ / 亳Meter. 65. The method of claim 64, wherein the crucible includes an exhausted top and a collapsed bottom, wherein the heat-trapping plate includes a top of the heat shield and a bottom of the heat shield, and the heater includes a heater. The top of the heater and the bottom of the heater. The position of the heat shield is selected by changing the distance between the bottom of the heat shield and the top of the crucible. The structure of the heat shield is provided by the heat shield cover at the bottom of the heat shield. To choose, and where the position of the heater is selected by changing the distance between the crucible top and the top of the heater; and where the first selection step includes selecting the position of the heat shield, the structure of the heat shield, and the location of the heater Both are selected for the step of generating a temperature gradient at the ingot_melt interface and at the crystal bond axis, which is greater than the temperature gradient at the cylindrical edge. 66. The method of claim 65, wherein the exhaustion comprises a crucible top and a crucible bottom, wherein the heater includes a heater top and a heater bottom 'wherein the cooling sleeve contains a cooling sleeve top Standards are applicable to Chinese National Standard (CNS) A4 specification U10X297 mm) (Please read the precautions on the back before filling this page) _Order 丨 -44- 552326 A8 B8 C8 D8 The module contains an upper thermal module outer casing and a lower thermal module outer casing, wherein the positions of the respective heaters filled with heat absorbing materials are selected by changing the distance between the crucible top and the top of the heater, where the position of the heater and the crucible The position is changed axially with respect to the housing at the same time. The position of the cooling sleeve is selected by changing the distance between the crucible top and the bottom of the cooling sleeve. The structure of the thermal module is determined by the upper thermal module casing. A step of selecting at least a portion of the heat absorbing material; and a step of selecting next including the structure of the cooling jacket and the location of the trouble The position of the heater and crucible and the structure of the thermal assembly are all selected to produce a temperature production gradient at the ingot-melt interface and at the ingot axis, which is greater than 2.5 ° K / mm. This paper size applies to Chinese National Standard (CNS) Α4 size U10 X 297 mm) (Please read the precautions on the back before filling this page) Order 丨 45-
TW89103608A 1999-05-26 2000-03-01 Czochralski pullers and pulling methods for manufacturing monocrystalline silicon ingots by controlling temperature gradients at the center and edge of an ingot-melt interface TW552326B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/320,102 US6146459A (en) 1997-02-13 1999-05-26 Czochralski pullers for manufacturing monocrystalline silicon ingots by controlling temperature at the center and edge of an ingot-melt interface
US09/320,210 US6251184B1 (en) 1997-02-13 1999-05-26 Insulating-containing ring-shaped heat shields for czochralski pullers
KR19990038990A KR100331552B1 (en) 1999-05-26 1999-09-13 Czochralski Pullers and Pulling Methods for Manufacturing Monocrystalline Silicon Ingots by Controlling Temperature Gradients at the Center and Edge of an Ingot-Melt Interface

Publications (1)

Publication Number Publication Date
TW552326B true TW552326B (en) 2003-09-11

Family

ID=27350060

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89103608A TW552326B (en) 1999-05-26 2000-03-01 Czochralski pullers and pulling methods for manufacturing monocrystalline silicon ingots by controlling temperature gradients at the center and edge of an ingot-melt interface

Country Status (3)

Country Link
JP (1) JP2000335993A (en)
DE (1) DE10006589A1 (en)
TW (1) TW552326B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI596240B (en) * 2012-12-31 2017-08-21 Memc電子材料公司 Fabrication of indium-doped silicon by the czochralski method
CN109930200A (en) * 2017-12-18 2019-06-25 上海新昇半导体科技有限公司 Heat shielding and monocrystalline silicon growing furnace structure

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503594B2 (en) * 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
WO2000013211A2 (en) * 1998-09-02 2000-03-09 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
JP3709494B2 (en) * 1999-02-26 2005-10-26 株式会社Sumco Heat shielding member of silicon single crystal pulling device
KR100378184B1 (en) * 1999-11-13 2003-03-29 삼성전자주식회사 Silicon wafer having controlled distribution of defects, process for the preparation of the same and czochralski puller for manufacturing monocrystalline silicon ingot
JP2004107132A (en) * 2002-09-18 2004-04-08 Sumitomo Mitsubishi Silicon Corp Heat shielding member for silicon single crystal pulling apparatus
JP4193503B2 (en) * 2003-01-31 2008-12-10 株式会社Sumco Method for producing silicon single crystal
JP4496723B2 (en) * 2003-06-27 2010-07-07 信越半導体株式会社 Single crystal manufacturing method and single crystal manufacturing apparatus
US7887633B2 (en) * 2008-06-16 2011-02-15 Calisolar, Inc. Germanium-enriched silicon material for making solar cells
CN113151892B (en) * 2021-04-27 2022-02-18 曲靖阳光新能源股份有限公司 Monocrystalline silicon production facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI596240B (en) * 2012-12-31 2017-08-21 Memc電子材料公司 Fabrication of indium-doped silicon by the czochralski method
CN109930200A (en) * 2017-12-18 2019-06-25 上海新昇半导体科技有限公司 Heat shielding and monocrystalline silicon growing furnace structure

Also Published As

Publication number Publication date
DE10006589A1 (en) 2000-12-07
JP2000335993A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
US6146459A (en) Czochralski pullers for manufacturing monocrystalline silicon ingots by controlling temperature at the center and edge of an ingot-melt interface
CN101370970B (en) Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
EP1310583B1 (en) Method for manufacturing of silicon single crystal wafer
JP3944879B2 (en) Single crystal ingot production equipment
Wong et al. Development of grain structures of multi-crystalline silicon from randomly orientated seeds in directional solidification
TW552326B (en) Czochralski pullers and pulling methods for manufacturing monocrystalline silicon ingots by controlling temperature gradients at the center and edge of an ingot-melt interface
JP2011528308A (en) Method and apparatus for producing cast silicon from seed crystals
JP2009173536A (en) Apparatus for manufacturing high-quality semiconductor single crystal ingot and method using the same
US20080257254A1 (en) Large grain, multi-crystalline semiconductor ingot formation method and system
JP5789676B2 (en) Resistance heating sapphire single crystal ingot growth apparatus and method of manufacturing resistance heating sapphire single crystal ingot
JP5464429B2 (en) Method for growing single crystal silicon having a square cross section
TW314641B (en)
Lan et al. Multicrystalline silicon crystal growth for photovoltaic applications
US11326272B2 (en) Mono-crystalline silicon growth apparatus
TW200902774A (en) Method for manufacturing silicon single crystal
JP2008508187A (en) Method for growing a single crystal from a melt
US9938633B2 (en) System for manufacturing a crystalline material by directional crystallization provided with an additional lateral heat source
WO2010077844A1 (en) Systems and methods for manufacturing cast silicon
KR100331552B1 (en) Czochralski Pullers and Pulling Methods for Manufacturing Monocrystalline Silicon Ingots by Controlling Temperature Gradients at the Center and Edge of an Ingot-Melt Interface
CN102758245A (en) Deoxidizing type single crystal furnace
CN205295534U (en) High -speed growth of single crystal device
CN111876822A (en) Heat shield for monocrystalline silicon growth furnace and monocrystalline silicon growth furnace
JP2022529451A (en) Growth method of single crystal silicon ingot using continuous Czochralski method
JP6719718B2 (en) Si ingot crystal manufacturing method and manufacturing apparatus thereof
JP2022526817A (en) Manufacturing method of ingot with reduced distortion in the latter half of the main body length

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees