TW507362B - Methods of forming integrated circuit capacitors having improved electrode and dielectric layer characteristics - Google Patents

Methods of forming integrated circuit capacitors having improved electrode and dielectric layer characteristics Download PDF

Info

Publication number
TW507362B
TW507362B TW087106116A TW87106116A TW507362B TW 507362 B TW507362 B TW 507362B TW 087106116 A TW087106116 A TW 087106116A TW 87106116 A TW87106116 A TW 87106116A TW 507362 B TW507362 B TW 507362B
Authority
TW
Taiwan
Prior art keywords
layer
forming
hsg
silicon surface
surface layer
Prior art date
Application number
TW087106116A
Other languages
Chinese (zh)
Inventor
Young-Sun Kim
Seok-Jun Won
Young-Min Kim
Kyung-Hoon Kim
Kab-Jin Nam
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019970023381A external-priority patent/KR100234417B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Application granted granted Critical
Publication of TW507362B publication Critical patent/TW507362B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Methods of forming integrated circuit capacitors include the steps of forming a lower electrode of a capacitor by forming a conductive layer pattern (e.g., silicon layer) on a semiconductor substrate and then forming a hemispherical grain (HSG) silicon surface layer of first conductivity type on the conductive layer pattern. The inclusion of a HSG silicon surface layer on an outer surface of the conductive layer pattern increases the effective surface area of the lower electrode for a given lateral dimension. The HSG silicon surface layer is also preferably sufficiently doped with first conductivity type dopants (e.g., N-type) to minimize the size of any depletion layer which may be formed in the lower electrode when the capacitor is reverse biased and thereby improve the capacitor's characteristic Cmin/Cmax ratio. A diffusion barrier layer (e.g., silicon nitride) is also formed on the lower electrode and then a dielectric layer is formed on the diffusion barrier layer. The diffusion barrier layer is preferably made of a material of sufficient thickness to prevent reaction between the dielectric layer and the lower electrode and also prevent out-diffusion of dopants from the HSG silicon surface layer to the dielectric layer. The dielectric layer is also preferably formed of a material having high dielectric strength to increase capacitance.

Description

507362 A7 B7 五、發明説明507362 A7 B7 V. Description of the invention

U範I 本無明與形成積體電路的方法及藉此方法所成的電路有 關,特別與形成積體電路電容器的方法及藉此方法所成的 電容器有關。 曼j月背景一 南笔谷半導d己丨思體裝置的需求,迫使以更高水準的積 骨豆電路技術來形成記憶體裝置與結構。不過,較高水準的 積體電路需要的記憶體裝$,其記憶體元件多半Μ小,必 須大巾田降誓其記憶體元件電容器(如dram)所佔空間。熟 悉本技術的人士都了解,降低其記憶體元件電容器所佔空 間會降低記憶體元件於俄電壓時的性能,並且不利於二 子可校正錯誤率(SER)。 傳?曾加記憶體元件所佔空間的方法包# :形成含有半 球Φ阳粒(HSG)矽面層的記憶體元件電極(像是儲存電 f )。比万説,美國專利文號5,407,534,受讓人Thakur的 ,二申凊’即詳述了於記憶體元件電容器成HSG矽面層的 .^ ' 不過,雖然具備HSG矽面層的電容器於高密度 積骨豆電路具省私社% $ + ^ 二1"佳的笔谷虿,HSG電容器較差的穩定性卻 可月匕I1牛低積體電路記情油 經满部中决標準局員工消费合作社印到表 、 谷记匕脱裝置的使用哥命。研究指出,傳 …二器的電纟,會隨著電容器電極的電恩極性而大 二 争別是在HSG電容器的高、⑯電極於正、負値間 :產生ί:士反向偏壓時(像是進行讀取、寫取操作時), 容器於二象。二方説,圖2顯示了傳統_ _兒”時,其電各反應曲線。如圖所示,如果 A7 B7 、發明説明( 電位差爲正値,可取得其最大電容—。… 極的電位差爲負値,則電容會逐漸下降。事實上,二 〜1·)時,其電容最小(Cmin),约爲最大電容的55:1 發明摘要 本發明的JL Φ _ τ?- ” 一、目標,在於提供形成積體電路t $ % 的万法及藉此方法所成的電容器。 各… 本發明的另一項B描 , ,,. “目“,在於提供具備較大表面面浐士打 的積體電路電容器與藉此所形成之電容器。面知电極 本發明巧另― '目標,在於提供形成於正、反肖偏斤睡 相同電各特性的積體電路電容器的方法及藉此方 去所形成的電容器。 r 曰 本發明的另一項目姆 性而6/、榼,在於k供形成具有改良長期穩定 =…的積體電路的方法,以及藉此方法形成之電容 k t本叙明的上述以及其他目標、優點、與裝置的方 法,包括了以下步驟:於半導體基片上形成導電;圖安 c形成電容器的低電極;然後於導電;“ 弟一類型的半球形晶粒(HSG)矽面層。導電層圖 案表面的HSG矽面層,可以辦加 ^ 曰。 j以日加一疋k向其低電極的有效 表面面積。HSG石夕面居|姑〇办μ 一 1 萌層疋與罘一導電類型(像是Ν _麵 型)所用的摻雜金屬充份摻雜,以降低電容器反向偏壓 時’低電極可能形成的空乏層的大小,來改良電容哭的 —X比率。低電極還會形成擴散障礙層(像是氮化 石夕),然後於擴散障礙層上形成介電層。擴散障礙層最好 -5 (210X 297公釐) 請 先 閱 讀 背 面 之 注 意. 事 項 再·U Fan I This ignorance is related to the method of forming an integrated circuit and the circuit formed by the method, and particularly to the method of forming an integrated circuit capacitor and the capacitor formed by the method. Man J. Background 1 The demand for the semi-conductive devices in Nanbi Valley has forced the use of higher-level osteoblast circuit technology to form memory devices and structures. However, higher-level integrated circuits require more memory, and most of the memory components are small, so they must swear by their memory device capacitors (such as dram). Those skilled in the art are aware that reducing the space occupied by the capacitors of their memory elements will reduce the performance of the memory elements at the Russian voltage and is not conducive to the binary correctable error rate (SER). pass? Method for adding the space occupied by the memory element package #: Forming a memory element electrode (such as a storage battery f) containing a hemispherical Φ cation (HSG) silicon surface layer. Biwan said that U.S. Patent No. 5,407,534, the assignee Thakur, Ershen's detailed that the capacitors of the memory element into the HSG silicon surface layer. ^ 'However, although the capacitor with the HSG silicon surface layer is high Density osteoblast circuit with provincial private society% $ + ^ 2 1 " Best Biguya, HSG capacitors have poor stability but can be used in low-integration circuit I1, low-integrated circuit memory oil, consumed by staff of the National Standards Bureau Cooperative printed to the table, the use of the brother's dagger device. Studies have pointed out that the electric power of the second device will vary with the polarity of the capacitor electrode's sophomore. The difference between the high and low electrodes of HSG capacitors is between positive and negative electrodes: when the reverse bias is generated (Such as when reading and writing), the container is in the second image. On the other side, Figure 2 shows the traditional electrical response curves of the traditional _ _ er ". As shown in the figure, if A7 B7 and the invention description (the potential difference is positive 値, its maximum capacitance can be obtained -... the potential difference of the pole is Negative 値, the capacitance will gradually decrease. In fact, at 2 ~ 1 ·), its capacitance is the smallest (Cmin), which is about 55: 1 of the maximum capacitance. Summary of the invention JL Φ _ τ?-”I. Objective, It is to provide a method for forming a integrated circuit t $% and a capacitor formed by the method. Each ... Another aspect of the present invention is to provide integrated circuit capacitors with a large surface area and a capacitor formed therefrom. The electrode is known in the present invention. Another object of the present invention is to provide a method for forming an integrated circuit capacitor having the same electrical characteristics as the positive and negative electrodes, and a capacitor formed by the method. r refers to another important aspect of the present invention and 6 /, 榼, which is a method for forming an integrated circuit with improved long-term stability =, and a capacitor kt formed by this method as described above and other objectives, The advantages and methods of the device include the following steps: forming a conductive layer on the semiconductor substrate; forming a low electrode of the capacitor in Tuan c; and then conducting the conductive layer; "the first type of hemispherical grain (HSG) silicon surface layer. The conductive layer The HSG silicon surface layer on the pattern surface can be added ^. J to increase the effective surface area of the low electrode by one 疋 k. HSG Shi Ximenju | 〇〇 Office μ 1 1 疋 and 罘 conductive type ( For example, the doping metal used in the N_ face type is sufficiently doped to reduce the size of the empty layer that the low electrode may form when the capacitor is reverse biased to improve the capacitance-to-X ratio. The low electrode will also form Diffusion barrier (such as nitride nitride), and then a dielectric layer is formed on the diffusion barrier. Diffusion barrier is best -5 (210X 297 mm) Please read the notes on the back first. Matters before ·

頁 訂 經消部中央標導局员工消費合作社印$!. A7 B7 經濟部中央標準局員工消費合作社印製 507362 號專利申請案 视正頁(89年10月) 以厚度足夠的材質製成,以避免介電層與低電極之間的反 應,並避免雜質自HSG矽面層向外擴散到介電層。介電層 的材質最好具備了高絕緣強度,以增加電容。 根據本發明的一個觀點,形成HSG矽面層的步驟包括以 下步騾:於導電層的上層表面插種矽籽晶體,然後將籽晶 體養成單晶體結晶。另外,還需要將導電層圖案退火,然 後以磷化氫氣體的N -類型滲雜劑來摻雜HSG矽面層。您 最好於快升溫處理裝置(RTP)進行摻雜步驟,使HSG矽面 層具備的N -類型導電性能,超過延展於鄰近半導體基片 的導電層圖案的N _類型。較高的導電性能可使低電極於 電容器反向偏壓時,不會形成空乏層。擴散障礙層亦可以 用第一導電類型滲雜劑加以摻雜,以避免滲雜劑對介電層 外向擴散,進而降低了 HSG矽面層的導電性能。此外,擴 散障礙層的材質,亦可由快速升溫氮化(RTN)所形成的第 一氮化矽層以及化學汽化沉積(CVD)所形成的第二氮化矽 層的化合物所製成。介電層還可由氧化妲等高絕緣材質所 製成。介電層的製成方式,最好是先形成數個氧化短薄 層,然後分別提高這些薄層的密度,以改良介電層的性 能,並強化以妲化矽為材質的擴散障礙層。 附圖簡單說明 圖1 A的流程圖,顯示了根據本發明實施例形成電容器 的方法之步驟。 圖1 B的剖面圖,顯示了根據圖示1 A方法所形成的積體 電路裝置,該裝置具有半球形晶粒(HSG)電容器。 -6- 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)Page order printed by the Consumer Consumption Cooperative of the Central Standards Bureau of the Ministry of Consumer Affairs printed $ !. A7 B7 Printed on the front page of the Patent Application No. 507362 by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economy (October 89) To avoid the reaction between the dielectric layer and the low electrode, and to prevent impurities from diffusing outward from the HSG silicon surface layer to the dielectric layer. The dielectric layer should preferably have a high dielectric strength to increase capacitance. According to an aspect of the present invention, the step of forming the HSG silicon surface layer includes the following steps: inserting a silicon seed crystal on the upper surface of the conductive layer, and then growing the seed crystal into a single crystal. In addition, it is necessary to anneal the conductive layer pattern, and then dope the HSG silicon surface layer with a N-type dopant of phosphine gas. You are best to perform a doping step in a rapid temperature rise processing device (RTP), so that the N-type conductivity of the HSG silicon surface layer exceeds the N_type of the conductive layer pattern extending on the adjacent semiconductor substrate. The higher conductivity allows the low electrode to form no empty layers when the capacitor is reverse biased. The diffusion barrier layer can also be doped with a first conductivity type dopant to prevent the dopant from diffusing outward to the dielectric layer, thereby reducing the conductive properties of the HSG silicon surface layer. In addition, the material of the diffusion barrier layer may be made of a compound of a first silicon nitride layer formed by rapid temperature nitriding (RTN) and a second silicon nitride layer formed by chemical vapor deposition (CVD). The dielectric layer can also be made of a highly insulating material such as hafnium oxide. The dielectric layer is preferably made by forming several short oxidized thin layers, and then increasing the density of these thin layers to improve the performance of the dielectric layer and strengthen the diffusion barrier layer made of siliconized silicon. Brief Description of the Drawings Fig. 1A is a flowchart showing steps of a method of forming a capacitor according to an embodiment of the present invention. Fig. 1B is a cross-sectional view showing an integrated circuit device formed according to the method of Fig. 1A, the device having a hemispherical grain (HSG) capacitor. -6- This paper size applies to Chinese National Standard (CNS) A4 (210X297 mm) (Please read the precautions on the back before filling this page)

507362 1、發明説明( 圖2的圖表,顯示了傳統H a507362 1. Description of the invention (The diagram in Figure 2 shows the traditional H a

Fi ^ Λ - r ^ F1 ^ %谷器的電容反應曲線。 SI 3A-jC的Η表,顯示了根 ..4 a,17 爪像本發明所形成的HSG電容 p其電谷於數個處理狀況時的三度空間反應。 圖4的圖表’顯示了傳纺 μ、 1寻况hsg電容器的電容反應曲線 (4a),以及根據本發明所形士 m “成的HSG電容器的電容反應曲 線(4b) 〇 圖5的圖表’顯示了根撼太义 +、 很據本發明所形成的HSG電容器的Fi ^ Λ-r ^ F1 ^% Capacitor response curve. The SI 3A-jC watch shows the three-dimensional spatial response of the root .. 4 a, 17 claw like the HSG capacitor p formed by the present invention when its electric valley is under several processing conditions. The graph of FIG. 4 'shows the capacitance response curve (4a) of the spinning μ, 1 condition hsg capacitor, and the capacitance response curve (4b) of the HSG capacitor formed according to the present invention. M The graph of FIG. 5' Shows the root of Taiyi +, the HSG capacitor formed according to the present invention

電容反應曲線。 % + π W 屬6的圖一表,顯尹了根據本發 , 電容反應曲線。 月所形成的HSG電容器的 圖7顯示了結晶導電層彡:圖案(7b)鱼非沾曰道兩 的滲雜劑不純物濃度(⑽與擴散深度^ ):♦圖案(7a) :裝8二平面圖1示了根據本發明處理步驟的“室處 圖9 A、9 B過渡電容器結構的 明形成:HSG電容器的方法。 回〜丁了根據本發 圖10-12的圖表顯示了根據本發明各種實施 HSG電容||的電容反應曲線。 々开/成的 經消部中决標率局員^-消費合作社印^ 輕佳實施例詳細僉明Capacitance response curve. % + Π W is a table of Figure 6, which shows the capacitance response curve according to the present invention. Figure 7 of the HSG capacitor formed in the month shows the crystalline conductive layer 彡: pattern (7b) the concentration of impurities in the impurity (^ and diffusion depth ^): ♦ pattern (7a): 8 1 shows the method of "forming the formation of the transition capacitor structure of Figs. 9A and 9B at the chamber: the method of HSG capacitors according to the processing steps of the present invention. The diagrams of Figs. 10-12 according to the present invention show various implementations according to the present invention. Capacitance response curve of HSG capacitor ||

以下説明,參考了顯示本發明實施例的附圖,以、佳一 I 説明本發明。本發明的實施例形式不一,不以此、ι 一 y 例爲限。此處提供實施例的目的,在於完整、、太杜、'二 本發明,並對熟悉本技術的人士傳達本發疋々0兑月 清晰起見,附圖中的各層、各區厚度皆有所试 π掁。必須了 ^纸浪尺度適用中國國家標準(CNS ) Α4規格(210X29*7公楚 507362 A7 B7 五、發明説明(5 解的h所謂的另-層或基片|上|的層,係指另一層或基 片上直接附著的層,或者中間包括其他層。說明中的所有 編號,係指圖中的相同編號。不過,,第—導電層類型,與, 第二導電層類型’則是指相反的P或N麵刑 人碭J。不過,以下説 明、顯示的實施例都包括了互補的實施例。 圖1A、1 B分別顯示了根據本發明會—/, 、 知貝她例形成電容器的 方法,以及藉此電容器形成記憶體裝置 ' J万法。圖1 B的 剖面圖,顯示了根據圖示1 A方法所丑彡山 无所形成的積體電路裝 置,該裝覃具有H?G電容器。積體電路 』 - 兒奋咨包括一個第 二半導體電類型(像是P -類型)的半,w其 ^ 寸巷^片2,該J_L || 有磁場氧化隔離層4 A、)4 B,定義了活料 ^ ” 疋性區3,今、、去 形成了-對存取電晶體5Α、5Β。每個存取電曰:性區 5Β包括了活性區3中第-導電類型(像是Ν-麵:=、 6。第-導電類型的共同排流區域8,亦形成於:勺源區 延伸於存取電晶體5Α、5Β間門電極對面的波道區 隔了共用排流區域8與源區6。波道區域7上還邢°° 5 7分 電晶體5 A、5 Β的閘氣> 9。绰$ ^ π < 7 、了存取 、, J闸虱層y 、,’巴緣的閘門電極丨〇可 波道區域7_的導電性能,以回雁仝 制 _于%「玍此,以口應子線信號。 經滅部中央標準局员μ消費合作社印製 材質最好是聚矽層11盥高熔點从人 Ί %極1 0的 /臂丨丨舁冋L點的金屬矽化物1 物。問側壁介雪爲1 2 + Jjy -Vηη 、化合 層1 3亦形成万;閘門電極1 0。聚矽屉〗, 形狀可以與字線相同,最好形成於磁場氧化目4的 ;'如門圖:示,第-中間介電層15係做爲第一二 罘一中間介電居〗ς、晉4 、、 曰。 、 g 5逐匕括一個必孔1 7,以顯露共用姑、、 區域8表面的—,、六了丨1 7 6 _L 排〉瓦 4伤。流孔1 7包括了以摻雜聚矽(或鴣)爲 507362In the following description, reference is made to the accompanying drawings showing embodiments of the present invention, and the present invention will be described with reference to Gai I. The embodiments of the present invention have different forms, and are not limited to these examples. The purpose of the embodiments provided here is to complete the present invention, and to provide the present invention to those skilled in the art. For the sake of clarity, the thicknesses of the layers and regions in the drawings are different. Tried π 掁. The paper wave scale must be in accordance with Chinese National Standard (CNS) A4 specifications (210X29 * 7 Gongchu 507362 A7 B7) V. Description of the invention (5 solution of the so-called other-layer or substrate | upper | layer, refers to another A layer or a layer directly attached to the substrate, or other layers in the middle. All numbers in the description refer to the same numbers in the figure. However, the first conductive layer type and the second conductive layer type 'means the opposite P or N face prisoner 砀 J. However, the following descriptions and shown embodiments include complementary embodiments. Figures 1A and 1B respectively show a case where a capacitor is formed according to the present invention. Method, and the capacitor to form a memory device by this method. Figure 1B is a cross-sectional view showing an integrated circuit device formed by the method shown in Figure 1A. This device has H? G Capacitor. Integrated Circuit "-Erfenshen includes a second semi-conductor electrical type (like P-type) half, its ^ inch lane ^ slice 2, the J_L || has a magnetic field oxidation isolation layer 4 A,) 4 B, defines the live material ^ "疋 性 区 3, now, and to form-to access Crystals 5A, 5B. Each access is: the sexual region 5B includes the -conducting type in the active region 3 (such as the N-plane: =, 6. The common drainage region 8 of the -conducting type is also formed in : The source region of the spoon extends across the gate electrode across the access transistor 5A, 5B, and the channel separates the common drain region 8 from the source region 6. The channel region 7 is also X °° 5 7 points, the transistor 5 A, 5 Β gate gas > 9. Chuo $ ^ π < 7, access, J gate layer y, 'gate edge gate electrode 丨 0 can be channel region 7_ conductive properties to return The same system _ in% "This is the answer to the strand signal. The member of the Central Standards Bureau of the Ministry of Economic Affairs μ Consumer Cooperative Society printed material is preferably a polysilicon layer 11 high melting point from people Ί% pole 1 0 / arm 丨丨 舁 冋 L metal silicide 1. The side wall of the snow is 1 2 + Jjy -Vηη, the compound layer 13 also forms 10,000; the gate electrode 10. Polysilicon drawer, the shape can be the same as the word line, the most It is formed in the magnetic field oxidized head 4; as shown in the door map: the first-middle dielectric layer 15 is used as the first two-middle dielectric layer. One must hole 1 7 Regardless ,, revealed common surface region 8 - 1 7 6 _L Shu ,, six rows of the> watt 4 bleeding hole 17 includes a doped poly silicon (or partridge) is 507362

五 、發明説明( A7 B7V. Description of the invention (A7 B7

:;的導電插座16,與共用排流區域8的電阻接觸。道 的丄16遇與位元線丨8接線,該位元線的材質可以爲^电 广、高炫點金屬、聚物化物。 :,雏 I:爲:二純化層。第二中間介電層㈣蓋了二:: 份;Π:電Γ。流孔2。則顯露編表面的 圖所;…一中間介電仏與第二中間介電層19, 9 部 如 述的記憶體元件還包括一個儲存電容哭,並 線至源區6。如下所逑 :低电極接 一道中起二 储存弘奋斋的低電極2 1包括了 寸电類型的聚矽層21a與表面不平坦的 弟:層::合物。低電極,1上還形成;擴散=:二 史兄低笔極2 1對上务兩爲。q从人、^ 散H '私層23外向苓雜劑不純物擴散。擴 可避免低電極(包括HSG石夕面層2=:間的化學反應。介電層23上還形成了導電的高 私枉層2 4,以製成儲存電容器。 部 中 决 標 準 工 消 f 合 作 社 印 圖1A顯示了形成咖電容器的較佳方法,包括了於方塊 la其半導體基片2形成導電層圖案。導電層圖案⑴起 、勺材貝垡爲單一的非晶形矽層(a_si),或者(與半導體基 片2接觸的)多晶體碎層與多晶體碎層化合物上的非晶形石夕 層的化合物。形成導電層圖案21a時,最好與第一導電類 型不純物摻雜。不過,您也可以在形成導電層圖案⑴ 後,再加以彳彡推。第一導電類型的摻雜不純物可以是磷(p) 或類似的N _類型滲雜劑。根據本發明其中一項觀點,導 電層圖案21_滲雜劑成分,其第一導電類型的不純物濃 -9- ^尺度$用中國國家標準YCNS ) Λ4^^7ΤΓ^ 297公釐) 507362 A7 __________B7 五、發明説明(7 ) 度不會大於1.0 X 102G滲雜劑不純物/cm3。您最好完全執行 本步驟,以進行摻雜不純物。熟悉本技術的人士都了解, 導電層圖案2 1 a其滲雜劑不純物濃度與導電層圖案2 1 a的表 面電阻成反比。本發明其導電層圖案2 1 a不純物濃度約爲 3.7 X 1019滲雜劑不純物/cm3,適於厚度約8,000人、表面電 阻3 6 Ω/cm2的導電層圖案21a。 經满部中决標準局员X消费合作社印$i 圖1 A的方塊1 b ’在形成導電層圖案2 1 a後,必須進行清 除步驟,以去除導電層圖案2 1 a其外露面的任何雜質。清 除步驟係梦別用來去除外露表面原有的氧膜(此處並未顯 示)。清除步驟包括:將導電層圖案2 la曝露於濕的清潔劑 (像是氫氟酸,HF)溶液或緩衝氧化蝕刻劑。雖然最好進行 清除步驟’不過您也可以省略。如方塊1 c所示,接下來的 步驟係於導電層圖案2 1 a上形成的半球晶粒(hsg)碎面層 2 1b,以增加導電層圖案2 la的外露表面。値得一提的是, 您可以將基片1 0裝入反應室,然後維持約低於1〇_0托的超 高眞空,並同時將導電層圖案21a曝露於激射的矽烷(SiH4) 或乙矽烷(SkH6)氣體,使導電層圖案21&表面會形成矽籽 晶層,做今寿核,以形成HSG矽面層2lb。然後會終止激 射έ石夕的氣fa。籽日日體的養成溫度最好介於5 6 q至6 9 。 養成步驟的時間必須足夠,使籽晶體的平均晶粒可達 1 000 A的大小。熟悉本技術的人士都了解,您也可以利用 其他形成、養成矽籽晶體成爲單一晶體晶粒的傳統技術, 來增加導電層圖案21a的有效表面面積。 HSG矽面層21b其單一晶體晶粒的大小與一致性,以及導 -10- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公楚) ---- 507362 A7 B7 五、發明説明(8 ) 電層圖案2 1 a的滲雜劑不純物濃度的影響來源,係由發明 者決定。値得一提的是,導電層圖案2 1 a的滲雜劑不純物 濃度與單一晶體晶粒的大小與一致性成反比。因此’一開 始限制導電層圖案2 1 a的第一導電類型滲雜劑不純物濃 度,可增加低電容器電極2 1 (該電極包括了導電層圖案2 1 a 與HSG矽面層21b)的表面。 如圖示1 d所示,最好於550至900°C之間對導電層圖案 2 la與插種的HSG矽面層21b進行退火。値得一提的是,最 好以800°(:_左右,/對導電層圖案21&與插種的1^0矽面層21匕 退火約3 0分鐘,使非晶形的導電層圖案2 1 a結晶爲多晶體 層。使用滲雜劑不純物II散技術,將導電層圖案21a退火 成多晶體層的步驟,可提高導電層圖案21a其滲雜劑不純 物的比例。圖7即顯示了提高滲雜劑不純物的比例。値得 一 的是’圖7顯示了結晶導電層圖案(7 b)與非結晶導電 層圖案(7a)的滲雜劑不純物濃度(y軸)與擴散深度(X軸)的 比較。如圖所示’結晶導電層圖案(7 b)的滲雜劑不純物濃 度大於非結晶導電層圖案(7a)的滲雜劑不純物濃度。 經滴部中夾標枣局Μ,τ-消费合作社印製 圖1 A方濟1 e,再度進行清除步驟,以去除HSG矽面層 2 1 b其外露面的任何雜質。與方塊1 b的清除步驟一樣,方 塊1 e的清除步驟係特別用來去除HSG矽面層2 1 b外露表面 原有的氧膜(此處並未顯示)。清除步驟包括:將由H S G石夕 面層21b與多晶體導電層圖案21a的化合層曝露於濕的清潔 劑(像是氫氟酸,HF)溶液或緩衝氧化蝕刻劑(B〇E)。 方塊1 f化合物多晶體層2 1包含了 H S G 夕面層9 1 b與晶體 -11 - 本紙張尺度適家標準 ( CNS ) A4規格(210X 297公釐) A7 - _________B 7 五、發明制(9 ) ~~~ "~一 導電層圖案21a,然後與第一導電類型的滲雜劑不純物進 订摻雜。第一導電類型的滲雜劑不純物可以是磷(p)等N類 型渗雜劑。摻雜多晶體層2 1化合物的步驟,包括:於擴散 或擴散方法後,使用pock等液體,來注入離子。不過: 注入離子時,化合物多晶體層21表面附近要達到一致並不 容易,原因在於··化合物多晶體層21表面其單一晶體晶粒 勺ί、]壁,典法垂直曝露於注入的離子束。最好不要使用 P〇Cl3等液體,原因在於:如果這類液體與化合物/層中的 咬發生化f變化,這類液體會形成玻璃層。 , 或者,摻雜化合物多晶體層2 1的技術,包括:將層2 i 曝露於三氫化磷氣體(Ρΐί3)的反應室。您可以於此步驟利 用快速升溫(RTP)裝置,來確保此一摻雜步驟期間,維持 了化合物多晶體層2 1其晶粒結構(像是大小與一致性)的完 整性。値得一提的是,RTP裝置係用來將溫度緩升至所要 的擴散溫度(持續溫度),然後短暫保持(短持續期間)所要 的擴散溫度。如發明者所決定,使用熔爐類型的擴散處理 秋序’來緩慢升溫及/或較長的持續期間,會降低後來形 成的電容IX包括化合物多晶體層2丨)其磁漏與電壓擊穿的 性能。因此,最好於1 2〇托壓力,以每秒升溫1 〇乇的速度 升溫至800°C左右的持續溫度,以RTP處理裝置進行第一導 電類型不純物(像是磷)的擴散。該持續溫度於相同速度緩 慢降溫前,維持約3〇〇秒。持續溫度介於55〇至9〇〇°C之 間’ RTP處理裝置的内在壓力介於5至5〇〇托(torr)之間。如 果HSG碎面層21b的單一晶體晶粒並無異變,可提高緩慢 _ _ 12_ 本紙張尺i適;家標準(210χ 297公鐘) 升溫的速度。RTP處理期間,可將三氫化磷氣體的流速設 ^27〇sccm(每分鐘標準立方公分)。氮氣的流速可設定 爲95 slm(每分鐘標準升)左右。 使用這些步驟,所形成3χ 1〇2〇滲雜劑/cm3的第—導電類 型滲雜劑不純物濃度的化合物多曰%體矽層21,纟與:匕合物 層2 !的上表面的深度距離較爲理想。該深度可於電容^反 向偏壓時,避兄空之層擴張。大於理想深度(像是5 〇又) 時,其背景滲雜劑不純物濃度會低於1〇20渗雜劑心3。如 果不進RTP處理,您、可以於Lpc VD室中以較長的持續期 間(相對於RTP的持續時間),以!至30托的低壓、6切至 8)〇 C的溫度,進行滲,劑擴散處理。然後會於hsg矽面 層⑽上形成方塊1§中的擴散障礙層22(像是Si3N4),以避 免HSG矽面層21b的滲雜劑向外擴散。圖9A、98進一步説 明了此一觀點。 麫满部中决標準局負T,消费合作社印裝 古方塊lh、Η係於擴散障礙層22上依序形成介電層23與 同電極24。最好是在摻雜HSG矽面層2ib後,於同一 反應罜形成擴散障礙層22與介電層23,以避免hsg矽面 層21b氧化一r並省略或減低清除步驟的時間。擴散障礙層 22與介電層23可由各種絕緣材質所製成,包括氮_氧…〇) 化合物、丁ί〇2、抓〇3、Bm〇3、(Ba,Sr)Ti〇3、pb(Zr, 丁1)〇3等。如使用氮-氧(N〇)化合物,係以該化合物氮成分 做爲擴散障礙層,以下有所説明。 圖3A-3C與圖4·6的圖表,顯示了根據本發明所形成的 HSG電容器的電容反應曲線。値得_提的是,此處的曲 ___-13· 本纸張尺度過用中國國家標準(CNS ) Λ4規格(21Qx297公廣) A7:; The conductive socket 16 is in contact with the resistance of the common drain region 8. The 丄 16 of the road is connected to the bit line 丨 8, and the material of the bit line can be ^ broadcast, high-dazzling point metal, polymer. :, Chick I: is: two purification layers. The second intermediate dielectric layer covers two :: 份; Π: 电 Γ. Flow hole 2. The figure on the surface of the braid is exposed; ... an intermediate dielectric layer and a second intermediate dielectric layer 19, 9 The memory element described above also includes a storage capacitor, and is wired to the source region 6. It is as follows: Low electrodes are connected to each other, and the low electrodes 2 1 of the Hongfenzhai store include a polysilicon layer 21a of an inch type and an uneven surface. Low electrode, 1 is also formed on; Diffusion =: 2 Shi Xiong low pen pole 2 1 pair of two things. q diffuses from people, ^ scattered H 'private layer 23 to impure impurities. The expansion can avoid chemical reactions between low electrodes (including HSG Shixi surface layer 2 = :.) A conductive high-private layer 2 4 is also formed on the dielectric layer 23 to make a storage capacitor. The cooperative print 1A shows a better method for forming a capacitor, which includes forming a conductive layer pattern on the semiconductor substrate 2 of the block 1a. The conductive layer pattern is raised and the spoon material is a single amorphous silicon layer (a_si). Or the compound of the amorphous crystalline layer (which is in contact with the semiconductor substrate 2) and the polycrystalline crystalline layer. The conductive layer pattern 21a is preferably doped with impurities of the first conductivity type. However, You can also postpone the formation of the conductive layer pattern ⑴. The doped impurity of the first conductive type may be phosphorus (p) or a similar N _ type dopant. According to one aspect of the present invention, the conductive Layer pattern 21_ Impurity agent component, its first conductive type impurities are concentrated -9- ^ scale $ Chinese national standard YCNS) Λ4 ^^ 7ΤΓ ^ 297 mm) 507362 A7 __________B7 V. Description of the invention (7) Will be greater than 1.0 X 102G Agent impurities / cm3. It is best to perform this step completely to dope impurities. Those skilled in the art understand that the impurity concentration of the impurity in the conductive layer pattern 21a is inversely proportional to the surface resistance of the conductive layer pattern 21a. The conductive layer pattern 21a of the present invention has an impurity concentration of about 3.7 X 1019 impurity impurity / cm3, and is suitable for the conductive layer pattern 21a having a thickness of about 8,000 people and a surface resistance of 36 Ω / cm2. Printed by the Bureau of Consumer Standards X Consumer Cooperative Co., Ltd. Figure 1 A box 1 b 'After the conductive layer pattern 2 1 a is formed, a clearing step must be performed to remove any exposed surface of the conductive layer pattern 2 1 a. Impurities. The removal step is used to remove the original oxygen film on the exposed surface (not shown here). The removing step includes: exposing the conductive layer pattern 2 la to a wet cleaning agent (such as hydrofluoric acid, HF) solution or a buffer oxidation etchant. Although it is best to perform the clearing step ’, you can also omit it. As shown in block 1c, the next step is a hemispherical grain (hsg) chipping layer 21b formed on the conductive layer pattern 21a to increase the exposed surface of the conductive layer pattern 21a. It is worth mentioning that you can load the substrate 10 into the reaction chamber, and then maintain an ultra-high vacuum below about 10_0 Torr, while exposing the conductive layer pattern 21a to lasing silane (SiH4) Or silane (SkH6) gas, a silicon seed layer will be formed on the surface of the conductive layer pattern 21 & Then it will stop lasing Shi Xi's Qi. The growth temperature of the seed sun is preferably between 5 6 q and 6 9. The time of the growing step must be sufficient so that the average grain size of the seed crystals can reach a size of 1 000 A. Those skilled in the art understand that you can also use other traditional techniques for forming and growing silicon seed crystals into single crystal grains to increase the effective surface area of the conductive layer pattern 21a. The size and consistency of single crystal grains of HSG silicon surface layer 21b, and the guideline -10- This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 Gongchu) ---- 507362 A7 B7 V. Description of the invention (8) The source of influence of the impurity concentration of the dopant in the electrical layer pattern 21a is determined by the inventor. It is mentioned that the impurity concentration of the dopant in the conductive layer pattern 21a is inversely proportional to the size and consistency of the single crystal grains. Therefore, the concentration of the impurity of the first conductivity type dopant of the conductive layer pattern 21a can be limited at first, and the surface of the low-capacitance electrode 21 (which includes the conductive layer pattern 21a and the HSG silicon surface layer 21b) can be increased. As shown in Figure 1 d, it is preferable to anneal the conductive layer pattern 2 la and the seeded HSG silicon surface layer 21 b between 550 and 900 ° C. It is worth mentioning that it is best to anneal the conductive layer pattern 21 & with the implanted 1 ^ 0 silicon surface layer 21 for about 30 minutes at 800 ° (: _ about, to make the amorphous conductive layer pattern 2 1 a crystal is a polycrystalline layer. The step of annealing the conductive layer pattern 21a into a polycrystalline layer using the dopant impurity II dispersion technique can increase the proportion of the impurity impurity in the conductive layer pattern 21a. Figure 7 shows the improvement Proportion of the impurity of the impurity. The result is shown in Fig. 7. The impurity concentration (y-axis) and diffusion depth (x-axis) of the impurity of the crystalline conductive layer pattern (7b) and the amorphous conductive layer pattern (7a) are shown in FIG. ). As shown in the figure, the impurity concentration of the impurity in the crystalline conductive layer pattern (7 b) is greater than the impurity concentration in the impurity of the non-crystalline conductive layer pattern (7a). The jujube bureau M, τ -Consumption cooperative prints 1 A Francis 1e, and again performs the removal step to remove any impurities from the exposed surface of the HSG silicon surface layer 2 1 b. As with the removal step of block 1 b, the removal step of block 1 e is It is especially used to remove the original oxygen film on the exposed surface of the HSG silicon surface layer 2 1 b (not shown here (Shown). The cleaning step includes: exposing the combined layer of the HSG Shixi surface layer 21b and the polycrystalline conductive layer pattern 21a to a wet cleaning agent (such as hydrofluoric acid, HF) solution or a buffer oxide etchant (BO) Box 1 f compound polycrystalline layer 2 1 contains HSG and surface layer 9 1 b and crystal -11-IKEA Standard (CNS) A4 specification (210X 297 mm) A7-_________B 7 V. Invented system ( 9) ~~~ " ~ A conductive layer pattern 21a is then doped with the impurity of the first conductivity type impurity. The impurity of the first conductivity type impurity may be N type impurity such as phosphorus (p). The step of doping the compound of the polycrystalline layer 21 includes implanting ions using a liquid such as pock after the diffusion or diffusion method. However, it is not easy to achieve uniformity near the surface of the compound polycrystalline layer 21 when the ions are implanted. The reason is that the single crystal grains on the surface of the compound polycrystalline layer 21 are exposed to the implanted ion beam vertically. It is best not to use liquids such as POCl3, because if these liquids interact with Bite formation in compounds / layers This type of liquid will form a glass layer. Or, the technique of doping the compound polycrystalline layer 21 includes: exposing the layer 2 i to a reaction chamber of phosphorus trihydrogen gas (Ρΐί3). You can use the quick A heating (RTP) device to ensure the integrity of the grain structure (such as size and consistency) of the compound polycrystalline layer 21 during this doping step. It is mentioned that the RTP device is used To slowly increase the temperature to the desired diffusion temperature (sustained temperature), and then briefly maintain (short duration) the desired diffusion temperature. As determined by the inventors, the use of a furnace-type diffusion process autumn sequence 'to slowly increase temperature and / or a longer duration will reduce the capacitance IX formed later including the compound polycrystalline layer 2) its magnetic leakage and voltage breakdown performance. Therefore, it is best to increase the temperature to a continuous temperature of about 800 ° C at a pressure of 120 Torr per second to a temperature of about 800 ° C per second, and use an RTP processing device to diffuse the first conductive type impurities (such as phosphorus). This sustained temperature was maintained for about 300 seconds before the temperature was slowly reduced at the same rate. Sustained temperature between 55 and 900 ° C. The internal pressure of the RTP processing unit is between 5 and 500 torr. If there is no change in the single crystal grains of the HSG broken surface layer 21b, the temperature of the paper can be increased slowly. During RTP treatment, the flow rate of phosphorous trihydrogen gas can be set to 270 sccm (standard cubic centimeters per minute). The nitrogen flow rate can be set to about 95 slm (standard liters per minute). Using these steps, the first conductive type dopant at a concentration of 3 × 1020 dopants per cm3 of the compound having an impurity impurity concentration of more than 100% of the silicon layer 21, and the depth of the upper surface of the compound layer 2! The distance is ideal. This depth can be expanded when the capacitor is reverse biased. When the depth is greater than the ideal depth (such as 50 ° C), the concentration of impurities in the background dopant is lower than that of the 1020 dopant core3. If you do not perform RTP, you can use the LPC VD room for a longer duration (relative to the duration of RTP), so that you can! The pressure is reduced to 30 Torr, and the temperature is cut to 8) 0 C, and the osmosis and agent diffusion treatment are performed. A diffusion barrier layer 22 (such as Si3N4) in block 1§ will be formed on the hsg silicon surface layer ⑽ to prevent the dopant of the HSG silicon surface layer 21b from diffusing outward. Figures 9A, 98 further illustrate this point. The full-scale decision-making standard is negative T, and the consumer cooperative prints the ancient block lh, which is sequentially formed on the diffusion barrier layer 22 to form a dielectric layer 23 and the same electrode 24. It is preferable to form the diffusion barrier layer 22 and the dielectric layer 23 in the same reaction after doping the HSG silicon surface layer 2ib, so as to prevent the hsg silicon surface layer 21b from oxidizing r and omitting or reducing the cleaning step time. The diffusion barrier layer 22 and the dielectric layer 23 may be made of various insulating materials, including a nitrogen-oxygen compound, Ding 02, Ding 03, Bm 03, (Ba, Sr) Ti 03, pb ( Zr, Ding 1) 03 and so on. If a nitrogen-oxygen (NO) compound is used, the nitrogen component of the compound is used as the diffusion barrier layer, which will be described below. The graphs of Figs. 3A-3C and Figs. 4 · 6 show the capacitance response curves of HSG capacitors formed according to the present invention. I have got _ mention that the song here ___- 13 · This paper has been oversized using the Chinese National Standard (CNS) Λ4 specification (21Qx297 public broadcasting) A7

資料,係以89,600 β m2表面面積、3.7 x i〇i9滲雜劑不純物 km3左右初始不純物濃度的非晶體矽導電層圖案2 1 a所形成 的黾么益爲基準。氮-氧(NO)化合物的氧厚度約爲5〇又, 4〇A至70又爲理想厚度。 圖3 A-3 C圖表,顯示了 HSG電容器,於數個處理狀況時 其最小電容三度空間反應圖。如果高電極電壓爲_丨· 5 ν,並 和電晷态的低電極接地,則會產生最低電容(cmin)。圖 3A-3C顯示了判定最佳RTp狀況的重複過程,以取;得最理 想的HSG咚電極。必須控制RTP反應室壓力、ph3^速、溫 度與持續時間等參數。圖3 A的溫度與持續時間分別爲800 C與300秒左右。如圖3久所示,反應室壓力12〇托左右, 取得較爲理想的Cmin,Cmin會發生大幅變動。壓力小於 6 〇托時,Cmin會大幅下降。圖3 A還顯示了,壓力的變化 比三氫化磷氣體流速的變化容易影響Cmin。如要取得較高 的Cmin値,建議您選擇200 sccm或更大的流速,最好是 270 seem 0 圖3B中反應室的壓力與持續時間分別爲u〇托與3〇〇秒左 右。如圖tA、3 B所示,三氫化磷氣體的流速對於Cmin値 的影響較小,而擴散溫度對於Cmin値的影響較大。700°C 以上’比方説8 0 0 C的持續擴散溫度,對於c m i η値的影響 較大。圖3 C的反應室壓力與三氫化磷滲雜劑氣體流速分 別爲120托與270 seem。以圖3C而言,大於等於200秒的持 續時間(最好爲300秒)較爲理想。總之,圖3a-3C顯示了 : 處理參數的變動會劇烈影響所要的Cmin値。 -14-本紙張尺度適财關家;(轉(CNS ) Λ4^見格( 507362 經滴部中决標準局萸Jr-消费合作社印製 Μ Β7 發明説明(12 圖4的圖表,顯示了傳統HSG電容器的電容反應曲 以及根據本發明所形成的HSG電容器的電容反應曲〜, (4b)。曲線4b的資料,係以持續溫度8〇〇τ、反應室壓泉 120托的RTP處理所製成的所要HS(}電容器爲某二=^力 ^ ^ "(匕 磷氣體的流速設定爲270 sccm,持續時間約爲3〇〇秒。姓果 顯示,Cmax ;l.5V與之間的電壓,本發明所= 的HSG電容器其電容曲線(4b)比傳統HS(}電容器的電容曲 線(4a)高而穩定。値得一提的是,從圖4可以看出::統 HSG(非爷,劑)電容器的Cmin約爲〇·8 nF,與非則g電容 器相近。因此,源區反向偏壓時㈠·5ν),傳統hsg低電極 其增加的表面面積並無政果。相形之下,於一定範圍 壓時,本發明的HSG電容器維持的Cmin/Cmax比例(1 = nF/1.65 nF),大於傳統平面電容器與傳統HS(}電容器的The data are based on 89,600 β m2 surface area, and the initial impurity concentration of 3.7 x i〇i9 km3 of the amorphous silicon conductive layer pattern 2 1 a formed by the morphology as a benchmark. The nitrogen-oxygen (NO) compound has an oxygen thickness of about 50 Å, and 40 A to 70 Å is an ideal thickness. Figure 3 A-3 C chart shows the three-dimensional space response diagram of the minimum capacitance of HSG capacitors under several processing conditions. If the high electrode voltage is _ 丨 · 5 ν and grounded to the low electrode in the electrical state, the lowest capacitance (cmin) will be generated. Figures 3A-3C show the iterative process of determining the optimal RTp condition to obtain the most ideal HSG 咚 electrode. Parameters such as pressure, pH3 speed, temperature and duration of the RTP reaction chamber must be controlled. The temperature and duration of Figure 3 A are about 800 C and 300 seconds, respectively. As shown in Fig. 3, the pressure in the reaction chamber is about 120 Torr, and the ideal Cmin is obtained, and the Cmin will vary greatly. When the pressure is less than 60 Torr, Cmin will drop significantly. Figure 3A also shows that the change in pressure is more likely to affect Cmin than the change in the flow rate of the phosphorus trihydrogen gas. For higher Cmin 値, it is recommended that you choose a flow rate of 200 sccm or greater, preferably 270 seem 0. The pressure and duration of the reaction chamber in Figure 3B are u0 Torr and 300 seconds, respectively. As shown in Figures tA and 3B, the flow rate of phosphorus trihydrogen gas has a small effect on Cmin 値, and the diffusion temperature has a large effect on Cmin 値. Above 700 ° C ', for example, a continuous diffusion temperature of 8 0 C has a greater effect on c m i η 値. The pressure in the reaction chamber of Fig. 3C and the flow rate of the phosphorus hydride dopant gas are 120 Torr and 270 seem, respectively. For Figure 3C, a duration of 200 seconds or more (300 seconds is preferred) is desirable. In summary, Figures 3a-3C show that: Changes in processing parameters can drastically affect the desired Cmin 値. -14- This paper is suitable for financial affairs; (Transfer (CNS) Λ4 ^ See grid (507362) Standards Bureau of the Ministry of Economic Affairs 萸 Jr-Consumer Cooperative Co., Ltd. printed M Β7 Description of the invention (12 The chart in Figure 4 shows the traditional The capacitance response curve of the HSG capacitor and the capacitance response curve of the HSG capacitor formed according to the present invention ~, (4b). The data of the curve 4b is made by RTP treatment with a continuous temperature of 800 τ and a pressure of 120 Torr in the reaction chamber. The required HS () capacitor is a certain two = ^ force ^ ^ " (The flow rate of the phosphorus gas is set to 270 sccm and the duration is about 300 seconds. The surname shows that Cmax; between 1.5V and Voltage, the capacitance curve (4b) of the HSG capacitor according to the present invention is higher and more stable than the capacitance curve (4a) of the conventional HS (} capacitor. It is worth mentioning that, from Figure 4, it can be seen that: Yeah, the Cmin of capacitors is about 0.8 nF, which is similar to that of non-g capacitors. Therefore, when the source region is reverse biased, 增加 5ν), the increased surface area of traditional hsg low electrodes has no political effect. Phase shape Below, at a certain range of voltage, the Cmin / Cmax ratio (1 = nF / 1.65 nF) maintained by the HSG capacitor of the present invention is greater than System with conventional planar capacitor HS (} capacitor

Cmm/Cmax比例ΐ·〇,且較爲穩定。圖4的結果,可歸因於 低HSG電極所維持不純物濃度較高電極所維持的要高。圖 1 A方塊1 f第二次RTP摻雜步驟所造成的低電極的高不純物 /辰度,可降低空乏層於操作時的厚度,並恢復一開始形成 HSG矽面時所損失的導電性能。 圖5圖表顯示的電容與電壓關係圖表,係以升高較佳 HSG電容器電容的RTp持續溫度爲基準。此處的低電極表 面經由RTP,與三氫化磷氣體摻雜。三氫化磷氣體的流速 設足爲270 sccm,RTp反應室壓力設定爲12〇托。持續時間 設足爲300秒。以每秒升溫1 〇。〇的速度緩慢升溫至62(rc左 右的持續溫度。如圖5的曲線5 a所示,持續溫度設定爲8〇〇 __ _15· 本纸張尺度賴巾( CNS ) Λ4^;格(2ϋ9 )The Cmm / Cmax ratio is ΐ · 〇, and is relatively stable. The results in Figure 4 can be attributed to the fact that the impurity concentration maintained by the low HSG electrode is higher than that maintained by the electrode. Figure 1 A. Block 1 f. The high impurity / degree of the low electrode caused by the second RTP doping step can reduce the thickness of the empty layer during operation and restore the conductive properties lost when the HSG silicon surface was initially formed. The graph of the relationship between capacitance and voltage shown in the chart in Figure 5 is based on increasing the RTp continuous temperature of a better HSG capacitor. The low-electrode surface here is doped with phosphorus trihydrogen gas via RTP. The flow rate of the phosphorus trihydrogen gas was set to be 270 sccm, and the pressure of the RTp reaction chamber was set to 120 Torr. Duration is set to 300 seconds. Increase the temperature by 10 per second. The speed of 〇 slowly rises to a continuous temperature of about 62 (rc. As shown in curve 5 a of FIG. 5, the continuous temperature is set to 800 __ _15. The paper size Lai Jin (CNS) Λ4 ^; grid (2ϋ9 )

507362 A7 B7507362 A7 B7

°C、825°C、或850°c時,電容並無改變。當持續溫度提高 爲8 7 5 t時(以每秒升溫1 〇 °C的速度),如圖5 b的曲線所 示,總電容降低;原因在於HSG表面的單一晶體晶粒發生 隻开>。如發明者所判定,將升溫速度降至每秒2,而持續 溫度保持850°C以上(最高爲900°C ),可避免晶粒變形,並 避免曲線5 b所示的電容降低。 如上所述,圖6係使用LPCVD摻雜方法形成的HSG電容 咨其電容與電壓關係的曲線圖。此處的低HSG電·極係以 7〇〇°C左右^的熔爐瀑度、c VD反應室的三氫化磷氣體流速 900 seem左右、壓力1.5托的條件下所摻雜。LPCVD摻雜步 驟約需時3小時。如此遽理的結果令人滿意,與rtp處理 結果類似,其(:111丨11/(:11^\(1.7 1^/1.6 1^)亦大於1。 根據本發明的另一觀點,最好於0.5至1托的低壓,以電 水子放黾利用p Η 3來提南H S G石夕面層的不純物濃度。視反 應環境’用來維持電漿子的無線頻率功率最高可爲2〇〇〇瓦 特’但多半爲1⑼瓦特左右。至於ΡΗ3的流速,則可設定爲 60分鐘至1秒之間的}至5〇〇 seem。一般的流速在300 seem 左右。上逑_的掺雜步驟(RTP、lpcvd、電漿子摻雜步驟) 經满部中央標準局貞X消費合作社印裝 係於退火後進行。 圖8的多重反應室裝置其轉換室可將具備導電圖案層21a 的基片從第一反應室8 〇轉換到第二反應室8 2,並同時保 持三個反應室爲同一壓力。該裝置的第一反應室8 〇係用來 進行PH3電漿子放電摻雜。並對摻雜的HSG矽面層21a退 火’而於導電層圖案21a上形成HSG矽面層21b。然後該基 __ _ 16- 本紙張尺度適削’) A4規格別“?公髮 一 ~ 507362 A7 _______B7 五、發明説明(14 ) '~ " : 片會在不破壞眞空的情況下轉換至第二反應室8 2。氮化矽 層與頂氧化層沉積於第二反應室82,以形成介電層。 圖1其方塊1 g的9 A、9 B顯示了本發明的其他觀點。根 據此實施例,係於三氫化磷HSG矽面層21b與介電層2 3之 間形成擴散障礙層22。如發明者所言,擴散障礙層22可 於後續處理時,避免了 HSG矽面層21b向介電層23的摻雜 不純物外向擴散,因而改良了電容器的性能。反應膜只能 避免兩種材質彼此發生反應,而產生有害的副產品.。相形 之下,擴|障礙層‘的厚度,足以避免發生化學反應,並避 免兩個比鄰區域之間的原子移動。比方説,像是以妲氧化 物(Ta2〇5)爲材質的邵分介電層,其絕緣強度較高(亦即絕 緣常數較高),較適於做爲電容器的絕緣材質。 經湞部中次標準局負二消費合作社印裝 不過,於以矽爲主體的導電層上形成絕緣材質,必須經 過高溫處理。而高溫處理可能不利於以矽爲主體的導電層 (TaWd絕緣材質與其下的以矽爲主體的導電層之間的反 應。比方説,丁a2〇5與矽之間的反應,可能會產生寄生的 二氧化矽(SiOJ層,而減少HSG矽面層的表面面積,連帶 減少了掺獻的介電層(包括了絕緣強度較低的寄生層與 Ta2〇5層)其有效絕緣強度。擴散障礙層的厚度,必須足以 避免摻雜不純物較高的HSG矽面層21b向介電層2 3的摻雜 不純物外向擴散;原因在於外向擴散會降低低電極的導電 性能,連帶不利於電容的穩定性(像是Cmin/Cmax的比 率)。因此,避免HSG矽面層向介電層23不純物外向擴散 的處理過私,就包括了選擇比較不會與矽發生化學反應的 -17- >、紙張尺度適用中國CNS ) Λ4規格(2l0x7^i7 507362 Α7 Β7 五、發明説明(15 材貝做爲擴散「早礙層’或者所選的絕緣材質其厚度必須足 以避兄HSG矽面層21b與所選介電層23之間發生反應,並 〔免HSG碎面層21的接雜不純物外向擴散。氮化石夕(siN)亦 是理想的闊院膜層材質。 根據本t月的$赛見點,您可以使用化學汽化(cvD)步 驟來形成擴散障礙層。您可利用包括了負載固定裝置與眞 工I制軋置的整套CVD裝置,來進行CVD步驟。値得一提 ^是,形成HSG矽面層2lb之後(必要時還需去除其原有的 氧化層)、您可以將摻雜氣體(内含氨、氯硝氨、’氫)做爲 母體,注人溫度保持於㈣左右的⑽反應室。您可以 將氨、氯硝氨、氫的流蓮分別設定爲90〇Sccm、30sccm、 2〇 slm。CVD反應室的壓力最好設定爲ι〇〇托。熟悉本技術 的人士都了解’溫度、壓力、流速等處理參數 用裝置而改變。 形成的擴散障礙層22其厚度介於5八至100八之間。此處 的擴散障礙層22其厚度必須足以避免HSG石夕面層7肺介 ^層23(間的外向擴散及寄生反應。不過,如果擴散障礙 層2 2其材聲的絕緣強度低於彳 二- 低於所砥介電層^的絕緣強度; 經满部中决標準局勇T-消费合作社印繁 ㈣障礙層22與介電層23的總厚度過高,⑴曾加擴 =障礙層22的厚度會降低電容。比方說,圖η即顧于且 有CVD氮化矽擴散障礙層22 們從闽 ,^ 合如具私谷與電壓的曲線 關係0。此處的圖表,係以表 泰宄哭歲a、隹门 衣囬旬積8%〇〇 a m2的低電極 : 準。圖11的曲線38係氮切擴散障礙層”厚 -八的€谷咨其電容與電壓的關係圖。曲線36、η係: _ - 18- 張尺度適用中國-ii^TcNS ) --- A7The capacitance does not change at ° C, 825 ° C, or 850 ° c. When the continuous temperature is increased to 875 t (at a rate of 10 ° C per second), as shown in the curve of Fig. 5b, the total capacitance is reduced; the reason is that the single crystal grains on the HSG surface only open > . As determined by the inventor, reducing the heating rate to 2 per second while maintaining a continuous temperature above 850 ° C (up to 900 ° C) can avoid crystal grain deformation and avoid the decrease in capacitance shown in curve 5b. As described above, FIG. 6 is a graph showing the relationship between the capacitance and the voltage of the HSG capacitor formed by the LPCVD doping method. Here, the low HSG electrode is doped under the conditions of a furnace temperature of about 700 ° C, a flow rate of phosphorous trihydrogen gas in the c VD reaction chamber of about 900 seem, and a pressure of 1.5 Torr. The LPCVD doping step takes about 3 hours. The result of this reasoning is satisfactory, and is similar to the result of rtp processing, which (: 111 丨 11 / (: 11 ^ \ (1.7 1 ^ / 1.6 1 ^)) is also greater than 1. According to another aspect of the present invention, the best At a low pressure of 0.5 to 1 Torr, the concentration of impurities in the surface layer of the South HSG Shixi is raised using p 水 3 with electric water ions. Depending on the reaction environment, the radio frequency power used to maintain the plasma can be up to 200. 〇watt ', but most of them are about 1⑼ watt. As for the flow rate of ρ3, it can be set between 60 minutes and 1 second} to 500. Seem. The general flow rate is about 300 seem. RTP, lpcvd, and plasma doping steps) The printing process is performed after annealing of the Central Standards Bureau of Zhen X Consumer Cooperative. The conversion chamber of the multiple reaction chamber device of FIG. 8 can transfer the substrate with the conductive pattern layer 21a from The first reaction chamber 80 is switched to the second reaction chamber 82, and the three reaction chambers are maintained at the same pressure at the same time. The first reaction chamber 80 of the device is used for doping with PH3 plasma discharge. The hybrid HSG silicon surface layer 21a is annealed 'to form an HSG silicon surface layer 21b on the conductive layer pattern 21a. __ _ 16- The paper size is suitable for cutting) 'A4 specifications "? Gongfa 1 ~ 507362 A7 _______B7 5. Description of the invention (14)' ~ ": The film will be transferred to the second reaction chamber without destroying the empty space 8 2. A silicon nitride layer and a top oxide layer are deposited in the second reaction chamber 82 to form a dielectric layer. FIG. 1 shows the other aspects of the present invention with 9 A and 9 B in 1 g square. According to this embodiment, The diffusion barrier layer 22 is formed between the phosphorous trihydrogen HSG silicon surface layer 21b and the dielectric layer 23. As the inventor said, the diffusion barrier layer 22 can prevent the HSG silicon surface layer 21b from passing to the dielectric during subsequent processing. The doped impurities of layer 23 diffuse outwards, thus improving the performance of the capacitor. The reaction film can only prevent the two materials from reacting with each other, resulting in harmful by-products. In contrast, the thickness of the barrier layer is sufficient to avoid the occurrence of Chemical reaction, and avoid atomic movement between two adjacent regions. For example, a Shaofen dielectric layer made of rhenium oxide (Ta205) has a higher insulation strength (that is, a higher insulation constant). ), Which is more suitable as the insulation material for capacitors. Printed by the Ministry of Intermediate Standards Bureau, the second consumer cooperative, however, the formation of an insulating material on a conductive layer mainly composed of silicon must be subjected to high temperature treatment. The high temperature treatment may not be conducive to the conductive layer mainly composed of silicon (TaWd insulation material and the following The reaction between the conductive layer mainly composed of silicon. For example, the reaction between d2a5 and silicon may produce parasitic silicon dioxide (SiOJ layer, and reduce the surface area of the HSG silicon surface layer, together with The effective dielectric strength of the doped dielectric layer (including the parasitic layer and the Ta205 layer with lower dielectric strength) is reduced. The thickness of the diffusion barrier layer must be sufficient to prevent out-diffusion of the HSG silicon surface layer 21b, which has a higher impurity content, into the dopant impurity of the dielectric layer 23; because the out-diffusion will reduce the conductivity of the low electrode, which is not conducive to capacitance Stability (like the ratio of Cmin / Cmax). Therefore, the treatment of avoiding the outward diffusion of the HSG silicon surface layer to the impurities of the dielectric layer 23 is excessive, including the choice of -17- > which is less likely to have a chemical reaction with silicon, and the paper size applicable to China's CNS) Λ4 specification (2l0x7 ^ i7 507362 Α7 Β7 V. Description of the invention (15 materials as diffusion "early barrier layer" or the thickness of the selected insulating material must be sufficient to avoid the reaction between the HSG silicon surface layer 21b and the selected dielectric layer 23, and [Free from impurity diffusion of HSG broken surface layer 21. Outward diffusion of nitride impurities (siN) is also an ideal material for the broad-layer film. According to the results of this month, you can use the chemical vaporization (cvD) step to Form a diffusion barrier layer. You can use the entire CVD device including a load fixing device and a Machining roll to perform the CVD step. One thing to mention is that after forming the HSG silicon surface layer 2lb (removal if necessary) Its original oxide layer), you can use the doping gas (containing ammonia, chloronitramine, 'hydrogen') as the precursor, and inject into the thorium reaction chamber where the temperature is maintained at about ㈣. You can use ammonia, chloronitramine And hydrogen lotus are set to 90 ° cm, 30sccm, 2 slm. The pressure of the CVD reaction chamber is preferably set to ι 00 Torr. Those skilled in the art understand that the processing parameters such as temperature, pressure, and flow rate are changed by the device. The diffusion barrier layer 22 is formed with a thickness of 58 to 50 Between 100 and 80. The thickness of the diffusion barrier layer 22 here must be sufficient to avoid the outward diffusion and parasitic reactions of the HSG Shixi surface layer 7 and the lung mediator layer 23. However, if the diffusion barrier layer 2 2 is acoustically insulating The strength is lower than that of the second layer-lower than the dielectric strength of the dielectric layer. The total thickness of the barrier layer 22 and the dielectric layer 23 of the printed circuit board of T-Consumer Cooperative Co., Ltd. is too high. Diffusion = the thickness of the barrier layer 22 will reduce the capacitance. For example, Figure η takes into account that there is a CVD silicon nitride diffusion barrier layer 22 from Min, and the curve relationship between voltage and voltage is 0. The chart here It is based on a low electrode with a surface area of 8% 〇a m2 in the back of a year, and the door of Yimenyi: quasi. The curve 38 of Figure 11 is a nitrogen-cut diffusion barrier layer "thick-eight" with its capacitance and Relation diagram of voltage. Curve 36, η system: _-18- scale applies to China-ii ^ TcNS) --- A7

d爲氮化矽擴散障礙層2 2厚1 0 A、1 5 A的電容器其電容與 電壓的關係圖。擴散障礙層2 2的厚度最好介於丨〇 A至3 〇 A <間’以避免HSG矽面層21b於低電極2 1外向擴散。如上 所述’電容器反向偏壓時,空乏層擴張會不利於電容的移 定性。 、兒 、思 根據本發明的另一個觀點,擴散障礙層2 2的材質,亦可 於HSG碎面層21b以快速升溫氮化處理(RTN)形成的第一氮 化石夕層’然後於第一氮化矽層上以化學汽化沉積(CVD)形 成第二氮也矽層而製成。您可以將化合氣體(像是氨)於高 /皿時/主入HSG矽面層21b,以形成第一氮化矽層。形成第 一氮化碎層時所需的矽I子,可由HSG矽面層2 1提供;這 意味著RTN處理不需要獨立的矽來源。不過,去除HSG矽 面層2 1的碎’可能會減少電容器低電極的表面面積,而連 帶降低了電容。 如發明者所言,如果以不平坦或三度空間的電極表面形 成電谷咨低電極2 1,則Rtn處理還會降低漏壓電流量。另 外’由於反應時間短,RTN處理可避免HSG矽面層21b的滲 雜劑外向熱_擴散。相形之下,由於CVD處理的時間較RTN 處理的時間爲長’因此其產生的外向擴散較大。此外,如 果RTN處理其第一氮化矽層的擴散障礙層厚度不夠,則必 須形成第二氮化矽層來補足厚度。因此,RTN處理可避免 外向擴散’並改良漏壓電流;然後以Cvd處理來補足氮化 矽擴散障礙層2 2的厚度。 根據本發明的另一觀點,擴散障礙層2 2原位置亦可與第 -19- 適^國〇 x 297 公釐-) 507362 A7 五、發明説明(17) -導電類型渗雜劑(像是嶙)摻雜,μ us(^面層^與 擴散障礙層22之間的介面形成負滲雜劑,以進一步避二 H S G爾2 i b其第—導電類型渗雜劑的外向擴散。你‘ 以在此進行摻雜RTN處理及/或CVD處理,來進一步避免 HSG珍面層21b對擴散障礙層2 2的滲雜劑不純物擴散。〇 如果進行掺雜RTN處理,則HSG碎面層2ib必須施以第— 導電類型不純物(像是叫3)與反應源(像是随3),以形成三 氫化磷的氮化矽擴散障礙層22。如果進行cvd處理,則可 於細碎5層21b鮮氮化碎與所要滲雜劑的來源氣體施以 汽化沉積。如上所述,以CVD處理來形成氮化矽擴散障礙 層22,不會耗損HSG#^^21b表面的矽。 經滅部中决標隼局貝-T消费合作社印製 進行摻雜RTN處理時,必須將HSG石夕面層⑽曝露於叫 與NH3氣體的反應室’以形成三氫化鱗的氮切擴散障礙 層22。此處的氨氣係用來與HSG矽面層21b的矽發生反 應,以形成第一氮化矽層。PH3則係用來提供該層磷滲雜 劑。該反應室的壓力介於5至5〇〇托,溫度介於5⑻至9〇〇 °C。您可以於CVD反應室,將HSG矽面層21b曝露於 SiH4(或Sii^€l2)、PH3氨氣,進行掺雜CVD處理。CVD反應 室的壓力介於0.1至200托,溫度介於55〇至85〇。(:。 根據本發明的另一觀點,可以利用快速升溫氧化(RT〇) 處理,來強化氮化矽擴散障礙層2 2的導電性。進行RT〇處 理時’擴政卩早城層2 2係曝露於每秒8 s 1爪流速的氧氣與氮 氣,爲時約120秒。您可以將晶圓溫度維持於85(rc左右, 在加熱室進行RTO處理。 _ -20- 本紙張尺度適用中國國家標隼(CNS ) Λ4規格(210X297公釐) 507362 A7 B7 五、發明説明(18) ' 形成擴散障礙層2 2之後,於擴散障礙層2 2上形成介電 層2 3 °實施例中,擴散障礙層2 2上的介電層係由钽氧化 物(Ta2〇5)的高絕緣材質所形成。您可以利用cvd技術,將 擴散障礙層2 2曝附於流速3〇〇 SCCm的Ta(OC2H5)5母體與流 速1 slm的氧氣,以形成介電層2 3。此處的cvd反應室溫 度維持在4 1 0 °C左右,壓力維持在400微托左右。一般而 言’ CVD沉積的Ta2〇5介電層23其厚度約爲60人。然後對 介電層2 3進行密化處理,以改善擴散障礙層2 2的物理性 質。進行f化處理時,必須於反應室中對介電層2 3施以乾 燥的氧氣,爲時約3 0秒,反應室的溫度維持在800 °C左 右°途、化處理可排除Ta2>65介電層2 3所不需要的不純物(像 是碳),進而改善氮化矽擴散障礙層2 2的物理性質。 纣Μ部中戎摞準局工消费合作社印紫 您也可以形成數層丁心〇5,並於形成下一層Ta2〇5之前, 對每層ThO5進行UV_〇3處理。比方説,形成第一層Ta2〇5 (其厚度多半爲3 0又)之後,您可以於反應室(反應室的溫 度加熱至300°C左右,充滿臭氧)對第一層Ta2〇5照射紫外 線1 5分鐘左右,進行UV-O3處理。於第一層Ta2〇5上形成 第一層Taj〇5之後(比方其厚度爲3 〇人),進行同樣的處 理。最後,將介電層2 3曝露於8〇0°C左右的乾燥氧氣,爲 時約3 0分鐘。您也可以利用快速升溫退火處理,來進行密 化處理。快速升溫退火處理以反應室内8〇〇X:左右的N7〇氣 體或〉然氧化技術爲之。 ' 另一個形成電容器的步驟,係於介電層2 3上形成高電極 2 4。高電極的較佳材質爲鈦氮化物。其他材質包括鎢氮化 -21 - 度—中 -—— 507362 五、發明説明( 物、雙層的鈥氮化物、高溶點 化物、聚-、致氮化物與數個高溶:::的”的笔氮 或是鈦氮化物與數個聚矽層的組合多層。曰''且占多層、 圖1 0的圖表顯示了根據本發明所形^的電容哭 與電壓的曲線關圖。此處的圖表,係以 。。主’,、電容 m2的低電極電容器爲基準。、 面積8960“ π 土干田琛3 0係以具備絲 的氮切擴散阻擋層22_化合物介電層:…里 爲基準。曲線22係以不經叫里,由CVD形;:器 t 擴散障礙f 22爲棊準。.曲線32、34其氮 散::: U的厚度約爲2〇A。相 ,、政F早螓層 瘀屉” „辰命,。: 曲線3〇其氮化矽擴散障 :Y 每度、力爲“。,由此得知,^形成的氮化石夕擴 政F早綾層2 2較厚的電容器(如曲線3 2 、3 4 ),其 叮d is a graph of the relationship between the capacitance and the voltage of a silicon nitride diffusion barrier layer 22 with a thickness of 10 A and 1 5 A. The thickness of the diffusion barrier layer 22 is preferably between 0 and 30 A < to prevent the HSG silicon surface layer 21b from diffusing outward from the low electrode 21. As described above, when the capacitor is reverse biased, the expansion of the empty layer is detrimental to the mobility of the capacitor. According to another aspect of the present invention, the material of the diffusion barrier layer 22 can also be a first nitride layer formed by the HSG chipping layer 21b by a rapid temperature rise nitriding process (RTN), and then the first A second nitrogen and silicon layer is formed by chemical vapor deposition (CVD) on the silicon nitride layer. You can put a compound gas (such as ammonia) into the HSG silicon surface layer 21b at a high temperature / high temperature to form the first silicon nitride layer. The silicon wafers required to form the first nitride layer can be provided by the HSG silicon surface layer 21; this means that a separate silicon source is not required for RTN processing. However, removing the broken pieces of the HSG silicon surface layer 21 may reduce the surface area of the capacitor's low electrode, which in turn reduces the capacitance. As stated by the inventor, if the low-level electrode 2 1 is formed with an uneven or three-dimensional electrode surface, the Rtn treatment also reduces the leakage piezoelectric flow rate. In addition, since the reaction time is short, the RTN treatment can prevent the dopant of the HSG silicon surface layer 21b from thermally diffusing outward. In contrast, since the time of the CVD process is longer than that of the RTN process, it causes a larger outward diffusion. In addition, if the thickness of the diffusion barrier layer of the first silicon nitride layer of the RTN process is insufficient, a second silicon nitride layer must be formed to make up the thickness. Therefore, the RTN treatment can avoid outward diffusion 'and improve the leakage current; and then the Cvd treatment is used to make up the thickness of the silicon nitride diffusion barrier layer 22. According to another aspect of the present invention, the original position of the diffusion barrier layer 2 2 can also be equal to the -19-th country xx 297 mm-) 507362 A7 V. Description of the invention (17)-conductive type dopant (such as嶙) Doping, the interface between μ us (^ surface layer ^ and diffusion barrier layer 22 forms a negative dopant to further avoid the outward diffusion of the second HSG, 2 ib, the first conductive type dopant. You ' A doped RTN treatment and / or a CVD treatment are performed here to further prevent the impurities of the impurity of the diffusion barrier layer 22 from being diffused by the HSG precious surface layer 21b. If the doped RTN treatment is performed, the HSG fragmented surface layer 2ib must be applied. The first-conductive type impurities (like called 3) and the reaction source (like followed by 3) to form phosphorus trihydrogen silicon nitride diffusion barrier layer 22. If cvd treatment is performed, 5 layers of 21b fresh nitrogen can be finely crushed The source gas of the fragmentation and the desired dopant is vapor-deposited. As described above, the silicon nitride diffusion barrier layer 22 is formed by CVD treatment without damaging the silicon on the surface of HSG # ^^ 21b. When printed by the Beibei-T Consumer Cooperative for doped RTN treatment, the HSG Shixi surface layer must be exposed to The reaction chamber with NH3 gas' forms a nitrogen cut diffusion barrier layer 22 of trihydroscale. The ammonia gas here is used to react with the silicon of the HSG silicon surface layer 21b to form a first silicon nitride layer. PH3 is It is used to provide this layer of phosphorus dopant. The pressure in the reaction chamber is between 5 and 500 Torr and the temperature is between 5 ° C and 900 ° C. You can expose the HSG silicon surface layer 21b in the CVD reaction chamber. Doped CVD in SiH4 (or Sii ^ l2), PH3 ammonia gas. The pressure of the CVD reaction chamber is between 0.1 to 200 Torr and the temperature is between 55 and 85. (:. According to another aspect of the present invention From a viewpoint, a rapid temperature oxidation (RT0) treatment can be used to enhance the conductivity of the silicon nitride diffusion barrier layer 22. When performing the RT0 treatment, the 'Expansion Masaru early city layer 2 2 series is exposed to 8 s 1 claw per second. The flow rate of oxygen and nitrogen is about 120 seconds. You can maintain the wafer temperature at about 85 (rc, and perform RTO processing in a heating chamber. _ -20- This paper size applies to China National Standard (CNS) Λ4 specifications ( 210X297 mm) 507362 A7 B7 V. Description of the invention (18) '' After the diffusion barrier layer 2 2 is formed, it is formed on the diffusion barrier layer 2 2 Dielectric layer 2 3 In the embodiment, the dielectric layer on the diffusion barrier layer 22 is formed of a high-insulation material of tantalum oxide (Ta205). You can use cvd technology to expose the diffusion barrier layer 2 2 Attached to the Ta (OC2H5) 5 matrix with a flow rate of 300 SCCm and oxygen at a flow rate of 1 slm to form a dielectric layer 23. The temperature of the cvd reaction chamber here is maintained at about 4 1 ° C and the pressure is maintained at 400 micrometers. Care about. Generally speaking, the thickness of the Ta205 dielectric layer 23 deposited by CVD is about 60. The dielectric layer 23 is then densified to improve the physical properties of the diffusion barrier layer 2 2. When performing the chemical treatment, the dielectric layer 23 must be provided with dry oxygen in the reaction chamber for about 30 seconds. The temperature of the reaction chamber is maintained at about 800 ° C. The chemical treatment can eliminate Ta2> 65 Impurities (such as carbon) that are not needed for the dielectric layer 23, thereby improving the physical properties of the silicon nitride diffusion barrier layer 22. You can also form several layers of Dingxin 05, and perform UV_03 treatment on each layer of ThO5 before forming the next layer of Ta205. For example, after forming the first layer of Ta205 (the thickness of which is mostly 30), you can irradiate the first layer of Ta205 with ultraviolet rays in the reaction chamber (the temperature of the reaction chamber is heated to about 300 ° C and filled with ozone). About 15 minutes, UV-O3 treatment was performed. After the first layer of Taj05 is formed on the first layer of Ta205 (for example, its thickness is 30 people), the same process is performed. Finally, the dielectric layer 23 was exposed to dry oxygen at about 8000C for about 30 minutes. You can also use rapid annealing annealing for densification. The rapid temperature annealing treatment is performed by using 800X: about N70 gas in the reaction chamber or natural oxidation technology. '' Another step of forming a capacitor is to form a high electrode 2 4 on the dielectric layer 23. The preferred material for the high electrode is titanium nitride. Other materials include tungsten nitride-21-degree-medium--507362 V. Description of the invention (products, double-layered nitrides, highly soluble compounds, poly-, nitrides and several highly soluble ::: "Pen nitrogen or titanium nitride and a combination of several polysilicon layers." The graph of Fig. 10 shows the graph of the capacitance and voltage curve of the capacitor according to the present invention. The chart here is based on the main electrode, the low-electrode capacitor with a capacitance of m2. The area of 8960 "π Dogan Tianchen 3 0 is based on a nitrogen-cut diffusion barrier layer 22 with a wire_compound dielectric layer: ... The curve 22 is based on the shape of CVD without being called ri .: The device t diffusion barrier f 22 is the standard. The curves 32 and 34 have the nitrogen dispersion :: The thickness of U is about 20A. Phase, , Zheng F early stage layer stasis drawer "" Chen Ming .: Curve 30. Its silicon nitride diffusion barrier: Y per degree, the force is "." From this, we know that the formation of nitrided stone 扩 扩 F early stage Layer 2 2 thicker capacitors (such as curves 3 2 and 3 4)

Cmin/Cmax比率(〇.94/〇·92)擴散障礙層22較薄、經過灯n 處理的電容器其Cmin/Cmax比率高而穩定。從曲線34亦可 看出,經過RTO處理的擴散障礙層22其總電容較爲理想。 成 氨 線 石夕 流 分 經Μ部中决標準局員-T-消費合作社印製The Cmin / Cmax ratio (0.94 / 0.92) is relatively thin, and the capacitor treated with the lamp n has a high Cmin / Cmax ratio and is stable. It can also be seen from the curve 34 that the total capacitance of the diffusion barrier layer 22 after the RTO treatment is ideal. Chengdu Ammonia Line Shi Xiliu Branch Printed by T-Consumer Cooperative Member

圖1 2的圖表頒示了具有丁a]〇5介電層的電容器,其電容 與電壓的曲線關圖。此處的圖表,係以表面面積896〇〇 ^出2 的低黾極氪各备爲基準。曲線4 〇係以使用r丁n處理所形 的未私雜氮化碎擴散層2 2的電容器爲基準。rtn處理其 氣、"瓦速約爲〇·9 slm,以850°C左右,進行約1分鐘。曲 4 2係以使用rtn處理,於原位置摻雜含三氫化磷的氮化 擴散層2 2的電容器爲基準。摻雜源ph3與反應源NH3的 速分別爲450 seem與0.9 slm左右。此處RTN處理爲時約1々 鐘,反應室的晶圓溫度約爲850°C。曲線4 4係以經過C VD -22- 本纸張尺度適用中國國家標準(CNS ) Λ4規格(210Χ 297公釐) A7 B7 五、發明説明(20 處理的含二氯化鱗的氮化矽擴散層2 2其電容器爲基準。 一 —N Η。 Ρ Η 3 的泥速分別約爲 3 〇 s c c m、〇. 9 s 1 m、4 5 0 SCCm。反應室的晶圓溫度約爲750°C。曲線4 6係以具有摻 雜氮化矽擴散層2 2的電容器(其第一層係以RTN形成,第 一層係以CVD形成)爲基準。第一層(RTN-SiN)係以上述曲 、·泉42中的處理步驟所形成;第二層係以上述曲 ㈣中的處理步驟所形成。結果一致顯示:含摻雜擴散障 %疋層的曲線42、44、46其電容器的分別爲 a J3·' Q.98 ’’然較爲穩定。從此亦可看出:含慘雜 擴散障礙層的(曲線4 2 … a主a , 4 〇 ) '、、心兒谷較咼。曲線4 〇所 代表的未摻雜RTN反應其"Cmin/Cmax 〇·77較低。 虽^對本發明做了以上詳述,我們必須體認:只要 务明專利申請範圍之精神與領域, 。 以變更、替代、或些修改。 I貝例加 經满部中决標準局员-T-消費合作社印來 -23 本紙張尺度適用中關家標率(CNS ) A4規格(21GX297公釐)The graph in Figure 12 shows the capacitance vs. voltage curve of a capacitor with a dielectric layer. The graphs here are based on the low-voltage poles with a surface area of 89600 ^ 2. The curve 40 is based on the capacitor of the undifferentiated nitrided fragmented diffusion layer 22 formed by the treatment with r but n. The rtn process is performed at a gas speed of about 0.9 slm at about 850 ° C for about 1 minute. Qu 4 2 is based on a capacitor that is treated with rtn and is doped in situ with a nitrided diffusion layer 22 containing phosphorus hydride. The speeds of doping source ph3 and reaction source NH3 are about 450 seem and 0.9 slm, respectively. Here the RTN process takes about 1 hour and the wafer temperature in the reaction chamber is about 850 ° C. Curve 4 4 is based on C VD -22- This paper scale applies the Chinese National Standard (CNS) Λ4 specification (210 × 297 mm) A7 B7 V. Description of the invention (20 Dichlorosilane scale-containing silicon nitride diffusion The capacitors of layer 22 are used as a reference. Ⅰ-N 一. The mud velocities of P Η 3 are about 30 sccm, 0.9 s 1 m, and 450 SCCm. The wafer temperature in the reaction chamber is about 750 ° C. Curve 4 6 is based on a capacitor with a doped silicon nitride diffusion layer 22 (the first layer is formed by RTN and the first layer is formed by CVD). The first layer (RTN-SiN) is based on the above curve. The second layer is formed by the processing steps in the above-mentioned kojima. The results consistently show that the curves 42, 44, 46 of the doped diffusion barrier% krypton layer have capacitors of a J3 · 'Q.98 ”is relatively stable. It can also be seen from this that: (the curve 4 2… a main a, 4 〇) with a miscellaneous diffusion barrier layer, the Xiner Valley is relatively sloppy. Curve 4 The undoped RTN reaction represented by 〇 has a low "Cmin / Cmax 〇 77". Although ^ the present invention has been described in detail above, we must recognize: The spirit and field of the application scope are subject to change, substitution, or modification. I. Cases plus printed by the Bureau of Standards of the Ministry of Decision-T-Consumer Cooperatives.-23 This paper is applicable to the Zhongguan Family Standard Rate (CNS) A4 specification. (21GX297 mm)

Claims (1)

507362 A B c D 第87106116號專利申請案 中文申請專利範圍修正本(90年11月) 六、申請專利範圍 1. 一種形成積體電路電容器的方法,包括以下步騾: 於半導體基片上形成一導電層圖案; 於導電層圖案上形成一具有第一導電類型滲雜劑的半 球晶粒(HSG)矽面層; 於HSG矽面層上形成一擴散障礙層; 於該擴散障礙層上形成一介電層;以及 於介電層上形成一電極,與HSG矽面層相對。 2. 如申請專利範圍第1項之方法,其中形成導電層圖案的 步驟包括形成的導電層圖案其源區具有了第一導電類型 滲雜劑第一濃度,其中形成HSG矽面層的步騾包括了於 導電層圖案上形成HSG矽面層,然後以第一導電類型摻 雜氣體來摻雜HSG矽面層,使HSG矽面層其第一導電類 型滲雜劑第二濃度大於第一導電類型滲雜劑第一濃度。 3. 如申請專利範圍第2項之方法,其中以第一導電類型滲 雜劑來摻雜HSG矽面層的步驟,包括將HSG矽面層曝露 於三氫化磷(PH3)氣體。 4. 如申請專利範圍第2項之方法,其中形成HSG矽面層的 步驟,包括了於導電層圖案表面插種矽籽晶體,然後將 轩晶體長成單一晶體晶粒。 5. 如申請專利範圍第4項之方法,其中導電層圖案的材 質,係選自包括非晶體矽與多晶體矽組成的材料。 6. 如申請專利範圍第2項之方法,其中第一導電類型滲雜 劑的第一濃度約小於1 X 1 02() cnT3,第一導電類型滲雜劑 的第二濃度約大於1 X 102Q cm·3。 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 507362 A BCD 六、申請專利範圍 7. 如申請專利範圍第4項之方法,其中導電層圖案包括了 輿半導體基片接觸的第一多晶體矽層,以及第一多晶體 矽層上的非晶體矽層,其中緊接著長成步驟的是將非晶 體矽層與單一晶體晶粒退火的步騾。 8. 如申請專利範圍第1項之方法,其中其成HSG矽面層的 前一步驟,係以由氫氟酸(HF)溶液與緩衝氧化蝕刻劑 (BOE)溶液組成的清潔劑來清洗導電層圖案。 9. 如申請專利範圍第2項之方法,其中摻雜HSG矽面層的 步驟,包括於快速升溫處理裝置(RTP)將HSG矽面層曝露 於内含第一導電類型不純物的摻雜氣體。 10. 如申請專利範圍第9項之方法,其中於快速升溫處理裝 置(RTP)將HSG矽面層曝露於掺雜氣體的方法,包括了 將摻雜氣體以第一速率緩慢升溫至550至900°C左右的持 續溫度。 11. 如申請專利範圍第1 0項之方法,其中摻雜氣體包括了 三氫化磷(PH3),其中緩慢升溫的步驟,包括了將摻雜 氣體以每秒1 °C至1 0 °c左右的速率緩慢升溫,以避免 HSG矽面層退化。 12. 如申請專利範圍第1 1項之方法,其中緩慢升溫的步 驟,包括了將摻雜氣體以每秒1 0 °C左右的第一速率缓 慢升溫800°C左右的持續溫度。 13. 如申請專利範圍第1 0項之方法,其中於快速升溫處理 裝置(RTP)將HSG矽面層曝露於掺雜氣體的步_騾,包括 了將摻雜氣體以第一速率緩慢升溫至550至900°C左右的 -2- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)507362 AB c D Patent Application No. 87106116 Chinese Patent Application Amendment (November 1990) VI. Application for Patent Scope 1. A method for forming an integrated circuit capacitor, including the following steps: Forming a conductive material on a semiconductor substrate Layer pattern; forming a hemispherical grain (HSG) silicon surface layer with a first conductivity type dopant on the conductive layer pattern; forming a diffusion barrier layer on the HSG silicon surface layer; forming a dielectric layer on the diffusion barrier layer An electrical layer; and forming an electrode on the dielectric layer opposite to the HSG silicon surface layer. 2. The method according to item 1 of the patent application, wherein the step of forming the conductive layer pattern includes forming the conductive layer pattern in a source region having a first concentration of the first conductivity type dopant, wherein the step of forming the HSG silicon surface layer is performed. The method includes forming a HSG silicon surface layer on the conductive layer pattern, and then doping the HSG silicon surface layer with a first conductivity type doping gas, so that the second concentration of the first conductivity type dopant of the HSG silicon surface layer is greater than the first conductivity. Type dopant first concentration. 3. The method according to item 2 of the patent application, wherein the step of doping the HSG silicon surface layer with the first conductivity type dopant includes exposing the HSG silicon surface layer to a phosphorus trihydrogen (PH3) gas. 4. The method according to item 2 of the patent application, wherein the step of forming the HSG silicon surface layer includes inserting a silicon seed crystal on the surface of the conductive layer pattern, and then growing the Xuan crystal into a single crystal grain. 5. The method of claim 4 in which the material of the conductive layer pattern is selected from the group consisting of amorphous silicon and polycrystalline silicon. 6. The method according to item 2 of the patent application, wherein the first concentration of the first conductivity type dopant is less than about 1 X 1 02 () cnT3, and the second concentration of the first conductivity type dopant is about 1 X 102Q cm · 3. This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 507362 A BCD 6. Application for patent scope 7. For the method of application for scope item 4, the conductive layer pattern includes the contact of the semiconductor substrate The first polycrystalline silicon layer and the amorphous silicon layer on the first polycrystalline silicon layer, wherein the step of growing next is a step of annealing the amorphous silicon layer and a single crystal grain. 8. The method according to item 1 of the patent application scope, wherein the previous step of forming the HSG silicon surface layer is to clean the conductive material with a cleaning agent composed of a hydrofluoric acid (HF) solution and a buffered oxide etchant (BOE) solution. Layer pattern. 9. The method according to item 2 of the patent application, wherein the step of doping the HSG silicon surface layer includes exposing the HSG silicon surface layer to a doping gas containing impurities of the first conductivity type in a rapid temperature rise processing device (RTP). 10. The method according to item 9 of the patent application, wherein the method of exposing the HSG silicon surface layer to a doping gas in a rapid temperature rise processing device (RTP) includes slowly raising the doping gas to a temperature of 550 to 900 at a first rate. Continuous temperature around ° C. 11. The method according to item 10 of the patent application, wherein the doping gas includes phosphorus trihydrogen (PH3), and the step of slowly increasing the temperature includes the doping gas at a temperature of about 1 ° C to 10 ° c per second. The temperature is slowly increased to avoid degradation of the HSG silicon surface layer. 12. The method according to item 11 of the scope of patent application, wherein the step of slowly increasing the temperature includes continuously increasing the temperature of the dopant gas at a first rate of approximately 10 ° C per second by approximately 800 ° C. 13. The method of claim 10, wherein the step of exposing the HSG silicon surface layer to a doping gas in a rapid temperature rise processing device (RTP) includes slowly raising the doping gas at a first rate to 550 to 900 ° C -2- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 507362 A B c D 々、申請專利範圍 持續溫度,然後保持摻雜氣體為持續溫度,為時第一期 間,然後以第一速率將摻雜氣體缓慢降溫。 14. 如申請專利範圍第1 3項之方法,其中於快速升溫處理 裝置(RTP)將HSG矽面層曝露於掺雜氣體的步騾,包括 了將HSG矽面層曝露於摻雜氣體,同時維持RTP裝置的 壓力介於5至500托之間。 15. 如申請專利範圍第1 4項之方法,其中係以200至270 seem 左右的流速對RTP裝置提供摻雜氣體。 16. 如申請專利範圍第2項之方法,其中摻雜HSG矽面層的 步驟,包括於低壓化學汽化沉積(LPCVD)裝置將HSG矽 面層曝露於内含第一導電類型的摻雜氣體。 17. 如申請專利範圍第2項之方法,其中摻雜HSG矽面層的 步驟,包括於低壓化學汽化沉積(LPCVD)裝置將HSG矽 面層曝露於内含第一導電類型的摻雜氣體,同時維持 LPCVD裝置的壓力介於1至3托,溫度介於650至850°C。 18. 如申請專利範圍第2項之方法,其中掺雜HSG矽面層的 步驟,包括將HSG矽面層曝露於含第一導電類型摻雜氣 體的電漿中。 19. 如申請專利範圍第1項之方法,其中介電層包括厚度介 於40至70又左右的氧化氮(NO)介電層。 20. 如申請專利範圍第2項之方法,其中摻雜HSG矽面層之 步驟的前一步驟,係以由氫氟酸(HF)溶液與緩衝氧化蚀 刻劑(BOE)溶液組成的清潔劑來清洗HSG矽面層。 21. 如申請專利範圍第1項之方法,其中形成介電層的前一 -3- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 22 \驟’係於HSG矽面層上形成擴散障礙層。 專第21項之方法’其中形成擴散障礙層 2产_:=:成含—上第, 3 圍第21項之方法,其中形成擴散障礙層 24雜的氮層:以化學-化沉積(⑽)形成接雜或未摻 請圍第21項之方法,其中形成批砂面層的 氣體的源L了將一層曝露於含第—導電類型接雜 驟申::利範圍第2 1項之方法’其中形成介電層的步 —匕了於擴散障礙層上形成銓氧化物(Ta 〇 )層 ,包括了於HSG矽面層上形成氮化矽層。 ·::請專利範圍第26項之方法,其中的氮化矽層包括 化η::士以快速升溫氮化(rtn)形成的第-氮 形成:"二氮::層氮化㈣上以化學汽化沉積(, 汉:申請專利範圍第2 1項之方法,其中於介電層上 電極的前—步驟’係將介電層曝露於乾燥的氧氣。/ 29· =專利範園第…方法,其中形成擴I障礙層 、乂 ρ包括了將HSG碎面層暴露於含氮的反應源氣㉒ ,以及含第一導電類型摻雜不純物的摻雜源氣體。 a 邊如申清專利範圍第22項之方法,其中形成擴散障礙 507362 A8 B8 C8 D8 六、.申請專利範圍 的步騾,包括了將HSG矽面層曝露於含矽的第一源氣 體、含氮矽的第二源氣體、以及含第一導電類型掺雜不 純物的摻雜源氣體。 31. 如申請專利範圍第2 1項之方法,其中形成擴散障礙層 的步騾,包括了於HSG矽面層上以快速升溫氮化(RTN) 形成的第一氮化石夕層,以及於第一氮化石夕層上以化學汽 化沉積(CVD)形成的第二氮化矽層。 32. 如申請專利範圍第2 6項之方法,其中於擴散障礙層上 形成鋰氧化物層(Ta205)的步騾,包括了於擴散障礙層 上形成輕氧化物層,將第一輕氧化物層於臭氧環境下接 受紫外線照射,以密化第一起氧化物層,然後於第一輕 氧化物層上形成第二妲氧化物層,再將第二鎧氧化物層 曝露於氧氣,以密化第二麵氧化物層。 33. 如申請專利範圍第2 6項之方法,其中於擴散障礙層上 形成鋰氧化物層(Ta205)的步騾,包括了於擴散障礙層 上形成妲氧化物層,然後於N20環境下對Ta205退火。 34. 如申請專利範圍第1項之方法,其中形成導電層圖案的 步驟包括形成的導電層圖案其源區具有了第一導電類型 滲雜劑第一濃度,其中形成HSG矽面層的步驟包括了於 導電層圖案上形成HSG矽面層,然後以第一導電類型滲 雜劑來摻雜HSG矽面層,使HSG矽面層的第一導電類型 滲雜劑第二濃度大於的第一導電類型滲雜劑第一濃度。 35. 如申請專利範圍第3 4項之方法,其中形成擴_散障礙層 的步驟,包括了於原位置形成含HSG矽面層上第一導電 -5- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 507362 A B c D 六、申請專利範圍 類型摻雜氣體的擴散障礙層。 36. 如申請專利範圍第3 4項之方法,其中形成擴散障礙層 的步騾,包括了以化學汽化沉積(CVD)形成摻雜或未摻 雜的氮化矽層。 37. 如申請專利範圍第3 5項之方法,其中形成介電層的步 騾,包括了於擴散障礙層上形成鋁氧化物(Ta205)層。 38. 如申請專利範圍第3 7項之方法,其中的氮化矽層包括 了於HSG矽面層上以快速升溫氮化(RTN)形成的第一氮 化矽層,以及於第一氮化矽層上以化學汽化沉積(CVD) 形成的第二氮化碎層。 39. 如申請專利範圍第3 7項之方法,其中擴散障礙層包括 了以化學汽化沉積(CVD)形成的氮化矽層。 40. 如申請專利範圍第2 6項之方法,其中於擴散障礙層上 形成姮氧化物層(Ta205)的步驟,包括以下步驟: 於擴散障礙層上形成輕氧化物層; 將第一 Is氧化物層於臭氧環境下接受紫外線照射;以及 於第一妲氧化物層上形成第二鈕氧化物層;然後 密化第二叙氧化物層。 41. 一種形成積體電路電容器的方法,包括以下步騾: 於半導體基片上形成具備第一導電類型摻雜氣體第一 濃度的非晶體矽導電層圖案; 於非晶體矽導電層圖案上形成半球晶粒(HSG)矽面 層; · 轉換非晶體矽導電層圖案成多結晶矽; -6 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 507362 A8 B8 C8 D8 六、申請專利範圍 以第一導電類型掺雜氣體來摻雜HSG矽面層,使HSG 矽面層其第一導電類型滲雜劑第二濃度大於第一導電類 型滲雜劑第一濃度; 在該HSG矽表面層上形成一擴散障礙層; 於擴散障礙層上形成一介電層,與HSG矽面層相對;以 及 於介電層上形成一電極,與擴散障礙層相對。 42. 如申請專利範圍第4 1項之方法,其中形成擴散障礙層 的步騾,包括了於HSG矽面層上形成氮化矽層,其中形 成介電層的步騾,包括了於擴散障礙層上形成妲氧化物 (Ta205)層。 43. 如申請專利範圍第4 2項之方法,其中形成氮化石夕層的 步驟,包括了於原位置形成含第一導電類型摻雜氣體的 摻雜氮化矽層。 44. 如申請專利範圍第4 3項之方法,其中的氮化石夕層包括 以快速升溫氮化(RTN)形成的第一氮化矽層,以及以化 學汽化沉積(CVD)形成的第二氮化矽層的化合物。 45. 如申請專利範圍第4 2項之方法,其中的氮化矽層包括 以快速升溫氮化(RTN)形成的第一氮化矽層,以及以化 學汽化沉積(CVD)形成的第二氮化矽層的化合物。 46. 如申請專利範圍第4 5項之方法,還包括密化該钽氧化 物層的步驟。 47. 如申請專利範圍第4 6項之方法,其中的密化-步騾包括 了將姮氧化物層曝露於乾燥的氧氣,並於臭氧及N2〇環 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 507362 8 8 8 8 A BCD 六、申請專利範圍 境下接受紫外線照射。 48.如申請專利範圍第4 2項之方法,其中形成介電層的前 一步騾,矽將擴散障礙層快速升溫氧化(RTO)。 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)507362 A B c D 々, patent application scope Continuous temperature, and then keep the doping gas at the continuous temperature for the first period, and then slowly lower the doping gas at the first rate. 14. The method according to item 13 of the scope of patent application, wherein the step of exposing the HSG silicon surface layer to the doping gas in a rapid temperature rise processing device (RTP) includes exposing the HSG silicon surface layer to the doping gas, and Maintain the pressure of the RTP device between 5 and 500 Torr. 15. The method according to item 14 of the patent application range, wherein the doping gas is provided to the RTP device at a flow rate of about 200 to 270 seem. 16. The method of claim 2 wherein the step of doping the HSG silicon surface layer comprises exposing the HSG silicon surface layer to a doping gas containing a first conductivity type in a low pressure chemical vapor deposition (LPCVD) device. 17. The method according to item 2 of the patent application, wherein the step of doping the HSG silicon surface layer comprises exposing the HSG silicon surface layer to a doping gas containing a first conductivity type in a low pressure chemical vapor deposition (LPCVD) device, At the same time maintain the pressure of the LPCVD device between 1 and 3 Torr and the temperature between 650 and 850 ° C. 18. The method according to item 2 of the patent application, wherein the step of doping the HSG silicon surface layer comprises exposing the HSG silicon surface layer to a plasma containing a doped gas of the first conductivity type. 19. The method of claim 1 in which the dielectric layer includes a nitrogen oxide (NO) dielectric layer having a thickness of about 40 to 70 Å. 20. The method according to item 2 of the patent application, wherein the previous step of the step of doping the HSG silicon surface layer is a cleaning agent composed of a hydrofluoric acid (HF) solution and a buffered oxide etchant (BOE) solution. Clean HSG silicon surface layer. 21. For the method of applying for the first item of the patent scope, in which the previous one of the dielectric layer is formed. This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm). 22 \ 'is on the HSG silicon surface. A diffusion barrier layer is formed on the layer. The method of item 21 'in which a diffusion barrier layer 2 is formed _: =: Cheng Han—the above, 3rd method of item 21, in which a diffusion barrier layer 24 is formed with a nitrogen layer: chemical-chemical deposition (⑽ ) The method of forming dopant or non-doped item 21, in which the source of the gas forming the batch surface layer is exposed to a layer containing the first-conducting type of dopant. Application: Method of item 21 'The step of forming the dielectric layer—the formation of a hafnium oxide (Ta 0) layer on the diffusion barrier layer includes the formation of a silicon nitride layer on the HSG silicon surface layer. · :: Method according to item 26 of the patent, wherein the silicon nitride layer includes η :: N-N formation formed by rapid temperature rise nitriding (rtn): " Dinitrogen :: layer on hafnium nitride The method of chemical vapor deposition (Han: No. 21 of the scope of patent application, in which the step before the electrode on the dielectric layer is to expose the dielectric layer to dry oxygen. / 29 · = Patent Fanyuan No .... The method, in which the formation of an expanded barrier layer, 乂 ρ includes exposing the HSG chipping layer to a nitrogen-containing reaction source gas, and a doping source gas containing a first conductivity type impurity impurity. The method of item 22, in which a diffusion barrier is formed 507362 A8 B8 C8 D8 6. The steps in the patent application scope include exposing the HSG silicon surface layer to a first source gas containing silicon and a second source gas containing nitrogen silicon And a dopant source gas containing a dopant impurity of the first conductivity type. 31. The method of claim 21 in the scope of the patent application, wherein the step of forming a diffusion barrier layer includes rapidly increasing nitrogen on the HSG silicon surface layer. Formation (RTN) of the first nitride layer, and the first nitrogen A second silicon nitride layer formed by chemical vapor deposition (CVD) on the Shi Xi layer. 32. The method according to item 26 of the patent application, wherein a step of forming a lithium oxide layer (Ta205) on the diffusion barrier layer The method includes forming a light oxide layer on the diffusion barrier layer, and irradiating the first light oxide layer with ultraviolet rays in an ozone environment to densify the first oxide layer, and then forming a second light oxide layer on the first light oxide layer. The oxide layer is exposed, and the second armor oxide layer is exposed to oxygen to densify the second surface oxide layer. 33. For example, the method of item 26 of the patent application scope, wherein a lithium oxide is formed on the diffusion barrier layer. The step of the Ta205 layer includes forming a hafnium oxide layer on the diffusion barrier layer, and then annealing the Ta205 in an N20 environment. 34. For the method of claim 1, the step of forming a conductive layer pattern includes The source region of the formed conductive layer pattern has a first concentration of the first conductivity type dopant. The step of forming the HSG silicon surface layer includes forming the HSG silicon surface layer on the conductive layer pattern, and then doping with the first conductivity type. Agent The HSG silicon surface layer is mixed so that the second concentration of the first conductivity type dopant of the HSG silicon surface layer is greater than the first concentration of the first conductivity type dopant. 35. The method of claim 34 in the scope of patent application, wherein The step of expanding and dispersing the barrier layer includes forming the first conductive layer on the HSG-containing silicon surface layer at the original position. -5- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 507362 AB c D 6 3. The diffusion barrier layer of doped gas with a patent application type. 36. The method of claim 34, wherein the step of forming a diffusion barrier layer includes forming a doped or non-doped layer by chemical vapor deposition (CVD). Miscellaneous silicon nitride layer. 37. The method of claim 35, wherein the step of forming a dielectric layer includes forming an aluminum oxide (Ta205) layer on the diffusion barrier layer. 38. The method of claim 37, wherein the silicon nitride layer includes a first silicon nitride layer formed on the HSG silicon surface layer by rapid temperature nitriding (RTN), and a first nitride layer A second nitrided layer formed by chemical vapor deposition (CVD) on the silicon layer. 39. The method of claim 37, wherein the diffusion barrier layer includes a silicon nitride layer formed by chemical vapor deposition (CVD). 40. The method of claim 26, wherein the step of forming a hafnium oxide layer (Ta205) on the diffusion barrier layer includes the following steps: forming a light oxide layer on the diffusion barrier layer; oxidizing the first Is The material layer is irradiated with ultraviolet rays in an ozone environment; and a second button oxide layer is formed on the first hafnium oxide layer; and then the second oxide layer is densified. 41. A method for forming an integrated circuit capacitor, comprising the following steps: forming an amorphous silicon conductive layer pattern having a first concentration of a first conductivity type doping gas on a semiconductor substrate; forming a hemisphere on the amorphous silicon conductive layer pattern Grain (HSG) silicon surface layer; · Conversion of amorphous silicon conductive layer pattern into polycrystalline silicon; -6-This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 mm) 507362 A8 B8 C8 D8 Six The scope of the patent application is to dope the HSG silicon surface layer with a first conductivity type doping gas, so that the second concentration of the first conductivity type dopant of the HSG silicon surface layer is greater than the first concentration of the first conductivity type dopant; A diffusion barrier layer is formed on the HSG silicon surface layer; a dielectric layer is formed on the diffusion barrier layer opposite the HSG silicon surface layer; and an electrode is formed on the dielectric layer opposite the diffusion barrier layer. 42. The method according to item 41 of the scope of patent application, wherein the step of forming a diffusion barrier layer includes forming a silicon nitride layer on the HSG silicon surface layer, and the step of forming a dielectric layer includes the diffusion barrier. A hafnium oxide (Ta205) layer is formed on the layer. 43. The method according to item 42 of the patent application, wherein the step of forming a nitride nitride layer includes forming a doped silicon nitride layer containing a dopant gas of a first conductivity type in place. 44. The method according to item 43 of the scope of patent application, wherein the nitride layer includes a first silicon nitride layer formed by rapid temperature rise nitridation (RTN) and a second nitrogen layer formed by chemical vapor deposition (CVD). Compound of silicon layer. 45. The method according to item 42 of the scope of patent application, wherein the silicon nitride layer includes a first silicon nitride layer formed by rapid temperature-nitriding (RTN) and a second nitrogen layer formed by chemical vapor deposition (CVD). Compound of silicon layer. 46. The method of claim 45, further comprising the step of densifying the tantalum oxide layer. 47. For the method in the 46th scope of the patent application, the densification-step method includes exposing the plutonium oxide layer to dry oxygen, and applying the Chinese National Standard (CNS) to ozone and N2O paper standards. A4 specification (210 X 297 mm) 507362 8 8 8 8 A BCD VI. Under the scope of patent application, it can receive ultraviolet radiation. 48. The method according to item 42 of the scope of patent application, wherein in the previous step of forming the dielectric layer, silicon rapidly increases the temperature of the diffusion barrier layer (RTO). -8- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW087106116A 1997-04-22 1998-04-21 Methods of forming integrated circuit capacitors having improved electrode and dielectric layer characteristics TW507362B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR19970014833 1997-04-22
KR19970016812 1997-04-30
KR1019970023381A KR100234417B1 (en) 1997-04-30 1997-06-05 Formation method of capacitor using hemispherical silicon layer

Publications (1)

Publication Number Publication Date
TW507362B true TW507362B (en) 2002-10-21

Family

ID=27625279

Family Applications (2)

Application Number Title Priority Date Filing Date
TW087106116A TW507362B (en) 1997-04-22 1998-04-21 Methods of forming integrated circuit capacitors having improved electrode and dielectric layer characteristics
TW90128278A TW508804B (en) 1997-04-22 1998-04-21 Integrated circuit capacitors having improved electrode and dielectric layer characteristics

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW90128278A TW508804B (en) 1997-04-22 1998-04-21 Integrated circuit capacitors having improved electrode and dielectric layer characteristics

Country Status (1)

Country Link
TW (2) TW507362B (en)

Also Published As

Publication number Publication date
TW508804B (en) 2002-11-01

Similar Documents

Publication Publication Date Title
US6624069B2 (en) Methods of forming integrated circuit capacitors having doped HSG electrodes
TW425700B (en) Hemispherical grained polysilicon semiconductor structure and method
KR100222455B1 (en) Semiconductor device and method of fabricating method
US7112543B2 (en) Methods of forming assemblies comprising silicon-doped aluminum oxide
TW447113B (en) Semiconductor device and the manufacturing method thereof
JP4493208B2 (en) Nonvolatile memory device and manufacturing method thereof
JPH06295992A (en) Semiconductor device containing high capacitance capacitor and manufacture thereof
TWI236765B (en) Dual poly layer and method of manufacture thereof
CN112271255A (en) Ferroelectric capacitor and memory cell and preparation method thereof
TW434739B (en) Reduced diffusion of a mobile specie from a metal oxide ceramic into the substrate
JP2697645B2 (en) Method for manufacturing semiconductor device
TW471161B (en) Method of manufacturing capacitor of semiconductor device
TW507362B (en) Methods of forming integrated circuit capacitors having improved electrode and dielectric layer characteristics
TWI242283B (en) Method for manufacturing a capacitor of a semiconductor device
US7300852B2 (en) Method for manufacturing capacitor of semiconductor element
TW413935B (en) Semiconductor device and its manufacturing method
KR100882090B1 (en) Method for fabricating capacitor of semiconductor device
TW313691B (en) Structure with increased capacitance and process thereof
TW379403B (en) Storage capacitor having high dielectric layer on rugged polysilicon electrode and method of making the same
JP3197531B2 (en) Method for manufacturing semiconductor device
TW383498B (en) Manufacturing method for capacitor structure of DRAM component on semiconductor substrate
KR20020050521A (en) Capacitor in semiconductor device and method for manufacturing the same
TW531851B (en) Method of forming a rugged polysilicon layer on a semiconductor substrate
JP3658254B2 (en) Insulated gate type semiconductor device and manufacturing method thereof
TW315524B (en) Dynamic random access memory cell with roughened polysilicon electrode

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees