TW313691B - Structure with increased capacitance and process thereof - Google Patents

Structure with increased capacitance and process thereof Download PDF

Info

Publication number
TW313691B
TW313691B TW85109702A TW85109702A TW313691B TW 313691 B TW313691 B TW 313691B TW 85109702 A TW85109702 A TW 85109702A TW 85109702 A TW85109702 A TW 85109702A TW 313691 B TW313691 B TW 313691B
Authority
TW
Taiwan
Prior art keywords
polycrystalline silicon
silicon layer
layer
patent application
item
Prior art date
Application number
TW85109702A
Other languages
Chinese (zh)
Inventor
Tsuey-Rong You
Huoo-Tiee Lu
Shyh-Woei Suen
Chang-Shyan Gau
Guang-Hwa Shyr
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW85109702A priority Critical patent/TW313691B/en
Application granted granted Critical
Publication of TW313691B publication Critical patent/TW313691B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A method of manufacturing semiconductor device comprises of the following steps: (1) supplying one doped polysilicon on one silicon substrate; (2) supplying one hemispherical-grained polysilicon on the doped polysilicon, and the depth of hemispherical-grained polysilicon thinner than the doped polysilicon's; (3) selectively etching the hemispherical-grained polysilicon, and etching speed to doped polysilicon faster than un-doped polysilicon's; (4) selectively etching into doped polysilicon, and etching depth at least equal to depth of hemispherical-grained polysilicon.

Description

313 0^9 \lw f.doc/〇〇2 A7 B7 經濟部中央樣準局員工消費合作社印製 五、發明説明(I ) 本發明是關於積體電路元件高電容量結構的製造方 法,且特別是關於一種形成具特向成長表面之電極的方 法。 以往,增加積體電路元件裝置密度的方法,已部份藉 下列方式完成:(1)減小結構尺寸,如導線長度及電晶體 閛極寬度;(2)減小構成積體電路裝置結構間的距離。而 減小電路結構的尺寸,通常是指減小用來製造積體電路元 件的設計尺寸。動態隨機讀取記憶體(DRAMs),其資料的儲 存是藉由在半導體基底表面的一排電容器中的每一個電 容器選擇性地充電或放電來達成。通常,二位元資料的單 一元件是儲存在每一電容器中,藉由一電容器的放電狀態 代表邏輯上的“0”,一電容器的充電狀態代表邏輯上的 “1”。施予該記憶體一固定的操作電壓,而該記憶體之電容 器的電極板間的距離可以確實地被製造,並使用高介電常 數的介電材料於該電容器間,則該記憶體電容器的充電量 決定於電容器的電極板面大小。依降低設計尺寸原則,減 小DRAM電容器的尺寸會減小電容器電極的表面積,會降低 記憶體電容器儲存的電荷量。 通常,記憶體電容器的充電量必須大到足以使記憶體 可靠地運作,對於最近超大型積體電路(“ULSI”)DRAM的設 計,因更減小DRAMs電容器儲存的電荷量,可能會使得儲 存於電容器的資料無法完全被讀出。此外,因電荷會從電 容器消耗掉,故DRAMs須每隔一段時間就刷新(refresh)儲 存在電容器的電荷,以確保儲存的電荷量高於最少可被偵 3 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) (請先閱讀背面之注意事項再填窝本頁) 裝--- --訂313 0 ^ 9 \ lw f.doc / 〇〇2 A7 B7 Printed by the Employee Consumer Cooperative of the Central Prototype Bureau of the Ministry of Economy V. Description of the invention (I) The present invention relates to a method for manufacturing a high-capacity structure of an integrated circuit element, and In particular, it relates to a method of forming an electrode with a special growth surface. In the past, the method of increasing the density of integrated circuit device devices has been partially accomplished by: (1) reducing the size of structures, such as wire length and transistor electrode width; (2) reducing the structure between integrated circuit devices the distance. Reducing the size of the circuit structure usually refers to reducing the design size of the integrated circuit components. Dynamic random access memory (DRAMs), the data storage is achieved by selectively charging or discharging each capacitor in a row of capacitors on the surface of the semiconductor substrate. Normally, a single element of two-bit data is stored in each capacitor. The discharge state of a capacitor represents a logical "0", and the charge state of a capacitor represents a logical "1". A fixed operating voltage is applied to the memory, and the distance between the electrode plates of the capacitor of the memory can be reliably manufactured, and a dielectric material with a high dielectric constant is used between the capacitors. The amount of charge depends on the size of the electrode plate of the capacitor. According to the principle of reducing the design size, reducing the size of the DRAM capacitor will reduce the surface area of the capacitor electrode and the amount of charge stored in the memory capacitor. In general, the charge capacity of the memory capacitor must be large enough for the memory to operate reliably. For the design of recent ultra-large integrated circuit ("ULSI") DRAMs, the smaller the amount of charge stored in the DRAMs capacitor may make the storage The data on the capacitor cannot be read out completely. In addition, because the charge will be consumed from the capacitor, the DRAMs must refresh the charge stored in the capacitor at regular intervals to ensure that the stored charge is higher than the minimum can be detected. 3 This paper standard is applicable to the Chinese National Standard (CNS ) A4 specification (210X297mm) (Please read the precautions on the back before filling the nest page)

-C 3136m fwf.doc/002 A7 B7 經濟部中央標準局員工消費合作社印裝 五、發明説明(久) 測値。電容器的尺寸縮小降低電荷的儲存量,DRAMs的刷 新次數須更加頻繁,此結果是我們不想要的,因爲在刷新 過程中至少有一部份的DRAM是無法讀寫資料的。 爲了滿足降低結構尺寸的需要,一些DRAMs的設計已 被提出,其包括:在電容器基底表面垂直延伸如疊層 (stacked)電容器;或是往電容器基底表面下延伸,如溝 槽(trench)電容器。DRAM在設計上採用三度空間結構,消 耗較小的基底表面卻提供較高的電荷儲存量。雖然疊層電 容器及溝槽電容器在設計上比較複雜且更難製造,但已有 一些設計成功地應用了這些三度空間結構。提高記憶體電 容器電容量的方法,除了要符合低成本及容易生產外,最 好能減少電容器垂直延伸的範圍以使元件構造更平坦。當 半導體底材表面被DRAM儲存電容器消耗而減少其表面積 時,須考慮增加DRAM儲存電容器的電容量需要。 一在固定基底表面增加電容量的技術已被提出,該技 術使用粗糙地或特向成長的複晶矽作爲記憶體電容器的 底板。該技術的優點由第1圖說明,該圖表示一具有特向 成長複晶砂底板電極的DRAM記憶電容器的部份剖面圖,該 DRAM包括一矽基底1〇及記憶體單元間隔離場效應電晶體 (FET)的場氧化區12,源極區14,汲極區16,閘極18, 以習知方法以及一位於該場氧化層12表面之位元線20, 該位元線20連接部份的DRAM以及轉移場效應電晶體,作 爲電容器讀寫時的開關。在上述DRAM中的記憶體電容器, 藉一垂直延伸的內連線22與該轉移場效應電晶體的源極 4 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) (請先閣讀背面之注l事項再填寫本頁) .I I - i— · 訂 c 31369ί ltwf.doc/002 31369ί ltwf.doc/002 經濟部中央搮準局員工消費合作社印製 五、發明説明(3 ) 區14及汲極區16相連,該內連線22終止於一複晶矽平板 24,再於複晶砂平板24上形成一特向成長複晶砂層26而 完成該電容器之下層電極。在該特向成長複晶矽層表面及 該平板24裸露出來的部份覆蓋一薄介電層28 ;在該介電 層28上形成一摻雜複晶矽層30,以當作該電容器的一第 二電極。藉使用特向成長複晶矽做爲該電容器的下層電 極,在該電容器電極無水平延伸的情況下就可增加電容器 的表面積,使得上述舉例的結構’在固定的表面積下增加 了電容量。 胃 已有各種技術被用來生產特向成長複晶矽,以應用在 如圖1所示的DRAM半導體元件中。如Watanabe等人於 “Device Application and Stucture Observation for Hemispherical-GrainedSi”一文所述,使用矽院氣(SiH4) 的低壓化學氣相沈積法(LPCVD),以形成半球型粒狀結晶 砂(hemispherical-grained polycrystalline silicon), 簡稱爲HSG-Si,“HSG-Si”一詞經常用來代表特向成長複晶 石夕(〖61111^(1。〇1;73丨1;[。〇11)。配合耶0-3丨層表面的粗糖度 及特向成長作最佳化調整得以HSG-Si層作爲DRAM記憶體 電容器平板時有較高的電容量,該HSG-Si層是在溫度590 °C時沈積於電容器的底材上,若溫度不在590 °C ± 10°C的 範圍,會產生不可接受的特向成長表面,也就是,產生不 想要的平坦表面,使其不比習知的複晶矽表面積大。以 LPCVD法沈積HSG-Si於基質所構成的較低電極,在溫度590 °C操作所得到的單位基底電容量比在580 °C或600 °C下操 5 (請先聞讀^:面之注1事項再填寫本頁)-C 3136m fwf.doc / 002 A7 B7 Printed by the Employees Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of invention (long) Measured value. The reduction in the size of the capacitor reduces the amount of charge stored, and the number of refreshes of DRAMs must be more frequent. This result is undesirable because at least part of the DRAM cannot read or write data during the refresh process. In order to meet the needs of reducing the size of structures, some designs of DRAMs have been proposed, which include: extending vertically on the surface of the capacitor substrate such as a stacked capacitor; or extending below the surface of the capacitor substrate, such as a trench capacitor. DRAM is designed with a three-dimensional spatial structure, which consumes a smaller substrate surface and provides higher charge storage. Although multilayer capacitors and trench capacitors are more complex in design and more difficult to manufacture, some designs have successfully applied these three-dimensional spatial structures. The method of improving the capacitance of the memory capacitor, in addition to meeting low cost and easy production, is best to reduce the vertical extension of the capacitor to make the device structure flatter. When the surface of the semiconductor substrate is consumed by the DRAM storage capacitor to reduce its surface area, the need to increase the capacitance of the DRAM storage capacitor must be considered. A technique for increasing capacitance on the surface of a fixed substrate has been proposed. This technique uses rough or specially grown polycrystalline silicon as the bottom plate of a memory capacitor. The advantages of this technology are illustrated in Figure 1, which shows a partial cross-sectional view of a DRAM memory capacitor with a special growth polycrystalline sand bottom plate electrode. The DRAM includes a silicon substrate 10 and an isolated field effect circuit between memory cells A field oxidation region 12, a source region 14, a drain region 16, and a gate 18 of a crystal (FET), by a conventional method and a bit line 20 on the surface of the field oxide layer 12, the bit line 20 connects The DRAM and the transfer field effect transistor are used as switches for reading and writing the capacitor. The memory capacitor in the above DRAM, via a vertically extending interconnect 22 and the source of the transfer field effect transistor 4 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (please Read the notes on the back of the cabinet first and then fill out this page) .II-i— · Order c 31369ί ltwf.doc / 002 31369ί ltwf.doc / 002 Printed by the Ministry of Economic Affairs, Central Bureau of Precinct Employee Consumer Cooperative V. Invention Instructions (3 ) The region 14 is connected to the drain region 16, the interconnection 22 terminates in a polycrystalline silicon slab 24, and a special growth polycrystalline sand layer 26 is formed on the polycrystalline sand slab 24 to complete the lower electrode of the capacitor. A thin dielectric layer 28 is covered on the surface of the specially grown polycrystalline silicon layer and the exposed portion of the flat plate 24; a doped polycrystalline silicon layer 30 is formed on the dielectric layer 28 to serve as the capacitor A second electrode. By using specially grown polycrystalline silicon as the lower electrode of the capacitor, the surface area of the capacitor can be increased without the capacitor electrode extending horizontally, so that the above-mentioned structure 'increases the capacitance at a fixed surface area. Stomach Various technologies have been used to produce special growth polycrystalline silicon for use in DRAM semiconductor devices as shown in FIG. 1. As described in the article "Device Application and Stucture Observation for Hemispherical-GrainedSi" by Watanabe et al., Low-pressure chemical vapor deposition (LPCVD) using silicon gas (SiH4) to form hemispherical-grained sand polycrystalline silicon), abbreviated as HSG-Si, the term "HSG-Si" is often used to represent the special growth of polycrystalline eve (〖61111 ^ (1.0.1; 73 丨 1; [.〇11). 0-3 丨 The roughness and special growth of the surface of the layer are optimized to allow the HSG-Si layer to have a higher capacitance when used as a DRAM memory capacitor plate. The HSG-Si layer is deposited at a temperature of 590 ° C On the substrate of the capacitor, if the temperature is not in the range of 590 ° C ± 10 ° C, an unacceptable characteristic growth surface will be produced, that is, an undesirable flat surface will be produced, making it no more than the conventional polycrystalline silicon surface area. Large. The lower electrode composed of HSG-Si deposited on the substrate by LPCVD method, the capacitance per unit substrate obtained by operating at a temperature of 590 ° C is operated at 580 ° C or 600 ° C 5 (please read first ^: (Note 1 matters before filling this page)

本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 經濟部中央標準局員工消費合作社印— 043 1 twf.doc/002 八7 ___ B7__ 五、發明説明(屮) 作大約2倍或更高。This paper scale is applicable to the Chinese National Standard (CNS) A4 (210X 297mm) printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs — 043 1 twf.doc / 002 八 7 ___ B7__ V. The description of the invention (屮) is about 2 times Or higher.

Sakao 等人於“A Capacitor-Over-Bi t -Line(COB)Eel 1 with a Hemispherical-Grain Storage Node for 64 Mb DRAMs”一文中描述另一種以HSG-Si來增加DRAM電容器電 容量的方法,在轉移場效應電晶體之源極/汲極及閘極形 成後,於閘極及字元線上形成一氧化層。一接觸窗口 (contact via)是開向該轉移型場效應電晶體,且一垂直 內連線導體是從汲極延伸到氧化層表面,接著以LPCVD法 於溫度600 °C沈積一習知的複晶矽層中垂直內連線接觸; 該習知的複晶矽層再以光學微影構圖並以非等向性離子 蝕刻之,以形成一透過垂直內連線連接該轉移場效應電晶 體汲極的中心儲存點。 . 該中心儲存點表面以LPCVD法,在甲烷氣以氦氣稀釋 於壓力ITorr及基底溫度550 °C環境下,沈積一半球型粒 狀多晶矽層,該複晶矽層之厚度至少爲800A ;該複晶矽層 以非等向性離子蝕刻法去除鄰近中心儲存點的氧化層表 面的HSG-Si,該蝕刻氣體是HBr等;以回蝕法去除儲存點 表面上的HSG-Si,於該儲存點內的複晶矽層形成如HSG-Si層的特向成長平面。上述所提的Sakao DRAM電容器的 較低電極,同樣有一厚度爲800A的粗糙性或特向成長表面 的HSG-Si層,用HSG-Si來作爲DRAM電容器之較低電極已 成功地提昇電容器2倍的電容量,但並沒有更進一步的提 昇。 本發明是關於在電容器之電極板製作過程中使用 6 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫各頁) 裝----Sakao et al., In "A Capacitor-Over-Bit-Line (COB) Eel 1 with a Hemispherical-Grain Storage Node for 64 Mb DRAMs", described another method of increasing the capacitance of DRAM capacitors with HSG-Si, in After the source / drain and gate of the transfer field effect transistor are formed, an oxide layer is formed on the gate and the word line. A contact via opens to the transfer field effect transistor, and a vertical interconnect conductor extends from the drain to the surface of the oxide layer, and then deposited by a LPCVD method at a temperature of 600 ° C. Vertical interconnection contacts in the crystalline silicon layer; the conventional polycrystalline silicon layer is then patterned with optical lithography and etched with anisotropic ions to form a transfer field effect transistor connected via vertical interconnections The central storage point of the pole. The surface of the central storage point is deposited by LPCVD method, methane gas is diluted with helium gas at a pressure ITorr and the substrate temperature is 550 ° C, and a semi-spherical granular polycrystalline silicon layer is deposited. The thickness of the polycrystalline silicon layer is at least 800A; The polycrystalline silicon layer removes the HSG-Si on the surface of the oxide layer adjacent to the central storage point by anisotropic ion etching, the etching gas is HBr, etc .; the HSG-Si on the surface of the storage point is removed by the etch back method, and the storage The polycrystalline silicon layer in the dot forms a special growth plane like the HSG-Si layer. The lower electrode of the Sakao DRAM capacitor mentioned above also has an HSG-Si layer with a roughness of 800A or a special growth surface. Using HSG-Si as the lower electrode of the DRAM capacitor has successfully increased the capacitor by 2 times Capacity, but no further improvement. The present invention is about the use of 6 sheets of paper in the manufacturing process of the electrode plate of the capacitor. The paper standard is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the precautions on the back and fill in each page).

、1T ___ 313691 3 1 twf.doc/002 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(I) HSG-Si層以提升電容。 本發明所提供的一半導體元件,其包含:一砍底質; 一摻雜的複晶矽層位於該矽基底上;一半球型粒狀複晶矽 於該摻雜複晶矽層上,該粒狀複晶矽層之厚度比該摻雜複 晶矽小;用選擇性蝕刻法鈾刻該半球型複晶矽層,該蝕刻 法鈾刻摻雜複晶矽之速率比蝕刻非摻雜複晶矽快,且該雜 複晶矽層的蝕刻深度至少要等於該半球型晶粒層的厚 度;該半球型粒狀複晶矽層以蝕刻法完全除去。 本發明之一不同處是,在進行半球型Ϊ立狀複晶矽層的 鈾刻步驟前,先在其表面長一原生氧化層。 本發明另一種製造半導體元件的方法,其包括:提供 一矽基底;於該矽基底上長一摻複晶矽層;於該摻雜複晶 矽層上另一半球型粒狀複晶矽層,該半球型粒狀複晶矽層 之厚度比摻雜複晶矽小;以含氯離子的電漿蝕刻該半球型 粒狀複晶矽層及摻雜複晶矽層;形成一介電層於該被触刻 後之摻雜複晶矽層表面上;再形成一第二摻雜複晶矽於該 介電層上;定義該第二摻雜複晶矽層的圖案以作爲電容器 的上層電極。本發明的摻雜複晶矽層的表面積,於蝕刻後 爲蝕刻前約3〜4倍。 爲讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳 細說明如下: 圖式之簡單說明: 第1圖是一具有記憶體電容器的DRAM部份剖面圖,該 7 (請先閲讀背面之注意事項再填寫本頁) 裝-、 1T ___ 313691 3 1 twf.doc / 002 A7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of Invention (I) HSG-Si layer to enhance capacitance. A semiconductor device provided by the present invention includes: a substrate; a doped polycrystalline silicon layer on the silicon substrate; a semi-spherical granular polycrystalline silicon layer on the doped polycrystalline silicon layer, the The thickness of the granular polycrystalline silicon layer is smaller than that of the doped polycrystalline silicon; the hemispherical polycrystalline silicon layer is etched by uranium by selective etching. The crystalline silicon is fast, and the etching depth of the hetero-polycrystalline silicon layer is at least equal to the thickness of the hemispherical grain layer; the hemispherical granular polycrystalline silicon layer is completely removed by etching. One difference of the present invention is that before performing the uranium engraving step of the hemispherical Ϊ vertical polycrystalline silicon layer, a primary oxide layer is grown on the surface. Another method of manufacturing a semiconductor device of the present invention includes: providing a silicon substrate; growing a polycrystalline silicon layer on the silicon substrate; another hemispherical granular polycrystalline silicon layer on the doped polycrystalline silicon layer , The thickness of the hemispherical granular polycrystalline silicon layer is smaller than that of doped polycrystalline silicon; the hemispherical granular polycrystalline silicon layer and the doped polycrystalline silicon layer are etched with a plasma containing chloride ions; a dielectric layer is formed On the surface of the doped polycrystalline silicon layer after being etched; forming a second doped polycrystalline silicon on the dielectric layer; defining the pattern of the second doped polycrystalline silicon layer as the upper layer of the capacitor electrode. The surface area of the doped polycrystalline silicon layer of the present invention after etching is about 3 to 4 times that before etching. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is described below in conjunction with the attached drawings, which are described in detail as follows: Brief description of the drawings: Figure 1 It is a partial cross-sectional view of a DRAM with a memory capacitor. The 7 (please read the precautions on the back before filling this page)

*1T* 1T

C 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公 043 ltwf.doc/002 A7 B7 經濟部中央樣準局員工消.費合作社印製 五、發明説明u) 電容器含有半球型矽晶粒層所構成的下層電極。 第2-4圖是根據本發明之較佳實施例的蝕刻過程。 第5-6圖是根據本發明之較佳實施例,其HSG-Si層在 蝕刻前的表面光學顯微照片。 第7-8圖是根據本發明,所形成的較佳實施例的顯微 照片。 第9圖是根據本發明所提出的一計算此較佳實施例所 增加表面積的模型。 第10圖是根據本發明,改變d / D及h / D的値對表面積 增益影響的關係圖。 根據本發明之較佳實施例,該DRAM的記憶體電容器包 括: . 一矽基底;於該矽基底上形成摻雜複晶矽層,於該複 晶矽層上形成一半球型粒狀複晶矽層,作爲飩刻該摻雜複 晶矽層以形成一高特向成長表面於該矽基底上時的光 罩。通常,該複晶矽層是摻有雜質的,而該HSG-Si層無摻 雜;飩刻的反應是具高度選擇性的,對摻雜複晶矽的蝕刻 速率比未摻雜複晶矽快得多,故該蝕刻反應對HSG-Si光罩 的蝕刻速度較慢,而快速地鈾刻該摻雜複晶矽層直到裸露 出來。最常用的是以蝕刻法持續蝕刻,直到該罩幕完全去 除,如此一來使該摻雜複晶矽層有最高粗糙性而又不必在 蝕刻後對HSG-Si層作摻雜。比較表面粗糙性而言,以 HSG-Si層作爲罩幕來蝕刻複晶矽層的效果比以HSG-Si沈 積在複晶政表面的效果爲佳,且作爲DRAM記憶體電容器之 8 (請先閎讀背面之注意事項再填寫本頁)C This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 public 043 ltwf.doc / 002 A7 B7 Employee Consumers of the Central Sample Bureau of the Ministry of Economic Affairs. Printed by the fee cooperative. V. Description of invention u) The capacitor contains hemispherical silicon crystals The lower electrode composed of the granular layer. Figures 2-4 are the etching process according to the preferred embodiment of the present invention. Figures 5-6 are optical micrographs of the surface of the HSG-Si layer before etching according to the preferred embodiment of the present invention. Figures 7-8 are photomicrographs of preferred embodiments formed in accordance with the present invention. Figure 9 is a model for calculating the increased surface area of this preferred embodiment according to the present invention. Fig. 10 is a graph showing the effect of changing the values of d / D and h / D on the surface area gain according to the present invention. According to a preferred embodiment of the present invention, the memory capacitor of the DRAM includes: a silicon substrate; a doped polycrystalline silicon layer is formed on the silicon substrate, and a semi-spherical granular polycrystal is formed on the polycrystalline silicon layer The silicon layer serves as a mask for engraving the doped polycrystalline silicon layer to form a high-specific growth surface on the silicon substrate. Generally, the polycrystalline silicon layer is doped with impurities, while the HSG-Si layer is undoped; the reaction of etching is highly selective, and the etching rate of doped polycrystalline silicon is higher than that of undoped polycrystalline silicon It is much faster, so the etching rate of the HSG-Si photomask is slower, and the doped polysilicon layer is etched by uranium quickly until it is exposed. The most common method is to continue etching with the etching method until the mask is completely removed, so that the doped polycrystalline silicon layer has the highest roughness without doping the HSG-Si layer after etching. Compared with the surface roughness, the effect of etching the polycrystalline silicon layer with the HSG-Si layer as the mask is better than the effect of depositing HSG-Si on the surface of the polycrystalline silicon, and it is used as the DRAM memory capacitor 8 (please first (Read the notes on the back and fill out this page)

X 裝---- 訂 -C! 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 3136U, 1 twf.doc/002 A7 B7 經濟部中央樣準局員工消費合作社印製 五、發明説明(Ί ) 下層電極時,有較大的電容量。 値得注意的是,以往作爲電容器電極之HSG-Si,其處 理過程是將沈積於複晶矽層上的HSG-Si層,用以HBr爲反 應離子的蝕刻法蝕刻,該蝕刻法持續進行直到完全將該 HSG-Si層除去。並可在該複晶矽層表面得到如以HSG-Si 沈積的表面結構。以HBr爲主的反應性蝕刻離子,其蝕刻 該複晶矽層的速度與去除該HSG-S!層一樣,故於該複晶矽 層所形成的特向成長表面,其結構也不過是像HSG-Si結構 於該複晶矽層再生而已。故以HBr來蝕刻該HSG-Si複晶矽 結構與以HSG-Si沈積於複晶矽表面作爲電容器之電極,所 增加的電容量是一樣的。 比較之下,本較佳實施例同樣以一未摻雜的HSG-Si 層作爲複晶矽層之罩幕,但改以含有氯離子的選擇性蝕刻 法來蝕刻之;該蝕刻法對該摻雜的複晶矽之蝕刻速度比該 未摻雜的複晶矽快,故應用到本較佳實施例的HSG-Si/複 晶的蝕刻時,蝕刻該複晶矽的速度將比去除該HSG-Si層的 速度快,在複晶砂層裸露出來後,在同一時間內該複晶砂 層的鈾刻深度比該HSG-Si層大。假如鈾刻過程持續到該 HSG-Si完全被除去,該摻雜複晶矽層的表面將會得到許多 不規則排列的圓椎體,該些切掉頂端的圓椎體高度比原先 所沈積的HSG-Si層大得多。雖然些許摻雜的HSG-Si層也 可作爲罩幕,但沈積該摻雜複晶矽的困難是可想而知的, 故本發明還是使用未摻雜複晶矽層。 第2-4圖是應用於如圖1所示DRAM的電容器的流程 9 (請先閱讀背面之注意事項再填寫本頁) if 裝---- 、1Tm I I— 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 043 ltwf.doc/0 02 五 經濟部中央橾準局員工消費合作社印製 A7 B7 發明説明(?) 圖。首先,請看第2圖,以LPCVD法,在含有矽烷氣及含 磷氣體,在620 °C沈積一高度摻雜之N型複晶矽層40,或 以LPCVD法在含有矽烷氣,溫度62(TC環境下於矽底材二 氧化砂層上(未畫出)沈積一複晶砍層40,該複晶砍層40 可以磷離子作離子佈植而形成一高度摻雜的N型複晶矽, 並接著在溫度800〜1100 °C時退火10秒至30分使離子藉 熱散均勻分佈;該複晶矽層40再經光學微影及鈾刻後將構 成電容器下層電極主要部份。接著,在該40上沈積一 HSG-Si層42 ;該HSG-S!層42在沈積前最好先淸洗該複晶 矽層40表面,因該40經離子佈値、退火、熱擴散等過程 表面易有原生氧化物生成,會影響HSG-Si的沈積效率,除 非是該40 —直保存在高真空環境下或是該40經處理後立 刻作HSG-S〗的沈積。原生氧化物可以用氟化氫浸漬、氟化 氫濕蝕刻、氣相氟化氫淸洗或氫氣電漿淸洗法等除去,該 矽層40表面最好在淸洗操作時被氫化,以免因淸洗過程中 的氧化還原反應使得該矽層表面受到損壞。 該HSG-Si層42的沈積條件,如已知的HSG-Si生長方 法,於溫度570 U85 °C,含矽烷氣環境下以LPCVD法沈 積在該複晶矽層40上,形成一不規則表面,如圖2所示; 由於HSG-Si結晶時的不規則成長性質,有一些未被HSG-Si所覆蓋的區域裸露出來,如圖2指的44位置。 其次,該HSG-Si/複晶矽結構以選擇性蝕刻法蝕刻 之,本實施例採用 Applied Materials Corporation 的 P5000型磁場加強反應性離子蝕刻儀(magnet 1 cal ly 10 請 先 閱 讀 背: 意 事 項 I 訂 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) 043 ltwf.doc/002 A7 B7 五、發明説明(q ) enhanced reactive ion etcher),該蝕刻氣體是氯氣及 溴化氫,氯氣/溴化氫的比値是70sccm/30sccm,總壓力是 60mTQrr,輸入能量是300W ;在上述的蝕刻條件下,飩刻 摻雜複晶矽的速度約爲蝕刻無摻雜的HSG-Si層的2倍。 接著,請看第3圖,經過一段時間後,該HSG-Si層42 開始被蝕刻,同時該未被HSG-Si層覆蓋而曝露的複晶矽區 域44也被蝕刻而形成一凹陷46 ;該HSG-Si層42及該凹 陷46的蝕刻持續進行,以使更多的複晶矽層曝露出來,並 使該凹陷46 ΐ深。 — 再看到第4圖,該蝕刻持續進行直到完全除去該 HSG-Si層,並在該複晶矽層42留下特向成長的圓椎體結 構表面。 .第5〜8圖是根據本發明的較佳實施例的掃描電子顯微 照片。第5圖是如第2圖所示的HSG-Si層42,在蝕刻前 的掃描電子顯微正視照片,從第5圖可以看到HSG-Si沈積 於大部份的複晶矽層上,並有如第2圖所指的曝露區44。 第6圖是該HSG-Si層42的掃描電子顯微透視照片,從該 圖中可以看到該HSG-Si層的表面起伏不平。第7及8圖則 是蝕刻後的複晶矽層的正視及透視照片;其中該HSG-Si 層已被完全除去,也就是圖4所示蝕刻較晚期的結構。比 較第7、8圖及第5、6圖所示,依據本發明的蝕刻法來 作電容器的電極可增加3〜5倍表面積,而第5~6圖的結構 只能增加最多2倍。 '如在第7及第8圖所示,該鈾刻後的複晶矽表面包含 1 1 本紙張又度適用中國國家橾準(cm ) A4規格(210X297公釐〉 (請先閲讀背面之注意事項再填寫本頁) —^裝------訂------ 經濟部中央標準局員工消費合作社印製 wf.doc/002 A 7 B7 五、發明説明() 圓椎體及切掉頂端的圓柱體排列,該些表面結構的現想形 狀如第9圖所不,其表面積是該些圓椎體及切掉頂端的圓 椎體排列的面積和,與原先平坦區域的表面積作比較即可 知的增加的面積;表面積之增益以下列式子表示: nd 變數d在此關係式代表用來作光罩的HSG-Si晶粒尺寸,D 是指HSG-Si的晶粒尺寸及特一蝕刻系統所用的選擇性比 値,而h則指蝕刻過程的滯留時間及該蝕刻的選擇性。 第10圖示的是以上述的表面積增益關係式中的2個比 値d/D與h/D對面積增益所作出的關係圖,由該關係圖可 看出,藉由調整d/D與h/D比値,可得到最大面積增益。 除此之外,增加該HSG-Si層及下層的該摻雜複晶矽間 的蝕刻選擇性可藉在該HSG-Si層表面及該複晶矽層表面 各形成一原生氧化層而改善;只要將如圖2所示的結構在 蝕刻前曝露於大氣中,即可在該HSG-Si層晶粒之側面及複 晶矽層表面分別長出厚度約爲120A及20A的原生氧化 層,該原生氧化物在氯氣/溴化氫環境下,餓刻速度慢, 故後續的複晶矽鈾刻便有該原生氧化及該HSG-Si層2個罩 幕,更提高蝕刻HSG-Si複晶矽時的選擇性。 最後,於如第7及第8圖所示的結構表面通常使用摻 雜N型複晶矽,如此一來在該特向成長複晶矽層及該第二 12 (諳先閲讀背面之注意事項再填寫本頁) ____f —ς 經濟部中央標準局員工消費合作社印製 木紙張尺度速用中國國家橾隼(CNS ) Μ規格(2iOX297公釐) 043 ltwf.doc/002 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(丨丨) 導電材料層間就成爲一高電容組。該介電層厚度比該特向 成長表面薄是我們想要的。如在第7圖及第8圖所示的 HSG- Si結構厚度約爲lOOnrn ’而該介電層厚度最好少於 15nra ;而且該介電層最好有高介電常數。一合適厚度的介 電層可藉CVD法沈積一氮化矽層於該HSG-Si層表面,然後 該氮化矽層表面生成一薄氧化層而形成;通常,會有一氮 氧層形成於一氧化層(如特向成長複晶矽層表面的原生氧 化層)上,而形成一實際爲氧化矽/氮化矽/氧化矽(0N0)結 構的介電層;根據Rosato等人發表於了 .Electronchem. Soc. 期刊 Vol· 139( 12)第 3678-82 頁(Dec. 1992),“Ultra-High Capacitance Nitride Films Utilizing Surface Passivation on Rugged P◦丨ysilicon”一文中提到,像這 種“ΟΝΟ”的結構.,其厚度大約爲20nm,在Rosato的該文獻 中係教導關於沈積一 CVD氮化層之前,在粗糙複晶矽及原 生氧化保護層表面形成0N0介電層。除了氮化矽外,氧化 钽或其他具高介電常數的材料也可作爲該介電薄層。 雖然此處已介紹形成該特向成長多晶砂表面的方 法,用以應用於如圖1所示的DRAM記憶體電容器中,但依 據本發明所形成的特向成長複晶矽,可應用於其他構造, 如在電子可抹式可程式記憶體(EE0PR0M)或快閃記憶體 (flash memory)中浮接閘極(floating gate)表面。利用 特向成長複晶矽表面以及介於複晶矽浮接閘極與在0N0介 電層之上的金屬複晶矽化物(polycide),控制閘極的0Ν0 介電薄層,比起傳統的快閃記憶元件,更明顯地促進該浮 13 (請先閲讀背面之注意事項再填寫本頁) 裝-- I訂X Pack ---- Order-C! This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 3136U, 1 twf.doc / 002 A7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards, Ministry of Economic Affairs DESCRIPTION OF THE INVENTION (Ί) The lower electrode has a larger capacitance. It is worth noting that in the past, the treatment process of HSG-Si, which was used as a capacitor electrode, was to etch the HSG-Si layer deposited on the polycrystalline silicon layer by an etching method using HBr as a reactive ion, and the etching method continued until The HSG-Si layer was completely removed. A surface structure such as HSG-Si deposition can be obtained on the surface of the polycrystalline silicon layer. The reactive etching ions dominated by HBr, the etching speed of the polycrystalline silicon layer is the same as the removal of the HSG-S! Layer, so the structure of the special growth surface formed by the polycrystalline silicon layer is nothing but The HSG-Si structure is regenerated from the polycrystalline silicon layer. Therefore, using HBr to etch the HSG-Si polycrystalline silicon structure and depositing HSG-Si on the surface of the polycrystalline silicon as the electrode of the capacitor, the added capacitance is the same. In contrast, this preferred embodiment also uses an undoped HSG-Si layer as the mask of the polycrystalline silicon layer, but instead uses a selective etching method containing chloride ions to etch it; The etching speed of the complex polycrystalline silicon is faster than that of the undoped polycrystalline silicon, so when applied to the etching of the HSG-Si / polycrystalline of the preferred embodiment, the etching speed of the polycrystalline silicon will be faster than that of removing the HSG -The speed of the Si layer is fast. After the polycrystalline sand layer is exposed, the depth of the uranium engraving of the polycrystalline sand layer is greater than that of the HSG-Si layer at the same time. If the uranium engraving process continues until the HSG-Si is completely removed, the surface of the doped polycrystalline silicon layer will get a lot of irregularly arranged conical bodies. The height of the conical bodies cut off the top is higher than the original deposition The HSG-Si layer is much larger. Although a slightly doped HSG-Si layer can also be used as a mask, the difficulty of depositing the doped polycrystalline silicon is conceivable, so the present invention still uses an undoped polycrystalline silicon layer. Figure 2-4 is the flow of the capacitor used in the DRAM shown in Figure 1 9 (please read the precautions on the back before filling in this page) if installed ----, 1Tm II-This paper standard is applicable to Chinese national standards ( CNS) A4 specification (210X297mm) 043 ltwf.doc / 0 02 The A7 B7 invention description (?) Picture printed by the Consumer Cooperative of Central Central Bureau of Economics and Trade of the Ministry of Economic Affairs. First of all, please see Figure 2. Deposit a highly doped N-type polycrystalline silicon layer 40 at 620 ° C in LPCVD method with silane gas and phosphorous-containing gas, or in LPCVD method with silane gas at temperature 62 (In the TC environment, a polycrystalline cutting layer 40 is deposited on the silicon dioxide dioxide layer (not shown) of the silicon substrate. The polycrystalline cutting layer 40 can be implanted with phosphorus ions to form a highly doped N-type polycrystalline silicon , And then annealed at a temperature of 800 ~ 1100 ° C for 10 seconds to 30 minutes to make the ions uniformly distributed by heat dissipation; the polycrystalline silicon layer 40 will be the main part of the lower electrode of the capacitor after optical lithography and uranium engraving. , Depositing an HSG-Si layer 42 on the 40; the HSG-S! Layer 42 is preferably washed first before the deposition of the surface of the polycrystalline silicon layer 40, because the 40 by ion distribution, annealing, thermal diffusion and other processes The surface is susceptible to the formation of native oxides, which will affect the deposition efficiency of HSG-Si, unless the 40 is stored in a high vacuum environment or the 40 is processed for HSG-S deposition immediately. The native oxide can be used Hydrogen fluoride impregnation, hydrogen fluoride wet etching, gas phase hydrogen fluoride scrubbing or hydrogen plasma scrubbing, etc., the silicon layer 4 0 surface is preferably hydrogenated during the washing operation, so as not to damage the surface of the silicon layer due to the redox reaction during the washing process. The deposition conditions of the HSG-Si layer 42, such as the known HSG-Si growth method, Deposited on the polycrystalline silicon layer 40 by LPCVD at a temperature of 570 U85 ° C and an atmosphere containing silane, forming an irregular surface, as shown in FIG. 2; due to the irregular growth properties of HSG-Si during crystallization, there are Some areas not covered by HSG-Si are exposed, as shown at the 44 position in Figure 2. Secondly, the HSG-Si / polycrystalline silicon structure is etched by selective etching. In this embodiment, the P5000 type of Applied Materials Corporation is used. Magnetic field-enhanced reactive ion etcher (magnet 1 cal ly 10, please read the back first: Notice I The specifications of this paper are applicable to China National Standard (CNS) A4 specification (210X297mm) 043 ltwf.doc / 002 A7 B7 V. Description of the invention (q) enhanced reactive ion etcher), the etching gas is chlorine gas and hydrogen bromide, the ratio of chlorine gas / hydrogen bromide is 70sccm / 30sccm, the total pressure is 60mTQrr, the input energy is 300W; under the above etching conditions , Engraved The rate of doping polycrystalline silicon is about twice that of etching the undoped HSG-Si layer. Next, please see Figure 3, after a period of time, the HSG-Si layer 42 begins to be etched, and the non-HSG -The Si layer covered and the exposed polycrystalline silicon region 44 is also etched to form a recess 46; the etching of the HSG-Si layer 42 and the recess 46 is continued to expose more polycrystalline silicon layer and make The depression is 46 l deep. — Referring again to Fig. 4, the etching is continued until the HSG-Si layer is completely removed, and a specially grown conical structure surface is left on the polycrystalline silicon layer 42. Figures 5 to 8 are scanning electron micrographs according to preferred embodiments of the present invention. Figure 5 is the scanning electron micrograph front view of the HSG-Si layer 42 as shown in Figure 2. From Figure 5, it can be seen that HSG-Si is deposited on most of the polycrystalline silicon layer. And there is an exposed area 44 as indicated in FIG. 2. Fig. 6 is a scanning electron microscopy photograph of the HSG-Si layer 42. From this figure, it can be seen that the surface of the HSG-Si layer is uneven. Figures 7 and 8 are front and perspective photographs of the etched polycrystalline silicon layer; the HSG-Si layer has been completely removed, which is the structure of the later etching shown in Figure 4. Comparing Figures 7 and 8 and Figures 5 and 6, the etching method according to the present invention can increase the surface area of the capacitor by 3 to 5 times, while the structure of Figures 5 to 6 can only be increased by a maximum of 2 times. 'As shown in Figures 7 and 8, the surface of the polycrystalline silicon engraved by the uranium contains 1 1 piece of paper and is also applicable to the Chinese National Standard (cm) A4 specification (210X297mm) (please read the notes on the back first Please fill in this page for details) — ^ installed ------ ordered ------ printed by wf.doc / 002 A 7 B7 printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of invention () Conical body and The arrangement of the cylinders with the apex cut off is shown in Figure 9. The surface area is the sum of the area of the arrangement of the conical vertebrae and the apex with the apex cut off, and the surface area of the original flat area The increase in area can be known by comparison; the gain of the surface area is expressed by the following formula: nd The variable d here represents the grain size of the HSG-Si used as a mask, and D refers to the grain size of HSG-Si and The selectivity ratio used in the special etching system, and h refers to the residence time of the etching process and the selectivity of the etching. Figure 10 shows the two ratios d / D and The relationship between h / D and area gain can be seen from the relationship. By adjusting the ratio of d / D to h / D, To the maximum area gain. In addition, increasing the etch selectivity between the HSG-Si layer and the underlying doped polycrystalline silicon can form a native on the surface of the HSG-Si layer and the surface of the polycrystalline silicon layer The oxide layer is improved; as long as the structure shown in Figure 2 is exposed to the atmosphere before etching, the sides of the HSG-Si layer grains and the surface of the polycrystalline silicon layer can grow to a thickness of about 120A and 20A, respectively Primary oxide layer, the primary oxide is slow to etch in the environment of chlorine / hydrogen bromide, so the subsequent polycrystalline silicon uranium etching will have two masks of the primary oxidation and the HSG-Si layer, which will improve the etching of HSG -Selectivity in Si polycrystalline silicon. Finally, doped N-type polycrystalline silicon is usually used on the surface of the structure as shown in Figures 7 and 8, so that the polycrystalline silicon layer and the first 2.12 (keep reading the precautions on the back and then fill out this page) ____f — ς speed of the wooden paper standard printed by the China National Standards Falcon (CNS) M standard (2iOX297mm) 043 ltwf. doc / 002 A7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs (丨 丨) The conductive material layer becomes a high capacitance group. The thickness of the dielectric layer is thinner than the special growth surface is what we want. As shown in Figures 7 and 8, the thickness of the HSG-Si structure is about It is 100nrn 'and the thickness of the dielectric layer is preferably less than 15nra; and the dielectric layer preferably has a high dielectric constant. A suitable thickness of the dielectric layer can be deposited a silicon nitride layer on the HSG-Si by CVD method A thin oxide layer is formed on the surface of the silicon nitride layer; usually, an oxynitride layer is formed on an oxide layer (such as a native oxide layer on the surface of a polycrystalline silicon layer) to form a It is actually a dielectric layer of silicon oxide / silicon nitride / silicon oxide (0N0) structure; published by Rosato et al. In Electronchem. Soc. Journal Vol. 139 (12) pages 3678-82 (Dec. 1992), As mentioned in the article "Ultra-High Capacitance Nitride Films Utilizing Surface Passivation on Rugged P◦ 丨 ysilicon", a structure like this "ΟΝΟ" has a thickness of about 20 nm. In this document, Rosato teaches about the deposition of a CVD Before the nitride layer, the rough polycrystalline silicon and primary oxygen An ONO dielectric layer is formed on the surface of the protective layer. In addition to silicon nitride, tantalum oxide or other materials with high dielectric constants can also be used as the thin dielectric layer. Although the method of forming the surface of the special growth polycrystalline sand has been introduced here for application to the DRAM memory capacitor shown in FIG. 1, the special growth polycrystalline silicon formed according to the present invention can be applied Other structures, such as floating gate surfaces in electronically erasable programmable memory (EEOPROM) or flash memory (flash memory). Using a specially grown polycrystalline silicon surface and a metal polycide between the polycrystalline silicon floating gate and the 0N0 dielectric layer to control the gate of the 0N0 dielectric thin layer, compared to the traditional Flash memory components, which more obviously promote the float 13 (please read the precautions on the back before filling out this page)

1C 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ 297公釐) 〇43 1 twf.doc/〇〇2 A7 經濟部中央標準局員工消費合作社印製 B7 -----" --—--* 五、發明说明(丨1) 接閘極與控制閘間的耦接。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍內,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者爲準。 適 ^ 尺 張 紙 一本 -準 一標 規 一釐 公 (請先閲讀背面之注意事項再填寫本頁) if 裝--- 丨C:1C The standard of this paper is in accordance with Chinese National Standard (CNS) Α4 specification (210Χ 297 mm). 〇43 1 twf.doc / 〇〇2 A7 Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs B7 ----- "- —- * 5. Description of the invention (丨 1) The coupling between the gate and the control gate. Although the present invention has been disclosed as above in a preferred embodiment, it is not intended to limit the present invention. Anyone who is familiar with this skill can make some changes and modifications within the spirit and scope of the present invention. The scope of protection of an invention shall be deemed as defined by the scope of the attached patent application. Appropriate ^ size sheets of paper-one standard, one standard, one centimeter (please read the precautions on the back before filling this page) if installed --- 丨 C:

Claims (1)

A BCD f.doc/002 六、申請專利範圍 1. 一種製造半導體元件的方法,包括下列步驟: 提供一摻雜的複晶矽層於一矽基底上; (請先閱讀背面之注意事項再填寫本頁) 提供一半球型粒狀複晶矽層於該摻雜的複晶矽層 上,半球型粒狀複晶矽層之厚度比該摻雜複晶矽層薄; /選擇性鈾刻該半球型粒狀複晶矽層,該蝕刻法對摻雜 複晶矽層之蝕刻速率比對無摻雜的複晶矽層快;以及 選擇性蝕刻到摻雜複晶矽層內,蝕刻深度至少要等於 半球型粒狀複晶矽層之厚度。 2. 如申請專利範圍第1項所述之方法,其中該鈾刻半 球型複晶矽i之步驟,完全或部份去除該半球型粒狀複晶 石夕層。 3. 如申請專利範圍第2項所述之方法,其中是以含氯 離子氣體作選擇性鈾刻。 4. 如申請專利範圍第1項所述之方法,其中是以含氯 離子的電漿來作選擇性蝕刻。 5. 如申請專利範圍第4項所述之方法,其中該半球型 粒狀複晶矽層是未摻雜的。 經濟部中央標準局員工消費合作社印製 6. 如申請專利範圍第5項所述之方法,其中該半球型 粒狀複晶矽層是以低壓化學氣相沈積法在溫度低於600 °C 時沈積於該摻雜的複晶矽層上。 7. 如申請專利範圍第2項所述之方法,更包括下列步 驟: 形成一個介電層於該被蝕刻的摻雜複晶矽層上; 形成一第二摻雜複晶矽屬於該介電層上;以及 1 5 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公嫠) 043 Itwf.doc/002 A8 B8 C8 D8 六、申請專利範圍 定義該第二摻雜複晶矽層的圖案,以作爲電容器之上 層電極。 8.如專利範圍第1項所述之方法,其中更包括在該半 球型粒狀複晶矽層鈾刻前先長一原生氧化層於該半球型 粒狀複晶矽層上的步驟。 、 •V '9.一種半導體元件的製造方法,包括下列步驟: 提供一摻雜的複晶矽層於一矽基底上; 提供一半球型粒狀複晶矽層於該摻雜的複晶矽層 上,該半球型複晶矽層之厚度比該摻雜的複晶矽層薄; 以含有氯離子的電漿鈾刻該半球型粒狀複晶矽層;以 及 以蝕刻電漿鈾刻到該摻雜複晶矽層內· 10. 如申請專利範圍第9項所述之方法,其中該蝕刻電 漿之氣體是氯氣及溴化氫所形成。 11. 如申請專利範圍第9項所述之方法,其中該蝕刻半 球型粒狀複晶矽之步驟,完全或部份去除該半球型粒狀複 晶矽層。 〜12.如申請專利範圍第9項所述之方法,更包括下列步 驟: 形成一介電層於該被鈾刻的摻雜複晶矽層上; 形成一第二摻雜複晶矽層於該介電層上;以及 定義該第二摻複晶砍層的圖案’以作爲電谷器的上層 電極。 13.如申請專利範圍第Π項所述之方法’其中更包括 » 16 本紙張尺度逍用中國國家標準(CNS ) A4規格(210X29?公釐) (請先閱讀背面之注意事項再填寫本頁) •裝. 、ΤΓ 络 經濟部中央搮準局員工消費合作社印裝 〇431twf.doc/〇〇2 A8 B8 C8 D8 六、申請專利範園 在該半球型粒狀複晶矽層飩刻前先長一原生氧化層於該 半球型粒狀複晶矽層上的步驟。 14. 如申請專利範圍第9項所述之方法,其中該提供一 摻雜複晶矽之步驟中,包括一鈾刻該摻質複晶矽層到其側 面過程,以形成一電極結構之區域。 15. 如申請專利範圍第14項所述之方法,其中該半球 形粒狀複晶矽層是以低壓化學氣相沈積法所形成。 16. 如申請專利範圍第15項所述之方法,其中該半球 型粒狀複晶矽層之沈積溫度約在570 °C〜585 °C。 Π·如申請專利範圍第9項所述之方法,其中該半球型 粒狀複晶矽層之顆粒大小約爲1000A或更小。 18.如申請專利範圍第9項所述之方法,其中在蝕刻之 後該摻雜複晶矽層之表面積爲未蝕刻前之約3〜5倍。 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印裝 17 本紙張尺度適用中國國家標準(CNS ) A4规格(210 X 297公釐)A BCD f.doc / 002 6. Patent application 1. A method of manufacturing semiconductor devices, including the following steps: Provide a doped polycrystalline silicon layer on a silicon substrate; (Please read the notes on the back before filling in This page) provides a semi-spherical granular polycrystalline silicon layer on the doped polycrystalline silicon layer, the thickness of the hemispherical granular polycrystalline silicon layer is thinner than the doped polycrystalline silicon layer; Hemispherical granular polycrystalline silicon layer. This etching method etches the doped polycrystalline silicon layer faster than the undoped polycrystalline silicon layer; and selectively etch into the doped polycrystalline silicon layer with an etching depth of at least It must be equal to the thickness of the hemispherical granular polycrystalline silicon layer. 2. The method as described in item 1 of the scope of the patent application, wherein the step of engraving the uranium hemispherical polycrystalline silicon i completely or partially removes the hemispherical granular polycrystalline silicon layer. 3. The method as described in item 2 of the patent application scope, in which chloride ion-containing gas is used for selective uranium engraving. 4. The method as described in item 1 of the patent application scope, in which plasma containing chloride ions is used for selective etching. 5. The method as described in item 4 of the patent application scope, wherein the hemispherical granular polycrystalline silicon layer is undoped. Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 6. The method as described in item 5 of the patent application, wherein the hemispherical granular polycrystalline silicon layer is a low-pressure chemical vapor deposition method at a temperature below 600 ° C Deposited on the doped polycrystalline silicon layer. 7. The method as described in item 2 of the scope of the patent application further includes the following steps: forming a dielectric layer on the etched doped polycrystalline silicon layer; forming a second doped polycrystalline silicon belonging to the dielectric On the layer; and 1 5 paper scales are applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 gong) 043 Itwf.doc / 002 A8 B8 C8 D8 VI. The scope of patent application defines the second doped polycrystalline silicon layer Pattern to serve as the upper electrode of the capacitor. 8. The method as described in item 1 of the patent scope, further comprising the step of growing a native oxide layer on the hemispherical granular polycrystalline silicon layer before the uranium engraving of the hemispherical granular polycrystalline silicon layer. , • V '9. A method of manufacturing a semiconductor device, comprising the following steps: providing a doped polycrystalline silicon layer on a silicon substrate; providing a semi-spherical granular polycrystalline silicon layer on the doped polycrystalline silicon On the layer, the thickness of the hemispherical polycrystalline silicon layer is thinner than that of the doped polycrystalline silicon layer; the hemispherical granular polycrystalline silicon layer is engraved with plasma uranium containing chloride ions; and the etching plasma uranium is engraved to In the doped polycrystalline silicon layer 10. The method as described in item 9 of the patent application range, wherein the plasma etching gas is formed by chlorine gas and hydrogen bromide. 11. The method as described in item 9 of the patent application range, wherein the step of etching the hemispherical granular polycrystalline silicon completely or partially removes the hemispherical granular polycrystalline silicon layer. ~ 12. The method as described in item 9 of the patent application scope, further comprising the following steps: forming a dielectric layer on the doped polycrystalline silicon layer etched by uranium; forming a second doped polycrystalline silicon layer on On the dielectric layer; and the pattern defining the second poly-doped dicing layer to serve as the upper electrode of the valley device. 13. The method as described in item Π of the scope of patent application 'which also includes »16 Chinese paper standards for Chinese standard (CNS) A4 specifications (210X29? Mm) (please read the precautions on the back before filling this page ) • Installed. ΤΓ Network Printed and Printed by the Employee Consumer Cooperative of the Central Bureau of Economic Affairs of the Ministry of Economy 〇431twf.doc / 〇〇2 A8 B8 C8 D8 6. Apply for a patent Fan Yuan before the engraving of the hemispherical granular polycrystalline silicon layer The step of growing a native oxide layer on the hemispherical granular polycrystalline silicon layer. 14. The method as described in item 9 of the patent application scope, wherein the step of providing a doped polycrystalline silicon includes a process of etching the doped polycrystalline silicon layer to the side thereof with uranium to form an electrode structure region . 15. The method as described in item 14 of the patent application range, wherein the hemispherical granular polycrystalline silicon layer is formed by a low-pressure chemical vapor deposition method. 16. The method as described in item 15 of the patent application scope, wherein the deposition temperature of the hemispherical granular polycrystalline silicon layer is about 570 ° C to 585 ° C. Π. The method as described in item 9 of the patent application range, wherein the particle size of the hemispherical granular polycrystalline silicon layer is about 1000 A or less. 18. The method as described in item 9 of the patent application range, wherein the surface area of the doped polycrystalline silicon layer after etching is about 3 to 5 times that before unetching. (Please read the precautions on the back before filling out this page) Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 17 This paper standard is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm)
TW85109702A 1996-08-09 1996-08-09 Structure with increased capacitance and process thereof TW313691B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW85109702A TW313691B (en) 1996-08-09 1996-08-09 Structure with increased capacitance and process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW85109702A TW313691B (en) 1996-08-09 1996-08-09 Structure with increased capacitance and process thereof

Publications (1)

Publication Number Publication Date
TW313691B true TW313691B (en) 1997-08-21

Family

ID=51566602

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85109702A TW313691B (en) 1996-08-09 1996-08-09 Structure with increased capacitance and process thereof

Country Status (1)

Country Link
TW (1) TW313691B (en)

Similar Documents

Publication Publication Date Title
JP2501065B2 (en) Method for manufacturing highly integrated semiconductor device having high volume capacitor
US5837580A (en) Method to form hemi-spherical grain (HSG) silicon
JPH0669419A (en) Micromask
JPH06163853A (en) Manufacture of capacitor of semiconductor device
JPH0821696B2 (en) Semiconductor device capacitor and method of manufacturing the same
US6153466A (en) Method for increasing capacitance
TW457707B (en) Method for forming a crown capacitor having HSG for DRAM memory
US5798280A (en) Process for doping hemispherical grain silicon
US6121081A (en) Method to form hemi-spherical grain (HSG) silicon
TW313691B (en) Structure with increased capacitance and process thereof
US6013555A (en) Process for rounding an intersection between an HSG-SI grain and a polysilicon layer
CN1057639C (en) Method for manufacturing semiconductor element
TW383500B (en) Manufacturing method for lower electrode of capacitor using hemisphere grain polysilicon
TW387141B (en) A manufacturing method for the capacitor of dynamic random access memory
TW442833B (en) Method for reducing capacitance depletion during hemispherical grain polysilicon synthesis for DRAM
TW382792B (en) Method and structure for making bottom electrode of capacitor
TW399235B (en) Selective semi-sphere silicon grain manufacturing method
TW396546B (en) The structure and manufacturing method of the capacitor's bottom plate
TW313679B (en) Method of increasing capacitance
TW388988B (en) Structure of bottom electrode for capacitor and method for producing the same
TW475207B (en) Method to improve hump phenomenon on surface of doped polysilicon layer
TW315524B (en) Dynamic random access memory cell with roughened polysilicon electrode
TW396500B (en) In-situ doped rough polysilicon storage cell structure formed using gas phase nucleation
TW427015B (en) Structure and manufacturing method of stacked-type capacitors
TW386308B (en) Method of producing capacitor structure of DRAM device