TW508804B - Integrated circuit capacitors having improved electrode and dielectric layer characteristics - Google Patents

Integrated circuit capacitors having improved electrode and dielectric layer characteristics Download PDF

Info

Publication number
TW508804B
TW508804B TW90128278A TW90128278A TW508804B TW 508804 B TW508804 B TW 508804B TW 90128278 A TW90128278 A TW 90128278A TW 90128278 A TW90128278 A TW 90128278A TW 508804 B TW508804 B TW 508804B
Authority
TW
Taiwan
Prior art keywords
layer
hsg
capacitor
diffusion barrier
silicon
Prior art date
Application number
TW90128278A
Other languages
Chinese (zh)
Inventor
Young-Sun Kim
Seok-Jun Won
Young-Min Kim
Kyung-Hoon Kim
Kab-Jin Nam
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019970023381A external-priority patent/KR100234417B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Application granted granted Critical
Publication of TW508804B publication Critical patent/TW508804B/en

Links

Abstract

Methods of forming Integrated circuit capacitors include the steps of forming a lower electrode of a capacitor by forming a conductive layer pattern (e.g., silicon layer) on a semiconductor substrate and then forming a hemispherical grain (HSG) silicon surface layer of first conductivity type on the conductive layer pattern. The inclusion of a HSG silicon surface layer on an outer surface of the conductive layer pattern increases the effective surface area of the lower electrode for a given lateral dimension. The HSG silicon surface layer is also preferably sufficiently doped with first conductivity type dopants (e.g., N-type) to minimize the size of any depletion layer which may be formed in the lower electrode when the capacitor is reverse biased and thereby improve the capacitor's characteristic Cmin/Cmax ratio. A diffusion barrier layer (e.g., silicon nitride) is also formed on the lower electrode and then a dielectric layer is formed on the diffusion barrier layer. The diffusion barrier layer is preferably made of a material of sufficient thickness to prevent reaction between the dielectric layer and the lower electrode and also prevent out-diffusion of dopants from the HSG silicon surface layer to the dielectric layer. The dielectric layer is also preferably formed of a material having high dielectric strength to increase capacitance.

Description

508804 A7 B7 五、發明説明(1 .) 發明範圍 本發明與形成積體電路的方法及藉此方法所成的電路有 關,特別與形成積體電路電容器的方法及藉此方法所成的 電容器有關。 發明背景 高電容半導體記憶體裝置的需求,迫使以更高水準的積 體電路技術來形成記憶體裝置與結構。不過,較高水準的 積體電路需要的記憶體裝置,其記憶體元件多半較小,必 須大幅降低其記憶體元件電容器(如DRAM)所佔空間。熟 悉本技術的人士都了解,降低其記憶體元件電容器所佔空 間會降低記憶體元件於低電壓時的性能,並且不利於α粒 子可校正錯誤率(SER)。 傳統增加記憶體元件所佔空間的方法包括:形成含有半 球形晶粒(HSG)矽面層的記憶體元件電極(像是儲存電 極)。比方說,美國專利文號5,407,534,受讓人Thakur的 專利申請,即詳述了於記憶體元件電容器成HSG矽面層的 傳統方法。不過,雖然具備HSG矽面層的電容器於高密度 積體電路具有較佳的電容量,HSG電容器較差的穩定性卻 可能降低積體電路記憶體裝置的使用壽命。研究指出,傳 統HSG電容器的電容,會隨著電容器電極的電壓極性而大 幅改變。特別是在HSG電容器的高、低電極於正、負值間 切換,並造成反向偏壓時(像是進行讀取、寫取操作時), 會產生電容落差的現象。比方說-,圖2顯示了傳統HSG電 容器於高、低電極時,其電容反應曲線。如圖所示,如果 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 508804 A7 . B7 五、發明説明(2 ) 電極的電位差為正值,可取得其最大電容(Cmax)。如果電 極的電位差為負值,則電容會逐漸下降。事實上,當電位 差為-1.5時,其電容最小(Cmin),灼為最大電容的55%。 發明摘要 本發明的其中一項目標,在於提供形成積體電路電容器 的方法及精此方法所成的.雷客器。 本發明的另一項目標,在於提供具備較大表面面積電極 的積體電路電容.器與藉此所形成之電容器。 本發明的另一項目標,在於提供形成於正、反向偏壓時 具有相同電容特性的積體電路電容器的方法,以及藉此方 法所形成的電容器。 本發明的另一項目標,在於提供形成具有改良長期穩定 性電容器的積體電路的方法,以及藉此方法形成之電容 器。 提供本發明的上述以及其他目標、優點、與裝置的方 法,包括了以下步騾:於半導體基片上形成導電層圖案 (像是矽層),以形成電容器的低電極;然後於導電層圖案 形成第一導電類型的半球形晶粒(HSG)矽面層。導電層圖 案表面的HSG矽面層,可以增加一定橫向其低電極的有效 表面面積。HSG矽面層最好是與第一導電類型(像是N -類 型)所用的摻雜金屬充份摻φ,以降低電容器反向偏壓 時,低電極可能形成的空乏層的大小,來改良電容器的 Cmin/Cmax比率。低電極還會形成擴散障礙層(像是氮化 珍),然後於擴散障礙層上形成介電層。擴散障礙層最好 -5- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 訂508804 A7 B7 V. Description of the invention (1.) Scope of the invention The present invention relates to a method of forming an integrated circuit and a circuit formed by the method, and particularly to a method of forming an integrated circuit capacitor and a capacitor formed by the method. . BACKGROUND OF THE INVENTION The demand for high-capacitance semiconductor memory devices is forcing higher-level integrated circuit technology to form memory devices and structures. However, the memory devices required by higher-level integrated circuits have smaller memory components, and the space occupied by their memory component capacitors (such as DRAM) must be greatly reduced. Those skilled in the art understand that reducing the space occupied by the capacitors of their memory elements reduces the performance of the memory elements at low voltages and is not conducive to the alpha-particle correctable error rate (SER). Traditional methods to increase the space occupied by memory elements include forming memory element electrodes (such as storage electrodes) that contain a hemispherical grain (HSG) silicon surface layer. For example, U.S. Patent No. 5,407,534, the patent application of the assignee Thakur, details the traditional method of forming a HSG silicon surface layer on a memory element capacitor. However, although capacitors with HSG silicon surface layers have better capacitance in high-density integrated circuits, the poor stability of HSG capacitors may reduce the life of integrated circuit memory devices. Studies have shown that the capacitance of traditional HSG capacitors varies greatly with the voltage polarity of the capacitor electrodes. In particular, when the high and low electrodes of the HSG capacitor are switched between positive and negative values, and a reverse bias is caused (such as when reading or writing is performed), a capacitance drop will occur. For example, Figure 2 shows the capacitance response curve of a conventional HSG capacitor when it is at high and low electrodes. As shown in the figure, if the size of this paper applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 508804 A7. B7 V. Description of the invention (2) The maximum potential difference of the electrode can be achieved. Capacitance (Cmax). If the potential difference of the electrodes is negative, the capacitance will gradually decrease. In fact, when the potential difference is -1.5, its capacitance is the smallest (Cmin), and it is 55% of the maximum capacitance. SUMMARY OF THE INVENTION One of the objectives of the present invention is to provide a method for forming an integrated circuit capacitor, and a lightning trap formed by the method. Another object of the present invention is to provide an integrated circuit capacitor having a large surface area electrode and a capacitor formed thereby. Another object of the present invention is to provide a method for forming an integrated circuit capacitor having the same capacitance characteristics under forward and reverse bias, and a capacitor formed by the method. Another object of the present invention is to provide a method for forming an integrated circuit having an improved long-term stability capacitor, and a capacitor formed by the method. A method for providing the above and other objectives, advantages, and devices of the present invention includes the following steps: forming a conductive layer pattern (such as a silicon layer) on a semiconductor substrate to form a low electrode of a capacitor; The first conductive type of hemispherical grain (HSG) silicon surface layer. The HSG silicon surface layer on the conductive layer pattern surface can increase the effective surface area of its low electrode to a certain extent. The HSG silicon surface layer is preferably doped with φ sufficiently with the doped metal used in the first conductivity type (such as N-type) to reduce the size of the empty layer that may be formed by the low electrode when the capacitor is reverse biased. Cmin / Cmax ratio of the capacitor. The lower electrode also forms a diffusion barrier layer (such as nitride), and then forms a dielectric layer on the diffusion barrier layer. Diffusion barrier is best -5- This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) binding

•線 508804 A7 B7 五、·發明説明(3 ) 以厚度足夠的材質製成,以避免介電層與低電極之間的反 應,並避免雜質自HSG矽面層向外擴散到介電層。介電層 的材質最好具備了高絕緣強度,以增加電容。 根據本發明的一個觀點,形成HSG矽面層的步騾包括以 下步騾:於導電層的上層表面插種矽籽晶體,然後將籽晶 體養成單晶體結晶。另外.,還需要將導電層圖案退火,然 後以磷化氫氣體的N -類型滲雜劑來摻雜HSG矽面層。您 最好於快升溫處理裝置(RTP)進行摻雜步騾,使HSG矽面 層具備的N -類型導電性能,超過延展於鄰近半導體基片 的導電層圖案的N -類型。較高的導電性能可使低電極於 電容器反向偏壓時,不會形成空乏層。擴散障礙層亦可以 用第一導電類型滲雜劑加以摻雜,以避免滲雜劑對介電層 外向擴散,進而降低了 HSG矽面層的導電性能。此外,擴 散障礙層的材質,亦可由快速升溫氮化(RTN)所形成的第 一氮化矽層以及化學汽化沉積(CVD)所形成的第二氮化矽 層的化合物所製成。介電層還可由氧化la等高絕緣材質所 製成。介電層的製成方式,最好是先形成數個氧化鋰薄 層,然後分別提鬲這些薄層的密度,以改良介電層的性 能,並強化以短化碎為材質的擴散障礙層。 附圖簡單說明 圖1 A的流程圖,顯示了根夢本發明實施例形成電容器 的方法之步驟。 圖1 B的剖面圖,顯示了根據圖·示1 A方法所形成的積體 電路裝置,該裝置具有半球形晶粒(HSG)電容器。 -6 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝• Wire 508804 A7 B7 V. Description of the invention (3) Made of a material with sufficient thickness to avoid the reaction between the dielectric layer and the low electrode and to prevent impurities from diffusing outward from the HSG silicon surface layer to the dielectric layer. The dielectric layer should preferably have a high dielectric strength to increase capacitance. According to an aspect of the present invention, the steps of forming the HSG silicon surface layer include the following steps: inserting a silicon seed crystal on the upper surface of the conductive layer, and then growing the seed crystal into a single crystal. In addition, it is necessary to anneal the conductive layer pattern, and then dope the HSG silicon surface layer with an N-type dopant of phosphine gas. You are best to perform a doping step in a rapid temperature rise processing device (RTP) so that the N-type conductivity of the HSG silicon surface layer exceeds the N-type conductivity of the conductive layer pattern extending adjacent to the semiconductor substrate. The higher conductivity allows the low electrode to form no empty layers when the capacitor is reverse biased. The diffusion barrier layer can also be doped with a first conductivity type dopant to prevent the dopant from diffusing outward to the dielectric layer, thereby reducing the conductive properties of the HSG silicon surface layer. In addition, the material of the diffusion barrier layer may be made of a compound of a first silicon nitride layer formed by rapid temperature nitriding (RTN) and a second silicon nitride layer formed by chemical vapor deposition (CVD). The dielectric layer can also be made of a highly insulating material such as oxide la. The manufacturing method of the dielectric layer is preferably to form several lithium oxide thin layers first, and then increase the density of these thin layers to improve the performance of the dielectric layer and strengthen the diffusion barrier layer made of shortened particles. . Brief Description of the Drawings Fig. 1A is a flowchart showing the steps of a method for forming a capacitor according to an embodiment of the present invention. Fig. 1B is a cross-sectional view showing an integrated circuit device formed according to the method shown in Fig. 1A, the device having a hemispherical grain (HSG) capacitor. -6-This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm)

-線 ^08804-Line ^ 08804

圖2的圖表,顯示了傳統HSG電容器的電容反應曲線。 圖3A-3C的圖表’顯示了根據本發明所形成的HSG電容 器,其電容於數個處理狀況時的三度空間反應。 圖4的圖表,顯示了傳統HSG電容器的電容反應曲線 (4a),以及根據本發明所形成的HSG電容器的電容反應曲 線(4b) 0The graph in Figure 2 shows the capacitance response curve of a conventional HSG capacitor. 3A-3C are graphs' showing the three-dimensional spatial response of the HSG capacitor formed according to the present invention under several processing conditions. The graph of FIG. 4 shows the capacitance response curve (4a) of the conventional HSG capacitor and the capacitance response curve (4b) of the HSG capacitor formed according to the present invention.

圖5的圖表,顯不了根據本發明所形成的HSG電容器的 電容反應曲線。 圖6的圖表,顯tf 了根據本發明所形成的HS(}電容器的 電容反應曲線。 裝 圖7顯示了結晶導電層圖案(7b)與非結晶導電層圖案(7a) 的滲雜劑不純物濃度(丫軸)與擴散深度卜軸)的比較。 圖8的平面圖,顯示了根據本發明處理步驟的多分室處 理裝置。The graph of Fig. 5 does not show the capacitance response curve of the HSG capacitor formed according to the present invention. The graph in Figure 6 shows the capacitance response curve of the HS (} capacitor formed according to the present invention at tf. Figure 7 shows the impurity impurity concentration of the crystalline conductive layer pattern (7b) and the amorphous conductive layer pattern (7a). (Y-axis) and diffusion depth. Fig. 8 is a plan view showing a multi-chamber processing apparatus according to a processing step of the present invention.

…線 固9 A 9 B過渡遠谷器結構的剖面圖,顯示了根據本發 明形成HSG電容器的方法。 圖10-12的圖表顯示了根據本發明各種實施例所形成的 HSG電容器的電容反應曲線。 fe佳實施例諱細銳朗 :以下說明,參考了顯示本發明實施例的附圖,以進一步 說明本發明。本發明的實施例,式不―,不以此處的實施 例為限。此處提供實施例的目的,在於完整、清楚的說明 本發明’ ϋ對热悉本技術的人士傳&本發明 清晰起見’附圖中的各層4區厚度皆有所誇張圍必=... a cross-sectional view of the 9A 9B transitional valley device structure showing a method for forming an HSG capacitor according to the present invention. The graphs of Figs. 10-12 show the capacitance response curves of HSG capacitors formed according to various embodiments of the present invention. The preferred embodiments are sharp and detailed: The following description refers to the accompanying drawings showing embodiments of the present invention to further explain the present invention. The embodiments of the present invention are not limited to the embodiments herein. The purpose of the embodiments provided here is to provide a complete and clear description of the present invention ϋ 传 To those who are familiar with the technology & the present invention is clear ′ The thickness of each layer 4 area in the drawings is exaggerated.

A7 B7A7 B7

508804 五、發明説明(5 ) 醉的疋,所謂的另一層或基片上’的層,係指另一;戈基 片上直接附著的層,或者中間包括其他層。說明中的所有 編號,係指圖中的相同編號。不過,,第一導電層類型,與, 第二導電層類型,則是指相反的p或N類型β不過,以下/說 明、顯示的實施例都包括了互補的實施例。 圖1 A、1 Β分別顯示了根據本發明實施例形成電容器的 方法,以及藉此電容器形成記憶體裝置的方法。圖丨b的 剖面圖,顯示了根據圖示1 A方法所形成的積體電路裳 置’該裝置具有HSG電容器。積體電路電容器包括一個第 二半導體電類型(像是P-類盤)的半導體基片2,該基片具 有磁場氧化隔離層4 A、4 B ’定義了活性區3,該活性区 形成了一對存取電晶體5 A、5 B。每個存取電晶體5 A、 5B包括了活性區3中第一導電類型(像是類型)的源區 6。第一導電類型的共同排流區域8,亦形成於活性區3。 延伸於存取電晶體5 A、5 B閘門電極對面的波道區域7分 隔了共用排流區域8與源區6。波道區域7上還形成了存取 電晶體5A、5B的閘氧層9。絕緣的閘門電極1〇可以控制 波道區域7的導電性能,以回應字線信號。閘門電極i 〇的 材質最好是聚矽層1 1與高熔點的金屬矽化物1 2的化合 物。閘侧壁介電層1 3亦形成於閘門電極i 〇。聚碎層i 4的 形狀可以與字線相同,最好年成於磁場氧化隔離層4A ·、 4 B。如圖所示,第一中間介電層1 5係做為第一鈍化層。 第一中間介電層1 5還包括一個流孔1 7,以顯露共用排流 區域8表面的一部份。流孔〗7包括了以摻雜聚矽(或鎢)為 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱)508804 V. Description of the invention (5) The drunk cricket, the so-called "layer on the substrate" refers to the other; the layer directly attached to the substrate, or other layers in the middle. All numbers in the description refer to the same numbers in the figure. However, the first conductive layer type and the second conductive layer type refer to the opposite p or N type β. However, the following / illustrated and shown embodiments include complementary embodiments. 1A and 1B respectively show a method for forming a capacitor and a method for forming a memory device by using the capacitor according to an embodiment of the present invention. Figure 丨 b is a cross-sectional view showing the integrated circuit device formed according to the method shown in Figure 1A. The device has an HSG capacitor. The integrated circuit capacitor includes a semiconductor substrate 2 of a second semiconductor electrical type (such as a P-type disk). The substrate has a magnetic field oxidation isolation layer 4 A, 4 B 'defining an active region 3, which forms an active region. A pair of access transistors 5 A, 5 B. Each access transistor 5 A, 5B includes a source region 6 of a first conductivity type (such as a type) in the active region 3. The common drainage region 8 of the first conductivity type is also formed in the active region 3. A channel region 7 extending across the gate electrodes of the access transistors 5 A and 5 B separates the common drain region 8 and the source region 6. An oxide gate layer 9 for access transistors 5A and 5B is also formed on the channel region 7. The insulated gate electrode 10 can control the conductivity of the channel region 7 in response to the word line signal. The material of the gate electrode i 0 is preferably a compound of a polysilicon layer 11 and a high-melting metal silicide 12. The gate sidewall dielectric layer 13 is also formed on the gate electrode i 0. The shape of the aggregated layer i 4 may be the same as that of the word line, and it is preferably formed in the magnetic field oxidation isolation layers 4A, 4B. As shown, the first intermediate dielectric layer 15 serves as a first passivation layer. The first intermediate dielectric layer 15 further includes a flow hole 17 to expose a part of the surface of the common drainage area 8. Orifice〗 7 includes doped polysilicon (or tungsten) as the -8- This paper size applies Chinese National Standard (CNS) A4 specifications (210X297 public love)

裝 訂Binding

線 508804 A7 B7 五、發明説明(6 ) 材質的導電插座1 6,與共用排流區域8的電阻接觸。導電 插座1 6還與位元線1 8接線,該位元線的材質可以為摻雜 的永碎、南溶點金屬、聚珍或珍化物。第二中間介電層 1 9係做為第二鈍化層。第二中間介電層1 9涵蓋了位元線 1 8與第一中間介電層1 5。流孔2 〇則顯露源區6表面的一 部份,貫穿了第一中間介電層15與第二中間介電層19, 如圖所示。 上述的記憶體元件還包括一個儲存電容器,其低電極接 線至源區6。如下所述,儲存電容器的低電極2 i包括了第 一導電類型的聚矽層21a與表面不平坦的半球晶粒(HSG) 矽面層的化合物。低電極2 i上還形成了擴散障礙層2 2,Line 508804 A7 B7 V. Description of the invention (6) The conductive socket 16 made of material is in contact with the resistance of the common drain area 8. The conductive socket 16 is also connected to the bit line 18, and the material of the bit line can be doped permanent broken, south melting point metal, polycrystalline or precious metal. The second intermediate dielectric layer 19 is used as a second passivation layer. The second intermediate dielectric layer 19 covers the bit lines 18 and the first intermediate dielectric layer 15. The flow hole 20 reveals a part of the surface of the source region 6 and penetrates the first intermediate dielectric layer 15 and the second intermediate dielectric layer 19, as shown in the figure. The above-mentioned memory element further includes a storage capacitor whose low electrode is connected to the source region 6. As described below, the low electrode 2 i of the storage capacitor includes a compound of a first conductive type polysilicon layer 21a and an uneven hemispherical grain (HSG) silicon surface layer. A diffusion barrier layer 2 2 is also formed on the low electrode 2 i,

以避免低電極21對上介電層23外向滲雜劑不純物擴散 擴散障礙層22還可避免低電極21(包括HSG矽面層2ib)$ ^電層23之間的化學反應。介電層门上還形成了導電爸 南電極層24,以製成儲存電容器。 圖1 A顯示了形成HSG電容器的較佳方法,包括了於方$ la其半導體基片2形成導電層圖案化。導電層圖案加 初的材質係為單一的非晶形石夕層(a_Si),或者(與半導體; 片2接觸的)多晶體矽層與多晶體矽層化合物上的非晶, 矽層的化合物。形成導電層圖案叫時,最好與第一道q :型不純物摻雜。不過’您也可以在形成導電層圖案2】 後’再加以掺雜。第一導電類型的捧雜不純物可以是鱗( 或類似的N·類❹雜劑。根據本發明其中 ^ 電層圖案21 a的滲雜劑成分,其第一 弟導i類型的不純物I -9 -To prevent the low electrode 21 from diffusing outward impurities of the upper dielectric layer 23 into the impurity, the diffusion barrier layer 22 can also avoid the chemical reaction between the low electrode 21 (including the HSG silicon surface layer 2ib) and the electric layer 23. A conductive gate electrode layer 24 is also formed on the dielectric gate to form a storage capacitor. FIG. 1A shows a preferred method for forming an HSG capacitor, which includes patterning a conductive layer on a semiconductor substrate 2 of the semiconductor substrate 2. The material of the conductive layer pattern is a single amorphous silicon layer (a_Si), or an amorphous, silicon compound on a polycrystalline silicon layer and a polycrystalline silicon layer compound (in contact with the semiconductor; sheet 2). When forming a conductive layer pattern, it is best to dope with the first q: -type impurity. But you can also dope it after forming the conductive layer pattern 2]. Impurities of the first conductivity type may be scales (or similar N · type dopants. According to the present invention, the dopant component of the electrical layer pattern 21 a is the first impurity of type i -9 -

裝 訂Binding

A7A7

度不會大於L0X102。參雜劑不純物w。您最好完全執行 本步騾’以進行摻雜不純物。熟悉本技術的人士都了解, 導電層圖案21a其滲雜劑不純物濃度與導電層圖案叫的表 面電阻成反比。本發明其導電層圖案2u不純物濃度約為 〕·7Χ 1019參雜劑不純物/cm3,適於厚度約8,刪人、表面電 阻3 6 Ω/cm2的導電層圖案21a。 私 圖1 A的方塊ib ,在形成導電層圖案2u後,必須進行清 除步驟,以去除導電層圖案21a其外露面的任何雜質。清 除步驟係#別用來去除外露表面原有的氧膜(此處並未顯 示清除步騾包括··將導電層圖案2U曝露於濕的清潔劑 (铋是氫氟酸,HF)落液或緩衝氧化蝕刻劑。雖然最好進行 清除步驟,不過您也可以省略。如方塊卜所示,接下來 的步騾係於導電層圖案21a上形成的半球晶粒(HSG)矽面層 21b,以增加導電層圖案2U的外露表面。值得一提的是, ,可以將基片1 0裝入反應室,然後維持約低於1〇·6托的超 尚真空,並同時將導電層圖案21a曝露於激射的矽烷(siH〇 或乙矽烷(SbH6)氣體,使導電層圖案21a表面會形成矽籽 晶層,做為矽核,以形成HSG矽面層21b。然後會終止激 射含矽的氣體。籽晶體的養成溫度最好介於56〇至62〇。(:。 養成步驟的時間必須足夠,使籽晶體的平均晶粒可達 1〇〇〇A的大小。熟悉本技術的人士都了解,您也可以利用 其他形成、養成矽籽晶體成為單一晶體晶粒的傳統技術, 來增加導電層圖案21a的有效表-面‘面積。 HSG矽面層21b其單一晶體晶粒的大小與一致性,以及 -10- 本紙張尺度適用中@目家標準(CNS) A4規格㈣/挪公爱) --—--The degree will not be greater than L0X102. Impurities w. You'd better perform this step 骡 ’completely to do impurity. Those skilled in the art understand that the impurity concentration of the impurity in the conductive layer pattern 21a is inversely proportional to the surface resistance of the conductive layer pattern. In the present invention, the concentration of impurities in the conductive layer pattern 2u is approximately ·· 7 × 1019 impurity impurity / cm3, which is suitable for a conductive layer pattern 21a having a thickness of about 8 and a surface resistance of 36 Ω / cm2. In block ib of FIG. 1A, after the conductive layer pattern 2u is formed, a cleaning step must be performed to remove any impurities on the exposed surface of the conductive layer pattern 21a. Removal step system #Do not use to remove the original oxygen film on the exposed surface (removal steps are not shown here. Including ... the conductive layer pattern 2U is exposed to a wet cleaning agent (bismuth is hydrofluoric acid, HF) falling liquid or Buffered oxide etchant. Although it is best to perform the removal step, you can also omit it. As shown in box B, the next step is based on the hemispherical grain (HSG) silicon surface layer 21b formed on the conductive layer pattern 21a. Increase the exposed surface of the conductive layer pattern 2U. It is worth mentioning that the substrate 10 can be loaded into the reaction chamber, and then maintain an ultra-low vacuum of about 10.6 Torr, and at the same time, the conductive layer pattern 21a is exposed A silicon seed layer is formed on the surface of the conductive layer pattern 21a as a silicon core to form a HSG silicon surface layer 21b by lasing silane (siH0 or ethane (SbH6) gas). The growth temperature of the gas. Seed crystal is preferably between 56 and 62. (: The time of the growing step must be sufficient so that the average grain size of the seed crystal can reach 1000 A. Anyone familiar with the technology Understand that you can also use other formation and growth of silicon seed crystals It is a traditional technology of single crystal grains to increase the effective surface-surface 'area of the conductive layer pattern 21a. The size and consistency of the single crystal grains of the HSG silicon surface layer 21b, and -10- This paper applies to the standard @ 目Home Standard (CNS) A4 Specification (Norway Love) -----

裝 訂Binding

•線 508804 A7 B7 五、發明説明(8 ) 導電層圖案21a的滲雜劑不純物濃度的影響來源,係由發 明者決定。值得一提的是,導電層圖案21a的滲雜劑不純 物濃度與單一晶體晶粒的大小與一致性成反比。因此,一 開始限制導電層圖案21a的第一導電類型滲雜劑不純物濃 度,可增加低電容器電極21(該電極包括了導電層圖案 21a與HSG矽面層21b)的表面。 如圖示1 d所示,最好於550至9001:之間對導電層圖案 2la與插種的HSG矽面層21b進行退火。值得一提的是,最 好以800°C左右,對導電層圖案21a與插種的HSG矽面層 2 lb退3T約30分鐘,使非晶形的導電層圖案21a結晶為多晶 體層。使用滲雜劑不純物擴散技術,將導電層圖案21a退 火成多晶體層的步騾,可搓高導電層圖案2 la其滲雜劑不 純物的比例。圖7;即顯示了提高滲雜劑不純物的比例。值 得一提的是,圖7顯示了結晶導電層圖案(7b)與非結晶導 電層圖案(7a)的滲雜劑不純物濃度(y軸)與擴散深度(X軸) 的比較。如圖所示,結晶導電層圖案(7b)的滲雜劑不純物 濃度大於非結晶導電層圖案(7a)的滲雜劑不純物濃度。 圖1 A方塊1 e,再度進行清除步驟,以去除HSG矽面層 2 lb其外露面的任何雜質。與方塊1 b的清除步驟一樣,方 塊1 e的清除步騾係特別用來去除HSG矽面層21b外露表面 原有的氧膜(此處並未顯示)。清除步驟包括:將由HSG矽 面層21b與多晶體導電層圖案2 la的化合層曝露於濕的清潔 劑(像是氫氟酸,HF)溶液或緩衝氧化蝕刻劑(BOE)。 方塊1 f化合物多晶體層2 1包含了 HSG矽面層21b與晶體 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)• Line 508804 A7 B7 V. Description of the invention (8) The source of the influence of the impurity concentration of the impurity in the conductive layer pattern 21a is determined by the inventor. It is worth mentioning that the impurity impurity concentration of the conductive layer pattern 21a is inversely proportional to the size and consistency of the single crystal grain. Therefore, initially limiting the impurity concentration of the first conductive type dopant of the conductive layer pattern 21a can increase the surface of the low capacitor electrode 21 (the electrode includes the conductive layer pattern 21a and the HSG silicon surface layer 21b). As shown in Fig. 1d, it is preferable to anneal the conductive layer pattern 2la and the seeded HSG silicon surface layer 21b between 550 and 9001 :. It is worth mentioning that it is best to retreat the conductive layer pattern 21a and the seeded HSG silicon surface layer 2 lb for about 30 minutes at about 800 ° C to crystallize the amorphous conductive layer pattern 21a into a polycrystalline layer. Using the impurity diffusion technology of the impurity, the conductive layer pattern 21a is annealed to a polycrystalline layer, and the conductive layer pattern 2a can be rubbed to increase the proportion of the impurity of the impurity. Figure 7; that is, increasing the proportion of impure impurities. It is worth mentioning that FIG. 7 shows a comparison between the impurity impurity concentration (y-axis) and the diffusion depth (x-axis) of the crystalline conductive layer pattern (7b) and the amorphous conductive layer pattern (7a). As shown in the figure, the impurity impurity concentration of the crystalline conductive layer pattern (7b) is greater than the impurity impurity concentration of the amorphous conductive layer pattern (7a). In Figure 1A, block 1e, the cleaning step is performed again to remove any impurities on the exposed surface of the HSG silicon surface layer 2 lb. As with the removal step of block 1b, the removal step of block 1e is specifically used to remove the original oxygen film (not shown here) from the exposed surface of the HSG silicon surface layer 21b. The removing step includes exposing the compound layer composed of the HSG silicon surface layer 21b and the polycrystalline conductive layer pattern 2a to a wet cleaning agent (such as hydrofluoric acid, HF) solution or a buffered oxide etchant (BOE). Box 1 f Compound polycrystalline layer 2 1 Contains HSG silicon surface layer 21b and crystals -11-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

508804 A7 B7 五、發明説明(9 ) 導電層圖案2la,然後與第一導電類型的滲雜劑不純物進 行掺雜。第一導電類型的滲雜劑不純物可以是磷(P)等N類 型滲雜劑。摻雜多晶體層2 1化合物的步騾,包括:於擴 散或擴散方法後,使用P0C13等液體,來注入離子。不 過,注入離子時,化合物多晶體層2 1表面附近要達到一 致並不容易,原因在於:化合物多晶體層21表面其單一 晶體晶粒的侧壁,無法垂直曝露於注入的離子束。最好不 要使用P0C13等液體,原因在於:如果這類液體與化合物 層中的矽發生化學變化,這類液體會形成玻璃層。 或者,摻雜化合物多晶體層2 1的技術,包括:將層2 1 曝露於三氫化磷氣體(PH3)的反應室。您可以於此步驟利 用快速升溫(RTP)裝置,來確保此一摻雜步騾期間,維持 了化合物多晶體層2 1其晶粒結構(像是大小與一致性)的 完整性。值得一提的是,RTP裝置係用來將溫度緩升至所 要的擴散溫度(持續溫度),然後短暫保持(短持續期間)所 要的擴散溫度。如發明者所決定,使用熔爐類型的擴散處 理程序,來緩慢升溫及/或較長的持續期間,會降低後來 形成的電容器(包括化合物多晶體層2 1 )其磁漏與電壓擊 穿的性能。因此,最好於120托壓力,以每秒升溫1 0 的 速度升溫至800°C左右的持續溫度,以RTP處理裝置進行 第一導電類型不純物(像是磷)的擴散。該持續溫度於相同 速度緩慢降溫前,維持約300秒。持續溫度介於550至900 °C之間,RTP處理裝置的内在壓·力介於5至500托(torr)之 間。如果HSG矽面層21b的單一晶體晶粒並無異變,可提 -12- 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 裝 訂508804 A7 B7 V. Description of the invention (9) The conductive layer pattern 2la is then doped with an impurity of a dopant of the first conductivity type. The impurity of the first conductivity type impurity may be an N type impurity such as phosphorus (P). The step of doping the polycrystalline layer 21 compound includes: after the diffusion or diffusion method, using a liquid such as POC13 to implant ions. However, when implanting ions, it is not easy to achieve uniformity near the surface of the compound polycrystalline layer 21 because the sidewalls of the single crystal grains on the surface of the compound polycrystalline layer 21 cannot be vertically exposed to the implanted ion beam. It is best not to use liquids such as POC13 because if these liquids chemically change with the silicon in the compound layer, they will form a glass layer. Alternatively, the technique of doping the compound polycrystalline layer 21 includes: exposing the layer 21 to a reaction chamber of phosphorus trihydrogen gas (PH3). You can use a rapid temperature rise (RTP) device during this step to ensure the integrity of the grain structure (such as size and consistency) of the compound polycrystalline layer 21 during this doping step. It is worth mentioning that the RTP device is used to slowly increase the temperature to the desired diffusion temperature (sustained temperature), and then briefly maintain (the short duration) the desired diffusion temperature. As determined by the inventors, the use of a furnace-type diffusion process to slow the temperature rise and / or the longer duration will reduce the magnetic leakage and voltage breakdown performance of the capacitors (including the compound polycrystalline layer 2 1) formed later. . Therefore, it is best to increase the temperature to a continuous temperature of about 800 ° C at a pressure of 120 Torr per second at a rate of 10 ° C per second, and use an RTP processing device to diffuse the first conductive type impurities (such as phosphorus). This continuous temperature was maintained for about 300 seconds before slowly cooling down at the same rate. The continuous temperature is between 550 and 900 ° C, and the internal pressure and force of the RTP processing unit is between 5 and 500 torr. If there is no change in the single crystal grain of HSG silicon surface layer 21b, you can add -12- This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm).

,線 508804 五 A7 B7 發明説明(1〇 南緩慢升溫的速度。RTP處理期間,可將三氫化磷氣體的 流速設定為270 Sccm(每分鐘標準立方公分)。氫氣的流速 可設定為95 slm(每分鐘標準升)左右。 裝 使用這些步騾,所形成3X 1〇2〇滲雜劑/cm3的第一導電類 型滲雜劑不純物濃度的化合物多晶體碎層2 1,其與化合 物層2 1的上表面的深度距離較為理想。該深度可於電容 器反向偏壓時,避免空乏層擴張。大於理想深度(像是 5 0人)時,其背景滲雜劑不純物濃度會低於1 滲雜劑 /cm。如果不進行RTp處理,您可以於LpcvD室中以較長 的持續期間(相對於RTP的持續時間),以1至3 〇托的低 壓、650至850 C的溫度,進行滲雜劑擴散處理。然後會於 HSG矽面層21b上形成方塊1g中的擴散障礙層22(像是, Line 508804 five A7 B7 invention description (the rate of slow heating up to 10 South. During RTP processing, the flow rate of phosphorus trihydrogen gas can be set to 270 Sccm (standard cubic centimeters per minute). The flow rate of hydrogen can be set to 95 slm ( Standard liters per minute). Using these steps, the first conductive type dopant at a concentration of 3 × 1020 dopants / cm3 is formed of the compound polycrystalline fragment layer 21, which is the same as the compound layer 2 1 The depth distance of the upper surface of the substrate is ideal. This depth can avoid the expansion of the empty layer when the capacitor is reverse biased. When the depth is greater than the ideal depth (such as 50 people), the concentration of impurities in the background dopant will be lower than 1 Agent / cm. Without RTp treatment, you can perform infiltration in the LpcvD chamber for a longer duration (relative to the duration of RTP) at a low pressure of 1 to 30 Torr and a temperature of 650 to 850 C. Agent diffusion treatment. Then, a diffusion barrier layer 22 (such as

Si#4),以避免HSG矽面層21b的滲雜劑向外擴散。圖 9 A、9 B進一步說明了此一觀點。 二I塊U、11係於擴散障礙層22上依序形成介電層23與 咼電極24。最好是在摻雜HSG矽面層2ib後,於同一RTp 反應室^形成擴散障礙層22與介電層23,以避免Η%矽面 氧化並省略或減低清除步驟的時間。擴散障礙層 22:介電層23可由各種絕緣材質所製成,包括氮-氧剛 ^ TlC>2、SrTl〇3、BaTi〇3、(Ba,S〇Ti03、Pb(Zr, )3等如使用氮-氧(N〇)化-合物,係以該化合物氮成分 代為擴散障礙層,以下有所說明。 I谷益的I谷反應曲線。值得_提的是,此處的曲線 -13- 508804 A7 B7 五、發明説明(11 ) 資料,係以89,600 /zm2表面面積、3.7X 1019滲雜劑不純物 /cm3左右初始不純物濃度的非晶體矽導電層圖案21a所形 成的電容器為基準。氮-氧(NO)化合物的氧厚度約為 50A,40 A至7 0 A為理想厚度。 圖3A-3C圖表,顯示了 HSG電容器,於數個處理狀沉時 其最小電容三度空間反應圖。如果高電極電壓為-1.5v,並 將電容器的低電極接地,則會產生最低電容(Cmin)。圖 3A-3C顯示了判定最佳RTP狀況的重複過程,以取得最理 想的HSG低電極。必須控制RTP反應室壓力、PH3流速、溫 度與持續時間等參數。圖3 A的溫度與持續時間分別為800 °C與3 00秒左右。如圖3A所示,反應室壓力120托左右, 取得較為理想的Cmin,Cmin會發生大幅變動。壓力小於 6 0托時,Cmin會大幅下降。圖3 A還顯示了,壓力的變化 比三氫化磷氣體流速的變化容易影響Cmin。如要取得較 高的Cmin值,建議您選擇200 seem或更大的流速,最好是 270 seem 0 圖3 B中反應室的壓力與持續時間分別為120托與300秒 左右。如圖3 A、3 B所示,三氫化磷氣體的流速對於Cmin 值的影響較小,而擴散溫度對於Cmin值的影響較大。700 °C以上,比方說800t:的持續擴散溫度,對於Cmin值的影 響較大。圖3 C的反應室壓力與三氫化構滲雜劑氣體流速 分別為120托與270 seem。以圖3 C而言,大於等於200秒的 持續時間(最好為300秒)較為理想。總之,圖3A-3C顯示 了:處理參數的變動會劇烈影響所要的Cmin值。 -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Si # 4) to prevent the dopant of the HSG silicon surface layer 21b from diffusing outward. Figures 9 A and 9 B further illustrate this point. The two U blocks 11 and 11 form a dielectric layer 23 and a hafnium electrode 24 on the diffusion barrier layer 22 in this order. It is preferable to form the diffusion barrier layer 22 and the dielectric layer 23 in the same RTp reaction chamber after doping the HSG silicon surface layer 2ib to avoid oxidation of the Η% silicon surface and omit or reduce the time for the removal step. Diffusion barrier layer 22: The dielectric layer 23 may be made of various insulating materials, including nitrogen-oxygen ^ TlC> 2, SrT103, BaTi〇3, (Ba, STi03, Pb (Zr,) 3, etc. The nitrogen-oxygen (N0) compound is used, and the nitrogen component of the compound is used as the diffusion barrier layer, which will be described below. I Valley's I Valley reaction curve. It is worth mentioning that the curve here-13 -508804 A7 B7 V. Description of the invention (11) The data is based on the capacitor formed by the amorphous silicon conductive layer pattern 21a with a surface area of 89,600 / zm2 and an impurity concentration of 3.7X 1019 impurity / cm3 at the initial impurity level. -The oxygen thickness of the oxygen (NO) compound is about 50A, and the ideal thickness is from 40 A to 70 A. Figures 3A-3C are diagrams showing the three-dimensional space response diagram of the minimum capacitance of the HSG capacitor in several processing sinks. If the high electrode voltage is -1.5v and the low electrode of the capacitor is grounded, the lowest capacitance (Cmin) will be generated. Figures 3A-3C show the iterative process of determining the best RTP condition to obtain the optimal HSG low electrode. The parameters of RTP reaction chamber pressure, PH3 flow rate, temperature and duration must be controlled. Figure 3 The temperature and duration of A are about 800 ° C and about 300 seconds, respectively. As shown in Figure 3A, the pressure in the reaction chamber is about 120 Torr, which results in an ideal Cmin, and Cmin will vary greatly. When the pressure is less than 60 Torr, Cmin It will drop significantly. Figure 3A also shows that the change in pressure is more likely to affect Cmin than the change in the flow rate of phosphorus trihydrogen gas. To obtain a higher Cmin value, it is recommended that you choose a flow rate of 200 seem or greater, preferably 270 seem 0 Figure 3 The pressure and duration of the reaction chamber in Figure 3B are about 120 Torr and 300 seconds, respectively. As shown in Figures 3 A and 3 B, the velocity of the phosphorus trihydrogen gas has a small effect on the Cmin value, and the diffusion temperature has The Cmin value has a greater effect. The continuous diffusion temperature above 700 ° C, for example, 800t: has a greater effect on the Cmin value. Figure 3 The reaction chamber pressure and the trihydrogen dopant gas flow rate are 120 Torr and 270 seem. In terms of Figure 3C, a duration of 200 seconds or more (preferably 300 seconds) is ideal. In summary, Figures 3A-3C show that changes in processing parameters can drastically affect the desired Cmin value. -14 -This paper size applies to Chinese national standards (CNS) A4 size (210 X 297 mm)

•線 508804 A7 B7 五、發明説明(12 ) 圖4的圖表,顯示了傳統HSG電容器的電容反應曲線 (4a),以及根據本發明所形成的HSG電容器的電容反應曲 線(4b)。曲線4b的資料,係以持續溫度80(TC、反應室壓 力120托的RTP處理所製成的所要HSG電容器為基準。三氫 化磷氣體的流速設定為270 seem,持續時間約為300秒。 結果顯示,Cmax 1.5V與Cmin-1.5V之間的電壓,本發明所 形成的HSG電容器其電容曲線(4b)比傳統HSG電容器的電 容曲線(4a)高而穩定。值得一提的是,從圖4可以看出, 傳統HSG(非滲雜劑)電容器的Cmin約為0.8 nF,與非HSG 電容器相近。因此,源區反向偏壓時(-1.5V),傳統HSG低 電極其增加的表面面積並無效果。相形之下,於一定範圍 的電壓時,本發明的HSG電容器維持的Cmin/Cmax比例(1.7 nF/Ι.65 nF),大於傳統平面電容器與傳統HSG電容器的 Cmin/Cmax比例1.0,且較為穩定。圖4的結果,可歸因於 低HSG電極所維持不純物濃度較高電極所維持的要高。圖 1 A方塊1 f第二次RTP摻雜步騾所造成的低電極的高不純 物濃度,可降低空乏層於操作時的厚度,並恢復一開始形 成HSG矽面層21b時所損失的導電性能。 圖5圖表顯示的電容與電壓關係圖表,係以升高較佳 HSG電容器電容的RTP持續溫度為基準。此處的低電極表 面經由RTP,與三氫化磷氣體掺雜。三氫化磷氣體的流速 設定為270 seem,RTP反應室壓力設定為120托。持續時間 設定為300秒。以每秒升溫1 0 t:的速度緩慢升溫至620°C 左右的持續溫度。如圖5的曲線5 a所示,持續溫度設定為 -15- 本纸張尺度適用中國國家標準(CNS) A4規格(210X297公釐)• Line 508804 A7 B7 V. Description of the invention (12) The graph in FIG. 4 shows the capacitance response curve (4a) of the conventional HSG capacitor and the capacitance response curve (4b) of the HSG capacitor formed according to the present invention. The data of curve 4b is based on the required HSG capacitor made by RTP treatment with a continuous temperature of 80 ° C and a reaction chamber pressure of 120 Torr. The flow rate of the phosphorus trihydrogen gas is set to 270 seem and the duration is about 300 seconds. It is shown that the voltage between Cmax 1.5V and Cmin-1.5V, the capacitance curve (4b) of the HSG capacitor formed by the present invention is higher and more stable than the capacitance curve (4a) of the conventional HSG capacitor. It is worth mentioning that It can be seen that the Cmin of traditional HSG (non-dopant) capacitors is about 0.8 nF, which is similar to that of non-HSG capacitors. Therefore, when the source region is reverse biased (-1.5V), the traditional HSG low electrode has an increased surface. Area has no effect. In contrast, at a certain range of voltage, the Cmin / Cmax ratio (1.7 nF / I.65 nF) maintained by the HSG capacitor of the present invention is larger than the Cmin / Cmax ratio of the conventional planar capacitor and the conventional HSG capacitor. 1.0, and it is relatively stable. The results of Figure 4 can be attributed to the high impurity concentration maintained by the low HSG electrode and the electrode maintained higher. Figure 1 A box 1 f Low electrode caused by the second RTP doping step High impurity concentration to reduce emptying The thickness at the time of operation, and restore the conductive properties lost when the HSG silicon surface layer 21b was initially formed. The capacitance-voltage relationship chart shown in the chart in Figure 5 is based on the RTP continuous temperature of the better HSG capacitor capacitance. The surface of the low electrode here is doped with phosphorus trihydrogen gas via RTP. The flow rate of the phosphorus trihydrogen gas is set to 270 seem, the pressure of the RTP reaction chamber is set to 120 torr. The duration is set to 300 seconds. The temperature is increased by 10 per second t: The temperature slowly rises to a continuous temperature of about 620 ° C. As shown in curve 5a of Fig. 5, the continuous temperature is set to -15- This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm)

裝 訂Binding

…線 508804 A7 〜 B7 五、發明説明(13 ) 800°C、825°C、或850°C時,電容並無改變。當持續溫度提 高為875 °C時(以每秒升溫1 0 °C的速度),如圖5 b的曲線所 示,總電容降低;原因在於HSG表面的單一晶體晶粒發生 變形。如發明者所判定,將升溫速度降至每秒2,而持續 溫度保持850°C以上(最高為900°C),可避免晶粒變形,並 避免曲線5 b所示的電容降低。 如上所述,圖6係使用LPCVD摻雜方法形成的HSG電容 器其電容與電壓關係的曲線圖。此處的低HSG電極係以 700°C左右的熔爐溫度、CVD反應室的三氫化磷氣體流速 900 seem左右、壓力1.5托的條件下所摻雜。LPCVD掺雜步 騾約需時3小時。如此處理的結果令人滿意,與RTP處理 結果類似,其〇111丨11/(1;111&\(1.7 11?/1.6 11?)亦大於1。 根據本發明的另一觀點,最好於0.5至1托的低壓,以電 漿子放電利用PH3來提高HSG矽面層的不純物濃度。視反 應環境,用來維持電漿子的無線頻率功率最高可為2000瓦 特,但多半為100瓦特左右。至於PH3的流速,則可設定為 6 0分鐘至1秒之間的1至500 seem。一般的流速在300 seem 左右。上述的摻雜步騾(RTP、LPCVD、電漿子摻雜步騾) 係於退火後進行。 圖8的多重反應室裝置其轉換室可將具備導電圖案層2 la 的基片從第一反應室80轉換第二反應室82,並同時保 持三個反應室為同一壓力。該裝置的第一反應室8 0係用 來進行PH3電漿子放電摻雜。並對摻雜的HSG矽面層21a退 火,而於導電層圖案21a上形成HSG矽面層21b。然後該基 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 508804 A7… Wire 508804 A7 ~ B7 V. Description of the invention (13) The capacitance does not change at 800 ° C, 825 ° C, or 850 ° C. When the continuous temperature increases to 875 ° C (at a rate of 10 ° C per second), as shown in the curve of Figure 5b, the total capacitance decreases; the reason is that the single crystal grains on the surface of the HSG are deformed. As determined by the inventor, reducing the heating rate to 2 per second while maintaining a continuous temperature above 850 ° C (up to 900 ° C) can avoid crystal grain deformation and the decrease in capacitance shown in curve 5b. As described above, FIG. 6 is a graph of the relationship between the capacitance and the voltage of an HSG capacitor formed using the LPCVD doping method. The low HSG electrode is doped at a furnace temperature of about 700 ° C, a flow rate of phosphorus trihydrogen gas in the CVD reaction chamber of about 900 seem, and a pressure of 1.5 Torr. The LPCVD doping step takes about 3 hours. The result of this treatment is satisfactory, and similar to the result of RTP treatment, 〇111 丨 11 / (1; 111 & \ (1.7 11? /1.6 11?) Is also greater than 1. According to another aspect of the present invention, it is best to Low voltage of 0.5 to 1 Torr, using plasma to use PH3 to increase the impurity concentration of HSG silicon surface layer. Depending on the reaction environment, the wireless frequency power used to maintain the plasma can be up to 2000 watts, but most are about 100 watts As for the flow rate of PH3, it can be set to 1 to 500 seem between 60 minutes and 1 second. The general flow rate is about 300 seem. The above doping steps (RTP, LPCVD, plasma doping steps) ) It is performed after annealing. The conversion chamber of the multiple reaction chamber device of FIG. 8 can convert a substrate having a conductive pattern layer 2 la from a first reaction chamber 80 to a second reaction chamber 82, and simultaneously keep the three reaction chambers the same. Pressure. The first reaction chamber 80 of the device is used for PH3 plasma discharge doping, and the doped HSG silicon surface layer 21a is annealed to form an HSG silicon surface layer 21b on the conductive layer pattern 21a. Then, The base-16- This paper size applies to China National Standard (CNS) A4 specifications (210X 297 male ) 508804 A7

Hold

Order

508804 A7 B7 五、發明説明(15 ) · 材質做為擴散障礙層,或者所選的絕緣材質其厚度必須足 以避免HSG矽面層21b與所選介電層23之間發生反應,並 避免HSG矽面層21的摻雜不純物外向擴散。氮化矽(SiN)亦 是理想的闊院膜層材質。 根據本發明的另一觀點,您可以使用化學汽化(CVD)步 騾來形成擴散障礙層。您.可利用包括了負載固定裝置與真 空控制裝置的整套CVD裝置,來進行CVD步騾。值得一提 的是,形成HSG矽面層21b之後(必要時還需去除其原有的 氧化層),您可以將摻雜氣體(内含氨、氯硝氨、氫)做為 母體,注入溫度保持於650°C左右的CVD反應室。您可以 將氨、氯硝氨、氫的流速分別設定為900 seem、30 seem、 20 slm。CVD反應室的壓力最好設定為100托。熟悉本技術 的人士都了解,溫度、壓力、流速等處理參數,會隨著所 用裝置而改變。 形成的擴散障礙層22其厚度介於5又至100又之間。此處 的擴散障礙層22其厚度必須足以避免HSG矽面層21b與介 電層2 3之間的外向擴散及寄生反應。不過,如果擴散障 礙層2 2其材質的絕緣強度低於所選介電層2 3的絕緣強 度;及/或擴散障礙層2 2與介電層2 3的總厚度過高,則增 加擴散障礙層2 2的厚度會降低電容。比方說,圖1 1即顯 示具有CVD氮化矽擴散障礙辱2 2的電容器其電容與電壓 的曲線關係圖。此處的圖表,係以表面面積89600 /z m2的 低電極電容器為基準。圖1 1的曲線3 8係氮化矽擴散障礙 層22厚20又的電容器其電容與電壓的關係圖。曲線36、 -18- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 508804 A7 一 B7 五、發明説明(.16 ) 3 7係分別為氮化矽擴散障礙層2 2厚1 0人、1 5人的電容器 其電容與電壓的關係圖。擴散障礙層22的厚度最好介於 10又至30又之間,以避免HSG矽面層21b於低電極21外向 擴散。如上所述,電容器反向偏壓時,空乏層擴張會不利 於電容的穩定性。 根據本發明的另一個觀點,擴散障礙層2 2的材質,亦 可於HSG矽面層21b以快速升溫氮化處理(RTN)形成的第一 氮化矽層,然後於第一氮化矽層上以化學汽化沉積(CVD) 形成第二氮化矽層而製成。您可以將化合氣體(像是氨)於 高溫時注入HSG矽面層2 lb,以形成第一氮化矽層。形成 第一氮化矽層時所需的矽原子,可由HSG矽面層21提供; 這意味著RTN處理不需要獨立的矽來源。不過,去除HSG 石夕面層21的碎,可能會減少電容器低電極的表面面積,而 連帶降低了電容。 如發明者所言,如果以不平坦或三度空間的電極表面形 成電容器低電極2 1,則RTN處理還會降低漏壓電流量。另 外,由於反應時間短,RTN處理可避免HSG矽面層21b的 滲雜劑外向熱擴散。相形之下,由於CVD處理的時間較 RTN處理的時間為長,因此其產生的外向擴散較大。此 外,如果RTN處理其第一氮化矽層的擴散障礙層厚度不 夠,則必須形成第二氮化矽層來補足厚度。因此,RTN處 理可避免外向擴散,並改良漏壓電流;然後以CVD處理來 補足氮化矽擴散障礙層2 2的厚度 根據本發明的另一觀點,擴散障礙層2 2原位置亦可與 -19- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 508804 A7 B7 五、發明説明(17 ) 第一導電類型滲雜劑(像是磷)摻雜,避免HSG矽面層21b 與擴散障礙層2 2之間的介面形成負滲雜劑,以進一步避 免HSG矽面層21b其第一導電類型滲雜劑的外向擴散。您 可以在此進行摻雜RTN處理及/或CVD處理,來進一步避 免HSG矽面層2 lb對擴散障礙層2 2的滲雜劑不純物擴散。 如果進行摻雜RTN處理.,則HSG矽面層21b必須施以第一 導電類型不純物(像是PH3)與反應源(像是NH3),以形成三 氫化磷的氮化矽擴散障礙層2 2。如果進行CVD處理,則 可於HSG矽面層21b對氮化矽與所要滲雜劑的來源氣體施 以汽化沉積。如上所述,以CVD處理來形成氮化矽擴散障 礙層22,不會耗損HSG矽面層21b表面的矽。 進行摻雜RTN處理時,必須將HSG矽面層21b曝露於PH3 與NH3氣體的反應室,以形成三氫化磷的氮化矽擴散障礙 層22。此處的氨氣係用來與HSG矽面層21b的矽發生反 應,以形成第一氮化矽層。PH3則係用來提供該層磷滲雜 劑。該反應室的壓力介於5至500托,溫度介於500至900 °C。您可以於CVD反應室,將HSG矽面層21b曝露於 SiH4(或SiH2Cl2)、PH3氨氣,進行摻雜CVD處理。CVD反應 室的壓力介於0.1至200托,溫度介於550至85(TC。 根據本發明的另一觀點,可以利用快速升溫氧化(RTO) 處理,來強化氮化矽擴散障礙層2 2的導電性。進行RTO處 理時,擴散障礙層2 2係曝露於每秒8 slm流速的氧氣與氮 氣,為時約120秒。您可以將晶爵溫度維持於850°C左右, 在加熱室進行RTO處理。 -20- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 508804 A7 —— —___m_ •五、發明説明(18 ) 形成擴散障礙層22之後,於擴散障礙層2 2上形成介電 層23。實施例中,擴散障礙層22上的介電層係由鋰氧化 物(Τ&2〇5)的高絕緣材質所形成。您可以利用CVD技術,將 擴散障礙層22曝附於流速300 seem的Ta(OC2H5)5母體與流 速1 slm的氧氣,以形成介電層23。此處的cvd反應室溫 度維持在410°C左右,壓力維持在400微托左右。一般而 言’ CVD沉積的TaW5介電層23其厚度約為60又。然後對 介電層2 3進行密化處理,以改善擴散障礙層2 2的物理性 質。進行密化處理時,必須於反應室中對介電層23施以 乾燥的氧氣,為時約3 〇秒,反應室的溫度維持在8〇〇。0左 右。密化處理可排除Ta2〇5介電層2 3所不需要的不純物(像 是碳),進而改善氮化矽擴散障礙層2 2的物理性質。 您也可以形成數層ThO5,並於形成下一層Ta2〇5之前, 對每層Ta2〇5進行UV-〇3處理。比方說,形成第一層τ^〇5 (其厚度多半為3 0又)之後,您可以於反應室(反應室的溫 度加熱至300。(:左右,充滿臭氧)對第一層丁七〇5照射紫外 線15分鐘左右,進行UV_〇3處理。於第一層丁七〇5上形成 第一層Ta2〇5之後(比方其厚度為3〇又),進行同樣的處 理。最後,將介電層23曝露於800。(:左右的乾燥氧氣,為 時約3 0分鐘。您也可以利用快速升溫退火處理,來進行 密化處理。快速升溫退火處理以反應室内8〇〇t左右的 N 2 〇氣體或濕氧化技術為之。 另一個形成電容器的步驟,—係‘於介電層23上形成高電 極2 4。高電極的較佳材質為鈦氮化物。其他材質包括鎢 -21 -508804 A7 B7 V. Description of the invention (15) · The material is used as a diffusion barrier layer, or the thickness of the selected insulating material must be sufficient to prevent the reaction between the HSG silicon surface layer 21b and the selected dielectric layer 23 and avoid HSG silicon The impurity of the surface layer 21 diffuses outward. Silicon nitride (SiN) is also an ideal material for wide-field coatings. According to another aspect of the present invention, you can use a chemical vaporization (CVD) step to form a diffusion barrier layer. You can perform a CVD step using a complete CVD unit that includes a load fixture and a vacuum control unit. It is worth mentioning that after the HSG silicon surface layer 21b is formed (the original oxide layer needs to be removed if necessary), you can use the doping gas (containing ammonia, chloronitramine, and hydrogen) as the precursor and inject the temperature A CVD reaction chamber maintained at about 650 ° C. You can set the flow rates of ammonia, chlorhexamine, and hydrogen to 900 seem, 30 seem, and 20 slm, respectively. The pressure of the CVD reaction chamber is preferably set to 100 Torr. Those skilled in the art understand that process parameters such as temperature, pressure, and flow rate will vary with the device used. The thickness of the diffusion barrier layer 22 is between 5 and 100 Å. The thickness of the diffusion barrier layer 22 here must be sufficient to prevent outward diffusion and parasitic reactions between the HSG silicon surface layer 21b and the dielectric layer 23. However, if the dielectric strength of the diffusion barrier layer 22 is lower than that of the selected dielectric layer 23; and / or the total thickness of the diffusion barrier layer 22 and the dielectric layer 23 is too high, the diffusion barrier is increased. The thickness of layer 22 will reduce capacitance. For example, Figure 11 shows the relationship between the capacitance and voltage of a capacitor with a CVD silicon nitride diffusion barrier. The chart here is based on a low electrode capacitor with a surface area of 89600 / z m2. The curve of Figure 11 shows the relationship between the capacitance and the voltage of a capacitor with a thickness of 20 and a thickness of 20 series. Curves 36, -18- This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 508804 A7-B7 V. Description of the invention (.16) 3 7 series are silicon nitride diffusion barrier layers 2 2 thick A graph of the relationship between the capacitance and voltage of a capacitor of 10 people and 15 people. The thickness of the diffusion barrier layer 22 is preferably between 10 and 30, to prevent the HSG silicon surface layer 21b from diffusing outward from the low electrode 21. As mentioned above, when the capacitor is reverse biased, the expansion of the empty layer will be detrimental to the stability of the capacitor. According to another aspect of the present invention, the material of the diffusion barrier layer 22 can also be a first silicon nitride layer formed on the HSG silicon surface layer 21b by a rapid temperature-nitriding process (RTN), and then a first silicon nitride layer. The second silicon nitride layer is formed by chemical vapor deposition (CVD). You can inject a compound gas (such as ammonia) into the HSG silicon surface layer 2 lb at high temperature to form the first silicon nitride layer. The silicon atoms required to form the first silicon nitride layer can be provided by the HSG silicon surface layer 21; this means that an independent silicon source is not required for RTN processing. However, removing the broken pieces of the HSG Shixi surface layer 21 may reduce the surface area of the low electrode of the capacitor, and reduce the capacitance. As stated by the inventor, if the capacitor low electrode 21 is formed with an uneven or three-dimensional electrode surface, the RTN treatment will also reduce the leakage piezoelectric flow rate. In addition, due to the short reaction time, the RTN treatment can prevent the dopant of the HSG silicon surface layer 21b from diffusing outward to the heat. In contrast, since the time of CVD treatment is longer than that of RTN, the outward diffusion produced by it is larger. In addition, if the thickness of the diffusion barrier layer of the first silicon nitride layer of the RTN process is insufficient, a second silicon nitride layer must be formed to make up the thickness. Therefore, the RTN treatment can avoid outward diffusion and improve the leakage current; then, the thickness of the silicon nitride diffusion barrier layer 22 can be supplemented by a CVD process. According to another aspect of the present invention, the original position of the diffusion barrier layer 22 can also be- 19- This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 508804 A7 B7 V. Description of the invention (17) Doping agent of the first conductivity type (such as phosphorus) to avoid HSG silicon surface layer A negative dopant is formed on the interface between 21b and the diffusion barrier layer 22 to further prevent outward diffusion of the first conductive type dopant of the HSG silicon surface layer 21b. You can perform doped RTN treatment and / or CVD treatment here to further prevent the impurity impurity of the HSG silicon surface layer 2 lb from penetrating to the diffusion barrier layer 2 2. If doped with RTN, the HSG silicon surface layer 21b must be impure with a first conductivity type (such as PH3) and a reaction source (such as NH3) to form a silicon nitride diffusion barrier layer of phosphorus trihydrogen 2 2 . If the CVD process is performed, vapor deposition is performed on the silicon nitride and the source gas of the desired dopant in the HSG silicon surface layer 21b. As described above, the silicon nitride diffusion barrier layer 22 is formed by a CVD process without damaging the silicon on the surface of the HSG silicon surface layer 21b. When the doped RTN process is performed, the HSG silicon surface layer 21b must be exposed to a reaction chamber of PH3 and NH3 gas to form a silicon nitride diffusion barrier layer 22 of phosphorus trihydrogen. The ammonia gas used here reacts with the silicon of the HSG silicon surface layer 21b to form a first silicon nitride layer. PH3 is used to provide this layer of phosphorus dopant. The reaction chamber has a pressure of 5 to 500 Torr and a temperature of 500 to 900 ° C. You can dope CVD in the CVD reaction chamber by exposing HSG silicon surface layer 21b to SiH4 (or SiH2Cl2) and PH3 ammonia. The pressure of the CVD reaction chamber is between 0.1 and 200 Torr, and the temperature is between 550 and 85 ° C. According to another aspect of the present invention, a rapid temperature oxidation (RTO) process can be used to strengthen the silicon nitride diffusion barrier layer 2 2. Electrical conductivity. During RTO treatment, the diffusion barrier layer 2 and 2 are exposed to oxygen and nitrogen at a flow rate of 8 slm per second for about 120 seconds. You can maintain the temperature of the crystal bar at about 850 ° C and perform RTO in a heating chamber. -20- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 508804 A7 —— —___ m_ • V. Description of the invention (18) After the diffusion barrier layer 22 is formed, the diffusion barrier layer 2 is formed. A dielectric layer 23 is formed on 2. In the embodiment, the dielectric layer on the diffusion barrier layer 22 is formed of a high-insulation material of lithium oxide (T & 205). You can use the CVD technology to convert the diffusion barrier layer 22 is exposed to a Ta (OC2H5) 5 precursor with a flow rate of 300 seem and an oxygen flow rate of 1 slm to form a dielectric layer 23. The temperature of the cvd reaction chamber is maintained at about 410 ° C and the pressure is maintained at about 400 microtorr. Generally speaking, the CVD deposited TaW5 dielectric layer 23 has a thickness of about 60 and Then, the dielectric layer 23 is subjected to a densification treatment to improve the physical properties of the diffusion barrier layer 22. When the densification treatment is performed, the dielectric layer 23 must be provided with dry oxygen in the reaction chamber for about 30%. In seconds, the temperature of the reaction chamber is maintained at about 80.0. The densification process can eliminate impurities (such as carbon) that are not required for the Ta205 dielectric layer 23, thereby improving the silicon nitride diffusion barrier layer 22. Physical properties. You can also form several layers of ThO5, and perform UV-〇3 treatment on each layer of Ta205 before forming the next layer of Ta205. For example, form the first layer τ ^ 〇5 (mostly its thickness is After 30), you can heat the reaction chamber (the temperature of the reaction chamber to 300. (: about, full of ozone)) to irradiate the first layer of Ding Qi 05 with ultraviolet rays for about 15 minutes for UV_03 treatment. After the first layer of Ta205 is formed on a layer of Ding Qi 05 (for example, its thickness is 30%), the same process is performed. Finally, the dielectric layer 23 is exposed to 800. (: about dry oxygen, for the time being About 30 minutes. You can also use the rapid temperature annealing treatment for densification. Quick The rapid temperature annealing treatment is based on about 800 t of N 2 0 gas or wet oxidation technology in the reaction chamber. Another step of forming a capacitor is to form a high electrode 24 on the dielectric layer 23. The best material is titanium nitride. Other materials include tungsten-21-

508804 A7 B7 五、發明説明(19 ) 氮化物、雙層的欽氮化物、高溶點的金屬碎化物、雙層的 鎢氮化物、聚矽、鈦氮化物與數個高熔點金屬層的組合多 層、或是鈦氮化物與數個聚矽層的組合多層。 圖10的圖表顯示了根據本發明所形成的電容器,其電 容與電壓的曲線關圖。此處的圖表,係以表面面積89600 ’ μ m2的低電極電容器為基準。曲線30係以具備經過RTO處 理的氮化矽擴散阻擋層2 2與鋰氧化合物介電層2 3的電容 器為基準。曲線2 2係以不經RTO處理,由CVD形成的氮化 矽擴散障礙層2 2為基準。曲線3 2、3 4其氮化矽擴散障礙 層2 2的厚度約為2 0人。相形之下,曲線3 0其氮化矽擴散 障礙層2 2的厚度約為6人。由此得知,CVD形成的氮化矽 擴散障礙層2 2較厚的電容器(如曲線3 2、3 4 ),其 Cmin/Cmax比率(0·94/0·92)擴散障礙層2 2較薄、經過RTN 處理的電容器其Cmin/Cmax比率高而穩定。從曲線3 4亦可 看出,經過RTO處理的擴散障礙層2 2其總電容較為理想。508804 A7 B7 V. Description of the invention (19) Combination of nitride, double-layer cyanide nitride, high melting point metal fragments, double-layer tungsten nitride, polysilicon, titanium nitride, and several high-melting metal layers Multiple layers or a combination of titanium nitride and several polysilicon layers. Fig. 10 is a graph showing a capacitance versus voltage curve of a capacitor formed according to the present invention. The graph here is based on a low-electrode capacitor with a surface area of 89600 ′ μm2. The curve 30 is based on a capacitor having a silicon nitride diffusion barrier layer 22 and a lithium-oxide compound dielectric layer 23 processed by RTO. The curve 22 is based on the silicon nitride diffusion barrier layer 22 formed by CVD without RTO treatment. Curves 3, 2 and 4 have a thickness of about 20 persons for the silicon nitride diffusion barrier layer 2 2. In comparison, the thickness of the silicon nitride diffusion barrier layer 22 of the curve 30 is about 6 people. It is known that the Cmin / Cmax ratio (0 · 94/0 · 92) of the silicon nitride diffusion barrier layer 2 2 formed by CVD is relatively thick (such as curves 3 2, 3 4). Thin, RTN-treated capacitors have high and stable Cmin / Cmax ratios. It can also be seen from the curve 34 that the total capacitance of the diffusion barrier layer 22 after the RTO treatment is ideal.

圖12的圖表顯示了具有Ta205介電層的電容器,其電容 與電壓的曲線關圖。此處的圖表,係以表面面積89600 #m2 的低電極電容器為基準。曲線4 0係以使用RTN處理所形成 的未摻雜氮化矽擴散層22的電容器為基準。RTN處理其氨 氣流速約為0.9 slm,以850°C左右,進行約1分鐘。曲線 4 2係以使用RTN處理,於原位置摻雜含三氫化磷的氮化矽 擴散層22的電容器為基準。摻雜源PH3與反應源NH3的流 速分別為450 seem與0.9 slm左右。。此處RTN處理為時約1分 鐘,反應室的晶圓溫度約為850°C。曲線4 4係以經過CVD -22- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 508804 A7 ~ B7 五、發明説明(20 )· 處理的含三氫化磷的氮化矽擴散層22其電容器為基準。 Sil^Ch、NH3、PH3 的流速分別約為 30 seem、0.9 slm、450 seem。反應室的晶圓溫度約為7501:。曲線4 6係以具有掺 雜氮化矽擴散層2 2的電容器(其第一層係以RTN形成,第 二層係以CVD形成)為基準。第一層(RTN-SiN)係以上述曲 線4 2中的處理步騾所形成;第二層(CVD-SiN)係以上述曲 線4 4中的處理步騾所形成。結果一致顯示:含摻雜擴散 障礙層的曲線42、44、46其電容器的Cmin/Cmax分別為 0.97、0.97、0.98,顯然較為穩定。從此亦可看出:含摻雜 擴散障礙層的(曲線4 2、4 4、4 6 )總電容較高。曲線4 0所 代表的未摻雜RTN反應其Cmin/Cmax 0.77較低。 雖然對本發明做了以上詳述,我們必須體認:只要不超 出本發明專利申請範圍之精神與領域,仍可對上述實例加 以變更、替代、或些修改。 -23- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)The graph in Figure 12 shows the capacitance versus voltage curve of a capacitor with a Ta205 dielectric layer. The chart here is based on a low electrode capacitor with a surface area of 89600 # m2. The curve 40 is based on the capacitor of the undoped silicon nitride diffusion layer 22 formed by the RTN process. The RTN treatment has an ammonia flow rate of about 0.9 slm, and is performed at about 850 ° C for about 1 minute. Curve 42 is based on a capacitor that is doped with silicon nitride diffusion layer 22 containing phosphorus hydride in situ using RTN treatment. The flow rates of the doping source PH3 and the reaction source NH3 are about 450 seem and 0.9 slm, respectively. . The RTN process takes about 1 minute, and the wafer temperature in the reaction chamber is about 850 ° C. Curve 4 4 is based on CVD -22- This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 508804 A7 ~ B7 V. Description of the invention (20) · Phosphorous trinitride diffusion containing silicon nitride The layer 22 has its capacitor as a reference. The flow rates of Sil ^ Ch, NH3, and PH3 are approximately 30 seem, 0.9 slm, and 450 seem, respectively. The wafer temperature in the reaction chamber is approximately 7501 ° C. Curve 4 6 is based on a capacitor having a doped silicon nitride diffusion layer 22 (the first layer is formed by RTN and the second layer is formed by CVD). The first layer (RTN-SiN) is formed by the processing step in the above-mentioned curve 42; the second layer (CVD-SiN) is formed by the processing step in the above-mentioned curve 44. The results consistently show that the curves Cm / Cmax of the capacitors 42, 44 and 46 with the doped diffusion barrier layer are 0.97, 0.97, and 0.98, respectively, which are obviously more stable. It can also be seen from this that the total capacitance (curves 4 2, 4 4, 4 6) containing the doped diffusion barrier layer is higher. The undoped RTN reaction represented by curve 40 has a lower Cmin / Cmax of 0.77. Although the present invention has been described in detail above, we must realize that as long as the spirit and field of the patent application scope of the present invention are not exceeded, the above examples can still be changed, substituted, or modified. -23- This paper size applies to China National Standard (CNS) A4 (210X297 mm)

Claims (1)

04 8 8 ο 5 A B c D 六、申請專利範圍 1. 一種積體電路電容器,包括; •半導體基片上的第一電容器電極,第一電容器電極包 括了一個被第一導電類型摻雜氣體第一濃度的重新結晶 的非晶形矽層,以及重新結晶的非晶形矽層上的半球晶 粒(HSG)矽面層,該半球晶粒(HSG)矽面層其第一導電 類型滲雜劑第二濃度大於第一導電類型滲雜劑第一濃 度; HSG矽面層上的一擴散障礙層; 擴散障礙層上的一介電層;以及 介電層上的第二電容器電極。 2. 如申請專利範圍第1項之積體電路電容器,其中的擴散 障礙層包括了含第一導電類型掺雜氣體的氮化矽層,其 中介電層包括了叙氧化物層。 3. 如申請專利範圍第2項之積體電路電容器,其中的氮化 矽層包括以快速升溫氮化(RTN)形成的第一氮化矽層以 及以化學汽化沉積(CVD)形成的第二氮化矽層的複合 物。 4. 如申請專利範圍第2項之積體電路電容器,其中的鋰氧 化物層包括了數個短氧化物層的複成物。 -24- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)04 8 8 ο 5 AB c D 6. Scope of patent application 1. An integrated circuit capacitor comprising: • a first capacitor electrode on a semiconductor substrate, the first capacitor electrode comprising a first doped gas of a first conductivity type Concentration of the recrystallized amorphous silicon layer and the hemispherical grain (HSG) silicon surface layer on the recrystallized amorphous silicon layer, the hemisphere grain (HSG) silicon surface layer having a first conductivity type dopant second The concentration is greater than the first concentration of the first conductive type dopant; a diffusion barrier layer on the HSG silicon surface layer; a dielectric layer on the diffusion barrier layer; and a second capacitor electrode on the dielectric layer. 2. For the integrated circuit capacitor of item 1 of the patent application scope, the diffusion barrier layer includes a silicon nitride layer containing a dopant gas of the first conductivity type, and the dielectric layer includes an oxide layer. 3. The integrated circuit capacitor of item 2 of the patent application, wherein the silicon nitride layer includes a first silicon nitride layer formed by rapid temperature nitriding (RTN) and a second silicon nitride layer formed by chemical vapor deposition (CVD). Composite of a silicon nitride layer. 4. For the integrated circuit capacitor of item 2 of the patent application, the lithium oxide layer includes a complex of several short oxide layers. -24- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW90128278A 1997-04-22 1998-04-21 Integrated circuit capacitors having improved electrode and dielectric layer characteristics TW508804B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR19970014833 1997-04-22
KR19970016812 1997-04-30
KR1019970023381A KR100234417B1 (en) 1997-04-30 1997-06-05 Formation method of capacitor using hemispherical silicon layer

Publications (1)

Publication Number Publication Date
TW508804B true TW508804B (en) 2002-11-01

Family

ID=27625279

Family Applications (2)

Application Number Title Priority Date Filing Date
TW90128278A TW508804B (en) 1997-04-22 1998-04-21 Integrated circuit capacitors having improved electrode and dielectric layer characteristics
TW087106116A TW507362B (en) 1997-04-22 1998-04-21 Methods of forming integrated circuit capacitors having improved electrode and dielectric layer characteristics

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW087106116A TW507362B (en) 1997-04-22 1998-04-21 Methods of forming integrated circuit capacitors having improved electrode and dielectric layer characteristics

Country Status (1)

Country Link
TW (2) TW508804B (en)

Also Published As

Publication number Publication date
TW507362B (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US6624069B2 (en) Methods of forming integrated circuit capacitors having doped HSG electrodes
KR100222455B1 (en) Semiconductor device and method of fabricating method
KR100207444B1 (en) Capacitor fabrication method and its device having high dielectronic layer and electrode
KR100417855B1 (en) capacitor of semiconductor device and method for fabricating the same
JP2005150228A (en) Method of manufacturing semiconductor device
KR100338848B1 (en) Fabrication method of semiconductor device with hsg configuration
TW471161B (en) Method of manufacturing capacitor of semiconductor device
US20060134856A1 (en) Method for manufacturing capacitor of semiconductor element
TW508804B (en) Integrated circuit capacitors having improved electrode and dielectric layer characteristics
US6403455B1 (en) Methods of fabricating a memory device
KR100882090B1 (en) Method for fabricating capacitor of semiconductor device
US6335242B1 (en) Method for fabricating semiconductor device having a HSG layer
KR100247227B1 (en) High dielectric storage capacitor on rugged polisilicon electrodehaving stable capacitance with respect to applied voltages across electrodes and process for manufacturing the same
KR100504434B1 (en) Method of forming capacitor
JPH11145392A (en) Semiconductor capacitance element and its manufacture
KR100316064B1 (en) Method for manufacturing bottom electrod of capacitor in semiconductor device
JPH11163282A (en) Manufacture of semiconductor device
KR100266282B1 (en) Method of forming hsg thin films for semiconductor device
KR20020050521A (en) Capacitor in semiconductor device and method for manufacturing the same
JP3439381B2 (en) Method for manufacturing semiconductor device
JPH11163274A (en) Forming of capacitor using hemispherical grain silicon layer through selective evaporation process
JP2004063964A (en) Manufacturing method of semiconductor device
KR20000001568A (en) Storage capacitor producing method for minimizing deformation of bending shape according to influence of doping process
JP2005252051A (en) Manufacturing method of semiconductor device
KR20020027997A (en) method for manufacturing capacitor of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees