TW424303B - Manufacturing method for dual-gate CMOS device - Google Patents

Manufacturing method for dual-gate CMOS device Download PDF

Info

Publication number
TW424303B
TW424303B TW88110149A TW88110149A TW424303B TW 424303 B TW424303 B TW 424303B TW 88110149 A TW88110149 A TW 88110149A TW 88110149 A TW88110149 A TW 88110149A TW 424303 B TW424303 B TW 424303B
Authority
TW
Taiwan
Prior art keywords
layer
gate
silicon layer
type
dielectric layer
Prior art date
Application number
TW88110149A
Other languages
Chinese (zh)
Inventor
Shr-Ying Shiu
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW88110149A priority Critical patent/TW424303B/en
Application granted granted Critical
Publication of TW424303B publication Critical patent/TW424303B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

The present invention discloses a new manufacturing method for dual-gate CMOS device which can obtain small size semiconductor device and simpler manufacturing method. The present provides a new manufacturing method for dual-gate CMOS device which comprises an amorphous silicon layer; the semiconductor device comprises a semiconductor substrate and forming a plurality of isolation areas in the semiconductor substrate; then, forming P-well and N-well respectively and isolated by the isolation areas; sequentially forming a gate oxide and a polysilicon layer on top of the P-well and N-well; forming a first dielectric on the polysilicon layer; then, forming the first photoresist layer on the first dielectric layer and etching the first dielectric and the polysilicon layer in which the polysilicon layer is used to define the N-type gate area of dual-gate CMOS; further, depositing an amorphous silicon layer on the gate oxide and the surface of the first dielectric layer and forming a second dielectric on the surface of the amorphous silicon layer; then, depositing a spin-on glass on the second dielectric layer; using the chemical mechanical polishing to etch the spin-on glass, the second dielectric and the amorphous silicon layer until the first dielectric; lastly, using the back etching to etch the partly raised amorphous silicon and etching the first and the second dielectric in which the local amorphous silicon layer is used to define the P-type gate area of the dual-gate CMOS.

Description

424303 五、發明說明(1) 5 ~ 1發明領域: 本發明係有關於一種雙閘極互補型金氧半元件的製造 方法’其可製得小尺寸及高品質之半導體元件。 5~2發明背景: 傳統製造雙閘極互補型金氧半元件的方法,是先蝕刻 未摻雜多晶矽層(undoped polysilicon),以定義閘極位 置’在隨後之N型及P型源/汲極離子植入時,一併植入閘 極’以形成雙閘極互補型金氧半元件,並降低閘極電阻。 因元件日益縮小’造成短通道效應的顯現,是以源/没極 區的接面(j unc t i on)深度必須變淺’以防止短通道效應。 如此’源及極離子植入的能量及劑量都需變小,以達到 淺的接面厚度^但同時,閘極可能因離子植入的能量及劑 量縮減’降低了閘極之雜質濃度,使閘極之電阻上升,並 且因多晶空乏效應(poly depletion effect)造成元件起 始電壓Vt (threshold voltage)的不穩定。 第一 A圖至第一 G圖係一改善之習知雙閘極互補型金 氧半元件之製造方法。其主要為利用同步摻雜多晶矽( in-situ doped polysilicon)的方式’藉以提高閘極之雜 質濃度,降低閘極電阻,並改善起始電壓不穩定的現象β 一半導體元件其具有半導體基底,形成複數個淺溝槽隔離424303 V. Description of the invention (1) 5 ~ 1 Field of the invention: The present invention relates to a method for manufacturing a double-gate complementary metal-oxide half-element ', which can produce a small-sized and high-quality semiconductor element. 5 ~ 2 Background of the Invention: The traditional method of manufacturing a dual-gate complementary metal-oxide half-element is to first etch an undoped polysilicon layer to define the gate position 'in subsequent N-type and P-type sources / sinks. During the ion implantation, the gates are implanted together to form a double-gate complementary metal-oxide half-element and reduce the gate resistance. Due to the shrinking of the components, the short-channel effect appears, so the depth of the junction / source junction must be shallower to prevent short-channel effects. In this way, the energy and dose of source and pole ion implantation need to be reduced to achieve a shallow junction thickness ^ At the same time, the gate may reduce the impurity concentration of the gate due to the reduction of energy and dose of ion implantation, so that The resistance of the gate electrode rises, and the initial voltage Vt (threshold voltage) of the device is unstable due to the poly depletion effect. The first diagram A to the first diagram G are a method for manufacturing an improved conventional double-gate complementary metal-oxide half-element. It mainly uses the method of synchronously doped polysilicon to increase the impurity concentration of the gate, reduce the gate resistance, and improve the phenomenon of unstable initial voltage. A semiconductor device has a semiconductor substrate and is formed. Multiple shallow trench isolation

第5頁 五、發明說明(2) 區180於一半導體基底1〇〇内,分別形成p型井14〇與n型井 1 6 0於淺溝槽隔離區1 8 0之兩側。接著,將晶片送入氧化爐 官内’以乾式氧化法將表面上的矽氧化成厚度約在8〇到 1 5 0埃的二氧化矽’這二氧化矽層將作為半導體元件的閘 氧化層(gate oxide) 2 0 0。緊接著,以低壓化學氣相沉積 法(LPCVD)沉積厚度約1 5 0 0到3 0 0 0埃的多晶矽2 1 0在閘氧化 層200表面上方,在沉積多晶矽的過程中,同時通入民4氣 體參與反應’藉以達成同步摻雜(in-situ doped)的目的 ’形成P型多晶石夕層。接著’沉積一層光阻(photoresist) 2 3 0 ’再利用傳統微影技術’定義p型多晶石夕於n型井1 6 〇上 方,再進行P型多晶矽21 0的蝕刻,直至露出閘氧化層2 〇 0 ’然後利用低壓化學氣相沉積法(LPCVD)沉積一層多晶石夕 250於閘氧化層2〇〇與p型多晶矽層210上,在沉積多晶砂 250的過程中’同時通入PH3氣體參與反應,藉以達成同步 摻雜(in-si tu doped)的目的,形成N型多晶矽層。接著再 沉積一層光阻(pho t ores i s t) 2 70,利用傳統微影技術,定 義N型多晶矽於p型井1 40上方’再進行n型多晶矽250的餘 刻,直至露出P型多晶矽層。 接著再形成光阻(photoresist)層290,藉由傳統微影 技術’分別定義p塑多晶矽閘極及N型多晶矽閘極。再敍刻 5玄P型多晶石夕層21 〇與N型多晶發層2 5 0,用以形成雙閘極結 構3 10與330。接著,以高溫熱氧化法在雙閘極表面以及半 導體基底表面,形成一薄的氧化層5〇〇N、500P,再以光阻5. Description of the invention (2) The region 180 is formed in a semiconductor substrate 100, and a p-type well 14 and an n-type well 160 are formed on both sides of the shallow trench isolation region 180. Next, the wafer is sent into an oxidation furnace. The silicon dioxide layer on the surface is oxidized by dry oxidation to a thickness of about 80 to 150 angstroms. This silicon dioxide layer will be used as the gate oxide layer of the semiconductor device. (Gate oxide) 2 0 0. Immediately thereafter, low-pressure chemical vapor deposition (LPCVD) was used to deposit polycrystalline silicon with a thickness of about 15 to 300 angstroms. 2 1 0 was over the surface of the gate oxide layer 200. At the same time, polycrystalline silicon was passed through 4 The gas participates in the reaction 'for the purpose of simultaneous doping (in-situ doped)' to form a P-type polycrystalline stone layer. Then 'deposit a layer of photoresist 2 3 0' Reuse traditional lithography technology 'to define the p-type polycrystalline stone above the n-type well 160, and then etch the P-type polycrystalline silicon 21 0 until the gate oxide is exposed. Layer 200 ′ is then deposited using a low pressure chemical vapor deposition (LPCVD) method to deposit a layer of polycrystalline silicon 250 on the gate oxide layer 200 and the p-type polycrystalline silicon layer 210. During the process of depositing polycrystalline sand 250 ’ Inject PH3 gas to participate in the reaction, thereby achieving the purpose of simultaneous doping (in-si tu doped), and forming an N-type polycrystalline silicon layer. Next, a layer of photoresist 2 70 is deposited. Using conventional lithography technology, an N-type polycrystalline silicon is defined over the p-type well 140 and then an n-type polycrystalline silicon 250 is etched until a P-type polycrystalline silicon layer is exposed. Then, a photoresist layer 290 is formed, and a p-plastic polysilicon gate and an N-type polysilicon gate are defined by a conventional lithography technique ', respectively. Re-narrate the 5 x P-type polycrystalline stone layer 21 0 and the N-type polycrystalline hair layer 2 50 to form a double-gate structure 3 10 and 330. Next, a high-temperature thermal oxidation method was used to form a thin oxide layer of 500N and 500P on the surface of the double gate and the surface of the semiconductor substrate.

第6頁 4 2 43 “, 五、發明說明(3) * ----— 層370為罩幕,磷或砷為離子源39〇1 ’對p型井區14〇進行 磷或砷離子的植入,以形成N+型源/汲極3 90。去除光阻後 ,接下來再以光阻層41〇為罩幕,硼或氟化硼(Βί?2)為離子 源430 1,對Ν型井區160進行硼或氟化硼(Bf2)離子的植入 ,以形成P+型源/汲極4 3 0。然後再將光阻層移除,以完 雙閘極互補型金氧半元件。 ^ ^ 上述之改善的傳統雙閘極互補型金氧半元件製程,雖 然可以解決雙閘極因雜質濃度過低,所導致的起始電壓不 穩定的問題’但其仍有下述的缺點:對於同步摻雜( in-situ doped)P型閘極’因p型多晶矽與閘氧化層介面之 雜質濃度高’而易引起硼離子穿越閘氧化層,造成起始電 壓漂移。再者,如第一C圖所示’以光阻270為罩幕,姓刻 N型多晶矽層時’極易因光阻2 7 0對準偏差,而導致如第_ D圖275所示之N型與P型多晶矽層不連接,在互補型金氧半 元件電路中,會導致整體之電路故障。 5 - 3發明目的及概述: 鑒於上述之發明背景中’現有的半導體元件所產生的 諸多缺點’本發明的藉由提供一種雙閘極互補型金氧半元 件的製造方法,其可製得小尺寸及高品質之半導體元件。 本發明的另一目的在提供一種雙閘極互補型金氧半元Page 6 4 2 43 ", V. Description of the invention (3) * ----- The layer 370 is a mask, and phosphorus or arsenic is the ion source 3901 'for performing phosphorus or arsenic ions on the p-type well area 14o. Implanted to form N + source / drain 3 90. After removing the photoresist, the photoresist layer 41 is used as a mask, and boron or boron fluoride (Βί? 2) is used as the ion source 430 1. The well region 160 is implanted with boron or boron fluoride (Bf2) ions to form a P + source / drain 4 3 0. Then the photoresist layer is removed to complete the dual-gate complementary metal-oxide half-element ^ ^ The improved traditional dual-gate complementary metal-oxide half-element process described above can solve the problem of unstable initial voltage of the dual-gate due to the low impurity concentration, but it still has the following disadvantages : For synchronously doped (in-situ doped) P-type gates 'due to the high impurity concentration at the interface between the p-type polycrystalline silicon and the gate oxide layer', it is easy to cause boron ions to pass through the gate oxide layer and cause the initial voltage to drift. Furthermore, such as As shown in the first figure C, when the photoresist 270 is used as the cover, and the N-type polycrystalline silicon layer is engraved on the surname, the misalignment of the photoresist 2 70 is easily caused, which results in the N-type and P-type shown in Figure 275. The polycrystalline silicon layer is not connected, which will cause the overall circuit failure in the complementary metal-oxide-semiconductor circuit. 5-3 Purpose and Summary of the Invention: In view of the above-mentioned background of the invention, "many shortcomings of existing semiconductor devices" the present invention By providing a method for manufacturing a dual-gate complementary metal-oxide half-element, a small-sized and high-quality semiconductor element can be obtained. Another object of the present invention is to provide a double-gate complementary metal-oxide half-element.

第 頁 424303Page 424303

件的製造方法,复B n 、 、 -、有一非日日矽層(amorphous silicon )’再進行硼離之& ^ M ^ .次氟化硼離子植入摻雜,以避免硼離子 或氣化蝴離子穿缺明备/L a 牙艰閘虱化層而進入N型井區。 本發明的再一 件的製造方法,其 之半導體元件。 目的在提供一種雙閘極互補型金氧半元 可解決光阻未對準的問題,提供高品質 根據以上所述的目的,本發明提供一種小尺寸雙閘極 互補型金氧半元件的製造方法,其包含一非晶碎層。半導 體兀件具有一半導體基底,且複數個隔離區形成於一半導 體基底内。接著,^別形成P型井與N型井於隔離區之兩側 ,且依序形成一閘氧化層與同步摻雜(in_situ d〇ped) N 型多晶矽層於p型井與N型井上方,緊接著’第一介電質層 形成於N杳多晶矽層上方,然後定義第一光阻層於第一介 電質層上方’且触刻第一介電質層與多晶矽層,其N型多 晶矽層係用以定義雙閘極互補型金氧半元件結構之N型閘 極區域。再者’沉積一非晶矽層於閘氧化層與第一介電質 層表面上方’且形成—第二介電質層於該非晶矽層表面上 方。然後沉積一方疋塗式玻璃(spin-on glass S0G)於該第 二介電質層上方’利用化學機械研磨法方式,移除旋塗式 玻璃、第二介電質層與非晶矽層,直至第一介電質層。最 後,利用回蝕刻方式’先蝕刻部份凸起之非晶矽層,再蝕 刻第一與第二介電質層,其局部#晶矽層係用以定義雙閘The manufacturing method of the piece, a complex B n,,-, has an amorphous silicon layer (amorphous silicon), and then perform boron ionization & ^ M ^. Boron hypofluoride ion implantation doping to avoid boron ions or gas The butterfly ion penetrated the lack of preparation / La teeth and entered the N-type well area. Another method of manufacturing the present invention is a semiconductor device. The purpose is to provide a double-gate complementary metal-oxide half-element which can solve the problem of photoresist misalignment and provide high quality. According to the above-mentioned purpose, the present invention provides a manufacturing of a small-size double-gate complementary metal-oxide half-element A method comprising an amorphous fragmentation layer. The semiconductor element has a semiconductor substrate, and a plurality of isolation regions are formed in the semiconductor substrate. Next, do not form P-type wells and N-type wells on both sides of the isolation region, and sequentially form a gate oxide layer and in-situ doped (N-type) polycrystalline silicon layer above the p-type well and the N-type well. , Followed by 'the first dielectric layer is formed over the N 杳 polycrystalline silicon layer, and then the first photoresist layer is defined over the first dielectric layer' and the first dielectric layer and the polycrystalline silicon layer are etched, and its N-type The polycrystalline silicon layer is used to define an N-type gate region of a dual-gate complementary metal-oxide half-element structure. Furthermore, 'an amorphous silicon layer is deposited over the surface of the gate oxide layer and the first dielectric layer' and a second dielectric layer is formed over the surface of the amorphous silicon layer. Then depositing a spin-on glass (SOG) on the second dielectric layer 'removing the spin-on glass, the second dielectric layer and the amorphous silicon layer using a chemical mechanical polishing method, Up to the first dielectric layer. Finally, the etch-back method is used to etch part of the raised amorphous silicon layer first, and then etch the first and second dielectric layers. The local #crystalline silicon layer is used to define the double gate.

424303 五、發明說明(5) 極互補型金氧半元件結構之P型閘極區域。 5 - 4圖示簡單說明: 第一A圖係一改良之習知雙閘極互補型金氧半元件之 各步驟的動作剖面圖,其包含P型井、N型井與P型多晶矽 層之形成。 第一 B圖係一改良之習知雙閘極互補型金氧半元件之 各步驟的動作剖面圖,其包含N型多晶矽層之形成。 第一 C圖係一改良之習知雙閘極互補型金氧半元件之 各步驟的動作剖面圖,其包含N型多晶矽層上的光阻層之 形成。 第一 D圖係一改良之習知雙閘極互補型金氧半元件之 各步驟的動作剖面圖,其包含N型多晶矽層與P型多晶矽層 範圍的定義。 第一 E圖係一改良之習知雙閘極互補型金氧半元件之 各步驟的動作剖面圖,其包含N型之摻雜汲極形成。 第一 F圖係一改良之習知雙閘極互補型金氧半元件之 各步驟的動作剖面圖,其包含P型之摻雜汲極形成。 第一 G圖係一改良之習知雙閘極互補型金氧半元件之 各步驟的動作剖面圖,其包含源極、没極之形成。 第二圖係本發明實施例中雙閘極互補型金氧半元件之 各步驟的勤作示意圖,其包含P型井、N型井與N型多晶矽 層之形成。424303 V. Description of the invention (5) P-type gate region of the pole complementary metal-oxide half-element structure. 5-4 diagrams are briefly explained: The first A diagram is an operation cross-sectional view of each step of an improved conventional double-gate complementary metal-oxide half-element, which includes P-type wells, N-type wells, and P-type polycrystalline silicon layers. form. FIG. 1B is a cross-sectional view of the operation of each step of an improved conventional double-gate complementary metal-oxide half-element, which includes the formation of an N-type polycrystalline silicon layer. The first C diagram is an operation cross-sectional view of each step of an improved conventional double-gate complementary metal-oxide half-element, which includes the formation of a photoresist layer on an N-type polycrystalline silicon layer. The first D diagram is an operation cross-sectional view of each step of an improved conventional double-gate complementary metal-oxide half-element, which includes definitions of the range of an N-type polycrystalline silicon layer and a P-type polycrystalline silicon layer. The first E diagram is an operation cross-sectional view of each step of an improved conventional double-gate complementary metal-oxide half-element, which includes N-type doped drain formation. The first F diagram is an operation cross-sectional view of each step of an improved conventional double-gate complementary metal-oxide half-element, which includes the formation of a P-type doped drain. The first G diagram is an operation cross-sectional view of each step of an improved conventional double-gate complementary metal-oxide half-element, which includes the formation of a source and an electrode. The second figure is a schematic diagram of each step of the double-gate complementary metal-oxide half-element in the embodiment of the present invention, which includes the formation of a P-type well, an N-type well, and an N-type polycrystalline silicon layer.

五、發明說明(6) 第二圖係本發明 各步驟的動作示意圖 第四圓係本發明 各步驟的動作示意圖 第五圖係本發明 f步驟的動作示意圖 範圍的定義之形成。 第六圖係本發明 各步驟的動作示意圖 ’ N型多晶矽層與p型 第七圖係本發明 各步驟的動作示意圖 實施例中雙閘極互補型金氧半元件之 ’其包含非晶矽層之形成。 實施例中雙閘極互補型金氧半元件之 ,其包含旋塗式玻璃法之形成。 實施例中雙閘極互補型金氧半元件之 ,其包含N型多晶矽層與P型非晶碎層 實施例中雙閘極互補型金氧半元件之 ,其包含去除第一與第二介電質層後 非晶石夕層範圍的定義之形成。 實施例中雙閘極互補型金氧半元件之 ,其包含閘極、源極、汲極之形成 主要部份之代表符號: 1 0 0發底材 140 P型井 1 6 0 N型井 180 隔離區 20 0閘氧化層 21 0 P型非晶矽層 2 3 0光阻層 250 N型晶矽層 2 7 0 光阻層 275不連接的部份V. Description of the invention (6) The second diagram is the schematic diagram of the steps of the present invention. The fourth circle is the schematic diagram of the steps of the present invention. The fifth diagram is the schematic diagram of the f step of the present invention. The sixth diagram is a schematic diagram of the operations of the steps of the present invention 'N-type polycrystalline silicon layer and the p-type seventh diagram is a schematic diagram of the operations of the steps of the present invention in the embodiment of the dual-gate complementary metal-oxide half-elements which includes an amorphous silicon layer Formation. The double-gate complementary metal-oxide half element in the embodiment includes the formation of a spin-on glass method. The double-gate complementary metal-oxide half-element in the embodiment includes an N-type polycrystalline silicon layer and a P-type amorphous broken layer. The double-gate complementary metal-oxide half-element in the embodiment includes removing the first and second dielectrics. The definition of the range of the amorphous layer after the dielectric layer. In the embodiment, the double-gate complementary metal-oxide half-element includes the representative symbols of the main parts forming the gate, the source, and the drain: 1 0 0 substrate 140 P-type well 1 6 0 N-type well 180 Isolation area 20 0 Gate oxide layer 21 0 P-type amorphous silicon layer 2 3 0 Photoresist layer 250 N-type crystalline silicon layer 2 7 0 Photoresist layer 275 is not connected

第10頁 五、發明說明(7) 2 9 0 光阻層 3 1 Ο N型閘極 3 3 Ο P型閘極 3 7 0 光阻層 3 9 Ο N型摻雜汲極 3 9 Ο I磷或砷離子摻雜 41 0 光阻層 4 3 Ο P型摻雜汲極 4301 硼離子或氟化硼離子摻雜 5 0 0 N 氧化層 5 0 0 P氧化層 10砍底材 14 P型井 1 6 N型井 1 8 淺溝槽隔離區 2 0閘氧化層 21 N型多晶矽層 2 1 A N型閘極 22 第一四氧乙基矽層 22A研磨後的第一四氧乙基矽層 2 3 光阻層 2 4 P型非晶矽層 241 硼離子或氟化硼離子糝雜 24A 凸起之P型非晶矽層Page 10 V. Description of the invention (7) 2 9 0 Photoresistive layer 3 1 〇 N-type gate 3 3 〇 P-type gate 3 7 0 Photoresistive layer 3 9 Ο N-type doped drain electrode 3 9 Ο I phosphorus Or arsenic ion doped 41 0 photoresist layer 4 3 〇 P-type doped drain 4301 boron ion or boron fluoride ion doped 5 0 0 N oxide layer 5 0 0 P oxide layer 10 cut substrate 14 P-type well 1 6 N-type well 1 8 Shallow trench isolation area 2 0 Gate oxide layer 21 N-type polycrystalline silicon layer 2 1 AN gate 22 First tetraoxyethyl silicon layer 22A Polished first tetraoxyethyl silicon layer 2 3 Photoresist layer 2 4 P-type amorphous silicon layer 241 Boron ion or boron fluoride ion doped with 24A raised P-type amorphous silicon layer

4243 0 J4243 0 J

24Β研磨後的ρ型非晶矽層 24C Ρ型閘極 25第二四氧乙基矽層 25Α研磨後的第二四氧乙基矽層 2 6旋塗式玻璃 2 8摻雜汲極 5 - 5發明詳細說明: 第六圖顯示本發明實施例中半導體元件之剖面 二圖至第五圖則顯示此半導體元件之分解示意圖。於這= 圖式當中’相同的元件係以相同的標號來表示。 二 第二圖顯示出:半導體基底Μ係使用電性為ρ型的 底材、,然而Ν型矽底材也同樣可以使用。半導體元件,其 具有半導體基底,形成複數個淺溝槽隔離區18於一半導體 基底10内,分別形成Ν型井16與?型井14於淺溝槽隔離區^ 之兩測。接著,將晶片送入氡化爐管内,以乾式氧化法將 ,面上的碎氧化成厚度約在8〇到1 5〇埃的二氧化硬,這二 氧化矽層將作為半導體元件的閘氧化層(gate 〇xUe)20。 緊接著,以低壓化學氣相沉積法(CVD)沉積厚度約15〇〇到 3 0 0 0埃的多晶矽21在閘氧化層2〇表面上方,在沉積多晶矽 的過程中,同時通入PH3氣體參與反應,藉以達成同步摻 雜(in-si tu doped)的目的,形成n形多晶矽層,以降低閘24B polished p-type amorphous silicon layer 24C p-type gate 25 second tetraoxyethyl silicon layer 25A polished second tetraoxyethyl silicon layer 2 6 spin-on glass 2 8 doped drain electrode 5- 5 Detailed description of the invention: The sixth figure shows a cross section of a semiconductor element in the embodiment of the present invention. The second to fifth figures show the exploded schematic diagram of the semiconductor element. In this figure, the same components are denoted by the same reference numerals. The second figure shows that the M substrate of the semiconductor substrate uses a p-type substrate, but an N-type silicon substrate can also be used. A semiconductor element having a semiconductor substrate, forming a plurality of shallow trench isolation regions 18 in a semiconductor substrate 10, and forming N-type wells 16 and? The well 14 is measured at two places in the shallow trench isolation region ^. Next, the wafer is sent into a furnace tube, and the surface of the chip is oxidized by dry oxidation into hard dioxide with a thickness of about 80 to 150 angstroms. This silicon dioxide layer will be used as the gate oxide of the semiconductor device. Layer (gate 0xUe) 20. Next, a low-pressure chemical vapor deposition (CVD) method was used to deposit polycrystalline silicon 21 with a thickness of about 15,000 to 3,000 angstroms above the surface of the gate oxide layer 20. During the process of polycrystalline silicon deposition, PH3 gas was simultaneously introduced to participate Reaction to achieve the purpose of synchronous doping (in-si tu doped), forming an n-shaped polycrystalline silicon layer to reduce the gate

第丨2頁 五 '發明說明(9) 極的電阻率。再者,以低壓化學氣相沉積法(LPC VD)沉積 一層四氧乙基矽(TE0S)22在N型多晶矽21上方,其厚度約 3000到8000埃。接著,定義一層光阻23在四氧乙基石夕( TEOS) 22上方,再蝕刻四氧乙基矽層22與n型多晶矽21,定 義N型多晶矽於p型井丨4上方,用以當為雙閘極互補型金氧 半元件結構之N型閘極區域。 第二圖顯不出利用化學氣相沉積法(C V J))沉積一層 非晶矽24於四氧乙基矽層22與N型井16上方,利用離子植 入法植入硼離子或氟化硼2 4 I於非晶矽層2 4上,使其非晶 硬層24為P型晶碎層。利用非晶石夕層而不用多晶梦層,以 避免硼離子穿越閘氧化層,造成起始電壓漂移。再者,以 離子植入法進行硼離子或氟化硼離子摻入閘極,可以控制 閘極與閘氧化層介面之雜質濃度,同樣可以避免硼離子穿 越閘氧化層的問題。 第四圖顯示出利用化學氣相沉積法(CVD )沉積一層厚 度約3 0 0 0到8 0 0 0埃的四氧乙基矽層(TEOS ) 2 5於Ρ型非晶矽 層24上方。利用旋塗式玻璃法(spin-on glass SOG)26塗 佈一層介電材質於半導體元件上方,因為塗佈的介電材質 可隨著溶劑在晶片表面流動,而達成平坦化的目的,避免 隨後進行化學機械研磨(CMP)時,因圖形高低差異引起的 盤狀影響(d i sh i ng e f f ec t)而侵蝕到閘氧化層上的ρ型非 晶矽層24。其塗佈的介電材質主要有矽酸鹽(silicate)與Page 丨 2 Fifth 'Explanation of invention (9) Resistivity of pole. Furthermore, a layer of tetraoxyethyl silicon (TEOS) 22 is deposited on the N-type polycrystalline silicon 21 by a low pressure chemical vapor deposition (LPC VD) method, and has a thickness of about 3000 to 8000 angstroms. Next, define a layer of photoresist 23 over TEOS 22, and then etch the tetraoxyethyl silicon layer 22 and n-type polycrystalline silicon 21, and define the N-type polycrystalline silicon above the p-type well 4 and use it as N-gate region of double-gate complementary metal-oxide half-element structure. The second figure does not show the use of chemical vapor deposition (CVJ) to deposit a layer of amorphous silicon 24 over the tetraoxyethyl silicon layer 22 and the N-type well 16, and implantation of boron ions or boron fluoride using ion implantation. 2 4 I is on the amorphous silicon layer 24 so that the amorphous hard layer 24 is a P-type crystal crush layer. The amorphous stone layer is used instead of the polycrystalline dream layer to prevent boron ions from crossing the gate oxide layer and cause the initial voltage to drift. Furthermore, doping boron ions or boron fluoride ions into the gate by ion implantation can control the impurity concentration at the interface between the gate and the gate oxide layer, and can also avoid the problem of boron ions crossing the gate oxide layer. The fourth figure shows that a chemical vapor deposition (CVD) method is used to deposit a tetraoxoethylsilicon layer (TEOS) 25 having a thickness of about 300 to 800 angstroms over the P-type amorphous silicon layer 24. The spin-on glass SOG 26 is used to coat a layer of dielectric material on the semiconductor element, because the coated dielectric material can flow with the solvent on the wafer surface to achieve the purpose of flattening, avoiding subsequent During chemical mechanical polishing (CMP), the disc-shaped effect (di sh ng eff ec t) caused by the difference in pattern height erodes the p-type amorphous silicon layer 24 on the gate oxide layer. The coated dielectric materials are mainly silicate and

第13頁 4^43 ο 3 五 '發明說明(ίο) 石夕氧燒(siloxane)。 第五圖顯示出:利用化學機械研磨(CMP )的平坦化技 術移除旋塗式玻璃法(spin-on glass S0G)的介電材質、 四氧乙基矽層(TE0S)層25與P型非晶矽層24,直至四氧乙 基矽層22A表面暴露出。 第六圖顯示出:利用回蝕刻法,先蝕刻部份凸起之p 型非晶矽層24A,形成平坦之n型多晶矽層2丨與p型非晶矽 層24B之連接,以解決傳統做法,因對準誤差引起的不連 續問題。接著,再蝕刻研磨後的四氧乙基矽層22A與25入。 最後,由第七圖顯示出:接著再形成光阻( photoresist)層(未顯示出),藉由傳統微影技術,分別定 義P型非晶矽閘極及N型多晶矽閘極。再蝕刻該p型非晶矽 層24B與N型多晶矽層21,用以形成雙閘極結構24(:與以八。 以上所述僅為本發明之較佳實施例而已,並非以限 本發明之巾請專利範圍;凡其它未脫離本發明所揭示之^ 神下所完成之等效改變或修飾,均應包含在下述 : 請範圍内。 』甲Page 13 4 ^ 43 ο 3 Five 'Explanation of the invention (ίο) Shi Xi oxygen burning (siloxane). The fifth figure shows: the chemical mechanical polishing (CMP) planarization technology is used to remove the spin-on glass SOG dielectric material, the TEOS layer 25 and the P-type The amorphous silicon layer 24 is exposed up to the surface of the tetraoxyethyl silicon layer 22A. The sixth figure shows that by using the etch-back method, a part of the raised p-type amorphous silicon layer 24A is first etched to form a flat n-type polycrystalline silicon layer 2 丨 and the p-type amorphous silicon layer 24B is connected to solve the traditional method Discontinuities due to alignment errors. Next, the polished tetraoxoethyl silicon layers 22A and 25A are etched again. Finally, as shown in the seventh figure, a photoresist layer (not shown) is then formed, and the conventional lithography technology is used to define a P-type amorphous silicon gate and an N-type polycrystalline silicon gate, respectively. The p-type amorphous silicon layer 24B and the N-type polycrystalline silicon layer 21 are then etched to form a double-gate structure 24 (: and 八. The above is only a preferred embodiment of the present invention and is not intended to limit the present invention. Please refer to the patent scope of the towel; all other equivalent changes or modifications that do not depart from the ^ God disclosed in the present invention should be included in the following: please within the scope.

第14頁Page 14

Claims (1)

1 ‘ 一種雙閘極-餘二構今製造方至少包含下列步驟: 提供一半導體元件,其具有一半導體基底; 形成複數個隔離區於一半導體基底内; 分別形成Ρ型井與Ν型井於該隔離區之兩側: 依序形成一閘氧化層(ga t e ox i de )與一多晶矽層於該 P型井與N型井上方; 形成一第一介電質層於該多晶矽層上方; 定義一第一光阻層於該第一介電質層上方,且蝕刻該 第一介電質層與多晶矽層,其該多晶矽層係用以定義雙閛 極互補型金氧半元件結構之N型閘極區域; "L·積一非晶石夕層於該閉氧化層與第一介電質層表面上 方; 形成一第二介電質層於該非晶矽層表面上方; 沉積一旋塗式玻璃(spin-on glass SOG)於該第二介 電質層上方; 一 利用化學機械研磨法方式,移除該旋塗式玻璃、第一 介電質層與部份非晶矽層,直至第一介電質層;及 —利用回蝕刻方式,先蝕刻部份凸起之非晶矽層,再蝕 ϊ ί電f層及第二介電質層,直至N型多晶石夕層及P型 日曰石表面暴露出,其該局部非晶矽層係用以定義. 極互補型金氧半元件結構之Ρ形閘極區域。 # 2·如申請專利範圍第1項所述之雙閘極互 製造方法,其中上述之隔離區至少包含二氧=乳半元件1 'A dual-gate-consistent fabrication method includes at least the following steps: providing a semiconductor element having a semiconductor substrate; forming a plurality of isolation regions in a semiconductor substrate; forming a P-type well and an N-type well respectively Two sides of the isolation region: a gate oxide layer (ga te ox i de) and a polycrystalline silicon layer are sequentially formed over the P-type well and the N-type well; a first dielectric layer is formed over the polycrystalline silicon layer; A first photoresist layer is defined above the first dielectric layer, and the first dielectric layer and the polycrystalline silicon layer are etched. The polycrystalline silicon layer is used to define the N of the bi-polar complementary metal-oxide half-element structure. Type gate region; " L · Jiyi amorphous stone layer on the surface of the closed oxide layer and the first dielectric layer; forming a second dielectric layer on the surface of the amorphous silicon layer; depositing a spin Spin-on glass SOG is above the second dielectric layer; a chemical mechanical polishing method is used to remove the spin-on glass, the first dielectric layer and a portion of the amorphous silicon layer, Up to the first dielectric layer; and-using an etch-back method First etch a part of the raised amorphous silicon layer, and then etch the ίelectric f layer and the second dielectric layer until the surface of the N-type polycrystalline silicon layer and the P-type silicon stone are exposed, and the local amorphous The silicon layer is used to define a P-shaped gate region of a highly complementary metal-oxide half-element structure. # 2 · The double-gate mutual manufacturing method as described in item 1 of the scope of patent application, wherein the above-mentioned isolation area contains at least dioxygen = milk half element 第15頁 4:2 433 Q 3, 六、申請專利範圍 3. 如申請專利範圍第1項所述之雙閘極互補型金氧半元件 製造方法,其中上述之第一介電質層至少包含四氧乙基矽 (TEOS)。 4. 如申請專利範圍第1項所述之雙閘極互補型金氧半元件 製造方法,其中上述之第二介電質層至少包含四氧乙基矽 (TEOS)。 5. 如申請專利範圍第1項所述之雙閘極互補型金氧半元件 製造方法,其中上述之旋塗式玻璃(SOG)至少包含矽酸鹽 (silicate)或石夕氧烧(siloxane)。 6. 如申請專利範圍第1項所述之雙閘極互補型金氧半元件 製造方法,其中上述之N型井至少包含砷離子或磷離子。 7. 如申請專利範圍第1項所述之製造方法,其中上述之p型 井至少包含硼離子或氟化硼離子。Page 15 4: 2 433 Q 3, VI. Patent application scope 3. The manufacturing method of the dual-gate complementary metal-oxide half-element as described in item 1 of the patent application scope, wherein the above-mentioned first dielectric layer contains at least Tetraoxyethyl silicon (TEOS). 4. The method for manufacturing a dual-gate complementary metal-oxide half-element as described in item 1 of the scope of the patent application, wherein the second dielectric layer includes at least tetraoxyethyl silicon (TEOS). 5. The method for manufacturing a dual-gate complementary metal-oxide half-element as described in item 1 of the scope of patent application, wherein the above-mentioned spin-on glass (SOG) includes at least silicate or siloxane . 6. The method for manufacturing a dual-gate complementary metal-oxide half-element as described in item 1 of the scope of the patent application, wherein the above-mentioned N-type well contains at least arsenic ions or phosphorus ions. 7. The manufacturing method according to item 1 of the scope of the patent application, wherein the p-type well described above contains at least boron ions or boron fluoride ions. 第16頁Page 16
TW88110149A 1999-06-17 1999-06-17 Manufacturing method for dual-gate CMOS device TW424303B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88110149A TW424303B (en) 1999-06-17 1999-06-17 Manufacturing method for dual-gate CMOS device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88110149A TW424303B (en) 1999-06-17 1999-06-17 Manufacturing method for dual-gate CMOS device

Publications (1)

Publication Number Publication Date
TW424303B true TW424303B (en) 2001-03-01

Family

ID=21641152

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88110149A TW424303B (en) 1999-06-17 1999-06-17 Manufacturing method for dual-gate CMOS device

Country Status (1)

Country Link
TW (1) TW424303B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311107A (en) * 2012-03-09 2013-09-18 旺宏电子股份有限公司 Metal silicide production method, and semiconductor structure with application of metal silicide
TWI463567B (en) * 2012-03-06 2014-12-01 Macronix Int Co Ltd Method of manufacturing metal silicide and semiconductor structure using the same
US8969202B2 (en) 2012-03-07 2015-03-03 Macronix International Co., Ltd. Method of manufacturing metal silicide and semiconductor structure using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463567B (en) * 2012-03-06 2014-12-01 Macronix Int Co Ltd Method of manufacturing metal silicide and semiconductor structure using the same
US8969202B2 (en) 2012-03-07 2015-03-03 Macronix International Co., Ltd. Method of manufacturing metal silicide and semiconductor structure using the same
CN103311107A (en) * 2012-03-09 2013-09-18 旺宏电子股份有限公司 Metal silicide production method, and semiconductor structure with application of metal silicide
CN103311107B (en) * 2012-03-09 2016-01-20 旺宏电子股份有限公司 Make the method for metal silicide and apply its semiconductor structure

Similar Documents

Publication Publication Date Title
TW408424B (en) Semiconductor device with silicon replacing structure on the insulated layer and the manufacture method thereof
TWI536462B (en) Integrated circuits having protruding source and drain regions and methods for forming integrated circuits
CN100353525C (en) Strained channel cmos device with fully silicided gate electrode and its forming method
CN1914722B (en) Method for fabricating strained silicon-on-insulator structures and strained silicon-on-insulator structures formed thereby
TWI246168B (en) Multi-structured Si-fin and method of manufacture
TWI220301B (en) Method for manufacturing embedded non-volatile memory with two polysilicon layers
TWI231602B (en) A novel method of fabricating variable length vertical transistors
US5972754A (en) Method for fabricating MOSFET having increased effective gate length
TW201530696A (en) Methods to integrate SONOS into COMS flow
TW201013838A (en) Method of forming finned semiconductor devices with trench isolation
TW200908325A (en) Semiconductor device and method for manufacturing semiconductor device
CN101393894B (en) Semiconductor device and manufacturing method thereof
TWI613816B (en) Semiconductor device and methods for forming the same
US6403425B1 (en) Dual gate oxide process with reduced thermal distribution of thin-gate channel implant profiles due to thick-gate oxide
US6624043B2 (en) Metal gate CMOS and method of manufacturing the same
TWI307532B (en) Soi bottom pre-doping merged e-sige for poly height reduction
JP2009522796A (en) Semiconductor device structure having low and high performance devices of the same conductivity type on the same substrate
CN102479694A (en) Formation method of metal gate and MOS transistor
JP2001308318A (en) Semiconductor device and its manufacturing method
US6716691B1 (en) Self-aligned shallow trench isolation process having improved polysilicon gate thickness control
TWI235450B (en) Method for producing semiconductor device
TW424303B (en) Manufacturing method for dual-gate CMOS device
TWI231969B (en) Method for forming dual-gate MOS and interconnect with self-aligned contact
KR20040060565A (en) Gate oxide manufacturing method using dummy gate and doping of the semiconductor device
TW501205B (en) Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees