TW501205B - Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET - Google Patents

Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET Download PDF

Info

Publication number
TW501205B
TW501205B TW089120365A TW89120365A TW501205B TW 501205 B TW501205 B TW 501205B TW 089120365 A TW089120365 A TW 089120365A TW 89120365 A TW89120365 A TW 89120365A TW 501205 B TW501205 B TW 501205B
Authority
TW
Taiwan
Prior art keywords
layer
island
gate
region
silicon
Prior art date
Application number
TW089120365A
Other languages
Chinese (zh)
Inventor
Yanjun Ma
Douglas Tweet
David R Evans
Yoshi Ono
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/410,346 external-priority patent/US6200866B1/en
Application filed by Sharp Kk filed Critical Sharp Kk
Application granted granted Critical
Publication of TW501205B publication Critical patent/TW501205B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/2807Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being Si or Ge or C and their alloys except Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates

Abstract

A method of fabricating a MOSFET is provided, including: depositing an oxide layer on a silicon substrate for device isolation; forming a silicon based alloy island above a gate region in the substrate, wherein the silicon based alloy comprises a silicon germanium alloy or a silicon tin alloy or another alloy of group IV-B elements; building a sidewall about the silicon based alloy island; forming a source region and a drain region in the substrate; removing the silicon based alloy island, thereby leaving a void over the gate region; filing the void and the areas over the source region and the drain region; and planarizing the upper surface of the structure by chemical mechanical polishing. Alternative embodiments providing conventional and raised source/drain structures are disclosed.

Description

501205 五、發明說明(l) 曼明背景與摘要 本申請案是中請序號〇9/〇 28,157之部分的延續案,在 1 9 98年2月23曰申請,標題是"藉由化學機械研磨法和氮化 物的取代以提升的源極和汲極製造平面的金屬氧化物半導 體場效電晶體π,由David Russell Evans 和Sheng Teng501205 V. Description of the invention (l) Manmin's background and abstract This application is a continuation of the part of the serial number 009 / 〇28,157, which was filed on February 23, 1998, and the title is " Chemical mechanical polishing and replacement of nitrides to produce planar metal-oxide-semiconductor field-effect transistors π with raised source and drain, by David Russell Evans and Sheng Teng

Hsu所發明。 本發明與積體電路的製造相關,特別地與使用取代閘極 形成金屬氧化物半導體場效電晶體裝置的製造有關。。 金屬氧化物半導體 為人所熟知的。如此 4,702,792號中顯示 技術。 的結構在Chow等所擁有的美國專利 ’其揭露用以製造小尺寸傳導通道的 取代或是"鑄造”製程是在有很多閘極材料可以選 造電晶體的-種好的候選方法。然而,因為在現 : 製程之控制性的問題,此製程並不被廣泛的使用。 尺寸(gate critical dimension)的控制。Hsu invented. The present invention relates to the manufacture of integrated circuits, and in particular to the manufacture of metal oxide semiconductor field effect transistor devices using gate replacement. . Metal oxide semiconductors are well known. Such technology is shown in No. 4,702,792. The structure in the US patent owned by Chow et al. 'Discloses the replacement or "casting" process for making small-sized conductive channels is a good candidate method in which there are many gate materials to choose transistors. Because of the controllability of the process, this process is not widely used. Control of gate critical dimension.

Chatterjee等在IEDM技術文摘,第77?頁,1 988车 經寫了取代閘極製程,特定是使用多晶矽為二已 料。使用多晶矽為取代閘極材料的缺點是在使用矽_ 化物有選擇性的濕式蝕刻製程移除多晶矽的困難。' 一 ¢1Chatterjee et al. Wrote in the IEDM Technical Digest, page 77 ?, 1 988, that they replaced the gate process, specifically using polycrystalline silicon as the second material. The disadvantage of using polycrystalline silicon as a replacement gate material is the difficulty in removing polycrystalline silicon using a selective wet etching process using silicon compounds. '' A ¢ 1

Yagishita等也在IEDM技術文摘,第785頁 了取代閘極製程。Yagishita也揭露使用夕 、8年’寫 極材料。 夕日日石夕為取代閘Yagishita et al. Also in the IEDM Technical Digest, page 785, replace the gate process. Yagishita also revealed the use of 8 to 8 years' writing materials. Xi Xi Ri Shi Xi to replace the gate

第5頁— 501205 91. 2. 2 6 _案號89120365_年月日__ 五、發明說明(2)Page 5 — 501205 91. 2. 2 6 _ Case No. 89120365 _ year month day __ 5. Description of the invention (2)

Evans等,在專利申請案序號09/028, 157,在1998年2月 2 3日申請,本申請案是其部分連續案,揭露使用矽氮化物 為取代閘極材料。使用矽氮化物為取代閘極材料是有效的 但是使用乾式蝕刻製程式樣化矽氮化物取代閘極可以是困 難的。為了最佳化乾式矽氮化物蝕刻,蝕刻劑在矽及矽二 氧化物兩者中選擇是必須的。 迄今為止,鍺化矽和其他IV-B群元素的合金一直沒有被 使用為在製造金屬氧化物半導體場效電晶體裝置期間假的 或是取代閘極。 擁有一取代閘極金屬氧化物半導體場效電晶體製造製程 與在取代閘極材料及用於間隔物和其他結構相鄰材料之間 改善的蝕刻選擇性是有益的。雖然之前提到的參考討論金 屬氧化物半導體場效電晶體裝置的製造,但是它們並不提 供本發明的優點。 本發明的一個目的是提供一種製造金屬氧化物半導體場 效電晶體裝置的方法’其中源極和汲》極區域在閘極形成之 前就已經形成。 本發明的另一個目的提供金屬氧化物半導體場效電晶體 裝置,其可能在傳統的矽和矽在絕緣體上(si 1 icon-on-insulator)的基材兩者上建造。 本發明的進一步目的是為了提供金屬氧化物半導體場效 電晶體裝置的製造,其允許使用任何種類的閘極介電材 料。 本發明的另一目的是為了提供有高度傳導材料的金屬氧Evans et al., Filed a patent application serial number 09/028, 157, and filed on February 23, 1998. This application is part of a continuum that discloses the use of silicon nitride as a replacement gate material. The use of silicon nitride as a replacement gate material is effective, but the use of dry etch patterning silicon nitride to replace the gate can be difficult. To optimize dry silicon nitride etching, an etchant must be selected between silicon and silicon dioxide. To date, alloys of silicon germanium and other IV-B group elements have not been used as dummy or to replace gates during the fabrication of metal oxide semiconductor field effect transistor devices. It would be beneficial to have a replacement gate metal-oxide-semiconductor field-effect transistor manufacturing process and improved etch selectivity between replacement gate materials and for spacers and other structurally adjacent materials. Although the aforementioned references discuss the manufacture of metal oxide semiconductor field effect transistor devices, they do not provide the advantages of the present invention. An object of the present invention is to provide a method of manufacturing a metal oxide semiconductor field effect transistor device ', in which the source and drain regions are formed before the gate is formed. Another object of the present invention is to provide a metal-oxide-semiconductor field-effect transistor device, which may be built on both conventional silicon and a silicon-on-insulator substrate. A further object of the present invention is to provide the manufacture of a metal oxide semiconductor field effect transistor device, which allows the use of any kind of gate dielectric material. Another object of the present invention is to provide metal oxygen with a highly conductive material

O:\66\66693.ptc 第6頁 五、__月(3) ___ 2物半導體場效電晶體裝置的製造 鋼,用作閘極電極。 耐火的金屬或是 ^發明的進一步目的是為了提供金 電曰曰體裝置的製造,其中製造製 ^化物+導體場效 控制性以達成想要的閘極關鍵尺寸,加強對蝕刻製程的 2此,本發明的方法包括:在基材的 成:化石夕,或是相似的合金島, 材料域之上,形 使用作為群IV-R开去:Γ 夕島(錯化石夕在此 、 兀素中較偏好合金使用的一個代矣,Μ: >fei 子)周圍建立氧化物或是氮化物 個代表〖生例 區域和、方搞π ^ 々疋虱化物的側牆,在基材形成源極 於:因:5 ί ’移除錯化石夕島’❿不需移除島四周的廣 :滿! ί =域之上留下空隙;和依步驟以閘極結構 阏搞二隙,^驟較好包括:在空隙的閘極區域之上形成一 甲1極介電質,且以閘極電極材料填滿剩餘的空隙。 移除鍺化矽(或是其它IV-B群合金)島的步驟較好包括在 島之上和源極區域和汲極區域之上的地區沉積一非島材料 層二其允許島的合金選擇性的溶解或是以其他方式移除但 不需同時移除沉積的非島材料層。非島材料層當要提供提 升的源極/汲極區域可以是多晶石夕(或者對於熟知此領域 的人為夕晶石夕(Polycrystalline silicon)),或是當提供 傳統的源極/沒極區域,可以是適當的介電如矽氮化物或H 氧化物。在以閘極結構填滿空隙之後,本方法偏好包括藉 由化學機械研磨法平面化結構的上層區域。在本發明的具 體實施例中,其中提升的源極/汲極區域形成,本方法進O: \ 66 \ 66693.ptc Page 6 V. __month (3) ___ 2 Manufacturing of semiconductor field effect transistor devices Steel is used as the gate electrode. A further purpose of refractory metal or invention is to provide the manufacture of gold electro-mechanical devices, in which manufacturing materials + conductor field effect control are achieved to achieve the desired critical gate size, and to strengthen the etching process. The method of the present invention includes: forming a base material: a fossil evening, or a similar alloy island, on a material domain, and using the shape as a group IV-R to open: Γ evening island (the wrong fossil evening is here, Wusu One of the preferred alloys used by the medium and preferred alloys, M: > feizi) An oxide or nitride is established around the side wall representing the case area and π ^ lice compounds, forming a source on the substrate Extreme: Cause: 5 ί 'Remove Wrong Fossil Evening Island' ❿ Do not need to remove the wide area around the island: Full! ί = leaving a gap above the domain; and stepping up the second gap with the gate structure according to the steps, the step preferably includes: forming a 1-pole dielectric on the gate region of the gap, and using the gate electrode material Fill up the remaining gaps. The step of removing silicon germanium (or other IV-B group alloy) islands preferably includes depositing a layer of non-island material on the island and above the source and drain regions, which allows the alloy selection of the island It can be dissolved or removed in other ways without removing the deposited non-island material layer at the same time. The non-island material layer may provide polycrystalline silicon (or polycrystalline silicon for those who are familiar with this field) when providing the source / drain region, or when providing traditional source / non-polar The region can be a suitable dielectric such as silicon nitride or H oxide. After filling the gap with the gate structure, the method preference includes planarizing the upper region of the structure by chemical mechanical polishing. In a specific embodiment of the present invention, in which a raised source / drain region is formed, the method proceeds

第7頁 五、發明說明(4)Page 7 V. Description of Invention (4)

一步包括;在結構的 結構以形成與源極, 電極。 ^層表面沉積一金屬層;且金屬化此 閘極區域和汲極區域有電性的接觸的 凰簡述 明的第一具體實施例 氧化物半導體場效電 在有提升的 晶體製造的 圖1 - 1 2描述根據本發 源極/沒極區域下,金屬 依次步驟。 圖13描述在發在姓络粞 圖“描述在本乂基材上的裝置。 後的裝置結構。另—具體貫施例中’障礙層沉積之 圖1 5描述完成的裝置結構和沉積的障礙層。 _ 材成的裝置和在藉由氧植入隔離法(SIM0X)基 材上積的閘極障礙層。 物描述根據本發明的另一具體實施例,金屬氧化 物+導體%效電晶體裝置製造的依次步驟。 致具體實施例的詳細描述 現,轉向圖例,先從圖1開始,一基材,在本例子中其 ,唯 單晶矽基材,通常在2 0描述。在這裡使用的"基材"或 ’’石夕基材”表示一大塊矽,單晶矽基材,或是矽在絕緣體上 (soi)基材,包括藉由氧植入隔離法(SIM〇x)的基材。基 2 〇將會經過特別處理以形成電性上作用且/或隔離地區,參 其適合之後將在此描述裝置的製造。預先處理可以包括, 不需限制,傳統的n-井^611)及/或p-井定義和隔離;以多 晶石夕或是氡化層重填造成渠溝隔離;傳統或是完全嵌壁式One step includes the structure of the structure to form the source and electrode. ^ A metal layer is deposited on the surface of the layer; and the first specific embodiment of the first specific embodiment of the metallization that electrically contacts the gate region and the drain region is described in Fig. 1-1 2 describes the sequential steps of metal according to the source / dead region of the present invention. FIG. 13 depicts the device described on the substrate “Description of the device on this substrate. The structure of the device after the device. In addition-the specific embodiment of the embodiment of the barrier layer deposition Figure 15 describes the completed device structure and deposition obstacles _ Material device and gate barrier layer deposited on the substrate by oxygen implantation isolation (SIM0X). Description According to another specific embodiment of the present invention, metal oxide + conductor% efficiency transistor Sequential steps of device manufacturing. For a detailed description of the specific embodiment, turn to the illustration, starting with Figure 1, a substrate, in this example, the only single-crystal silicon substrate, usually described in 20. Used here The "substrate" or "Shi Xi substrate" means a large piece of silicon, single crystal silicon substrate, or silicon on insulator (soi) substrate, including by oxygen implantation isolation (SIM). x) substrate. The base 20 will be specially treated to form electrically active and / or isolated areas, and the fabrication of the device will be described here after it is suitable. Pre-processing can include, without limitation, the traditional definition and isolation of n-wells 611) and / or p-wells; trenches and trench isolation caused by refilling with polycrystalline stone or tritium; traditional or fully embedded walls formula

第8頁 501205 五、發明說明(5) 的區域氧化(L0C0S);和/或矽在絕緣體上台地的結構,由 區域石夕氧化法(L0C0S)或是蝕刻所產生。如此的步驟可以 混合或是個別地使用。矽在絕緣體上(s〇I)基材可以藉由 高劑量氧植入單晶矽而製造,之後退火(anneal ing),用 以形成藉由氧植入隔離法(SIM0X),黏結的矽晶圓和蝕平 (etchback),異質磊晶(heteroepitaxy)等等。藉由氧植 入隔離法(SIM0X)的一個例子是在大約2〇〇k電子伏特植入 卜2 Xl〇i8cm2氧的劑量。晶圓之後在13〇〇()(:至^“退火4 到ίο個小時。埋的氧化層厚度大約是3〇〇奈米。一旦 先前處理完成之後’基材可以平面&,換句話說,藉由- 學機械研磨法(C Μ Ρ )平坦化全部的平面。 1 氧化層22在基材20上形成厚度約5_3〇奈米(nm)。(要、、主 j圖=沒有依比例)氧化層22在此是指銲塾(_ 化 22。屬於週期表]^4群元辛合全的絲 曰 的材枓層之後沉積在氧化 層22上。百先在此描述的圖解例子中,Ιν_β 較偏好是錯化多晶石夕,其藉由化學氣相沉積:二。金 厚度大約150奈米至50〇奈米。鍺化石夕在 ,貝 人田从"#" u " ’你此將會使用作為適 δ 2作島材料,IV_B群元素合金的代表 下來描述。 μ列卞具接 錯化矽層較偏好以SiixGex來表示,丨中χ 〇. 5範圍内,但是可以是約〇 . 〇5到約丨· 〇範圍中的任音.: 錯化矽合金層藉由微影和沉積的鍺化矽層各向里性二 …4肖由刻移除的錄化㈣地區在圖i以虛線在23Page 8 501205 V. Description of the invention (5) The area oxidation (L0C0S); and / or the structure of the silicon on the insulator, is produced by the area stone oxidation method (L0C0S) or etching. Such steps can be mixed or used individually. The silicon-on-insulator (SOI) substrate can be manufactured by implanting single-crystal silicon with high-dose oxygen and then annealing (annealing) to form silicon crystals that are bonded by the oxygen implant isolation method (SIM0X). Round and etchback, heteroepitaxy and so on. An example of the method of isolation by oxygen implantation (SIM0X) is implantation of oxygen at a dose of about 2 × 10 × 8 cm2 at about 2000 kV. The wafer is then at 1300 () to anneal for 4 to 8 hours. The thickness of the buried oxide layer is about 300 nanometers. Once the previous process is completed, the substrate can be flat & The entire plane is planarized by the mechanical polishing method (CMP). 1 The oxide layer 22 is formed on the substrate 20 to a thickness of about 5-30 nanometers (nm). ) The oxide layer 22 refers to the welding layer (_ 22 22. It belongs to the periodic table] ^ 4 groups of elements, the material layer is deposited on the oxide layer 22. In the illustrated example of Bai Xian described here, Ιν_β Preference is given to misformed polycrystalline stones, which are deposited by chemical vapor deposition: 2. The thickness of gold is about 150 nanometers to 50 nanometers. Germanium fossils are here, and Beirentian Cong "# " u " ' You will use it as a suitable δ 2 as the island material, and the representative of the IV_B group element alloy will be described below. The μ column with a mismatched silicon layer is more preferably represented by SiixGex, in the range of χ 0.5, but can be Any sound in the range of about 0.05 to about 丨 · 〇 .: The distorted silicon alloy layer is formed by lithography and the deposited silicon germanium layer, respectively. Lane 4 ... of two Shaw removed by the recorder is in the area of (iv) in FIG. 23 in phantom i

501205 91.2.2 6 ____案號89120365_年月曰 修正___ 五、發明說明(6) - 指示。在島地區2 4之外,區域2 3的蝕刻在墊氧化層2 2停 止。換句話說,鍺化矽層2 3在閘極區域被遮罩且之後鍺化 矽的剩餘部分加以蝕刻形成島2 4。在遮罩的π島π地區2 4之 外的墊氧化層可以在蝕刻過程中部分的蝕刻或是完全地移 除,雖然也可以當作後面步驟的I虫刻停止。在此圖解具體 實施例中,墊氧化層2 2沒有移除。 鍺化矽島2 4為了閘極電極形成一取代π鑄造"。換句話 說’鍺化矽島2 4形成將會變成閘極電極的介電影像。這影 像較偏好地將會用作金屬閘極電極形成的圖案或是形式, 或是另外材料的閘極電極而不需分別的微影步驟,其將會 在之後描述。舉例來說,島2 4的影像可以轉移到高度以不 純物摻雜多晶矽或是鍺多晶矽合金材料閘極電極。 在此圖形描述可以是η通道或是ρ通道種類的金屬氧化物 半‘體%效電晶體的形成。假如兩者種類在製造期間同時 形成’在ρ低劑量(或是輕度以不純物摻雜)汲極(^⑽)離 子植入期間,使用光阻遮罩11通道電晶體。低劑量汲極 (LDD)、區域,26和28,顯示在圖1,是由氟化硼(βρ2)離子 植入或是電漿以不純物摻雜(ρ 1 a s m a d 〇 p i n g )形成。較好 的離子劑量是5-50 x l〇i3cm2,氟化硼(BFS)離子能量為1〇k 電子伏特到80k電子伏特。離子能量足夠低以致於沒有離 穿越錯化碎層。光阻之後剝去且為,低劑量沒極 (LDD)離子植入,使用新光阻遮罩p通道電晶體。藉由或 是碟離子植入形成低劑量汲極(LDD)區域,離子劑量為 5-5 0 X l(^cm2,砷的離子能量為4〇k電子伏特到ι〇&電^501205 91.2.2 6 ____Case No. 89120365_ Year Month Amendment ___ V. Description of Invention (6)-Instructions. Outside of island region 24, etching of region 23 stops at pad oxide layer 22. In other words, the silicon germanium layer 23 is masked in the gate region and then the remaining silicon germanium layer is etched to form islands 24. The pad oxide layer outside the masked π island π area 2 4 can be partially etched or completely removed during the etching process, although it can also be stopped as a worm in the subsequent step. In this illustrated embodiment, the pad oxide layer 22 is not removed. Silicon germanium islands 2 4 replace π casting for gate electrode formation. In other words, ’SiGe 2 2 4 forms a dielectric image that will become the gate electrode. This image will preferably be used as a pattern or form of a metal gate electrode or a gate electrode of another material without a separate lithography step, which will be described later. For example, the image of island 24 can be transferred to a gate electrode that is highly doped with polycrystalline silicon or germanium polycrystalline silicon alloy material. The figure here describes the formation of a metal oxide half-mass-effect transistor that can be of the η-channel or ρ-channel type. If both types are formed at the same time during the manufacturing process, a photoresist is used to mask the 11-channel transistor during low-dose (or lightly doped with impurities) drain (^ ⑽) ion implantation. The low-dose drain (LDD), regions, 26 and 28, shown in Figure 1, are formed by implantation of boron fluoride (βρ2) ions or plasma doping with impurities (ρ 1 a s m a d o p i n g). The preferred ion dose is 5-50 x 10 cm3, and boron fluoride (BFS) ion energy ranges from 10 kV to 80 kV. The ion energy is low enough so that no ion crosses the fragmentation layer. The photoresist was peeled off and a low-dose non-polar (LDD) ion implant was used to mask the p-channel transistor with a new photoresist. A low-dose drain (LDD) region is formed by or ion implantation. The ion dose is 5-5 0 X l (^ cm2, and the ion energy of arsenic is 40k electron volts to ι〇 & electricity ^).

第10頁 501205 案號 89120365 年 月 修正 五、發明說明(7) 伏特,填的離子能量為1 0 k電子伏特到6 0 k電子伏特。在圖 中顯示圖解的電晶體顯示不是η通道電晶體就是p通道電晶 體。 為了加厚墊氧化物2 2的目的可以執行一個選擇性的氧化 步驟,其導致在島邊緣”鳥嘴”(b i r d ’ s b e a k )的形成,如 圖2之3 0和3 2描述。鳥嘴可以增強在閘極電極邊緣閘極氧 化物的崩潰(breakdown)電壓。氧化步驟可以藉由用氧加 熱圖1的結構,增厚沒有被’’島π 24覆蓋的墊氧化物區域 2 2,來完成,其為人所熟知。在此氧化步驟期間,在低劑 量汲極(L D D )的離子擴散且延伸超越了鳥嘴的長度,如圖2 所示。石夕氮化物層3 4藉由任何最先進製程如電漿輔助化學 氣相沉積(PECVD)或是低壓化學氣相沉積(LPCVD),在結構 上沉積,導致如圖2所示的組成。在另外的具體實施例 中,氧化物可以使用為層3 4的材料。 假設矽氮化物用在層34 (圖2 ),之後晶圓容易受異方性 氮化物的餘刻,其在鍺化石夕層侧牆的四周留下一層薄的氮 化物3 6和3 8,如圖3所示。 現在參照圖4,一層不同於用於島24IV-Β群的合金材料 沉積於圖3結構上。層4 0 (圖4 )是指由非島材料所形成因為 它必須不同於島2 4的材料,以允許不需同時移除用於層4 0 的材料而方便的移除島。在本發明的第一具體實施例中, 島4 0比較偏好沉積的多晶石夕。多晶石夕層4 0沉積至晶圓之合 金島,島的側牆,和源極和汲極區域上。層4 0比鍺化矽層 2 4厚ff Τ ”的量。層4 0另外在此也是指第一多晶矽層4 0。此Page 10 501205 Case No. 89120365 Amendment V. Description of the invention (7) Volt. The ion energy filled in is from 10 kV to 60 kV. The transistor shown in the figure shows either an n-channel transistor or a p-channel transistor. For the purpose of thickening the pad oxide 22, a selective oxidation step may be performed, which results in the formation of a "bird's beak" (b i r d s s b e a k) at the edge of the island, as described in Figs. 2 30 and 32. The bird's beak can increase the breakdown voltage of the gate oxide at the edge of the gate electrode. The oxidation step can be accomplished by heating the structure of Fig. 1 with oxygen to thicken the pad oxide region 22 which is not covered by the 'island π 24, which is well known. During this oxidation step, ions at the low-dose drain (L D D) diffuse and extend beyond the length of the bird's beak, as shown in Figure 2. The stone nitride layer 34 is deposited on the structure by any of the most advanced processes such as plasma-assisted chemical vapor deposition (PECVD) or low pressure chemical vapor deposition (LPCVD), resulting in a composition as shown in FIG. 2. In another embodiment, the oxide may be used as the material of the layer 34. Suppose that silicon nitride is used in layer 34 (Figure 2). After that, the wafer is susceptible to the anisotropic nitride. It leaves a thin layer of nitrides 3 6 and 3 8 around the side wall of the germanium fossil layer. As shown in Figure 3. Referring now to FIG. 4, a layer of alloy material different from that used for the island 24IV-B group is deposited on the structure of FIG. Layer 40 (Figure 4) refers to a non-island material because it must be different from the material of island 24 to allow the island to be easily removed without simultaneously removing the material used for layer 40. In the first specific embodiment of the present invention, the island 40 prefers deposited polycrystalline stones. Polycrystalline stone layer 40 is deposited on the golden island of the wafer, the sidewall of the island, and the source and drain regions. The layer 40 is thicker than the silicon germanium layer 24 by ff T ”. The layer 40 is also referred to herein as the first polycrystalline silicon layer 40. This

O:\66\66693.ptc 第11頁 501205 五、發明說明(8) 結構之後經由化學機械研磨法(CMP)處理,以暴露鍺化矽 島24,如圖5所示。 之後光阻遮罩33應用而覆蓋住裝置的作用(active)區 域。在場區域35(以交叉排線顯示於圖6)的多晶矽層4〇並 沒有被光阻覆蓋。多晶矽層4 0和任何基材2 〇適合的部分加 以蚀刻,移除場區域35。阻層33之後剝落。在此時只有p_ 通道和n通道電晶體兩者的源極區域26和汲極區域2 8被多 晶石夕層4 0覆蓋。晶圓之後覆蓋一層氧化物(在圖6以虛線3 7 顯示)’其厚度相等或是大於沉積在場區域35的氧化物深 度。氧化層經過化學機械研磨法(CM p )平面化,停在多晶 石夕和鍺化矽層的上層表面。高選擇性的研磨液(slurry ),_ 其比多晶矽更快移除氧化物,對於此製程是令人滿意的。 此導致隔離氧化物區域4 1,如圖7和8所示,其圍住多晶矽 層40。區域41使在基材上的裝置與另一個隔離。區域41, 只在圖7和8顯示,在描述與圖5和圖6相關聯的步驟之後, 應該了解在其它圖也存在。 下個步驟是源極/汲極離子植入繼續存在於圖5 _ 7的多晶 石夕區域40。假設p和η通道裝置兩者正在處理中,且植入先 在Ρ通道裝置執行,光阻應用而遮罩η通道電晶體。ρ通道 源極/没極區域,在圖5包括多晶矽區域4〇,以bF2離子植 入。較好的離子劑量是1 · 0到5· 0 X 1 〇15cm2,bf2離子能量f 1 〇k電子伏特到8 Ok電子伏特。此外,離子能量是足夠的低 以致於沒有離子可以植入而穿過閘極介電層和進入通道區 域。離子植入產生ρ通道電晶體的提升p+源極區域和p+汲極O: \ 66 \ 66693.ptc Page 11 501205 V. Description of the invention (8) The structure is then processed by chemical mechanical polishing (CMP) to expose the silicon germanium island 24, as shown in FIG. 5. The photoresist mask 33 is then applied to cover the active area of the device. The polycrystalline silicon layer 40 in the field region 35 (shown in cross-hatched lines) is not covered by a photoresist. The polycrystalline silicon layer 40 and any suitable portion of the substrate 20 are etched to remove the field region 35. The resist layer 33 is then peeled off. At this time, only the source region 26 and the drain region 28 of both the p-channel and n-channel transistors are covered by the polycrystalline silicon layer 40. The wafer is covered with a layer of oxide (shown by dashed line 37 in Fig. 6) 'which is equal in thickness or greater than the depth of the oxide deposited in the field region 35. The oxide layer is planarized by chemical mechanical polishing (CM p) and stops on the upper surface of the polycrystalline silicon and silicon germanium layers. Highly selective slurries, which remove oxides faster than polycrystalline silicon, are satisfactory for this process. This results in an isolation oxide region 41, which surrounds the polycrystalline silicon layer 40 as shown in Figs. Region 41 isolates the device on the substrate from another. The area 41 is only shown in FIGS. 7 and 8. After describing the steps associated with FIGS. 5 and 6, it should be understood that it also exists in other figures. The next step is that source / drain ion implantation continues to exist in the polycrystalline region 40 of Figs. 5-7. It is assumed that both p and n-channel devices are being processed, and implantation is performed first in the p-channel device. Photoresist is applied while the n-channel transistor is masked. The p-channel source / dead region includes polycrystalline silicon region 40 in FIG. 5 and is implanted with bF2 ions. The preferred ion dose is from 1.0 to 5.0 X 1 015 cm2, and the bf2 ion energy is f 10 k electron volts to 8 Ok electron volts. In addition, the ion energy is low enough that no ions can be implanted through the gate dielectric layer and into the channel region. Ion implantation produces lifted p + source region and p + drain of p-channel transistor

第12頁 501205 五、發明說明(9) 區域。光阻剝落且為了 n通道源極/汲極離子植入,新光阻 用以遮罩p通道電晶體。 藉由神(或是磷)離子的植入形成η通道源極/汲極,離子 劑量是1· 0-5· ο X 1 015cm2,砷的離子能量4〇k電子伏特到 100k電子伏特或磷,的能量1〇k電子伏特到6〇k電子伏特。遮 罩的。阻剝落且晶圓在惰性氣體周圍的空氣中,溫度在大約 8 〇 〇 C到11 〇 〇它,退火丨5秒到6 〇分鐘。p通道電晶體的源極 和汲極摻雜不純物而變成p+,同時η通道電晶體的相對應 區域摻雜不純物而變成η+。 參照圖9 ,鍺化矽島24藉由多種方法如高選擇性的濕式 蝕刻’之任一種而移除。有很多濕式蝕刻製程可以選擇性肇 地移除矽上的鍺化矽,包括醋酸,硝酸和氟化氫的混和 物^其顯示在石夕上餘刻鍺化石夕的選擇性要好過1 〇 〇 : 1,在 矽氧化物上要好過1〇〇〇:1。氫氧化銨(〇4〇11)和過氧化氫 (札〇2)和水的混和物會選擇性地蝕刻鍺化矽,比矽至少快5 倍。過氧化氫(Η2〇2),氟化氫(HF)和水的混和物也會蝕刻 石夕上的錯化石夕。任何這些濕式蝕刻方法將會導致圖9的組 成。因為在鍺化矽島24蝕刻期間高選擇性和合適的圖案控 制3,鍵尺寸’換句話說,閘極的長度,可以被控制。換 句話說’間隔物36和38的内側牆在此揭露的製程過程期 在閘極區域的表面保持接近正常以至於在製造步驟期間卩 極的關鍵尺寸不會改變。在顯示的具體實施例中,閘極的 ^鍵尺寸是在〇 · 1 〇到〇 · 2微米之間,較好是大約〇 ·丨3微 米,其延伸跨越從區域26到區域28,閘極區域的寬度。移Page 12 501205 V. Description of Invention (9) Area. The photoresist is peeled off and the new photoresist is used to mask the p-channel transistor for n-channel source / drain ion implantation. The η channel source / drain is formed by implantation of god (or phosphorus) ions, the ion dose is 1 · 0-5 · ο X 1 015cm2, the ion energy of arsenic is 40k electron volts to 100k electron volts or phosphorus , The energy of 10k electron volts to 60k electron volts. Masked. Resistance to spalling and the wafer is in the air around the inert gas, the temperature is about 8000C to 11000, and it is annealed for 5 seconds to 60 minutes. The source and drain of the p-channel transistor are doped with impurities to become p +, while the corresponding regions of the n-channel transistor are doped with impurities to become η +. Referring to FIG. 9, the silicon germanium island 24 is removed by any of various methods such as highly selective wet etching '. There are many wet etching processes that can selectively remove silicon germanium on silicon, including a mixture of acetic acid, nitric acid, and hydrogen fluoride ^ It shows that the selectivity of germanium fossils on the stone is better than 100: 1. Better than 1000: 1 on silicon oxide. A mixture of ammonium hydroxide (0401) and hydrogen peroxide (200) and water will selectively etch silicon germanium, at least 5 times faster than silicon. Mixtures of hydrogen peroxide (Η202), hydrogen fluoride (HF), and water will also etch the wrong fossils on Shi Xi. Any of these wet etching methods will result in the composition of FIG. Because of the high selectivity and appropriate pattern control during the etching of the silicon germanium island 24, the key size ', in other words, the gate length can be controlled. In other words, the inner walls of the spacers 36 and 38 are disclosed herein during the manufacturing process. The surface of the gate region remains close to normal so that the critical dimensions of the poles do not change during the manufacturing steps. In the specific embodiment shown, the gate bond size is between 0.1 μm and 0.2 μm, preferably about 0.3 μm, which extends from region 26 to region 28. The gate The width of the area. shift

第13頁 5〇l2〇5 $:、發明說明(10) 除的區域,#巾島24是m將會成4完成#€晶體的通 運區域42之上’在此是指空隙45。冑隙45也是 之上的空隙。 ^ 在移除鍺化矽之後,原始墊氧化物22的剩餘暴露出來, 圖9只有線22指不。雖然這氧化層能夠當作閘極介電 移除:二匕矽島之後,墊氧化物的剩餘沒有污染或是傷 害疋:可::。墊氧化物22能夠為了未遮罩的起始 以的污染。因⑶,氧化物塾心;= :=移除,通道區域42暴露,其需要在閘極…· ㊉雖然形成閘⑮介電最料的方法是在通道區域42中的 路矽上重新長介電,如此的重長將導致邊緣變薄,盆後 產生的裝置有不想要的低間極崩潰電ϋ效果 :猎=照圖2所描述的前述氧化步驟審慎的設計 二m匕步驟期間’鳥嘴30,32在錯化石夕島的周圍形 i執,閘極邊緣的墊氧化物變厚。假如小心地控制剩 =氧:=落’"腳趾"將會在間隔物(36,3 形成,其補償邊緣的變薄。 広1 以介電可以藉由某種形式的沉積而形成。這1 人I::不同於矽氧化物的材料可能被使用,其他》 :紹(二:性質如高介電常數和/或高崩潰強度如氮 戈是氧仆4 化鋁(Α12〇3),氧化鈦(Τί〇2),氧化錘(Zr〇2) 次疋乳化组(Ta2〇5)。除此之外,結(zirc〇nium)氧化物和2Page 13 5〇2205 $ :, the description of the invention (10), the area of # towel island 24 is m will be 4 to complete 4 # crystal above the transport area 42 ′ here means the gap 45. The gap 45 is also a gap above. ^ After removing silicon germanium, the remainder of the original pad oxide 22 is exposed. In FIG. 9, only line 22 indicates that it is not. Although this oxide layer can be used as the gate dielectric to remove: after the silicon island, the remaining pad oxide is not polluted or injured. The pad oxide 22 can be used for unmasked contamination. Because of ⑶, the oxide core is removed; =: = removed, the channel area 42 is exposed, which needs to be at the gate electrode ... · 料 Although the best way to form the gate dielectric is to re-grow the dielectric on the road silicon in the channel area 42 Electricity, such a heavy length will cause the edges to become thin, and the device produced after the basin has an unwanted low-interval collapse effect: hunting = careful design of the previous oxidation step as described in Figure 2 The mouths 30 and 32 are shaped around the island of the staggered fossil, and the pad oxide at the edge of the gate becomes thicker. If the residual oxygen is carefully controlled, the "toe" will be formed at the spacer (36,3), which compensates for the thinning of the edges. 広 1 Dielectric can be formed by some form of deposition. These 1 people I :: materials other than silicon oxide may be used, others》: Shao (II: properties such as high dielectric constant and / or high collapse strength such as nitrogen oxide are aluminum oxide (Al2O3) , Titanium oxide (Τί〇2), oxidized hammer (Zr〇2) secondary emulsification group (Ta205). In addition, zirconium oxide and 2

第14頁 五、發明說明(11) :l^a,fnium)氧化物化合物可以使用,如以鋁摻雜的鍅氧 釦以矽摻雜的鍅氧化物,铪氧化物,以銘摻雜的°於氧 裡並不需要M A ?氧化物。在這些例子中,在製程流程 ^ ^ t #1 9 述氧化步驟形成鳥嘴且這步驟可從製程 管使用哪種方\ “子曰/儿積(ALD)而沉積。最終結果,不 在門極入雷^是閘極介電層44的形成,如圖10所示。 構上:導圖後,閘極電極材料46沉積在整個結 其它不== 斤;Γ;而沉積 延伸超過源極,閘極和汲桎巴、=以使用而填滿空隙且編 姐(Ta),糾Pt),或是二:二域;金屬,如鶴⑺,1 (Cu),與障礙t =,或疋咼傳導性的金屬銅 是氮化鎢ΐ:;:氮=(TiN),氮化咖),或 矽也可使用作閘極的形成。一 平面化以移除多=二;: 間幽的部分,導致如 選擇性的自動對準金屬石夕化技術(Wici 行以最小化閘極,源極,和、方 )I私了以執 12,矽化物層52,和54可以絲由权玉的寄生電阻。參照% 屬…術(一e)製以任= 對準金屬矽化技術的一個問題e 、▲=火。先則自動 物36,38未蝕刻的金屬而盘$ = : /可能藉由剩餘在間隔 ,、源極和/或汲極短路。此問題 501205 五、發明說明(1¾ 一非常短的化學機械研磨法步驟而解 經由”嚴格的研磨 決。 圖12的裝置現在準備好導體金屬化,其可藉由熟知、 項技藝的人士的任何技術以形成源極,閘極區域、和:;此 區域的電極,其中電極與它們個別的區域有電性#接U 。⑮ 可以藉由傳統的式樣化和餘刻金屬化如與紹合金,而達必 成。然而’因為表面已經全面平面化,使用銅和化與機 研磨法(CMP)的嵌入金屬化可以輕易的實施。 干微爾 現在參照圖13,結構顯示在藉由氧植入隔離法(sim〇x) 基材之上’其有大塊矽層6 〇和埋入的氧化物層6 2。剩下的 結構由之前用過的相同元素的參考號碼指示。 | 圖14和15顯示本發明的另一具體實施例,其中障礙層沉 積在圖9的空隙45。障礙層70較偏好是適合的障礙層材曰料 如氮化鈦(TiN),氮化鈕(TaN)或是氮化鎢(WN) 一起與銅閘 極電極73使用,其隨後沉積在空隙45(見圖15)。在^極和 汲極上多餘的障礙材料藉由化學機械研磨法移除,其導致 對閘極電極73障礙材料自然的自我對齊,如所示。圖丨6顯 示在藉由氧植入隔離法(SIM0X)基材上圖15的具體實施” 2。圖14 -16的閘極介電44藉由任合適當的方法如高介電 常數材料如氧化鈕(T 〇5 ),氧化鈦(T i 〇2 ),氧化鍅 (Zr〇2),氧化铪(Hf〇2)的沉積而提供,其中任何一種都可毫 $擇性的以不論是矽或是鋁以不純物摻雜,或其它適合的 介電材料。相似的製程可用以提供在顯示的具&實施二和 參照圖1 0描述的閘極介電4 4。Page 14 V. Description of the invention (11): l ^ a, fnium) oxide compounds can be used, such as aluminum doped erbium oxide with silicon doped erbium oxide, erbium oxide, doped with ming ° MA? Oxide is not needed in oxygen. In these examples, the oxidation process is described in the process flow ^ ^ t # 1 9 to form a bird's beak and this step can be deposited from which method process tube is used. The final result is not at the gate. The lightning strike is the formation of the gate dielectric layer 44, as shown in Figure 10. On the structure: After the map, the gate electrode material 46 is deposited on the entire junction. Gates and drains, = fill gaps with use and edit (Ta), correct Pt), or two: two domains; metals, such as cranes, 1 (Cu), and obstacles t =, or 疋咼 Conductive metallic copper is tungsten nitrideΐ:;: Nitrogen = (TiN), nitrided nitride), or silicon can also be used for gate formation. One planarization to remove multiple = two; Partly, such as selective auto-alignment metallization technology (Wici line to minimize gate, source, and square), it is easy to implement 12, silicide layers 52, and 54 can be used by Quanyu Parasitic resistance. Reference% belongs to ... (1e) system = a problem with the technology of metal silicidation e, ▲ = fire. First, 36, 38 unetched metal and disk $ =: / may borrow By remaining Interval, source and / or drain are shorted. This problem is 501205. V. INTRODUCTION TO THE INVENTION (1¾-a very short CMP step to resolve the "strict grinding process". The device of Figure 12 is now ready for conductor metallization, It can use any technique known to those skilled in the art to form the source, gate region, and: the electrodes in this area, where the electrodes are electrically connected to their individual areas. 可以 can be used by traditional Patterning and post-metallization can be achieved with alloys such as Shao. However, because the surface has been fully planarized, embedded metallization using copper and mechanical polishing (CMP) can be easily implemented. Dry Weir Now Referring to Fig. 13, the structure is shown on a substrate by oxygen implantation isolation (sim0x), which has a bulk silicon layer 60 and a buried oxide layer 62. The remaining structure is used before 14 and 15 show another specific embodiment of the present invention, in which a barrier layer is deposited in the void 45 of FIG. 9. The barrier layer 70 is preferred to be a suitable barrier layer material such as nitride. Titanium (TiN), nitride button (Ta N) or tungsten nitride (WN) is used with the copper gate electrode 73, which is then deposited in the gap 45 (see FIG. 15). The excess barrier material on the anode and drain is removed by chemical mechanical polishing, This results in a natural self-alignment of the barrier electrode 73 barrier material, as shown. Figure 6 shows a specific implementation of Figure 15 on a substrate by oxygen implantation isolation (SIM0X) "2. The gates of Figures 14-16 Dielectric 44 by any suitable method such as a high dielectric constant material such as an oxide button (T 〇5), titanium oxide (T i 〇2), hafnium oxide (ZrO2), hafnium oxide (Hf〇2) Any one of them can be selectively doped with impurities, whether silicon or aluminum, or other suitable dielectric materials. A similar process can be used to provide & implementation 2 and gate dielectric 44 as described with reference to FIG. 10.

ΠΠ

第16頁 501205 案號 89120365 91. 2. 2 6 年月曰 修正 五 發明說明(13) 其它I V - B群合金如錫化矽也可用為以上所描述製程中假 的或是取代的閘極。相似的處理步驟和製程變數也可以用 於鍺化矽和用於以這些材料相似化學性質為基礎的錫化矽 合金製程。這些新的假的閘極材料也可用作其他裝置的製 造如鐵電 I己憶、體(ferroelectric memory )。 本發明的前述具體實施例使用提升的源極/汲極組成; 圖1 7 - 2 2的具體實施例有傳統的源極/汲極構造。圖1 7, 1 8,1 9和2 0分別地顯示,相等於顯示在圖3,4,5和9第一 具體實施例中的步驟。和在兩組圖中相同的參考號碼用於 相同的元素。在圖1 7,在形成島2 4和側牆間隔物3 6,3 8之 後接著是執行植入步驟以植入合適的或P是η種類的摻雜物 (取決於要形成裝置的種類)進入基材2 0。在執行適當的退 火以啟動摻雜物之後,結果就是形成源極和没極區域 100 , 102 〇 在此具體實施例中,下一步驟(圖1 8 )是要沉積一層的介 電1 0 6,如矽二氧化物,至合金島,島側牆和源極和汲極 區域上。層1 0 6也稱作沉積在前述結構上的非島材料,或 是"介電材料的第一層"。如同圖4的層4 0 ,層1 0 6比鍺化矽 (”島”)層2 4要厚Τ的量(見圖4 )。結構之後經過化學機械研 磨法處理以暴露鍺化石夕島2 4,如圖1 9所示。在圖1 9,源極 /汲極區域1 0 0 / 1 0 2分別被二氧化矽層1 1 0 / 1 1 2所覆蓋。用 於裝置隔離的場區域形成可參照上文圖6 - 8所示和描述予 以實踐。 在此時,鍺化矽島2 4藉由任何選擇性移除島2 4材料但不Page 16 501205 Case No. 89120365 91. 2. 2 6 6 Rev. 5 Description of the invention (13) Other I V-B group alloys such as silicon tin can also be used as false or replaced gates in the process described above. Similar processing steps and process variables can also be used for silicon germanium and silicon tin alloy processes based on the similar chemistry of these materials. These new fake gate materials can also be used in the manufacture of other devices such as ferroelectric memory and ferroelectric memory. The foregoing specific embodiments of the present invention use a raised source / drain composition; the specific embodiments of FIGS. 17-2 have a conventional source / drain structure. Figures 17, 18, 19, and 20 are shown separately, which is equivalent to the steps shown in the first specific embodiment of Figures 3, 4, 5, and 9. The same reference numbers are used for the same elements as in the two sets of figures. In FIG. 17, the formation of islands 24 and sidewall spacers 3 6, 3 8 is followed by an implantation step to implant a suitable or P-type dopant (depending on the type of device to be formed) Enter the substrate 2 0. After performing appropriate annealing to start the dopants, the result is the formation of source and non-electrode regions 100, 102. In this specific embodiment, the next step (FIG. 18) is to deposit a layer of dielectric 1 6 , Such as silicon dioxide, to alloy islands, island sidewalls, and source and drain regions. The layer 106 is also referred to as a non-island material deposited on the aforementioned structure, or is the "first layer of a dielectric material". Like layer 40 in FIG. 4, layer 106 is thicker than silicon germanium ("island") layer 24 by an amount T (see Figure 4). The structure was then chemically and mechanically ground to expose the germanium fossil xidao 24, as shown in Fig. 19. In FIG. 19, the source / drain regions 100/102 are covered by the silicon dioxide layers 110/112. Field area formation for device isolation can be practiced with reference to the illustrations and descriptions shown in Figures 6-8 above. At this time, the silicon germanium island 2 4 by any selective removal of the island 2 4 material but not

O:\66\66693.ptc 第17頁 501205 案號 89120365 年 月 曰 修正 五、發明說明(14) 移除側牆間隔物3 6,3 8,或是二氧化矽區域1 1 0和1 1 2之方 法而移除。有許多濕式蝕刻方法,熟知於熟習此領域的人 士,其選擇性地移除在二氧化矽或氮化矽上的鍺化矽。移 除步驟的結果是在閘極區域上裝置的空隙4 5,或是通道區 域42的創造,如圖20所示。 在圖1 7 - 2 2的具體實施例中,閘極介電層4 4的形成(圖 2 1 )和閘極電極材料層4 6的沉積跟先前參照圖1 0所描述的 一樣。隨著以閘極結構填滿空隙4 5之後是藉由平面化結構 的上層表面至如圖22線118所大致顯示的高度。平面化步 驟藉由化學機械研磨法實施。 最後,第二層的介電122沉積在平面化結構上。通道 1 2 4,1 2 6,1 2 8經由層1 2 2形成,包括通道1 2 6延伸到閘極 結構130和通道124和128,其也穿越第一介電層110和112 分別延伸到源極和汲極區域1 0 0,1 0 2。一適當的金屬層 (沒有顯示)之後沉積在結構上且進入通道1 2 4,1 2 6,1 2 8 以形成與源極區域1 0 0,閘極區域1 3 0,汲極區域1 0 2電性 接觸的電極,完成此裝置。 因此,一種使用鍺化矽或是相似金屬,取代閘極形成金 屬氧化物半導體場效電晶體已經揭露。雖然形成結構較偏 好的方法,和應用其至S I ΜOX基材,已經揭露,但是應該 了解不需如違反增附申請專利範圍所定義的本發明範疇, 進一步的變化和修改也可以產生。 本發明使用新的材料於假的或是取代的閘極,其可以用 較好的閘極關鍵尺寸的控制而選擇性地移除。特別地說,O: \ 66 \ 66693.ptc Page 17 501205 Case No. 89120365 Amendment V. Description of Invention (14) Remove spacers 3, 6, 3, or silicon dioxide area 1 1 0 and 1 1 2 method to remove. There are many wet etching methods known to those skilled in the art that selectively remove silicon germanium on silicon dioxide or silicon nitride. The result of the removal step is the creation of a gap 45 in the gate region, or the creation of a channel region 42, as shown in FIG. In the specific embodiment of FIGS. 17-22, the formation of the gate dielectric layer 44 (FIG. 21) and the deposition of the gate electrode material layer 46 are the same as previously described with reference to FIG. 10. As the gap 45 is filled with the gate structure, the upper surface of the planarized structure is reached to the height shown generally by line 118 in FIG. 22. The planarization step is performed by a chemical mechanical polishing method. Finally, a second layer of dielectric 122 is deposited on the planarized structure. Channels 1 2 4, 1 2 6, 1 2 8 are formed via layers 1 2 2 including channels 1 2 6 extending to the gate structure 130 and channels 124 and 128, which also extend through the first dielectric layers 110 and 112 to The source and drain regions are 100, 102. An appropriate metal layer (not shown) is then deposited on the structure and enters the channel 1 2 4, 1 2 6, 1 2 8 to form a source region 1 0 0, a gate region 1 3 0, and a drain region 1 0 2 Electrically contacted electrodes complete this device. Therefore, a metal oxide semiconductor field effect transistor using silicon germanium or a similar metal instead of a gate has been disclosed. Although a better structure formation method and its application to SI Mox substrates have been disclosed, it should be understood that further changes and modifications can be made without violating the scope of the invention as defined by the scope of the appended patent application. The present invention uses new materials for fake or replaced gates, which can be selectively removed with better control of the critical dimensions of the gates. In particular,

O:\66\66693.ptc 第18頁 501205 案號 89120365 Λ_Ά a 修正 五、發明說明(15) 鍺化矽取代閘極可以比先前技藝的取代閘極更快地蝕刻和 更容易地式樣化。而且,使用鍺化石夕或是相似的合金於取 代閘極材料允許氧化物的或氮化物間隔物的使用以形成取 代閘極島而之前技藝的多晶矽取代閘極只能用氧化間隔物 形成。 響O: \ 66 \ 66693.ptc Page 18 501205 Case No. 89120365 Λ_Ά a Amendment V. Description of the invention (15) The replacement gate of silicon germanium can be etched and patterned more quickly than the replacement gate of the prior art. Moreover, the use of germanium fossils or similar alloys in place of the gate material allows the use of oxide or nitride spacers to form gate islands. Previously, polycrystalline silicon instead of gates could only be formed with oxidized spacers. ring

O:\66\66693.ptc 第19頁 501205 _案號89120365_年月日_修正 圖式簡單說明 元件符號說明 20 基 材 22 氧 化 物 墊 23 Μ 刻 區 域 24 鍺 化 矽 島 26p - - LDD 域( 源極區域) 28p - -LDD 區 域( 汲極區域) 30 鳥 嘴 32 鳥 嘴 33 光 阻 遮 罩 34 矽 氮 化 物 層 35 場 區 域 36 氮 化 物 層 37 虛 線 38 氮 化 物 層 40 多 晶 矽 層 41 隔 離 氧 化 物 區域 42 閘 極 區 域 (通道區域) 44 閘 極 介 電 層 45 空 隙 46 沉 積 層 (閘極 材料層) 48 多 晶 矽 層 50 多 晶 矽 層 52 矽 化 物 層 54 矽 化 物 層 60 大 塊 矽 層 62 埋 入 氧 化 物 層 70 障 礙 層 73 銅 閘 極 電 極 100 源 極 區 域 102 汲 極 區 域 106 介 電 層 110 二 氧 化 矽 層 112 二 氧 化 矽 層 118 線 122 第 介 電 層 124 開 π 126 開 π 128 開 Π 130 閘 極 域O: \ 66 \ 66693.ptc page 19 501205 _ case number 89120365 _ year month day _ correction diagram brief description element symbol description 20 substrate 22 oxide pad 23 Μ engraved area 24 silicon germanium island 26p--LDD domain (Source region) 28p--LDD region (drain region) 30 bird's beak 32 bird's beak 33 photoresist mask 34 silicon nitride layer 35 field region 36 nitride layer 37 dotted line 38 nitride layer 40 polycrystalline silicon layer 41 isolation oxidation Object area 42 Gate area (channel area) 44 Gate dielectric layer 45 Void 46 Deposited layer (gate material layer) 48 Polycrystalline silicon layer 50 Polycrystalline silicon layer 52 Silicide layer 54 Silicide layer 60 Bulk silicon layer 62 Buried oxide Physical layer 70 Barrier layer 73 Copper gate electrode 100 Source region 102 Drain region 106 Dielectric layer 110 Silicon dioxide layer 112 Silicon dioxide layer 118 Line 122 Dielectric layer 124 Open π 126 Open π 128 Open Π 130 Gate Polar domain

O:\66\66693.ptc 第20頁O: \ 66 \ 66693.ptc Page 20

Claims (1)

501205 91· 2· 2 6 _案號 89120365_年又月 日__;_ 六、申請專利範圍 1 . 一種在一基材上製造金屬氧化物半導體場效電晶體結 構的方法,包括: 在基材中形成的閘極區域上方一島,該島由ί V- B族元 素的合金形成; 建造一側牆在該島周圍; 基材中形成源極區域和及極區域, 選擇性地移除島而不移除側牆,藉此在閘極區域上方 留下一空隙;以及 以閘極結構填滿空隙。 2 .如申請專利範圍第1項之方法,其中I V - Β族的合金元 素是Sii_xGex,且其中X是在大約0. 05到大約1 . 0的範圍内。 3. 如申請專利範圍第1項之方法,包括,在形成島的步 驟之前,沉積一氧化層在基材上,其厚度在5到3 0奈米 (n m)之間,且該形成島的步驟包括在該氧化層上形成一 島。 4. 如申請專利範圍第3項之方法,其中該形成島的步驟 包括沉積一層從I V - B族元素合金形成的材料,厚度約1 5 0 到500奈米,至氧化層上。 5. 如申請專利範圍第4項之方法,其中該形成島的步驟 尚包括沉積一由IV-B群元素合金形成的材料層至氧化層 上,對該島區域上之沉積層進行遮罩,且蝕刻該沉積層以 移除除了閘極區域上方以外的層。 6. 如申請專利範圍第1項之方法,其中該移除島的步驟 包括沉積一非島材料層至該島,其側牆和源極和没極區域501205 91 · 2 · 2 6 _ Case No. 89120365 _ year and month __; _ VI. Patent application scope 1. A method for manufacturing a metal oxide semiconductor field effect transistor structure on a substrate, comprising: An island above the gate region formed in the material, the island is formed by an alloy of ⅤV-B elements; a side wall is built around the island; a source region and a pole region are formed in the substrate, and selectively removed Island without removing the sidewall, thereby leaving a gap above the gate area; and filling the gap with a gate structure. 2. The method according to item 1 of the patent application range, wherein the alloy element of group IV-B is Sii_xGex, and wherein X is in a range of about 0.05 to about 1.0. 3. The method according to item 1 of the scope of patent application, comprising, prior to the step of forming the island, depositing an oxide layer on the substrate, the thickness of which is between 5 and 30 nanometers (nm), and the formation of the island The step includes forming an island on the oxide layer. 4. The method of claim 3, wherein the step of forming an island comprises depositing a layer of material formed from an alloy of a group IV-B element to a thickness of about 150 to 500 nanometers onto the oxide layer. 5. The method of claim 4 in the patent application, wherein the step of forming the island further includes depositing a material layer formed of an alloy of an IV-B group element on the oxide layer, and masking the deposition layer on the island region. And the deposited layer is etched to remove layers other than above the gate region. 6. The method of claim 1, wherein the step of removing the island includes depositing a non-island material layer on the island, its sidewalls, and source and non-electrode regions. O:\66\66693.ptc 第21頁 501205 _案號 89120365_年月日__ 六、申請專利範圍 上方;以化學機械研磨此結構至該島的頂端;以及以溶劑 溶解該島,因此留下該空隙。 7.如申請專利範圍第6項之方法,其中該非島材料層是 多晶矽,該非島材料層是第一多晶矽層,且該填滿空隙的 步驟包括沉積閘極材料層至剩餘的第一島材料層和空隙之 上方,且化學機械研磨此結構以移除材料下移至第一多晶 矽層頂端的高度。 8 .如申請專利範圍第7項之方法,其中該閘極材料由多 晶矽;鎢(W );钽(T a );鉑(P t);鉬(Μ 〇 );銅(C u )結合位 障金屬如氮化鈦(TiN),氮化鈕(TaN)或是氮化鎢(WN);和 多晶矽鍺所組成的群組選出。 9 .如申請專利範圍第6項之方法,其中該非島材料層是 第一層的介電材料。 I 0 .如申請專利範圍第9項之方法,其中該第一層介電材 料是從由氮化矽和氧化矽所組成的群組選出。 II .如申請專利範圍第9項之方法,其中,在以閘極結構 填滿空隙的步驟之後,該方法包括藉由化學機械研磨法平 面化該結構的上層表面。 1 2.如申請專利範圍第1 1項之方法,其中,隨著平面化 結構步驟之後,該方法包括沉積第二層介電材料至平面化 結構上,形成多開口穿越該第二層介電材料至該閘極結 構,且形成開口穿越該第二層介電材料且穿越該第一層介 電材料到該源極和汲極區域且沉積金屬層至結構上方且進 入該等開口以形成與源極區域,閘極區域和汲極區域電性O: \ 66 \ 66693.ptc Page 21 501205 _Case No. 89120365_Year_Month__ VI. Above the scope of patent application; chemically and mechanically grinding the structure to the top of the island; and dissolving the island with a solvent, so stay Down the gap. 7. The method according to item 6 of the patent application, wherein the non-island material layer is polycrystalline silicon, the non-island material layer is a first polycrystalline silicon layer, and the step of filling the gap includes depositing a gate material layer to the remaining first Above the island material layer and the gap, the structure is chemically and mechanically ground to remove the material down to the height of the top of the first polycrystalline silicon layer. 8. The method of claim 7 in the scope of patent application, wherein the gate material is made of polycrystalline silicon; tungsten (W); tantalum (T a); platinum (P t); molybdenum (MO); copper (Cu) bonding site Barrier metals such as titanium nitride (TiN), nitride button (TaN) or tungsten nitride (WN); and polycrystalline silicon germanium are selected. 9. The method of claim 6 in which the non-island material layer is a first layer of dielectric material. I 0. The method of claim 9, wherein the first layer of dielectric material is selected from the group consisting of silicon nitride and silicon oxide. II. The method according to item 9 of the patent application, wherein after the step of filling the gap with the gate structure, the method includes planarizing the upper surface of the structure by a chemical mechanical polishing method. 1 2. The method of claim 11 in the scope of patent application, wherein after the step of planarizing the structure, the method includes depositing a second layer of dielectric material onto the planarizing structure to form multiple openings through the second layer of dielectric Material to the gate structure, and forming an opening through the second layer of dielectric material and through the first layer of dielectric material to the source and drain regions and depositing a metal layer over the structure and entering the openings to form the Source region, gate region and drain region are electrically O:\66\66693.ptc 第22頁 501205 _ 案號 89120365_年月日_修正_ 六、申請專利範圍 接觸的電極。 1 3 .如申請專利範圍第1項之方法,其中在該島周圍建造 側牆的步驟包括從石夕氮化物和氧化物組成的群組中選擇的 材料建立側牆。 1 4.如申請專利範圍第1項之方法,其中空隙的長度從源 極區域延伸到汲極區域,其在0 . 1 0到0 . 2 0微米之間。 1 5 .如申請專利範圍第1項之方法,其中以閘極結構填滿 空隙的步驟包括在源極區域,汲極區域和空隙上方沉積閘 極介電層,因此在空隙中形成一層閘極介電質以及然後沉 積一層閘極電極材料至閘極介電層之上。 1 6.如申請專利範圍第1 5項之方法,其中該形成閘極介 電質的步驟包括沉積一具有高介電常數和高崩潰強度的材 料。 1 7.如申請專利範圍第1 5項之方法,其中沉積的閘極介 電質包括從下列群組選擇的材料,該群組包括:氧化钽 (Ta205 ),氧化鈦(Ti02),氧北鍅(Zr02),氧化铪(Hf02); 下列的材料與矽摻雜:氧化钽(Ta205 ),氧化鈦(Ti02),氧 化锆(Zr02),氧化铪(Hf02);和下列的材料與鋁摻雜:氧化 钽(Ta2 05 ),氧化鈦(Ti02),氧化锆(Zr02),氧化铪(Hf02 )〇 1 8.如申請專利範圍第1 5項之方法,其中沉積閘極介電 層的步驟藉由從下列選擇的製程完成:物理氣相沉積 (PVD),化學氣相沉積(CVD),和電漿增強化學氣相沉積 (PECVD)。O: \ 66 \ 66693.ptc page 22 501205 _ case number 89120365 _ year month day _ amendment _ VI. Patent application scope Contact electrode. 1 3. The method according to item 1 of the patent application scope, wherein the step of constructing the side wall around the island includes building the side wall from a material selected from the group consisting of nitride and oxide of stone. 14. The method according to item 1 of the scope of patent application, wherein the length of the gap extends from the source region to the drain region, which is between 0.10 and 0.20 microns. 15. The method according to item 1 of the scope of patent application, wherein the step of filling the gap with the gate structure includes depositing a gate dielectric layer on the source region, the drain region, and the gap, thereby forming a gate in the gap. A dielectric and then a layer of gate electrode material is deposited over the gate dielectric layer. 16. The method according to item 15 of the scope of patent application, wherein the step of forming the gate dielectric comprises depositing a material having a high dielectric constant and a high collapse strength. 17. The method according to item 15 of the scope of patent application, wherein the deposited gate dielectric includes materials selected from the group consisting of: tantalum oxide (Ta205), titanium oxide (Ti02), and oxygen north Hafnium (Zr02), hafnium oxide (Hf02); the following materials are doped with silicon: tantalum oxide (Ta205), titanium oxide (Ti02), zirconium oxide (Zr02), hafnium oxide (Hf02); and the following materials doped with aluminum Miscellaneous: Tantalum oxide (Ta2 05), titanium oxide (Ti02), zirconia (Zr02), hafnium oxide (Hf02) 〇1. The method according to item 15 of the scope of patent application, wherein the step of depositing the gate dielectric layer This is accomplished by a process selected from the following: physical vapor deposition (PVD), chemical vapor deposition (CVD), and plasma enhanced chemical vapor deposition (PECVD). O:\66\66693.ptc 第23頁 501205 _案號89120365_年月日__ 六、申請專利範圍 1 9 .如申請專利範圍第1項之方法,其中,在以閘極結構 填滿空隙的步驟之後,此方法包括藉由化學機械研磨法平 面化該結構的上層表面。 2 0 .如申請專科範圍第1 9項之方法,其中,在平面化結 構的上層表面之後的步驟,一金屬層沉積在結構的上層表 面且該結構係金屬化以形成與源極區域,閘極區域和没極 區域電性接觸的電極。 2 1 .如申請專利範圍第2 0項之方法,其中包括,在結構 上層表面沉積金屬層的步驟之後且在該金屬化結構之前, 退火此結構以促成自動對準金屬石夕化技術(s a 1 i c i d e )製 程。 2 2 . —種製造金屬氧化物半導體場效電晶體之方法,包 括: 沉積氧化層至用於裝置隔離的矽基材上; 形成基材中的閘極區域上的錫化矽合金島; 建立錫化矽合金島周圍的側牆; 形成基材中源極區域和〉及極區域, 移除錫化矽合金島,因此在閘極區域上留下空隙; 填滿空隙和在源極和沒極區域之上的地區;和 藉由化學機械研磨法平面化該結構的上層表面。 2 3.如申請專利範圍第2 2項之方法,其中錫化矽合金由 Sii„xSnx表示和其中X是在大約0. 05到大約1 . 0範圍之中。 2 4.如申請專利範圍第2 2項之方法,其中建造在錫化矽 合金島周圍的側牆的步驟包括從由矽氮化物和氧化物組成O: \ 66 \ 66693.ptc page 23 501205 _ case number 89120365_ year month date__ VI. Patent application scope 1 9. For the method of applying for the first item of patent scope, in which the gap is filled with a gate structure After the step, the method includes planarizing the upper surface of the structure by chemical mechanical polishing. 20. The method according to item 19 of the application scope, wherein, in the step subsequent to planarizing the upper surface of the structure, a metal layer is deposited on the upper surface of the structure and the structure is metallized to form a source region and a gate. An electrode in which the polar region and the non-polar region are in electrical contact. 2 1. The method of claim 20 in the scope of patent application, which includes, after the step of depositing a metal layer on the upper surface of the structure and before the metallized structure, annealing the structure to facilitate automatic alignment of the metallization process (sa 1 pesticide) process. 2 2. A method for manufacturing a metal oxide semiconductor field effect transistor, comprising: depositing an oxide layer on a silicon substrate for device isolation; forming a silicon tin alloy island on a gate region in the substrate; establishing Side wall around the silicon silicide island; forming the source region and the electrode region in the substrate, removing the silicon silicide island, so leaving a gap on the gate region; filling the gap and filling the gap between the source and the electrode The area above the polar region; and planarize the upper surface of the structure by chemical mechanical polishing. 2 3. The method according to item 22 of the patent application scope, wherein the tin alloy is represented by Sii „xSnx and wherein X is in the range of about 0.05 to about 1.0. 2 4. 22. The method of item 2, wherein the step of constructing a side wall around the island of silicon tin alloy includes the steps of O:\66\66693.ptc 第24頁 501205 _案號89120365_年月日__ 六、申請專利範圍 的群組中選擇的側牆材料建立側牆。 2 5 . —種製造金屬氧化物半導體場效電晶體之方法,包 括: 沉積氧化層在用於裝置隔離的石夕基材上; 形成在基材中閘極區域上的鍺化矽合金島; 建立鍺化矽合金島周圍的侧牆; 形成基材中源極區域和沒極區域, 移除鍺化矽合金島,因此在閘極區域上留下空隙; 填滿空隙和在源極和没極區域之上的地區;和 藉由化學機械研磨法平面化該結構的上層表面。 2 6 .如申請專利範圍第2 5項之方法,其中鍺化矽合金由 Si^_xGex表示和其中X是在大約0. 05到大約1 . 0範圍之中。 2 7.如申請專利範圍第2 5項之方法,其中建造在鍺化矽 合金島周圍的側牆的步驟包括從由石夕氮化物和氧化物組成 的群組中選擇的側牆材料建立侧牆。O: \ 66 \ 66693.ptc Page 24 501205 _Case No. 89120365_Year_Month__ VI. The side wall materials selected in the patent application group establish the side wall. 2 5. A method for manufacturing a metal oxide semiconductor field effect transistor, comprising: depositing an oxide layer on a Shi Xi substrate for device isolation; a silicon germanium alloy island formed on a gate region in the substrate; Establish sidewalls around silicon germanium islands; form source and non-electrode regions in the substrate; remove silicon germanium islands, leaving gaps in the gate region; The area above the polar region; and planarize the upper surface of the structure by chemical mechanical polishing. 26. The method of claim 25, wherein the silicon germanium alloy is represented by Si ^ _xGex and wherein X is in the range of about 0.05 to about 1.0. 27. The method of claim 25, wherein the step of constructing a sidewall around the silicon germanium island includes establishing a sidewall from a sidewall material selected from the group consisting of nitride and oxide. wall. O:\66\66693.ptc 第25頁O: \ 66 \ 66693.ptc Page 25
TW089120365A 1999-09-30 2000-09-30 Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET TW501205B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/410,346 US6200866B1 (en) 1998-02-23 1999-09-30 Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET

Publications (1)

Publication Number Publication Date
TW501205B true TW501205B (en) 2002-09-01

Family

ID=23624323

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089120365A TW501205B (en) 1999-09-30 2000-09-30 Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET

Country Status (3)

Country Link
JP (1) JP3859439B2 (en)
KR (1) KR100417216B1 (en)
TW (1) TW501205B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI421949B (en) * 2006-09-20 2014-01-01 Samsung Electronics Co Ltd Semiconductor device including field effct transistor and method of forming the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532509B1 (en) * 2004-03-26 2005-11-30 삼성전자주식회사 Trench capacitor using SiGe layer and method of fabricating the same
JP4851740B2 (en) * 2005-06-30 2012-01-11 株式会社東芝 Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI421949B (en) * 2006-09-20 2014-01-01 Samsung Electronics Co Ltd Semiconductor device including field effct transistor and method of forming the same

Also Published As

Publication number Publication date
JP2001102583A (en) 2001-04-13
KR100417216B1 (en) 2004-02-05
JP3859439B2 (en) 2006-12-20
KR20010039964A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US6200866B1 (en) Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET
TWI305008B (en) Dual damascene copper gate and interconnect therefore
TWI220301B (en) Method for manufacturing embedded non-volatile memory with two polysilicon layers
US6573134B2 (en) Dual metal gate CMOS devices and method for making the same
TWI287867B (en) Independently accessed double-gate and tri-gate transistors in same process flow
TWI240417B (en) Self-aligned isolation double-gate FET
US6100561A (en) Method for forming LDD CMOS using double spacers and large-tilt-angle ion implantation
US6143635A (en) Field effect transistors with improved implants and method for making such transistors
JP4150661B2 (en) Three-layer hard mask for gate pattern formation for fabricating CMOS transistors
TW201013838A (en) Method of forming finned semiconductor devices with trench isolation
JPH06163571A (en) Insulated-gate field-effect transistor and its manufacture
US20040132271A1 (en) Method to produce dual gates (one metal and one poly or metal silicide) for CMOS devices using sputtered metal deposition, metallic ion implantation, or silicon implantation, and laser annealing
TW200421594A (en) Self-aligned planar double-gate process by amorphization
KR100507856B1 (en) Method for fabricating MOS transistor
US6974730B2 (en) Method for fabricating a recessed channel field effect transistor (FET) device
KR20010072403A (en) A method of manufacturing a semiconductor device
US6716691B1 (en) Self-aligned shallow trench isolation process having improved polysilicon gate thickness control
TW501205B (en) Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET
US6566215B1 (en) Method of fabricating short channel MOS transistors with source/drain extensions
US6110788A (en) Surface channel MOS transistors, methods for making the same, and semiconductor devices containing the same
TW200423401A (en) Nitride-encapsulated FET (NNCFET)
US20040175907A1 (en) Method of fabricating a salicided device using a dummy dielectric layer between the source/drain and the gate electrode
US6458717B1 (en) Methods of forming ultra-thin buffer oxide layers for gate dielectrics
TW424303B (en) Manufacturing method for dual-gate CMOS device
JPH0738095A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees