TW414930B - The photo detector - Google Patents
The photo detector Download PDFInfo
- Publication number
- TW414930B TW414930B TW088110369A TW88110369A TW414930B TW 414930 B TW414930 B TW 414930B TW 088110369 A TW088110369 A TW 088110369A TW 88110369 A TW88110369 A TW 88110369A TW 414930 B TW414930 B TW 414930B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- scope
- patent application
- item
- photodetector
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 53
- 230000005641 tunneling Effects 0.000 claims abstract description 10
- 239000004020 conductor Substances 0.000 claims description 60
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 35
- 229910052710 silicon Inorganic materials 0.000 claims description 35
- 239000010703 silicon Substances 0.000 claims description 35
- 239000000758 substrate Substances 0.000 claims description 28
- 230000003647 oxidation Effects 0.000 claims description 25
- 238000007254 oxidation reaction Methods 0.000 claims description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 16
- 230000000694 effects Effects 0.000 claims description 15
- 238000009413 insulation Methods 0.000 claims description 12
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 7
- 239000004575 stone Substances 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 3
- HOFIJBMBYYEBNM-UHFFFAOYSA-N copper;oxotin Chemical group [Cu].[Sn]=O HOFIJBMBYYEBNM-UHFFFAOYSA-N 0.000 claims 2
- 230000005284 excitation Effects 0.000 claims 1
- 229910052738 indium Inorganic materials 0.000 claims 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims 1
- 210000003205 muscle Anatomy 0.000 claims 1
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 10
- 230000035515 penetration Effects 0.000 description 8
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 230000004297 night vision Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910003449 rhenium oxide Inorganic materials 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 101150087426 Gnal gene Proteins 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/112—Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Light Receiving Elements (AREA)
Description
414930 案號 88110369 ! ,❹〜Λ:; 蜊年及月:孑Ϊ Ί _ 修正 發明說明(2) : .:.¾ > ; ·; .· . ....... 本案係為一種光偵測器,其包含:一導體層;—, 半導體層’用以因應光之照射而產生電子電洞^ p型 (electron hole pair); —絕緣層’設於該導體層與該 導體層之間;以及一電壓源,其正極電連接於該導體' / 負極電連接於該p型半導體層,其係用以提供一偏壓來曰產 生一量子穿透效應(qu an turn tunneling),使^)型半導體居 中’被光所激發之電子穿透該絕緣層到達該導體層而』
一光電流’該光電流強度基本上與所照射光之強度成正' 比。 根據上述構想’該光偵測器中之該導體層係可以 鋁’、經摻雜之多晶矽等材質中之一所完成。 % § 根據上述構想,該光偵測器中該導體層係可 導體層。 透明 根據上述構想’該光偵測器中該透明導體層係可 銦錫氧化物(ί τι d i u m T i η 0 X i d e,簡稱 I T 0 )。 ' 根據上述構想’該光偵測器中該p型半導體舞 一P型矽基板。 s⑦1為 根,據上述構想’該光偵測器令該p型半導體層係可二' 一 P型非晶矽氫(am〇 ΓPh0 u s S i : Η )之非晶材料所完^。乂 根據上述構想,該光偵測器中該絕緣層係可—广 化矽層。 —溽氧 根據上述構想’該光偵測器中該氧化名夕層 為數奈米(nW。 增之厚度約可
414930 五、發明說明α) · -------- 發明領域 本案係為一種光偵測器,尤 中之光偵測器。 9 α用於一影像偵測裝置 / 發明背景 ' 在數位式的影像偵测技術中,# 一
Coupled Device, CCD)經常作為_ “何輔合元件(Charge 儲存於電荷耦合元件各儲存單^ Γ光^谓測元件使用,因為 荷堆(Charge packet)係可因應以線狀排列)中之電 數多寡係與所照射光之強度成正比、、、射而產生’而其電荷 中之電荷數量再進行後續二要之声’故讀取出各儲存單元 關於影像方面之資訊,因此其已後,便可進一步得到 之影像掃描器(SCanner)、記錄 量使用於掃描平面圖案 錄連續影像之攝影機以及夜視鏡^動作之數位相機、記 但是’由於電荷耦人;灿A 、置中。 了祸合凡件各儲 電荷數目訊號必須以循序(s e 许单凡中代表光強度之 此將造成訊號讀取速度_搵1 a I )之方式輸出,因 ^亦產生使後級電路複雜度增加等像記錄的速度’另 ‘用技術手段之缺失,推 、失’而如何解決上述 件’係為發展本案之一* 将性較佳之光偵測元 土晋目的。 414930
SS_ 88110369 五、發明說明(4) 一η 型非晶矽氫(anl〇rphous at,., 根據上述構想 化石夕層。 根據上述構想 為數奈米(nm、。 根據上述構想 η型.碎基板之表面 該光憤測器中琴绍絡a 70 τ落絕緣層係可為一薄氧 該光偵測器中該急斗^ &乳化矽層之厚度約可 -.-- 、非日日材料所完成
該光偵測器中該氧铷& B L 乳化矽層係可為對該
進行一快速熱氧化製程(R
Thermal 〇xidation)所成長完成。 p 根據上述構想,該光偵測器中用以成長該之 該快速熱氧化製程,其較彳圭之点县,S7庚的曰 左右。 衣桎丹杈佳之成長/皿度約可為攝氏1000度 簡單圖式說明 本案得藉由下列圖式及詳細說明,俾得— 解: 又/木入之了 第一圖:其係本案發明為取代習用電荷耦合元件(cha Coupled Device, CCD)所發展出之光偵測器之第— 施例結構示意圖。 权住夏 第二圖:其係本案第一較佳實施例之元件工作情況能帶圖 (energy band diagram) 〇 第三圖:其係為本案發明為取代習用電荷耦合元件 (Charge Coupled Device, CCD)所發展出之光僧測器之第 二較佳實施例結構示意圖。
第7頁 1999.07. 04.007 414930 案號 88110369 ! ,❹〜Λ:; 蜊年及月:孑Ϊ Ί _ 修正 發明說明(2) : .:.¾ > ; ·; .· . ....... 本案係為一種光偵測器,其包含:一導體層;—, 半導體層’用以因應光之照射而產生電子電洞^ p型 (electron hole pair); —絕緣層’設於該導體層與該 導體層之間;以及一電壓源,其正極電連接於該導體' / 負極電連接於該p型半導體層,其係用以提供一偏壓來曰產 生一量子穿透效應(qu an turn tunneling),使^)型半導體居 中’被光所激發之電子穿透該絕緣層到達該導體層而』
一光電流’該光電流強度基本上與所照射光之強度成正' 比。 根據上述構想’該光偵測器中之該導體層係可以 鋁’、經摻雜之多晶矽等材質中之一所完成。 % § 根據上述構想,該光偵測器中該導體層係可 導體層。 透明 根據上述構想’該光偵測器中該透明導體層係可 銦錫氧化物(ί τι d i u m T i η 0 X i d e,簡稱 I T 0 )。 ' 根據上述構想’該光偵測器中該p型半導體舞 一P型矽基板。 s⑦1為 根,據上述構想’該光偵測器令該p型半導體層係可二' 一 P型非晶矽氫(am〇 ΓPh0 u s S i : Η )之非晶材料所完^。乂 根據上述構想,該光偵測器中該絕緣層係可—广 化矽層。 —溽氧 根據上述構想’該光偵測器中該氧化名夕層 為數奈米(nW。 增之厚度約可
414930 補充 修正 _ϋ_88110369 五、發明說明(8) 偵測之動作。 為驗證本案之元件特性,請參見第五圖所示之閘極電 流電壓特性曲線圖,其係本案第一較佳實施例以下列條件 所完成之第一實例之閘極電流電壓特性曲線圖。條件中, ρ型半導體層12係以阻值約為2-5 Ω-cm之ρ型矽基板所完 成’而該絕緣層1 3則是利用快速熱氧化製程(r a p i d Thermal Οχι da tion)於該ρ型矽基板表面所成長之厚度約 2 . 3nm_(奈求)之氧化矽層,至於導體層ι丨係以於氧化矽層 表面鐘上一層紹’再進行光學微影蝕刻製程後所形成之面 積約為3 X 1 0 4cm2之鋁電極所完成。而在無光及照光情況 (吾人係以可見光範圍之頻譜類似太陽光之金屬函化燈 (Metal Halide Lamp)進行照射)下,測量在電壓源14提供 之不同偏壓(或稱閘極電壓)下,由鋁電極所完成之閘極端 所讀取到之閘極電流的結果如第五圖所示。由於一個妤的 影像偵測元件,其照光電流要遠大於無光電流,以能增加 其訊號雜讯比(signal ΐ〇 n〇ise rati〇),而從第五圖所 示中吾人可清楚觀察出,光電流增加报快,遠大於鉦光昭 射時所產生之無光電流,因此符合上述之元件特性^求了 另外,如圖所示亦可清楚看出,在一適當正偏壓(約大於 + 0. 2 5伏特)之下,由閘極端所讀取之閘極電流強度與所照 射光之強度係成正比,而與偏壓則相對無關,完全 理所推論之結杲。 σ 至於第六圖所示之閘極電流電壓特性曲線圖,則為本 案第二較佳實施例以下列條件所完成之第二實例之閘極電
第U頁 1999. 07. 04.011 414930 五、發明說明(3) 根據上述構想,該光偵測器中該氧化矽層係可為對該 p型矽基板之表面,進行一快速熱氧化製程(Rapid
Thermal Oxidation)所成長完成。 根據上述構想’該光偵測器中用以成長該氧化石夕層之 該快速熱氧化製程’其較佳成長溫度約可為攝氏度左 右。 本案之另一方面係為一種光偵測器,其包含:一導體 層;一η型半導體層,用以因應光之照射而產生電子電洞 對(electron hole pair); —絕緣層.設於該導體層與該 π型半導體層之間;以及一電壓源,其負極電連接於該導 體層而正極電連接於該η型半導體層,其係用以提供一偏 壓來產生一量子穿透效應(quantum tunneling),使該11型 半導體層中’被光所激發之電洞穿透該絕緣層到達該導體 層而形成一光電流,該光電流強度基本上與所照射光之強 度成正比。 根據上述構想,該光偵測器中該導體層係可以選自 鋁、經摻雜之多晶矽等材質中之一所完成。 根據上述構想,該光偵測器中該導體層係可為一透明 導體層。 根據上述構想,該光偵測器中該透明導體層係可為一 銦錫氧化物(Indium Tin Oxide,簡稱IT0)。 根據上述構想,該光偵測器中該η型半導體層係可為 一 η型梦基板。 根據上述構想,該光偵測器中該η型半導體層係可以
4l493C 修正 一案號 88110369 if1 年 J 月
體層3 2係以阻值 五、發明說明(9) 流電壓特性曲線圖。條件中一了-除n 約為卜10 Q—cm tn型矽基板所.完成 c t i ο η 的偏壓來產生足 之氧化矽,豆導體層絕緣層3 3厚度約 之實例皆相同。吾人亦在益光及昭朵丨之條件與第五圖 源34提供之不同偏壓(或稱閘極電愿$ =況下,測量在電壓 之閘極端所讀取到之閘極電流。相同由鋁電極所完成 光照射時所產生之無光電流,而在〜地’光電流遠大於無 -2. 25伏特)之下,由閘極端所讀取之,當負偏壓(約小於 射光之強度係成正比,而與偏壓則相〶極電流強度與所照 原理所推論之結果。而在第二實例中$無關,亦完全符合 因是在於氧化矽層與矽基板間,'其價需^較大負偏壓之原 band discontinuity)大於導電帶不不連續(Valence band discontinuity),故電洞需要較=(Condu 夠的量子穿透效應。 ^著’吾人再測量了以p型石夕基板與紹電極所之 第1例對於不同光波長之頻譜響應',其,结果如帛七圖所 示。由於當照射光之波長小於,即能量大於電 子伙特(矽的帶溝)時,即可使矽基板產生電子電洞對(此 時^生的電子稱為光電子),故在閘極電壓夠正、氧化層 夠薄下之條件下,量子穿透效應將明顯產生’使得光電子 能夠穿透氧化碎層》而到達閘極端。因此在光波長小於} 1 丑111 (包含可見光範圍),本光偵測器均可有效偵測,據 此可完成一理想之影像偵測裝置又再次獲得驗證。 而因為上述實例所使用之鋁電極無法透光,光僅能從
1999.07. 04.012 414930
SS_ 88110369 五、發明說明(4) 一η 型非晶矽氫(anl〇rphous at,., 根據上述構想 化石夕層。 根據上述構想 為數奈米(nm、。 根據上述構想 η型.碎基板之表面 該光憤測器中琴绍絡a 70 τ落絕緣層係可為一薄氧 該光偵測器中該急斗^ &乳化矽層之厚度約可 -.-- 、非日日材料所完成
該光偵測器中該氧铷& B L 乳化矽層係可為對該
進行一快速熱氧化製程(R
Thermal 〇xidation)所成長完成。 p 根據上述構想,該光偵測器中用以成長該之 該快速熱氧化製程,其較彳圭之点县,S7庚的曰 左右。 衣桎丹杈佳之成長/皿度約可為攝氏1000度 簡單圖式說明 本案得藉由下列圖式及詳細說明,俾得— 解: 又/木入之了 第一圖:其係本案發明為取代習用電荷耦合元件(cha Coupled Device, CCD)所發展出之光偵測器之第— 施例結構示意圖。 权住夏 第二圖:其係本案第一較佳實施例之元件工作情況能帶圖 (energy band diagram) 〇 第三圖:其係為本案發明為取代習用電荷耦合元件 (Charge Coupled Device, CCD)所發展出之光僧測器之第 二較佳實施例結構示意圖。
第7頁 1999.07. 04.007 414930 五、發明說明¢5) 第四圖:其係本案第二較佳實施例之元件工作情況能帶圖 (energy band diagram) 〇 第五圖:其係本案第一較佳實施例以特定條件所完成之第 一實例之閘極電流電壓特性曲線圖。 第六圖:其係本案第二較佳實施例以特定條件所完成之第 -二實例之閘極電流電壓特性曲線圖。 第七圖:其係本案第一實例對於不同光波長的頻譜響應 — 圖。 第八圖:其係本案第一實例改用銦錫氧化物之透明電極來 取代鋁電極後所得之閘極電流電壓特性曲線圖 | 第九圖:其係本案第一實例將熱氧化製程(Rapid Thermal Oxidation)之成長溫度,從常用之攝氏900度提高至攝氏 广 950度或更高之攝氏1〇〇〇度後,由閘極端所讀取到之無光 電流曲線圖。 本案圖式中所包含之各元件列示如下: 導體層11 p型半導體層12 絕緣層1 3 電壓源1 4 導體層31 η型半導體層32 - 絕緣層3 3 電壓源3 4 ; 較佳實施例說明
第8頁 414930 五、發明說明(6) Θ, 請參見第一圖,其係本案發明為取代習用電荷辆合元 件(Charge Coupled Device,CCD)所發展出之光偵測器之 第一較佳實施例結構示意圖,其中主要單元係由如圖所示 之導體層1 1、p型半導體層1 2、絕緣層1 3以及電壓源14所 完成。當P型半導體層1 2在無光照射之情況時,電子電洞 對(electron hole pair)係因熱平衡而由p型半導體層12 與絕緣層1 3間之介面缺陷處自然產生,而如第二圖所示之 能帶圖(energy band diagram)可知,在電壓源14所提供 之工作偏壓為正電壓時(正極電連接於該導體層n而負極 電連接於該P型半導體層12) ’將使得絶緣層13靠近導體層 11之能量變低而增加電子之穿透能力以產生量子穿透效應 (quantum tunneling)。故在足夠大之正偏壓下,就能使 電子穿透厚度較薄之絕緣層1 3 極端,此時所量測到之電流稱 current)。另外,在相同偏壓 因應光之照射而激發產生出較 hole pair)時,因此將有較多 達該導體層1 1所完成之閘極端 光電流強度基本上與所照射光 正比,因此,直接由導體層11 流之大小再進行後續必要之處 到關於影像方面之資訊,如此 單元中代表光強度之電荷數目 (s e(JU en t i a 1 )之方式輸出, 而到達導體層1 1所完成之閘 為無光電流(dark 狀態下,當p型半導體層1 2 多電子電洞對(e]_ectr〇n 數目之電子穿透該絕緣層到 而形成一光電流。而由於該 之,度(單位面積之功率)成 所疋成之閘極端讀取該光電 理後,便可快迷地進一步得 f f於電荷輕合元件各儲存 訊號必須以循序 本案所揭露之光偵測器單元
414930 五、發明說明(7) 將使得讀取速度增加’並簡化後續讀取電路之複雜度,故 可有效提昇性能且降低生產成本。
同理,第三圖所示係為本案發明為取代習用電荷耦合 元件(Charge Coupled Device, CCD)所發展出之光偵測器 之第二較佳實施例結構示意圖’其中主.要單元係由如圖所 示之導體層31、η型半導體層32、絕緣層33以及電壓源34 所完成。當η型半導體層3 2在無光照射之情況時,電子電 洞對(electron hole pair)係因熱平衡而由η型半導體層 3 2與絕緣層3 3間之介面缺陷處自然產生,而如第四圖所示 之能帶圖(energy band diagram)可知,在電壓源34所提 供之偏壓為負電壓時(負極電連接於該導體層31而正極電 連接於該η型半導體層32),將使得絕緣層33靠近導體層31 之能量變高而增加電洞之穿透能力而產生量子穿透效應 (quantum tunneling) 〇故在足夠大之負偏壓下,就能使 電洞穿透厚度較薄之絕緣層3 3而到達導體層3丨所完成之閘 極端,此時所量測到之電流稱為無光電流(d a r k current)。另外,在相同偏壓狀態下,當n型半導體層32 因應光之照射而激發產生出較多電子電洞對(electron h ο 1 e p a i r)時,因此將有較多數目之電洞穿透該絕緣層到 達該導體層3 1所完成之閘極端而形成一光電流。而由於該 光電流強度基本上與所照射光之強度成正比,因此,直接 由導體層3 1所完成之閘極端5賣取該先電流之大小再進行後 續必要之處理後,亦可快速地進一步得到關於影像方面之 414930 補充 修正 _ϋ_88110369 五、發明說明(8) 偵測之動作。 為驗證本案之元件特性,請參見第五圖所示之閘極電 流電壓特性曲線圖,其係本案第一較佳實施例以下列條件 所完成之第一實例之閘極電流電壓特性曲線圖。條件中, ρ型半導體層12係以阻值約為2-5 Ω-cm之ρ型矽基板所完 成’而該絕緣層1 3則是利用快速熱氧化製程(r a p i d Thermal Οχι da tion)於該ρ型矽基板表面所成長之厚度約 2 . 3nm_(奈求)之氧化矽層,至於導體層ι丨係以於氧化矽層 表面鐘上一層紹’再進行光學微影蝕刻製程後所形成之面 積約為3 X 1 0 4cm2之鋁電極所完成。而在無光及照光情況 (吾人係以可見光範圍之頻譜類似太陽光之金屬函化燈 (Metal Halide Lamp)進行照射)下,測量在電壓源14提供 之不同偏壓(或稱閘極電壓)下,由鋁電極所完成之閘極端 所讀取到之閘極電流的結果如第五圖所示。由於一個妤的 影像偵測元件,其照光電流要遠大於無光電流,以能增加 其訊號雜讯比(signal ΐ〇 n〇ise rati〇),而從第五圖所 示中吾人可清楚觀察出,光電流增加报快,遠大於鉦光昭 射時所產生之無光電流,因此符合上述之元件特性^求了 另外,如圖所示亦可清楚看出,在一適當正偏壓(約大於 + 0. 2 5伏特)之下,由閘極端所讀取之閘極電流強度與所照 射光之強度係成正比,而與偏壓則相對無關,完全 理所推論之結杲。 σ 至於第六圖所示之閘極電流電壓特性曲線圖,則為本 案第二較佳實施例以下列條件所完成之第二實例之閘極電
第U頁 1999. 07. 04.011
4l493C 修正 一案號 88110369 if1 年 J 月
體層3 2係以阻值 五、發明說明(9) 流電壓特性曲線圖。條件中一了-除n 約為卜10 Q—cm tn型矽基板所.完成 c t i ο η 的偏壓來產生足 之氧化矽,豆導體層絕緣層3 3厚度約 之實例皆相同。吾人亦在益光及昭朵丨之條件與第五圖 源34提供之不同偏壓(或稱閘極電愿$ =況下,測量在電壓 之閘極端所讀取到之閘極電流。相同由鋁電極所完成 光照射時所產生之無光電流,而在〜地’光電流遠大於無 -2. 25伏特)之下,由閘極端所讀取之,當負偏壓(約小於 射光之強度係成正比,而與偏壓則相〶極電流強度與所照 原理所推論之結果。而在第二實例中$無關,亦完全符合 因是在於氧化矽層與矽基板間,'其價需^較大負偏壓之原 band discontinuity)大於導電帶不不連續(Valence band discontinuity),故電洞需要較=(Condu 夠的量子穿透效應。 ^著’吾人再測量了以p型石夕基板與紹電極所之 第1例對於不同光波長之頻譜響應',其,结果如帛七圖所 示。由於當照射光之波長小於,即能量大於電 子伙特(矽的帶溝)時,即可使矽基板產生電子電洞對(此 時^生的電子稱為光電子),故在閘極電壓夠正、氧化層 夠薄下之條件下,量子穿透效應將明顯產生’使得光電子 能夠穿透氧化碎層》而到達閘極端。因此在光波長小於} 1 丑111 (包含可見光範圍),本光偵測器均可有效偵測,據 此可完成一理想之影像偵測裝置又再次獲得驗證。 而因為上述實例所使用之鋁電極無法透光,光僅能從
1999.07. 04.012 414930 五、發明說明(ι〇) 鋁電極邊緣進入矽基板,因此減弱了光照射 對產生之效應,故吾人較佳可改用透明電極如姐=電祠 (Indium tin oxide,ΙΤ0)來取代銘電極, 錄氧化物 流值將會更大。以第一實例而言,改用銦錫氧$照光電 電極來取代銘電極後所得之閘極電流電壓特性 ^之透明 如第八圖所示,其中便可明顯看出,在於第五係 射光強度下,透明電極將造成更大之光電流’ 间之照 佳之元件特性。 f ~較 再者,為能進一步降低本案元件之無光電流, 加元件之訊號雜訊比(si gnal to n〇i se ra1: i〇),五 。曰 將於矽基板表面上用以成長氧化矽層之快速熱氧化"製$呈可 (Rapid Thermal Oxidation)之成長溫度,由常用之王 900度提高至攝氏9 50度或更高之攝氏1000度,如此將可 效降低由閘極端所讀取到之無光電流(參見第九圖之 示)。
綜上所述’本案所揭露之光偵測器’其係利用薄絕緣 ,及適當偏壓來產生量子穿透效應,以便將光電流直接由 半導體穿透(tunnel )絕緣層而由閘極端讀出。若把本案 ^揭露之光偵測器單元積集化地完成於半導體基板上,將 可有效地取代習用之電荷耦合元件來完成一影像偵測裝置 (例^如影像掃描器(scanner)、數位相機、攝影機以及夜視 鏡等)’且此影像偵測裝置將可平行輸出每一個像素 (Pixel )的訊號’大幅增加圖框(frame)記錄及輸出的速 度°而且本元件不僅可對可見光進行偵測,亦可偵測到包
第13頁 五、發明說明(11) 含紅外光、I外#楚 U r Ί ,尤等忐波’祇要光波能量大於矽之帶溝 ...2 均可被偵測到,故本案中所稱之「光」‘係將涵 蓋所有波長小於1·1微米之光波。
當然’用以完成本案光偵測器之導體層係可選自鋁、 經摻雜之多晶矽等材質中之一所完成k而為增加光照射之 效應’該導體層更佳係可用銦錫氧化物(Indium Tin Oxide ,簡稱ITO)等物質所完成之透明導體層^至於該口型 或η型半導體層係可選用p型或„型矽基板,或是p型或11型 非晶石夕氫(amorphous Si :H)之非晶材料來完成β故本 明得由熟習此技藝之人士任施匠思而為諸般修飾t鈥皆' 脫如附申請專利範圍所欲保護者。 ’“' +
第14頁
Claims (1)
- 修正 414930 案號 88110369 ^ J it 六、申請專利範圍 1 . 一種_光4貞測器,其包含: 一導體層; 一 P型半導體層,用以因應光之照射而產生電子電洞 對(electron hole pair); 一絕緣層,設於該導體層與該半導體層之間;以及 一電壓源,其正極電連接於該導體層而負極電連接於 該p型半導體層,其係用以提供一偏壓來產生一量子穿透 效應(quantum tunneling),使p型半導體層中,被光所激 發之電子穿透該絕緣層到達該導體層而形成一光電流,該 光電流強度基本上與所照射光之強度成正比。 2 .如申請專利範圍第1項所述之光偵測器,其中該導體層 係以選自鋁、經摻雜之多晶矽等材質中之一所完成。 3 .如申請專利範圍第1項所述之光偵測器,其中該導體層 係為一透明導體層。 4.如申請專利範圍第3項所述之光偵測器,其中該透明導 體層係為一铜錫氧化物(Indium Tin Oxide,簡稱IT0)。 5 .如申請專利範圍第1項所述之光偵測器,其中該p型半導 體層係為一 p型碎基板。 6 .如申請專利範圍第5項所述之光偵測器,其中該絕緣層 係為一氧化矽層。 7 .如申請專利範圍第6項所述之光偵測器,其中該氧化矽 層之厚度約為數奈米(nm )。 8 .如申請專利範圍第7項所述之光偵測器,其中該氧化矽 層係為對該p型矽基板之表面,進行一快速熱氧化製程第15頁 1999. 07.04. 015修正 414930 案號 88110369 ^ J it 六、申請專利範圍 1 . 一種_光4貞測器,其包含: 一導體層; 一 P型半導體層,用以因應光之照射而產生電子電洞 對(electron hole pair); 一絕緣層,設於該導體層與該半導體層之間;以及 一電壓源,其正極電連接於該導體層而負極電連接於 該p型半導體層,其係用以提供一偏壓來產生一量子穿透 效應(quantum tunneling),使p型半導體層中,被光所激 發之電子穿透該絕緣層到達該導體層而形成一光電流,該 光電流強度基本上與所照射光之強度成正比。 2 .如申請專利範圍第1項所述之光偵測器,其中該導體層 係以選自鋁、經摻雜之多晶矽等材質中之一所完成。 3 .如申請專利範圍第1項所述之光偵測器,其中該導體層 係為一透明導體層。 4.如申請專利範圍第3項所述之光偵測器,其中該透明導 體層係為一铜錫氧化物(Indium Tin Oxide,簡稱IT0)。 5 .如申請專利範圍第1項所述之光偵測器,其中該p型半導 體層係為一 p型碎基板。 6 .如申請專利範圍第5項所述之光偵測器,其中該絕緣層 係為一氧化矽層。 7 .如申請專利範圍第6項所述之光偵測器,其中該氧化矽 層之厚度約為數奈米(nm )。 8 .如申請專利範圍第7項所述之光偵測器,其中該氧化矽 層係為對該p型矽基板之表面,進行一快速熱氧化製程第15頁 1999. 07.04. 015 414930 案號 88110369 ^ ^ 皋月月今曰 正 WJ€ 修正 六、申請專利範圍 ΙΤΟ) ° 1 5.如申請專利範圍第1 1項所述之光偵測器 導體層係為一 η型矽基板。 1 6 .如申請專利範圍第1 5項所述之光偵測器 層係為一氧化石夕層。 1 7.如申請專利範圍第1 6項所述之光偵測器 矽層之厚度約為數奈米(n m)。 1 8.如申請專利範圍述之光偵測器,其中該氧化矽 層係為對該η型矽面,進行一快速熱氧化製程 (Rapid Thermal tion)所成長完成。 1 9 .如申請專利範圍第1 8項所述之光偵測器,其中用以成 長該氧化矽層之該快速熱氧化製程,其較佳成長溫度約為 攝氏1 0 0 0度。 2 〇 .如申請專利範圍第1 1項所述之光偵測器,其中該n型半 導體層係以一 η型非晶石夕氫(a m 〇 r p h 〇 u s S i : Η )之非晶材料 所完成。 其中該η型半 其中該絕緣 其中該氧化第17頁 1999. 07. 04. 0 17 41493G六、申請專利範圍 (Rapid Thermal Oxidation)所成長完成。 9.如_請專利範圍第8項所述之光偵測器,|办_、 >x 't"*' 用 _E 該氧化石夕層之該快速熱氧化製程’其較佳成長ϋ ri- 1 η ηη * „ 又,,.、J 句攝 1 〇 .如申請專利範圍第1項所述之光偵測器,其中該p型 導體層係以一 p型非晶石夕氫(a mo r p h 〇 u s S i * 夕北曰上丄 .u y <非晶材料 1 1.—種光偵測器,其包含: 一導體層; 一 η型半導體層,用以因應光之照射而產生電子、 對(electronholepair); 洞 一絕緣層’設於該導體層與該η型半導體層之門·、 及 π肌/百rr/j止極雷彳查 該11型半導體層,其係用以提供一偏壓來產生一量电逆接於 效應(quantum tunneling),使該η型半導體層中 、穿透 激發之電洞穿透該絕緣層到達該導體層而形士 被光所 #也帝法故度基本上與所照射光之強度光電流, 激發之電洞穿透該絕緣層到達該導體層而形成— 1 4〜疋谓測态,其中兮道 層係以選自紹、經摻雜之多晶石夕等材質中之一 導體 1 3 ·如申請專利範圍第11項所述之光偵測器,~ ° 層係為一透明導體層。 六f孩導體 該光電流強度基本上與所照射光之強度成^比。一--1 2.如申請專利範圍第11項所述之光偵測器,发 .4選自鋁、經摻雜之多晶矽等材質中之一所導體 1 3 ·如申請專利範圍第11項所述之来伯油丨堪 ^ ·元成0 1 4.如申請專利範圍第1 3項所述之先谓測器,& 導體層係為一銦錫氧化物(Indium τ 、:該透明 in UXlde ’ 簡稱 414930 案號 88110369 ^ ^ 皋月月今曰 正 WJ€ 修正 六、申請專利範圍 ΙΤΟ) ° 1 5.如申請專利範圍第1 1項所述之光偵測器 導體層係為一 η型矽基板。 1 6 .如申請專利範圍第1 5項所述之光偵測器 層係為一氧化石夕層。 1 7.如申請專利範圍第1 6項所述之光偵測器 矽層之厚度約為數奈米(n m)。 1 8.如申請專利範圍述之光偵測器,其中該氧化矽 層係為對該η型矽面,進行一快速熱氧化製程 (Rapid Thermal tion)所成長完成。 1 9 .如申請專利範圍第1 8項所述之光偵測器,其中用以成 長該氧化矽層之該快速熱氧化製程,其較佳成長溫度約為 攝氏1 0 0 0度。 2 〇 .如申請專利範圍第1 1項所述之光偵測器,其中該n型半 導體層係以一 η型非晶石夕氫(a m 〇 r p h 〇 u s S i : Η )之非晶材料 所完成。 其中該η型半 其中該絕緣 其中該氧化第17頁 1999. 07. 04. 0 17
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW088110369A TW414930B (en) | 1999-06-21 | 1999-06-21 | The photo detector |
US09/447,086 US6268615B1 (en) | 1999-06-21 | 1999-11-22 | Photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW088110369A TW414930B (en) | 1999-06-21 | 1999-06-21 | The photo detector |
Publications (1)
Publication Number | Publication Date |
---|---|
TW414930B true TW414930B (en) | 2000-12-11 |
Family
ID=21641207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW088110369A TW414930B (en) | 1999-06-21 | 1999-06-21 | The photo detector |
Country Status (2)
Country | Link |
---|---|
US (1) | US6268615B1 (zh) |
TW (1) | TW414930B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7906360B2 (en) | 2007-06-12 | 2011-03-15 | National Taiwan University | Manufacturing process for a photodetector |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI262533B (en) * | 2002-02-27 | 2006-09-21 | Univ Nat Taiwan | Method for utilizing rough insulator to enhance metal-insulator-semiconductor reliability |
TWI220790B (en) * | 2003-04-10 | 2004-09-01 | Univ Nat Taiwan | Infrared photodetector |
US7276285B2 (en) * | 2003-12-31 | 2007-10-02 | Honeywell International Inc. | Nanotube fabrication basis |
JP2006261638A (ja) * | 2005-02-21 | 2006-09-28 | Sony Corp | 固体撮像装置および固体撮像装置の駆動方法 |
US9202945B2 (en) * | 2011-12-23 | 2015-12-01 | Nokia Technologies Oy | Graphene-based MIM diode and associated methods |
KR102523974B1 (ko) | 2016-02-15 | 2023-04-20 | 삼성전자주식회사 | 전하 배리어층을 포함한 광전 소자 |
US11462656B2 (en) | 2017-04-20 | 2022-10-04 | The Trustees Of Dartmouth College | Nanophotonic hot-electron devices for infrared light detection |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3916268A (en) * | 1969-01-21 | 1975-10-28 | Gen Electric | Device for storing information and providing an electric readout from a conductor-insulator-semiconductor structure |
US3863070A (en) * | 1972-05-04 | 1975-01-28 | Robert H Wheeler | Quantum mechanical mosfet infrared radiation detector |
US3808476A (en) * | 1973-01-05 | 1974-04-30 | Westinghouse Electric Corp | Charge pump photodetector |
US3911465A (en) * | 1973-08-02 | 1975-10-07 | Norman A Foss | MOS photodiode |
JPS598073B2 (ja) * | 1975-08-19 | 1984-02-22 | 松下電器産業株式会社 | 固体検出器 |
US4433343A (en) * | 1981-12-22 | 1984-02-21 | Levine Michael A | Extrinsic infrared detector with dopant site charge-neutralization |
JPH0614541B2 (ja) * | 1984-06-27 | 1994-02-23 | 新技術事業団 | 光電変換装置とその製造方法 |
US5247193A (en) * | 1991-02-01 | 1993-09-21 | Olympus Optical Co., Ltd. | Semiconductor insulated gate device with four electrodes |
US5451786A (en) * | 1994-04-19 | 1995-09-19 | Santa Barbara Research Center | Uncooled mis capacitor for infrared detection |
US5932902A (en) * | 1996-08-19 | 1999-08-03 | Sony Corporation | Solid-state imaging device with element-separating electrodes |
JP3853905B2 (ja) * | 1997-03-18 | 2006-12-06 | 株式会社東芝 | 量子効果装置とblトンネル素子を用いた装置 |
JP3103064B2 (ja) * | 1998-04-23 | 2000-10-23 | 松下電子工業株式会社 | 固体撮像装置およびその製造方法 |
-
1999
- 1999-06-21 TW TW088110369A patent/TW414930B/zh not_active IP Right Cessation
- 1999-11-22 US US09/447,086 patent/US6268615B1/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7906360B2 (en) | 2007-06-12 | 2011-03-15 | National Taiwan University | Manufacturing process for a photodetector |
Also Published As
Publication number | Publication date |
---|---|
US6268615B1 (en) | 2001-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | High detectivity graphene‐silicon heterojunction photodetector | |
KR102554664B1 (ko) | 촬상 장치 및 전자 기기 | |
JP2020150556A (ja) | 撮像装置 | |
Bonavolontà et al. | Reduced graphene oxide on silicon-based structure as novel broadband photodetector | |
US20190386167A1 (en) | Electromagnetic wave detector, electromagnetic wave detector array, and electromagnetic wave detection method | |
JP6642769B1 (ja) | グラフェンを用いた電子デバイスの製造方法 | |
Abbas et al. | Translucent photodetector with blended nanowires–metal oxide transparent selective electrode utilizing photovoltaic and pyro‐phototronic coupling effect | |
Liu et al. | Underwater multispectral computational imaging based on a broadband water-resistant Sb2Se3 heterojunction photodetector | |
TW200807701A (en) | Pixel having photoconductive layers | |
TW414930B (en) | The photo detector | |
KR20190097981A (ko) | 2차원 절연체를 포함하는 근적외선 센서 | |
Pekkola et al. | Focus-Induced Photoresponse: a novel way to measure distances with photodetectors | |
Zhang et al. | Ultrasensitive Perovskite Photodetector for Filter‐Free Color Single‐Pixel Imaging | |
KR102128379B1 (ko) | 엑스레이 검출 패널 및 그 제조방법 | |
Alchaar et al. | Focal plane array based on HgTe nanocrystals with photovoltaic operation in the short-wave infrared | |
JP7505239B2 (ja) | 光センサ、及びこれを用いた撮像装置 | |
RU2452924C1 (ru) | Способ определения знака циркулярной поляризации лазерного излучения | |
TW201308583A (zh) | 畫素陣列基板及檢測模組 | |
JP3484340B2 (ja) | イメージセンサ | |
CN108281483A (zh) | 一种基于二维半导体薄膜/绝缘层/半导体结构的电荷耦合器件 | |
JP2658873B2 (ja) | 光電変換素子 | |
JP2017228750A (ja) | フォトダイオード並びにその製造方法 | |
JP7344086B2 (ja) | 光電変換素子及びその製造方法並びに積層型撮像素子 | |
CN113614576B (zh) | 检测器电路 | |
TW201901944A (zh) | 具有降低串擾之互補金氧半導體影像感測器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |