TW413853B - Manufacturing method for semiconductor device having small-size gate structure - Google Patents

Manufacturing method for semiconductor device having small-size gate structure Download PDF

Info

Publication number
TW413853B
TW413853B TW88105340A TW88105340A TW413853B TW 413853 B TW413853 B TW 413853B TW 88105340 A TW88105340 A TW 88105340A TW 88105340 A TW88105340 A TW 88105340A TW 413853 B TW413853 B TW 413853B
Authority
TW
Taiwan
Prior art keywords
layer
gate
semiconductor device
patent application
scope
Prior art date
Application number
TW88105340A
Other languages
Chinese (zh)
Inventor
Shr-Chang Jang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW88105340A priority Critical patent/TW413853B/en
Application granted granted Critical
Publication of TW413853B publication Critical patent/TW413853B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A manufacturing method for small-size gate structure. The present invention comprises at least two TiN side spacers. The semiconductor substrate comprises a field oxide and sequentially forming a gate oxide, polysilicide layer, the first dielectric layer and photoresist layer on the top of semiconductor substrate; then, etch the photoresist layer and the first delelectric layer to form a groove structure. Forming the second dielectric on top of semiconductor devices and etch it to form two side spacers in the groove structure; next, forming metal silicide on the gate location upon the polysilicide layer; then, forming the third dielectric layer on top of the semiconductor device; further, using wet-etching to remove the third dielectric, two side spacers and the first dielectric; lastly, using anisotropic etching to etch the gate structure.

Description

413¾53 五、發明說明(1) 5~1發明領域: 本發明係有關於一種半導體元件之製造方法,特別是 有關於一種氮化鈦側隙壁及閘極之金屬矽化物,其可製得 尺寸小於0. 25 v m深次微米閘極長度,並提供低生產成本 之半導體元件。 -2發明背奈 近來在半導體元件的需求因大量的使甩電子零件而快 速的增加。特別是電腦快速的普及增加了半導體元件的需 求。由於需要數百或是數千電晶體組成很複雜的積體電路 製造在單一半導體晶片上,所以元件尺寸的縮小及降低生 產成本是重要的。 第一D圖所示為一傳統半導體元件之剖面圖,第一a 以傳統半導體元件為例,其中矽底材1〇〇為p井,傳統的 導體元件,當其尺寸小於〇. 25 j m閘極長度時,若使用現 有的I線步進機(I-Line Stepper)將無法提供良好的解 度(resolution)。由於微影解析度(Uth〇graphic resolution)乃正比於步進機曝光之波長及反比於投射 之數值孔隙M (nuraericai aperture)的數值。故現今 於0. 25 βπι閘極尺寸,皆使用價格昂貴的短波長光源( KrF248nm或ArF193nm)的深紫外線步進機(心邛 UUra-Violet ray簡稱DUV)來提高解析度,但亦會413¾53 5. Description of the invention (1) 5 ~ 1 Field of invention: The present invention relates to a method for manufacturing a semiconductor device, and in particular to a metal silicide of a titanium nitride side wall and a gate electrode, which can be made into a size Less than 0. 25 vm deep sub-micron gate length, and provide semiconductor components with low production costs. -2 Invention of Nanotechnology Recently, the demand for semiconductor devices has increased rapidly due to the large number of electronic components. In particular, the rapid spread of computers has increased the demand for semiconductor components. Since hundreds or thousands of transistors are required to make a complex integrated circuit manufactured on a single semiconductor wafer, it is important to reduce the size of the components and reduce production costs. The first diagram D shows a cross-sectional view of a conventional semiconductor element. The first a takes a conventional semiconductor element as an example, in which the silicon substrate 100 is a p-well, and the conventional conductor element, when its size is less than 0.25 jm gate At the pole length, using the existing I-Line Stepper will not provide good resolution. Because lithographic resolution is proportional to the wavelength of the stepper exposure and inversely proportional to the projected numerical aperture M (nuraericai aperture). Therefore, at 0. 25 βπι gate size, the use of expensive short-wavelength light sources (KrF248nm or ArF193nm) deep ultraviolet stepper (heart UUra-Violet ray for short) is used to improve the resolution, but it will also improve the resolution.

IHIIHI

第4頁 41¾853 五、發明說明(2) 生產成本大幅增加。第一B圖以N型半導體元件為例’其中 源極280A與汲極280B為N+,閘極160A為多晶矽。第一 B圖 以傳統半導體元件為例,和第一A圖相同之層則以相同之 標註號碼來表示。除了第一 A圖之結構外,此製造方法增 加了場氧化層、閘極、源/汲·極、間隙壁與欽膜的形成。 第一 C圖以傳統半導體元件為例,和第一 B圓相同之層則以 相同之標註號碼來表示。除了第一 B圖之結構外,此製造 方法增加了氮化鈦層與金屬矽化·物之形成。 因此’亟待一種具有小尺寸及低生產成本的半導體元 件。 卜3 發明目的及概述: 二 鑒於上述之發明背景中,現有的半導體元件所產生的 諸多缺點’本發明的主要目的在於藉由一種氮化鈦側隙壁 及閘極之金屬矽化物,其可製得尺寸小於〇.25ym深次微 來閘極長度’並提供低生產成本之半導體元件。 種半導體元件,其閘極的 在多晶石夕上形成金屬矽化 較佳方法。Page 4 41¾853 V. Description of the invention (2) The production cost has increased significantly. The first diagram B shows an N-type semiconductor element as an example, wherein the source 280A and the drain 280B are N +, and the gate 160A is polycrystalline silicon. The first figure B uses a conventional semiconductor device as an example, and the same layers as the first figure A are represented by the same reference numerals. In addition to the structure of the first A picture, this manufacturing method increases the formation of field oxide, gate, source / drain, barrier, and film. The first C diagram uses a conventional semiconductor device as an example, and the same layer as the first B circle is represented by the same labeling number. In addition to the structure of the first B figure, this manufacturing method increases the formation of a titanium nitride layer and metal silicide. Therefore, there is an urgent need for a semiconductor device having a small size and a low production cost. [3] Purpose and summary of the invention: In view of the above-mentioned background of the invention, the existing semiconductor devices have many shortcomings. The main purpose of the present invention is to use a metal silicide of a titanium nitride sidewall spacer and a gate electrode. A semiconductor device with a gate length of less than 0.25 μm is obtained and provides a low production cost. A semiconductor device whose gate is a preferred method for forming metal silicidation on polycrystalline stones.

本發明的另一目的在提供一 寄生電阻會隨著元件縮小上升, 物(s i 1 i c i de )是降低閘極電阻的 本發明的再-目的在提供一種半導體元#,其控制氮Another object of the present invention is to provide a parasitic resistance that rises as the element shrinks. The object (s i 1 i c i de) is to reduce the gate resistance. Another object of the present invention is to provide a semiconductor element # which controls nitrogen

化鈦側隙壁之厚度,用以決定閛極尺寸長度。本發明可製 得尺寸小於0 · 2 5 // m深次微米閘極長度,並提供高積集声 之半導體元件。 ” * 再者,本發明的又一目的在提供一種半導體元件,其 利用I線步進機(I line stepper ),即可製得尺寸小於 〇 · 2 5 # m深次微米閘極長度。如此不需使用昂責的深紫外 線步進機(DUV),可提供低生產成本之半導體元件。 根據 構之製造 有一場氧 質層與光 一介電質 層於半導 結構。接 。緊接著 利用濕式 質層移除 形成淺# 介電質層 著,利用 成閘極側 域範圍内 以上所述的 方法,其包 化層,依序 阻層於半導 層,以形成 體元件上方 著,形成金 ,又形成第 蝕刻方式將 。接著利用 雜汲極於場 於場氧化層 非等向性蝕 壁之間隙壁 。再者,形 目的,本 含二氮化 形成閘氧 體基底上 一凹槽結 ,且蝕刻 屬矽化物 三介電質 第三介電 非專向性 氧化層與 、淺摻雜 刻方式將 。接著又 發明提供 鈦侧隙壁 化層、多 方。接箸 構。再者 之,以形 於多晶妙 層半導體 質層、二 蝕刻方式 閘極之間 汲極上方 第四介電 形成重摻 一種小 ^半導 晶梦層 ,触刻 尺寸閘極結 體基底内具 '第一介電 光阻層與苐 ,形成第二介電質 成一側隙壁於凹槽 之閘極位置 層上方 元件上 側隙壁 #刻出 。接著 與閘極 質層蝕 雜於淺 於半導 方。再者, 與第一介電 閉極結構, ’形成第四 周圍。緊接 刻,用以形 摻雜汲極區 體基底上方 成一内層介電材料The thickness of the titanium side wall is used to determine the size and length of the pole. The present invention can produce a semiconductor element with a size less than 0 · 2 5 // m deep sub-micron gate length and providing high accumulated sound. "* Furthermore, another object of the present invention is to provide a semiconductor device which can use I line stepper to obtain gate lengths smaller than 0.25 #m deep sub-micron gate length. It does not require the use of a responsible deep ultraviolet stepper (DUV), which can provide semiconductor components with low production costs. According to the structure, a field oxygen layer and a photo-dielectric layer are manufactured in a semiconducting structure. Next. Then use wet The formation layer is removed to form a shallow #dielectric layer. Using the method described above within the gate-side region, the cladding layer is sequentially blocked on the semiconducting layer to form a body element. Gold, and then form the first etching method. Then, a heterodiffusion electrode is used to form a gap in the field anisotropic etching wall of the oxide layer. Furthermore, for the purpose, a dinitride-containing nitride is used to form a groove on the substrate of the gate oxide. Junction, and the etching is a silicide triple dielectric, a third dielectric non-specific oxide layer, and a shallow doping etching method. Then it is invented to provide a titanium side wall wall layer, a multi-sided structure, and then a structure. In the shape of a polycrystalline semiconductor The fourth dielectric above the drain electrode between the gate layer and the two-etching method is formed by re-doping a small ^ semiconducting dream layer, and the size of the gate junction substrate with the first dielectric photoresist layer and erbium is formed. The second dielectric is engraved on the side gap wall # on the element above the gate position layer of the groove. Then, the second dielectric is etched with the gate quality layer to be shallower than the semiconductor. Furthermore, it is closed to the first dielectric. The electrode structure, 'forms the fourth periphery. Immediately after, it is used to form a doped dielectric material over the body substrate of the drain region.

第6頁 413853 五、發明說明(4) ,且閘極間隙壁與場氧化層之間蝕刻一接 成金屬矽化物於該接觸窗上方。 窗 最後 形 5-4圖示簡單說明: 第一 A圓係一習知半導體元件之各步 ,其包含閘極區域之定義。 "的動作剖面圖 第一 B圖係一習知半導體元件之 ,其包含閘極、源極、汲極、間隙壁與鈦夕動作剖面圓 第一C圖係一習知半導體元件之^鄹形成。 ,其包含金屬矽化物與氮化鈦層之形成。,動作剖面圖 第一D圖係一習知半導體元件 ,其包含氮化鈦之移除。 之各步驟的動作剖面圖 第二圖係本發明實施例中半導 示意圖,•包含閉氧化層、 ==的動作 形成。 I 氣化矽層與光阻之 第二圖係本發明實施例中半導 示意圓,其包含光阻與局部氮的動作 形成》 /層之蝕刻,氮化鈦層之 示音五” ί發明實施例中半導體元件&各步㈣動作 '、’其包含閘極金屬矽化物與氮化鈦層之形成。Page 6 413853 5. Description of the invention (4), and a metal silicide is etched between the gate spacer and the field oxide layer to form a metal silicide above the contact window. The last shape of the window is a simple illustration of 5-4: The first A circle is a step of a conventional semiconductor device, which includes the definition of the gate region. " Action cross-sectional view. The first B diagram is a conventional semiconductor device, which includes a gate, a source, a drain, a spacer, and a titanium cross-section. The first C diagram is a conventional semiconductor device. form. It includes the formation of a metal silicide and a titanium nitride layer. Figure 1D is a conventional semiconductor device, which includes the removal of titanium nitride. Cross-sectional view of the actions of each step The second diagram is a semiconducting schematic diagram in the embodiment of the present invention, and the action formation including a closed oxide layer and == is formed. I The second picture of the vaporized silicon layer and the photoresist is a schematic semiconducting circle in the embodiment of the present invention, which includes the action of the photoresist and local nitrogen. "/ Etching of the layer, the sound of the titanium nitride layer." In the embodiment, the semiconductor device & each step "," which includes the formation of a gate metal silicide and a titanium nitride layer.

第7頁 干意:四ϋ'ίϊ明實施例中半導體元件之各步驟的動作 意^!,其包含氮化鈦側隙壁之形成。 4ί挪3Page 7 Interpretation: The operation of each step of the semiconductor device in the fourth embodiment includes the formation of a side wall of titanium nitride. 4ί Norwegian 3

五、發明說明(5) 第六圖係本發明實施例中半導體元件之各步驟的動作 示意圖,其包含氮化鈦層、氮化鈦側隙壁與氮化矽層之 除。 第七圖係本發明實施例中半導體元件之各步驟的動作 示意圖’其包含閘極與淺摻雜汲極之形成。 第八圖係本發明實施例中半導體元件之各步驟的動作 示意圖’其包含源極、汲極、接觸盥内層介電材料之形 成。 … 主要部份之代表符號: _ 1 〇 〇矽底材 120場氧化層 140閘氧化層 1 6 0多晶碎層 16 0Α閘極 200光阻 210鈦膜 240閘極之金屬;5夕化物 250氮化鈦層 2 6 0輕摻雜汲極 280Α源極 2 8 0 Β ;?及極 300氮化矽間隙壁 360Α源極之金屬矽化物V. Description of the invention (5) The sixth diagram is a schematic diagram of the operation of each step of the semiconductor device in the embodiment of the present invention, which includes the removal of a titanium nitride layer, a titanium nitride sidewall spacer, and a silicon nitride layer. The seventh diagram is a schematic diagram of the operation of each step of the semiconductor device in the embodiment of the present invention, which includes the formation of a gate electrode and a shallowly doped drain electrode. The eighth figure is a schematic diagram of the operation of each step of the semiconductor element in the embodiment of the present invention, which includes the formation of a source, a drain, and a dielectric material in contact with the inner layer of the bathroom. … The representative symbols of the main parts: _ 1 00 silicon substrate 120 field oxide layer 140 gate oxide layer 1 60 polycrystalline fracture layer 16 0A gate 200 photoresistor 210 titanium film 240 gate metal; pentoxide 250 Titanium nitride layer 2 6 0 lightly doped drain 280A source 2 8 0 Β; and 300 metal nitride silicon nitride spacer 360A source metal silicide

413853413853

五、發明說明 360B 10 12 14 16 18 20 22 22A 24 26 28 30A 30B 32 34 36 38A 38B (6) 汲極之金屬矽化物 矽底材 場氧化層 閘氧化層 多晶矽層 氮化矽層 光阻 k 氮化鈦層 氮化鈦侧隙壁 閘極之金屬矽化物 氮化鈦層 淺#雜汲極 源極 汲極 氮化矽間隙壁 内層介電材料 接觸窗 源極之金屬石夕化物 汲極之金屬矽化物 5-5 發明詳細說明: 第八圖顯示本發明實施例中半導體元件之剖面圖。第 二圖至第七圖則顯示此半導體元件之分解示意圖。於這些V. Description of the invention 360B 10 12 14 16 18 20 22 22A 24 26 28 30A 30B 32 34 36 38 38A 38B Titanium Nitride Layer Titanium Nitride Side Gap Gate Metal Silicide Titanium Nitride Layer Shallow #Hetero Drain Source Source Drain Silicon Nitride Gap Inner Layer Dielectric Material Contacts Window Source Metal Lithium Ionide Drain Metal silicide 5-5 Detailed description of the invention: Figure 8 shows a cross-sectional view of a semiconductor device in an embodiment of the present invention. The second to seventh figures show exploded views of the semiconductor device. On these

第9頁 413853 五、發明說明(7) 圖式當中,相同的元件係以相同的標號來表示 第二圖顯示出:半導體基底1 〇係使用電性為p型的石夕 底材;然而N型矽底材也同樣可以使用。將晶片氧化爐管 内,以濕式氧化法進行場氧化層(fie〗d oxide)的成長^ 每兩個場氧化層1 2之間用以隔離半導體元件。接著,將曰 片送入氧化爐管内,以乾式氧化法將表面上的矽氧化成^ 度約在1 0 0到2 5 0埃的二氧化矽,這二氧化矽層將作為半導 體元件的閘氧化層(gate 0Xide)14。緊接著,以低壓化學 氣相沉積法沉積厚度約2〇〇〇到3000埃的多晶矽16在閑氧$ 層14表面上,以熱擴散法或離子植入的方式,將高漢度的 磷或砷’摻入剛沉積的多晶矽彳旱,以降低閘極的電阻率: 再者’以低壓化學氣相沉積法(LPCVD)沉積一層氮化;5夕18 在多晶矽層16上’其厚度約1〇〇〇到2〇〇〇埃。接著,沉積一 層光阻(photoresist)在氮化矽18上,利用I線(〗Une)步 進機(stepper)進行局部性的曝光(exp〇sure),使光罩上 的圖案完整的傳遞到光阻上,接著再進行光阻的顯影。 …第三圖顯示出:以乾式蝕刻方式進行氮化矽的蝕刻, 然後將光阻去除。接著,利用化學氣相沉積法(CVI))沉積 厚度約1 000到2000埃之間的氮化鈦,形成一層氮化鈦22於 氮化,1 8與多晶矽1 6表面上,其沉積的氚化鈦22薄臈其階 梯覆蓋(step coverage)的能力可大於90%。Page 9 413853 V. Description of the invention (7) In the drawings, the same elements are denoted by the same reference numerals. The second figure shows that the semiconductor substrate 10 uses a p-type stone evening substrate; however, N Type silicon substrates can also be used. Inside the wafer oxidation furnace tube, a field oxidation layer (fie d oxide) growth is performed by a wet oxidation method ^ Every two field oxide layers 12 are used to isolate semiconductor elements. Next, the wafer is sent into an oxidizing furnace tube, and the silicon on the surface is oxidized into silicon dioxide having a degree of about 100 to 250 angstroms by a dry oxidation method. This silicon dioxide layer will serve as a gate for the semiconductor device. Oxide layer (gate 0Xide) 14. Immediately afterwards, polycrystalline silicon 16 having a thickness of about 2000 to 3000 angstroms is deposited by a low pressure chemical vapor deposition method on the surface of the free oxygen layer 14, and high-intensity phosphorus or Arsenic 'doped into the newly deposited polycrystalline silicon wafer to reduce the resistivity of the gate: Furthermore,' a layer of nitride was deposited by low pressure chemical vapor deposition (LPCVD); May 18 on polycrystalline silicon layer 16 'has a thickness of about 1 00 to 2000 Angstroms. Next, a layer of photoresist is deposited on the silicon nitride 18, and a partial exposure is performed by using an I-line ([Une]) stepper, so that the pattern on the photomask is completely transferred to Photoresist, and then development of photoresist. … The third figure shows that silicon nitride is etched by dry etching and then the photoresist is removed. Next, a chemical vapor deposition (CVI) method is used to deposit titanium nitride with a thickness of about 1,000 to 2000 angstroms to form a layer of titanium nitride 22 on the surface of the nitride, 18 and polycrystalline silicon 16. Titanium 22 thin can be more than 90% of its step coverage.

第10頁Page 10

413853 五、發明說明(8) '一·~ 第四圖顯示出利用非等向性蝕刻方式將氮化鈦2 2韻 刻’形成二側隙壁22A。本發明可以藉由控制氮化鈦的厚 度及二側隙壁的尺寸大小,來定義閘極尺寸之大小。 第五圖顯示出:以磁控直流藏鍍的方式沉積一層金屬 欽,其厚度約200到1 000埃,接著利用高溫約6〇(rc到8〇〇 °c,在含有氮氣或氨的環境中,將部分沉積的鈦膜與閘極 上的多晶矽反應,形成矽化鈦,而未參與反應或反應後所 剩餘的欽’將氮化成氮化歛26,其厚度約500到1 500埃之 間。 、 ; 第六圖顯示出:利用化學洗淨溶液(chemical cleaning solutions)的RCA-1洗淨方法來移除氮化欽26、 22A ’ 其RCA-1 洗淨方法是由Nh4〇h _· jj2〇2 · 4〇=1 ·· j : 5 所組 成❶接著’利用濕式餘刻法將氮化矽1 8钱刻。 第七圖顯示出:以矽化鈦24當作為蝕刻罩幕,利用自 動對準反應性離子蝕刻法(self_al ign RIE)將多晶矽16蝕 刻,用以形成閘極結構。接著’以〗6 A閘極為罩幕,以磷(_ 為離子源,對整片晶片進行磷離子的植入。其濃度約丄〇u 、 /cm2 ’主要是用來作為防短通道效應(sh〇rt channel effect)發生的輕摻雜汲極(11扣1;1丫 drain)28之用 ’以N植入稱之。接下來將經輕摻雜汲極2 8植入後的晶片 送入熱擴散爐内’以約9 0 〇到1 〇 〇 〇 °c左右的高溫,進行鱗^413853 V. Description of the invention (8) '一 · ~ The fourth figure shows that titanium nitride 22 is carved into a two-sided gap wall 22A by anisotropic etching. The present invention can define the size of the gate electrode by controlling the thickness of the titanium nitride and the size of the two side walls. The fifth figure shows: depositing a layer of metal thin film by magnetron DC hidden plating, with a thickness of about 200 to 1,000 angstroms, and then using a high temperature of about 60 (rc to 800 ° C, in an environment containing nitrogen or ammonia In the reaction, a part of the deposited titanium film is reacted with polycrystalline silicon on the gate electrode to form titanium silicide, and the remaining silicon that has not participated in the reaction or after the reaction will be nitrided to a nitrided thickness 26, which has a thickness of about 500 to 1,500 angstroms. The sixth figure shows: RCA-1 cleaning method using chemical cleaning solutions to remove nitric acid 26, 22A 'The RCA-1 cleaning method is by Nh4〇h _ · jj2 〇2 · 4〇 = 1 ·· j: 5 composition and then 'wet silicon nitride 18 yuan by wet-etching method. The seventh figure shows: using titanium silicide 24 as an etching mask, using automatic Aligned reactive ion etching (self_al ign RIE) etches polycrystalline silicon 16 to form a gate structure. Then '6 A gate mask is used, and phosphorus (_ is used as an ion source to perform phosphorus ionization on the entire wafer) Implantation. Its concentration is about 丄 〇u, / cm2 'is mainly used as an anti-short channel effect (sh〇r t channel effect) occurs in lightly doped drain (11 buckle 1; 1 yrain) 28 'is called N implantation. Next, the lightly doped drain electrode 2 8 is implanted into the heat The inside of the diffusion furnace is scaled at a high temperature of about 900 to 1,000 ° C.

413853413853

五、發明說明(9) 原子的擴散。同時將因離子植入,而被破壞的部分晶片表 面的矽原子結構,加以回火(anneal ing)。 第八圖顯不出.利用低壓化學氣相沉積法(L p c V D ),、冗 積一層氮化矽在晶片上,其厚度約1 0 0 0到2 0 0 〇埃。接著, 利用非等向性蝕刻方式將氮化矽蝕刻,形成閘極! 6A側壁 上的間隙壁32。以磷或砷為離子源,對晶片逕行高漢度且 深度較深的離子植入’以進行源極3 Ο A與汲極3 〇 B的重播雜 (heavy doping) ’濃度約1015/cm2,以N+植入稱之。再者 ,利用化學氣相沉積(CVD )沉積一層内層介電材料( inter-layer d i e lectr ics)34,並以化學機械研磨法( chemical mechanical polishing)進行全面性的内層介電 材料的平坦化,再以微影與蝕刻的製程,定義出接觸窗36 的位置’且以非等向性敍刻方式’敍刻出接觸窗3 。接著 ’以金屬濺鍍方式沉積一層鈦(Ti)金屬層,當作後續導線 之阻障層(barrier Uyer)。最後,利用高溫,將部分沉 積的鈦膜與接觸窗36上的矽反應,形成鈦化矽。其接觸窗 36上所形成鈦化矽,即為源極38人與汲極38B之金屬矽化物 以上所述僅為本發明之較佳實施例而已,並非以限定 本發明之申請專利範圍;凡其它未脫離本發明所揭示之精 神下所完成之等效改變或修飾,均應包含在下述之專利申 請範圍内。5. Description of the invention (9) Atomic diffusion. At the same time, the silicon atomic structure on the surface of the chip that was destroyed by ion implantation was annealed. The eighth figure is not shown. Using low pressure chemical vapor deposition (L p c V D), a layer of silicon nitride is stacked on the wafer to a thickness of about 100 to 2000 angstroms. Then, the silicon nitride is etched by anisotropic etching to form a gate electrode! Spacer 32 on the side wall of 6A. Using phosphorous or arsenic as the ion source, the wafer is implanted with high-latency and deep-depth ions to 'heavy doping' the source 3 0 A and the drain 3 0 B at a concentration of about 1015 / cm2, Called N + implantation. Furthermore, a layer of inter-layer die material 34 is deposited by chemical vapor deposition (CVD), and a comprehensive planarization of the inner layer dielectric material is performed by chemical mechanical polishing. Then, using the lithography and etching processes, the position of the contact window 36 is defined, and the contact window 3 is engraved in an anisotropic narrative manner 3. Next, a titanium (Ti) metal layer is deposited by metal sputtering as a barrier Uyer for subsequent wires. Finally, using a high temperature, a part of the deposited titanium film is reacted with silicon on the contact window 36 to form silicon titanate. The silicon silicide formed on the contact window 36 is the metal silicide of the source 38 and the drain 38B. The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of patent application of the present invention; Other equivalent changes or modifications made without departing from the spirit disclosed by the present invention should be included in the scope of the following patent applications.

Claims (1)

413853 六、申請專利範圍 1 · 一種半導體元造方法,至少包含下列步驟:: 形成一场氧化層(field oxide)於一半導體基底内; 依序形成一閘氧化層(gate 〇xide)與一多晶矽層於診 半導體基底表面上方; 形成一第一介電質層於該多晶矽層上方; 形$—光阻層於該第一介電質層上方,且該光阻 用以定義一閘極位置; 阻層與局部第一介電 形成一第二介電質層於該第一介電質層與多晶矽層上 利用非等向性敍刻方式勉刻該光 質層; 方 成二::ϊ等向性㈣方式㈣該第二介電質層,… 形成一金屬矽化物於該多晶矽層上方 形成一金屬層於該第一介電質層、二 之閘極位置; 篇糊上方; ㈣隙壁與閘極金 式银刻方式㈣該第三介電質層、二側隙壁與 第一介電質層;及 利用非等向性姓刻方式敍刻多晶石夕層,且該多晶砂層 係用以作為半導體元件之閘極結構。 ,其 _ 2·如申請專利範圍第1項所述之半導體元件製造方法 中上述之第一介電質層至少包含氮化發。413853 6. Application Patent Scope 1. A semiconductor device fabrication method, which includes at least the following steps: forming a field oxide in a semiconductor substrate; sequentially forming a gate oxide layer and a polycrystalline silicon Forming a first dielectric layer over the polycrystalline silicon layer; forming a photoresist layer over the first dielectric layer, and the photoresist used to define a gate position; The resist layer and the local first dielectric form a second dielectric layer on the first dielectric layer and the polycrystalline silicon layer. The optical layer is engraved with an anisotropic engraving method; Fang Cheng'er: ϊ, etc. The second dielectric layer is oriented in an isotropic manner, and a metal silicide is formed on the polycrystalline silicon layer to form a metal layer on the first dielectric layer and the gate positions of the two; above the paste; the gap wall And the gate gold silver engraving method: the third dielectric layer, the two side gap walls and the first dielectric layer; and using an anisotropic engraving method to engrav the polycrystalline stone layer, and the polycrystalline sand layer system Gate structure used as a semiconductor element_ 2 · The above-mentioned first dielectric layer in the method for manufacturing a semiconductor device described in item 1 of the scope of patent application includes at least a nitrided hair. 413853 六、申請專利範圍 3·如申請專利範圍第1項所述龙 貝所攻之丰導體π件製造方法其 中上述之第二介電質層至少包含氮化 鈦 法, 其 t如申請專利範圍第!_項所述之半導體 中上述之閘極層至少包含多晶矽層。 衣,其 6.如申請專利範圍第1項所述之半導體元件製造 中上述之場氧化層至少包含二氧化矽。 ’其 7. —種半導體元件^方法,至少包含下列步驟 形成一場氧化石夕底材内; 依序形成一閘氧化層與一多晶矽層於該矽底材表 方; 形成一第一氮化矽於該多晶矽層上方; 形成一光阻-層於該第一氮化矽上方’且該光阻層係用 以定義**-金屬閘極位置; 利用非等向性蝕刻方式蝕刻該光阻層與局部第一氮化 砂層; 形成一第一氮化鈦層於該第一氣化石夕與多晶石夕層上方 面上 利用非等向性蝕刻方式蝕刻該第一氮化欽層’用以 形413853 6. Scope of patent application 3. The manufacturing method of the π-shaped piece of Fengcong conductor attacked by Lombe as described in item 1 of the scope of patent application, wherein the second dielectric layer includes at least the titanium nitride method, and t The above-mentioned gate layer in the semiconductor described in item! _ Includes at least a polycrystalline silicon layer. 6. The field oxide layer described above in the manufacture of semiconductor elements described in item 1 of the scope of patent application contains at least silicon dioxide. 'It 7. — A semiconductor device method including at least the following steps to form a field oxide substrate; sequentially forming a gate oxide layer and a polycrystalline silicon layer on the surface of the silicon substrate; forming a first silicon nitride Over the polycrystalline silicon layer; forming a photoresist-layer over the first silicon nitride; and the photoresist layer is used to define the position of the **-metal gate; the photoresist layer is etched by anisotropic etching And a local first nitrided sand layer; forming a first titanium nitride layer on the first gasified stone and polycrystalline stone layer by using an anisotropic etching method to etch the first nitride layer; shape 第14頁 413853 六、申請專利範圍 成二侧隙壁; 形成一金屬發化物於該多晶矽層上方之金屬閘極位置 形成一第二氮化鈦層於該第一氮化鈦層、二侧隙壁與 金屬閘極上方;Page 14 413853 6. The scope of the patent application is two side gap walls; a metal hairpin is formed on the metal gate position above the polycrystalline silicon layer; a second titanium nitride layer is formed on the first titanium nitride layer; and two side gaps are formed. Above the wall and metal gate; 利用濕式蝕刻方式蝕刻該第二氮化鈦層、二側隙壁與 第一氮化鈦層; 利用非等向性蝕刻方式蝕刻多晶矽層,且該多晶矽層 係用以作為半導體元件之金屬閘極結構; 形成二淺摻雜汲極於該場氧化層與金屬閘極之間; 形成一第二氮化矽層於該場氧化層、淺摻雜汲極上方 與金屬閘極周圍; ,、利用非等向性蝕刻方式將該第二氮化矽層蝕刻,用以 形成該金屬閘極侧壁之間隙壁; 形成二重摻雜(heavy doping)於淺摻雜汲極區域範圍 内’用以作為該該半導體元件之源/汲極; ,形成一内層介電材料(inter-layer dielectrics)於The second titanium nitride layer, the two side walls and the first titanium nitride layer are etched by a wet etching method; the polycrystalline silicon layer is etched by an anisotropic etching method, and the polycrystalline silicon layer is used as a metal gate of a semiconductor device. Electrode structure; forming two shallowly doped drain electrodes between the field oxide layer and the metal gate; forming a second silicon nitride layer on the field oxide layer, above the shallowly doped drain electrode and around the metal gate; The second silicon nitride layer is etched by using an anisotropic etching method to form a spacer on the side wall of the metal gate; a heavy doping is formed in a shallowly doped drain region; As a source / drain of the semiconductor element; forming an inter-layer dielectrics on the 半導體基底上方,且該金屬閘極間隙壁與場氧化紅 刻一接觸窗;及 9Ί M 形成一金屬矽化物於該接觸窗上方,用以作為 金屬化制招. …〜接觸 ϊ·如申請專利範圍第7項所述之半導體元件製造方法, 中上述之閘極係為熱擴散法製得。 '’其Above the semiconductor substrate, and the metal gate gap wall and the field oxide are engraved with a contact window; and 9Ί M forms a metal silicide above the contact window for use as a metallization method.... In the method for manufacturing a semiconductor device according to the seventh item, the above-mentioned gate is prepared by a thermal diffusion method. ''its 413853413853 六、申請專利範圍 9.如申請專利範圍第7項所述之半導體元件製造方法,其 中上述之閘極至少包含下列之一:多晶矽、磷、砷及矽化 I 0,如申請專利範圍第7項所述之半導體元件製造方法,f 中上述之多晶矽之蝕刻係為自行對準反應性離子蝕刻法 self-align reactive ion etch)製得。 II ·如申請專利範圍第7項所述之半導體元件製造方法’其 中上述之間隙壁至少包含氮化矽。 &,其 1 2.如申請專利範圍第7項所述之半導體元件製造方求 中上述之間隙壁至少包含二氧化矽。 ·>,其 13_如申請專利範圍第7項所述之半導體元件製造方沐極之 中上述之位於源/汲極上方之接觸窗’用以作為濾/浪 金屬矽化物。 ,於,其 1 4·如申請專利範圍第7項所述之半導體元件製造方w 中上述之金屬矽化物至少包含鈦金屬。 15.如申請專利範園第7項所述之半導體元件製造方法 中上述之金屬矽化物至少包含始金屬。6. Scope of patent application 9. The method for manufacturing a semiconductor device as described in item 7 of the scope of patent application, wherein the above-mentioned gate includes at least one of the following: polycrystalline silicon, phosphorus, arsenic, and silicide I 0, as in the scope of patent application No. 7 In the semiconductor device manufacturing method, the etching of the polycrystalline silicon described in f is made by self-align reactive ion etch. II. The method of manufacturing a semiconductor device according to item 7 of the scope of the patent application, wherein the spacers include at least silicon nitride. &, 1 2. According to the semiconductor device manufacturer's request described in item 7 of the scope of patent application, the above-mentioned spacers include at least silicon dioxide. ≫ 13_ The contact window above the source / drain electrode as described in the semiconductor device manufacturing side electrode described in item 7 of the scope of patent application is used as a filter / wave metal silicide. Therefore, the above-mentioned metal silicide in the semiconductor device manufacturer w described in item 7 of the scope of patent application includes at least titanium metal. 15. The method for manufacturing a semiconductor device according to item 7 of the patent application park mentioned above, the above metal silicide contains at least a starting metal. 笫16頁 413853 六、申請專利範園 1 6.如申請專利範圍第7項所述之半導體元件製造方法,立 中上述之開極上方之金屬矽化物,其該由濺鍍方式沉積& 膜,其鈦膜與上述之閘極之多晶矽反應’形成鈦化咬,並 以濕蝕刻方式除去未參予反應或反應所剩餘的鈦。 1 7·如申請專利範圍第7項所述之半導體元件製造方法,其 中上述之接觸窗上方之金屬矽化物’其該由濺錄方式沉積 鈦膜,其鈦膜與上述之閉極之多晶矽反應,形成欽化梦。 酬 笫17頁页 Page 16 413853 VI. Patent Application Fanyuan1 6. According to the method of manufacturing a semiconductor element described in item 7 of the scope of patent application, the above-mentioned metal silicide above the open electrode should be deposited by sputtering & film The titanium film reacts with the above-mentioned polycrystalline silicon of the gate electrode to form a titanium bite, and removes the remaining titanium that is not involved in the reaction or the reaction by wet etching. 17 · The method for manufacturing a semiconductor device according to item 7 of the scope of the patent application, wherein the above-mentioned metal silicide 'above the contact window should be a titanium film deposited by a sputtering method, and the titanium film reacts with the aforementioned closed-end polycrystalline silicon. , Forming the dream of Qinhua. Remuneration 笫 17
TW88105340A 1999-04-02 1999-04-02 Manufacturing method for semiconductor device having small-size gate structure TW413853B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88105340A TW413853B (en) 1999-04-02 1999-04-02 Manufacturing method for semiconductor device having small-size gate structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88105340A TW413853B (en) 1999-04-02 1999-04-02 Manufacturing method for semiconductor device having small-size gate structure

Publications (1)

Publication Number Publication Date
TW413853B true TW413853B (en) 2000-12-01

Family

ID=21640177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88105340A TW413853B (en) 1999-04-02 1999-04-02 Manufacturing method for semiconductor device having small-size gate structure

Country Status (1)

Country Link
TW (1) TW413853B (en)

Similar Documents

Publication Publication Date Title
JP3209164B2 (en) Method for manufacturing semiconductor device
JP2942998B2 (en) Asymmetric CMOS field effect transistor
JPH03178135A (en) Manufacture of insulating gate field effect transistor
US6649308B1 (en) Ultra-short channel NMOSFETS with self-aligned silicide contact
TW445524B (en) Method for forming raised source and drain
US6069044A (en) Process to fabricate ultra-short channel nMOSFETS with self-aligned silicide contact
KR20020069502A (en) Method for manufacturing a semiconductor device
US6284612B1 (en) Process to fabricate ultra-short channel MOSFETs with self-aligned silicide contact
US5895244A (en) Process to fabricate ultra-short channel nMOSFETs with self-aligned silicide contact
US5700734A (en) Process of fabricating field effect transistor having reliable polycide gate electrode
TW413853B (en) Manufacturing method for semiconductor device having small-size gate structure
TWI231547B (en) Short channel transistor fabrication method for semiconductor device
US7470605B2 (en) Method for fabrication of a MOS transistor
US6281087B1 (en) Process for fabricating metal silicide layer by using ion metal plasma deposition
TW426917B (en) Method for manufacturing semiconductor device having a small dimensioned gate structure
JP2903883B2 (en) Method for manufacturing semiconductor device
TW501205B (en) Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET
JP3196241B2 (en) Method for manufacturing semiconductor device
KR100702118B1 (en) Method for manufacturing of semiconductor device
TW468200B (en) Manufacturing method of semiconductor device with high isolation technique
TW304279B (en) Method of forming self-aligned salicide
JPH09199717A (en) Manufacture of semiconductor device
GB2172743A (en) Forming gate sidewall oxide spacers
TW466767B (en) Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor
JPH10209076A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees