TW316285B - - Google Patents
Download PDFInfo
- Publication number
- TW316285B TW316285B TW085114814A TW85114814A TW316285B TW 316285 B TW316285 B TW 316285B TW 085114814 A TW085114814 A TW 085114814A TW 85114814 A TW85114814 A TW 85114814A TW 316285 B TW316285 B TW 316285B
- Authority
- TW
- Taiwan
- Prior art keywords
- equal
- acetylene
- adsorbent
- volume
- specific volume
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/02—Compositions containing acetylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/002—Use of gas-solvents or gas-sorbents in vessels for acetylene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
Description
A7 B7 經濟部央揉準局身工消費合作社印裝 五、發明説明(]) 本發明乃關於貯存氣技、即乙炔之方法與容器,以及使 用含碳吸附劑以貯存乙炔。 乙炔係特別使用於工業上作爲氣焊和氣體切割操作之燃 料氣體’但非常不穩定爲其缺點,若有燃燒源存在,純乙 決即使在壓力低至1 _4巴時仍會劇烈分解。因此乙炔不以 連續均勻氣相,在壓力下貯存於氣體鋼瓶中。 貯存乙炔一般使用之商業方法爲在適當之溶劑、典型爲 丙酮中溶解乙炔以降低其活性(即其化學活性),所生成之 乙炔溶液利用位於壓力容器、典型爲氣體鋼瓶中之固體多 孔物質加以吸收,以抑制乙決之分解,該物質典型具有之 孔洞大小範圍爲50至250毫微米。以此已知之方法,使用 丙酮作爲溶劑,乙块氣體鋼瓶根據英國政府規定,在15-e 下具有限制之安全壓力爲18.7絕對巴。此溶解乙块貯存系 統之主要缺點爲其無法以高流率提供乙炔,特別是當大部 份之乙炔已從鋼瓶中排出,以及一些丙酮蒸汽會伴随乙炔 排出,此系統之其它缺點包含由於最大允許壓力之限制, 其具有有限之貯存容量;其壓力隨周圍溫度之降低而迅速 降低;以及無法提供容量於巨量之貯存或輸送,除非同時 使用多個鋼瓶。 因此提出可替代之乙炔貯存方法是不致^吏人感到意外的 ,例如,早在1964年法國專利第1 417 235號揭示使用含有 用於乙炔之固體吸附劑之鋼瓶以貯存乙炔,但是在法國專 利第1 417 235號中並未揭示使用於此目的之特定吸附劑。 在者,雖然有一些關於乙块在壓力高至約1巴下吸附之少 —. 聋-- ί:請先wrt»背面之注意Ϋ項v/* '為本頁 丁 本紙張尺度適用中國國家揉準(CNS ) A4规格(210X297公釐) A7 B7 經濟部中央梯準局貝工消费合作社印製 五、發明説明(2 ) 量實驗數據’但並沒有在高壓下吸附之實驗數據。因此, 在高壓下並沒有貯存乙炔之固體吸附劑之實際應用。 ΕΡ-Α-0 467 486揭示用於貯存甲烷之特定活性碳吸附劑 ’其曾建議該處所揭示之一般等級吸附劑可以使用於乙炔 足野存’不過並沒有用於此目的之特定吸附劑實例被提出 〇 因此’在技藝中有需要一特別適合於在高壓下貯存乙炔 之特定吸附劑,在研究爲此目的之吸附劑時,我們發現選 擇適當吸附劑之準則相當複等导無法由最新發展之技術所 衍生。 根據本發明之第一方面,其係提供一種在高壓下貯存乙 声(方法,包含在高壓下將乙炔飼入含有能夠可逆吸附乙 決之含竣吸附劑之壓力容器中,其中該吸附劑具有: a. 等於或大於〇.5立方釐米/克之微孔比容; b. 等於或大於0.5立方釐米/克之中孔比容; c. 等於或大於0.25克/立方釐米之整體密度;和 d. 每單位體積等於或大於4〇〇平方米,立方釐米之表面積 〇 根據本發明之第二方面,其係提供—壓力容器以貯存、 輸送與分送壓力下之乙炔,其含有能夠可逆吸附乙块之含 後吸附劑,其中該吸附劑具有: a.等於或大於〇5立方釐米/克之微孔比容; b-等於或大於〇.5立方釐米/克之中孔比容; c.等於或大於0.25克/立方釐米之整體密度;和 -5- 本紙浪尺度適用巾^^^^ ( CNS ) A4規格(21G X297公釐) - (請先閲讀背面之注意Ϋ項再填寫本頁) -裝- 訂 線
經濟部中央橾準局貝工消费合作社印策 d.每單位體積等於或大於400平方米/立方釐米之表面積 0 根據本發明之第三方面,其係提供在壓力下貯存乙块時 能夠可逆吸附乙炔之含碳吸附劑之用途,該含後吸附劑具 有: ' a. 等於或大於0.5立方釐米/克之微孔比容; b. 等於或大於0.5立方釐米/克之中孔比容; c ·等於或大於〇. 2 5克/立方楚·米之整禮密度;和 d.每單位體積等於或大於400平方米/立方楚米之表面積 〇 選擇性地’在本發明之該三方面中,微孔比容與中孔比 容之和須等於或大於1.0立方釐米/克,具有有效直徑大小 範甌爲1.5至3.0毫微米之孔洞之比容係等於或大於〇3立方 釐米/克,等於或大於0.5立方釐米/克係較佳的。 該含碳吸附劑具有從0至0.16立方釐米/克之巨孔比容和 至少1500平方米/克之比表面積係較佳的。 任何吸附劑典型都含有眾多不同大小之開口與容易接近 之孔洞,若將孔洞大小之分佈(即孔洞直徑頻率與孔洞直 徑之闞係)作圈,所生成之曲線典型都具有一或多個最大 值。使用在本發明之含碳吸附劑具有至少_二個此類最大値 係較佳的,一般發現適合使用在本發明之含竣吸附劑具有 至少三個此類最大値。 如在此所使用,該孔洞種類之定義係遵循IUPAC之分類 ’參照IUPAC符號與用語手册,附錄2,第1部份,膠體與 -6 - 本紙法尺度適用中國國家橾準(CNS ) A4说格(210X297公釐) 【請先閎讀背面之注意^項舄本頁 .裝.
、-IT 線 五、發明説明(4 ) A7 B7 經濟部中央橾準局負工消费合作杜印製 表面化學,Pure Appl_ Chem·,31(1972) 578 » 用語“微孔” 係指具有直徑小於2毫微米之孔洞;用語《中孔,,^指具有 直徑範圍2至50毫微米之孔洞,用語係指具^直徑 大於50毫微米之孔洞,區別微孔和中孔之一理由爲此二種 孔洞在吸附氣體之本性上有所差別。當氣體分子於微:中 吸附時’在氣體分子與固體孔洞壁間會有一實質上較氣趙 分子彼此間爲強之作用,後者之作用係4加於氣體固體 之作用上。由於在微孔中並不存在爲零之作用位能,任何 限制在微孔中之氣體分子將被視爲被吸附。另一方面,當 氣體分子於中孔中吸附時,不只在氣體分子與孔洞壁間會 有吸附作用,在其内所吸附之氣體分子彼此間亦會有作用 ’其可能變成相當強。在乙块之例子中,第二類之吸附在 孔洞直徑(或大小)約1 _5毫微米時開始發生,我們相信在 高於常壓下乙块在中孔中吸附之機構包含乙炔之準凝聚, 此造成乙块之另一種壓缩,與只起源於孔壁之吸附作用位 能之影響造成者相比,後者之機構與在微孔中者相似,在 大於2至3毫微、米之中孔中,此將導致凝聚乙炔與更多之乙 炔形成彎液面。對例如乙炔之非常強烈吸附之化學品,範 圍在1.5至2.5毫微米之吸附相之密度可能超過乙块在微孔 中之最大密度,如從界面熱力學之原理所瞭解者β我們相 信這些現象依賴來自孔壁相對邊上之吸附吸引力之存在。 若孔洞之直徑超過約3毫微米,吸附吸引力變成相當微弱 ,且所生成之額外壓縮效果較不頰著,但在高壓下仍然可 以發生乙块之準液化,如任何大小之中孔之典型。因此, 本紙乐尺度逋用中國國家標隼(CNS〉A4規格(21〇X:297公羞〉 f請先閲价背面之注意事項再 -鬅-- .鳥本頁) -53 Γ ί A7 B7 經濟部中央梂準局貝工消资合作杜印裝 五、發明説明(5 ) 我們相信具有直徑或大小範圍15毫微米至3毫微米之孔洞 在吸附乙块上特別有效’在製備使用於本發明之吸附劑時 ,通常使此孔洞之密度或其中孔比容最大係較佳的。我們 更進一步相信最有效之孔洞大小範圍爲18至25毫微米。 比表面積(A)與一克固體表面上之吸附劑單層容量有關( 即可以被容納於完全填滿之單分子層上之被吸附物數量) ,其關係以方程式表示: A=nmamL 其中: nm爲每克吸附劑單層上被吸附物之莫耳數; am爲在完全早層上每一被吸附物分子所佔據之平均面積 ;以及 L爲亞佛加厥數 (參照S J Gregg and K S W Sing,吸附、表面積和多孔性 » Academic Press, Inc, London, 1982, p41 et seq.) 單層容量和比表面積係當am値爲016平方毫微米時,利 用BET方法由經驗所決定,此ΒΕΊΓ方法係來自單一吸附等 溫線’最方便是使用在常壓之沸點' 77K下之氮氣(見 Gregg and Sing,上述已引用)》此比表面積是一異於幾何 比表面積之量,曾假定會有等於2622平方米/克之幾何比 表面積之最大理論値,此値係在由石要結構之基礎平面之 單層與微孔所構成之吸附劑缝狀模型假設下所獲得,後者 中之每一個都位於二此層間,參照KR Matranga,a L Myers and E D Glandt : ”利用在活性唉上吸附以貯存天然 -8- f請先閲策背面'V注意^項h 寫本頁) 裝. 訂 線 本紙張尺度逋用中國國家橾準(CNS ) A4规格(210x297公釐) A7 B7 五、發明説明(6 ) 氣 ”,Chem Eng Sci 47(1992) pp 1569-1579。如前所説,一 個高至例如3000平方米/克之比表面積a在幾何上可能不是 眞實的。此比表面積A與幾何比表面積間之差異係反應在 採用多層之吸附機構於吸附數據之bet解釋上以及單層之 吸附機構/孔洞填充機構間之不同。此處所引用之比表面 積A値曾應甩單層吸附機構計算以解釋數據。 孔洞大小分佈可以如比表面積A般從相同之吸附等溫線 決定8 微孔比容藉吸附方法決定係最準確的,中孔比容則推属 藉高壓水銀孔度測量法與吸附方法之合併以決定。高壓水 銀孔度測量法可以使用於孔洞大小低至3·〇毫微米之情形 ’孔洞大小範圍爲2.0至3.0毫微米之比容,藉類似於用以 決定微孔比容之吸附方法決定係較佳的。 微孔比容從如氮氣之實驗吸附等溫線與其藉由特定理論 推導之評估,例如Dubinin-Radushkevich方程式、Horvath-Kawazoe 方程式(G. Horwath and Κ· Kawazoe,J Chem. Eng. Japan,16(1983) 470、BJH模式(Ε· P. Barrett, L. G. J0yner and P. P. Halenda,J. Am. Chem. Soc·,73(1951) 373)與其 它適合者,以埤經驗上決定係較佳的。 微粒吸附劑之整體密度係該吸附劑非緊密時之質量對趙 積比値’結成塊之吸附劑之整體密度係該結塊之質量對體 積比値。微粒吸附劑可以壓缩以減少在體積中空洞空間所 佔據之比例,直到可能之最密堆積爲止,即在此所謂之填 充密度。微粒吸附劑之整體密度(以及填充密度)可以根據 -9 - 本紙張从14用巾HS家料(CNS ) ( 21GX297公釐) "" (*请先《#背面之注意Ϋ項再八. -裝-- b本頁) 經濟部中央標準局貝工消费合作社印製 經濟部中央樣準局負工消費合作社印製 五'發明説明( ASTMD-2854之方法測量β 使用於根據本發明之方法以及屢力容器之含竣吸附劑典 型具有多量(微孔與中孔比容,超過5〇%之中孔具有範圍 從2至5毫微米之直徑係較佳的。 乙炔爲相當小之分子,其可預期在乙块之吸附中,具有 相似大小之微孔將扮演遠較中孔爲重要之角色。但是我們 很驚訝地發現,中孔在乙炔之吸附中,亦扮演重要之角色 ,雖然此現象仍未完全瞭解,但乙炔在正常之環境溫度( 即30°C以上)以上仍具有臨界溫度之事實可能是很重要的 。結果,在較小直徑之中孔(即具有直徑範圍從2至5毫微 米者,特別是具有直徑範圍從2至3毫微米者)以及特別是 具有直徑範固從1.5至2毫微米之微孔中,可以達成高乙炔 密度和高被吸附物濃度。再者,在乙炔吸附中扮演重要角 色之中孔會改善在微孔吸附中所伴隨之特定問題,此問題 爲純粹之微孔吸附已知會具有一遵循mpAC分類中類型i 之吸附等溫線,該分類係接續Brunauer,Deming and Te丨⑹
(BDDT, cf, S Brunauer, L S Deming, W E Deraing and E
Teller : J. Amer. Chem. Soc. 62(1940) 1723ff>所做之起始 工作。類型1之等溫線顯示在低壓時會有一強烈之攝取而 導致一具有非常少或不苒有攝取之平坦區域,故因此通常 遵循LangmUir吸附等溫線。結果,在壓力·"接近常壓時,典 型上已達炮和之吸附劑,若再施以高壓(例如15巴)後,當 壓力再降低至常壓時其並不會釋放出足夠數量之氣體。因 此即使在不是很高之壓力下,假如所吸附氣禮之數量、即 10- 本紙法又度逍用中國國家標準(CMS〉Μ規格(210χ297公釐) —---------裝-- --»請先 ίιικ 寫本頁) ,1Τ 線 非常大’但可輸送氣趙之數量,在下述亦表示J 輸送谷量(用於燃料氣乙块).,亦即 得之可逆氣體量仍是有限二= 同操作壓力下之乙炔氣體數量與保留於15巴 壓力下之吸附劑中之差値,係使 -作 炔之攝取(輸送容量)。用於本發明中作爲可逆乙 :上:述,例如現今已知之滞石分子筛之微孔固體本質 並不適合使用於根據本發明之方法和壓力容器中。但我 們已發現適合使用於根據本發明之方法和壓力容器之含碳 吸附劑之中孔體積本質上會改變吸附等溫線之形狀使其更 接近1upac分類之類型π等溫線或其它在實際操作範圍内 ’不會產生被限制之可逆氣體攝取之類型之等溫線,前者 (等溫線並不顯示受限之平坦區域’但顯示在中等壓力時 會有連續之上昇以及在最高壓力時會有最後之陡峭上昇。 經濟部中央標準局負工消费合作杜印裝 。上述所討論之切吸附劑性質使.用於本發明之結果,在 25Ό在大小與傳統貯存方法、即將乙块溶於丙_且以多孔 物質吸附此丙明(即大於125克乙炔/升吸附劑)所用者相似 或較大(壓力容器中,達成可輸送之貯存容量是可能的。 此外,根據本發明之貯存方法,從貯存中釋出之乙块當炊 不會有被㈣污染之可能性。再者,我們相信根據本發明 之乙块吸附貯存’當貯存壓力降低時,從譽力容器中乙炔 以更均勻之速率釋出係可能達成的。我們相信本發明更進 ϋ點爲乙炔可以在高於英國目前爲了溶解乙決貯存 安全所能接受之譽力以上貯存。因此’在較高之貯存塾力 11 - 本紙張尺度適用中國國家標準(CNS ) Α4規^Τ^〇χ297公釐) 五、發明説明(9) A7 B7 經濟部中央榇準局負工消费合作社印策 二到較傳統貯存方法者爲高之可輸送氣體禮積係可能達 =二且,避免溶劑之使用可使根據本發明之填滿壓力 谷器與傳統含有丙萌和多孔物質之麵瓶相比,具有較低之 重量,此改善之發生程度與傳統多孔物質者相比係與竣密 度有關。將多孔物質/丙酮系統用根據本發明之適當吸附 劑系統取代,亦可以達成所考慮之氣體鋼瓶空間較高程度 之使用。 微孔比容與中孔比容之和至少爲12立方釐米/克係較佳 的,微孔比容與中孔比容之和至少爲14立方釐米/克且中 孔比容至少爲0.7立方釐米/克係更佳的,至少75%之此中 孔比容(最佳爲至少90%)係由具有直徑範圍爲2至5毫微米 之中孔所提供係甚至更佳的,具有大小(直徑,若爲圓柱 體)範圍在1_5至3毫微米之孔洞比容和等於或大於1〇立方 釐米/克係最佳的。 由於乙块具有分子大小約0.4毫微米,那些具有較小大 小之微孔對乙炔之吸附較少或沒有貫獻。一般,較佳爲至 少90% ’更佳爲至少95%,最佳爲所有之微孔具有至少爲 0.4毫微米之直徑。 雖然含碳吸附劑具有4500平方米/克之比表面積係已知( 見ΕΡ-Α-0 366 796),但我們特別偏愛比表面積範圍在3〇〇〇 至4000平方米/克。通常比表面積愈大,微孔比容與中孔 比容之和就愈大。但是,比表面積愈大,吸附劑之整趙與 壓缩密度就愈小,因此在給定體積之壓力容器中所能容纳 之吸附劑有效數量就愈少。所以在使吸附剤之孔洞體積或 -12- 本紙張;逡用中國國家橾隼(CNS ) A4说格(210x297公釐) f請先閱贲背面之注意事項再Θ -裝-- S本頁)
,iT 線 A7 B7 — -- _. 五、發明説明(10) 比表面積最大與使吸附劑之整體密度最大以使能夠貯存於 壓力容器中之吸附劑有效數量最大間會有象有之衝突存在 。事實上’每單位體積之吸附劑表面積、即比表面積乘上 吸附劑之整體密度較單一參數爲更顯著,加以最大化係較 佳的。每單位體積之表面積至少爲8〇〇平方米/立方釐米係 較佳的,至少爲1000平方米/立方釐米係更佳的,雖然在 實際上高於1 500平方米/立方釐米之値係難以獲得。 保持任何巨孔比容爲最小係所欲的,通常巨孔比容小於 0.05立方釐米/克係最佳的,理想則是爲零。 使用於根據本發明之乙块貯存之含碳物質爲活性碳係較 佳的,該吸附劑爲活性碳之自由流動小球係較佳的,小球 /微球、纖維、盤或由一或多個結塊物所構成者亦是可以 選擇地,微粒形狀之吸附劑可以具有微粒大小之宽範圍中 任何一或多個。 經濟部中央標準局員工消费合作杜印製 (請先閲讀背面之注意事項再填寫本頁) 含碳吸附劑之整體密度高於最小整體密度之〇 25克/立方 變米且至少爲0.3克/立方釐米係較佳的,整體密度至少爲 0.35克/立方釐米係更佳的。如上所提,對一给定之微孔與 中孔體積和,整體密度愈大則根據本發明之壓力容器之可 輸送貯存容量就愈大,整體密度愈大則當乙炔從壓力容器 中排出時微粒狀吸附劑被其淘析之可能性就愈小。另—防 止此淘析之保護可藉使該小球在壓力容器中就地形成一或 多個結塊物以達成。通常,含碳吸附劑可以爲被黏著劑所 束缚在一起之活性碳之個別小球所凝聚(或其它小物體所 凝聚)之一或多個結塊物之形式。—接近粒子密度値且典 -13- 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) A7 B7 五、發明説明(11) 型高至0.8克/立方釐來夕古奴 — 代價是會損失一地吸附容:=了以獲得’但-般之 古这卜. —及附谷量,以及至少在氣體釋出速率會 有減^,此係因爲黏著劑會堵塞—些 不同黏著劑中之任何—插,,、、 7以使用各種 黏土、敏雄去趣、 ,例如,孩黏著劑可以是瀝青' ‘、,又物質或鬲分子,例如酚之 NOVALAK)或聚乙埽類之物哲如』幻 …日(則如 、 男 < 物豸,例如聚(四氟)乙缔。 微粒狀含後吸附劑在和7故含 …在和乙块填入聲力容器之前加以壓缩 係較佳的,-般可以增加密度且能夠接進填充密度。 壓力容器爲任何傳統大小之氣體鋼瓶形式係較佳的,雖 然其它形狀之容器亦可使用。如果使用—或多個含竣吸附 劑之結塊物,其可以從容器之底部開口區域加入,該底部 :㈣可以與容器之其它部料接在—起。該壓力容器可以 藉傳統之設備,在壓力下裝人乙&,該貯存壓力(完全裝 滿足壓力容器)在1 5至30巴之範圍係較佳的,貯存壓力在 18至30巴之範圍係更佳的,即高於英國認爲用於安全貯存 在丙酮中之乙炔溶液之壓力。 根據本發明之壓力容器可以用乙決裝填且可以在所有之 環境溫度下使用,包含範圍從_1〇s5(rc者。 適合使用於根據本發明之方法中以作爲含破吸附劑之具 有高比表面積之活性碳小球可以技藝中熟知之方法製造, 使用於這些方法中之主要製程係母體之熱解、部份氧化和 破化’該母體通常爲可能非常複雜之有機進料。JW Patrick在”碳中之孔洞:特徵與應用”,Haisted Press,New York,Toronto, 1 995, 331 pp.中提供最新技藝之敘述。不過 -14- 本紙張尺度適用中國國家標準(CNS ) M規格(210Χ297公釐) --*;- — Μ----^ ά —— (請先閱讀背面之注意事項再填寫本頁) 訂 Τ 經濟部中央標準局貝工消費合作社印製 經濟部中央標準局貝工消費合作杜印製 Α7 ________Β7 _五、發明説明(12) ,仍有製造具有比表面積高於3000平方米/克之超活性含 碳吸附劑之特殊與可替代之方法,其係將石油焦碳或例如 椰子殼燒焦物之其它含碳起始物質與典型過量之氫氧化鉀 (KOH)混合(見例如美國專利第4 〇82 694號和T Otowa,Y Nojima和 M Itoh之”吸附之基礎”,Ed. M D LeVan,Kluwer Academic Publishers, Boston,1996,709-716),在 40CTC 下 使該焦碳脱水且在600-900°C之鈍氣(氮氣)中使焦碳活化 。KOH對焦碳之重量比範圍,根據所欲之微孔對中孔比値 ,可以從1 : 1至1 : 10,K0H押声碳之比愈大,中孔之比例 就愈大。爲了使活性碳具有高於3〇〇〇平方米/克之比表面 積可以達成,KOH對焦碳之重量比超過1 : 4通常是必須的 ,進行該脱水步蹀係爲了避免因蒸汽直接侵襲而損失碳。 在活化後施以一清洗步驟於該物質上,該清洗步驟之目的 爲移除殘留之KOH和在活化中生成之鹽類。活化步骤之最 佳溫度爲700°C,因爲在溫度高於7〇(TC時鉀之元素會形成 使該製程趨於危險。更進一步關於活性竣製造之資料揭示於 Toshiro Otowa,Ritsuo Tanibata 和 MasaoHoh 之論文 "Production and ards^rption characteristics of MAXSORB: high-surface-area activated carbon^ Gas Separation andPudficaUon,Volume 7’ No 4, pp 241-245(1993),和 GB-A-2 223 223和EP-A-0 366 796中。藉將碳與黏著劑混合,該黏 著劑可以爲黏土、織維素或有機黏著劑,再經擠壓、擦出 和在例如範圍爲100至150°c之高溫下乾燥,所生成之活性 碳可以形成小球、微粒、盤或結塊物。當然可以在熟知之 -15- (請先聞讀背面之注意事項再填寫本頁) .裝. 訂 線 本紙張尺度適用中國國家標準(CMS ) A4規格(210X297公釐)
經濟部中央樣準局員工消费合作社印製 技藝中調整適合製造方法之參數以得到—活性竣,其所且 有之性質使其特別適合使用作爲根據本發明時存乙決所^ 之含碳吸附劑。 根據本發明之方法與壓力容器頊麻狂誓/ ^ _ 洛巩册精實例和參考所附之 圖示加以説明,其中: 圖1所圖示爲用於貯存、運輪釦銓 交柯和輸迗乙炔疋氣體鋼瓶之 郅份剖面侧視圖,且 圖2至6全都爲用於吸附與脱附二氧化碳之Dubinin_ Radushkevich等溫線。 ,圏7爲對不同之含竣吸附劑’每單位體積之表面積對可 逆乙炔攝取之關係圖。 。圖1係未按比例。 一參考圖1,氣體鋼瓶2具有頸部4和開口6,該鋼瓶2可以 精傳統〈万法從適合使用在壓力纟器之任何種類傳統鋼材 製得,此_材係技藝中所熟知者,τ、需在此詳述。該鋼 瓶2具有凹角之底部8,其如傳統鋼瓶之方式與軸上之安全 栓10裝在一起,該安全拴1〇藉在鋼瓶2内部之網狀填充物 12以保護。 鋼瓶2之開口 6具有一内部螺紋(未示),其係與傳統鋼瓶 間14本雜上(螺紋(未示)密合,間μ具有可以連接氣體供 應g (未π)和壓力調節器(未示)之零件16,或鋼瓶2經由 此零件16從加壓之乙炔源頭填充乙炔。閥】4具有内部之通 迢(未不)可以與鋼瓶2之内部連接且藉安全栓18以密封, 閥14之結構與製造係熟知的,不需在此詳述。 -16- 度適用中國國
A7 B7 經濟部中央標準局員工消费合作杜印製 五、發明説明(14) 鋼瓶2之内部係填充根據本發明適合於壓力下使用以貯 存乙炔之含碳吸附劑(例如,活性碳)之小球20,在頸部4 内4之上方提供一網狀塡充物22,該網狀填充物22確保不 會有乙炔在其内會發生爆炸之連續自由空間存在且使吸附 劑之淘析減至最小。 一 2鋼瓶2可以藉在安全拴1〇之附近提供一小體積之填 充物12而準備好使用於本發明,在裝進鋼瓶閥14之前,鋼 瓶2係填充以幾乎達到開口 6之含碳吸附劑小球。在此操作 中,將鋼瓶2碰撞數次以確气含—碳吸附劑小球完全沉降。 如有需要,該小球可以施以壓缩力以使能容納之小球數最 大,不過該壓縮力不可大到足以傷害小球。在鋼瓶已經填 $好小球20<後’將網狀填充物22裝入鋼瓶中以佔據頸部 4頂部之空間同時裝進鋼瓶閥M。該已填充好含碳吸附劑 小球20之鋼瓶2在乙炔製造地填充乙炔,該鋼瓶在典型範 圍爲15至30巴之所欲填充壓力下與含有乙炔之總管(未示) 相連’乙炔在壓力下經爲開口狀態之閥14流進氣體鋼瓶中 ,在所欲質量之乙炔已填裝入鋼瓶2後,將閥14關閉。該 乙块鋼瓶然後輸送至該鋼瓶2可以出售或出租之倉庫(未示 )打開閥14可以將乙块從氣體鋼瓶中釋出。 根據本發明之貯存乙炔之方法與壓力容器藉下述之實例 以進一步説明,每一個實例描述不同含碳物質和樹脂之吸 附特性’每一個吸附劑之吸附特性以在平衡時所吸收與釋 放之二氧化碳表示。該實驗係同時使用二氧化碳與乙炔以 進行,但由於前者相當易於使用,故偏向使用二氧化碳, -17- ---------^ ~裝-- * 外 (請先閲讀背面之注意事項再填寫本頁) 訂 Γ 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) Α7 Β7 S16285 五、發明説明(15: 我們相信從二氧化碳等溫線所獲得之數據可以使用以預測 乙炔之相對應値,此係由於此二氣體在特定化學與物理整 體性質間之密切相似性,也就是來自吸附平衡行爲。例如 ,我們發現此二氣體對一已知爲NUXIT_AL之含碳物質之 吸附等溫線,當數據在相同之相對壓力、p/p。下獪圖時, 係彼此間無法區別的,其中P。爲在溫度τ時於液相被吸附 之物威之飽合蒸氣壓力。爲了將所吸附之二氧化锬質量轉 換成乙炔,我們假設所吸附之二氣體莫耳體積係相同的, 此是有一些證據的,當液態4體接近臨界溫度時,其密度 幾乎精確地對應其分子量之比値。此外,在氣相中此二類 分子之物理大小係非常接近。—般而言,使用二氧化碳作 。爲測試氣體以評估使用於根據本發明之方法之吸附劑之適 用性似乎是合理的,此點然後曾被參考下述由直接測量燃 料氣乙決之高壓吸附等溫線所得之結果證實。 在實例中,吸附數據經Dubinin-Radushkevich(DR)方程 式解釋,其在此處使用之形式爲: v(p)=v0exp[-B(RTlnp/p0)2] 其中 v=被吸附氣體之數量 V。爲系統之特定常數 B爲另一系統特定常數 氣體常數 τ=測量溫度 ρ =被吸附物之平衡壓力 ρ0 =被吸附物液相之飽和蒸汽壓力 -18- 本紙張尺度適用中國國家標準(CNS ) Α4说格(210父297公| ) ~ -- (請先閲讀背面之注意事項再填寫本頁) 裝 、1Τ 經濟部中夬揉準局貝工消費合作社印製 經濟部中央揉準局男工消費合作社印製 A7 ___ B7_五、發明説明(16) 見Rudzinski and D H Everett “#均相表面上之氣體吸附” 1992,pp42-51 引用 Μ M Dubinin and L V Radushkevich, Proc Acad Sci USSR, 55, 33 1(1947) ° 以下之實例1至5分別對照圖2至6,在每一圖中,數據係 根據Dubinin-Radushkevich模型繪圖,其中係以攝取(毫克/ 克)(即每克吸附劑吸附之氣體毫克數)之對數(10爲底)對 log(10爲底)p0/p之平方作圖。 從各個二氧化碳等溫線計算每一種吸附劑在2 5 °C、1 8至 1_5巴間(目前乙块氣體鋼瓶工作之極限),每升吸附劑之 乙块可輸送貯存容量,且示於每一實例中作爲每升吸附劑 在該壓力極限内之可逆攝取量。 ,例1 (比較的) 在2 5 X下決定Ambedite XAD-4樹脂(來自Aldrich公司, The Old Brickyard, New Road, Gillingham, Dorset SP8 4HL,England)之二氧化碳等溫線,其具有830平方米/克之 比表面積、0.15立方釐米/克之微孔比容、0.975立方釐米/ 克之中孔比容、0.015立方釐米/克之巨孔比容和0.6克/立 方釐米之整體密度。該等溫線以Dubmin-Radushkevich圖 示於圖2,所得到之可逆乙炔攝取量爲72.6克乙炔/每升吸 附劑。 此實例顯示大中孔比容本身並不適合以產生適合之可逆 乙決攝取量。 實例2(比較的) 在25 °C下決定碳織維物質Nanofibre A20(來自Osaka Gas -19- 本紙張尺度逋用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁)
T -裝- 訂
T 線. 經濟部中央橾準局員工消费合作社印製 316235 A7 ____B7 "X、發明説明(17) 公司,19-9,6-Chome Torishima,Konohona-ku, Osaka 554, Japan)之二氧化碳等溫線,其具有2000平方米/克之比表 面積、1.1立方釐米/克之微孔比容、無中孔比容或巨孔比 容和0.18克/立方愛米之整體密度。該等溫線以Dubinin-Radushkevich圖示於圖3,所得到之可逆乙炔攝取量爲57.1 克乙块/每升吸附劑。 此實例顯示大微孔比容本身並不足夠以提供適合之乙块 攝取性質,每單位體積相當低之攝取量亦受低密度之影響 ,此係不僅源自非常高之微斗體積,亦由於吸附劑難以堆 積之物理形式。 實例3 (比較的) ‘在25°C下決定MAXSORB式之碳物質、樣本等級G08H( 來自 Kansai Coke & Chemicals 公司,5 Misono-cho, Amagaski,660 Japan)之二氧化碳等溫線,該吸附劑具有 2250平方米/克之比表面積' 1.15立方釐米/克之總孔比容 和0.3克/立方釐米之整體密度。該等溫線以Dubinin-Radushkevich圖示於圖4,所得到之可逆乙決攝取量爲99.6 克乙炔/每升吸附劑。 此實例顯示高比表面積値本身並不足夠以有利地增加吸 附劑之乙炔攝取性質。 實例4(比較的) 在25 °C下決定活化之椰子殼碳、AR1(來自Sutcliffe Speakman Carbons 公司,Lockett Road, Ashtonin-Makerfield,Lancashire, WN4 8DE,England)之二氧化碳等 -20- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁) τ 丨裝- 、1Τ Γ A7 B7 - --~—------------ 五、發明説明(18) 溫線,該吸附劑具有1644平方米/克之比表面積、0.73立 方I米/克之微孔比容、0.26立方釐米/克之中孔比容、 0.34立方釐米/克之巨孔比容和〇 45克/立方釐米之整體密 度。該等溫線以Dubinin-Radushkevich圖示於圖5,所得到 之可逆乙炔攝取量爲97.7克乙炔/每升吸附劑。 此實例顯示高整體密度値本身並不足夠以有利地增加活 性碳吸附劑之乙決攝取性質。 實例5 在2 5 °C下決定來自Osaka Gas公司之超活性碳物質、樣 本等級M-30之二氧化碳等溫線,其具有3000平方米/克之 比表面積、0.6立方釐米/克之微孔比容、〇·9立方釐米/克 之中孔比容、0.15立方釐米/克之巨孔比容和約0.35克/立 方釐米之整體密度,每單位體積之比表面積約iOSO平方米 /立方釐米。大部份之中孔具有範圍從2至5毫微米之直徑 ,未偵測到具有直徑小於0.4毫微米之微孔。該等溫線以 Dubinin-Radushkevich圖示於圖6,所得到之可逆乙块攝取 量(可輸送容量)爲143克乙块:/每升吸附劑。 經濟部中央橾準局貝工消費合作社印«. 該等溫線數據藉在一等排方法中吸附數量範固從〇 〇4至 23.6毫莫耳/克Osaka Gas M-30吸附劑下,直接測量吸附等 排物所得之吸附數據以證實,此等排方法具有如下所述之 最小靜止體積 ’ "Determination of Sorption Thermodynamic Functions for Multicomponent Gas Mixtures Sorbed by Molecular Sieves,,,M Bulow,Stud Surface Sci Catal, Vol 83 (1994), pp 209-215. -21 - 本紙張尺度遑用中國國家揉隼(CNS ) A4規格(210X29·;公釐) A7 B7 經濟部中央標準局員工消费合作社印製 五、發明説明(19) 實例5說明單位體積相當高之表面積値、微孔比容和中 孔比容在獲得與傳統溶解乙炔貯存系統相近之可逆乙炔攝 取量和特徵上之重要性。 圖7說明在每單位吸附劑體積之表面積與其可逆乙炔攝 ^量(可輪送容量)(以克乙炔/每升吸附劑表示)間有一本 資上線性之關係,示於囷7中之五數據點係來自上述之五 個實例。 ’王意到圖7所示之可逆乙炔攝取量實際上爲最小之可逆 攝取量係很重要的,我們相哼考對吸附劑施以壓縮而增加 其有效密度以增加其可逆乙块攝取量、典型增加25%、實 際上係可能的 實例6 如jr例5,在25C下決定來自〇saka Gas公司之超活性後 物質、樣本等級M_3〇之乙炔吸附等溫線,得到可逆乙炔攝 取量(可輸送谷量)爲每升128克,與由二氧化碳測量預測 之値有10.5%之差別。 實例7 使用一結塊碳物質於吸附測量(Kansai C〇ke & chemicals 公司製造,5 M1S〇n〇-ch〇, Amagaski,660 Japan),其具有 3 02 7平方米/克之比表面積' 〇32克/毫升之固體密度、 0.93毫升/克之微孔比容和〇 65毫升/克之中孔比容之性質 ,孩物質係藉壓縮Maxsorb式之粉末以製得。源自在此物 質所測量之二氧化碳吸附等溫線之可逆乙炔攝取量爲13】 克/升,直接由乙決吸附等溫線計算之可逆乙炔攝取量(可 -22- 本紙張尺度逋用中國國家標準(CNS ) A4規格(2丨0X297公釐〉 ---------裝------訂-----1線·. (請先閱讀背面之注意事項再填寫本頁} 經濟部中央#準局貝工消費合作社印裝 A7 B7 五、發明説明(20) 輸送容量)爲丨22克/升,這些都是高數値,牢記在心該結 塊物之低整體密度。在壓縮過程中藉一高壓力以增加固體 之密度而獲致本質上較大之可輸送乙块容量是可相信的。 實例8 使用另一結塊物樣品於乙块吸附測量(來自Kansai c〇ke & Chemicals公司,5 Misono-cho,Amagaski,660 Japan), 其係基於使用以製備應用於實例7之物質之MAXSORB式活 性碳且具有下列之性質:2888平方米/克之比表面積、 0.29克/毫升之整體密度、〇J9毫升/克之中孔比容和0.92 毫升/克之微孔比容。由乙炔吸附等溫線計算之可逆乙块 攝取量(可輸送容量)爲Π0克/升’這些都是高數値,牢記 在心該結塊物之低整體密度。藉增加整體之密度而獲致本 質上較大之可輸送乙炔容量是可相信的。 實例9 使用另一樣品於乙炔吸附測量(來自Kansai Coke & Chemicals公司,5 Misono-cho, Amagaski, 660 Japan),其 係基於含有結塊之含碳吸附劑之MAXSORB式活性碳且具 有0.5克/毫升之整體密度、2600平方米/克之比表面積和大 於1.0立方楚:米/克之微孔比容與中孔比容和,由乙块吸附 等溫線計算之可逆乙块攝取量(可輸送容量)爲144克/升。 實例10 使用結塊之含碳吸附劑於吸附測量(來自S Utcliffe Speak-man Carbons 公司 ,Lockett Road, Ashtonin-Makerfield,Lancashire, WN4 8DE,England),其係由挪子 -23- 本紙張尺度逋用中國國家梯準(CNS ) A4規格(210X297公釐) --------裝-- (請先閱靖背面之注意事項再填寫本頁)
、1T 線 A7 B7 五、發明説明(21) 殼所生成之活性碳所製備,具有〇56克/立方釐米之密度、 2201平方米/克之比表面積、^丨立方釐米/克之微孔比容 和0.23立方釐米/克之中孔比容。第一吸附等溫線爲依25 C下之一氧化竣所續出’由此等溫線計算之可逆乙块攝取 量(可輸送容量)爲191克/升。第二吸附等溫線爲依25()(:下 之乙炔所繪出,由此等溫線計算之可逆乙块攝取量(可輸 送容量)爲144克/升。 (请先閱讀背面之注意事項再填寫本頁) -裝·
、1T 經濟部中央標準局貝工消费合作社印製 -24- 本纸張尺度適用中國國家標準(CNS ) Α4規格(21〇><297公釐)
Claims (1)
- β ㈣§4814 sfc專利申請案 土主土.請專利範g條正太撕玍7日、六、申請專利範圍 A8 B8 C8 D8 Hv) 經濟部中央標準局月工消费合作社印褽 —種在高壓下貯存乙炔之方法,包含在高壓下將乙炔飼 入含有能夠可逆吸附乙块之含碳吸附劑之壓力容器中, 其中該吸附劑具有: a·等於或大於0.5立方釐米/克之微孔比容; 等於或大於0.5立方釐米/克之中孔比容; 等於或大於0.25克/立方釐米之整體密度;和 每單位體積等於或大於400平方米/立方釐米之表面 積。 種在高壓下貯存乙炔之方法,包含將乙炔飼入含有能 夠可逆吸附乙炔之含碳吸附劑之壓力容器中,其中該吸 附劑具有: a·等於或大於ι·〇立方釐米/克之微孔比容與中孔比容和 f b·等於或大於0.25克/立方釐米之整體密度; °·每單位體積等於或大於400平方米/立方釐米之表面 積;和 d.具有大小範圍爲1.5至3.0毫微米之孔洞之比容係等於 或大於0.3立方釐米/克。 3 .根據申請專利範圍第1項之方法,其中具有大小範圍爲 至3.0毫微米之孔洞之比容係等於或大於〇3立方 /克。 4·根據申請專利範圍第1至3項中任—項之方法,其中至少 75%心中孔比容係由具有直徑範圍爲2至5毫微米之 所提供。 L:\EXTVt5V45465.DOC b. d 請 先 閲 讀 背 面 之 注 意 事 項 再 2訂 CNS ) A4^_( 2T〇X297,av*T Α8 Β8 C8 D8 經濟部中央棣车局另工消費合作社印製 、申請專利範圍 5 .根據申請專利範圍第1至3項中任一項之方法,其中至少 9〇°/。之微孔具有至少爲〇4毫微米之直徑。 6·根據申請專利範圍第1至3項中任一項之方法,其中每單 位ft積之表面積範圍係8〇〇至15〇〇平方米/立方釐米。 7 ‘根據申請專利範圍第1至3項中任一項之方法,其中該吸 附劑之形式爲一或多個活性竣之壓縮或凝聚結塊物。 8·—種用以貯存、輸送與分送壓力下之乙炔之壓力容器, 其含有能夠可逆吸附乙块之含碳吸附劑,其中該吸附劑 具有: a·等於或大於0.5立方釐米/克之微孔比容; 等於或大於0.5立方釐米/克之中孔比容; 等於或大於0.25克/立方釐米之整體密度;和 每單位體積等於或大於400平方米/立方釐米之表面 積。 一種用以貯存、輸送與分送壓力下之乙炔之壓力容器, 其含有能夠可逆吸附乙炔之含碳吸附劑,其中該吸附劑 具有: a. 等於或大於1.0立方釐米/克之微孔比容與中孔比容和 , b. 等於或大於0 25克/立方釐米之整體密度; c. 每單位體積等於或大於4〇〇平方米/立方釐米之表面 積;和 d·具有大小範圍爲1.5至3.0毫微米之孔洞之比容係等於 或大於0.3立方釐米/克。 b · d. 9 L:\EXTV45U5465iXX: (請先Μ讀背面之注意事項再填寫本頁)* s 六、申請專利範圍 10.根據申請專利範固第8項之壓力容器,其中具有大小範 圍爲1.5至3.0毫微米之孔洞之比容係等於或大於〇 3立方 釐米/克。 11_根據申請專利範固第8至1〇項中任—項之壓力容器,其 中至少75%之中孔比容係由具有直徑範圍爲2至5毫微米 之中孔所提供。 12. 根據申請專利範圍第8至1〇項中任一項之壓力容器,其 中至彡90%之微孔具有至少爲〇4毫微米之直徑。 13. 根據申請專利範園第8至10項中任一項之壓力容器,其 中每單位體積之表面積範圍在8〇〇至15〇〇平方米/立方釐 米。 14. 根據申請專利範圍第8至1〇項中任一項之签力容器,其 中該吸附劑之形式爲一或多個活性碳之凝聚結塊物。 1 5 ·根據申請專利範圍第8至10項中任一項之壓力容器,其 係在壓力下裝填乙炔。 經濟部中央梂準局男工消費合作社印袈 張 紙 本 準 梂 I家 國 國 -中 -用 逍 I釐 公
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9522476.2A GB9522476D0 (en) | 1995-11-02 | 1995-11-02 | Method and vessel for the storage of gas |
Publications (1)
Publication Number | Publication Date |
---|---|
TW316285B true TW316285B (zh) | 1997-09-21 |
Family
ID=10783298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW085114814A TW316285B (zh) | 1995-11-02 | 1996-11-30 |
Country Status (12)
Country | Link |
---|---|
US (1) | US6006797A (zh) |
EP (1) | EP0874882B1 (zh) |
JP (2) | JP3963951B2 (zh) |
AT (1) | ATE225837T1 (zh) |
AU (1) | AU725172B2 (zh) |
CA (1) | CA2236108A1 (zh) |
DE (1) | DE69624264T2 (zh) |
GB (1) | GB9522476D0 (zh) |
ID (1) | ID17220A (zh) |
TW (1) | TW316285B (zh) |
WO (1) | WO1997016509A1 (zh) |
ZA (1) | ZA969193B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI554709B (zh) * | 2009-05-27 | 2016-10-21 | 普雷瑟科技股份有限公司 | 用於高純度乙炔之圓筒的製造 |
TWI579485B (zh) * | 2002-12-10 | 2017-04-21 | 美商恩特葛瑞斯股份有限公司 | 具有單塊碳吸附劑之氣體儲存及配送系統 |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2151737C1 (ru) | 1997-05-30 | 2000-06-27 | Акционерное общество закрытого типа "Карбид" | Способ получения пористого углеродного изделия и пористое углеродное изделие, полученное этим способом |
US6733827B2 (en) * | 2001-04-11 | 2004-05-11 | The Procter & Gamble Co. | Processes for manufacturing particles coated with activated lignosulfonate |
US6991671B2 (en) * | 2002-12-09 | 2006-01-31 | Advanced Technology Materials, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
US8002880B2 (en) | 2002-12-10 | 2011-08-23 | Advanced Technology Materials, Inc. | Gas storage and dispensing system with monolithic carbon adsorbent |
US7494530B2 (en) | 2002-12-10 | 2009-02-24 | Advanced Technology Materials, Inc. | Gas storage and dispensing system with monolithic carbon adsorbent |
US8664124B2 (en) | 2005-10-31 | 2014-03-04 | Novellus Systems, Inc. | Method for etching organic hardmasks |
US7723262B2 (en) | 2005-11-21 | 2010-05-25 | Energ2, Llc | Activated carbon cryogels and related methods |
WO2008058231A2 (en) * | 2006-11-08 | 2008-05-15 | Curators Of The University Of Missouri | High surface area carbon and process for its production |
KR101496934B1 (ko) | 2006-11-15 | 2015-03-03 | 유니버시티 오브 워싱톤 스루 이츠 센터 포 커머셜리제이션 | 전기 이중층 캐패시턴스 장치 |
US7915166B1 (en) | 2007-02-22 | 2011-03-29 | Novellus Systems, Inc. | Diffusion barrier and etch stop films |
DE202007009992U1 (de) * | 2007-06-27 | 2008-07-31 | BLüCHER GMBH | Speicherbehälter für gasförmige Kraftstoffe |
US8962101B2 (en) | 2007-08-31 | 2015-02-24 | Novellus Systems, Inc. | Methods and apparatus for plasma-based deposition |
JP5021409B2 (ja) * | 2007-09-27 | 2012-09-05 | 公立大学法人大阪府立大学 | メタン吸着剤またはその製造方法 |
US8119853B2 (en) | 2008-01-10 | 2012-02-21 | L'Air Liquide SociétéAnonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Low pressure acetylene storage |
US7820556B2 (en) * | 2008-06-04 | 2010-10-26 | Novellus Systems, Inc. | Method for purifying acetylene gas for use in semiconductor processes |
US8435608B1 (en) | 2008-06-27 | 2013-05-07 | Novellus Systems, Inc. | Methods of depositing smooth and conformal ashable hard mask films |
US8129577B2 (en) * | 2008-09-16 | 2012-03-06 | Air Products And Chemicals, Inc. | Process and system for providing acetylene |
US8293818B2 (en) | 2009-04-08 | 2012-10-23 | Energ2 Technologies, Inc. | Manufacturing methods for the production of carbon materials |
US8398747B2 (en) * | 2009-06-23 | 2013-03-19 | Praxair Technology, Inc. | Processes for purification of acetylene |
FI2448748T3 (fi) | 2009-07-01 | 2024-10-09 | Basf Mobile Emissions Catalysts Llc | Ultrapuhtaita synteettisiä hiilimateriaaleja |
US8916296B2 (en) | 2010-03-12 | 2014-12-23 | Energ2 Technologies, Inc. | Mesoporous carbon materials comprising bifunctional catalysts |
US8563414B1 (en) | 2010-04-23 | 2013-10-22 | Novellus Systems, Inc. | Methods for forming conductive carbon films by PECVD |
CN103261090A (zh) | 2010-09-30 | 2013-08-21 | 艾纳G2技术公司 | 储能颗粒的增强式装填 |
CN108538625B (zh) | 2010-12-28 | 2020-12-08 | 巴斯福股份公司 | 包含增强的电化学特性的碳材料 |
US8679231B2 (en) | 2011-01-19 | 2014-03-25 | Advanced Technology Materials, Inc. | PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same |
US20120262127A1 (en) | 2011-04-15 | 2012-10-18 | Energ2 Technologies, Inc. | Flow ultracapacitor |
CN103947017B (zh) | 2011-06-03 | 2017-11-17 | 巴斯福股份公司 | 用于混合能量存储装置中的碳‑铅共混物 |
US9409777B2 (en) | 2012-02-09 | 2016-08-09 | Basf Se | Preparation of polymeric resins and carbon materials |
TWI583445B (zh) * | 2012-04-13 | 2017-05-21 | 恩特葛瑞斯股份有限公司 | 乙炔的儲存與安定化 |
SG195494A1 (en) | 2012-05-18 | 2013-12-30 | Novellus Systems Inc | Carbon deposition-etch-ash gap fill process |
WO2013181295A1 (en) | 2012-05-29 | 2013-12-05 | Advanced Technology Materials, Inc. | Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent |
US9362133B2 (en) | 2012-12-14 | 2016-06-07 | Lam Research Corporation | Method for forming a mask by etching conformal film on patterned ashable hardmask |
US9304396B2 (en) | 2013-02-25 | 2016-04-05 | Lam Research Corporation | PECVD films for EUV lithography |
CN105190948B (zh) | 2013-03-14 | 2019-04-26 | 14族科技公司 | 包含锂合金化的电化学改性剂的复合碳材料 |
US9589799B2 (en) | 2013-09-30 | 2017-03-07 | Lam Research Corporation | High selectivity and low stress carbon hardmask by pulsed low frequency RF power |
US9320387B2 (en) | 2013-09-30 | 2016-04-26 | Lam Research Corporation | Sulfur doped carbon hard masks |
US10195583B2 (en) | 2013-11-05 | 2019-02-05 | Group 14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
WO2015137980A1 (en) | 2014-03-14 | 2015-09-17 | Energ2 Technologies, Inc. | Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
CA2991704A1 (en) * | 2015-07-09 | 2017-01-12 | Ingevity South Carolina, Llc | Gaseous storage system, methods for making and using the same |
WO2017031006A1 (en) | 2015-08-14 | 2017-02-23 | Energ2 Technologies, Inc. | Composites of porous nano-featured silicon materials and carbon materials |
KR102637617B1 (ko) | 2015-08-28 | 2024-02-19 | 그룹14 테크놀로지스, 인코포레이티드 | 극도로 내구성이 우수한 리튬 인터칼레이션을 나타내는 신규 물질 및 그의 제조 방법 |
US9857804B2 (en) * | 2015-12-23 | 2018-01-02 | Praxair Technology, Inc. | Method and system for optimizing acetylene delivery |
US10221201B2 (en) | 2015-12-31 | 2019-03-05 | Praxair Technology, Inc. | Tin-containing dopant compositions, systems and methods for use in ION implantation systems |
CA3028232A1 (en) * | 2016-07-01 | 2018-01-04 | Ingevity South Carolina, Llc | Method for enhancing volumetric capacity in gas storage and release systems |
CN110582823A (zh) | 2017-03-09 | 2019-12-17 | 14集团技术公司 | 含硅前体在多孔支架材料上的分解 |
WO2020243342A1 (en) | 2019-05-29 | 2020-12-03 | Lam Research Corporation | High selectivity, low stress, and low hydrogen diamond-like carbon hardmasks by high power pulsed low frequency rf |
US11577217B2 (en) | 2019-12-12 | 2023-02-14 | Praxair Technology, Inc. | Dopant fluid storage and dispensing systems utilizing high performance, structurally modified particulate carbon adsorbents |
US11639292B2 (en) | 2020-08-18 | 2023-05-02 | Group14 Technologies, Inc. | Particulate composite materials |
US11335903B2 (en) | 2020-08-18 | 2022-05-17 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z |
US11174167B1 (en) | 2020-08-18 | 2021-11-16 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
KR20230082028A (ko) | 2020-09-30 | 2023-06-08 | 그룹14 테크놀로지스, 인코포레이티드 | 규소-탄소 복합재의 산소 함량 및 반응성을 제어하기 위한 부동태화의 방법 |
EP4105541A1 (de) * | 2021-06-16 | 2022-12-21 | Linde GmbH | Verfahren und vorrichtung zum ermitteln eines füllgrades eines ethinspeichers |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR841360A (fr) * | 1938-01-19 | 1939-05-17 | Carbonisation Charbons Actifs | Nouveau procédé d'emmagasinage de gaz dissous |
US3706184A (en) * | 1969-06-09 | 1972-12-19 | Matter Mfg Corp | Wall-recessed suction cleaner |
US3706181A (en) * | 1970-11-20 | 1972-12-19 | Tenneco Chem | Process for the safe handling of c{11 {11 and c{11 {11 acetylenic hydrocarbons |
DE3687256T2 (de) * | 1985-10-03 | 1993-07-15 | Calgon Carbon Corp | Verfahren und mittel zur gasadsorption. |
JPH01230414A (ja) * | 1987-11-20 | 1989-09-13 | Osaka Gas Co Ltd | 活性炭及びその製造方法 |
JPH0297414A (ja) * | 1988-10-01 | 1990-04-10 | Kansai Coke & Chem Co Ltd | 高品質活性炭の製造法 |
US5102855A (en) * | 1990-07-20 | 1992-04-07 | Ucar Carbon Technology Corporation | Process for producing high surface area activated carbon |
US5632788A (en) * | 1995-01-31 | 1997-05-27 | Worthington Acetylene Cylinder, Inc. | High porosity calcium silicate mass for storing acetylene gas |
-
1995
- 1995-11-02 GB GBGB9522476.2A patent/GB9522476D0/en active Pending
-
1996
- 1996-10-31 EP EP96935138A patent/EP0874882B1/en not_active Expired - Lifetime
- 1996-10-31 AT AT96935138T patent/ATE225837T1/de not_active IP Right Cessation
- 1996-10-31 WO PCT/GB1996/002667 patent/WO1997016509A1/en active IP Right Grant
- 1996-10-31 JP JP51715197A patent/JP3963951B2/ja not_active Expired - Fee Related
- 1996-10-31 DE DE69624264T patent/DE69624264T2/de not_active Expired - Fee Related
- 1996-10-31 AU AU73216/96A patent/AU725172B2/en not_active Ceased
- 1996-10-31 US US09/066,402 patent/US6006797A/en not_active Expired - Lifetime
- 1996-10-31 ZA ZA969193A patent/ZA969193B/xx unknown
- 1996-10-31 CA CA002236108A patent/CA2236108A1/en not_active Abandoned
- 1996-11-04 ID IDP963181A patent/ID17220A/id unknown
- 1996-11-30 TW TW085114814A patent/TW316285B/zh active
-
2006
- 2006-10-25 JP JP2006289854A patent/JP2007100962A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI579485B (zh) * | 2002-12-10 | 2017-04-21 | 美商恩特葛瑞斯股份有限公司 | 具有單塊碳吸附劑之氣體儲存及配送系統 |
TWI554709B (zh) * | 2009-05-27 | 2016-10-21 | 普雷瑟科技股份有限公司 | 用於高純度乙炔之圓筒的製造 |
Also Published As
Publication number | Publication date |
---|---|
AU725172B2 (en) | 2000-10-05 |
US6006797A (en) | 1999-12-28 |
ID17220A (id) | 1997-12-11 |
DE69624264T2 (de) | 2003-08-07 |
JP3963951B2 (ja) | 2007-08-22 |
DE69624264D1 (de) | 2002-11-14 |
AU7321696A (en) | 1997-05-22 |
ZA969193B (en) | 1997-05-12 |
EP0874882B1 (en) | 2002-10-09 |
CA2236108A1 (en) | 1997-05-09 |
JP2000500842A (ja) | 2000-01-25 |
EP0874882A1 (en) | 1998-11-04 |
ATE225837T1 (de) | 2002-10-15 |
GB9522476D0 (en) | 1996-01-03 |
JP2007100962A (ja) | 2007-04-19 |
WO1997016509A1 (en) | 1997-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW316285B (zh) | ||
Menon et al. | Porous adsorbents for vehicular natural gas storage: a review | |
Somayajulu Rallapalli et al. | Activated carbon@ MIL‐101 (Cr): a potential metal‐organic framework composite material for hydrogen storage | |
Byamba-Ochir et al. | High density Mongolian anthracite based porous carbon monoliths for methane storage by adsorption | |
Perrin et al. | Improved methane storage capacities by sorption on wet active carbons | |
Silvestre-Albero et al. | Ultrahigh CO 2 adsorption capacity on carbon molecular sieves at room temperature | |
Delavar et al. | Equilibria and kinetics of natural gas adsorption on multi-walled carbon nanotube material | |
Liu et al. | Methane storage in wet carbon of tailored pore sizes | |
Solar et al. | Adsorption of methane in porous materials as the basis for the storage of natural gas | |
US5094736A (en) | Method and means for improved gas adsorption | |
Chen et al. | Dense carbon nanoflower pellets for methane storage | |
Jin et al. | Natural diatomite modified as novel hydrogen storage material | |
JP2019521837A (ja) | 天然ガスまたはメタンを蓄積するためのブロック状のナノ多孔質炭素材料、およびその材料を得るための方法 | |
Lee et al. | Potassium oxalate as an alternative activating reagent of corn starch-derived porous carbons for methane storage | |
WO2021067661A1 (en) | Mobile natural gas storage and transportation unit based on adsorption | |
Nourafkan et al. | Recent developments in chemical energy storage | |
Hamza et al. | Natural gas adsorption on biomass derived activated carbons: A mini review | |
US20210061653A1 (en) | Hydrogen storage material | |
Panella et al. | Physisorption in porous materials | |
US4972658A (en) | Preparation of a dense pack particulate gas adsorbent | |
RU2616140C1 (ru) | Способ хранения природного газа при помощи адсорбции в промышленных газовых баллонах | |
US3011980A (en) | Activated bauxite and catalyst containing same | |
JP3809894B2 (ja) | ガスの貯蔵方法 | |
US5308821A (en) | Packing adsorbent particles for storage of natural gas | |
Tursiloadi et al. | MODIFICATION OF NATURAL ZEOLITE FROM BOGOR FOR HYDROGEN STORAGE |