TW306065B - Semiconductor memory device with capacitor (part 5) - Google Patents

Semiconductor memory device with capacitor (part 5) Download PDF

Info

Publication number
TW306065B
TW306065B TW85110008A TW85110008A TW306065B TW 306065 B TW306065 B TW 306065B TW 85110008 A TW85110008 A TW 85110008A TW 85110008 A TW85110008 A TW 85110008A TW 306065 B TW306065 B TW 306065B
Authority
TW
Taiwan
Prior art keywords
conductive layer
layer
trunk
type
semiconductor memory
Prior art date
Application number
TW85110008A
Other languages
Chinese (zh)
Inventor
Fang-Chinq Jaw
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW85110008A priority Critical patent/TW306065B/en
Priority to GB9701974A priority patent/GB2321779A/en
Priority to JP9077603A priority patent/JPH1079474A/en
Priority to FR9705119A priority patent/FR2752492B1/en
Priority to DE19720272A priority patent/DE19720272A1/en
Application granted granted Critical
Publication of TW306065B publication Critical patent/TW306065B/en

Links

Abstract

A semiconductor memory device with capacitor comprises of: (1) one substrate; (2) one transfer transistor formed on the substrate, and including drain and source region; (3) one storage capacitor electrically coupled to one of drain and source region of the transfer transistor; The storage capacitor comprises of: (1) one trunk-type like conductive layer with one bottom, electrically coupled to one of drain and source region of the transfer transistor, and with one upward extending part after extending one distance from the bottom with one approximately upward direction, then extending circumferentially with approximately horizontal direction; (2) one branch-type like up conductive layer electrically coupled to above of the trunk-type like conductive layer; (3) at least one branch-type like down conductive layer with one cross section like L-shape and connected to on down surface of the branch-type like up conductive layer, in which the trunk-type like conductive layer, the branch-type like up conductive layer, and type branch-type like down conductive layer constitute one storage electrode of the storage capacitor; (4) at least one trunk-type like conductive layer, with one cross section similar to L shape, whose one end connected to upper surface of the trunk-type like conductive layer, the trunk-type like conductive layer and branch-type like conductive layer constituting one storage electrode of the storage capacitor; (5) one dielectric layer formed on the truck-type like conductive layer and exposed surface of branch-type like conductive layer; (6) one upper conductive layer formed on the dielectric, constituting one opposed electrode of the storage capacitor.

Description

3Q(j〇bTD〇c/〇°2 A7 B7 五、發明説明(I ) --------. 裝-- (請先閲讀背面之注意事項再填寫本頁) 本發明是有關於一種具有電容器的半導體記憶體元 件(Semiconductor Memory Device ),且特別是有關於一 種動態隨機存取記憶體(Dynamic Random Access Memory; DRAM )的一記憶單元(Memory Cell )結構,其包含一 轉移電晶體(Transfer Transistor )和一樹型(tree-type ) 儲存電容器。 第1圖是一 DRAM元件的一記憶單元之電路示意圖。 如圖所示,一個記憶單元是由一轉移電晶體T和一儲存電 容器C組成。轉移電晶體T的源極係連接到一對應的位元 線BL,汲極連接到儲存電容器C的一儲存電極6 ( storage electrode ),而閘極則連接到一對應的字元線WL。儲存 電容器C的一相對電極8 ( opposed electrode )係連接到 一固定電壓源,而在儲存電極6和相對電極8之間則設置 一介電膜層7。 經濟部中央標隼局員工消費合作社印f 在傳統DRAM的儲存電容量少於1M ( mega=百萬) 位元時,於積體電路製程中,主要是利用二度空間的電容 器來實現,亦即泛稱的平坦型電容器(planar type capacitor )。一平坦型電容器需佔用半導體基底的一相當 大的面積來儲存電荷,故並不適合應用於高度的積集化。 高度積集化的DRAM,例如大於4M位元的儲存電容量者, 需要利用三度空間的電容器來實現,例如所謂的堆疊型 (stacked type )或溝槽型(trench type )電容器。 與平坦型電容器比較,堆疊型或溝槽型電容器可以在 記憶單元的尺寸已進一步縮小的情況下,仍能獲得相當大 3 本紙張尺度適用中國國家標隼(CNS ) A4規格(210 X 297公犛) 經濟部中央標隼局員工消費合作社印製 3C60BoFDOC/002 A7 B7 五、發明説明(么) 的電容量。雖然如此,當記憶體元件再進入更高度的積集 化時,例如具有64M位元容量的DRAM,單純的三度空間 電容器結構已不再適用。 解決之道之一是利用所謂的鰭型(fin type )堆疊電容 器。鰭型堆疊電容器之相關技術可參考Ema等人的論文 “3-Dimensional Stacked Capacitor Cell for 16M and 64M DRAMs?,, International Electron Devices Meeting, pp. 592-595, Dec. 1988。鰭型堆疊電容器主要是其電極和介電膜層 係由複數個堆疊層,延伸成一水平鰭狀結構,以便增加電 極的表面積。DRAM的鰭型堆叠電容器的相關美國專利 可以參考第 5,071,783 號、第 5,126,810 號、第 5,196,365 號、以及第5,206,787號。 另一種解決之道是利用所謂的筒型(cylindrical type ) 堆疊電容器。筒型堆疊電容器之相關技術可參考Wakamiya 等人的論文 “Novel Stacked Capacitor Cell for 64-Mb DRAM”,1989 Symposium on VLSI Technology Digest of Technical Papers, pp. 69-70。筒型堆叠電容器主要是其電 極和介電膜層係延伸成一垂直筒狀結構,以便增加電極的 表面積。DRAM的筒型堆疊電容器的相關美國專利可以 參考第5,077,688號。 隨著積集度的不斷增加,dram記憶單元的尺寸仍會 再縮小。如熟習此藝者所知,記憶單元尺寸縮小,儲存電 容器的電容値也會減少。電容値的減少將導致因0C射線入 射所引起的軟錯誤(soft error )機會增加。因此,此藝者 4 請先閱讀背而之注意事項再填艿本頁) 裝. 訂 本紙張尺度適用中國國家標隼(CNS ) Λ4%格(2丨0乂 297公# ) 03 16TWF.DOC/002 03 16TWF.DOC/002 經濟部中央標隼局S工消費合作社印製 B7 五、發明説明(3 ) 仍不斷在尋找新的儲存電容器結構及其製造方法,希望在 儲存電容器所佔的平面尺寸被縮小的情況,仍能維持所要 的電容値。 緣此,本發明的一主要目的就是在提供一種具有電容 器的半導體記憶體元件,其電容器具有一樹狀結構,以增 加電容器的儲存電極之表面積。 依照本發明之一較佳實施例,提供一種具有電容器的 半導體記憶體元件,該元件包括:一基底;一轉移電晶體, 形成在基底上,並包括汲極和源極區;以及一儲存電容器, 電性耦接到轉移電晶體的汲極和源極區之一上。其中,儲 存電容器又包括: 一類樹幹狀導電層,具有一底部,電性耦接到轉移電 晶體的汲極和源極區之一上,類樹幹狀導電層又具有一向 上延伸部,以一大致向上的方向從底部延伸出一段距離 後,再以一大致水平的方向往四週延伸出; 至少一類樹枝狀導電層,具有一似L形的剖面,類樹 枝狀導電層的一末端連接在類樹幹狀導電層的上表面 上,類樹幹狀導電層和類樹枝狀導電層構成儲存電容器的 一儲存電極; 一介電層,形成在類樹幹狀導電層和類樹枝狀導電層 暴露出的表面上;以及 一上導電層,形成在介電層上,以構成儲存電容器的 一相對電極。 依照本發明之另一較佳實施例,本發明之類樹幹狀導 I _ _ _ _ I _ 士队______丁 、va (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標隼(CNS ) Λ4規格(210X W7公趁) 3(](3°8· F f>〇C/002 A7 3(](3°8· F f>〇C/002 A7 經濟部中央橾隼局員工消費合作社印裝 _____ B7____ 五、發明説明(^) 電層電性耦接到轉移電晶體的汲極和源極區之一上’其剖 面可以爲τ型,也可以爲u型;而類樹枝狀導電層大致爲 中空筒狀。 依照本發明之又一較佳實施例,提供一種具有電谷器 的半導體記憶體元件,該元件包括:一基底;一轉移電晶 體’形成在基底上,並包括汲極和源極區;以及一儲存電 容器’電性耦接到轉移電晶體的汲極和源極區之一上。 儲存電容器又包括: 一類樹幹狀導電層,具有一底部,電性耦接到轉移電 晶體的汲極和源極區之一上,類樹幹狀導電層又具有一向 上延伸部,以一大致向上的方向從底部延伸出一段距離 後’再以一大致水平的方向往四週延伸出; 至少一第一類樹枝狀導電層,包括一第一延伸段和一 第二延伸段,第一延伸段的一末端連接在類樹幹狀導電層 的上表面上,大致以一垂直方向往上延伸出,第二延伸段 大致以一水平方向,從第一延伸段的另一末端延伸出,類 樹幹狀導電層和第一類樹枝狀導電層構成儲存電容器的 一儲存電極; 一介電層,形成在類樹幹狀導電層和第一類樹枝狀導 電層暴露出的表面上;以及 一上導電層,形成在介電層上,以構成儲存電容器的 一相對電極。 依照本發明之再一較佳實施例,本發明之類樹枝狀導 電層更包括一第二類樹枝狀導電層,其係呈柱狀或是具有 6 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨Οχ 297公釐) (請先閱讀背面之注意事項再填寫本頁) .裝. -* 03 16TWF.DOC/002 Λ7 B7 五、發明説明(ί ) 一似τ型的剖面。 --------/ 裝-- (請先閱讀背面之注意事項洱填寫本页) 依照本發明之另一較佳實施例,本發明之第一類樹枝 狀導電層的第二延伸段大致以水平方向,從第一延伸段的 另一末端由內往外延伸出。 依照本發明之又一較佳實施例,本發明之第一類樹枝 狀導電層的第二延伸段大致以水平方向,從第一延伸段的 另一末端由外往內延伸出。 依照本發明之再一較佳實施例,本發明之第一類樹枝 狀導電層的第二延伸段大致以水平方向,從第一延伸段的 另一末端往第一延伸段所在的另一側延伸出。 爲讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉若干較佳實施例,並配合所附圖式,作 詳細說明如下= 圖式之簡單說明: 第1圖是一 DRAM元件的一記憶單元之電路示意圖。 第2A至2H圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第一較佳實施例,以及本發 明的一種半導體記憶元件之第一較佳實施例。 經濟部中央標準局員工消費合作社印紫 第3A至3E圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第二較佳實施例,以及本發 明的一種半導體記憶元件之第二較佳實施例。 第4圖係一剖面圖,用以解釋本發明的一種半導體記 憶元件製造方法之第三較佳實施例,以及本發明的一種半 導體記憶元件之第三較佳實施例。 7 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨0X2.97公犛) 03 I 6TWF.DOC/002 A7 B7 五、發明説明(& ) 第5A至5D圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第四較佳實施例,以及本發 明的一種半導體記憶元件之第四較佳實施例。 第6A至6B圖係一系列剖面圖,用以解釋本發明的一 種半導體記億元件製造方法之第五較佳實施例,以及本發 明的一種半導體記憶元件之第五較佳實施例。 第7圖係一剖面圖,用以解釋本發明的一種半導體記 憶元件製造方法之第六較佳實施例,以及本發明的一種半 導體記憶元件之第六較佳實施例。 第8A至8E圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第七較佳實施例,以及本發 明的一種半導體記憶元件之第七較佳實施例。 實施例 首先請參照第2A至2H圖,以詳述本發明的一種具有 樹型儲存電容器的半導體記憶元件之第一較佳實施例。3Q (j〇bTD〇c / 〇 ° 2 A7 B7 Fifth, the description of the invention (I) --------. Install-(please read the precautions on the back before filling this page) This invention is about A semiconductor memory device (Semiconductor Memory Device) with a capacitor, and particularly relates to a memory cell structure of a dynamic random access memory (Dynamic Random Access Memory; DRAM), which includes a transfer transistor (Transfer Transistor) and a tree-type (tree-type) storage capacitor. Figure 1 is a circuit diagram of a memory cell of a DRAM device. As shown in the figure, a memory cell is composed of a transfer transistor T and a storage capacitor C The source of the transfer transistor T is connected to a corresponding bit line BL, the drain is connected to a storage electrode 6 (storage electrode) of the storage capacitor C, and the gate is connected to a corresponding word line WL A opposed electrode 8 of the storage capacitor C is connected to a fixed voltage source, and a dielectric film layer 7 is provided between the storage electrode 6 and the opposite electrode 8. The Central Standard Falcon Bureau employee consumption When the storage capacity of traditional DRAM is less than 1M (mega = million) bits, in the integrated circuit manufacturing process, it is mainly realized by capacitors of two-dimensional space, which is generally known as flat capacitors ( planar type capacitor). A flat type capacitor requires a considerable area of the semiconductor substrate to store charge, so it is not suitable for high accumulation. Highly integrated DRAM, such as storage capacity greater than 4M bits In addition, it is necessary to use three-dimensional capacitors, such as so-called stacked type or trench type capacitors. Compared with flat type capacitors, stacked or trench type capacitors can be in the size of the memory cell In the case of further shrinking, a considerable size of 3 papers can still be obtained. It is applicable to the Chinese National Standard Falcon (CNS) A4 specification (210 X 297 g). Printed by the Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economic Affairs. 3C60BoFDOC / 002 A7 B7 Five 2. Description of the invention. The capacitance of the invention. Nevertheless, when the memory element enters a higher degree of integration, such as DR with a capacity of 64M bits AM, the simple three-dimensional space capacitor structure is no longer applicable. One solution is to use the so-called fin-type (fin type) stacked capacitors. For the related technology of fin-type stacked capacitors, please refer to the paper "3-Dimensional" by Ema et al. Stacked Capacitor Cell for 16M and 64M DRAMs? ,, International Electron Devices Meeting, pp. 592-595, Dec. 1988. Fin-type stacked capacitors are mainly composed of a plurality of stacked layers of electrodes and dielectric film layers, which extend into a horizontal fin-like structure in order to increase the surface area of the electrodes. Related U.S. patents for DRAM type fin-type stacked capacitors may refer to Nos. 5,071,783, 5,126,810, 5,196,365, and 5,206,787. Another solution is to use so-called cylindrical type (cylindrical type) stacked capacitors. For the related technology of cylindrical stacked capacitors, please refer to the paper "Novel Stacked Capacitor Cell for 64-Mb DRAM" by Wakamiya et al., 1989 Symposium on VLSI Technology Digest of Technical Papers, pp. 69-70. The cylindrical stacked capacitor mainly has its electrode and dielectric film layer extended into a vertical cylindrical structure in order to increase the surface area of the electrode. Related U.S. patents for DRAM barrel stacked capacitors can be found in No. 5,077,688. As the degree of accumulation continues to increase, the size of the dram memory unit will still shrink. As known to those skilled in the art, as the size of the memory cell decreases, the capacitance value of the storage capacitor also decreases. The reduction of the capacitance value will lead to an increase in the chance of soft errors caused by the incidence of 0C rays. Therefore, this artist 4 please read the precautions before filling in this page). The size of the bound paper is applicable to the Chinese National Standard Falcon (CNS) Λ4% grid (2 丨 0 乂 297 公 #) 03 16TWF.DOC / 002 03 16TWF.DOC / 002 Printed by the Ministry of Economic Affairs, Central Standard Falcon Bureau S Industry and Consumer Cooperative B7 5. Description of invention (3) Still looking for new storage capacitor structures and manufacturing methods, hoping to occupy the plane occupied by storage capacitors When the size is reduced, the desired capacitance value can still be maintained. Therefore, a main object of the present invention is to provide a semiconductor memory device having a capacitor whose capacitor has a tree structure to increase the surface area of the storage electrode of the capacitor. According to a preferred embodiment of the present invention, a semiconductor memory device having a capacitor is provided. The device includes: a substrate; a transfer transistor formed on the substrate and including a drain and a source region; and a storage capacitor , Electrically coupled to one of the drain and source regions of the transfer transistor. The storage capacitor further includes: a type of trunk-like conductive layer with a bottom, electrically coupled to one of the drain and source regions of the transfer transistor, and a trunk-like conductive layer with an upward extension to After extending a distance from the bottom in a generally upward direction, it then extends around in a generally horizontal direction; at least one type of dendritic conductive layer, with an L-shaped cross section, one end of the dendritic conductive layer is connected to the On the upper surface of the trunk-like conductive layer, the trunk-like conductive layer and the dendritic-like conductive layer constitute a storage electrode of the storage capacitor; a dielectric layer is formed on the exposed surface of the trunk-like conductive layer and the dendritic-like conductive layer Upper; and an upper conductive layer formed on the dielectric layer to form a counter electrode of the storage capacitor. According to another preferred embodiment of the present invention, the trunk-like guide of the present invention I _ _ _ _ I _ taxi team ______ D, va (please read the precautions on the back before filling this page) This paper size is applicable China National Standard Falcon (CNS) Λ4 specification (210X W7 public use) 3 () (3 ° 8 · F f> gt.〇C / 002 A7 3 () (3 ° 8 · F f > 〇C / 002 A7 Printed by the Falcon Bureau Employee Consumer Cooperative _____ B7____ V. Description of the invention (^) The electrical layer is electrically coupled to one of the drain and source regions of the transfer transistor. The cross-section may be τ or u The type of dendritic conductive layer is generally a hollow cylindrical shape. According to another preferred embodiment of the present invention, a semiconductor memory device having a valley device is provided. The device includes: a substrate; a transfer transistor. On the substrate, and includes the drain and source regions; and a storage capacitor 'is electrically coupled to one of the drain and source regions of the transfer transistor. The storage capacitor further includes: a type of trunk-like conductive layer having a Bottom, electrically coupled to one of the drain and source regions of the transfer transistor, trunk-like conductive It also has an upwardly extending portion that extends a distance from the bottom in a generally upward direction and then extends around in a generally horizontal direction; at least a first type of dendritic conductive layer, including a first extension and A second extension section, one end of the first extension section is connected to the upper surface of the trunk-like conductive layer and extends upward in a vertical direction, and the second extension section extends from the first extension section in a horizontal direction Extending from the other end, the trunk-like conductive layer and the first-type dendritic conductive layer constitute a storage electrode of the storage capacitor; a dielectric layer formed on the trunk-like conductive layer and the first-type dendritic conductive layer is exposed And a conductive layer formed on the dielectric layer to form a counter electrode of the storage capacitor. According to yet another preferred embodiment of the present invention, the dendritic conductive layer of the present invention further includes a second Dendrimer-like conductive layer, which is columnar or has 6 paper scales, suitable for China National Standard (CNS) Λ4 specification (2 丨 Οχ 297mm) (Please read the notes on the back first (Fill in this page) .Install.-* 03 16TWF.DOC / 002 Λ7 B7 V. Description of invention (ί) A τ-like profile. -------- / Install-(Please read the notes on the back first Please fill in this page) According to another preferred embodiment of the present invention, the second extension of the first type of dendritic conductive layer of the present invention extends from the other end of the first extension from the inside to the outside in a substantially horizontal direction According to yet another preferred embodiment of the present invention, the second extension of the first type of dendritic conductive layer of the present invention extends substantially horizontally from the other end of the first extension from the outside to the inside. In another preferred embodiment of the present invention, the second extension of the first type of dendritic conductive layer of the present invention extends substantially horizontally from the other end of the first extension to the other side where the first extension is located Out. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, several preferred embodiments are described below in conjunction with the accompanying drawings, which are described in detail as follows: = A brief description of the drawings: Figure 1 It is a circuit schematic diagram of a memory unit of a DRAM device. Figures 2A to 2H are a series of cross-sectional views for explaining a first preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a first preferred embodiment of a semiconductor memory device of the present invention. Figures 3A to 3E of the Purple Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs are a series of cross-sectional views for explaining the second preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention and a semiconductor memory device of the present invention The second preferred embodiment. Fig. 4 is a cross-sectional view for explaining a third preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a third preferred embodiment of a semiconductor memory device of the present invention. 7 This paper scale is applicable to the Chinese National Standard (CNS) Λ4 specification (2 丨 0X2.97 male yak) 03 I 6TWF.DOC / 002 A7 B7 5. Description of the invention (&) 5A to 5D are a series of cross-sectional views, It is used to explain the fourth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and the fourth preferred embodiment of a semiconductor memory device of the present invention. Figures 6A to 6B are a series of cross-sectional views for explaining the fifth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention and the fifth preferred embodiment of a semiconductor memory device of the present invention. Fig. 7 is a cross-sectional view for explaining a sixth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a sixth preferred embodiment of a semiconductor memory device of the present invention. 8A to 8E are a series of cross-sectional views for explaining a seventh preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a seventh preferred embodiment of a semiconductor memory device of the present invention. Embodiments First, please refer to FIGS. 2A to 2H to detail the first preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention.

請參照第2A圖,首先將一矽基底10的表面進行熱氧 化製程,例如以矽的局部氧化(LOCOS )技術來達成, 因而形成場區氧化層12 ,其厚度例如約3000A (angstroms )。接著,再將矽基底1〇進行熱氧化製程, 以形成一閘極氧化層1 4,其厚度例如約1 5 0 A。然後,利 用一 CVD (化學氣相沈積)或LPCVD (低壓CVD )法, 在矽基底10的整個表面上沈積一複晶矽層,其厚度例如約 2000A。爲了提高複晶矽層的導電性,可將磷離子植入到 複晶砂層中。較佳是可再沈積一耐火金屬(refractory 8 本紙張<度適用中國國家標隼(C,NS ) Λ4規格(210 X 297公犛) (請先閱讀背而之注意事項再填寫本頁) 裝·Referring to FIG. 2A, first, a surface of a silicon substrate 10 is subjected to a thermal oxidation process, for example, by local oxidation of silicon (LOCOS) technology, thereby forming a field oxide layer 12 with a thickness of about 3000 A (angstroms), for example. Then, the silicon substrate 10 is subjected to a thermal oxidation process to form a gate oxide layer 14 having a thickness of about 150 A, for example. Then, using a CVD (chemical vapor deposition) or LPCVD (low pressure CVD) method, a polycrystalline silicon layer is deposited on the entire surface of the silicon substrate 10, with a thickness of, for example, about 2000 Å. In order to improve the conductivity of the polycrystalline silicon layer, phosphorus ions can be implanted into the polycrystalline sand layer. It is better to deposit another refractory metal (refractory 8 papers &degrees; suitable for China National Standard Falcon (C, NS) Λ4 specifications (210 X 297 male yak) (please read the precautions before filling this page) Outfit

*aT* aT

經濟邹中央標隼局員工消費合作杜印V 3〇6〇^βτδ F.DOC/002Economy Zou Central Standard Falcon Bureau Employee Consumer Cooperation Du Yin V 3〇6〇 ^ βτδ F.DOC / 002

經濟部中央標準局員工消費合作社印製 五、發明説明(q ) metal )層,然後施行退火(anneal )步驟,艮P开多成金屬 複晶矽化合物層(p〇1ycide ) ’以更提高其導電性。該耐 火金屬可例如爲鎢(Tungsten )’沈積厚度例如約2000A。 之後,利用傳統的光罩製版(PhotoUth〇graPhy )和蝕刻 技術定義(pattern )金屬複晶矽化合物層’因而形成如第 2 A圖所示的閘極(或稱字元線)WL 1至WL4。接著,例 如以砷離子植入到矽基底10中’以形成汲極區和 16b、以及源極區18a和18b。在此步驟中,字元線WL1 至WL4係當作罩幕層,而離子植入的劑量例如約1 X 1015 atoms/cm2 ,會巨量貝丨』約7〇KeV 。 請參照第2B圖,接著以CVD法沈積一絕緣層20,其 例如爲BPSG (硼磷矽玻璃),厚度約7〇〇〇A。然後,再 以 CVD 法沈積一触刻保護層(etching protection layer ) 22 ’其例如爲砂氮化物層(silicon nitride ),厚度約 1000A。之後,利用傳統的光罩製版和蝕刻技術,依序蝕 刻蝕刻保護層22、絕緣層20、和閘極氧化層14,以形成 儲存電極接觸窗(storage electrode contact holes) 24a 和 其係分別由蝕刻保護層22的上表面延伸到汲極區i6a 和16b的表面。接著,以cvd法在蝕刻保護層22的表面 沈積一複晶砂層26。爲了提高複晶矽層26的導電性,可 將例如砷離子植入到複晶矽層26中。如圖所示,複晶矽層 26塡滿儲存電極接觸窗24a; 24b,且覆蓋蝕刻保護層22 的表面。之後’在複晶矽層26表面沈積一厚的絕緣層28, 其例如爲二氧化砂層,厚度約7〇〇〇A。 太紙後又度適用中阑ID ( n\]c \ 4 .iL. :Γ~ 現 n^i nn ^1^11 nn —^ϋ km —HI— 一 Jr (請先閱讀背面之注意事項再填寫本頁) 03 I 6TWF.DOC/002 A7 B7 五、發明説明(?) 請參照第2C圖,接著以CVD法在絕緣層28表面依序 沈積一絕緣層與一犧牲複晶矽層,再利用傳統的光罩製版 和倉虫刻技術定義絕緣層與犧牲複晶砂層,因而形成如圖所 示之實心筒狀的絕緣層30a; 30b與犧牲複晶矽層32a; 32b。絕緣層30a; 30b與犧牲複晶矽層32a; 32b的水平剖 面可爲圓形、矩形或是其他形狀。其中,絕緣層30a; 30b 例如爲矽氮化物層,厚度例如約是ΙΟΟΟΑ,而犧牲複晶矽 層32a; 32b之厚度例如約是1000A。絕緣層30a與犧牲複 晶矽層32a結構成一堆疊層30a; 32a,其較佳位置大致係 對應於汲極區16a的上方;而絕緣層30b與犧牲複晶矽層 32b結構成另一堆疊層30b; 32b,其較佳位置大致係對應 於汲極區16b的上方。 請參照第2D圖,接著分別在堆疊層30a; 32a和30b; 32b 的側壁(sidewalls )上形成二氧化砂邊牆(spacers ) 34a 和34b。在本較佳實施例中,二氧化矽邊牆34a和34b可 以以下列步驟形成:沈積一二氧化矽層,其厚度例如約 1000A ;再回蝕刻(etchback )。之後,以CVD法沈積一 絕緣層36,其例如爲矽氮化物層,厚度例如約2000A。再 來,利用機械化學式硏磨(chemical mechanical polish; CMP )技術硏磨絕緣層36,至少直到堆疊層30a; 32a和 30b; 32b上方的部份露出爲止。 請參照第2E圖,接著以堆疊層30a; 32a、30b; 32b和 絕緣層36爲蝕刻罩幕,蝕刻去除二氧化矽邊牆34a和 34b。之後,仍以堆疊層30a; 32a、30b; 32b和絕緣層36 木紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 2们公釐) (請先閱讀背面之注意事項再填寫本頁) 裝. -3 經濟部中央橾準局員工消費合作社印裝 經濟部中夬標準局員χ·消費合作社印^ SG6 別 r°°e/°°2 A7 \n 五、發明説明(彳) 爲蝕刻罩幕,繼續蝕刻絕緣層28直到複晶矽層26表面爲 止。然後以犧牲複晶矽層32a; 32b爲蝕刻罩幕,蝕刻去除 絕緣層36,形成開口 38a和38b。 請參照第2F圖,接著在堆疊層30a; 32a、30b; 32b和 絕緣層28的表面沈積一複晶矽層40,厚度例如約1000A, 以塡滿開口 38a和38b。爲了提高複晶矽層4〇的導電性, 可將例如砷離子植入到複晶矽層4〇中。之後,利用機械化 學式硏磨技術硏磨複晶矽層40,至少直到絕緣層30a; 30b 上方的部份露出爲止。 請參照第2G圖,接著以複晶矽層40爲罩幕,利用濕 式蝕刻法依序去除絕緣層30a; 30b以及其下的絕緣層28。 之後,利用傳統的光罩製版與蝕刻技術,依序蝕刻複晶矽 層40、絕緣層28和複晶矽層26,以界定出各記憶單元的 儲存電容器之儲存電極。亦即藉此步驟將複晶矽層40和 26切割成若干區段40a; 40b和26a; 26b。再來利用濕式蝕 刻法,並以蝕刻保護層22爲蝕刻終點,將暴露出的二氧化 矽層去除,亦即去除絕緣層28。藉此步驟即完成動態隨機 存取記憶體的儲存電容器之儲存電極,其如圖所示係由類 樹幹狀的複晶矽層26a; 26b以及一具有似L形剖面的類樹 枝狀複晶矽層40a; 40b所一起構成。類樹幹狀的複晶矽層 26a; 26b連接到DRAM的轉移電晶體之汲極區16a; 16b, 且具有一似T形的剖面。類樹枝狀複晶矽層40a; 40b大致 係呈中空筒狀,其水平剖面可以是圓形、矩形或其他形狀’ 端視堆疊層30a; 32a與30b; 32b的形狀而定。類樹枝狀複 m ^^^^1 i mfl ma In im -5 (讀先閱讀背而之注意事項再填寫本頁} 本紙張尺度適用中國阈家標隼(CNS ) Λ4規格(210 X 297公铎) 〇3 |6TWF DOC/002 〇3 |6TWF DOC/002 五 B7 發明说明(丨口) 晶矽層4〇a; 40b從類樹幹狀的複晶矽層26a; 26b的上表 面,先以約垂直方向往上延伸一段距離後,再以約水平方 向由內往外延伸出。由於本發明的儲存電極之形狀非常特 殊,故在本說明書中乃以“樹型儲存電極”稱之,且因而製 成之電容器則稱爲“樹型儲存電容器”。 請參照第2H圖’接著分別在儲存電極26a, 40a; 26b, 4〇b裸露的表面上分別形成一介電膜層42a; 42b。介電膜 層42a; 42b例如可爲二氧化矽層、矽氮化物層的N〇 (砂 氮化物氧化砂)結構、ΟΝΟ (二氧化砂/砂氮化物/二氧 化矽)結構、或任何類似者。然後,在介電膜層42a和42b 的表面上’形成由複晶矽製成的相對電極44。相對電極的 製程可由下列步驟達成:以CVD法沈積〜複晶砂層,其厚 度例如爲1000A;再摻入例如N型雜質,以提高其導電性; 最後以傳統光罩製版和蝕刻技術定義複晶砂層,完成 DRAM各記憶單元的儲存電容器。 雖然第2H圖未顯示,然熟習此藝者應瞭解,第2]^圖 的結構可依傳統製程技術製作位元線、焊塾(b〇nding pad )、互連導線(interconnection ) '隔絕保護層 (passivation )、以及包裝等等’以完成DRam積體電路。 由於這些製程非關本發明之特徵,故於此不多批 在第一較佳實施例中,類樹幹狀的複晶 &曰曰矽層係一實心 構件’其具有-似T型的剖面。_下、個較佳實施例中 將以不同的製程形成不同結構的儲存電極 幹狀的複晶矽層係具有一中空結構的部份, i 2 I— I —I— I— I 1^1 -I- 士 - m In [——1^1 0¾ 、va (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印袈 且其中之類樹 以增加儲存電 本紙裱尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐) 經濟部中央榡準局員工消費合作枉印製 3 ㈧胤&.DQ_ A7 __ __ B7 _ 五、發明説明(I]) 極的表面積。 接著將參照第3A至3E圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第二較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第二較佳實施例所製造的。 本較佳實施例係以第2A圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第3A至3E圖中’與第2A圖相似的部份係以相同 的編號標示。 請參照第2A和3A圖,接著以CVD法沈積一絕緣層 46 ’其例如爲BPSG ’厚度約7000A。然後,再以CVD法 沈積一蝕刻保護層48 ,其例如爲矽氮化物層,厚度約 1000A。之後,利用傳統的光罩製版和蝕刻技術,依序蝕 刻蝕刻保護層48、絕緣層46 '和閘極氧化層14,以形成 儲存電極接觸窗50a和50b,其係分別由蝕刻保護層48的 上表面延伸到汲極區16a和16b的表面。接著,以CVD法 在蝕刻保護層48的表面沈積〜複晶矽層52。爲了提高複 晶矽層52的導電性,可將例如砷離子植入到複晶矽層52 中。如圖所不’複晶砂層52塡滿儲存電極接觸窗5〇a; 5〇b, 且覆蓋触刻保護層48的表面。之後,在複晶矽層52表面 沈積一厚的絕緣層54,其例如爲二氧化矽層,厚度約 7000A。再來以CVD法在絕緣層54表面依序沈積一絕緣 層與一犧牲複晶矽層,再利用傳統的光罩製版和蝕刻技術 定義絕緣層與犧牲複晶矽層,因而形成如圖所示的絕緣層 ___ I 3 本紙張尺度適用中國國家標隼(eNS) Λ4現格2丨〇乂^~~ --- m in i —1 11^1 ^^^^1 ^^^^1 ^^^^1 ^—^1« 一,J 0¾ 、va (請先閱讀背面之注意事項再填寫本頁) 03 16TWF.DOC/002 A7 B7 五、發明説明(丨X ) 5 6與犧牲複晶砂層5 8。其中’絕緣層5 6例如爲砂氮化物 層,厚度例如約1000A,而犧牲複晶矽層58之厚度例如約 1000A。絕緣層56與犧牲複晶矽層58結構成一堆疊層56; 58 ’其較佳位置大致係對應於相鄰兩儲存電容器間的上方 處。 請參照第3B圖,接著分別在堆疊層56; 58的側壁上形 成二氧化矽邊牆6〇a和60b。在本較佳實施例中,二氧化 矽邊牆60a和60b可以以下列步驟形成:沈積一二氧化矽 層’其厚度例如約1000A ;再回蝕刻。之後,以CVD法沈 積一絕緣層62,其例如爲矽氮化物層,厚度例如約2000A。 再來,利用機械化學式硏磨技術硏磨絕緣層62,至少直到 堆疊層56; 58上方的部份露出爲止。 請參照第3C圖,接著以堆疊層56; 58和絕緣層62爲 蝕刻罩幕,蝕刻去除二氧化矽邊牆60a和60b。之後,仍 以堆疊層56; 58和絕緣層62爲蝕刻罩幕,繼續蝕刻絕緣層 54直到複晶矽層52表面爲止。然後以犧牲複晶矽層58爲 蝕刻罩幕,蝕刻去除絕緣層62,形成開口 64a和6仆。 經濟部中央標隼局員工消費合作杜印繁 --------! 政! (請先閱讀背面之注意事項再填寫本頁) 請參照第3D圖,接著在堆疊層56; 58和絕緣層54的 表面沈積一複晶矽層,厚度例如約1000A,以塡滿開口 64a 和64b。之後,再利用機械化學式硏磨技術硏磨複晶矽層, 至少直到絕緣層56上方的部份露出爲止,形成複晶矽層 66a和66b。爲了提高複晶矽層的導電性,可將例如砷離 子植入到複晶砂層中。 請參照第3 E圖,接著以複晶矽層66a; 66b爲罩幕,利 本紙張尺度適用中國國家標隼(C'NS ) Λ4規格(210X 297公筇> 03 1 6TWF.DOC/002 A7 經濟部中央標隼局員工消費合作杜印製 B7 五、發明説明(B) 用濕式蝕刻法依序去除絕緣層56以及其下的絕緣層54。 之後,利用傳統的光罩製版與蝕刻技術,同時蝕刻複晶矽 層66a; 66b和複晶矽層52,以界定出各記憶單元的儲存電 容器之儲存電極。亦即藉此步驟將複晶矽層66a; 66b和52 切割成如圖所示的若干區段66a; 66b和52a; 52b。再來利 用濕式蝕刻法,並以蝕刻保護層48爲蝕刻終點,將暴露出 的二氧化矽層去除,亦即去除絕緣層54。藉此步驟即完成 動態隨機存取記憶體的儲存電容器之儲存電極,其如圖所 示係由類樹幹狀的複晶矽層52a; 52b以及一具有似L形剖 面的類樹枝狀複晶矽層66a; 66b所一起構成。類樹幹狀的 複晶矽層52a; 52b連接到DRAM的轉移電晶體之汲極區 16a; 16b,且具有一似U形的剖面。類樹枝狀複晶矽層66a; 66b大致係呈中空筒狀,其水平剖面可以是圓形、矩形或 其他形狀。類樹枝狀複晶矽層66a; 66b大致從類樹幹狀的 複晶矽層52a; 52b的週邊上表面,先以約垂直方向往上延 伸一段距離後,再以約水平方向由外往內延伸出。接下來 之後續製程因無異於傳統製程,故在此不再贅述。 上述第一、第二較佳實施例中之類樹枝狀電極層從剖 面觀之,均具有兩支似L型的樹枝,然而,本發明並不限 於此,類樹枝狀電極層似L形的樹枝可以只有一支,下一 個較佳實施例即將描述具有單支似L形剖面的類樹枝狀電 極層的儲存電極。 接著將參照第4圖,詳述本發明的一種具有樹型儲存 電容器的半導體記憶元件之第三較佳實施例,半導體記憶 (請先閱讀背而之注意事項再填寫本f ) -裝_The Ministry of Economic Affairs, Central Bureau of Standards and Staff Employee Cooperative Printed 5. The description of invention (q) metal layer, and then performed the annealing (anneal) step to form a metal polycrystalline silicon compound layer (p〇1ycide) to improve its quality. Conductivity. The refractory metal may be, for example, tungsten (Tungsten) 'deposited thickness, for example, about 2000A. After that, the traditional photomask pattern (PhotoUth〇graPhy) and etching technique are used to define the metal polycrystalline silicon compound layer ', thereby forming gates (or word lines) WL 1 to WL 4 as shown in FIG. 2A . Next, for example, arsenic ions are implanted into the silicon substrate 10 'to form drain regions 16b and source regions 18a and 18b. In this step, the word lines WL1 to WL4 are used as the mask layer, and the dose of ion implantation is, for example, about 1 × 1015 atoms / cm2, which is a huge amount of about 70 KeV. Please refer to FIG. 2B, and then deposit an insulating layer 20 by CVD, such as BPSG (borophosphosilicate glass), with a thickness of about 7000 A. Then, an etching protection layer (etching protection layer) 22 'is deposited by CVD, which is, for example, a silicon nitride layer (silicon nitride) with a thickness of about 1000A. After that, using traditional photomask patterning and etching techniques, the etching protection layer 22, the insulating layer 20, and the gate oxide layer 14 are sequentially etched to form a storage electrode contact hole 24a and its respective etching process The upper surface of the protective layer 22 extends to the surfaces of the drain regions i6a and 16b. Next, a polycrystalline sand layer 26 is deposited on the surface of the etching protection layer 22 by the cvd method. In order to increase the conductivity of the polycrystalline silicon layer 26, for example, arsenic ions may be implanted into the polycrystalline silicon layer 26. As shown in the figure, the polycrystalline silicon layer 26 is filled with storage electrode contact windows 24a and 24b, and covers the surface of the etching protection layer 22. Afterwards, a thick insulating layer 28 is deposited on the surface of the polycrystalline silicon layer 26, which is, for example, a sand dioxide layer with a thickness of about 7000 A. After the paper is too much, the midline ID (n \] c \ 4 .iL. Is applied: Γ ~ now n ^ i nn ^ 1 ^ 11 nn — ^ ϋ km —HI— a Jr (please read the precautions on the back first (Fill in this page) 03 I 6TWF.DOC / 002 A7 B7 V. Description of the invention (?) Please refer to Figure 2C, then deposit an insulating layer and a sacrificial polycrystalline silicon layer on the surface of the insulating layer 28 in order by CVD method, and then The traditional photomask plate-making and Cangworm engraving techniques are used to define the insulating layer and the sacrificial polycrystalline sand layer, thus forming a solid cylindrical insulating layer 30a; 30b and the sacrificial polycrystalline silicon layer 32a; 32b. The insulating layer 30a; 30b The horizontal cross-section of the sacrificial polycrystalline silicon layer 32a; 32b can be circular, rectangular, or other shapes. Among them, the insulating layer 30a; 30b is, for example, a silicon nitride layer, and the thickness is, for example, about 100 Α, while the sacrificial polycrystalline silicon layer 32a The thickness of 32b is, for example, about 1000 A. The insulating layer 30a and the sacrificial polycrystalline silicon layer 32a form a stacked layer 30a; 32a, the preferred position of which corresponds roughly to the top of the drain region 16a; and the insulating layer 30b and sacrificial polycrystalline The silicon layer 32b is structured as another stacked layer 30b; 32b, and its preferred position roughly corresponds to the top of the drain region 16b. Referring to FIG. 2D, then, on the side walls of the stacked layers 30a; 32a and 30b; 32b, spacers 34a and 34b are formed. In the preferred embodiment, the silicon dioxide sidewalls 34a And 34b can be formed in the following steps: depositing a silicon dioxide layer with a thickness of, for example, about 1000 A; and then etching back (etchback). After that, an insulating layer 36 is deposited by CVD, which is, for example, a silicon nitride layer, with a thickness of, for example 2000A. Next, the insulating layer 36 is polished using chemical mechanical polish (CMP) technology, at least until the upper part of the stacked layers 30a; 32a and 30b; 32b is exposed. Please refer to FIG. 2E, followed by The stacked layers 30a; 32a, 30b; 32b and the insulating layer 36 are etching masks, and the silicon dioxide sidewalls 34a and 34b are etched away. After that, the stacked layers 30a; 32a, 30b; 32b and the insulating layer 36 are also suitable for wood paper size China National Standards (CNS) Λ4 specifications (210X 2 mm) (please read the notes on the back before filling out this page). -3 Printed by the Central Consortium Bureau of the Ministry of Economic Affairs, Staff and Consumers Cooperative Printed by the Central Standards Bureau of the Ministry of Economy χ · Consumer cooperative printing ^ SG6 don't r °° e / °° 2 A7 \ n Fifth, the invention description (彳) is to etch the mask, continue to etch the insulating layer 28 until the surface of the polycrystalline silicon layer 26. Then sacrifice the polycrystalline silicon layer 32a; 32b To etch the mask, the insulating layer 36 is etched away to form openings 38a and 38b. Please refer to FIG. 2F, and then deposit a polycrystalline silicon layer 40 on the surface of the stacked layers 30a; 32a, 30b; 32b and the insulating layer 28, with a thickness of, for example, about 1000A to fill the openings 38a and 38b. In order to improve the conductivity of the polycrystalline silicon layer 40, for example, arsenic ions can be implanted into the polycrystalline silicon layer 40. After that, the polycrystalline silicon layer 40 is polished using a mechanical chemical polishing technique until at least the portion above the insulating layer 30a; 30b is exposed. Please refer to FIG. 2G, and then use the polycrystalline silicon layer 40 as a mask to sequentially remove the insulating layers 30a; 30b and the underlying insulating layer 28 by wet etching. Afterwards, the polycrystalline silicon layer 40, the insulating layer 28 and the polycrystalline silicon layer 26 are sequentially etched using conventional photomask patterning and etching techniques to define the storage electrodes of the storage capacitors of each memory cell. That is, by this step, the polycrystalline silicon layers 40 and 26 are cut into sections 40a; 40b and 26a; 26b. Next, the wet etching method is used, and the etching protection layer 22 is used as the etching end point to remove the exposed silicon dioxide layer, that is, the insulating layer 28 is removed. By this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, which is composed of a trunk-like polycrystalline silicon layer 26a; 26b and a dendritic polycrystalline silicon having an L-shaped cross-section Layers 40a; 40b are constructed together. The trunk-like polycrystalline silicon layer 26a; 26b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM, and has a T-shaped cross section. The dendritic polycrystalline silicon layer 40a; 40b is generally in the shape of a hollow cylinder, and its horizontal cross-section may be circular, rectangular or other shapes. The end depends on the shape of the stacked layers 30a; 32a and 30b; 32b. Dendritic complex m ^^^^ 1 i mfl ma In im -5 (read the precautions before filling in this page) This paper size is applicable to China's Threshold Standard Falcon (CNS) Λ4 specification (210 X 297 Duo) 〇3 | 6TWF DOC / 002 〇3 | 6TWF DOC / 002 Five B7 Description of the invention (丨 mouth) crystalline silicon layer 4〇a; 40b from the trunk-like polycrystalline silicon layer 26a; 26b upper surface, first After extending some distance upward in the vertical direction, it extends from the inside to the outside in the horizontal direction. Since the shape of the storage electrode of the present invention is very special, it is called "tree storage electrode" in this specification, and thus The fabricated capacitors are called "tree-type storage capacitors." Please refer to Figure 2H 'and then form a dielectric film layer 42a; 42b on the exposed surfaces of the storage electrodes 26a, 40a; 26b, and 40b respectively. The electric film layer 42a; 42b may be, for example, a silicon dioxide layer, a N0 (sand nitride oxide sand) structure of a silicon nitride layer, an ONO (sand oxide / sand nitride / silicon dioxide) structure, or any similar Then, on the surfaces of the dielectric film layers 42a and 42b, a counter electrode 44 made of polycrystalline silicon is formed The process of the counter electrode can be achieved by the following steps: CVD deposition ~ polycrystalline sand layer, the thickness of which is, for example, 1000A; and then doped with, for example, N-type impurities to improve its conductivity; Finally, the traditional photomask and etching technology to define polycrystalline Sand layer is used to complete the storage capacitors of each memory cell of DRAM. Although figure 2H is not shown, those familiar with this art should understand that the structure of figure 2] ^ can be used to make bit lines and solder pads according to traditional manufacturing techniques. ), Interconnection (interconnection) 'isolation protection layer (passivation), and packaging, etc.' to complete the DRam integrated circuit. Since these processes are not related to the characteristics of the present invention, so there are not many batches in the first preferred implementation In the example, the trunk-like polycrystalline & silicon layer is a solid member with a T-like cross-section._ In the next preferred embodiment, different structures of storage electrode stems will be formed by different processes The shape of the polycrystalline silicon layer has a hollow structure, i 2 I— I —I— I— I 1 ^ 1 -I- 士-m In [——1 ^ 1 0¾, va (please read the back (Please fill in this page again) The Employee Consumption Cooperative is printed and the tree is used to increase the storage of paper. The standard of China's National Standard (CNS) Λ4 specification (210X 297mm) is printed by the Central Bureau of Economics of the Ministry of Economy. Employee Consumer Cooperative Printing 3 ㈧ 胤 &.; DQ_ A7 __ __ B7 _ V. Description of the invention (I)) Surface area of the electrode. Next, referring to FIGS. 3A to 3E, a second preferred embodiment of a semiconductor memory device with a tree-shaped storage capacitor of the present invention will be described in detail, This preferred embodiment of the semiconductor memory device is manufactured by the second preferred embodiment of a semiconductor memory device manufacturing method of the present invention. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2A, and then DRAM storage electrodes of different structures are manufactured by different processes. In Figs. 3A to 3E, the parts similar to those in Fig. 2A are marked with the same numbers. Please refer to FIGS. 2A and 3A, and then deposit an insulating layer 46 'by CVD, which is, for example, BPSG' with a thickness of about 7000A. Then, an etch protection layer 48 is deposited by CVD, which is, for example, a silicon nitride layer, with a thickness of about 1000A. After that, using traditional photomask patterning and etching techniques, the etching protective layer 48, the insulating layer 46 'and the gate oxide layer 14 are sequentially etched to form storage electrode contact windows 50a and 50b, which are respectively formed by etching the protective layer 48 The upper surface extends to the surfaces of the drain regions 16a and 16b. Next, a polysilicon layer 52 is deposited on the surface of the etching protection layer 48 by CVD. In order to improve the conductivity of the polycrystalline silicon layer 52, for example, arsenic ions may be implanted into the polycrystalline silicon layer 52. As shown in the figure, the polycrystalline sand layer 52 is filled with the storage electrode contact windows 50a and 50b, and covers the surface of the touch protection layer 48. After that, a thick insulating layer 54 is deposited on the surface of the polycrystalline silicon layer 52, for example, a silicon dioxide layer, with a thickness of about 7000A. Next, an insulating layer and a sacrificial polycrystalline silicon layer are sequentially deposited on the surface of the insulating layer 54 by CVD method, and then the insulating layer and the sacrificial polycrystalline silicon layer are defined using traditional photomask patterning and etching techniques, thus forming as shown in the figure The insulating layer ___ I 3 This paper scale is applicable to the Chinese National Standard Falcon (eNS) Λ4 present case 2 丨 〇 乂 ^ ~~ --- m in i —1 11 ^ 1 ^^^^ 1 ^^^^ 1 ^ ^^^ 1 ^ — ^ 1 «First, J 0¾, va (please read the precautions on the back and then fill out this page) 03 16TWF.DOC / 002 A7 B7 5. Description of the invention (丨 X) 5 6 and sacrifice polymorph Sand layer 5 8. The 'insulating layer 56 is, for example, a sand nitride layer with a thickness of about 1000A, and the sacrificial polycrystalline silicon layer 58 has a thickness of about 1000A, for example. The insulating layer 56 and the sacrificial polycrystalline silicon layer 58 are structured as a stacked layer 56; the preferred position of 58 'generally corresponds to the upper portion between two adjacent storage capacitors. Please refer to FIG. 3B, and then form silicon dioxide sidewalls 6〇a and 60b on the sidewalls of the stacked layers 56; 58 respectively. In the preferred embodiment, the silicon dioxide sidewall spacers 60a and 60b can be formed by the following steps: depositing a silicon dioxide layer ' with a thickness of, for example, about 1000A; and then etching back. Thereafter, an insulating layer 62 is deposited by CVD, which is, for example, a silicon nitride layer, and has a thickness of, for example, about 2000A. Next, the insulating layer 62 is polished using a mechanochemical polishing technique until at least the portion above the stacked layers 56; 58 is exposed. Please refer to FIG. 3C, and then use the stacked layers 56; 58 and the insulating layer 62 as etching masks to etch and remove the silicon dioxide side walls 60a and 60b. After that, the stacked layer 56; 58 and the insulating layer 62 are used as the etching mask, and the insulating layer 54 is etched until the surface of the polycrystalline silicon layer 52 is continued. Then, the sacrificial polycrystalline silicon layer 58 is used as an etching mask, and the insulating layer 62 is etched away to form openings 64a and 6b. Du Yinfan, Employee Consumption Cooperation of the Central Standard Falcon Bureau of the Ministry of Economic Affairs --------! (Please read the precautions on the back before filling this page) Please refer to the 3D picture, and then deposit a polycrystalline silicon layer on the surface of the stacked layers 56; 58 and the insulating layer 54 with a thickness of about 1000A, for example, to fill the opening 64a and 64b. After that, the polycrystalline silicon layer is polished by mechanochemical polishing technology at least until the portion above the insulating layer 56 is exposed to form polycrystalline silicon layers 66a and 66b. In order to improve the conductivity of the polycrystalline silicon layer, for example, arsenic ions can be implanted into the polycrystalline sand layer. Please refer to Figure 3 E, and then use the polycrystalline silicon layer 66a; 66b as the cover screen, and the size of the paper is applicable to the Chinese national standard falcon (C'NS) Λ4 specification (210X 297 Gongqiu> 03 1 6TWF.DOC / 002 A7 Du7 printed by the consumer cooperation of the Central Standard Falcon Bureau of the Ministry of Economic Affairs B. V. Description of the invention (B) The insulating layer 56 and the underlying insulating layer 54 are sequentially removed by the wet etching method. After that, the traditional photomask is used to make and etch Technique, simultaneously etching the polycrystalline silicon layer 66a; 66b and the polycrystalline silicon layer 52 to define the storage electrode of the storage capacitor of each memory cell. That is, the polycrystalline silicon layer 66a; 66b and 52 are cut as shown in the figure Several sections 66a; 66b and 52a; 52b are shown. Then, the wet etching method is used, and the etching protection layer 48 is used as the etching end point to remove the exposed silicon dioxide layer, that is, the insulating layer 54 is removed. This step is to complete the storage electrode of the storage capacitor of the dynamic random access memory, which is shown as a trunk-like polycrystalline silicon layer 52a; 52b and a dendritic polycrystalline silicon layer with an L-shaped cross section 66a; 66b together. The trunk-like polycrystalline silicon layer 52a; 52b is connected to The drain region 16a; 16b of the transfer transistor of DRAM has a U-shaped cross-section. The dendrite-like polycrystalline silicon layer 66a; 66b is roughly a hollow cylinder, and its horizontal cross-section can be round, rectangular or other Shape. The dendrite-like polycrystalline silicon layer 66a; 66b is roughly from the trunk-like polycrystalline silicon layer 52a; 52b's peripheral upper surface, first extending a distance upward in a vertical direction, and then outward in a horizontal direction The following subsequent processes are no different from traditional processes, so they are not repeated here. The dendritic electrode layers in the first and second preferred embodiments described above have two similar L-shaped branches, however, the present invention is not limited to this, the L-like branches of the dendritic electrode layer may have only one branch, and the next preferred embodiment will describe a single L-shaped branch-like electrode layer The storage electrode. Next, referring to FIG. 4, the third preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention, a semiconductor memory (please read the precautions before filling in this f) -Install_

、1T 本紙張K度適用中阀阗家標华((’NS ) Λ4規格(;Μ0Χ 297公绝) 0316TWF.DOC/002 Λ7 0316TWF.DOC/002 Λ7 經濟部中央標隼局員工消费合作社印裝 B7 五、發明説明(作) 元件的此一較佳實施例,係由本發明的一種半導體記憶元 件製造方法之第三較佳實施例所製造的。 本較佳實施例係以第3D圖所示的較佳實施例之結構 爲基礎’再以不同的製程製作不同結構的DRAM儲存電 極。在第4圖中’與第3D圖相似的部份係以相同的編號 標示。 請參照第3〇圖與第4圖,接著以複晶矽層66a;66b爲 罩幕’利用濕式蝕刻法依序去除絕緣層56以及其下的絕緣 層54。之後,利用傳統的光罩製版與蝕刻技術,至少f虫刻 複晶矽層66a; 66b和複晶矽層52(當然也可以包括蝕刻絕 緣層54),以界定出各記憶單元的儲存電容器之儲存電極。 亦即藉此步驟將複晶矽層52切割成若干區段52a和52b, 且分別去除複晶砂層66a和66b的其中一垂直段,使複@ 矽層60a和66b各只有一端與複晶矽層52a; 52b連接。;^ 來利用濕式蝕刻法,並以蝕刻保護層48爲蝕刻終點,將 露出的二氧化矽層去除,亦即去除絕緣層54。藉此步,驟% 完成動態隨機存取記憶體的儲存電容器之儲存電極,其% 圖所示係由類樹幹狀的複晶矽層52a; 52b以及—具有{以^ 形剖面的類樹枝狀複晶矽層66a; 66b所一起構成。類檢 狀的複晶矽層52a; 52b連接到DRAM的轉移電晶體之圾極 區10a; 10b,且具有一似T形的剖面。類樹枝狀複晶砂^ 66a; 66b自剖面觀之,僅具有一支似L形的樹枝,其大$ 從類樹幹狀的複晶矽層52a; 52b的週邊上表面,先以約垂 直方向往上延伸一段距離後,再以約水平方向朝向另__ (請先閲讀背而之注意事項再填寫本頁j -裴、 1T K degrees of this paper is suitable for the printing of the Central Valve Standard (('NS) Λ4 specification (; Μ0Χ 297 public) 0316TWF.DOC / 002 Λ7 0316TWF.DOC / 002 Λ7 Employee Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economic Affairs B7 5. Description of the Invention (Made) This preferred embodiment of the device is manufactured by the third preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention. This preferred embodiment is shown in FIG. 3D Based on the structure of the preferred embodiment, 'the DRAM storage electrodes of different structures are made by different processes. In Fig. 4, the parts similar to those in Fig. 3D are marked with the same numbers. Please refer to Fig. 30 As shown in Figure 4, the polycrystalline silicon layer 66a; 66b is used as the mask. The insulating layer 56 and the underlying insulating layer 54 are sequentially removed by a wet etching method. Then, using traditional photomask patterning and etching techniques, at least The polycrystalline silicon layer 66a; 66b and the polycrystalline silicon layer 52 (of course, the etched insulating layer 54 can also be included) to define the storage electrode of the storage capacitor of each memory cell. That is, the polycrystalline silicon layer 52 cut into several sections 52a and 52b, and go to In addition to one of the vertical sections of the polycrystalline sand layers 66a and 66b, the poly @ silicon layers 60a and 66b have only one end connected to the polycrystalline silicon layer 52a; 52b .; ^ To use the wet etching method, and the etching protection layer 48 is At the end of the etch, the exposed silicon dioxide layer is removed, that is, the insulating layer 54 is removed. In this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed%, which is shown as a tree trunk-like The polycrystalline silicon layer 52a; 52b and—a dendritic polycrystalline silicon layer 66a; 66b having a {with a ^ -shaped cross-section. The polycrystalline silicon layer 52a; 52b connected to the DRAM transfer transistor Polar region 10a; 10b, and has a T-shaped cross-section. Dendrite-like polycrystalline sand ^ 66a; 66b from a cross-sectional view, only has an L-shaped branch, its large $ from trunk-like polymorph The upper surface of the peripheral of the silicon layer 52a; 52b, first extend a distance in the vertical direction, and then face the other in the horizontal direction __ (please read the precautions before filling this page j-Pei

、1T 本紙依尺度適用中國國家懔嗥(CNS ) Λ4说樁、210 < 297公楚) 03 16TWF.DOC/002 A7 B7 五、發明説明(iC ) 延伸出。接下來之後續製程因無異於傳統製程,故在此不 再贅述。 在上述第一、第二和第三較佳實施例中,儲存電極只 具有一層似L形剖面的類樹枝狀電極層。然而,本發明並 不限於此,儲存電極似L形剖面的類樹枝狀電極層之層數 可爲二層、三層 '或更多。下一個較佳實施例即將描述具 有二層似L形剖面的類樹枝狀電極層的儲存電極。 接著將參照第5A至5D圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第四較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第四較佳實施例所製造的。 本較佳實施例係以第2F圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第5A至5D圖中,與第2F圖相似的部份係以相同 的編號標示。 請參照第2F圖與第5A圖,接著以複晶矽層40爲罩 幕,利用濕式飽刻法去除絕緣層30a; 3Ob。之後,在複晶 矽層40與絕緣層28表面沈積一絕緣層68,其例如是二氧 化矽層。然後在絕緣層68表面依序沈積一絕緣層與一犧牲 複晶矽層,再利用傳統的光罩製版和蝕刻技術定義絕緣層 與犧牲複晶矽層,因而形成如圖所示的絕緣層70a; 70b與 犧牲複晶矽層72a; 72b。其中,絕緣層70a; 70b例如爲矽 氮化物層,厚度例如約1000A,而犧牲複晶矽層72a; 72b 之厚度例如約ΙΟΟΟΑ。絕緣層70a與犧牲複晶矽層72a結 各紙张尺度適用中國國家標準(CNS ) Λ4規格(?10χγ)7公绛) --------1 -裝------1T------- ^ (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標_局員工消费合作杜印试 30嶋忍 WF.DOC/002 A7 B7 經濟部中央標隼局員工消費合作社印裝 五、發明説明(吣) 構成一堆疊層70a; 72a,其較佳位置大致係對應於汲極區 16a的上方;而絕緣層70b與犧牲複晶矽層72b結構成另 —堆疊層70b; 72b,其較佳位置大致係對應於汲極區16b 的上方。接著分別在堆疊層70a; 72a和7〇b; 72b的側壁上 形成二氧化矽邊牆74a和74b。在本較佳實施例中,二氧 化矽邊牆74a和74b可以以下列步驟形成:沈積一二氧化 矽層,其厚度例如約1000A ;再回蝕刻。 請參照第5B圖,接著以CVD法依序沈積一絕緣層76, 其例如爲矽氮化物層,厚度例如約2000A。再來,利用機 械化學式硏磨技術硏磨絕緣層76,至少直到堆疊層70a; 72a和70b; 72b上方的部份露出爲止。之後,以堆疊層7〇a; 72a、70b; 72b和絕緣層76爲蝕刻罩幕,蝕刻去除二氧化 矽邊牆74a和74b。之後,仍以堆疊層70a; 72a、70b; 72b 和絕緣層76爲蝕刻罩幕,繼續蝕刻絕緣層68和28直到複 晶矽層26表面爲止,形成開口 78a和78b。 請參照第5C圖,接著以犧牲複晶矽層72a;72b爲蝕刻 罩幕’蝕刻去除絕緣層76。然後在堆疊層70a; 72a、7〇b; 7以和絕緣層68的表面沈積一複晶矽層80,厚度例如約 1000A ’以塡滿開口 78a和78b。爲了提高複晶矽層80的 導電性’可將例如砷離子植入到複晶矽層80中。之後,利 用機械化學式硏磨技術硏磨複晶矽層80,至少直到絕緣層 70a; 70b上方的部份露出爲止。接著以複晶矽層80爲罩 幕’利用濕式蝕刻法依序去除絕緣層70a; 70b以及其下的 絕緣層68、28。 本紙掁尺度邊用中國國家標率·( C’NS ) Λ4規格(210 乂 2^7公籍) (請先閱讀背面之注意事項再填寫本頁) -裝 03 16TWF DQC/002 Λ7 Η - 經濟部中央標準局員工消費合作打印聚 五、發明説明(Ν ) 請參照第5D圖,接著利用傳統的光罩製版與蝕刻技 術,依序触刻複晶砂層80、絕緣層68、複晶砂層40、絕 緣層28和複晶矽層26,以界定出各記億單元的儲存電容 器之儲存電極。亦即藉此步驟將複晶矽層80、40和26切 割成如圖所示的若干區段80a; 80b、40a; 40b和26a; 2 6 b。再來利用濕式触刻法,並以蝕刻保護層2 2爲餽刻終 點,將暴露出的二氧化矽層去除,亦即去除絕緣層68和 28。藉此步驟即完成動態隨機存取記憶體的儲存電容器之 儲存電極,其如圖所示係由類樹幹狀的複晶矽層26a; 26b 以及兩層具有似L形剖面的類樹枝狀複晶矽層80a; 80b和 40a; 40b所一起構成。類樹幹狀的複晶砂層26a; 26b連接 到DRAM的轉移電晶體之汲極區16a; 16b,且具有一似T 形的剖面。兩層類樹枝狀複晶砂層80a; 80b和40a; 40b大 致平行且均大致呈中空筒狀,其水平剖面可以是圓形、矩 形或其他形狀。類樹枝狀複晶矽層80a; 80b和40a; 40b分 別從類樹幹狀的複晶矽層26a; 26b的上表面,先以約垂直 方向往上延伸一段距離後,再以約水平方向由內往外延伸 出。接下來之後續製程因無異於傳統製程,故在此不再贅 述。如果要得到更多層的類樹枝狀電極層,只要依照本較 佳實施例中之描述,多次重複堆疊層的製作就可滿足所 需。 在上述第一至第四較佳實施例中,儲存電極的類樹枝 狀電極層均只有似L形剖面。然而,本發明並不限於此, 儲存電極的類樹枝狀電極層可以包括有其他剖面形狀。下 (請先閱讀背面之注意事項再填寫本頁) -裝·、 1T This paper is applicable to the Chinese national sorrow (CNS) Λ4 said pile, 210 < 297 guru according to the scale 03 16TWF.DOC / 002 A7 B7 V. The invention description (iC) is extended. The subsequent processes are no different from traditional processes, so they will not be repeated here. In the above-mentioned first, second and third preferred embodiments, the storage electrode has only one layer of dendritic-like electrode layer having an L-shaped cross section. However, the present invention is not limited to this, and the number of layers of the dendritic electrode layer with an L-shaped cross section of the storage electrode may be two, three or more. The next preferred embodiment will describe a storage electrode having two dendritic-like electrode layers with an L-shaped cross section. Next, referring to FIGS. 5A to 5D, a fourth preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail. This preferred embodiment of the semiconductor memory device is a semiconductor memory of the present invention. The fourth preferred embodiment of the device manufacturing method. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2F, and then DRAM storage electrodes with different structures are manufactured by different processes. In Figs. 5A to 5D, the parts similar to those in Fig. 2F are marked with the same numbers. Please refer to FIG. 2F and FIG. 5A, and then use the polycrystalline silicon layer 40 as a mask to remove the insulating layer 30a; 3Ob by wet saturation. Thereafter, an insulating layer 68, such as a silicon dioxide layer, is deposited on the surfaces of the polycrystalline silicon layer 40 and the insulating layer 28. Then, an insulating layer and a sacrificial polycrystalline silicon layer are sequentially deposited on the surface of the insulating layer 68, and then the insulating layer and the sacrificial polycrystalline silicon layer are defined by using traditional mask making and etching techniques, thereby forming an insulating layer 70a as shown in the figure ; 70b and sacrificial polycrystalline silicon layer 72a; 72b. Among them, the insulating layer 70a; 70b is, for example, a silicon nitride layer with a thickness of, for example, about 1000A, and the sacrificial polycrystalline silicon layer 72a; 72b has a thickness of, for example, about 1000A. The insulation layer 70a and the sacrificial polycrystalline silicon layer 72a are connected to each paper size. The Chinese National Standard (CNS) Λ4 specification (? 10χγ) 7 gong is applicable -------- 1 -installed ----- 1T- ------ ^ (Please read the precautions on the back before filling in this page) Ministry of Economic Affairs Central Standard_Bureau Employee Consumption Cooperation Du Yinshi 30 Maji WF.DOC / 002 A7 B7 Central Ministry of Economic Affairs Employee Consumption Cooperative printing 5. The description of the invention (吣) constitutes a stacked layer 70a; 72a, the preferred position of which corresponds roughly to the top of the drain region 16a; and the insulating layer 70b and the sacrificial polycrystalline silicon layer 72b are structured into another stacked layer 70b; 72b, the preferred position of which corresponds roughly to the top of the drain region 16b. Next, silicon dioxide sidewalls 74a and 74b are formed on the side walls of the stacked layers 70a; 72a and 70b; 72b, respectively. In the preferred embodiment, the silicon dioxide sidewalls 74a and 74b can be formed by the following steps: depositing a silicon dioxide layer with a thickness of, for example, about 1000 A; and then etching back. Please refer to FIG. 5B, and then sequentially deposit an insulating layer 76 by a CVD method, which is, for example, a silicon nitride layer, and has a thickness of about 2000A, for example. Next, the insulating layer 76 is polished using a mechanochemical polishing technique until at least the portion above the stacked layers 70a; 72a and 70b; 72b is exposed. Thereafter, the stacked layers 70a; 72a, 70b; 72b and the insulating layer 76 are used as etching masks to etch and remove the silicon dioxide sidewalls 74a and 74b. After that, the stacked layers 70a; 72a, 70b; 72b and the insulating layer 76 are used as etching masks, and the insulating layers 68 and 28 are continuously etched until the surface of the polycrystalline silicon layer 26, forming openings 78a and 78b. Please refer to FIG. 5C, and then use the sacrificial polycrystalline silicon layer 72a; 72b as an etching mask to etch away the insulating layer 76. Then, a polycrystalline silicon layer 80 is deposited on the surface of the stacked layers 70a; 72a, 70b; 7 and the insulating layer 68, with a thickness of, for example, about 1000 Å to fill the openings 78a and 78b. In order to improve the conductivity of the polycrystalline silicon layer 80 ', for example, arsenic ions can be implanted into the polycrystalline silicon layer 80. After that, the polycrystalline silicon layer 80 is polished using a mechanochemical polishing technique until at least the portion above the insulating layer 70a; 70b is exposed. Next, the polycrystalline silicon layer 80 is used as a mask 'to sequentially remove the insulating layers 70a; 70b and the insulating layers 68, 28 under the wet etching method. This paper uses the Chinese national standard rate (C'NS) Λ4 specifications (210 乂 2 ^ 7 citizenship) (please read the precautions on the back before filling this page) -install 03 16TWF DQC / 002 Λ7 Η-Economy Ministry of Central Standards Bureau employee consumption cooperation printing poly five, invention description (N) Please refer to Figure 5D, and then use the traditional mask making and etching technology, in order to touch the polycrystalline sand layer 80, insulating layer 68, polycrystalline sand layer 40 , The insulating layer 28 and the polycrystalline silicon layer 26 to define the storage electrodes of the storage capacitors of each billion-unit. That is, by this step, the polycrystalline silicon layers 80, 40 and 26 are cut into several sections 80a; 80b, 40a; 40b and 26a; 2 6 b as shown. Next, the wet contact etching method is used, and the etching protection layer 22 is used as the end point of feeding, and the exposed silicon dioxide layer is removed, that is, the insulating layers 68 and 28 are removed. By this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, which is composed of a trunk-like polycrystalline silicon layer 26a; 26b and two layers of dendritic-like polycrystals with an L-shaped cross section as shown The silicon layer 80a; 80b and 40a; 40b are formed together. The trunk-like polycrystalline sand layer 26a; 26b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM, and has a T-shaped cross section. The two layers of dendritic polycrystalline sand layers 80a; 80b and 40a; 40b are generally parallel and are generally hollow cylindrical, and their horizontal cross-sections may be circular, rectangular or other shapes. Dendrite-like polycrystalline silicon layer 80a; 80b and 40a; 40b respectively from the upper surface of the trunk-like polycrystalline silicon layer 26a; 26b, first extending a distance upward in a vertical direction, and then inward in a horizontal direction Extend out. The following subsequent processes are no different from traditional processes, so they will not be repeated here. If more layers of dendritic electrode layers are to be obtained, as long as described in this preferred embodiment, the repeated production of stacked layers can meet the needs. In the above-mentioned first to fourth preferred embodiments, the dendritic-like electrode layers of the storage electrode all have L-like cross-sections. However, the present invention is not limited thereto, and the dendritic electrode layer of the storage electrode may include other cross-sectional shapes. Next (please read the notes on the back before filling out this page) -install

*1T k 本紙張尺度過用中國阐家標準U'NS ) Λ4規格(2丨0 X 297公犛) 03 16TWF.DOC/002 A7 B7 五、發明説明(& ) 一個較佳實施例即將描述具有一層似L形剖面與一似τ型 剖面的類樹枝狀電極層的儲存電極。 接著將參照第6A至6B圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第五較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第五較佳實施例所製造的。 本較佳實施例係以第2F圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第6A至6B圖中,與第2F圖相似的部份係以相同 的編號標示。 請參照第2F圖和第6A圖,接著以複晶矽層40爲罩 幕,利用濕式蝕刻法去除絕緣層30a; 30b。然後以CVD法 在絕緣層28和複晶矽層40的表面沈積一絕緣層82,其例 如爲二氧化矽層。之後利用傳統的光罩製版和蝕刻技術, 依序蝕刻絕緣層82、複晶矽層40和絕緣層28,直到複晶 矽層26的表面爲止,以形成開口 84a和84b。其中,開口 84a和84b的較佳位置大致係分別對應於汲極區16a和16b 上方的區域。再來以CVD法在絕緣層82表面沈積一複晶 矽層86,厚度例如約1000A,以塡滿開口 84a和84b。爲 了提高複晶矽層86的導電性,可將例如砷離子植入到複晶 石夕層8 6中。 請參照第6B圖,接著利用傳統的光罩製版和蝕刻技 術,依序触刻複晶砂86、絕緣層82、複晶砂層40、絕緣 層28和複晶矽層26,以界定出各記憶單元的儲存電容器 20 本紙張尺度適用中國國家標隼(CNS ) Λ4現格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝- 、1Τ 經濟部中央標準局員工消費合作社印製 3 1 6TWF.DOC/002 A7 ,---—------— Η?____ 發明説明(丨9 〜 - 之儲存電極。亦即藉此步驟將複晶矽層%、4〇和 成如圖所示的若干區段86a;86b、40a;40b 切口」 •pt- tu 26h ° 再來利用濕式蝕刻法,並以蝕刻保護層π舄蝕刻終 別將暴露出的二氧化矽層去除,亦即去除絕緣層82"^、、28。 藉此步驟即完成動態隨機存取記憶體的儲存電容器之儲 存電極’其如圖所示係由類樹幹狀的複晶矽層26a; °、 〜具有似L形剖面的類樹枝狀複晶矽層4〇a; 4〇b與一具有 似T形剖面的的類樹枝狀複晶矽層80a; 80b所—起構成。 類樹幹狀的複晶矽層20a; 26b連接到DRAM的轉移電晶體 之汲極區16a; 16b,且具有—似丁形的剖面。具有似^形 口丨J面的類樹枝狀複晶砂層4〇a; 40b大致呈中空筒狀,宜水 平剖面可以是圓形、矩形或其他形狀。類樹枝狀複晶矽層 40a; 40b從類樹幹狀的複晶矽層π” 261)的上表面,先以 約垂直方向往上延伸一段距離後,再以約水平方向由內往 外延伸出。具有似T形剖面的類樹枝狀複晶矽層80a; 80b 的垂直段亦大致呈中空筒狀,其水平剖面也可以是圓形、 矩形或其他形狀。類樹枝狀複晶矽層80a; 80b從類樹幹狀 的複晶矽層26a; 26b的上表面,先以約垂直方向往上延伸 一段距離後,再以約水平方向向四週延伸出。 在下一個較佳實施例中,將以不同的製程形成不同結 構的儲存電極。該較佳實施例的儲存電極結構非常類似上 述的第五較佳實施例結構’不同之處只在類樹枝狀的複晶 矽層部份,即第五較佳實施例係具有一似τ型的剖面’而 下一較佳實施例係具有一柱狀結構。 (請先閱讀背面之注意事項再填κ本頁) 丨裝' *vs 經濟部中央標隼局員工消費合作社印裝 本紙張尺度適用中國國家標华(CNS ) Λ4現格(210x 297公緣) 經濟部中央標率局員工消費合作杜印1i 306G65wfd 五、發明説明()(?) 本較佳實施例係以第6A圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第7圖中,與第6A圖相似的部份係以相同的編號 標示。 請參照第6A圖和第7圖,接著利用機械化學式硏磨技 術硏磨複晶矽層86,至少直到絕緣層82上方的部份露出 爲止,以形成如圖所示的柱狀複晶矽層88a和88b。之後, 利用濕式蝕刻法,並以複晶矽層4〇爲罩幕去除暴露出的二 氧化矽層’亦即去除全部的絕緣層82與部份的絕緣層28。 然後利用傳統的光罩製版和蝕刻技術,依序蝕刻複晶矽層 4〇、絕緣層28和複晶矽層26,直到蝕刻保護層22的表面 爲止,以界定出各記憶單元的儲存電容器之儲存電極。亦 即藉此步驟將複晶矽層40和26切割成如圖所示的若干區 段4〇a; 4〇b和Ma; Mb。再來利用濕式蝕刻法,並以纟虫刻 保護層22爲蝕刻終點,將暴露出的二氧化矽層去除,亦即 去除絕緣層28。藉此步驟即完成動態隨機存取記憶體的儲 存電容器之儲存電極,其如圖所示係由類樹幹狀的複晶石夕 層26a; 26b ' —具有似L形剖面的類樹枝狀複晶矽層4〇a; 40b與一柱狀類樹枝狀複晶矽層88a; 88b所一起構成。類 樹幹狀的複晶矽層26a; 26b連接到DRAM的轉移電晶體之 汲極區16a; 16b,且具有一似T形的剖面。具有似L形剖 面的類樹枝狀複晶矽層4〇a; 40b大致呈中空筒狀,其水平 剖面可以是圓形、矩形或其他形狀。類樹枝狀複晶矽層4〇a; 4〇b從類樹幹狀的複晶矽層26a; 2仙的上表面,先以約垂 22 --------ί _裝------訂------f'iK (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家榡嗥(CNS ) Λ4規格(ΉΟ < 297公淹) 03 1 6TWF.DOC/002 Λ7 03 1 6TWF.DOC/002 Λ7 經濟部中央標準局員工消費合作社印製 ___ B7 五 '發明説明()丨) 直方向往上延伸一段距離後,再以約水平方向由內往外延 伸出。柱狀類樹枝狀複晶矽層88a; 88b的水平剖面可以是 圓形、矩形或其他形狀’且係從類樹幹狀的複晶矽層26a; 26b的上表面,以約垂直方向往上延伸出。 在上述第一至第六較佳實施例中,類樹幹狀的複晶矽 層水平部份之下表面均與其下方的蝕刻保護層接觸,且均 是利用CMP技術將位在堆疊層上方的複晶矽層予以去除 截斷。然而,本發明並不限於此,下一個較佳實施例即將 描述類樹幹狀的複晶矽層水平部份之下表面未與其下方 的蝕刻保護層接觸,而相距一段距離,以更增加儲存電極 的表面積之作法。同時’也將描述利用傳統的光罩製版和 蝕刻技術’將位在堆疊層上方的複晶矽層予以切割的製 程。 接著將參照第8A至8E圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第七較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第七較佳實施例所製造的。 本較佳實施例係以第2A圖所示的較佳實施例之結構 爲基礎’再以不同的製程製作不同結構的DRAM儲存電 極。在第8A至8E圖中’與第2A圖相似的部份係以相同 的編號標示。 請參照第2A和8A圖’接著以CVD法依序沈積一絕緣 層9〇、一蝕刻保護層92和一絕緣層94。絕緣層90例如 爲BPSG ’厚度約7000A。蝕刻保護層92例如爲矽氮化物 23 r · --------11*^______丁____— 1^ ^ (請先閱讀背面之注意事項再填寫本頁) 本纸张尺度漓用中國國家標隼(CNS ) Λ4規格(2丨OX 297公趁) A7 B7 0316TWF.DOC/002 五、發明说明(/)) 層,厚度約1000A。絕緣層94例如爲二氧化矽層,厚度約 wooA。之後,利用傳統的光罩製版和蝕刻技術,依序蝕 刻絕緣層94、蝕刻保護層92、絕緣層90和閘極氧化層I4, 以形成儲存電極接觸窗96a和96b ’其係分別由絕緣層94 的上表面延伸到汲極區l6a和16b的表面。接著’在絕緣 層94的表面與儲存電極接觸窗96a; 96b中沈積一複晶矽 層。而後再利用傳統的光罩製版和蝕刻技術定義複晶砂 層,形成如圖所示的複晶砂層98 °爲了提高複晶砂層的導 電性,可將例如砷離子植入到複晶矽層中。如圖所示,複 晶矽層98塡滿儲存電極接觸窗96a; 96b ’且覆蓋住絕緣層 94的表面。之後’在複晶砍層98表面沈積一絕緣層100 ’ 其例如爲二氧化砂層’厚度例如約7000A。 請參照第8B圖,接著在絕緣層1〇〇表面依序沈積一絕 緣層與一犧牲複晶矽層,再利用傳統的光罩製版和蝕刻技 術定義絕緣層與犧牲複晶砂層,因而形成如圖所示之實心 筒狀的絕緣層l〇2a; l〇2b與犧牲複晶矽層104a; 104b。絕 緣層102a; 102b與犧牲複晶矽層l〇4a; HMb的水平剖面可 爲圓形、矩形或是其他形狀。其中’絕緣層102a; 102匕例 如爲矽氮化物層,厚度例如約是1000A ’而犧牲複晶矽層 104a; 104b之厚度例如約是1000A。絕緣層102a與犧牲複 晶矽層l〇4a結構成一堆疊層l〇2a; l〇4a ’其較佳位置大致 係對應於汲極區16a的上方;而絕緣層l〇2b與犧牲複晶矽 層l〇4b結構成另一堆疊層l〇2b; 104b ’其較佳位置大致係 對應於汲極區16b的上方。然後分別在堆疊層102a; 104a 24 (請先閱讀背面之注意事項再填寫本頁) 、tr έ. 經濟部中央標準局員工消费合作杜印製 本紙張尺度適用中阀國家橾隼(CNS > ΛΑ現格(210x297公埯) 03 1 6TWF.DOC/002 Λ7 B7 五、發明説明(θ) 和102b; l〇4b的側壁上形成二氧化矽邊牆l〇6a和l〇6b。 在本較佳實施例中’二氧化矽邊牆106a和l〇6b可以以下 列步驟形成:沈積一二氧化矽層,其厚度例如約1000A ; 再回蝕刻。之後,以CVD法沈積〜絕緣層108,其例如爲 矽氮化物層’厚度例如約2000A。再來,利用機械化學式 硏磨技術硏磨絕緣層1〇8 ’至少直到堆疊層102a; 1043和 102b; 104b上方的部份露出爲止。 請參照第8C圖,接著以堆疊層102a; 104a、l〇2b; 104b 和絕緣層108爲蝕刻罩幕,蝕刻去除二氧化矽邊牆1 〇6a和 106b。之後’仍以堆疊層102a; l〇4a、102b; l〇4b和絕緣 層l〇8爲蝕刻罩幕,繼續蝕刻絕緣層100直到複晶砂層98 表面爲止。然後以犧牲複晶砂層104a; 104b爲蝕刻罩幕, 倉虫刻去除絕緣層108,形成開口 1 l〇a和ll〇b。 請參照第8D圖,接著在堆疊層l〇2a; 104a、l〇2b; 104b 和絕緣層100的表面沈積一複晶矽層112,厚度例如約 1〇〇〇A,以塡滿開口 38a和38b。爲了提高複晶砍層112 的導電性’可將例如砷離子植入到複晶矽層112中。之後, 利用傳統的光罩製版和蝕刻技術定義複晶矽層n2和犧牲 複晶矽層l〇4a; 104b ’分開位在絕緣層l〇2a;丨〇2b上方的 部份,形成如圖所示的結構。 曰円參照桌8E圖,接著以複晶砂層Π2與犧牲複晶砂層 l〇4a; 1〇仆爲罩幕,利用濕式蝕刻法依序蝕刻暴露出的矽 氮化物層與二氧化矽層,亦即去除絕緣層l〇2a; i〇2b以及 其下的絕緣層100。之後,利用傳統的光罩製版與蝕刻技 __ 2 5 本紙张 <度相中關家縣(CNS ) Λ4規格(21GX 297公| ) " ' " (請先閲讀背面之注意事項再填窩本頁) 丨裝. -=0 經濟部中央標隼局員工消费合作社印裝 03 1 6TWF.DQC/002 Λ7 03 1 6TWF.DQC/002 Λ7 經濟部中央標準局員工消費合作社印裂 B7 五'發明説明($) 術,依序蝕刻複晶矽層Π2、絕緣層100和複晶矽層98, 以界定出各記憶單元的儲存電容器之儲存電極。亦即藉此 步驟將複晶矽層112和98切割成若干區段112a; 112b和 98a; 98b。再來利用濕式蝕刻法,並以蝕刻保護層92爲蝕 刻終點,將暴露出的二氧化矽層去除,亦即去除絕緣層1〇〇 與94。藉此步驟即完成動態隨機存取記憶體的儲存電容器 之儲存電極,其如圖所示係由類樹幹狀的複晶矽層98a; 98b以及一具有似T形剖面的類樹枝狀複晶矽層112a; 112b所一起構成。類樹幹狀的複晶矽層98a; 98b連接到 DRAM的轉移電晶體之汲極區16a; 16b,其具有一似T形 的剖面,且水平之下表面與蝕刻保護層92之上表面保持有 一段距離,以更增加儲存電極的表面積。類樹枝狀複晶矽 層112a; 112b大致呈中空筒狀,其水平剖面可以是圓形、 矩形或其他形狀,且從類樹幹狀的複晶矽層98a; 98b的上 表面’先以約垂直方向往上延伸一段距離後,再以約水平 方向往四週延伸出。 熟習此藝者應可瞭解,上述本發明各個較佳實施例的 構想特徵,除了可以單獨應用之外,亦可混合應用,而再 達成非常多種不同結構的儲存電極和儲存電容器,這些儲 存電極和儲存電容器的結構都應在本發明的保護範圍之 內。 · 應注意雖然在圖式中轉移電晶體的汲極均爲矽基底表 面的擴散區結構,然本發明並不限於此,任何適當的汲極 結構均可應用於本發明,例如溝槽式(trench )汲極即爲 26 i --I I I - I L I I If I I n I T n I I -I___^ 私 J3. 、-°矣 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國阄家標苹(CNS ) Λ4坭格(2丨Οχ 297公犛) 03 16TWF.DOC/002 A7 B7 五、發明説明(#) —例。 再者’也應注意圖式中各構件部份的形狀、尺寸、和 延伸的角度,僅爲繪示方便所作的示意表示,其與實際情 況或有差異,故不應用以限制本發明。 雖然本發明已以若干較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍內,當可作些許之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者爲準。 (請先閱讀背面之注意事項再填寫本頁) —裝_ 訂 」 經濟部中央標準局員工消費合作社印製 27 本紙张纽㈣eNS) Λ4規格(2UVx]97公楚)* 1T k The size of this paper has been overused by China Herald Standard U'NS) Λ4 specification (2 丨 0 X 297 g) 03 16TWF.DOC / 002 A7 B7 V. Description of the invention (&) A preferred embodiment will be described soon The storage electrode has a dendritic-like electrode layer with an L-like cross-section and a τ-like cross-section. Next, referring to FIGS. 6A to 6B, a fifth preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail. This preferred embodiment of the semiconductor memory device is a semiconductor memory of the present invention. Manufactured in the fifth preferred embodiment of the device manufacturing method. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2F, and then DRAM storage electrodes with different structures are manufactured by different processes. In Figures 6A to 6B, parts similar to those in Figure 2F are marked with the same numbers. Please refer to FIG. 2F and FIG. 6A, and then use the polycrystalline silicon layer 40 as a mask to remove the insulating layer 30a; 30b by wet etching. Then, an insulating layer 82, such as a silicon dioxide layer, is deposited on the surfaces of the insulating layer 28 and the polycrystalline silicon layer 40 by CVD. Afterwards, using conventional photomask patterning and etching techniques, the insulating layer 82, the polycrystalline silicon layer 40 and the insulating layer 28 are etched sequentially until the surface of the polycrystalline silicon layer 26 to form openings 84a and 84b. The preferred positions of the openings 84a and 84b generally correspond to the areas above the drain regions 16a and 16b, respectively. Next, a polycrystalline silicon layer 86 is deposited on the surface of the insulating layer 82 by CVD, with a thickness of, for example, about 1000 Å to fill the openings 84a and 84b. To increase the conductivity of the polycrystalline silicon layer 86, for example, arsenic ions can be implanted into the polycrystalline silicon layer 86. Please refer to FIG. 6B, and then use the traditional mask making and etching techniques to sequentially touch the polycrystalline sand 86, the insulating layer 82, the polycrystalline sand layer 40, the insulating layer 28 and the polycrystalline silicon layer 26 to define each memory Unit storage capacitor 20 This paper standard is applicable to China National Standard Falcon (CNS) Λ4 present grid (210Χ297mm) (please read the precautions on the back before filling this page) Manufacturing 3 1 6TWF.DOC / 002 A7, ------------ Η? ____ Description of the invention (丨 9 ~-The storage electrode. That is to say, this step will be the polycrystalline silicon layer%, 40% and Into a number of sections 86a; 86b, 40a; 40b cutouts as shown in the figure "• pt- tu 26h ° and then use the wet etching method, and the etching protection layer π 舄 etching will eventually expose the exposed silicon dioxide layer Remove, that is, remove the insulating layer 82 " ^, 28. This step is to complete the storage electrode of the storage capacitor of the dynamic random access memory, which is shown in the figure by the trunk-like polycrystalline silicon layer 26a; ° , ~ Dendrite-like polycrystalline silicon layer with a L-like cross-section 4〇a; 4〇b with a T-like cross-section The dendritic polycrystalline silicon layer 80a; 80b is composed of. The trunk-like polycrystalline silicon layer 20a; 26b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM, and has a D-shaped cross section. Dendrite-like polycrystalline sand layer 4〇a with a ^ -shaped mouth 丨 J plane; 40b is generally hollow cylindrical, and the horizontal cross-section may be circular, rectangular or other shapes. Dendrite-like polycrystalline silicon layer 40a; 40b from The upper surface of the trunk-like polycrystalline silicon layer π ”261) first extends a distance approximately upward in the vertical direction, and then extends from the interior to the exterior in a horizontal direction. A dendritic polycrystalline crystal with a T-shaped profile Silicon layer 80a; the vertical section of 80b is also roughly hollow cylindrical, and its horizontal section can also be round, rectangular or other shapes. Dendritic-like polycrystalline silicon layer 80a; 80b from trunk-like polycrystalline silicon layer 26a; The upper surface of 26b first extends upward in a vertical direction, and then extends around in a horizontal direction. In the next preferred embodiment, storage electrodes with different structures will be formed by different processes. The storage electrode structure of the embodiment is very similar to the fifth The structure of the preferred embodiment 'the difference is only in the part of the dendritic polycrystalline silicon layer, that is, the fifth preferred embodiment has a τ-like profile' and the next preferred embodiment has a columnar structure (Please read the precautions on the back and then fill in this page) 丨 Installed '* vs Printed by the Central Consumer Standard Falcon Bureau of the Ministry of Economic Affairs Employee Consumer Cooperative. The paper size is applicable to China National Standard (CNS) Λ4 present grid (210x 297 ) The Ministry of Economic Affairs Central Standardization Bureau employee consumption cooperation Du Yin 1i 306G65wfd V. Description of invention () (? ) This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 6A, and then DRAM storage electrodes of different structures are manufactured by different processes. In Figure 7, parts similar to those in Figure 6A are marked with the same numbers. Please refer to FIG. 6A and FIG. 7, and then use the mechanochemical grinding technology to grind the polycrystalline silicon layer 86 until at least the portion above the insulating layer 82 is exposed to form a columnar polycrystalline silicon layer as shown 88a and 88b. After that, using the wet etching method and using the polycrystalline silicon layer 40 as a mask, the exposed silicon dioxide layer is removed, that is, the entire insulating layer 82 and part of the insulating layer 28 are removed. Then, using conventional photomask patterning and etching techniques, the polycrystalline silicon layer 40, the insulating layer 28 and the polycrystalline silicon layer 26 are etched in sequence until the surface of the protective layer 22 is etched to define the storage capacitors of the memory cells Storage electrode. That is, by this step, the polycrystalline silicon layers 40 and 26 are cut into several sections 4〇a; 4b and Ma; Mb as shown in the figure. Then, the wet etching method is used, and the protective layer 22 is used as the etching end point to remove the exposed silicon dioxide layer, that is, the insulating layer 28 is removed. By this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, which is composed of a trunk-like polycrystalline stone evening layer 26a; 26b '— dendritic-like polycrystal with an L-shaped cross section as shown in the figure The silicon layer 40a; 40b is composed of a columnar dendritic polycrystalline silicon layer 88a; 88b. The trunk-like polycrystalline silicon layer 26a; 26b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM, and has a T-shaped cross section. The dendrite-like polycrystalline silicon layer 40a; 40b having an L-shaped cross-section is substantially a hollow cylinder, and its horizontal cross-section may be circular, rectangular, or other shapes. Dendrite-like polycrystalline silicon layer 4〇a; 4〇b from the trunk-like polycrystalline silicon layer 26a; 2 cents on the upper surface, first hang about 22 -------- ί _ 装 --- --- book ------ f'iK (please read the precautions on the back before filling in this page) This paper size is applicable to China National Geographic (CNS) Λ4 specifications (ΉΟ < 297 public flood) 03 1 6TWF .DOC / 002 Λ7 03 1 6TWF.DOC / 002 Λ7 Printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs ___ B7 Five'Instructions for Invention () 丨) After extending a distance in the vertical direction, then from the inside to the outside in a horizontal direction Stretch out. The column-like dendritic polycrystalline silicon layer 88a; 88b can have a horizontal cross-section of a circular, rectangular, or other shape and extend from the upper surface of the trunk-like polycrystalline silicon layer 26a; 26b, extending upward in a vertical direction Out. In the above-mentioned first to sixth preferred embodiments, the lower surface of the horizontal portion of the trunk-like polycrystalline silicon layer is in contact with the etch protection layer underneath, and all of the complexes above the stacked layer are made by CMP technology The crystalline silicon layer is removed and cut off. However, the present invention is not limited to this. The next preferred embodiment is to describe that the lower surface of the horizontal portion of the trunk-like polycrystalline silicon layer is not in contact with the etch protection layer under it, but is separated by a distance to increase the storage electrode. The practice of the surface area. At the same time, the process of cutting the polycrystalline silicon layer above the stacked layer using conventional photomask patterning and etching techniques will also be described. Next, referring to FIGS. 8A to 8E, a seventh preferred embodiment of a semiconductor memory element having a tree-shaped storage capacitor of the present invention will be described in detail. This preferred embodiment of the semiconductor memory element is a semiconductor memory of the present invention. The seventh preferred embodiment of the device manufacturing method is manufactured. The present preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2A ', and then DRAM storage electrodes of different structures are manufactured by different processes. In Figs. 8A to 8E, the portions similar to those in Fig. 2A are marked with the same numbers. Please refer to Figs. 2A and 8A 'and then sequentially deposit an insulating layer 90, an etching protection layer 92 and an insulating layer 94 by CVD. The insulating layer 90 is, for example, BPSG 'with a thickness of about 7000A. The etching protection layer 92 is, for example, silicon nitride 23 r · -------- 11 * ^ ______ 丁 ____— 1 ^ ^ (please read the precautions on the back before filling out this page) China National Standard Falcon (CNS) Λ4 specification (2 丨 OX 297 public) A7 B7 0316TWF.DOC / 002 V. Invention description (/)) layer, thickness about 1000A. The insulating layer 94 is, for example, a silicon dioxide layer and has a thickness of about wooA. After that, using traditional photomask patterning and etching techniques, the insulating layer 94, the etching protective layer 92, the insulating layer 90 and the gate oxide layer I4 are sequentially etched to form the storage electrode contact windows 96a and 96b. The upper surface of 94 extends to the surfaces of the drain regions 16a and 16b. Next, a polycrystalline silicon layer is deposited on the surface of the insulating layer 94 and the storage electrode contact windows 96a; 96b. Then use traditional photomask patterning and etching techniques to define the polycrystalline sand layer to form the polycrystalline sand layer as shown in the figure. 98 ° In order to improve the electrical conductivity of the polycrystalline sand layer, for example, arsenic ions can be implanted into the polycrystalline silicon layer. As shown in the figure, the polycrystalline silicon layer 98 is filled with the storage electrode contact windows 96a; 96b 'and covers the surface of the insulating layer 94. After that, an insulating layer 100 is deposited on the surface of the polycrystalline cutting layer 98, which is, for example, a layer of sand dioxide, and the thickness is, for example, about 7000A. Please refer to FIG. 8B, and then sequentially deposit an insulating layer and a sacrificial polycrystalline silicon layer on the surface of the insulating layer 100, and then define the insulating layer and the sacrificial polycrystalline sand layer using traditional photomask patterning and etching techniques, thus forming The solid cylindrical insulating layer 10 2a; 10 2b and the sacrificial polycrystalline silicon layer 104a; 104b shown in the figure. The insulating layer 102a; 102b and the sacrificial polycrystalline silicon layer 104a; HMb may have a circular cross section, a rectangular shape, or other shapes. Where the 'insulating layer 102a; 102 d is for example a silicon nitride layer with a thickness of, for example, about 1000A' and the sacrificial polycrystalline silicon layer 104a; the thickness of 104b is for example about 1000A. The insulating layer 102a and the sacrificial polycrystalline silicon layer 104a are structured as a stacked layer 102a; the preferred position of l04a 'roughly corresponds to the top of the drain region 16a; and the insulating layer 102b and sacrificial polycrystalline silicon The layer 104b is structured as another stacked layer 102b; 104b 'its preferred position roughly corresponds to the top of the drain region 16b. Then at the stacking layers 102a; 104a 24 (please read the precautions on the back before filling out this page), tr buck. The Ministry of Economic Affairs Central Standards Bureau staff consumption cooperation du printed this paper standard is applicable to the national valve country falcon (CNS > ΛΑcurrent grid (210x297 gongs) 03 1 6TWF.DOC / 002 Λ7 B7 V. Description of the invention (θ) and 102b; silicon dioxide side walls l〇6a and l〇6b are formed on the side walls of l〇4b. In a preferred embodiment, the silicon dioxide sidewalls 106a and 106b can be formed by the following steps: depositing a silicon dioxide layer with a thickness of, for example, about 1000A; and then etching back. After that, an insulating layer 108 is deposited by CVD. For example, the thickness of the silicon nitride layer is about 2000 A. Next, the insulating layer 108 is polished using a mechanochemical grinding technique until at least the portion above the stacked layers 102a; 1043 and 102b; 104b is exposed. Please refer to section 8C, and then using the stacked layers 102a; 104a, l02b; 104b and the insulating layer 108 as an etch mask, etched and removed the silicon dioxide side walls 1 〇6a and 106b. After the 'still with stacked layers 102a; l〇4a, 102b; l〇4b and insulating layer l〇8 are etching mask, continue to etch insulation 100 up to the surface of the polycrystalline sand layer 98. Then the sacrificial polycrystalline sand layer 104a; 104b is used as an etching mask, and the insulating layer 108 is removed by the worm worm etching to form the openings 11a and 110b. Please refer to the 8D figure, and then 104a, 104b and 104b and the surface of the insulating layer 100 are deposited a polycrystalline silicon layer 112, with a thickness of, for example, about 10000A, to fill the openings 38a and 38b. In order to improve the polycrystalline cut layer The conductivity of 112 'can be implanted with arsenic ions, for example, into the polycrystalline silicon layer 112. Afterwards, the polycrystalline silicon layer n2 and the sacrificial polycrystalline silicon layer l04a are defined using conventional photomask patterning and etching techniques; 104b' separate The portion located above the insulating layer 10 2a; 丨 〇 2b, forming the structure shown in the figure. Said referring to the table 8E, and then with the polycrystalline sand layer Π2 and sacrificial polycrystalline sand layer 104a; The mask is etched in sequence using wet etching to expose the exposed silicon nitride layer and silicon dioxide layer, that is, to remove the insulating layers l02a; i〇2b and the underlying insulating layer 100. After that, using conventional light Mask-making and etching technology __ 2 5 copies of paper &degree; Zhongguanjia County (CNS) Λ4 specification (21GX 297 gong |) " ' " (Please read the precautions on the back before filling the nest page) 丨 Installed.-= 0 Printed by the Central Bureau of Economics and Staff Employee Consumer Cooperative 03 1 6TWF.DQC / 002 Λ7 03 1 6TWF.DQC / 002 Λ7 Economy The Ministry of Central Standards Bureau employee consumer cooperative printed the B7 5 'invention description ($) technique, in order to etch the polycrystalline silicon layer II2, the insulating layer 100 and the polycrystalline silicon layer 98 to define the storage electrode of the storage capacitor of each memory cell . That is, by this step, the polycrystalline silicon layers 112 and 98 are cut into sections 112a; 112b and 98a; 98b. Next, the wet etching method is used, and the etching protection layer 92 is used as the etching end point to remove the exposed silicon dioxide layer, that is, the insulating layers 100 and 94 are removed. By this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, which is shown as a trunk-like polycrystalline silicon layer 98a; 98b and a dendritic polycrystalline silicon with a T-like cross-section The layers 112a; 112b are formed together. The trunk-like polycrystalline silicon layer 98a; 98b is connected to the drain region 16a of the transfer transistor of the DRAM; 16b, which has a T-shaped cross-section, and the horizontal lower surface and the upper surface of the etch protection layer 92 remain A distance to increase the surface area of the storage electrode. The dendrite-like polycrystalline silicon layer 112a; 112b is generally hollow and cylindrical, and its horizontal cross-section may be circular, rectangular, or other shapes, and from the trunk-like polycrystalline silicon layer 98a; the upper surface of 98b 'is first approximately vertical After extending a certain distance upwards, it then extends around in a horizontal direction. Those skilled in the art should understand that the above-mentioned conceptual features of the preferred embodiments of the present invention can be used in addition to separate applications, and can also be used in combination to achieve a very wide variety of storage electrodes and storage capacitors with different structures. The structure of the storage capacitor should be within the protection scope of the present invention. · It should be noted that although the drains of the transfer transistors in the drawings are all diffused region structures on the surface of the silicon substrate, the present invention is not limited to this, any suitable drain structure can be applied to the present invention, such as trench ( trench) Jiji is 26 i --III-ILII If II n IT n II -I ___ ^ Private J3. 、-° 矣 (Please read the precautions on the back before filling in this page) Ping (CNS) Λ4 nigger (2 丨 Οχ 297 male yak) 03 16TWF.DOC / 002 A7 B7 V. Description of the invention (#)-Example. Furthermore, it should also be noted that the shapes, sizes, and angles of extension of each component part in the drawings are schematic representations for convenience of illustration only, and may differ from the actual situation, so they should not be used to limit the present invention. Although the present invention has been disclosed above in a number of preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this skill can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of an invention shall be deemed as defined by the scope of the attached patent application. (Please read the precautions on the back and then fill out this page) —Installation_Order》 Printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 27 copies of the paper (eNS) Λ4 specification (2UVx] 97 Gongchu)

Claims (1)

DOC/002 ABCD 經濟部中央標準局員工消費合作社印製 六、申請專利範圍 1. 一種具有電容器的半導體記憶體元件包括: 一基底; 一轉移電晶體,形成在該基底上,並包括汲極和源極 區;以及 一儲存電容器,電性耦接到該轉移電晶體的汲極和源 極區之一上, 該儲存電容器包括 一類樹幹狀導電層,具有一底部,電性耦接到該轉移 電晶體的該汲極和源極區之一上,該類樹幹狀導電層又具 有一向上延伸部,以一大致向上的方向,從該底部延伸出 一段距離後,再以約水平的方向往四週延伸出, 至少一類樹枝狀導電層,具有一似L形的剖面,該類 樹枝狀導電層的一末端連接在該類樹幹狀導電層的上表 面上,該類樹幹狀導電層和類樹枝狀導電層構成該儲存電 容器的一儲存電極, 一介電層,形成在該類樹幹狀導電層和類樹枝狀導電 層暴露出的表面上,以及 一上導電層,形成在該介電層上,以構成該儲存電容 器的一相對電極。 2. 如申請專利範圍第1項所述之半導體記憶體元件, 其中該類樹幹狀導電層具有一似T型的剖面。 3. 如申請專利範圍第1項所述之半導體記憶體元件, 其中該類樹幹狀導電層具有一似U型的剖面。 4. 如申請專利範圍第2項所述之半導體記憶體元件, 28 本紙張尺度適用中國國家標準(CNS ) .M規格(;M〇X 297公f ) ^~^ -------J I裝------訂-----一線 (請先閱讀背面之注意事項再填寫本頁) 0316TWF DOC/002 Α8 Β8 C8 D8 經濟部中央標準局員工消費合作杜印製 六、申請專利範圍 其中該類樹枝狀導電層的該末端係連接在該類樹幹狀導 電層的上表面上。 5. 如申請專利範圍第3項所述之半導體記憶體元件’ 其中該類樹枝狀導電層的該末端係連接在該類樹幹狀導 電層的上表面上。 6. 如申請專利範圍第1項所述之半導體記憶體元件’ 其中該類樹枝狀導電層大致係呈中空筒狀。 7. 如申請專利範圍第1項所述之半導體記憶體元件’ 其中該儲存電容器包括二個大致平行的類樹枝狀導電 層,每一個均具有一似L形的剖面,且其一末端均連接在 該類樹幹狀導電層的上表面上。 8. —種具有電容器的半導體記憶體元件包括: 一基底; 一轉移電晶體,形成在該基底上,並包括汲極和源極 區:以及 一儲存電容器,電性耦接到該轉移電晶體的汲極和源 極區之一上, 該儲存電容器包括 一類樹幹狀導電層,具有一底部,電性耦接到該轉移 電晶體的該汲極和源極區之一上,該類樹幹狀導電層又具 有一向上延伸部’以一大致向上的方向,從該底部延伸出 一段距離後’再以約水平的方向往四週延伸出, 至少一第一類樹枝狀導電層,包括一第一延伸段和一 第二延伸段’該第一延伸段的一末端連接在該類樹幹狀導 29 (請先閱讀背面之注意事項再填寫本頁) -裝_ *1Τ 線 21 Ox川7公鯖) 經濟部中央標丰局員工消費合作社印製 3 06撕 F.DOC/002 B8 C8 D8 六、申請專利範圍 電層的上表面上,大致以垂直方向往上延伸出,該第二延 伸段大致以水平方向,從該第一延伸段的另一末端延伸 出,該類樹幹狀導電層和第一類樹枝狀導電層構成該儲存 電容器的一儲存電極, 一介電層,形成在該類樹幹狀導電層和該第一類樹枝 狀導電層暴露出的表面上,以及 一上導電層,形成在該介電層上,以構成該儲存電容 器的一相對電極。 9. 如申請專利範圍第8項所述之半導體記憶體元件, 其中該類樹幹狀導電層具有一似T型的剖面。 10. 如申請專利範圍第8項所述之半導體記憶體元 件,其中該類樹幹狀導電層具有一似U型的剖面。 11. 如申請專利範圍第8項所述之半導體記憶體元 件,其中該第一類樹枝狀導電層大致係呈中空筒狀。 12. 如申請專利範圍第11項所述之半導體記憶體元 件,其中該第一類樹枝狀導電層的該第二延伸段大致以水 平方向,從該第一延伸段的另一末端由內往外延伸出。 13. 如申請專利範圍第11項所述之半導體記億體元 件’其中該第一類樹枝狀導電層的該第二延伸段大致以水 平方向’從該第一延伸段的另一末端由外往內延伸出。 14. 如申請專利範圍第11項所述之半導體記憶體元 件’其中該第一類樹枝狀導電層的該第二延伸段大致以水 平方向’從該第一延伸段的另一末端往該第一延伸段所在 的另一側延伸出。 30 --------ί I裝-- (請先閱讀背面之注意事項再填寫本頁) 訂 線 "^紙张尺度過用中國國家—標準_ ( CNS ) Λ4坭格(2Ι0χ Μ7公铎) " 03 I6TWF DOC/002 Λ8 B8 C8 D8 夂、申請專利範圍 15. 如申請專利範圍第8項所述之半導體記憶體元 件,其中該儲存電容器更包括一第二類樹枝狀導電層,其 一末端連接在該類樹幹狀導電層的上表面上;以及該介電 層係形成在該類樹幹狀導電層和第一、第二類樹枝狀導電 層暴露出的表面上。 16. 如申請專利範圍第15項所述之半導體記憶體元 件,其中該第二類樹枝狀導電層具有一似T型的剖面。 17_如申請專利範圍第15項所述之半導體記憶體元 件,其中該第二類樹枝狀導電層係呈一柱形,大致以垂直 方向從該類樹幹狀導電層的上表面往上延伸出。 18.如申請專利範圍第11項所述之半導體記憶體元 件,其中該儲存電容器包括二個大致平行的第一類樹枝狀 導電層,每一個第一類樹枝狀導電層的一末端均連接在該 類樹幹狀導電層的上表面上。 丨裝 訂 知 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準功員工消费合作社印製 本紙张尺度通用中國國家標牟(CNS ) Λ4現格(210X297公漦)DOC / 002 ABCD Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 6. Patent application 1. A semiconductor memory device with capacitors includes: a substrate; a transfer transistor formed on the substrate and including the drain and A source region; and a storage capacitor electrically coupled to one of the drain and source regions of the transfer transistor, the storage capacitor includes a type of trunk-like conductive layer having a bottom, electrically coupled to the transfer On one of the drain and source regions of the transistor, the trunk-like conductive layer has an upward extension in a generally upward direction, extending a distance from the bottom, and then going in a horizontal direction Extending around, at least one kind of dendritic conductive layer has an L-shaped cross section, one end of the kind of dendritic conductive layer is connected to the upper surface of the kind of trunk-like conductive layer, the kind of trunk-like conductive layer and the kind of branch The conductive layer constitutes a storage electrode of the storage capacitor, a dielectric layer is formed on the exposed surface of the trunk-like conductive layer and the dendritic conductive layer, and Upper conductive layer formed on the dielectric layer constituting the storage capacitor to a counter electrode. 2. The semiconductor memory device as described in item 1 of the patent application, wherein the trunk-like conductive layer of this type has a T-like cross-section. 3. The semiconductor memory device as described in item 1 of the patent application, wherein the trunk-like conductive layer of this type has a U-like cross-section. 4. For the semiconductor memory device mentioned in item 2 of the patent application scope, 28 paper standards are applicable to the Chinese National Standard (CNS). M specifications (; M〇X 297 public f) ^ ~ ^ ------- JI installation --- order ----- first line (please read the precautions on the back and then fill out this page) 0316TWF DOC / 002 Α8 Β8 C8 D8 Central China Bureau of Economic Affairs Employee consumption cooperation du printing 6. Application The scope of the patent is that the end of the dendritic conductive layer is connected to the upper surface of the trunk conductive layer. 5. The semiconductor memory device as described in item 3 of the patent application, wherein the end of the dendritic conductive layer is connected to the upper surface of the trunk conductive layer. 6. The semiconductor memory device as described in item 1 of the patent application, wherein the dendritic conductive layer is generally in the shape of a hollow cylinder. 7. The semiconductor memory device as described in item 1 of the patent application scope, wherein the storage capacitor includes two substantially parallel dendritic conductive layers, each of which has an L-shaped cross-section, and one end is connected On the upper surface of such a trunk-like conductive layer. 8. A semiconductor memory device having a capacitor includes: a substrate; a transfer transistor formed on the substrate and including drain and source regions: and a storage capacitor electrically coupled to the transfer transistor On one of the drain and source regions, the storage capacitor includes a trunk-like conductive layer with a bottom, electrically coupled to one of the drain and source regions of the transfer transistor, the trunk-like The conductive layer further has an upwardly extending portion 'in a generally upward direction, extending a distance from the bottom' and then extending around in a horizontal direction, at least a first type of dendritic conductive layer, including a first Extension section and a second extension section 'One end of the first extension section is connected to the trunk guide 29 of this type (please read the precautions on the back before filling in this page) -install_ * 1Τ line 21 Ox Chuan 7 male mackerel ) Printed by the Ministry of Economic Affairs of the Central Standardization Bureau Staff Consumer Cooperative 3 06 tear F.DOC / 002 B8 C8 D8 VI. Patent application The upper surface of the electrical layer extends approximately vertically upwards, the second extension is roughly With water In the horizontal direction, extending from the other end of the first extension, the trunk-like conductive layer and the first dendritic conductive layer constitute a storage electrode of the storage capacitor, and a dielectric layer is formed in the trunk-like shape A conductive layer and the exposed surface of the first type of dendritic conductive layer, and an upper conductive layer are formed on the dielectric layer to form an opposite electrode of the storage capacitor. 9. The semiconductor memory device as described in item 8 of the patent application scope, wherein the trunk-like conductive layer of this type has a T-like cross-section. 10. The semiconductor memory element as described in item 8 of the patent application scope, wherein the trunk-like conductive layer of this type has a U-like cross-section. 11. The semiconductor memory element as described in item 8 of the patent application scope, wherein the first type of dendritic conductive layer is generally in the shape of a hollow cylinder. 12. The semiconductor memory device as recited in item 11 of the patent application range, wherein the second extension of the first type of dendritic conductive layer is substantially horizontal from the other end of the first extension from inside to outside Stretch out. 13. The semiconductor memory device as described in item 11 of the patent application scope, wherein the second extension of the first type of dendritic conductive layer is substantially horizontal from the other end of the first extension Extend inward. 14. The semiconductor memory device as described in item 11 of the patent application scope, wherein the second extension of the first type of dendritic conductive layer is substantially horizontal from the other end of the first extension to the first The other side where an extension is located extends out. 30 -------- ί I 装-(Please read the precautions on the back before filling in this page) Threading " ^ Paper size used China National Standards_ (CNS) Λ4 坭 格 (2Ι0χ Μ7 公堂) " 03 I6TWF DOC / 002 Λ8 B8 C8 D8, patent application scope 15. The semiconductor memory device as described in item 8 of the patent application scope, wherein the storage capacitor further includes a second type of dendritic conduction One end of the layer is connected to the upper surface of the trunk-like conductive layer; and the dielectric layer is formed on the exposed surface of the trunk-like conductive layer and the first and second dendritic conductive layers. 16. The semiconductor memory device as described in item 15 of the patent application scope, wherein the second type of dendritic conductive layer has a T-like cross-section. 17_ The semiconductor memory device as described in item 15 of the patent application range, wherein the second type of dendritic conductive layer is in the form of a column, extending approximately vertically from the upper surface of the trunk-like conductive layer of this type . 18. The semiconductor memory device according to item 11 of the patent application scope, wherein the storage capacitor includes two substantially parallel first-type dendritic conductive layers, and one end of each first-type dendritic conductive layer is connected to This type of trunk-like conductive layer is on the upper surface.丨 Binding Information (Please read the precautions on the back before filling in this page) Printed by the Ministry of Economic Affairs, Central Standard Staff and Workers ’Consumer Cooperatives This paper standard is universal Chinese national standard (CNS) Λ4 present grid (210X297 Gongluan)
TW85110008A 1996-08-16 1996-08-16 Semiconductor memory device with capacitor (part 5) TW306065B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW85110008A TW306065B (en) 1996-08-16 1996-08-16 Semiconductor memory device with capacitor (part 5)
GB9701974A GB2321779A (en) 1996-08-16 1997-01-30 Semiconductor memory device having a capacitor
JP9077603A JPH1079474A (en) 1996-08-16 1997-03-28 Semiconductor storage device having capacitor
FR9705119A FR2752492B1 (en) 1996-08-16 1997-04-25 SEMICONDUCTOR MEMORY DEVICE HAVING A CAPACITOR
DE19720272A DE19720272A1 (en) 1996-08-16 1997-05-14 Semiconductor memory device with capacitor, for DRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW85110008A TW306065B (en) 1996-08-16 1996-08-16 Semiconductor memory device with capacitor (part 5)

Publications (1)

Publication Number Publication Date
TW306065B true TW306065B (en) 1997-05-21

Family

ID=51566058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85110008A TW306065B (en) 1996-08-16 1996-08-16 Semiconductor memory device with capacitor (part 5)

Country Status (1)

Country Link
TW (1) TW306065B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014107930A1 (en) 2014-01-22 2015-07-23 Timotion Technology Co., Ltd. Linear actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014107930A1 (en) 2014-01-22 2015-07-23 Timotion Technology Co., Ltd. Linear actuator

Similar Documents

Publication Publication Date Title
TW304288B (en) Manufacturing method of semiconductor memory device with capacitor
TW308727B (en) Semiconductor memory device with capacitor (4)
TW473987B (en) Semiconductor integrated circuit device and manufacture thereof
US5262662A (en) Storage node capacitor having tungsten and etched tin storage node capacitor plate
TW304290B (en) The manufacturing method for semiconductor memory device with capacitor
JPH1079485A (en) Semiconductor memory element having tree-type capacitor
TW388984B (en) Dynamic random access memory manufacturing
US5789290A (en) Polysilicon CMP process for high-density DRAM cell structures
GB2231718A (en) A dynamic random access memory cell and method of making the same
TW312829B (en) Semiconductor memory device with capacitor(6)
TW306064B (en) Semiconductor memory device with capacitor (part 6)
TW306065B (en) Semiconductor memory device with capacitor (part 5)
TW399327B (en) The manufacturing method of DRAM capacitor
TW312828B (en) Manufacturing method of semiconductor memory device with capacitor(5)
TW396613B (en) Low resistance bitline structure with low bitline to bitline coupling capacitance and its methods
TW308729B (en) Semiconductor memory device with capacitor (3)
TW383500B (en) Manufacturing method for lower electrode of capacitor using hemisphere grain polysilicon
TW312830B (en) Semiconductor memory device with capacitor(7)
US5796138A (en) Semiconductor memory device having a tree type capacitor
JPH1079490A (en) Capacitor structure of semiconductor memory device
US5739060A (en) Method of fabricating a capacitor structure for a semiconductor memory device
TW308728B (en) Semiconductor memory device with capacitor (4)
TW304289B (en) Manufacturing method of semiconductor memory device with capacitor
TW306035B (en) Manufacturing method of semiconductor memory device with capacitor (part 7)
TW382814B (en) Method of making DRAM device having bitline top capacitor structure of linear bitline shape on substrate