TW306035B - Manufacturing method of semiconductor memory device with capacitor (part 7) - Google Patents

Manufacturing method of semiconductor memory device with capacitor (part 7) Download PDF

Info

Publication number
TW306035B
TW306035B TW85110003A TW85110003A TW306035B TW 306035 B TW306035 B TW 306035B TW 85110003 A TW85110003 A TW 85110003A TW 85110003 A TW85110003 A TW 85110003A TW 306035 B TW306035 B TW 306035B
Authority
TW
Taiwan
Prior art keywords
layer
conductive layer
forming
conductive
patent application
Prior art date
Application number
TW85110003A
Other languages
Chinese (zh)
Inventor
Fang-Chinq Jaw
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW85110003A priority Critical patent/TW306035B/en
Priority to US08/751,442 priority patent/US5759890A/en
Priority to GB9701964A priority patent/GB2321775A/en
Priority to JP9091181A priority patent/JPH1079477A/en
Priority to FR9705124A priority patent/FR2752487A1/en
Priority to DE19720166A priority patent/DE19720166C2/en
Application granted granted Critical
Publication of TW306035B publication Critical patent/TW306035B/en

Links

Abstract

A manufacturing method of semiconductor memory device with capacitor, in which the semiconductor memory device includes one substrate, one transfer transistor formed on the substrate, and one storage capacitor electrically coupled to one of drain and source region of the transfer transistor, comprises of the following steps: (1) on the substrate forming one first insulator overlaying the transfer transistor; (2) forming one first conductive layer, passing through at least the first insulator, and electrically coupled with one of the drain and source region of transfer transistor; (3) forming one second insulator; (4) on the second insulator forming one stack layer; (5) on the stack layer sidewall forming one third insulator; (6) on the second, third insulator surface forming one fourth insulator;(7) first removing the third insulator and partial second insulator located under the third insulator, then removing the fourth insulator to form one first opening; (8) on the stack layer and second insulator surface forming one second conductive layer to fill the first opening approximately; (9) removing the second conductive layer located above the stack layer;(10) removing the stack layer; (11) forming one fifth insulator; (12) patterning the first, second conductive layer to form one second opening; (13) on the second opening sidewall forming one third conductive layer, making the third conductive layer approximately connected to the first conductive layer periphery, and one end of the second conductive layer connected to on internal surface of the third conductive layer, the first, third conductive layer constitute one trunk-type like conductive layer, the second conductive layer constitutes one branch-type like conductive layer, and the first, second, third conductive layer constitute one storage electrode of the storage capacitor; (14) removing the second, fifth insulator; (15) on the first, second, third conductive layer exposed surface forming one dielectric; (16) on the dielectric layer forming one fourth conductive layer to constitute one opposed electrode of the storage capacitor.

Description

S06993w F.DOC/002 A7 B7 經濟部中央標準局員工消費合作社印裝 五、發明説明(丨) 本發明是有關於一種具有電容器的半導體記憶體元 件(Semiconductor Memory Device ),且特別是有關於一 種動態隨機存取記憶體(Dynamic Random Access Memory; DRAM )的一記憶單元(Memory Cell )結構,其包含一 轉移電晶體(Transfer Transistor )和一樹型(tree-type ) 儲存電容器。 第1圖是一DRAM元件的一記憶單元之電路示意圖。 如圖所示,一個記憶單元是由一轉移電晶體T和一儲存電 容器c組成。轉移電晶體T的源極係連接到一對應的位元 線BL ’汲極連接到儲存電容器C的一儲存電極6 ( storage electrode ),而閘極則連接到一對應的字元線wL。儲存 電容器C的一相對電極8 ( opposed electrode )係連接到 一固定電壓源,而在儲存電極6和相對電極8之間則設置 一介電膜層7。 在傳統DRAM的儲存電容量少於1M ( mega=百萬) 位元時,於積體電路製程中,主要是利用二度空間的電容 來實現’亦即泛稱的平坦型電容器(planar type capacitor )。一平坦型電容器需佔用半導體基底的一相當 大的面積來儲存電荷,故並不適合應用於高度的積集化。 高度積集化的DRAM’例如大於4M位元的儲存電容量者, 需要利用三度空間的電容器來實現,例如所謂的堆疊型 (stacked type )或溝槽型(trench type )電容器。 與平坦型電容器比較,堆疊型或溝槽型電容器可以在 記憶單元的尺寸已進一步縮小的情況下,仍能獲得相當大 4 -------..---:---^ -裝------訂--------Γ \請先閲讀背面之注意事項再填寫本頁) 本紙垠尺度適用中國國家標车(CNS ) Α4現格(210X297公釐) 0532TWF.DOC/002 A7 B7 經濟部中央標準局員工消費合作社印裝 五、發明説明(工) 的電容量。雖然如此,當記憶體元件再進入更高度的積集 化時,例如具有64M位元容量的DRAM ’單純的三度空間 電容器結構已不再適用。 解決之道之一是利用所謂的鰭型(fin type )堆疊電容 器。鰭型堆疊電容器之相關技術可參考Ema等人的論文 “3-Dimensional Stacked Capacitor Cell for 16M and 64M DRAMsM, International Electron Devices Meeting, pp. 592-595, Dec. 1988。鰭型堆疊電容器主要是其電極和介電膜層 係由複數個堆疊層,延伸成一水平鰭狀結構,以便增加電 極的表面積。DRAM的鰭型堆疊電容器的相關美國專利 可以參考第 5,071,783 號、第 5,126,810 號、第 5,196,365 號、以及第5,206,787號。 另一種解決之道是利用所謂的筒型(cylindrical type ) 堆疊電容器。筒型堆疊電容器之相關技術可參考Wakamiya 等人的論文 “Novel Stacked Capacitor Cell for 64-Mb DRAM”,1989 Symposium on VLSI Technology Digest of Technical Papers, pp. 69-70。筒型堆疊電容器主要是其電 極和介電膜層係延伸成一垂直筒狀結構,以便增加電極的 表面積。DRAM的筒型堆疊電容器的相關美國專利可以 參考第5,077,688號。 隨著積集度的不斷增加,DRAM記億單元的尺寸仍會 再縮小。如熟習此藝者所知,記憶單元尺寸縮小,儲存電 容器的電容値也會減少。電容値的減少將導致因α射線入 射所引起的軟錯誤(softener )機會增加。因此,此藝者 5 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐> ----!---r--ί -裝-- ·(請先閱讀背面之注意事項再填寫本頁) 、1Τ ir. •TWF.DOC/002 A7 B7 五、發明説明(3 ) 仍不斷在尋找新的儲存電容器結構及其製造方法,希望在 儲存電容器所佔的平面尺寸被縮小的情況,仍能維持所要 的電容値。 緣此’本發明的一主要目的就是在提供一種具有電容 器的半導體記憶體元件’其電容器具有一樹狀結構,以增 加電容器的儲存電極之表面積。 依照本發明之一較佳實施例,提供一種具有電容器的 半導體記憶體兀件之製造方法,其中該半導體記憶體元件 包括一基底、形成在基底上的一轉移電晶體、以及一儲存 電容器電性耦接到轉移電晶體的汲極和源極區之一上。該 製造方法包括下列步驟:a.在基底上形成一第一絕緣層, 覆蓋住轉移電晶體;b.形成一第一導電層,穿過至少第一 絕緣層,與轉移電晶體的汲極和源極區之一電性耦接;c. 形成一第二絕緣層:d.在第二絕緣層上方形成一堆疊層; e.在堆疊層側壁形成一第三絕緣層;f.在第二、第三絕緣 層表面形成一第四絕緣層;g.先去除第三絕緣層與位在第 三絕緣層下方的部份第二絕緣層,再去除第四絕緣層以形 成一第一開口; h.在堆疊層與第二絕緣層表面形成一第二 導電層,第二導電層大致塡滿第一開口; i.去除位在堆疊 層上方的第二導電層;j.去除堆疊層;k.形成一第五絕緣 層;1.定義第一、第二導電層,形成一第二開口; m.在第 二開口側壁形成一第三導電層,使得第三導電層大致連接 在第一導電層的周邊,而第二導電層的一末端連接在第三 導電層的內表面上,第一、第三導電層構成一類樹幹狀導 6 本紙張尺度適用中國國家標準(CNS > A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -裝· 訂 經濟部中央橾準局員工消費合作社印製 0532TWF.DOC/002 Α7 Β7 經濟部中央標準局貝工消費合作社印製 五、發明説明(屮) 電層,第二導電層構成一類樹枝狀導電層,且第一、第二、 第三導電層構成儲存電容器的一儲存電極;η.去除第二、 第五絕緣層;〇·在第一、第二、第三導電層暴露出的表面 上,形成一介電層;以及Ρ.在介電層的表面上,形成一第 四導電層以構成儲存電容器的一相對電極。 依照本發明之一特點,類樹幹狀導電層包括一下樹幹 部與一上樹幹部。其中,下樹幹部電性耦接到轉移電晶體 的汲極和源極區之一上,其剖面可以爲Τ型,也可以爲U 型;而上樹幹部則大致以垂直方向自下樹幹部的周邊往上 延伸出。 依照本發明之另一特點,在步驟a之後和步驟b之前, 更包括下列步驟:形成一蝕刻保護層在第一絕緣層上;且 其中步驟b更包括形成第一導電層穿過蝕刻保護層的步 驟。 依照本發明之再一特點,步驟d中之該堆疊層的形成 方式包括下列步驟:在第二絕緣層上方依序形成一第一膜 層與一第二膜層,其中第二膜層係由導電材料製成,而第 一膜層係由絕緣材料製成;定義第一、第二膜層,形成堆 疊層。 依照本發明之另一較佳實施例,在步驟a之後和步驟b 之前,更包括下列步驟:先形成一蝕刻保護層在第一絕緣 層上,接著再形成一第六絕緣層在蝕刻保護層上;其中步 驟b更包括形成第一導電層穿過第六絕緣層與蝕刻保護層 的步驟,且其中步驟η更包括去除第六絕緣層的步驟。 7 -i^·— HI i^Il· n In e請先聞讀背面之注$項再填寫本頁) 訂 " 本紙張尺度適用中國國家榡準(CNS ) Λ4規格(210X297公釐) 經濟部中央標準局員工消費合作社印製 0532TWF.DOC/002 ρ^η Β7 五、發明説明(() 依照本發明之又一較佳實施例,在步驟k之後和步驟1 之前更包括下列步驟:先形成一第五導電層:其中步驟1 更包括定義第五導電層的步驟;其中步驟m更包括在形成 第三導電層之後,再分開第五導電層位在第五絕緣層上方 的部份,使第五導電層構成類樹枝狀導電層的一部份;且 其中步驟〇更包括在第一、第二、第四、第五導電層暴露 出的表面上形成一介電層。 依照本發明之再一較佳實施例,在步驟j之後和步驟k 之前更包括至少重複一次步驟c至步驟j的步驟;且其中 在步驟m中,該些第二導電層形成至少二層的類樹枝狀導 電層,該些類樹枝狀導電層大致平行且其中一末端均分別 連接在第三導電層的內表面上。 爲讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉若干較佳實施例,並配合所附圖式,作 詳細說明如下= 圖式之簡單說明: 第1圖是一 DRAM元件的一記憶單元之電路示意圖。 第2A至21圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第一較佳實施例,以及本發 明的一種半導體記憶元件之第一較佳實施例。 第3A至3F圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第二較佳實施例,以及本發 明的一種半導體記憶元件之第二較佳實施例。 第4A至4E圖係一系列剖面圖,用以解釋本發明的一 8 ----:---L--{—裝-- X請先閱讀背面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐) 經濟部中央標準局員工消費合作社印製 0532TWF.DOC/002 A7 _ B7 _ . 五'發明説明(& ) 種半導體記憶元件製造方法之第三較佳實施例’以及本發 明的一種半導體記憶元件之第三較佳實施例。 第5A至5F圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第四較佳實施例’以及本發 明的一種半導體記憶元件之第四較佳實施例。 實施例 首先請參照第2A至21圖,以詳述本發明的一種具有 樹型儲存電容器的半導體記憶元件之第一較佳實施例°S06993w F.DOC / 002 A7 B7 Printed by the Employees ’Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of the Invention (丨) The present invention relates to a semiconductor memory device (Semiconductor Memory Device) with a capacitor, and particularly relates to a A memory cell structure of dynamic random access memory (Dynamic Random Access Memory; DRAM), which includes a transfer transistor (Transfer Transistor) and a tree-type storage capacitor. Figure 1 is a schematic circuit diagram of a memory cell of a DRAM device. As shown in the figure, a memory cell is composed of a transfer transistor T and a storage capacitor c. The source of the transfer transistor T is connected to a corresponding bit line BL ', the drain is connected to a storage electrode 6 (storage electrode) of the storage capacitor C, and the gate is connected to a corresponding word line wL. An opposed electrode 8 of the storage capacitor C is connected to a fixed voltage source, and a dielectric film layer 7 is provided between the storage electrode 6 and the opposite electrode 8. When the storage capacity of the traditional DRAM is less than 1M (mega = million) bits, in the integrated circuit manufacturing process, the capacitor of the second degree is mainly used to achieve the 'also known as the planar type capacitor (planar type capacitor) . A flat capacitor requires a considerable area of the semiconductor substrate to store charge, so it is not suitable for high accumulation. Highly integrated DRAM's, such as those with a storage capacity of more than 4M bits, need to be realized with three-dimensional capacitors, such as so-called stacked type or trench type capacitors. Compared with flat capacitors, stacked or trench capacitors can still get quite large when the size of the memory cell has been further reduced 4 -------..---: --- ^- Install ------ order -------- Γ \ Please read the precautions on the back before filling in this page) This paper size is applicable to China National Standard Vehicle (CNS) Α4 present grid (210X297mm) 0532TWF .DOC / 002 A7 B7 Printed and printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. The electrical capacity of the invention description (work). Nonetheless, when the memory device enters a higher degree of integration, for example, a DRAM with 64M bit capacity, a simple three-dimensional capacitor structure is no longer suitable. One of the solutions is to use so-called fin type stacked capacitors. For the related technology of fin-type stacked capacitors, please refer to the paper "3-Dimensional Stacked Capacitor Cell for 16M and 64M DRAMsM, International Electron Devices Meeting, pp. 592-595, Dec. 1988" by Ema et al. The fin-type stacked capacitor is mainly its electrodes The dielectric film layer is composed of a plurality of stacked layers, extending into a horizontal fin structure in order to increase the surface area of the electrode. For DRAM type fin-type stacked capacitors, related US patents can refer to No. 5,071,783, No. 5,126,810, No. 5, No. 196,365, and No. 5,206,787. Another solution is to use the so-called cylindrical type (stack type capacitor). The related technology of the cylindrical type stack capacitor can refer to the paper "Novel Stacked Capacitor Cell for 64-Mb DRAM" by Wakamiya et al. ", 1989 Symposium on VLSI Technology Digest of Technical Papers, pp. 69-70. Cylindrical stacked capacitors mainly consist of electrodes and dielectric film layers extending into a vertical cylindrical structure in order to increase the surface area of the electrodes. DRAM cylindrical stack Related US patents for capacitors can refer to No. 5,077,688. With the degree of accumulation With the increase of the break, the size of the DRAM memory cell will still be reduced again. As is known to those skilled in the art, the reduction in the size of the memory cell will reduce the capacitance value of the storage capacitor. The decrease in the capacitance value will cause the softness caused by the incidence of α rays The chance of error (softener) increases. Therefore, this artist's 5 paper scales are applicable to the Chinese National Standard (CNS) Λ4 specification (210X 297 mm> ----! --- r--ί-装- Please read the precautions on the back before filling this page), 1T ir. • TWF.DOC / 002 A7 B7 5. Invention description (3) Still looking for new storage capacitor structure and manufacturing method In the case where the size of the occupied plane is reduced, the desired capacitance value can still be maintained. Therefore, a main object of the present invention is to provide a semiconductor memory device having a capacitor whose capacitor has a tree structure to increase the storage of the capacitor The surface area of the electrode. According to a preferred embodiment of the present invention, a method for manufacturing a semiconductor memory element having a capacitor is provided, wherein the semiconductor memory element includes a substrate, A transfer transistor formed on the substrate and a storage capacitor are electrically coupled to one of the drain and source regions of the transfer transistor. The manufacturing method includes the following steps: a. Forming a first insulation on the substrate Layer, covering the transfer transistor; b. Forming a first conductive layer, through at least the first insulating layer, electrically coupled with one of the drain and source regions of the transfer transistor; c. Forming a second insulation Layer: d. Form a stacked layer above the second insulating layer; e. Form a third insulating layer on the side wall of the stacked layer; f. Form a fourth insulating layer on the surface of the second and third insulating layers; g. Remove first The third insulating layer and a part of the second insulating layer below the third insulating layer, and then removing the fourth insulating layer to form a first opening; h. Forming a second conductive layer on the surface of the stacked layer and the second insulating layer , The second conductive layer substantially fills the first opening; i. Remove the second conductive layer above the stacked layer; j. Remove the stacked layer; k. Form a fifth insulating layer; 1. define the first and second conductive Layer, forming a second opening; m. Forming a third conductive layer on the side wall of the second opening The third conductive layer is generally connected to the periphery of the first conductive layer, and one end of the second conductive layer is connected to the inner surface of the third conductive layer. The first and third conductive layers constitute a type of trunk-like guide. Applicable to the Chinese National Standard (CNS > A4 specification (210X 297mm) (please read the notes on the back before filling in this page)-Binding · Order Printed by the Employees Consumer Cooperative of Central Central Bureau of Economics 0532TWF.DOC / 002 Α7 Β7 Printed by Beigong Consumer Cooperative of Central Bureau of Standards of the Ministry of Economy V. Description of Invention (屮) The electrical layer, the second conductive layer constitutes a kind of dendritic conductive layer, and the first, second and third conductive layers constitute a storage of the storage capacitor Electrode; η. Removing the second and fifth insulating layers; 〇. On the exposed surface of the first, second, and third conductive layers, forming a dielectric layer; and P. on the surface of the dielectric layer, forming A fourth conductive layer constitutes an opposite electrode of the storage capacitor. According to one feature of the present invention, the trunk-like conductive layer includes a lower trunk portion and an upper trunk portion. Among them, the lower trunk is electrically coupled to one of the drain and source regions of the transfer transistor, and its cross-section can be T-shaped or U-shaped; while the upper trunk is generally vertical from the lower trunk The perimeter of it extends upward. According to another feature of the present invention, after step a and before step b, the following steps are further included: forming an etch protection layer on the first insulating layer; and wherein step b further includes forming a first conductive layer through the etch protection layer A step of. According to yet another feature of the present invention, the forming method of the stacked layer in step d includes the following steps: forming a first film layer and a second film layer in sequence above the second insulating layer, wherein the second film layer is formed by It is made of conductive material, and the first film layer is made of insulating material; the first and second film layers are defined to form a stacked layer. According to another preferred embodiment of the present invention, after step a and before step b, the following steps are further included: first forming an etch protection layer on the first insulation layer, and then forming a sixth insulation layer on the etch protection layer Above; wherein step b further includes the step of forming a first conductive layer through the sixth insulating layer and the etching protective layer, and wherein step n further includes the step of removing the sixth insulating layer. 7 -i ^ · — HI i ^ Il · n In e, please read the note $ item on the back and then fill in this page) Order " This paper size is applicable to China National Standard (CNS) Λ4 specification (210X297mm) Economy 0532TWF.DOC / 002 ρ ^ η Β7 printed by the Employees ’Consumer Cooperative of the Central Bureau of Standards V. Description of the invention (() According to yet another preferred embodiment of the present invention, the following steps are further included after step k and before step 1: Forming a fifth conductive layer: wherein step 1 further includes the step of defining a fifth conductive layer; wherein step m further includes separating the portion of the fifth conductive layer above the fifth insulating layer after forming the third conductive layer, Making the fifth conductive layer constitute a part of the dendritic-like conductive layer; and wherein step 0 further includes forming a dielectric layer on the exposed surfaces of the first, second, fourth, and fifth conductive layers. According to the present invention In another preferred embodiment, after step j and before step k, the steps from step c to step j are repeated at least once; and wherein in step m, the second conductive layers form at least two layers of dendritic like Conductive layer, these kind of dendritic conductive layer It is parallel and one of the ends is connected to the inner surface of the third conductive layer. In order to make the above and other objects, features, and advantages of the present invention more obvious and understandable, a few preferred embodiments are described below in conjunction with The attached drawings are described in detail below as a brief description of the drawings: Figure 1 is a schematic circuit diagram of a memory cell of a DRAM device. Figures 2A to 21 are a series of cross-sectional views to explain a semiconductor of the present invention The first preferred embodiment of the manufacturing method of the memory element, and the first preferred embodiment of the semiconductor memory element of the present invention. Figures 3A to 3F are a series of cross-sectional views for explaining the manufacturing of a semiconductor memory element of the present invention The second preferred embodiment of the method and the second preferred embodiment of a semiconductor memory device of the present invention. Figures 4A to 4E are a series of cross-sectional views for explaining an 8 of the present invention ----:- --L-{— 装-X Please read the precautions on the back before filling in this page) The size of this paper is applicable to China National Standard (CNS) Λ4 specification (210X 297mm) Employee consumption of the Central Standards Bureau of the Ministry of Economic Affairs Printed by Zuoshe 0532TWF.DOC / 002 A7 _ B7 _. Five 'Description of the invention (&) A third preferred embodiment of a semiconductor memory device manufacturing method' and a third preferred embodiment of a semiconductor memory device of the present invention example. Figures 5A to 5F are a series of cross-sectional views for explaining a fourth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention and a fourth preferred embodiment of a semiconductor memory device of the present invention. Embodiments First, please refer to FIGS. 2A to 21 to detail the first preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention.

請參照第2A圖,首先將一矽基底1〇的表面進行熱氧 化製程,例如以矽的局部氧化(LOCOS )技術來達成’ 因而形成場區氧化層12 ,其厚度例如約3000A (angstroms )。接著,再將矽基底1〇進行熱氧化製程’ 以形成一閘極氧化層14,其厚度例如約150A。然後’利 用一 CVD (化學氣相沈積)或LPCVD (低壓CVD )法’ 在矽基底10的整個表面上沈積一複晶矽層,其厚度例如約 2000A。爲了提高複晶矽層的導電性,可將磷離子植入到 複晶矽層中。較佳是可再沈積一耐火金屬(refractory metal )層,然後施行退火(anneal )步驟,即形成金屬 複晶矽化合物層(polycide ),以更提高其導電性。該耐 火金屬可例如爲鎢(Tungsten ),沈積厚度例如約2000A。 之後,利用傳統的光罩製版(photolithography )和触刻 技術定義(pattern )金屬複晶砂化合物層,因而形成如第 2A圖所示的閘極(或稱字元線)WL1至WL4。接著,例 如以砷離子植入到矽基底10中,以形成汲極區16a和 9 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X29*7公釐) ' — ----—ul·—< -裝------订------ί 線 /請先閱讀背面之注意事項再填寫本頁)Please refer to FIG. 2A. First, the surface of a silicon substrate 10 is subjected to a thermal oxidation process, for example, by local oxidation of silicon (LOCOS) technology. Thus, a field oxide layer 12 is formed, and its thickness is about 3000 A (angstroms), for example. Then, the silicon substrate 10 is subjected to a thermal oxidation process to form a gate oxide layer 14 having a thickness of about 150A, for example. Then, a polycrystalline silicon layer is deposited on the entire surface of the silicon substrate 10 by a CVD (chemical vapor deposition) or LPCVD (low pressure CVD) method, and its thickness is, for example, about 2000A. In order to improve the conductivity of the polycrystalline silicon layer, phosphorus ions can be implanted into the polycrystalline silicon layer. Preferably, a refractory metal layer may be deposited, and then an annealing step is performed to form a metal polycide layer to further increase its conductivity. The refractory metal may be, for example, tungsten (Tungsten), and the deposited thickness is, for example, about 2000A. After that, the metal polycrystalline sand compound layer is patterned using traditional photolithography and lithography techniques, thereby forming gates (or word lines) WL1 to WL4 as shown in FIG. 2A. Next, for example, arsenic ions are implanted into the silicon substrate 10 to form the drain regions 16a and 9. The paper scale is applicable to the Chinese National Standard (CNS) Λ4 specification (210X29 * 7mm). — ≪ -install ------ order ------ ί line / please read the notes on the back first and then fill in this page)

SCS0SS I F.DOC/002 A7 B7 經濟部中央搮準局員工消費合作社印裝 五、發明説明(Π ) 16b、以及源極區18a和18b。在此步驟中,字元線WL1 至WL4係當作罩幕層,而離子植入的劑量例如約1 X ι〇ΐ5 atoms/cm2,能量貝(J約 70KeV。 請參照第2B圖,接著以CVD法沈積一絕緣層20,其 例如爲BPSG (硼磷矽玻璃),厚度約7000a。然後,再 以 CVD 法沈積一·触刻保護層(etching protection layer ) 22,其例如爲矽氮化物層(silicon以⑴心),厚度約 1000A。之後’利用傳統的光罩製版和蝕刻技術,依序蝕 刻蝕刻保護層22、絕緣層20、和閘極氧化層14,以形成 儲存電極接觸窗(storage electrode contact holes ) 24a 和 24b’其係分別由蝕刻保護層22的上表面延伸到汲極區16a 和16b的表面。接著,以CVD法在蝕刻保護層22的表面 沈積一複晶矽層26。爲了提高複晶矽層26的導電性,可 將例如砷離子植入到複晶矽層26中。如圖所示,複晶矽層 26塡滿儲存電極接觸窗24a; 24b,且覆蓋住蝕刻保護層22 的表面。之後,在複晶矽層26表面沈積一厚的絕緣層28, 其例如爲二氧化矽層,厚度例如約7000A。 請參照第2C圖,接著以CVD法在絕緣層28表面依序 沈積一絕緣層與一犧牲複晶矽層,再利用傳統的光罩製版 和蝕刻技術定義絕緣層與犧牲複晶矽層,因而形成如圖所 示之絕緣層30a; 30b與犧牲複晶矽層32a; 32b。其中,絕 緣層30a; 30b例如爲砂氮化物層,厚度例如約是1〇00A, 而犧牲複晶矽層32a; 32b之厚度例如約是1000A。絕緣層 3〇a與犧牲複晶矽層3〗a結構成一堆疊層30a; 32a ’其爲實 本纸张尺度適用中國國家標準(CNS ) Λ4規格(210 X 297公釐) _ (請先閱讀背面之注意事項再填寫本頁) .裝·SCS0SS I F.DOC / 002 A7 B7 Printed and printed by the Employee Consumer Cooperative of the Central Bureau of Economic Affairs of the Ministry of Economy V. Description of Invention (Π) 16b, and source regions 18a and 18b. In this step, the word lines WL1 to WL4 are used as the mask layer, and the dose of ion implantation is, for example, about 1 × 10 5 atoms / cm2, energy (J about 70KeV. Please refer to FIG. 2B, and then An insulating layer 20 is deposited by CVD, for example, BPSG (borophosphosilicate glass), with a thickness of about 7000 a. Then, an etching protection layer 22 is deposited by CVD, for example, a silicon nitride layer (Silicon with ⑴ heart), the thickness is about 1000A. After that, using traditional photomask patterning and etching techniques, the protective layer 22, the insulating layer 20, and the gate oxide layer 14 are sequentially etched to form a storage electrode contact window (storage electrode contact holes) 24a and 24b 'respectively extending from the upper surface of the etch protection layer 22 to the surfaces of the drain regions 16a and 16b. Next, a polycrystalline silicon layer 26 is deposited on the surface of the etch protection layer 22 by CVD. In order to improve the conductivity of the polycrystalline silicon layer 26, for example, arsenic ions can be implanted into the polycrystalline silicon layer 26. As shown, the polycrystalline silicon layer 26 is filled with storage electrode contact windows 24a; 24b, and covers the etching The surface of the protective layer 22. After that, in the polycrystalline silicon layer A thick insulating layer 28 is deposited on the surface 26, for example, a silicon dioxide layer, with a thickness of about 7000 A. Please refer to FIG. 2C, and then sequentially deposit an insulating layer and a sacrificial polycrystalline silicon on the surface of the insulating layer 28 by CVD Layer, and then use the traditional mask making and etching technology to define the insulating layer and the sacrificial polycrystalline silicon layer, thus forming the insulating layer 30a; 30b and sacrificial polycrystalline silicon layer 32a; 32b as shown in the figure, wherein the insulating layer 30a; 30b is, for example, a sand nitride layer with a thickness of about 100A, and the sacrificial polycrystalline silicon layer 32a; 32b has a thickness of about 1000A. The insulating layer 3〇a and the sacrificial polycrystalline silicon layer 3a form a stacked layer 30a; 32a 'It is the actual paper. The standard is applicable to the Chinese National Standard (CNS) Λ4 specification (210 X 297 mm) _ (please read the precautions on the back before filling this page).

,1T 」 053 2TWF.DOC/002 A7 B7 五、發明説明(B ) 心筒狀’水平剖面可爲圓形、矩形或是其他形狀。堆疊層 30a; 32a的較佳位置大致係對應於汲極區16&的上方;而 絕緣層30b與犧牲複晶砂層32b結構成另一堆疊層30b; 32b ’其亦爲實心筒狀,水平剖面可爲圓形 '矩形或是其 他形狀。堆疊層30b; 32b的較佳位置大致係對應於汲極區 16b的上方。 請參照第2D圖,接著分別在堆疊層30a; 32a和30b; 32b 的側壁(sidewalls )上形成二氧化矽邊牆(Spacers ) 34a 和34b。在本較佳實施例中,二氧化矽邊牆34a和34b可 以以下列步驟形成:沈積一二氧化矽層,其厚度例如約 1000A ;再回蝕刻(etchback )。之後,以CVD法沈積一 絕緣層36,其例如爲矽氮化物層,厚度例如約2000A。再 來’利用機械化學式硏磨(chemical mechanical polish; CMP )技術硏磨絕緣層36,至少直到堆疊層3〇3;32&和 30b; 32b上方的部份露出爲止。 請參照第2E圖,接著以堆疊層30a;32a、30b;32b和 絕緣層36爲蝕刻罩幕,蝕刻去除二氧化矽邊牆34a; 34b 以及其下的部份絕緣層28。然後以犧牲複晶矽層32a; 32b 爲蝕刻罩幕,蝕刻去除絕緣層36,形成開口 3Sa和38b。 開口 38a和38b的深度可依實際需求加以調整,只要與複 晶矽層26表面保持一段距離即可。 請參照第2F圖,接著在堆疊層3〇a; 32a、30b; 32b和 絕緣層28的表面沈積一複晶矽層4〇,厚度例如約ΙΟΟΟΑ ’ 以塡滿開口 38a和38b。爲了提高複晶矽層40的導電性, 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X297公釐) -----..---1--ί I 裝-- \請先閱讀背面之注意事項再填寫本頁) 訂 經濟部中央標準局員工消費合作社印裝 0532TWF.DOC/002 A7 B7 經濟部中央標準局貝工消費合作社印製 五、發明説明(9) 可將例如砷離子植入到複晶矽層40中。之後,利用機械化 學式硏磨技術硏磨複晶矽層40,至少直到絕緣層30a; 30b 上方的部份露出爲止,形成如圖所示的複晶矽層40。在此 步驟中,犧牲複晶矽層32a; 32b會被去除。 請參照第2G圖,接著以複晶矽層40與絕緣層28爲蝕 刻保護層,利用濕式蝕刻法去除絕緣層30a; 30b。之後以 CVD法沈積一絕緣層42,其例如是二氧化矽層,厚度例 如約2000A。再來利用傳統的光罩製版與蝕刻技術,依序 蝕刻絕緣層42、複晶矽層40、絕緣層28和複晶矽層26, 形成一開口 44,以界定出各記憶單元的儲存電容器之儲存 電極。亦即藉此步驟將複晶矽層40和26切割成若干區段 40a; 40b 和 26a; 26b ° 請參照第2H圖,接著在開口 44的側壁上形成複晶矽 邊牆46a和46b。在本較佳實施例中,複晶矽邊牆46a; 46b 可以以下列步驟形成:沈積一複晶矽層,其厚度例如約 1000A;再回蝕刻。爲了提高複晶矽層46a; 46b的導電性, 可將例如砷離子植入到複晶矽層46a; 46b中。之後利用濕 式蝕刻法,並以蝕刻保護層22爲蝕刻終點,將暴露出的二 氧化矽層去除,亦即去除絕緣層42和28。藉此步驟即完 成動態隨機存取記憶體的儲存電容器之儲存電極,其如圖 所示係由類樹幹狀的下複晶矽層26a; 26b、類樹幹狀的上 複晶矽層46a; 46b、以及一具有似L形剖面的類樹枝狀複 晶矽層4〇a; 40b所一起構成。類樹幹狀的下複晶矽層26a; 26b連接到DRAM的轉移電晶體之汲極區16a; 16b,且具 ------^---裝-- (請先閱讀背面之注意事項再填寫本頁), 1T ”053 2TWF.DOC / 002 A7 B7 V. Description of the invention (B) Heart-shaped tube’ horizontal section can be circular, rectangular or other shapes. The preferred position of the stacked layer 30a; 32a corresponds roughly to the top of the drain region 16 &; and the insulating layer 30b and the sacrificial polycrystalline sand layer 32b are structured as another stacked layer 30b; 32b 'which is also a solid cylindrical shape, horizontal section It can be round, rectangular or other shapes. The preferred position of the stacked layers 30b; 32b generally corresponds to the top of the drain region 16b. Please refer to FIG. 2D, and then form silicon dioxide side walls (Spacers) 34a and 34b on the side walls of the stacked layers 30a; 32a and 30b; 32b, respectively. In the preferred embodiment, the silicon dioxide sidewalls 34a and 34b can be formed by the following steps: depositing a silicon dioxide layer with a thickness of, for example, about 1000A; and then etching back (etchback). Thereafter, an insulating layer 36 is deposited by CVD, which is, for example, a silicon nitride layer, and has a thickness of, for example, about 2000A. Next, the insulating layer 36 is polished using a chemical mechanical polish (CMP) technique, at least until the portions above the stacked layers 303; 32 & and 30b; 32b are exposed. Please refer to FIG. 2E, and then use the stacked layers 30a; 32a, 30b; 32b and the insulating layer 36 as an etching mask to etch and remove the silicon dioxide sidewalls 34a; 34b and a part of the insulating layer 28 thereunder. Then, using the sacrificial polycrystalline silicon layer 32a; 32b as an etching mask, the insulating layer 36 is etched away to form openings 3Sa and 38b. The depth of the openings 38a and 38b can be adjusted according to actual needs, as long as it is kept at a distance from the surface of the polycrystalline silicon layer 26. Please refer to FIG. 2F, and then deposit a polycrystalline silicon layer 40 on the surface of the stacked layers 30a; 32a, 30b; 32b and the insulating layer 28, with a thickness of, for example, about 100 Å to fill the openings 38a and 38b. In order to improve the conductivity of the polycrystalline silicon layer 40, this paper scale is applicable to the Chinese National Standard (CNS) Λ4 specification (210X297 mm) -----..--- 1--ί I 装-\ Please read first (Notes on the back and then fill out this page) Ordered by the Ministry of Economic Affairs Central Standards Bureau Employee Consumer Cooperative Printed 0532TWF.DOC / 002 A7 B7 Ministry of Economic Affairs Central Standards Bureau Beigong Consumer Cooperative Printed 5. Description of invention (9) For example, arsenic Implanted into the polycrystalline silicon layer 40. After that, the polycrystalline silicon layer 40 is polished by mechanochemical polishing technology, at least until the upper part of the insulating layers 30a; 30b is exposed to form the polycrystalline silicon layer 40 as shown in the figure. In this step, the sacrificial polycrystalline silicon layer 32a; 32b is removed. Please refer to FIG. 2G, and then use the polycrystalline silicon layer 40 and the insulating layer 28 as etching protection layers, and remove the insulating layers 30a and 30b by wet etching. Then, an insulating layer 42 is deposited by CVD, for example, a silicon dioxide layer, and the thickness is, for example, about 2000A. Next, using traditional photomask patterning and etching techniques, the insulating layer 42, the polycrystalline silicon layer 40, the insulating layer 28 and the polycrystalline silicon layer 26 are sequentially etched to form an opening 44 to define the storage capacitor of each memory cell Storage electrode. That is, by this step, the polycrystalline silicon layers 40 and 26 are cut into sections 40a; 40b and 26a; 26b °. Please refer to FIG. 2H, and then form polycrystalline silicon sidewalls 46a and 46b on the side walls of the opening 44. In the preferred embodiment, the polycrystalline silicon sidewalls 46a; 46b can be formed by the following steps: depositing a polycrystalline silicon layer with a thickness of, for example, about 1000A; and then etching back. In order to improve the conductivity of the polycrystalline silicon layer 46a; 46b, for example, arsenic ions can be implanted into the polycrystalline silicon layer 46a; 46b. Then, the wet etching method is used, and the etching protection layer 22 is used as the etching end point to remove the exposed silicon dioxide layer, that is, the insulating layers 42 and 28 are removed. By this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, which is shown by the trunk-like lower polycrystalline silicon layer 26a; 26b, the trunk-like upper polycrystalline silicon layer 46a; 46b And a dendritic polycrystalline silicon layer 40a; 40b with an L-shaped cross section. The trunk-like lower polycrystalline silicon layer 26a; 26b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM, and is equipped with ------ ^ ----- (please read the notes on the back first (Fill in this page again)

*1T .i 線 本紙張尺度適用中國國家橾牟(CNS > A4規格(210X 297公釐) 053 2TWF.DOC/002 A7 B7 五、發明説明(丨(?) 有一似T形的剖面。類樹幹狀的上複晶矽層46a; 46b的下 端連接於類樹幹狀的下複晶矽層26a; 26b的週邊,且大致 往上延伸出。類樹枝狀複晶矽層40a; 40b從類樹幹狀的上 複晶矽層46a; 46b的內表面,先以約水平方向往內延伸一 段距離後’再以約垂直方向往下延伸出。由於本發明的儲 存電極之形狀非常特殊,故在本說明書中乃以“樹型儲存電 極”稱之’且因而製成之電容器則稱爲“樹型儲存電容器”。 請參照第21圖’接著分別在儲存電極26a,40a, 46a; 26b, 4〇b; 40b裸露的表面上分別形成一介電膜層48a; 48b。介 電膜層48a; 48b例如可爲二氧化矽層、矽氮化物層的NO (矽氮化物/二氧化矽)結構、ΟΝΟ (二氧化矽/矽氮化物 /二氧化矽)結構、或任何類似者。然後,在介電膜層48a 和48b的表面上,形成由複晶矽製成的相對電極50。相對 電極的製程可由下列步驟達成:以CVD法沈積一複晶矽 層’其厚度例如爲1000A ;再摻入例如N型雜質,以提高 其導電性;最後以傳統光罩製版和蝕刻技術定義複晶矽 層’完成DRAM各記憶單元的儲存電容器。 經濟部中央標準局員工消費合作社印製 ----------^ ·裝-- ·(請先閲讀背面之注意事項再填寫本頁) 雖然第21圖未顯示,然熟習此藝者應瞭解,第21圖的 結構可依傳統製程技術製作位元線、焊墊(bonding pad )、互連導線(interconnection )、隔絕保護層 (passivation )'以及包裝等等,以完成DRAM積體電路。 由於這些製程非關本發明之特徵,故於此不多作贅述。 在第一較佳實施例中,儲存電極只具有一層似L形剖 面的類樹枝狀電極層。然而,本發明並不限於此,儲存電 13 本紙张尺度適用中國國家橾準(CNS ) A4規格(210X297公釐)* 1T.i line paper size is applicable to Chinese National Mou Mou (CNS & A4 specifications (210X 297mm) 053 2TWF.DOC / 002 A7 B7 5. Description of invention (丨 (?) There is a T-shaped section. Class The trunk-shaped upper polycrystalline silicon layer 46a; the lower end of 46b is connected to the periphery of the trunk-like lower polycrystalline silicon layer 26a; 26b, and extends roughly upward. The dendritic polycrystalline silicon layer 40a; 40b from the trunk-like 46b; the inner surface of the upper polycrystalline silicon layer 46a; 46b first extends inward in a horizontal direction and then extends downward in a vertical direction. The shape of the storage electrode of the present invention is very special, so In the specification, it is called "tree-shaped storage electrode" and the resulting capacitor is called "tree-shaped storage capacitor." Please refer to Figure 21 'and then at the storage electrode 26a, 40a, 46a; 26b, 4〇 b; 40b is formed on the exposed surface of a dielectric film layer 48a; 48b. The dielectric film layer 48a; 48b can be, for example, a silicon dioxide layer, a silicon nitride layer NO (silicon nitride / silicon dioxide) structure, ΟΝΟ (silicon dioxide / silicon nitride / silicon dioxide) structure, or any similar. , On the surfaces of the dielectric film layers 48a and 48b, a counter electrode 50 made of polycrystalline silicon is formed. The process of the counter electrode can be achieved by the following steps: depositing a polycrystalline silicon layer by CVD method whose thickness is, for example, 1000A; Then, for example, N-type impurities are added to improve its conductivity; finally, the polysilicon layer is defined by traditional mask making and etching technology to complete the storage capacitor of each memory cell of DRAM. Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy -------- ^ · Install-- · (Please read the precautions on the back before filling in this page) Although the picture 21 is not shown, it should be understood by those who are familiar with this artist, the structure of the picture 21 can be based on tradition Process technology is used to produce bit lines, bonding pads, interconnection wires, isolation protection layers, packaging, etc. to complete the DRAM integrated circuit. Since these processes are not characteristic of the present invention, Therefore, it will not be repeated here. In the first preferred embodiment, the storage electrode has only one layer of dendritic electrode layer with an L-shaped cross-section. However, the present invention is not limited to this. Country (CNS) A4 size (210X297 mm)

五、發明説明(π ) 經濟部中央標準局員工消費合作社印製 極似L形剖面的類樹枝狀電極層之層數可爲二層、三層、 或更多。下一個較佳實施例即將描述具有二層似L形剖面 的類樹枝狀電極層的儲存電極。 接著將參照第3A至3E圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第二較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第二較佳實施例所製造的。 本較佳實施例係以第2F圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第3A至3E圖中,與第2F圖相似的部份係以相同 的編號標示。 請參照第2F和3A圖,接著以複晶矽層40與絕緣層28 爲蝕刻保護層,利用濕式蝕刻法去除絕緣層30a; 30b。之 後以CVD法沈積一絕緣層52,其例如爲二氧化矽層,厚 度約2000A。再來以CVD法在絕緣層52表面依序沈積一 絕緣層與一犧牲複晶矽層,再利用傳統的光罩製版和蝕刻 技術定義絕緣層與犧牲複晶矽層,因而形成如圖所示之絕 緣層54a; 54b與犧牲複晶矽層56a; 56b。其中,絕緣層54a; 54b例如爲矽氮化物層,厚度例如約是1000A,而犧牲複 晶矽層56a; 56b之厚度例如約是1000A。絕緣層54a與犧 牲複晶矽層56a結構成一堆疊層Ma; 56a,其爲實心筒狀, 水平剖面可爲圓形、矩形或是其他形狀。堆疊層54a; 56a 較圖2C中的堆疊層3〇a; 32a小,其較佳位置大致係對應於 汲極區16a的上方;而絕緣層54b與犧牲複晶矽層56b結 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) •裝. 訂 WF.DOC/002 A7 WF.DOC/002 A7 經濟部中央搮準局貝工消費合作社印裝 B7 -------------—---—-—-- 五、發明説明(μ ) 構成另一堆疊層54b; 56b,其亦爲實心筒狀,水平剖面可 爲圓形、矩形或是其他形狀。堆疊層54b; 56b較圖2C中 的堆疊層30b; 32b小,其較佳位置大致係對應於汲極區16b 的上方。 請參照第3B圖,接著分別在堆曼層54a; 56a和54b; 56b 的側壁上形成二氧化矽邊牆58a和58b。在本較佳實施例 中,二氧化矽邊牆58a和58b可以以下列步驟形成:沈積 一二氧化矽層’其厚度例如約1000A ;再回蝕刻。之後, 以CVD法沈積一絕緣層60 ’其例如爲矽氮化物層,厚度 例如約2000A。再來’利用機械化學式硏磨技術硏磨絕緣 層60,至少直到堆疊層54a; 56a和54b; 56b上方的部份露 出爲止。 請參照第3C圖’接著以堆疊層54a; 56a、54b; 56b和 絕緣層60爲蝕刻罩幕,蝕刻去除二氧化矽邊牆58a; 58b 以及其下方的絕緣層52與部份絕緣層28。然後以犧牲複 晶矽層56a;56b爲蝕刻罩幕,蝕刻去除絕緣層6〇,形成開 口 62a和62b。開口 62a和02b的深度可依實際需求加以 調整,只要與複晶砂層26表面保持一段距離即可。 請參照第3D圖,接著在堆疊層54a; “a、54b; wb和 絕緣層52的表面沈積—複晶矽層64,厚度例如約1000A, 以塡滿開口 62a和62b。爲了提高複晶矽層64的導電性, 可將例如砷離子植入到複晶矽層04中。之後,利用機械化 學式硏磨技術硏磨複晶矽層64,至少直到絕緣層54a; 54b 上方的部份露出爲止,形成如圖所示的複晶砂層64。在此 15 S张尺度適用中國國家標準(CNS ) A4規格("210X2974^7^---- _(請先閲讀背面之注意事項再填寫本頁) 丨裝· 訂 U線 經濟部中央標準局員工消费合作社印製 0532TWF.DOC/002 A7 ___ B7 五、發明説明(丨5) ~~~' 步驟中,犧牲複晶矽層56a; 56b會被去除。接著以複晶砂 層64與絕緣層52爲蝕刻保護層,利用濕式蝕刻法去除絕 緣層 54a; 54b。 請參照第3E圖,接著以CVD法沈積一絕緣層66 ,其 例如是二氧化矽層,厚度例如約2000A。再來利用傳統的 光罩製版與蝕刻技術,依序蝕刻絕緣層66、複晶矽層64、 絕緣層52、複晶矽層40、絕緣層28和複晶矽層26,形 成一開口 68 ’以界定出各記憶單元的儲存電容器之儲存電 極。亦即藉此步驟將複晶矽層64、40和26切割成若干區 段 64a; 64b、40a; 40b 和 26a; 26b。 請參照第3F圖,接著在開口 68的側壁上形成複晶矽 邊牆70a和70b。在本較佳實施例中,複晶矽邊牆70a; 7〇b 可以以下列步驟形成:沈積一複晶矽層,其厚度例如約 1000A;再回蝕刻。爲了提高複晶矽層70a; 70b的導電性, 可將例如砷離子植入到複晶矽層70a; 70b中。之後利用濕 式蝕刻法,並以蝕刻保護層22爲蝕刻終點,將暴露出的二 氧化矽層去除,亦即去除絕緣層66 ' 52和28。藉此步驟 即完成動態隨機存取記憶體的儲存電容器之儲存電極,其 如圖所示係由類樹幹狀的下複晶矽層26a; 26b、類樹幹狀 的複晶矽層70a; 70b、以及兩層具有似L形剖面的類樹 枝狀複晶砂層64a; 64b和40a; 40b所一起構成。類樹幹狀 的下複晶矽層26a; 26b連接到DRAM的轉移電晶體之汲極 區16a; 16b,且具有一似T形的剖面。類樹幹狀的上複晶 矽層70a; 7〇b的下端連接於類樹幹狀的下複晶矽層26a; 16 本紙垠尺度適用中國國家榡率(CNS ) Λ4規格(2IOX297公缝) f靖先閱讀背面之注意事項再填寫本頁} —裝. -訂 0532TWF.DOC/002 A7 0532TWF.DOC/002 A7 經濟部中央標準局員工消費合作社印製 B7 五、發明説明(W) 26b的週邊,且大致以垂直方向往上延伸出。類樹枝狀複 晶矽層64a; 64b和40a; 40b大致平行,且分別從類樹幹狀 的上複晶砂層70a; 70b的內表面,先以約水平方向往內延 伸一段距離後,再以約垂直方向往下延伸出。接下來之後 續製程因無異於傳統製程,故在此不再贅述。如果要得到 更多層的類樹枝狀電極層,只要依照本較佳實施例中之描 述(圖3A至3D),多次重複堆疊層的製作就可滿足所需。 上述第一、第二較佳實施例中之類樹枝狀電極層從剖 面觀之,均具有兩支似L型的樹枝,然而,本發明並不限 於此,類樹枝狀電極層似L形的樹枝可以只有一支,下一 個較佳實施例即將描述具有單支似L形剖面的類樹枝狀電 極層的儲存電極。又,在上述第一、第二較佳實施例中之 類樹幹狀的下複晶矽層均爲實心構件,且具有一似T形的 剖面,然而,本發明亦不限於此,類樹幹狀的下複晶矽層 可具有一中空結構的部份,以增加儲存電極的表面積。下 一個較佳實施例即將描述類樹幹狀的下複晶矽層具有一 似U形的剖面,以更增加儲存電極的表面積的結構及其作 法。 接著將參照第4A至4E圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第三較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第三較佳實施例所製造的。 本較佳實施例係以第2A圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 (請先閲讀背面之注意事項再填寫本頁) 丨裝· 訂 本紙張尺度適用中國國家標率(CNS ) A4規格(210X 297公釐) 0532TWF.DOC/002 A7 B7 經濟部中央標率局員工消费合作社印裝 五、發明説明(β) 極。在第4A至4E圖中,與第2A圖相似的部份係以相同 的編號標示。 請參照第2A圖與第4A圖,接著以CVD法沈積一平坦 化的絕緣層72,其例如爲BPSG,厚度例如約7〇〇〇A。然 後,再以CVD法沈積一蝕刻保護層74,其例如爲矽氮化 物層,厚度例如約ΐοοοΑ。之後,利用傳統的光罩製版和 蝕刻技術,依序蝕刻蝕刻保護層74、平坦化絕緣層72、 和閘極氧化層14,以形成儲存電極接觸窗76a和76b,其 係分別由蝕刻保護層74的上表面延伸到汲極區16a和16b 的表面。接著,沈積一複晶矽層78。如圖所示,複晶矽層 78覆蓋蝕刻保護層74的表面、以及儲存電極接觸窗76a 和76b的內壁表面,但未塡滿儲存電極接觸窗76a和76b, 因而使複晶矽層78具有一似U形剖面的中空結構部份。 爲了提高複晶矽層78的導電性,可將例如砷離子植入到複 晶矽層78中。之後,在複晶矽層78表面沈積一厚的絕緣 層80,其例如爲二氧化矽層,厚度例如約7000A。接著以 CVD法在絕緣層80表面依序沈積一絕緣層與一犧牲複晶 矽層,再利用傳統的光罩製版和蝕刻技術定義絕緣層與犧 牲複晶矽層,因而形成如圖所示之絕緣層82a; 82b與犧牲 複晶矽層84a; 84b。其中,絕緣層82a; 82b例如爲矽氮化 物層,厚度例如約是1000A,而犧牲複晶矽層84a; 84b之 厚度例如約是1000A。絕緣層82a與犧牲複晶矽層84a結 構成一堆疊層82a; 84a,而絕緣層82b與犧牲複晶矽層84b 結構成另一堆疊層82b; 84b。堆疊層82a; 84a和82b; 84b 本紙張尺度適用中國國家標芈(CNS ) A4規格(210X297公釐) --------J— 裝-- (請先閱讀背面之注意事項再填寫本頁) 訂 線 經濟部中央標準局員工消費合作社印製 0532TWF.DOC/002 A7 B7 ---- ~ ....... — 五、發明説明(W) 均爲實心筒狀’水平剖面可爲圓形、矩形或是其他形狀。 堆疊層82a; 84a和82b; 84b的中心往下對應的較佳位置大 致均係同時偏向汲極區16a; 16b的某一側。在本較佳實施 例中,堆疊層82a; 84a和82b; 84b的中心均係偏向汲極區 16a; 16b的右側。之後分別在堆疊層82a; 84a和82b; 84b 的側壁上形成二氧化矽邊牆86a和86b。在本較佳實施例 中,二氧化矽邊牆86a和86b可以以下列步驟形成:沈積 一二氧化矽層,其厚度例如約1000A ;再回蝕刻。再來以 CVD法沈積一絕緣層88,其例如爲矽氮化物層,厚度例 如約2〇0〇A。再來,利用機械化學式硏磨技術硏磨絕緣層 88,至少直到堆疊層82a; 84a和82b; 84b上方的部份露出 爲止。 請參照第4B圖,接著以堆疊層82a; 84a和82b; 84b、 以及絕緣層88爲蝕刻罩幕,蝕刻去除二氧化矽邊牆86a和 86b、以及其下的部份絕緣層80。然後以犧牲複晶矽層84a; 84b爲蝕刻罩幕,蝕刻去除絕緣層88,形成開口 90a和 90b。開口 90a和90b的深度可依實際需求加以調整,只 要與複晶矽層78表面保持一段距離即可。 請參照第4C圖,接著在堆疊層82a; 84a和82b; 84b、 以及絕緣層80的表面沈積一複晶矽層92,厚度例如約 1000A,以塡滿開口 90a和90b。爲了提高複晶矽層92的 導電性,可將例如砷離子植入到複晶矽層92中。之後,利 用機械化學式硏磨技術硏磨複晶矽層92,至少直到絕緣層 82a; 82b上方的部份露出爲止,形成如圖所示的複晶矽層 19 度適用中國國家^隼(CNS ) A4規格(210X 297公釐j (請先閲讀背面之注意事項再填寫本頁) -裝. 訂 線. 0S32TWF.DOC/002 0S32TWF.DOC/002 經濟部中央標準局員工消費合作社印製 A/ B7 五、發明説明(η ) -- 92。在此步驟中,犧牲複晶矽層84a; 8仆會被去除。 請參照第4D圖,接著以複晶矽層%與絕緣層8〇爲蝕 刻保護層,利用濕式蝕刻法去除絕綠墙82&. 82b。之後以 ⑽法沈積-絕緣層94,其例如㈣,厚麵 如約测A。再來利用傳統的光罩製版與触刻技術,依序 触刻絕緣層94、複晶砂層92、絕緣層8〇和㈣㈣^, 形成-開口 96,以界定出各記憶單死的儲存電容器之儲存 電極。亦即藉此步驟將複晶矽層92和78切割成若千區段 92a; 92b 和 78a; 78b。 邮參照第4E圖’接著在開□ 96 _壁上形成複晶砂 邊牆98a和働。在本較佳實施例中,複晶砂邊牆_ _ 可以以下列步腳,罪度例如約 1000A;再回關。爲了提高複晶_98a;98b的導電性, 可將例如砷離子植人到複晶雜98a; 98b φ。⑽ 式蝕刻法,並以蝕刻保護層74爲蝕刻終點, 二 氧化砂層去除’亦即去除絕緣層94和8〇。藉此步驟即完 成動態隨機存取記憶體的儲存電容豸之儲存額,其如圖 所示係由類樹幹狀的下複晶矽層78a; 7朴、類樹幹狀的上 複晶矽層98a; 98b、以及一僅具有〜支似l形剖面的類樹 枝狀複晶砂層92a; 92b所一起構成。類樹幹狀的下複晶矽 層78a; 78b連接到DRAM的轉移電晶體之汲極區16a; 16b,且具有一似u形的剖面。類樹幹狀的上複晶矽層98a; 98b的下端連接於類樹幹狀的下複晶矽層78a; 78b的週 邊’且大致以垂直方向往上延伸出。類樹枝狀複晶矽層92a; 20 (請先閲讀背面之注意事項再填寫本頁) 裝_ 訂 本紙張尺度適用中國國家橾準(CNS )八4規格(210X 297公釐) 3Gq,QS5 F.DOC/002 A7 B7_ 五、發明説明(β ) 92b自剖面觀之僅具有一支似L形的樹枝’其大致從類樹 幹狀的上複晶矽層98a; 98b之某一側的內表面’先以約水 平方向朝向類樹幹狀的上複晶砂層98a; 98b之另一內側延 伸出一段距離後’再以約垂直方向往下延伸出。接下來之 後續製程因無異於傳統製程,故在此不再贅述。 在上述第一至第三較佳實施例中,儲存電極的類樹枝 狀電極層均只有似L形的剖面。然而,本發明並不限於此, 儲存電極的類樹枝狀電極層可以包括有其他剖面形狀。下 一個較佳實施例即將描述具有一層似L形剖面與一似“一” 型剖面的類樹枝狀電極層的儲存電極。又,在上述第一至 第三較佳實施例中,類樹幹狀的下複晶矽層水平部份之下 表面均與其下方的蝕刻保護層接觸。然而,本發明亦不限 於此,下一個較佳實施例即將描述類樹幹狀的下複晶矽層 水平部份之下表面未與其下方的蝕刻保護層接觸,而相距 一段距離,以更增加儲存電極的表面積之作法。 接著將參照第5A至5F圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第四較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第四較佳實施例所製造的。 本較佳實施例係以第2A圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第5A至5F圖中,與第2A圖相似的部份係以相同 的編號標示。 請參照第2A圖與第5A圖,接著以CVD法依序沈積一 (請先閲讀背面之注意事項再填寫本頁) 裝_ 訂 線 經濟部中央棣隼局員工消費合作'社印製 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X297公釐) 0532TWF.DOC/002 A7 B7 五、發明説明(11 ) 平坦化的絕緣層100、一蝕刻保護層102與一絕緣層104。 其中,絕緣層100例如爲BPSG,厚度例如約7000A ;蝕 刻保護層102例如爲矽氮化物層,厚度例如約1000A:絕 緣層104例如爲二氧化矽層,厚度例如約1000A。之後, 利用傳統的光罩製版和蝕刻技術,依序蝕刻絕緣層104、 蝕刻保護層102、平坦化絕緣層100和閘極氧化層14,以 形成儲存電極接觸窗106a和106b,其係分別由絕緣層104 的上表面延伸到汲極區16a和16b的表面。接著,沈積一 複晶矽層108。如圖所示,複晶矽層108覆蓋在絕緣層104 的表面以及儲存電極接觸窗106a和106b的內壁表面,但 未塡滿儲存電極接觸窗106a和106b,因而使複晶砂層108 具有一似U形剖面的中空結構部份。爲了提高複晶矽層108 的導電性,可將例如砷離子植入到複晶矽層108中。 請參照第5B圖,接著在複晶矽層108表面沈積一厚的 絕緣層110,其例如爲二氧化矽層,厚度例如約7000A。 接著以CVD法在絕緣層110表面依序沈積一絕緣層與一犧 牲複晶矽層,再利用傳統的光罩製版和蝕刻技術定義絕緣 層與犧牲複晶矽層,因而形成如圖所示之絕緣層112a; 112b與犧牲複晶矽層114a; 114b。其中,絕緣層112a; 112b 例如爲矽氮化物層,厚度例如約是ΙΟΟΟΑ,而犧牲複晶矽 層114a; 114b之厚度例如約是1000A。絕緣層112a與犧牲 複晶矽層114a結構成一堆疊層112a; 114a,而絕緣層112b 與犧牲複晶矽層114b結構成另一堆疊層112b; 114b。堆疊 層112a; 114a和112b; 114b均爲實心筒狀,水平剖面可爲 22 ---------1 __ 裝-- (請先閲讀背面之注意事項再填寫本頁) 訂 :線 經濟部中央標隼局員工消费合作社印裝 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X 297公釐) 0532TWF.DOC/002 A7 B7 五、發明説明()口) 圓形、矩形或是其他形狀。堆叠層112a; 114a和112b; 114b 的中心往下對應的較佳位置大致均係同時偏向汲極區16a; 16b的某一側。在本較佳實施例中,堆疊層112a; 114a和 112b; 114b的中心均係偏向汲極區16a; 16b的右側。之後 分別在堆疊層112a; 114a和112b; 114b的側壁上形成二氧 化矽邊牆116a和116b。在本較佳實施例中,二氧化矽邊 牆116a和116b可以以下列步驟形成:沈積一二氧化矽層, 其厚度例如約1000A;再回蝕刻。再來以CVD法沈積一絕 緣層Π8,其例如爲矽氮化物層,厚度例如約2000A。再 來,利用機械化學式硏磨技術硏磨絕緣層Π8,至少直到 堆疊層112a; 114a和112b; 114b上方的部份露出爲止。 請參照第5C圖,接著以堆疊層112a; 114a和11.2b; U4b、以及絕緣層118爲蝕刻罩幕,蝕刻去除二氧化矽邊 牆116a和116b、以及其下方的部份絕緣層110。然後以 犧牲複晶矽層114a; 114b爲蝕刻罩幕,蝕刻去除絕緣層 118,形成開口 120a和120b。開口 120a和120b的深度可 依實際需求加以調整,只要與複晶矽層108表面保持一段 距離即可。 請參照第5D圖,接著在堆疊層112a; 114a和112b; 114b、以及絕緣層110的表面沈積一複晶矽層122,厚度 例如約1000A,以塡滿開口 120a和120b。爲了提高複晶 矽層122的導電性,可將例如砷離子植入到複晶矽層122 中。之後,利用機械化學式硏磨技術硏磨複晶矽層122 ’ 至少直到絕緣層112a; 112b上方的部份露出爲止,形成如 23 - - -I - —— I」 I ^1 (請先閱讀背面之注意事項再填寫本頁)V. Description of Invention (π) Printed by the Staff Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. The number of layers of dendritic electrode layers resembling L-shaped profiles can be two, three, or more. The next preferred embodiment will describe a storage electrode having two dendritic-like electrode layers having an L-shaped cross section. Next, referring to FIGS. 3A to 3E, a second preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail. This preferred embodiment of the semiconductor memory device is a semiconductor memory of the present invention. The second preferred embodiment of the device manufacturing method is manufactured. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2F, and then DRAM storage electrodes with different structures are manufactured by different processes. In Figs. 3A to 3E, the parts similar to those in Fig. 2F are marked with the same numbers. Please refer to FIGS. 2F and 3A, and then use the polycrystalline silicon layer 40 and the insulating layer 28 as etching protection layers, and remove the insulating layers 30a and 30b by wet etching. Afterwards, an insulating layer 52 is deposited by CVD, for example, a silicon dioxide layer, with a thickness of about 2000A. Next, an insulating layer and a sacrificial polycrystalline silicon layer are sequentially deposited on the surface of the insulating layer 52 by the CVD method, and then the insulating layer and the sacrificial polycrystalline silicon layer are defined by using traditional photomask patterning and etching techniques, thus forming as shown in the figure 56b. The insulating layer 54a; 54b and the sacrificial polycrystalline silicon layer 56a; 56b. Among them, the insulating layers 54a; 54b are, for example, silicon nitride layers with a thickness of, for example, about 1000A, and the sacrificial polycrystalline silicon layer 56a; 56b has a thickness of, for example, about 1000A. The insulating layer 54a and the sacrificial polycrystalline silicon layer 56a are formed as a stacked layer Ma; 56a, which is a solid cylindrical shape, and the horizontal cross-section may be circular, rectangular, or other shapes. The stacked layer 54a; 56a is smaller than the stacked layer 3〇a in FIG. 2C; 32a, and its preferred position roughly corresponds to the top of the drain region 16a; and the insulating layer 54b and the sacrificial polycrystalline silicon layer 56b are suitable for the paper size China National Standard (CNS) A4 specification (210X297mm) (Please read the notes on the back before filling in this page) • Pack. Order WF.DOC / 002 A7 WF.DOC / 002 A7 Ministry of Economic Affairs Central Bureau of Industry and Commerce Consumer Cooperative Printed B7 ------------------------ V. Description of Invention (μ) constitutes another stacked layer 54b; 56b, which is also a solid tube, The horizontal section can be circular, rectangular or other shapes. The stacked layers 54b; 56b are smaller than the stacked layers 30b; 32b in FIG. 2C, and their preferred positions generally correspond to those above the drain region 16b. Please refer to FIG. 3B, and then form silicon dioxide sidewalls 58a and 58b on the sidewalls of the stack layers 54a; 56a and 54b; 56b, respectively. In the preferred embodiment, the silicon dioxide sidewalls 58a and 58b can be formed by the following steps: depositing a silicon dioxide layer having a thickness of, for example, about 1000 A; and then etching back. Thereafter, an insulating layer 60 'is deposited by CVD, which is, for example, a silicon nitride layer, and has a thickness of, for example, about 2000A. Let's use the mechanochemical grinding technology to grind the insulating layer 60 at least until the portions above the stacked layers 54a; 56a and 54b; 56b are exposed. Please refer to FIG. 3C 'and then use the stacked layers 54a; 56a, 54b; 56b and the insulating layer 60 as an etching mask to etch and remove the silicon dioxide sidewalls 58a; 58b and the insulating layer 52 and part of the insulating layer 28 below it. Then, using the sacrificial polysilicon layer 56a; 56b as an etching mask, the insulating layer 60 is etched away to form openings 62a and 62b. The depth of the openings 62a and 02b can be adjusted according to actual needs, as long as it is kept at a distance from the surface of the polycrystalline sand layer 26. Please refer to FIG. 3D, and then deposit a polysilicon layer 64 on the surface of the stacked layer 54a; "a, 54b; wb and the insulating layer 52, with a thickness of, for example, about 1000A to fill the openings 62a and 62b. In order to improve the polysilicon The conductivity of the layer 64 can be implanted with, for example, arsenic ions into the polycrystalline silicon layer 04. Afterwards, the polycrystalline silicon layer 64 is polished using a mechanochemical polishing technique, at least until the upper part of the insulating layers 54a; 54b is exposed , Forming a polycrystalline sand layer 64 as shown in the figure. The 15 S sheet scale is applicable to the Chinese National Standard (CNS) A4 specification (" 210X2974 ^ 7 ^ ---- _ (please read the precautions on the back before filling in this Page) 丨 Installation · Order U-line Printed by the Employee Consumer Cooperative of the Central Bureau of Standards 0532TWF.DOC / 002 A7 ___ B7 5. Description of the invention (丨 5) ~~~ 'In the step, sacrifice the polycrystalline silicon layer 56a; 56b meeting It is removed. Next, the polycrystalline sand layer 64 and the insulating layer 52 are used as etching protective layers, and the insulating layers 54a and 54b are removed by wet etching. Please refer to FIG. 3E, and then an insulating layer 66 is deposited by CVD, for example, two Silicon oxide layer, for example, about 2000A in thickness. Then use the traditional mask making and etching techniques , Sequentially etch the insulating layer 66, the polycrystalline silicon layer 64, the insulating layer 52, the polycrystalline silicon layer 40, the insulating layer 28 and the polycrystalline silicon layer 26 to form an opening 68 'to define the storage capacitor storage of each memory cell Electrodes. That is, the polycrystalline silicon layers 64, 40, and 26 are cut into several sections 64a; 64b, 40a; 40b, and 26a; 26b. Please refer to FIG. 3F, and then form polycrystals on the sidewalls of the opening 68 Silicon sidewalls 70a and 70b. In the preferred embodiment, the polycrystalline silicon sidewalls 70a; 70b can be formed in the following steps: deposit a polycrystalline silicon layer with a thickness of, for example, about 1000A; and then etch back. The conductivity of the polycrystalline silicon layer 70a; 70b, for example, arsenic ions can be implanted into the polycrystalline silicon layer 70a; 70b. Then using the wet etching method, and using the etching protection layer 22 as the etching end point, the exposed two The silicon oxide layer is removed, that is, the insulating layers 66 '52 and 28 are removed. This step completes the storage electrode of the storage capacitor of the dynamic random access memory, which is shown as a trunk-like lower polycrystalline silicon layer 26a; 26b, trunk-like polycrystalline silicon layer 70a; 70b, and two layers have an L-shaped cross section The dendrite-like polycrystalline sand layer 64a; 64b and 40a; 40b together. The trunk-like lower polycrystalline silicon layer 26a; 26b is connected to the DRAM transfer transistor drain region 16a; 16b, and has a similar T Shaped profile. The trunk-like upper polycrystalline silicon layer 70a; the lower end of 70b is connected to the trunk-like lower polycrystalline silicon layer 26a; 16 This paper size scale is applicable to the Chinese national rate (CNS) Λ4 specification (2IOX297 Seam) f Jing read the precautions on the back and then fill in this page} — installed. -Order 0532TWF.DOC / 002 A7 0532TWF.DOC / 002 A7 Printed B7 by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of Invention (W) The periphery of 26b extends approximately vertically upward. The dendritic polycrystalline silicon layer 64a; 64b and 40a; 40b are approximately parallel, and respectively from the inner surface of the trunk-like upper polycrystalline sand layer 70a; 70b, extending inward in the horizontal direction for a distance, and then approximately Extend vertically downward. Since the subsequent process is no different from the traditional process, it will not be repeated here. If more layers of dendritic electrode layers are to be obtained, as long as described in this preferred embodiment (FIGS. 3A to 3D), the production of repeated stacked layers may be sufficient. From the cross-sectional view, the dendritic electrode layers in the first and second preferred embodiments above have two L-shaped branches. However, the present invention is not limited thereto. The dendritic electrode layers are L-shaped. There may be only one branch, and the next preferred embodiment will describe a storage electrode having a single branch-like dendritic electrode layer with an L-shaped cross section. In addition, the trunk-like lower polycrystalline silicon layers in the first and second preferred embodiments described above are solid members and have a T-shaped cross-section. However, the present invention is not limited to this, trunk-like The lower polycrystalline silicon layer may have a hollow structure to increase the surface area of the storage electrode. The next preferred embodiment will describe a structure and a method in which the trunk-like lower polycrystalline silicon layer has a U-shaped cross section to further increase the surface area of the storage electrode. Next, referring to FIGS. 4A to 4E, a third preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail. This preferred embodiment of the semiconductor memory device is a semiconductor memory of the present invention. The third preferred embodiment of the device manufacturing method is manufactured. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2A, and then uses different processes to make different structures of DRAM storage power (please read the precautions on the back before filling this page). The standard paper size is applicable to China National Standard Rate (CNS) A4 specification (210X 297mm) 0532TWF.DOC / 002 A7 B7 Printed by the Employees Consumer Cooperative of the Central Standard Rate Bureau of the Ministry of Economic Affairs Fifth, the invention description (β) pole. In Figs. 4A to 4E, the parts similar to those in Fig. 2A are marked with the same numbers. Please refer to FIG. 2A and FIG. 4A, and then a CVD method is used to deposit a planarized insulating layer 72, which is, for example, BPSG and has a thickness of, for example, about 7000 A. Then, an etch protection layer 74 is deposited by CVD, which is, for example, a silicon nitride layer, and has a thickness of, for example, about ΙοοοΑ. After that, using traditional photomask patterning and etching techniques, the etching protection layer 74, the planarization insulating layer 72, and the gate oxide layer 14 are sequentially etched to form storage electrode contact windows 76a and 76b, which are respectively formed by etching protection layers The upper surface of 74 extends to the surfaces of the drain regions 16a and 16b. Next, a polycrystalline silicon layer 78 is deposited. As shown in the figure, the polycrystalline silicon layer 78 covers the surface of the etching protection layer 74 and the inner wall surfaces of the storage electrode contact windows 76a and 76b, but does not fill the storage electrode contact windows 76a and 76b, so that the polycrystalline silicon layer 78 A hollow structure part with a U-shaped cross section. In order to increase the conductivity of the polycrystalline silicon layer 78, for example, arsenic ions may be implanted into the polycrystalline silicon layer 78. After that, a thick insulating layer 80, such as a silicon dioxide layer, is deposited on the surface of the polycrystalline silicon layer 78, with a thickness of about 7000A, for example. Then, an insulating layer and a sacrificial polycrystalline silicon layer are sequentially deposited on the surface of the insulating layer 80 by CVD method, and then the traditional photomask patterning and etching techniques are used to define the insulating layer and the sacrificial polycrystalline silicon layer. 84b. The insulating layer 82a; 82b and the sacrificial polycrystalline silicon layer 84a; 84b. Among them, the insulating layer 82a; 82b is, for example, a silicon nitride layer with a thickness of, for example, about 1000A, and the sacrificial polycrystalline silicon layer 84a; 84b has a thickness of, for example, about 1000A. 84a, the insulating layer 82a and the sacrificial polycrystalline silicon layer 84a form a stacked layer 82a; 84a, and the insulating layer 82b and the sacrificial polycrystalline silicon layer 84b form another stacked layer 82b; 84b. Stacked layers 82a; 84a and 82b; 84b This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) -------- J— installed-- (Please read the precautions on the back before filling in This page) Printed 0532TWF.DOC / 002 A7 B7 by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economics ---- ~ ....... — V. The description of the invention (W) is a solid cylindrical 'horizontal profile It can be round, rectangular or other shapes. The preferred positions corresponding to the center of the stacked layers 82a; 84a and 82b; 84b downward are generally both biased to one side of the drain region 16a; 16b at the same time. In this preferred embodiment, the centers of the stacked layers 82a; 84a and 82b; 84b are all biased to the right of the drain region 16a; 16b. Thereafter, silicon dioxide sidewalls 86a and 86b are formed on the side walls of the stacked layers 82a; 84a and 82b; 84b, respectively. In the preferred embodiment, the silicon dioxide sidewalls 86a and 86b can be formed by the following steps: depositing a silicon dioxide layer with a thickness of, for example, about 1000 A; and then etching back. Next, an insulating layer 88 is deposited by CVD, which is, for example, a silicon nitride layer, and has a thickness of, for example, about 2,000 A. Next, the insulating layer 88 is polished using a mechanochemical grinding technique until at least the portion above the stacked layers 82a; 84a and 82b; 84b is exposed. Please refer to FIG. 4B, and then use the stacked layers 82a; 84a and 82b; 84b, and the insulating layer 88 as an etching mask to etch and remove the silicon dioxide sidewalls 86a and 86b, and a part of the insulating layer 80 thereunder. Then, the sacrificial polycrystalline silicon layer 84a; 84b is used as an etching mask, and the insulating layer 88 is etched to form openings 90a and 90b. The depths of the openings 90a and 90b can be adjusted according to actual needs, as long as they are kept at a distance from the surface of the polycrystalline silicon layer 78. Please refer to FIG. 4C, and then deposit a polycrystalline silicon layer 92 on the surface of the stacked layers 82a; 84a and 82b; 84b, and the insulating layer 80, with a thickness of, for example, about 1000A to fill the openings 90a and 90b. In order to increase the conductivity of the polycrystalline silicon layer 92, for example, arsenic ions can be implanted into the polycrystalline silicon layer 92. After that, the polycrystalline silicon layer 92 is polished by mechanochemical polishing technology, at least until the upper part of the insulating layer 82a; 82b is exposed, and the polycrystalline silicon layer is formed at 19 degrees as shown in the figure. It is suitable for China ^ Falcon (CNS) A4 specification (210X 297mmj (please read the precautions on the back before filling in this page)-Pack. Thread. 0S32TWF.DOC / 002 0S32TWF.DOC / 002 Printed A / B7 by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the invention (η)-92. In this step, the sacrificial polycrystalline silicon layer 84a; 8 will be removed. Please refer to Figure 4D, and then use the polycrystalline silicon layer% and the insulating layer 8〇 as etching protection Layer, the green wall 82 &. 82b is removed by wet etching. Then, the insulating layer 94 is deposited by the ⑽ method, for example, the thick surface is about A. Then, using the traditional mask making and lithography techniques, The insulating layer 94, the polycrystalline sand layer 92, the insulating layer 80, and ㈣㈣ ^ are sequentially etched to form an opening 96 to define the storage electrodes of the storage capacitors of each memory cell. That is, the polycrystalline silicon layer is formed by this step 92 and 78 are cut into Ruoqian sections 92a; 92b and 78a; 78b. Please refer to Figure 4E On □ 96 _ forming a polycrystalline sand edge wall 98a and a sill on the wall. In the preferred embodiment, the polycrystalline sand edge wall _ _ can be made in the following steps, for example, about 1000A; then return to customs. In order to improve the complex晶 _98a; 98b conductivity, for example, arsenic ions can be implanted into polycrystalline complex 98a; 98b φ. ⑽ type etching method, and the etching protection layer 74 is used as the etching end point, the removal of the sand dioxide layer, that is, the removal of the insulating layer 94 and 80. By this step, the storage capacity of the storage capacitor of the dynamic random access memory is completed, which is shown by the trunk-like lower polycrystalline silicon layer 78a; Polycrystalline silicon layer 98a; 98b, and a branch-like dendritic polycrystalline sand layer 92a; 92b having only ~ branch-like l-shaped cross-section. The trunk-like lower polycrystalline silicon layer 78a; 78b is connected to the DRAM transfer circuit The crystal's drain region 16a; 16b, and has a u-shaped cross-section. The trunk-like upper polycrystalline silicon layer 98a; 98b lower end is connected to the trunk-like lower polycrystalline silicon layer 78a; 78b's periphery and It extends roughly vertically. Dendrite-like polycrystalline silicon layer 92a; 20 (Please read the precautions on the back before filling in this Page) Binding _ The size of the bound paper is applicable to China National Standard (CNS) 84 specifications (210X 297mm) 3Gq, QS5 F.DOC / 002 A7 B7_ V. Description of invention (β) 92b only has one from the cross-sectional view The branch resembling an L-shape 'from the trunk-like upper polycrystalline silicon layer 98a; the inner surface on one side of 98b' first toward the trunk-like upper polycrystalline sand layer 98a; the other After extending a distance from the inside, it then extends downward in about vertical direction. The subsequent process is no different from the traditional process, so it will not be repeated here. In the above-described first to third preferred embodiments, the dendritic electrode layers of the storage electrode all have an L-shaped cross section. However, the present invention is not limited thereto, and the dendritic electrode layer of the storage electrode may include other cross-sectional shapes. The next preferred embodiment will describe a storage electrode having a dendritic-like electrode layer having an L-like cross-section and a "one" -like cross-section. Furthermore, in the above-mentioned first to third preferred embodiments, the lower surface of the horizontal portion of the trunk-like lower polycrystalline silicon layer is in contact with the etching protection layer below it. However, the present invention is not limited to this. The next preferred embodiment is to describe the trunk-like lower polycrystalline silicon layer. The lower surface of the horizontal portion is not in contact with the etching protection layer under it, but is separated by a distance to increase storage. The surface area of the electrode. Next, with reference to FIGS. 5A to 5F, a fourth preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail. This preferred embodiment of a semiconductor memory device is a semiconductor memory of the present invention. The fourth preferred embodiment of the device manufacturing method. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2A, and then DRAM storage electrodes of different structures are manufactured by different processes. In Figs. 5A to 5F, the parts similar to those in Fig. 2A are marked with the same numbers. Please refer to Figure 2A and Figure 5A, and then deposit one by CVD method (please read the notes on the back before filling out this page). _ Printed and printed this paper The scale is applicable to the Chinese National Standard (CNS) Λ4 specification (210X297 mm) 0532TWF.DOC / 002 A7 B7 5. Description of the invention (11) The planarized insulating layer 100, an etch protection layer 102 and an insulating layer 104. The insulating layer 100 is, for example, BPSG with a thickness of about 7000A; the etch protection layer 102 is, for example, a silicon nitride layer with a thickness of about 1000A; the insulating layer 104 is, for example, a silicon dioxide layer with a thickness of about 1000A. After that, using traditional photomask patterning and etching techniques, the insulating layer 104, the etching protective layer 102, the planarizing insulating layer 100, and the gate oxide layer 14 are sequentially etched to form storage electrode contact windows 106a and 106b, which are formed by The upper surface of the insulating layer 104 extends to the surfaces of the drain regions 16a and 16b. Next, a polycrystalline silicon layer 108 is deposited. As shown in the figure, the polycrystalline silicon layer 108 covers the surface of the insulating layer 104 and the inner wall surfaces of the storage electrode contact windows 106a and 106b, but does not fill the storage electrode contact windows 106a and 106b, so that the polycrystalline sand layer 108 has a Hollow structural part like a U-shaped section. In order to improve the conductivity of the polycrystalline silicon layer 108, for example, arsenic ions can be implanted into the polycrystalline silicon layer 108. Please refer to FIG. 5B, and then deposit a thick insulating layer 110 on the surface of the polycrystalline silicon layer 108, which is, for example, a silicon dioxide layer with a thickness of, for example, about 7000A. Then, an insulating layer and a sacrificial polycrystalline silicon layer are sequentially deposited on the surface of the insulating layer 110 by the CVD method, and then the insulating layer and the sacrificial polycrystalline silicon layer are defined by using traditional mask making and etching techniques, thus forming 114b. The insulating layer 112a; 112b and the sacrificial polycrystalline silicon layer 114a; 114b. Among them, the insulating layer 112a; 112b is, for example, a silicon nitride layer, and the thickness is, for example, about 1000A, and the thickness of the sacrificial polycrystalline silicon layer 114a; 114b is, for example, about 1000A. The insulating layer 112a and the sacrificial polycrystalline silicon layer 114a form a stacked layer 112a; 114a, and the insulating layer 112b and the sacrificial polycrystalline silicon layer 114b form another stacked layer 112b; 114b. Stacked layers 112a; 114a and 112b; 114b are solid cylindrical, horizontal section can be 22 --------- 1 __ Pack-(please read the precautions on the back before filling this page) Order: line The size of the paper printed by the Central Standard Falcon Bureau Employee Consumer Cooperative is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) 0532TWF.DOC / 002 A7 B7 5. Description of the invention () mouth) round, rectangular or It is other shapes. The preferred positions corresponding to the center of the stacked layers 112a; 114a and 112b; 114b are roughly all at the same time biased to one side of the drain region 16a; 16b. In the preferred embodiment, the centers of the stacked layers 112a; 114a and 112b; 114b are all biased to the right of the drain region 16a; 16b. Thereafter, silicon dioxide sidewalls 116a and 116b are formed on the sidewalls of the stacked layers 112a; 114a and 112b; 114b, respectively. In the preferred embodiment, the silicon dioxide sidewalls 116a and 116b can be formed by the following steps: depositing a silicon dioxide layer with a thickness of, for example, about 1000A; and then etching back. Next, an insulating layer Π8 is deposited by CVD, which is, for example, a silicon nitride layer and has a thickness of about 2000A, for example. Furthermore, the insulating layer Π8 is lapped using a mechanochemical grinding technique until at least the portion above the stacked layers 112a; 114a and 112b; 114b is exposed. Please refer to FIG. 5C, and then use the stacked layers 112a; 114a and 11.2b; U4b, and the insulating layer 118 as an etching mask to etch and remove the silicon dioxide sidewalls 116a and 116b, and a portion of the insulating layer 110 below it. Then, using the sacrificial polycrystalline silicon layer 114a; 114b as an etching mask, the insulating layer 118 is etched away to form openings 120a and 120b. The depth of the openings 120a and 120b can be adjusted according to actual needs, as long as it is kept at a distance from the surface of the polycrystalline silicon layer 108. Please refer to FIG. 5D, and then deposit a polycrystalline silicon layer 122 on the surfaces of the stacked layers 112a; 114a and 112b; 114b, and the insulating layer 110, with a thickness of, for example, about 1000A to fill the openings 120a and 120b. In order to improve the conductivity of the polycrystalline silicon layer 122, for example, arsenic ions can be implanted into the polycrystalline silicon layer 122. Afterwards, the polycrystalline silicon layer 122 'is polished by mechanochemical polishing technology at least until the upper part of the insulating layer 112a; 112b is exposed, forming as 23---I-—— I ”I ^ 1 (please read the back (Notes to fill out this page)

、1T 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標隼(CNS ) A4規格(2丨OX 297公釐) 0532TWF.DOC/002 A7 經濟部中央標準局員工消費合作社印裂 五、發明説明(N ) 圖所示的複晶矽層122。在此步驟中,犧牲複晶矽層114a; 114b會被去除。 請參照第5E圖’接著以複晶矽層122與絕緣層uo爲 貪虫刻保護層,利用濕式触刻法去除絕緣層112a; 112b。之 後以CVD法沈積一絕緣層124,其例如是二氧化矽層,厚 度例如約2〇〇〇A。然後在絕緣層124表面以CVD法沈積一 複晶矽層I26,厚度例如約是1000A。再來利用傳統的光 罩製版與蝕刻技術’依序蝕刻複晶矽層126、絕緣層i24、 複晶矽層122、絕緣層11〇和複晶矽層1〇8,形成一開口 127,以界定出各記憶單元的儲存電容器之儲存電極。亦 即藉此步驟將複晶矽層122和1〇8切割成若干區段122a; 122b 和 108a; 108b。 請參照第5F圖,接著在開口 127的側壁上形成複晶矽 邊牆l28a和IMb。在本較佳實施例中,複晶矽邊牆128&; 128b可以以下列步驟形成:沈積一複晶矽層,其厚度例如 約ιοοοΑ ;再回蝕刻。爲了提高複晶矽層128a; 12朴的導 電性,可將例如砷離子植入到複晶矽層l28a; 128b中。之 後利用傳統的光罩製版與蝕刻技術,將複晶矽層116切割 成若干區段126a; 126b。最後利用濕式飽刻法,並以飽刻 保護層1〇2爲蝕刻終點,將暴露出的二氧化矽層去除,亦 即去除絕緣層m、110和104。藉此步驟即完成動態隨 機存取記憶體的儲存電容器之儲存電極,其如圖所示係由 類樹幹狀的下複晶砂層108a; 108b、類樹幹狀的上複晶砂 層128a; 128b、—具有似型剖面的類樹枝狀複晶砂層 ____ 24 尺度適用中國國家標2丨〇x297:^------- (請先閲讀背面之注意事項再填寫本頁) .裝. -,ιτ 線 A7 0532TWF.DOC/002 _____ _B7 五、發明説明(a ) ~ 126a; 126b以及一僅具有一支似L形剖面的類樹枝狀複晶 砂層l〗2a; 122b所一起構成。類樹幹狀的下複晶砂層1〇8a; l〇8b連接到DRAM的轉移電晶體之汲極區10a; 16b,且具 有一似U形的剖面。類樹幹狀的上複晶矽層i28a; 128b的 下端連接於類樹幹狀的下複晶矽層l〇8a; l〇8b的週邊,且 大致以垂直方向往上延伸出。類樹枝狀複晶矽層l26a; 126b大致係從類樹幹狀的上複晶矽層128a; 128b之上末端 內表面’以約水平方向往內延伸出。類樹枝狀複晶矽層122a; 122b自剖面觀之僅具有一支似L形的樹枝,其大致從類樹 幹狀的上複晶矽層128a; 128b之某一側的內表面,先以約 水平方向朝向類樹幹狀的上複晶矽層128a; 128b之另一內 側延伸出一段距離後,再以約垂直方向往下延伸出。接下 來之後續製程因無異於傳統製程,故在此不再贅述。 熟習此藝者應可瞭解,上述本發明各個較佳實施例的 構想特徵’除了可以單獨應用之外,亦可混合應用,而再 達成非常多種不同結構的儲存電極和儲存電容器,這些儲 存電極和儲存電容器的結構都應在本發明的保護範圍之 內。 應注意雖然在圖式中轉移電晶體的汲極均爲矽基底表 面的擴散區結構,然本發明並不限於此,任何適當的汲極 結構均可應用於本發明,例如溝槽式(trench )汲極即爲 一例。 再者,也應注意圖式中各構件部份的形狀、尺寸、和 延伸的角度,僅爲繪示方便所作的示意表示,其與實際情 25 本紙張尺度適用中國國家標率(CNS ) Λ4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -装- 訂 經濟部中央樣隼局員工消費合作社印裝 DOC/002 A7 B7 五、發明説明(乃) 況或有差異,故不應用以限制本發明。 雖然本發明已以若干較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍內,當可作些許之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者爲準。 (請先閲讀背面之注意事項再填寫本頁) -裝·、 1T The standard paper printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs applies to the Chinese National Standard Falcon (CNS) A4 specification (2 丨 OX 297mm) 0532TWF.DOC / 002 A7 The Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 2. Description of Invention (N) The polycrystalline silicon layer 122 shown in the figure. In this step, the sacrificial polycrystalline silicon layer 114a; 114b is removed. Please refer to FIG. 5E '. Then, the polycrystalline silicon layer 122 and the insulating layer uo are used as worm-etching protective layers, and the insulating layers 112a and 112b are removed by a wet touch etching method. Thereafter, an insulating layer 124 is deposited by CVD, which is, for example, a silicon dioxide layer, and has a thickness of, for example, about 2,000 A. Then, a polycrystalline silicon layer I26 is deposited on the surface of the insulating layer 124 by CVD with a thickness of about 1000A, for example. Then, the conventional photomask patterning and etching techniques are used to sequentially etch the polycrystalline silicon layer 126, the insulating layer i24, the polycrystalline silicon layer 122, the insulating layer 110 and the polycrystalline silicon layer 108 to form an opening 127, The storage electrodes of the storage capacitors of each memory cell are defined. That is, by this step, the polycrystalline silicon layers 122 and 108 are cut into sections 122a; 122b and 108a; 108b. Please refer to FIG. 5F, and then form polycrystalline silicon sidewalls 128a and IMb on the side walls of the opening 127. In this preferred embodiment, the polycrystalline silicon sidewall spacer 128 &; 128b can be formed by the following steps: depositing a polycrystalline silicon layer with a thickness of, for example, about ιοοοΑ; and then etching back. In order to improve the conductivity of the polycrystalline silicon layer 128a; 12 Pu, for example, arsenic ions can be implanted into the polycrystalline silicon layer 128a; 128b. Afterwards, the polycrystalline silicon layer 116 is cut into sections 126a; 126b using conventional photomask patterning and etching techniques. Finally, the wet etch method is used, and the etch end point of the etched protective layer 102 is used to remove the exposed silicon dioxide layer, that is, the insulating layers m, 110 and 104 are removed. By this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, which is shown as a trunk-like lower polycrystalline sand layer 108a; 108b, a trunk-like upper polycrystalline sand layer 128a; 128b,- The dendritic polycrystalline sand layer with a similar profile ____ 24 scales are applicable to the Chinese national standard 2 丨 〇x297: ^ ------- (please read the precautions on the back before filling out this page). Install.-, ιτ line A7 0532TWF.DOC / 002 _____ _B7 V. Description of the invention (a) ~ 126a; 126b and a dendrite-like polycrystalline sand layer with only one L-shaped profile l〗 2a; 122b. The trunk-like lower polycrystalline sand layer 10a; 10b is connected to the drain region 10a; 16b of the transfer transistor of the DRAM, and has a U-like profile. The lower end of the trunk-like upper polycrystalline silicon layer i28a; 128b is connected to the periphery of the trunk-like lower polycrystalline silicon layer 108a; 108b, and extends approximately vertically upward. The dendritic polycrystalline silicon layer 126a; 126b extends roughly from the trunk-like upper polycrystalline silicon layer 128a; the inner surface of the upper end of the upper end 128b inward in a horizontal direction. The dendritic polycrystalline silicon layer 122a; 122b only has an L-shaped branch from a cross-sectional view, which is roughly from the inner surface of one side of the trunk-like upper polycrystalline silicon layer 128a; 128b. The horizontal direction is toward the trunk-like upper polycrystalline silicon layer 128a; the other inner side of 128b extends a distance, and then extends downward in a vertical direction. The following subsequent processes are no different from traditional processes, so they will not be repeated here. Those skilled in the art should understand that the above-mentioned conceptual features of the preferred embodiments of the present invention can be used in addition to separate applications, and can also be used in combination, and then achieve a very wide variety of storage electrodes and storage capacitors of different structures. These storage electrodes and The structure of the storage capacitor should be within the protection scope of the present invention. It should be noted that although the drains of the transfer transistors in the drawings are all diffused region structures on the surface of the silicon substrate, the invention is not limited thereto, and any suitable drain structure can be applied to the invention, such as trench ) Jiji is an example. In addition, you should also pay attention to the shape, size, and extension angle of each component part in the diagram. It is only a schematic representation for convenience of drawing. It is in accordance with the actual situation. This paper scale is applicable to China National Standard Rate (CNS) Λ4 Specifications (210X 297mm) (Please read the precautions on the back before filling out this page)-Binding-Order DOC / 002 A7 B7 Printed by the Central Consumer Falcon Bureau of the Ministry of Economic Affairs DOC / 002 A7 B7 Difference, so it should not be used to limit the invention. Although the present invention has been disclosed above in a number of preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this skill can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of an invention shall be deemed as defined by the scope of the attached patent application. (Please read the precautions on the back before filling this page)

'1T 經濟部中央標準局員工消費合作社印製 26 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐)'1T Printed by Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 26 This paper standard applies to China National Standard (CNS) Α4 specification (210Χ297mm)

Claims (1)

經濟部中央標準局員工消費合作社印製 A8 053 2TWF.DOC/002 B8 C8 D8 六、申請專利範圍 1. 一種具有電容器的半導體記憶體元件之製造方法, 其中該半導體記憶體元件包括一基底、形成在該基底上的 一轉移電晶體、以及一儲存電容器電性耦接到該轉移電晶 體的汲極和源極區之一上,該製造方法包括下列步驟: a. 在該基底上形成一第一絕緣層,覆蓋住該轉移電晶 腫, b. 形成一第一導電層,穿過至少該第一絕緣層,與該 轉移電晶體的該汲極和源極區之一電性耦接; c. 形成一第二絕緣層; d. 在該第二絕緣層上方形成一堆疊層; e. 在該堆疊層側壁形成一第三絕緣層; f. 在該第二、第三絕緣層表面形成一第四絕緣層; g. 先去除該第三絕緣層與位在該第三絕緣層下方的部 份該第二絕緣層,再去除該第四絕緣層以形成一第一開 □; h. 在該堆疊層與第二絕緣層表面形成一第二導電層, 該第二導電層大致塡滿該第一開口; i. 去馀位在該堆疊層上方的該第二導電層; j. 去除該堆疊層; k. 形成一第五絕緣層; l. 定義該第一、第二導電層,形成一第二開口; m. 在該第二開口側壁形成一第三導電層,使得該第三 導電層大致連接在該第一導電層的周邊,而該第二導電層 的一末端連接在該第三導電層的內表面上,該第一、第三 27 (請先閱讀背面之注意事項再填寫本頁) -裝- 訂 本紙張尺度適用中國國家標準(CNS ) A4現格(210X297公釐) 0532TWF.DOC/002 Α8 Β8 C8 D8 六、申請專利範圍 導電層構成一類樹幹狀導電層,該第二導電層構成一類樹 枝狀導電層,且該第一、第二'第三導電層樽成該儲存電 容器的一儲存電極; η.去除該第二、第五絕緣層; 〇.在該第一、第二、第三導電層暴露出的表面上,形 成一介電層;以及 Ρ.在該介電層的表面上,形成一第四導電層以構成該 儲存電容器的一相對電極。 2. 如申請專利範圍第1項所述之製造方法,其中該類 樹幹狀導電層包括一下樹幹部,電性耦接到該轉移電晶體 的該汲極和源極區之一上;以及一上樹幹部,大致以垂直 方向自該下樹幹部的周邊往上延伸出。 3. 如申請專利範圍第2項所述之製造方法,其中該下 樹幹部具有一似Τ型的剖面。 4. 如申請專利範圍第2項所述之製造方法,其中該下 樹幹部具有一似U型的剖面。 5. 如申請專利範圍第4項所述之製造方法,其中該步 驟b包括形成該第一導電層具有一似υ型的剖面部份。 6. 如申請專利範圍第1項所述之製造方法,其中該步 驟d中之該堆疊層的形成方式包括下列步驟: 在該第二絕緣層上方依序形成一第一膜層與一第二膜 層’其中該第二膜層係由導電材料製成,而該第一膜層係 由絕緣材料製成; 定義該第一 '第二膜層,形成該堆疊層。 28 本紙很尺度通用τ國國豕標準(CNS) M規格(210><297公釐 (請先閲讀背面之注意事項再填寫本頁) 裝· 訂- 經濟部中央標準局員工消費合作社印製 經濟部中央標準局員工消費合作社印裝 A8 0532TWF.DOC/002 β8 C8 D8 六、申請專利範圍 7. 如申請專利範圍第1項所述之製造方法,其中在步 驟k之後和步驟1之前更包括下列步驟:先形成一第五導 電層;其中該步驟1更包括定義該第五導電層的步驟;其 中該步驟m更包括在形成該第三導電層之後,再分開該第 五導電層位在該第五絕緣層上方的部份,使該第五導電層 構成該類樹枝狀導電層的一部份;且其中該步驟〇更包括 在該第一、第二、第四、第五導電層暴露出的表面上形成 一介電層。 8. 如申請專利範圍第7項所述之製造方法,其中該第 五導電層具有一似“一”型的剖面,且其一末端連接在該類 樹幹狀導電層的內表面上。 9. 如申請專利範圍第1項所述之製造方法,其中在步 驟a之後和步驟b之前,更包括形成一蝕刻保護層在該第 一絕緣層上的步驟;且其中該步驟b更包括形成該第一導 電層穿過該蝕刻保護層的步驟。 10. 如申請專利範圍第9項所述之製造方法,其中該步 驟d中之該堆疊層的形成方式包括下列步驟: 在該第二絕緣層上方依序形成一第一膜層與一第二膜 層,其中該第二膜層係由導電材料製成,而該第一膜層係 由絕緣材料製成; 定義該第一、第二膜層,形成該堆疊層。 11. 如申請專利範圍第9項所述之製造方法,其中在步 驟k之後和步驟1之前更包括下列步驟:先形成一第五導 電層;其中該步驟1更包括定義該第五導電層的步驟;其 29 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨0X 297公釐) --------^——装------1T------# (請先閱讀背面之注意事項再填寫本頁) ABCD 053 2TWF.DOC/002 六、申請專利範圍 中該步驟m更包括在形成該第三導電層之後,再分開該第 五導電層位在該第五絕緣層上方的部份,使該第五導電層 構成該類樹枝狀導電層的一部份;且其中該步驟〇更包括 在該第一、第二、第四、第五導電層暴露出的表面上形成 一介電層。 12. 如申請專利範圍第11項所述之製造方法,其中該 第五導電層具有一似“一”型的剖面,且其一末端連接在該 類樹幹狀導電層的內表面上。 13. 如申請專利範圍第1項所述之製造方法,其中在步 驟j之後和步驟k之前更包括至少重複一次步驟c至步驟j 的步驟;且其中在該步驟m中,該些第二導電層形成至少 二層的類樹枝狀導電層,該些類樹枝狀導電層大致平行且 其中一末端均分別連接在該第三導電層的內表面上。 14. 如申請專利範圍第13項所述之製造方法,其中該 類樹幹狀導電層包括一下樹幹部,電性耦接到該轉移電晶 體的該汲極和源極區之一上;以及一上樹幹部,大致以垂 直方向自該下樹幹部的周邊往上延伸出。 15. 如申請專利範圍第14項所述之製造方法,其中該 下樹幹部具有一似T型的剖面。 16. 如申請專利範圍第14項所述之製造方法,其中該 下樹幹部具有一似U型的剖面。 17. 如申請專利範圍第16項所述之製造方法,其中該 步驟b包括形成該第一導電層具有一似U型的剖面部份。 18. 如申請專利範圍第13項所述之製造方法,其中該 30 ---------装------1T----- (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標隼局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 丨丨,y ^vriViiii yrrr fin nii · ·'" -*** i - ^1,1 0532TWF.DOC/002 A8 B8 C8 D8 經濟部中央標準局員工消費合作社印製 六、申請專利範圍 步驟d中之該堆疊層的形成方式包括下列步驟·’ 在該第二絕緣層上方依序形成一第一膜i與一第二膜 層,其中該第二膜層係由導電材料製成,而該第一膜層係 由絕緣材料製成; 定義該第一、第二膜層,形成該堆疊層。 19. 如申請專利範圍第13項所述之製造方法,其中在 步驟k之後和步驟1之前更包括下列步驟:先形成一第五 導電層;其中該步驟1更包括定義該第五導電層的步驟; 其中該步驟m更包括在形成該第三導電層之後,再分開該 第五導電層位在該第五絕緣層上方的部份,使該第五導電 層構成該類樹枝狀導電層的一部份;且其中該步驟〇更包 括在該第一、第二、第四、第五導電層暴露出的表面上形 成一介電層。 20. 如申請專利範圍第19項所述之製造方法,其中該 第五導電層具有一似“一”型的剖面,且其一末端連接在該 類樹幹狀導電層的內表面上。 21. 如申請專利範圍第13項所述之製造方法,其中在 步驟a之後和步驟b之前,更包括形成一蝕刻保護層在該 第一絕緣層上的步驟;且其中該步驟b更包括形成該第一 導電層穿過該蝕刻保護層的步驟。 22. 如申請專利範圍第1項所述之製造方法,其中在步 驟a之後和步驟b之前,更包括下列步驟:先形成一蝕刻 保護層在該第一絕緣層上,接著再形成一第六絕緣層在該 蝕刻保護層上;其中該步驟b更包括形成該第一導電層穿 3 1 ---------^------ΐτ------# (請先閲讀背面之注意事項再填寫本頁) 本紙悵尺度適用中國國家標準(CNS > Α4規格(210Χ297公釐) 0532TWF.DOC/002 Α8 Β8 C8 D8 六、申請專利範圍 過該第六絕緣層與該蝕刻保護層的步驟;且其中該步驟n 更包括去除該第六絕緣層的步驟。 23·如申請專利範圍第22項所述之製造方法,其中該 步驟d中之該堆疊層的形成方式包括下列步驟: 在該第二絕緣層上方依序形成一第一膜層與一第二膜 層,其中該第二膜層係由導電材料製成,而該第一膜層係 由絕緣材料製成; 定義該第一、第二膜層,形成該堆疊層。 24. 如申請專利範圍第22項所述之製造方法,其中在 步驟k之後和步驟1之前更包括下列步驟:先形成一第五 導電層;其中該步驟1更包括定義該第五導電層的步驟; 其中該步驟m更包括在形成該第三導電層之後,再分開該 第五導電層位在該第五絕緣層上方的部份,使該第五導電 層構成該類樹枝狀導電層的一部份;且其中該步驟〇更包 括在該第一、第二、第四、第五導電層暴露出的表面上形 成一介電層。 25. 如申請專利範圍第24項所述之製造方法,其中該 第五導電層具有一似“一”型的剖面,且其一末端連接在該 類樹幹狀導電層的內表面上。 26. 如申請專利範圍第22項所述之製造方法,其中在 步驟j之後和步驟k之前更包括至少重複一次步驟c至步 驟j的步驟;且其中在該步驟m中,該些第二導電層形成 至少二層的類樹枝狀導電層,該些類樹枝狀導電層大致平 行且其中一末端均分別連接在該第三導電層的內表面 32 ---------^------,订------^ (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家榡準(CNS ) A4現格(21〇><297公釐〉A8 053 2TWF.DOC / 002 B8 C8 D8 is printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. 6. Patent application 1. A method for manufacturing a semiconductor memory device with a capacitor, wherein the semiconductor memory device includes a substrate A transfer transistor on the substrate and a storage capacitor are electrically coupled to one of the drain and source regions of the transfer transistor, the manufacturing method includes the following steps: a. Forming a first on the substrate An insulating layer covering the transfer transistor, b. Forming a first conductive layer, through at least the first insulating layer, and the transfer transistor is electrically coupled to one of the drain and source regions; c. forming a second insulating layer; d. forming a stacked layer above the second insulating layer; e. forming a third insulating layer on the side wall of the stacked layer; f. formed on the surface of the second and third insulating layers A fourth insulating layer; g. First remove the third insulating layer and the portion of the second insulating layer below the third insulating layer, and then remove the fourth insulating layer to form a first opening □; h. In the stacked layer and the first A second conductive layer is formed on the surface of the two insulating layers, the second conductive layer substantially filling the first opening; i. Removing the second conductive layer above the stacked layer; j. Removing the stacked layer; k. Forming a fifth insulating layer; l. Defining the first and second conductive layers to form a second opening; m. Forming a third conductive layer on the side wall of the second opening so that the third conductive layer is substantially connected to the The periphery of the first conductive layer, and one end of the second conductive layer is connected to the inner surface of the third conductive layer, the first and third 27 (please read the precautions on the back before filling in this page)- -The size of the printed paper is in accordance with the Chinese National Standard (CNS) A4 format (210X297mm) 0532TWF.DOC / 002 Α8 Β8 C8 D8 VI. Patent application The conductive layer constitutes a type of trunk-like conductive layer, and the second conductive layer constitutes a type A dendritic conductive layer, and the first and second conductive layers form a storage electrode of the storage capacitor; η. Remove the second and fifth insulating layers; 〇. In the first, second, and On the exposed surface of the three conductive layers, the shape A dielectric layer; Ρ and the surface of the dielectric layer, forming a fourth conductive layer to form an opposing electrode of the storage capacitor. 2. The manufacturing method as described in item 1 of the patent application scope, wherein the trunk-like conductive layer includes a trunk portion electrically coupled to one of the drain and source regions of the transfer transistor; and a The upper trunk portion extends approximately vertically from the periphery of the lower trunk portion. 3. The manufacturing method as described in item 2 of the patent application scope, wherein the lower trunk portion has a T-shaped cross section. 4. The manufacturing method as described in item 2 of the patent application scope, wherein the lower trunk portion has a U-shaped section. 5. The manufacturing method as described in item 4 of the patent application scope, wherein the step b includes forming the first conductive layer to have a υ-shaped cross-sectional portion. 6. The manufacturing method as described in item 1 of the patent application scope, wherein the forming method of the stacked layer in step d includes the following steps: sequentially forming a first film layer and a second layer on the second insulating layer The film layer wherein the second film layer is made of a conductive material, and the first film layer is made of an insulating material; the first film layer is defined to form the stacked layer. 28 This paper is very standard and universal τ National Standard (CNS) M specifications (210 > < 297mm (please read the precautions on the back before filling in this page) Binding · Order-Printed by the Employees Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A8 0532TWF.DOC / 002 β8 C8 D8 printed by the Employees ’Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 6. Scope of patent application 7. The manufacturing method as described in item 1 of the scope of patent application, including after step k and before step 1 The following steps: first forming a fifth conductive layer; wherein step 1 further includes the step of defining the fifth conductive layer; wherein step m further includes separating the fifth conductive layer after forming the third conductive layer The portion above the fifth insulating layer makes the fifth conductive layer a part of the dendritic conductive layer; and wherein the step 〇 further includes the first, second, fourth, and fifth conductive layers A dielectric layer is formed on the exposed surface. 8. The manufacturing method as described in item 7 of the patent application range, wherein the fifth conductive layer has a "1" -like cross-section, and one end is connected to this type Trunk guide On the inner surface of the layer 9. The manufacturing method as described in item 1 of the patent application scope, wherein after step a and before step b, a step of forming an etching protection layer on the first insulating layer is further included; and wherein The step b further includes the step of forming the first conductive layer through the etching protection layer. 10. The manufacturing method as described in item 9 of the patent application scope, wherein the forming method of the stacked layer in the step d includes the following steps : Forming a first film layer and a second film layer in sequence on the second insulating layer, wherein the second film layer is made of conductive material, and the first film layer is made of insulating material; Definition The first and second film layers form the stacked layer. 11. The manufacturing method as described in item 9 of the patent application scope, wherein after step k and before step 1 the following steps are further included: first forming a fifth conductive layer ; The step 1 further includes the step of defining the fifth conductive layer; its 29 paper scales are applicable to the Chinese National Standard (CNS) A4 specification (2 丨 0X 297mm) -------- ^ —— 装------ 1T ------ # (Please read the notes on the back first (Fill in this page again) ABCD 053 2TWF.DOC / 002 6. In the scope of patent application, step m further includes separating the portion of the fifth conductive layer above the fifth insulating layer after forming the third conductive layer , Making the fifth conductive layer a part of the dendritic conductive layer; and wherein the step 〇 further includes forming a dielectric on the exposed surfaces of the first, second, fourth, and fifth conductive layers 12. The manufacturing method as described in item 11 of the patent application scope, wherein the fifth conductive layer has a "1" -like cross-section, and one end thereof is connected to the inner surface of the trunk-like conductive layer. 13. The manufacturing method as described in item 1 of the patent application scope, wherein after step j and before step k, the steps of step c to step j are repeated at least once; and wherein in step m, the second conductive The layers form at least two layers of dendritic conductive layers, the dendritic conductive layers are substantially parallel and one of the ends is respectively connected to the inner surface of the third conductive layer. 14. The manufacturing method as described in item 13 of the patent application scope, wherein the trunk-like conductive layer includes a trunk portion electrically coupled to one of the drain and source regions of the transfer transistor; and a The upper trunk portion extends approximately vertically from the periphery of the lower trunk portion. 15. The manufacturing method as described in item 14 of the patent application scope, wherein the lower trunk portion has a T-shaped section. 16. The manufacturing method as described in item 14 of the patent application scope, wherein the lower trunk portion has a U-shaped section. 17. The manufacturing method as described in item 16 of the patent application scope, wherein the step b includes forming the first conductive layer to have a U-shaped cross-sectional portion. 18. The manufacturing method as described in item 13 of the patent application scope, in which the 30 --------- installed ------ 1T ----- (please read the precautions on the back before filling in This page) The paper standard printed by the Employee Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economic Affairs is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 丨 丨, y ^ vriViiii yrrr fin nii · · "-*** i -^ 1,1 0532TWF.DOC / 002 A8 B8 C8 D8 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 6. The scope of patent application step d. The formation of the stacked layer includes the following steps. A first film i and a second film layer are sequentially formed on the top, wherein the second film layer is made of conductive material, and the first film layer is made of insulating material; define the first and second films Layer to form the stacked layer. 19. The manufacturing method as described in item 13 of the patent application scope, wherein after step k and before step 1 the following steps are further included: first forming a fifth conductive layer; wherein step 1 further includes defining the fifth conductive layer Step; wherein the step m further includes separating the portion of the fifth conductive layer above the fifth insulating layer after forming the third conductive layer, so that the fifth conductive layer constitutes the type of dendritic conductive layer Part; and wherein the step 0 further includes forming a dielectric layer on the exposed surfaces of the first, second, fourth, and fifth conductive layers. 20. The manufacturing method as described in item 19 of the scope of the patent application, wherein the fifth conductive layer has a "one" -like cross-section, and one end thereof is connected to the inner surface of the trunk-like conductive layer of this type. 21. The manufacturing method as described in item 13 of the patent application scope, wherein after step a and before step b, a step of forming an etching protection layer on the first insulating layer is further included; and wherein step b further includes forming The first conductive layer passes through the step of etching the protective layer. 22. The manufacturing method as described in item 1 of the patent application scope, wherein after step a and before step b, the following steps are further included: first forming an etching protection layer on the first insulating layer, and then forming a sixth The insulating layer is on the etching protection layer; wherein the step b further includes forming the first conductive layer through 3 1 --------- ^ ------ 1τ ------ # (Please Please read the precautions on the back before filling in this page) The standard of this paper is applicable to the Chinese National Standard (CNS & Α4 specification (210Χ297mm) 0532TWF.DOC / 002 Α8 Β8 C8 D8 VI. The scope of patent application exceeds the sixth insulation layer and The step of etching the protective layer; and wherein the step n further includes the step of removing the sixth insulating layer. 23. The manufacturing method as described in item 22 of the patent application scope, wherein the forming method of the stacked layer in the step d The method includes the following steps: forming a first film layer and a second film layer in sequence on the second insulating layer, wherein the second film layer is made of conductive material, and the first film layer is made of insulating material Success; define the first and second film layers to form the stacked layer. The manufacturing method as described in item 22 of the patent application scope, wherein after step k and before step 1 the following steps are further included: first forming a fifth conductive layer; wherein step 1 further includes the step of defining the fifth conductive layer; Wherein the step m further includes separating the portion of the fifth conductive layer above the fifth insulating layer after forming the third conductive layer, so that the fifth conductive layer constitutes a part of the dendritic conductive layer Part; and wherein the step 〇 further includes forming a dielectric layer on the exposed surface of the first, second, fourth, and fifth conductive layers. 25. The manufacturing method as described in item 24 of the patent scope, Wherein, the fifth conductive layer has a “one” -like cross-section, and one end is connected to the inner surface of the trunk-like conductive layer. 26. The manufacturing method as described in item 22 of the patent application scope, in which After step j and before step k, the steps from step c to step j are repeated at least once; and wherein in step m, the second conductive layers form at least two layers of dendritic conductive layers, the dendritic like The conductive layer is roughly Parallel and one of the ends are respectively connected to the inner surface 32 of the third conductive layer --------- ^ ------, order -------- ^ (please read the note on the back first Please fill in this page again.) The paper standard printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs is applicable to the Chinese National Standard (CNS) A4 (21〇 < 297mm) A8 B8 C8 D8 六、申請專利範圍上。 (請先閲讀背面之注意事項再填寫本頁) 裝. 訂 線1 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210乂297公嫠)A8 B8 C8 D8 6. The scope of patent application. (Please read the precautions on the back before filling in this page) Binding. Thread 1 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs This paper standard applies to the Chinese National Standard (CNS) A4 (210 to 297 gong)
TW85110003A 1996-08-16 1996-08-16 Manufacturing method of semiconductor memory device with capacitor (part 7) TW306035B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
TW85110003A TW306035B (en) 1996-08-16 1996-08-16 Manufacturing method of semiconductor memory device with capacitor (part 7)
US08/751,442 US5759890A (en) 1996-08-16 1996-11-18 Method for fabricating a tree-type capacitor structure for a semiconductor memory device
GB9701964A GB2321775A (en) 1996-08-16 1997-01-30 Method for fabricating a capacitor structure for a semiconductor memory device
JP9091181A JPH1079477A (en) 1996-08-16 1997-04-09 Manufacture of capacitor structure for semiconductor storage device
FR9705124A FR2752487A1 (en) 1996-08-16 1997-04-25 METHOD FOR MANUFACTURING A CAPACITOR ELECTRODE FOR A SEMICONDUCTOR DEVICE
DE19720166A DE19720166C2 (en) 1996-08-16 1997-05-14 Method of manufacturing a storage electrode for a storage capacitor for use in a semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW85110003A TW306035B (en) 1996-08-16 1996-08-16 Manufacturing method of semiconductor memory device with capacitor (part 7)

Publications (1)

Publication Number Publication Date
TW306035B true TW306035B (en) 1997-05-21

Family

ID=51566044

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85110003A TW306035B (en) 1996-08-16 1996-08-16 Manufacturing method of semiconductor memory device with capacitor (part 7)

Country Status (1)

Country Link
TW (1) TW306035B (en)

Similar Documents

Publication Publication Date Title
TW304288B (en) Manufacturing method of semiconductor memory device with capacitor
TW308727B (en) Semiconductor memory device with capacitor (4)
TW304290B (en) The manufacturing method for semiconductor memory device with capacitor
TW311239B (en)
GB2321768A (en) Stacked capacitor
TW312831B (en) Manufacturing method of semiconductor memory device with capacitor(3)
TW312829B (en) Semiconductor memory device with capacitor(6)
TW306064B (en) Semiconductor memory device with capacitor (part 6)
TW306035B (en) Manufacturing method of semiconductor memory device with capacitor (part 7)
TW388093B (en) Method for fabricating DRAM cell capacitor
TW312828B (en) Manufacturing method of semiconductor memory device with capacitor(5)
TW308729B (en) Semiconductor memory device with capacitor (3)
TW506121B (en) Circuit-arrangement with at least one capacitor and at least one transistor connected with the capacitor
US5796138A (en) Semiconductor memory device having a tree type capacitor
US5739060A (en) Method of fabricating a capacitor structure for a semiconductor memory device
TW312830B (en) Semiconductor memory device with capacitor(7)
TW306065B (en) Semiconductor memory device with capacitor (part 5)
TW304289B (en) Manufacturing method of semiconductor memory device with capacitor
TW301055B (en) Fabrication method of dynamic random access memory with vertical channel and structure thereof
TW308728B (en) Semiconductor memory device with capacitor (4)
JPH1079490A (en) Capacitor structure of semiconductor memory device
TW306063B (en) Semiconductor memory device with capacitor (part 2)
TW415002B (en) Fabrication of multi-anchor capacitor of semiconductor memory
TW309644B (en) Semiconductor memory device with capacitor (3)
TW386308B (en) Method of producing capacitor structure of DRAM device