TW309644B - Semiconductor memory device with capacitor (3) - Google Patents
Semiconductor memory device with capacitor (3) Download PDFInfo
- Publication number
- TW309644B TW309644B TW85110009A TW85110009A TW309644B TW 309644 B TW309644 B TW 309644B TW 85110009 A TW85110009 A TW 85110009A TW 85110009 A TW85110009 A TW 85110009A TW 309644 B TW309644 B TW 309644B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- conductive layer
- forming
- manufacturing
- insulating layer
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
03 I3twf.doc/002 A7 B7 五、發明説明(I ) 本發明是有關於一種具有電容器的半導體記憶體元 件(Semiconductor Memory Device ),且特別是有關於一 種動態隨機存取記憶體(Dynamic Random Access Memory; DRAM )的一記憶單元(Memory Cell )結構,其包含一 轉移電晶體(Transfer Transistor )和一樹型(tree-type ) 儲存電容器。 第1圖是一 DRAM元件的一記憶單元之電路示意圖。 如圖所示,一個記憶單元是由一轉移電晶體T和一儲存電 容器C組成。轉移電晶體T的源極係連接到一對應的位元 線BL,汲極連接到儲存電容器C的一儲存電極6 ( storage electrode ),而閘極則連接到一對應的字元線WL。儲存 電容器C的一相對電極8 ( opposed electrode )係連接到 一固定電壓源,而在儲存電極6和相對電極8之間則設置 —介電膜層7。 在傳統DRAM的儲存電容量少於1M ( mega=百萬) 位元時,於積體電路製程中,主要是利用二度空間的電容 器來實現,亦即泛稱的平坦型電容器(planar type capacitor ) ^ —平坦型電容器需佔用半導體基底的一相當 大的面積來儲存電荷,故並不適合應用於高度的積集化。 高度積集化的DRAM,例如大於4M位元的儲存電容量者, 需要利用三度空間的電容器來實現,例如所謂的堆叠型 (stacked type )或溝槽型(trench type )電容器。 與平坦型電容器比較,堆叠型或溝槽型電容器可以在 記憶單元的尺寸已進一步縮小的情況下,仍能獲得相當大 的電容量。雖然如此,當記憶體元件再進入更高度的積集 4 本紙張尺度適用中國困家橾準(CNS > A4规格(2丨OX297公 1> HM· ί I ·*· (請先阶讀背面之注意事項再填寫本頁) 訂 經濟部中央橾準局貝工消費合作社印裝 •ίΊ03 I3twf.doc / 002 A7 B7 V. Description of the invention (I) The present invention relates to a semiconductor memory device with capacitor (Semiconductor Memory Device), and in particular to a dynamic random access memory (Dynamic Random Access Memory) Memory; DRAM), a memory cell (Memory Cell) structure, which includes a transfer transistor (Transfer Transistor) and a tree-type (tree-type) storage capacitor. Figure 1 is a schematic circuit diagram of a memory cell of a DRAM device. As shown in the figure, a memory cell is composed of a transfer transistor T and a storage capacitor C. The source of the transfer transistor T is connected to a corresponding bit line BL, the drain is connected to a storage electrode 6 (storage electrode) of the storage capacitor C, and the gate is connected to a corresponding word line WL. A opposed electrode 8 of the storage capacitor C is connected to a fixed voltage source, and a dielectric film layer 7 is provided between the storage electrode 6 and the opposite electrode 8. When the storage capacity of the traditional DRAM is less than 1M (mega = million) bits, in the integrated circuit manufacturing process, it is mainly realized by using a capacitor of a two-dimensional space, which is generally known as a planar type capacitor. ^ —Flat-type capacitors require a considerable area of the semiconductor substrate to store charge, so they are not suitable for high accumulation. Highly integrated DRAMs, such as those with a storage capacity of more than 4M bits, need to be implemented with three-dimensional capacitors, such as so-called stacked type or trench type capacitors. Compared with flat capacitors, stacked or trench capacitors can still obtain considerable capacitance even when the size of the memory cell has been further reduced. Nonetheless, when the memory element enters a higher level of accumulation, the 4 paper scales are suitable for China ’s poor family (CNS > A4 specifications (2 丨 OX297 公 1> HM · ί I · * · (please read the back Please pay attention to this matter and then fill out this page) Order the printing of the Beigong Consumer Cooperative of the Central Bureau of Economic Affairs of the Ministry of Economic Affairs • ίΊ
309例*4 I f.doc/002 A7 B7 經濟部中央樣準局WC工消费合作社印裝 五、發明説明(义) 化時,例如具有64M位元容量的DRAM,單純的三度空間 電容器結構已不再適用。 解決之道之一是利用所謂的鰌型(fin type )堆叠電容 器。鰭型堆叠電容器之相關技術可參考Ema等人的論文 “3-Dimensional Stacked Capacitor Cell for 16M and 64M DRAMsM, International Electron Devices Meeting, pp. 592-595,Dec. 1988 »鰭型堆叠電容器主要是其電極和介電膜層 係由複數個堆叠層,延伸成一水平鰭狀結構,以便增加電 極的表面積。DRAM的鰭型堆叠電容器的相關美國專利 可以參考第 5,071,783 號、第 5,126,810 號、第 5,196,365 號、以及第5,206,787號。 另一種解決之道是利用所謂的筒型(cylindrical type) 堆叠電容器。筒型堆叠電容器之相關技術可參考Wakamiya 等人的論文 “Novel Stacked Capacitor Ceil for 64-Mb DRAM”,1989 Symposium on VLSI Technology Digest of Technical Papers, pp. 69-70。筒型堆叠電容器主要是其電 極和介電膜層係延伸成一垂直筒狀結構,以便增加電極的 表面積。DRAM的筒型堆叠電容器的相關美國專利可以 參考第5,077,688號。 隨著積集度的不斷增加,DRAM記憶單元的尺寸仍會 再縮小。如熟習此藝者所知,記憶單元尺寸縮小,儲存電 容器的電容値也會滅少。電容値的減少將導致因α射線入 射所引起的軟錯誤(soft error )機會增加。因此,此藝者 仍不斷在尋找新的儲存電容器結構及其製造方法,希望在 儲存電容器所佔的平面尺寸被縮小的情況’仍能維持所要 5 (請^讀背面之注$項再填寫本頁) Γ .裝. 訂309 cases * 4 I f.doc / 002 A7 B7 Printed by the WC Industrial Consumer Cooperative of the Central Prototype Bureau of the Ministry of Economic Affairs V. Description of invention (meaning) For example, a DRAM with a 64M bit capacity and a simple three-dimensional space capacitor structure Is no longer applicable. One solution is to use so-called fin type stacked capacitors. For the related technology of fin-type stacked capacitors, please refer to the paper “3-Dimensional Stacked Capacitor Cell for 16M and 64M DRAMsM, International Electron Devices Meeting, pp. 592-595, Dec. 1988” of Ema et al. And the dielectric film layer is composed of a plurality of stacked layers, extending into a horizontal fin structure, in order to increase the surface area of the electrode. DRAM fin-type stacked capacitors related U.S. patents can refer to 5,071,783, 5,126,810, No. No. 5,196,365, and No. 5,206,787. Another solution is to use the so-called cylindrical type (stack type capacitor). The related technology of the cylindrical type stack capacitor can refer to the paper "Novel Stacked Capacitor Ceil for 64-" by Wakamiya et al. Mb DRAM ", 1989 Symposium on VLSI Technology Digest of Technical Papers, pp. 69-70. The barrel-type stacked capacitor mainly has its electrodes and dielectric film layers extended into a vertical barrel structure in order to increase the surface area of the electrodes. The barrel of DRAM Related US patents for stacked capacitors can refer to No. 5,077,688. With the degree of accumulation The size of the DRAM memory cell will continue to shrink as it continues to increase. As is known to those skilled in the art, the reduction in the size of the memory cell will reduce the capacitance value of the storage capacitor. The reduction in the capacitance value will result in The chance of soft errors increases. Therefore, this artist is still constantly looking for new storage capacitor structures and manufacturing methods, hoping that the storage capacitors will be able to maintain the desired size 5 (Please ^ read (Note the item on the back and fill in this page) Γ. Pack. Order
C 線 本紙張尺度適用中國國家橾準(CNS )八4«1格(210Χ297公釐) 03 1 3twf.doc/002 A7 B7 經濟部中央橾準局負工消费合作社印裝 五、發明説明(彡) 的電容値。 緣此,本發明的一主要目的就是在提供一種具有電容 器的半導體記憶體元件,其電容器具有一樹狀結構,以增 加電容器的儲存電極之表面積。 依照本發明之一特點,提供一種具有電容器的半導體 記憶體元件之製造方法,其中半導體記憶體元件包括〜基 底、形成在基底上的一轉移電晶體、以及一儲存電容器電 性耦接到轉移電晶體的汲極和源極區之一上。該製造方法 包括下列步驟:a.在基底上形成一第一絕緣層,覆蓋住轉 移電晶體;b.形成一第一導電層,穿過至少第一絕緣層, 與轉移電晶體的汲極和源極區之一電性耦接;c.在第一導 電層上形成一柱狀層;d.在柱狀層表面和第一導電層上, 形成一第二導電層;e.定義第二導電層,分開其位在柱狀 層上方的部份;f.定義第二導電層與第一導電層,形成一 開口; g.在開口側壁形成一中空筒狀之第三導電屠,連接 於第一導電層的週邊,第三導電層與第一導電層構成一類 樹幹狀導電層,而第二導電層的一末端連接在第三導電層 的內表面上,構成一類樹枝狀導電層,且第一、第二和第 三導電層構成儲存電容器的一儲存電極:h..去除柱狀 層;i.在第一、第二和第三導電層曝露出的表面上,形成 一介電層;以及j.在介電層的一表面上,形成一第四導電 層以構成儲存電容器的一相對電極。 依照本發明的一較佳實施例,類樹幹狀導電層包括一 下樹幹部,電性耦接到轉移電晶體的汲極和源極區之一 上:以及一上樹幹部,從下樹幹部的週邊大致向上延伸出。 本紙張尺度適用中國®家橾準(CNS > Α4规格(210Χ297公釐) η 先 讀 背 裝 訂 線 309644 f.doc/002 A7 經濟部中央橾準局貝工消費合作社印製 B7 五、發明説明(令) 本發明的方法在步驟a之後和步驟b之前,可更包括形成 一蝕刻保護層在第一絕緣層上的步驟。在一較佳實施例 中,步驟e可包括蝕刻掉第二導電層位於柱狀層上方的一 部份。在另一較佳實施例中,步驟e可包括以化學機械式 硏磨法,硏磨掉第二導電層位於柱狀層上方的部份。 依照本發明的又一較佳實施例,步驟c可包括下列步 驟:在第一導電層上形成一厚絕緣層;在厚絕緣層上形成 一光阻,不覆蓋住計畫的凹口部份;蝕刻掉未被覆蓋住的 厚絕緣層之一部份;浸蝕光阻,再露出一部份厚絕緣層; 蝕刻掉露出的厚絕緣層之一部份至第一導電層露出爲 止,使形成的柱狀層具有一階梯狀;以及去光阻。 依照本發明的再一較佳實施例,在步驟a之後和步驟b 之前,更包括下列步驟:先形成一蝕刻保護層在第一絕緣 層上,接著再形成一第四絕緣屠在蝕刻保護層上。步驟b 更包括形成第一導電餍’穿過第四絕緣層與蝕刻保護層的 步驟。步驟h更包括去除第四絕緣層的步驟。 依照本發明的另一較佳實施例’ 一種具有電容器的半 導體記憶體元件之製造方法包括下列步驟:在基底上形成 一第一絕緣層,覆蓋住轉移電晶體。形成一第一導電層, 穿過至少第一絕緣層,與轉移電晶體的汲極和源極區之一 電性耦接。形成一柱狀層在第一導電層上’並在柱狀層表 面和第一導電層上,交互形成第一和第二膜層至少一次, 其中,第二膜層係由導電材料製成’而第一膜層係由絕緣 材料製成。定義第二膜層’分開其位在柱狀層上方的部份。 定義第二膜層、第一膜層與第一導電層,形成一開口。在 7 本紙張尺纽財賴家料(CNS >八4祕(21GX297公羞) (請先聞讀背面之注f項再填寫本頁) .裝. 訂 線. 03 I 3twf.doc/002 A7 經濟部中央揉準局員工消費合作社印製 五、發明説明(夕) 開口側壁形成一中空筒狀之第二導電層,連接於第一導電 層的週邊,第二導電層與第一導電層構成一類樹幹狀導電 層;而第二膜層的一末端連接在第二導電層的內表面上, 構成一類樹枝狀導電層,且第一導電層、第二膜層和第二 導電層構成儲存電容器的一儲存電極。去除柱狀層與第一 膜層,在第一導電層、第二膜層和第二導電層曝露出的表 面上,形成一介電層。在介電層的一表面上,形成一第三 導電層,以構成儲存電容器的一相對電極。 依照本發明的再一較佳實施例,一種具有電容器的半 導體記憶體元件之製造方法包括下列步驟:在基底上形成 一第一絕緣層,覆蓋住轉移電晶體;形成一第一導電層, 穿過至少第一絕緣層,與轉移電晶體的汲極和源極區之一 電性耦接;在第一導電層上形成至少一柱狀層;在柱狀層 側壁上,形成一第二導電層;定義第一導電層,形成一開 口;在開口側壁形成一中空筒狀之第三導電層,連接於第 一導電層的週邊,而第二導電層的一末端連接在第一導電 層的上表面上,構成一類樹枝狀導電層,且第一、第二和 第三導電層構成儲存電容器的一儲存電極;去除柱狀層; 在第一、第二和第三導電層曝露出的表面上,形成一介電 層;以及在介電層的一表面上,形成一第四導電層以構成 儲存電容器的一相對電極。 依照本發明的另一較佳實施例,一種具有電容器的半 導體記憶體元件之製造方法包括下列步驟:在基底上形成 一第一絕緣層,覆蓋住轉移電晶體;形成一第一導電層, 穿過至少第一絕緣層,與轉移電晶體的汲極和源極區之一 8 本紙張尺度逋用中國國家樣準(CNS > A4規格(210X297公釐) (請先P9'-讀背面之注意事項再填寫本頁) 裝· 訂 03 I 3twf.doc/002 A7 B7 五、發明説明(6 ) 電性耦接;在第一導電層上形成至少一柱狀層;在柱狀層 側壁上,形成一第二導電層,第二導電層的一末端連接在 第一導電層的上表面上;在第二導電層與柱狀層表面、以 及第一導電層上,交互形成第一和第二膜層至少一次’第 二膜層係由導電材料製成,而第一膜層係由絕緣材料製 成:定義第二膜層,分開其位在柱狀層上方的部份;定義 第二膜層、第一膜層與第一導電層,形成一開口;在開口 側壁形成一中空筒狀之第三導電層,連接於第一導電層的 週邊,第三導電層與第一導電層構成一類樹幹狀導電層, 而第二膜層的一末端連接在第三導電層的內表面上,第二 膜層與第二導電層構成一類樹枝狀導電餍,且第一、第二、 第三導電層和第二膜層構成儲存電容器的一儲存電極;去 除柱狀層與該第一膜層;在第一、第二、第三導電層和第 二膜層曝露出的表面上,形成一介電層;以及在介電層的 一表面上,形成一第四導電層以構成儲存電容器的一相對 電極。 依照本發明的又一特點,一種具有電容器的半導體記 憶體元件之製造方法包括下列步驟:在基底上形成一絕緣 層,覆蓋住該轉移電晶體。形成一類樹幹狀導電層,類樹 幹狀導電層包括一下樹幹部電性耦接到轉移電晶體的汲 極和源極區之一上,以及一上樹幹部從下樹幹部的週邊大 致向上延伸出。形成至少一類樹枝狀導電層,其包括至少 一第一延伸段和一第二延伸段,第一延伸段的一末端連接 在類樹幹狀導電層的內表面上,第二延伸段以一角度,從 第一延伸段的另一末端延伸出,類樹幹狀導電層和類樹枝 9 本紙張尺度遙用中國國家橾準(CNS ) A4规格(210X297公羞) __1---------裝-- (請先M-讀背面之注意事項再填寫本頁) 訂 線 經濟部中央揉準局員工消費合作社印製 somi f.doc/002 經濟部中央橾準局貝工消費合作社印裝 A7 B7 五、發明説明(7) 狀導電層構成儲存電容器的一儲存電極。在類樹幹狀導電 層和類樹枝狀導電層曝露出的表面上,形成一介電層。以 及在介電層上,形成一上導電層,以構成儲存電容器的一 相對電極。 依照本發明的又一特點,一種具有電容器的半導體記 憶體元件之製造方法包括下列步驟:在基底上形成一絕緣 層,覆蓋住該轉移電晶體。形成一類樹幹狀導電層,類樹 幹狀導電層包括一下樹幹部電性耦接到轉移電晶體的汲 極和源極區之一上,以及一上樹幹部從下樹幹部的週邊大 致向上延伸出。形成至少一類樹枝狀導電層,其形狀大致 爲中空筒狀,類樹枝狀導電層的一末端連接在類樹幹狀導 電層的上表面上,以一大致向上的方向往上延伸出,類樹 幹狀導電層和類樹枝狀導電層構成儲存電容器的一儲存 電極。在類樹幹狀導電層和類樹枝狀導電層曝露出的表面 上,形成一介電層。以及在介電層上,形成一上導電層, 以構成儲存電容器的一相對電極。 依照本發明的又一特點,一種具有電容器的半導體記 憶體元件之製造方法包括下列步驟:在基底上形成一絕緣 層,覆蓋住轉移電晶體。形成一類樹幹狀導電層,類樹幹 狀導電層包括一下樹幹部電性耦接到轉移電晶體的汲極 和源極區之一上,以及一上樹幹部從下樹幹部的週邊大致 向上延伸出。形成一第一類樹枝狀導電層,其形狀大致爲 中空筒狀,第一類樹枝狀導電層的一末端連接在類樹幹狀 導電層的上表面上,以一大致向上的方向往上延伸出。形 成至少一第二類樹枝狀導電層,第二類樹枝狀導電層具有 (請先閲讀背面之注f項再填寫本頁) .裝. 訂 線 本紙張尺度適用中國國家棣準(CNS ) A4規格(2丨Ο X 2们公釐) 03 1 3twf.doc/002 A 7 經濟部中央標準局員工消費合作杜印製 五、發明説明(K ) 一末端連接在類樹幹狀導電層的內表面上,第二類樹枝狀 導電層又具有一向外延伸部,從末端往外延伸出,類樹幹 狀導電層和些類樹枝狀導電層構成儲存電容器的一儲存 電極。在類樹幹狀導電層和些類樹枝狀導電層曝露出的表 面上,形成一介電層。以及在介電層上,形成一上導電層, 以構成儲存電容器的一相對電極。 爲讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉若干較佳實施例,並配合所附圖式,作 詳細說明如下: 圖式之簡單說明: 第1圖是一 DRAM元件的一記憶單元之電路示意圖。 第2A至2H圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第一較佳實施例,以及本發 明的一種半導體記憶元件之第一較佳實施例。 第3A至3E圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第二較佳實施例,以及本發 明的一種半導體記憶元件之第二較佳實施例。 第4A至4D圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第三較佳實施例,以及本發 明的一種半導體記憶元件之第三較佳實施例。 第5A至5C圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第四較佳實施例,以及本發 明的一種半導體記憶元件之第四較佳實施例。 第6A至6D圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第五較佳實施例,以及本發 (請先閏讀背面之注f項再填寫本頁) -裝. 訂 線 本紙張尺度適用中國國家橾準(CNS ) A4«L格(210X297公釐:> 03 13twf.doc/002 經濟部中央樣準局員工消費合作社印聚 A7 B7 五、發明説明(?) 明的一種半導體記憶元件之第五較佳實施例。 第7A至7D圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第六較佳實施例,以及本發 明的一種半導體記憶元件之第六較佳實施例。 第8A至8E圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第七較佳實施例,以及本發 明的一種半導體記憶元件之第七較佳實施例。 第9A至9E圖係一系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第八較佳實施例,以及本發 明的一種半導體記憶元件之第八較佳實施例。 第10A至10D圖係一系列剖面圖,用以解釋本發明的 一種半導體記憶元件製造方法之第九較佳實施例,以及本 發明的一種半導體記憶元件之第九較佳實施例。 接著將參照第2A至2H圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第一較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第一較佳實施例所製造的。 請參照第2A圖,首先將一矽基底10的表面進行熱氧 化製程,例如以矽的局部氧化(LOCOS )技術來達成, 因而形成場區氧化層12 ,其厚度例如約3000埃 (angstroms )。接著,再將矽基底10進行熱氧化製程, 以形成一閘極氧化層14,其厚度例如約150埃。然後,利 用一CVD (化學氣相沈積)或LPCVD (低壓CVD )法, 在矽基底10的整個表面上沈積一複晶矽層,其厚度例如約 2000埃。爲了提高複晶矽層的導電性,可將磷離子植入到 (請先閲讀背面之注意事項再填寫本頁) .裝. 訂 線 本紙張尺度適用中國國家橾準(CNS ) A4规格(210X 297公釐) 經濟部中央樣準局員工消费合作社印製 3096f4twfdoc/002 a? B7 五、發明説明(R ) 複晶矽層中。較佳地,可再沈積一耐火金屬(refractory metal )層,然後施行退火(anneal )步驟,即形成金屬 複晶矽化合物層(polycide ),以更提高其導電性。該耐 火金屬可例如爲鎢(Tungsten ),沈積厚度例如約2000 埃。之後,利用傳統的光罩製版(photolithography )和 蝕刻技術定義(pattern )金屬複晶矽化合物層,因而形成 如第2A圖所示的閘極(或稱字元線)WL1至WL4。接著, 例如以砷離子植入到矽基底10中,以形成汲極區16a和 16b、以及源極區18a和18b。在此步驟中,字元線WL1 至WL4係當作罩幕層,而離子植入的劑量例如約1 X 1015 atoms/cm2,會巨量貝IJ 約 70KeV 〇 請參照第2B圖,接著,以CVD法沈積一平坦化的絕 緣層20,其例如爲BPSG (硼磷矽玻璃),厚度約7000 埃。然後,再以CVD法沈積一蝕刻保護層(etching protection layer ) 22,其例如爲砂氮化物層(silicon nitride ),厚度約1000埃。之後,利用傳統的光罩製版和 蝕刻技術,依序蝕刻該蝕刻保護層22、平坦化絕緣層20、 和閘極氧化層14,以形成儲存電極接觸窗(storage electrode contact holes ) 24a 和 24b,其係分別由蝕刻保 護層22的上表面延伸到汲極區16a和16b的表面。接著, 沈積一複晶矽層26。爲了提高複晶矽層的導電性,可將例 如砷離子植入到複晶矽層中。如圖所示,複晶矽層26塡滿 儲存電極接觸窗24a和24b,且覆蓋蝕刻保護層22的表 面。 請參照第2C圖,接著沈積一厚的絕緣層’其例如爲二 (請先閲讀背面之注意事項再填寫本頁) 裝· 訂 線 本紙張尺度適用中國國家樣隼(CNS ) A4規格(210X297公釐) 03 I3twf.doc/002 A7 B7 經濟部中央標準局員工消费合作社印裝 五、發明説明((丨) 氧化矽層,厚度約7000埃。再利用傳統的光罩製版和蝕刻 技術定義絕緣層,因而形成如圓所示的柱狀絕緣層28a和 28b ( insulating pillar )。柱狀絕緣層 28a 和 28b 的較佳 位置大致係分別對應於汲極區16a和16b上方的區域。柱 狀絕緣層之間形成凹口 29。 請參照第2D圖,接著以CVD法依序沈積一絕緣層 30、一複晶矽層32、和一絕緣層34。絕緣層30和34例 如爲二氧化矽,絕緣餍30和複晶矽層32的厚度均例如約 1〇〇〇埃,而絕緣層34的厚度較佳係可至少塡滿柱狀絕緣 層28a; 28b之間的凹口 29,在此較佳實施例中,絕緣層 34的厚度例如約7000埃。爲了提高複晶矽層32的導電性, 可將例如砷離子植入到複晶矽層32中。 請參照第2E圖,接著利用機械化學式硏磨(chemical mechanical polish; CMP )技術,硏磨第2D圖結構的表面, 至少直到柱狀絕緣層28a和28b上方的部份露出爲止。 請參照第2F圖,接著利用傳統的光罩製版和蝕刻技 術’依序蝕刻絕緣層34、複晶矽層32、絕緣層30、和複 晶矽層26,形成一開口 36,以界定出各記憶單元的儲存 電容器之儲存電極。亦即藉此步驟將複晶矽層32和26切 割成若干區段32a; 32b和26a; 26b。然後在開口 36的側 壁(sidewalls )上形成複晶砂邊牆(spacers ) 38a和 38b。在本較佳實施例中,複晶矽邊牆38a和38b可以下 列步驟形成:沈積一複晶矽層,其厚度例如約1000埃;再 回蝕刻(etch back )。爲了提高複晶矽層的導電性,可將 例如砷離子植入到複晶砂層中》 —r----------裝-- (請先閱讀背面之注$項再填寫本頁) 訂 線 本紙張尺度逋用中國國家榡準(CNS ) A4規格(210X 297公簾) 03l3twf.doc/002 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(卩) 請參照第2G圖,接著以濕式蝕刻法,並以蝕刻保護層 22爲蝕刻終點,將暴露出的二氧化矽層去除,亦即去除絕 緣層34和30、以及柱狀絕緣層28a和28b。藉此步驟即 完成動態隨機存取記憶體的儲存電容器之儲存電極’其如 圖所示係由類樹幹狀的下複晶矽層26a; 26b、類樹幹狀的 上複晶矽層38a; 38b、以及具有似L形剖面的類樹枝狀複 晶矽層32a; 32b所一起構成。類樹幹狀的下複晶矽層26a; 26b連接到DRAM的轉移電晶體之汲極區16a; 16b,且具 有似T形的剖面。類樹幹狀的上複晶矽層38a; 38b的下端 連接於類樹幹狀的下複晶矽層26a; 26b的週邊,且大致往 上延伸出。類樹幹狀的上複晶矽層38a; 38b大致爲中空筒 狀,其水平剖面可爲圖形、矩形、或其他適當的形狀類 樹枝狀複晶矽層32a; 32b則從類樹幹狀的上複晶矽層38a; 38b的內表面,先以約水平方向往內延伸一段距離後,再 以約垂直方向往上延伸。由於本發明的儲存電極之形狀非 常特殊,故在本說明書中乃以“樹型儲存電極”稱之,且因 而製成之電容器則稱爲“樹型儲存電容器”。 請參照第2H圖,接著在儲存電極26a,32a,38a;和26b, 32b,38b的表面上分別形成一介電膜層40a; 40b。介電膜 層40a; 40b例如可爲二氧化矽層、矽氮化物層、NO (矽 氮化物/二氧化矽)結構、ΟΝΟ (二氧化矽/矽氮化物/二氧 化矽)結構、或任何類似者。然後,在介電膜層40a和4〇b 的表面上,形成由複晶矽製成的相對電極42。相對電極的 製程可由下列步驟達成:以CVD法沈稹一複晶矽層’其厚 度例如爲1000埃:再摻入例如N型雜質,以提高其導電 (請先閲讀背面之注意事項再填寫本頁) •裝· 訂 線 本紙張尺度適用中國國家橾率(CNS ) A4規格(21〇><297公鳘) 03 13twf.doc/002 B7 經濟部中央標準局負工消费合作社印製 五、發明説明(θ) 性;最後以傳統光罩製版和蝕刻技術定義複晶矽層,完成 DRAM各記憶單元的儲存電容器。 雖然第2H圖未顯示,然熟習此藝者應瞭解,第2H圖 的結構可依傳統製程技術製作位元線、焊墊(bonding pad )、互連導線(interconnection )、隔絕保護層 (passivation )、以及包裝等等,以完成DRAM積體電路。 由於這些製程非關本發明之特徵’故於此不多作贅述。 在本較佳實施例中,最下面的複晶矽層26係在第2F 圖所述的製程步驟中,被定義分開成各記憶單元的類樹幹 狀的下複晶矽層26a; 26b。然依照本發明的另一較佳實施 例,複晶矽層26也可在第2B圖所述的沈積之後,即先被 定義分開成各記憶單元的類樹幹狀的下複晶矽層26a; 26b,之後再進行後續類似的步驟。 在上述較佳實施例中,儲存電極只具有一層似L形剖 面的類樹枝狀電極層。然而,本發明並不限於此,儲存電 極似L形剖面的類樹枝狀電極層之層數可爲二層、三層、 或更多。下一個較佳實施例即將描述具有二層似L形剖面 的類樹枝狀電極層的儲存電極。 接著將參照第3A至3E圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第二較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第二較佳實施例所製造的。 本較佳實施例係以第2C圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第3A至3E圖中,與第2C圖相似的部份係以相同 \ ml HH ί In m (請先M讀背面之注f項再填寫本頁) 訂 線 本紙张尺度逋用中賴家縣(CNS) A4現格(加X29V;!^) 3096〇44wfd〇c/°02 A7 B7 經濟部中央揉準局貝工消费合作社印裝 五、發明説明(叶) 的編號標示。 請參照第2C和3A圖,接著以CVD法交替沈積絕緣層 和複晶矽層,亦即如第3A圖所示依序沈稹一絕緣層44、 一複晶矽層46、一絕緣層48、一複晶矽層50、和一絕緣 層52。絕緣層44、48和52例如爲二氧化矽,絕緣層44; 48和複晶矽層46; 50的厚度均例如約1000埃,而絕緣層 52的厚度則例如約7000埃。爲了提高複晶矽層的導電性, 可將例如砷離子植入到複晶矽層中。 請參照第3B圖,接著利用CMP技術,硏磨第3A圖結 構的表面’至少直到柱狀絕緣層28a和28b上方的部份餺 出爲止。 請參照第3C圖,接著利用傅統的光罩製版和蝕刻技 術,依序蝕刻絕緣層52、複晶矽餍50、絕緣層48、複晶 矽層46、絕緣層44、和複晶矽層26,形成一開口 54, 以界定出各記憶單元的儲存電容器之儲存電極。亦即藉此 步驟將複晶矽層50、46、和26切割成若干區段50a; 50b、 46a; 46b、和26a; 26b。然後在開口 54的側壁上形成複 晶矽邊牆56a; 56b。在本較佳實施例中,複晶矽邊牆56a 和56b可以下列步驟形成:沈積一複晶矽層,其厚度例如 約1000埃;再回蝕刻。爲了提高複晶矽層的導電性,可將 例如砷離子植入到複晶矽層中。 請參照第3D圖,接著以濕式蝕刻法,並以蝕刻保護層 22爲蝕刻終點,將暴露出的二氧化矽層去除,亦即去除絕 緣層52、48和44、以及柱狀絕緣層28a和28b。藉此步 驟即完成動態隨機存取記憶體的儲存電容器之儲存電 (請先閱讀背面之注意事項再填寫本頁) .裝. 订 本紙張又度刺中_家縣(CNS)以祕(2丨0>< 297公着) 03 I3twf.doc/002 A7 03 I3twf.doc/002 A7 經濟部中央標準局貝工消費合作社印製 B7 五、發明説明(&) 極,其如第3D圖所示係由類樹幹狀的下複晶矽層26a; 26b、類樹幹狀的上複晶矽層56a; 56b、以及兩層具有似L 形剖面的類樹枝狀複晶矽層46a,50a; 46b,50b所一起構 成。類樹幹狀的下複晶矽層26a; 26b連接到DRAM的轉移 電晶體之汲極區16a; 16b,且具有似T形的剖面。類樹幹 狀的上複晶矽層56a; 56b的下端連接於類樹幹狀的下複晶 矽層26a; 26b的週邊,且大致往上延伸出。類樹幹狀的上 複晶矽層56a; 56b大致爲中空筒狀,其水平剖面可爲圓 形、矩形、或其他適當的形狀。兩層類樹枝狀複晶矽層46a, 50a; 46b,50b則分別從類樹幹狀的上複晶矽餍56a; 56b的 內表面,先以約水平方向往內延伸一段距離後,再以約垂 直方向往上延伸。 請參照第3E圖,接著在儲存電極26a, 46a, 50a;和26b, 46b,50b的表面上分別形成一介電膜層58a; 58b。然後, 在介電膜層58a和58b的表面上,形成由複晶矽製成的相 對電極60。相對電極的製程可由下列步驟達成:以CVD 法沈積一複晶矽層,其厚度例如爲1000埃;再摻入例如N 型雜質’以提高其導電性;最後以傳統光罩製版和蝕刻技 術定義複晶矽層,完成DRAM各記憶單元的儲存電容器。 在上述第一和第二較佳實施例中,儲存電極的類樹枝 狀電極層均具有似L形剖面。然而,本發明並不限於此, 下一個較佳實施例即將描述一類樹枝狀電極層具有一柱 形剖面。 接著將參照第4A至4D圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第三較佳實施例,半導 18 (請先閱讀背面之注$項再填寫本頁) •裝. -訂 線 本紙張尺度適用中國國家棣準(CNS ) A4规格(210X297公釐〉 03 1 3twf.doc/002 經濟部中央標準局貝工消費合作社印製 A7 B7_ 五、發明说明(硌) 體記億元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第三較佳實施例所製造的。 本較佳實施例係以第2C圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第4A至4D圖中,與第2C圖相似的部份係以相同 的編號標不。 請參照第2C和4A圖,接著在柱狀絕緣層28a; 28b的 側壁上分別形成複晶矽邊牆62a; 62b。在本較佳實施例 中,複晶矽邊牆62a; 62b可以下列步驟形成:沈積一複晶 矽層,其厚度例如約1〇〇〇埃;再回蝕刻。爲了提高複晶矽 層的導電性,可將例如砷離子植入到複晶矽層中。然後, 以CVD法沈積一厚絕緣層64,較佳能塡滿柱狀絕緣靥28a; 28b之間的凹口。 請參照第4B圖,接著利用CMP技術,硏磨第4A圖結 構的表面,較佳直到柱狀絕緣層28a和28b、以及複晶砂 邊牆62a和62b上方的部份露出爲止。 請參照第4C圖,接著利用傳統的光罩製版和触刻技 術,依序蝕刻厚絕緣層64和複晶矽層26,形成一開口 66, 以界定出各記憶單元的儲存電容器之儲存電極。亦即藉此 步驟將複晶较層26切割成若干區段26a; 26b。然後在開p 66的側壁上形成複晶矽邊牆68a; 68b。 請參照第4D圖,接著以濕式触刻法,並以触刻保護層 22爲蝕刻終點,將暴露出的二氧化矽層去除,亦即去除絕 緣層Μ和柱狀絕緣層28a和2Sb。藉此步驟即完成動態隨 機存取記憶體的儲存電容器之儲存電極,其如第4D圖戶斤 本紙張尺度適用中國國家標準(CNS > A4現格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -裝· 線 03 1 3twf.doc/002 A7 B7 經濟部中央樣準局員工消費合作社印裝 五、發明説明(/1 ) 示係由類樹幹狀的下複晶矽層26a; 26b、類樹幹狀的上複 晶矽層68a; 68b、以及具有似柱形剖面的類樹枝狀複晶矽 層62a; 62b所一起構成。類樹幹狀的下複晶矽層26a; 26b 連接到DRAM的轉移電晶體之汲極區16a; 16b,且具有似 T形的剖面。類樹幹狀的上複晶矽層68a; 68b的下端連接 於類樹幹狀的下複晶矽層26a; 26b的週邊,且大致往上延 伸出。類樹幹狀的上複晶矽層68a; 68b大致爲中空筒狀, 其水平剖面可爲圓形、矩形、或其他適當的形狀。類樹枝 狀複晶矽層62a; 62b則分別從類樹幹狀的下複晶矽層26a; 26b的上表面,大致往上延伸出。在此較佳實施例中,類 樹枝狀複晶矽層62a; 62b大致爲中空筒狀’其水平剖面可 爲圓形、矩形、或其他適當的形狀,主要是依柱狀絕緣層 28a; 28b的形狀而定。類樹枝狀複晶矽層62a; 62b係位在 類樹幹狀的上複晶矽層68a; 68b裡面。 下面第四較佳實施例將描述儲存電極包括有似L形剖 面的類樹枝狀電極層、以及柱形類樹枝狀電極層的結構。 第四較佳實施例係運用第三和第一較佳實施例的製造方 法的特徵,達成結合第三和第一較佳實施例的結構。 接著將參照第5A至5C圖’詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第四較佳實施例’半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第四較佳實施例所製造的。 本較佳實施例係以第2C圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第5A至5C圖中,與第2C圖相似的部份係以相同 20 (請先閲讀背面之注$項再填寫本頁) .裝. 訂 線 本紙張尺度適用中國國家揉準(CNS ) A4規格(2丨〇Χ 297公釐) 03 !3twf.doc/002 A7 B7 經濟部中央樣準局負工消費合作社印製 五、發明説明(丨?) 的編號標示。 請參照第2C和5A圖’接著在柱狀絕緣層28a; 28b的 側壁上,分別形成複晶矽邊牆70a; 70b。複晶矽邊牆70a; 7〇b可以下列步驟達成:以CVD法沈積一複晶矽層,其厚 度例如爲1〇〇〇埃;接著再回蝕刻,即可形成邊牆。然後’ 以CVD法依序沈積一絕緣層72和一複晶矽層74。之後, 沈積一厚絕緣層76。 請參照第5B圖,接著以上面針對第2E和2F所述的類 似製程,完成第5B圖所示的結構。亦即利用CMP技術, 硏磨第5A圖結構的表面,較佳直到柱狀絕緣層28a; 28b、 以及複晶矽邊牆70a; 70b上方的部份露出爲止。 接著利用傳統的光罩製版和蝕刻技術,依序蝕刻絕緣 層76、複晶矽層74、絕緣餍72、和複晶矽層26,形成 一開口 78,以界定出各記憶單元的儲存電容器之儲存電 極。亦即藉此步驟將複晶矽層74和26切割成若干區段74a; 74b和26a; 26b。然後在開口 78的側壁上形成複晶矽邊牆 80a; 80b。 請參照第5C圖,接著以濕式蝕刻法,並以蝕刻保護層 22爲蝕刻終點,將暴露出的二氧化矽層去除,亦即去除絕 緣層76和72、以及柱狀絕緣層28a和28b。藉此步驟即 完成動態隨機存取記憶體的儲存電容器之儲存電極,其如 第5C圖所示係由類樹幹狀的下複晶矽層26a; 26b、類樹 幹狀的上複晶矽層80a; 80b、具有柱形剖面的類樹枝狀複 晶矽層7〇a; 70b、以及具有似L形剖面的類樹枝狀複晶矽 層74a; 74b所一起構成。 (請先W讀背面之注意事項再填寫本頁) -裝. 訂 線 本紙張尺度適用中國國家標準(CNS ) Μ規格(210X297公釐) _6氣._02 經濟部中央標準局員工消費合作社印t 五、發明説明(/?) 類樹幹狀的下複晶矽層26a; 26b連接到DRAM的轉移 電晶體之汲極區16a; 16b,且具有似T形的剖面。類樹幹 狀的上複晶矽餍80a; 80b的下端連接於類樹幹狀的下複晶 矽層26a; 26b的週邊,且大致往上延伸出。類樹幹狀的上 複晶矽層80a; 80b大致爲中空筒狀,其水平剖面可爲圓 形、矩形、或其他適當的形狀。似L形剖面的類樹枝狀複 晶矽層74a; 74b則從類樹幹狀的上複晶矽層80a; 80b的內 表面,先以約水平方向往內延伸一段距離後,再以約垂直 方向往上延伸。柱形剖面的類樹枝狀複晶矽層7〇a; 70b則 分別從類樹幹狀的下複晶矽層26a; 26b的上表面,大致往 上延伸出。類樹枝狀複晶矽層70a; 70b大致爲中空筒狀。 下面第五較佳實施例以不同的製造方法,形成與上面 第四較佳實施例具有類似結構形狀的儲存電極。 接著將參照第6A至6D圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第五較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第五較佳實施例所製造的。 本較佳實施例係以第2C圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第6A至6D圖中,與第2C圖相似的部份係以相同 的編號標示。 請參照第2C和6A圖,接著以CVD法交替沈積複晶矽 層和絕緣層’亦即如第6A圖所示依序沈積一複晶矽層 84、一絕緣層86、一複晶矽層88、和一厚絕緣層90。 請參照第6B圖,接著利用CMP技術,硏磨第6A圖結 22 (請先閱讀背面之注意事項再填寫本頁) -裝The size of the C-line paper is applicable to the Chinese National Standard (CNS) 8 4 «1 grid (210Χ297 mm) 03 1 3twf.doc / 002 A7 B7 Printed by the Central Ministry of Economic Affairs Central Bureau of Unemployment Consumer Cooperative V. Invention description (彡) Of the capacitance value. Therefore, a main object of the present invention is to provide a semiconductor memory device having a capacitor whose capacitor has a tree structure to increase the surface area of the storage electrode of the capacitor. According to one feature of the present invention, a method for manufacturing a semiconductor memory device having a capacitor is provided, wherein the semiconductor memory device includes a substrate, a transfer transistor formed on the substrate, and a storage capacitor electrically coupled to the transfer circuit One of the drain and source regions of the crystal. The manufacturing method includes the following steps: a. Forming a first insulating layer on the substrate to cover the transfer transistor; b. Forming a first conductive layer through at least the first insulating layer, and the transfer transistor drain One of the source regions is electrically coupled; c. Forming a columnar layer on the first conductive layer; d. Forming a second conductive layer on the surface of the columnar layer and the first conductive layer; e. Defining the second The conductive layer separates the portion above the column-shaped layer; f. Defines the second conductive layer and the first conductive layer to form an opening; g. Forms a hollow cylindrical third conductive body on the side wall of the opening and connects to Around the first conductive layer, the third conductive layer and the first conductive layer constitute a type of trunk-shaped conductive layer, and one end of the second conductive layer is connected to the inner surface of the third conductive layer to constitute a type of dendritic conductive layer, and The first, second and third conductive layers constitute a storage electrode of the storage capacitor: h .. removing the columnar layer; i. Forming a dielectric layer on the exposed surface of the first, second and third conductive layers ; And j. On a surface of the dielectric layer, a fourth conductive layer is formed to constitute A storage capacitor counter electrode. According to a preferred embodiment of the present invention, the trunk-like conductive layer includes a trunk portion electrically coupled to one of the drain and source regions of the transfer transistor: and an upper trunk portion from the lower trunk portion The periphery extends generally upward. This paper scale is applicable to China® Family Standard (CNS > Α4 specification (210Χ297mm) η First Read Back Binding Line 309644 f.doc / 002 A7 Printed by the Ministry of Economic Affairs, Central Bureau of Industry and Commerce Bigong Consumer Cooperatives B7. Description of Invention (Law) The method of the present invention may further include the step of forming an etching protection layer on the first insulating layer after step a and before step b. In a preferred embodiment, step e may include etching away the second conductive layer The layer is located above the columnar layer. In another preferred embodiment, step e may include chemical mechanical grinding to remove the second conductive layer above the columnar layer. In another preferred embodiment of the invention, step c may include the following steps: forming a thick insulating layer on the first conductive layer; forming a photoresist on the thick insulating layer so as not to cover the planned notch; etching Remove a part of the thick insulating layer that is not covered; etch the photoresist, and then expose a part of the thick insulating layer; etch away a part of the exposed thick insulating layer until the first conductive layer is exposed, so that the formed pillar The layer has a stepped shape; According to yet another preferred embodiment of the present invention, after step a and before step b, the following steps are further included: first forming an etching protection layer on the first insulation layer, and then forming a fourth insulation layer in etching protection Layer. Step b further includes the step of forming a first conductive layer 'through the fourth insulating layer and the etching protection layer. Step h further includes the step of removing the fourth insulating layer. According to another preferred embodiment of the present invention' The manufacturing method of a semiconductor memory device with a capacitor includes the following steps: forming a first insulating layer on a substrate to cover the transfer transistor. Forming a first conductive layer, passing through at least the first insulating layer, and the transfer transistor One of the drain and source regions is electrically coupled. A columnar layer is formed on the first conductive layer and on the surface of the columnar layer and the first conductive layer, the first and second film layers are alternately formed at least once, Among them, the second film layer is made of conductive material 'and the first film layer is made of insulating material. Define the second film layer' to separate its part above the columnar layer. Define the second film layer, the first A film The first conductive layer is formed with an opening. In 7 papers, the New Zealand financial materials (CNS > 8 4 secrets (21GX297 public shame) (please read the note f on the back and fill in this page). Install. Order Line. 03 I 3twf.doc / 002 A7 Printed by the Employee Consumer Cooperative of the Central Bureau of Economic Development of the Ministry of Economic Affairs 5. Description of Invention (Xi) The opening side wall forms a hollow cylindrical second conductive layer connected to the periphery of the first conductive layer, The second conductive layer and the first conductive layer constitute a type of trunk-like conductive layer; and one end of the second film layer is connected to the inner surface of the second conductive layer to constitute a type of dendritic conductive layer, and the first conductive layer, the second The film layer and the second conductive layer constitute a storage electrode of the storage capacitor. The columnar layer and the first film layer are removed to form a dielectric on the exposed surfaces of the first conductive layer, the second film layer and the second conductive layer Floor. On a surface of the dielectric layer, a third conductive layer is formed to constitute a counter electrode of the storage capacitor. According to yet another preferred embodiment of the present invention, a method for manufacturing a semiconductor memory device having a capacitor includes the following steps: forming a first insulating layer on a substrate to cover the transfer transistor; forming a first conductive layer, passing through Through at least the first insulating layer, electrically coupled to one of the drain and source regions of the transfer transistor; forming at least one columnar layer on the first conductive layer; forming a second conductive layer on the side wall of the columnar layer Define the first conductive layer, forming an opening; forming a hollow cylindrical third conductive layer on the side wall of the opening, connected to the periphery of the first conductive layer, and an end of the second conductive layer connected to the first conductive layer On the upper surface, a type of dendritic conductive layer is formed, and the first, second, and third conductive layers constitute a storage electrode of the storage capacitor; the columnar layer is removed; the exposed surface of the first, second, and third conductive layers On top, a dielectric layer is formed; and on a surface of the dielectric layer, a fourth conductive layer is formed to form an opposite electrode of the storage capacitor. According to another preferred embodiment of the present invention, a method for manufacturing a semiconductor memory device having a capacitor includes the following steps: forming a first insulating layer on a substrate to cover the transfer transistor; forming a first conductive layer, passing through Pass at least the first insulating layer, and one of the drain and source regions of the transfer transistor. The size of this paper is based on the Chinese National Standard (CNS & A4 specification (210X297mm) (please read P9'-back (Notes and then fill out this page) Binding · Order 03 I 3twf.doc / 002 A7 B7 5. Description of the invention (6) Electrical coupling; at least one columnar layer is formed on the first conductive layer; on the side wall of the columnar layer , Forming a second conductive layer, one end of the second conductive layer is connected to the upper surface of the first conductive layer; on the surface of the second conductive layer and the columnar layer, and the first conductive layer, the first and the first The second film layer is made at least once. The second film layer is made of a conductive material, and the first film layer is made of an insulating material: define the second film layer and separate its part above the columnar layer; define the second The film layer, the first film layer and the first conductive layer form a Opening; forming a hollow cylindrical third conductive layer on the side wall of the opening, connected to the periphery of the first conductive layer, the third conductive layer and the first conductive layer constitute a type of trunk-shaped conductive layer, and one end of the second film layer is connected On the inner surface of the third conductive layer, the second film layer and the second conductive layer constitute a type of dendritic conductive coating, and the first, second, third conductive layer, and second film layer constitute a storage electrode of the storage capacitor; Removing the columnar layer and the first film layer; forming a dielectric layer on the exposed surfaces of the first, second, third conductive layers and the second film layer; and forming on a surface of the dielectric layer A fourth conductive layer constitutes a counter electrode of the storage capacitor. According to yet another feature of the present invention, a method for manufacturing a semiconductor memory device having a capacitor includes the following steps: forming an insulating layer on a substrate to cover the transfer circuit Crystal. Forming a kind of trunk-like conductive layer, the trunk-like conductive layer includes the following trunk portion electrically coupled to one of the drain and source regions of the transfer transistor, and an upper trunk portion from the lower trunk portion The periphery extends substantially upward. At least one type of dendritic conductive layer is formed, which includes at least one first extension and a second extension, one end of the first extension is connected to the inner surface of the trunk-like conductive layer, the second The extension section extends from the other end of the first extension section at an angle. The trunk-like conductive layer and the branch-like branches 9 This paper scale is remotely used by China National Standards (CNS) A4 (210X297). __1 --- ------ Installation-- (Please read the notes on the back of M- first and then fill out this page) Printed somi f.doc / 002 by the Ministry of Economic Affairs, Central Counseling Bureau Employee Consumer Cooperative Society A7 B7 printed by the Industrial and Consumer Cooperatives 5. Description of the invention (7) The conductive layer forms a storage electrode of the storage capacitor. A dielectric layer is formed on the exposed surface of the trunk-like conductive layer and the dendritic conductive layer. And on the dielectric layer, an upper conductive layer is formed to constitute an opposite electrode of the storage capacitor. According to still another feature of the present invention, a method of manufacturing a semiconductor memory device having a capacitor includes the following steps: forming an insulating layer on a substrate to cover the transfer transistor. A trunk-like conductive layer is formed. The trunk-like conductive layer includes a lower trunk portion electrically coupled to one of the drain and source regions of the transfer transistor, and an upper trunk portion extending generally upward from the periphery of the lower trunk portion . At least one type of dendritic conductive layer is formed, the shape of which is roughly a hollow cylinder, and one end of the dendritic conductive layer is connected to the upper surface of the trunk-like conductive layer, extending upward in a generally upward direction, trunk-like The conductive layer and the dendritic conductive layer constitute a storage electrode of the storage capacitor. A dielectric layer is formed on the exposed surface of the trunk-like conductive layer and the dendritic-like conductive layer. And on the dielectric layer, an upper conductive layer is formed to constitute an opposite electrode of the storage capacitor. According to still another feature of the present invention, a method of manufacturing a semiconductor memory device having a capacitor includes the following steps: forming an insulating layer on a substrate to cover the transfer transistor. A trunk-like conductive layer is formed. The trunk-like conductive layer includes a lower trunk portion electrically coupled to one of the drain and source regions of the transfer transistor, and an upper trunk portion extending generally upward from the periphery of the lower trunk portion . A first type of dendritic conductive layer is formed, the shape of which is roughly a hollow cylinder, and one end of the first type of dendritic conductive layer is connected to the upper surface of the trunk-like conductive layer, extending upward in a generally upward direction . Form at least one second-type dendritic conductive layer. The second-type dendritic conductive layer has (please read note f on the back before filling in this page). Packing. The paper size of the binding book is applicable to China National Standards (CNS) A4 Specifications (2 丨 Ο X 2mm) 03 1 3twf.doc / 002 A 7 Printed by the Consumers ’Cooperation Bureau of the Central Standards Bureau of the Ministry of Economic Affairs V. Invention Description (K) One end is connected to the inner surface of the trunk-like conductive layer Above, the second type of dendritic conductive layer has an outwardly extending portion, which extends outward from the end. The trunk-like conductive layer and the dendritic conductive layers constitute a storage electrode of the storage capacitor. A dielectric layer is formed on the exposed surface of the trunk-like conductive layer and the dendritic conductive layer. And on the dielectric layer, an upper conductive layer is formed to constitute an opposite electrode of the storage capacitor. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, several preferred embodiments are described below in conjunction with the accompanying drawings, which are described in detail as follows: Brief description of the drawings: Figure 1 It is a circuit schematic diagram of a memory unit of a DRAM device. Figures 2A to 2H are a series of cross-sectional views for explaining a first preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a first preferred embodiment of a semiconductor memory device of the present invention. Figures 3A to 3E are a series of cross-sectional views for explaining a second preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a second preferred embodiment of a semiconductor memory device of the present invention. Figures 4A to 4D are a series of cross-sectional views for explaining a third preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a third preferred embodiment of a semiconductor memory device of the present invention. FIGS. 5A to 5C are a series of cross-sectional views for explaining a fourth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a fourth preferred embodiment of a semiconductor memory device of the present invention. Figures 6A to 6D are a series of cross-sectional views for explaining the fifth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and the present invention (please read the note f on the back side before filling in this page)- Binding. The paper size of the binding book is applicable to the Chinese National Standard (CNS) A4 «L grid (210X297mm: > 03 13twf.doc / 002, printed by the Central Sample Bureau of the Ministry of Economic Affairs, Employee Consumer Cooperative A7 B7. V. Description of invention ( ?) A fifth preferred embodiment of a semiconductor memory device shown in FIGS. 7A to 7D is a series of cross-sectional views for explaining a sixth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and the present invention The sixth preferred embodiment of a semiconductor memory device of the same type. Figures 8A to 8E are a series of cross-sectional views for explaining the seventh preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention and a semiconductor of the present invention The seventh preferred embodiment of the memory device. Figures 9A to 9E are a series of cross-sectional views for explaining the eighth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention and a first embodiment of the present invention An eighth preferred embodiment of a semiconductor memory device. Figures 10A to 10D are a series of cross-sectional views for explaining a ninth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a semiconductor memory device of the present invention The ninth preferred embodiment. Next, referring to FIGS. 2A to 2H, a first preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention, and this preferred embodiment of a semiconductor memory device will be described in detail. Is manufactured by the first preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention. Referring to FIG. 2A, first, a surface of a silicon substrate 10 is subjected to a thermal oxidation process, such as local oxidation of silicon (LOCOS) To achieve this, a field oxide layer 12 is formed with a thickness of approximately 3000 angstroms. Then, the silicon substrate 10 is subjected to a thermal oxidation process to form a gate oxide layer 14 with a thickness of approximately 150 angstroms. Then, using a CVD (chemical vapor deposition) or LPCVD (low pressure CVD) method, a polycrystalline silicon layer is deposited on the entire surface of the silicon substrate 10, with a thickness of, for example, about 2000 Angstroms. In order to improve the conductivity of the polycrystalline silicon layer, phosphorus ions can be implanted into it (please read the precautions on the back before filling out this page). Packing. The paper size of the binding book is applicable to China National Standard (CNS) A4 Specification (210X 297mm) Printed by the Central Sample Bureau of the Ministry of Economic Affairs of the Employees Consumer Cooperative 3096f4twfdoc / 002 a? B7 Fifth, the invention description (R) in the polycrystalline silicon layer. Preferably, a refractory metal can be deposited ) Layer, and then perform an annealing (anneal) step, that is to form a metal polycrystalline silicon compound layer (polycide), to further improve its conductivity. The refractory metal may be, for example, tungsten (Tungsten), and the deposited thickness is, for example, about 2000 angstroms. After that, the metal polycrystalline silicon compound layer is patterned using traditional photolithography and etching techniques, thereby forming gates (or word lines) WL1 to WL4 as shown in FIG. 2A. Next, for example, arsenic ions are implanted into the silicon substrate 10 to form drain regions 16a and 16b and source regions 18a and 18b. In this step, the word lines WL1 to WL4 are used as the mask layer, and the dose of ion implantation is, for example, about 1 X 1015 atoms / cm2, which will be a huge amount of IJ about 70KeV. Please refer to FIG. 2B, then, The CVD method deposits a planarized insulating layer 20, such as BPSG (borophosphosilicate glass), with a thickness of about 7000 angstroms. Then, an etching protection layer (etching protection layer) 22 is deposited by CVD, which is, for example, a silicon nitride layer (silicon nitride) with a thickness of about 1000 angstroms. Afterwards, the etching protection layer 22, the planarization insulating layer 20, and the gate oxide layer 14 are sequentially etched using conventional photomask patterning and etching techniques to form storage electrode contact holes 24a and 24b, It extends from the upper surface of the etch protection layer 22 to the surfaces of the drain regions 16a and 16b, respectively. Next, a polycrystalline silicon layer 26 is deposited. In order to improve the conductivity of the polycrystalline silicon layer, for example, arsenic ions can be implanted into the polycrystalline silicon layer. As shown, the polycrystalline silicon layer 26 fills the storage electrode contact windows 24a and 24b, and covers the surface of the etching protection layer 22. Please refer to Figure 2C, and then deposit a thick insulating layer, which is, for example, two (please read the precautions on the back before filling in this page). The paper size of the binding and binding book is applicable to China National Falcon (CNS) A4 specification (210X297 Mm) 03 I3twf.doc / 002 A7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of the invention ((丨) Silicon oxide layer with a thickness of about 7000 Angstroms. Then use traditional mask making and etching techniques to define insulation Layers, thus forming columnar insulating layers 28a and 28b (insulating pillars) as shown by circles. The preferred positions of the columnar insulating layers 28a and 28b generally correspond to the areas above the drain regions 16a and 16b, respectively. Notches 29 are formed between the layers. Please refer to FIG. 2D, and then sequentially deposit an insulating layer 30, a polycrystalline silicon layer 32, and an insulating layer 34 by CVD. The insulating layers 30 and 34 are, for example, silicon dioxide, The thickness of the insulating layer 30 and the polycrystalline silicon layer 32 are, for example, about 100 angstroms, and the thickness of the insulating layer 34 is preferably such that it at least fills the notch 29 between the columnar insulating layers 28a; 28b. In a preferred embodiment, the thickness of the insulating layer 34 is, for example, about 700 0 angstroms. In order to improve the conductivity of the polycrystalline silicon layer 32, for example, arsenic ions can be implanted into the polycrystalline silicon layer 32. Please refer to FIG. 2E, and then use the chemical mechanical polishing (CMP) technology, Grind the surface of the structure in Figure 2D until at least the portions above the columnar insulating layers 28a and 28b are exposed. Please refer to Figure 2F, and then etch the insulating layer 34 and the complex layer in sequence using traditional photomask patterning and etching techniques The crystalline silicon layer 32, the insulating layer 30, and the polycrystalline silicon layer 26 form an opening 36 to define the storage electrodes of the storage capacitors of each memory cell. That is, the polycrystalline silicon layers 32 and 26 are cut into several pieces by this step Sections 32a; 32b and 26a; 26b. Then, on the side walls (sidewalls) of the opening 36, polycrystalline sand sidewalls (spacers) 38a and 38b are formed. In the preferred embodiment, polycrystalline silicon sidewalls 38a and 38b can The following steps are formed: depositing a polycrystalline silicon layer with a thickness of, for example, about 1000 angstroms; and etching back. To improve the conductivity of the polycrystalline silicon layer, for example, arsenic ions can be implanted into the polycrystalline sand layer. r ---------- install-- (please read the back first Note $ item and then fill out this page) The paper size of the line book is printed in Chinese National Standard (CNS) A4 (210X 297 public curtain) 03l3twf.doc / 002 A7 B7 Printed by the Employees Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Explanation (ie) Please refer to FIG. 2G, and then use the wet etching method and the etching protection layer 22 as the etching end point to remove the exposed silicon dioxide layer, that is, remove the insulating layers 34 and 30, and the columnar insulation Layers 28a and 28b. With this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, which is shown as a trunk-like lower polycrystalline silicon layer 26a; 26b, a trunk-like upper polycrystalline silicon layer 38a; 38b And a dendritic polycrystalline silicon layer 32a; 32b having an L-shaped cross section. The trunk-like lower polycrystalline silicon layer 26a; 26b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM, and has a T-like profile. The lower end of the trunk-like upper polycrystalline silicon layer 38a; 38b is connected to the periphery of the trunk-like lower polycrystalline silicon layer 26a; 26b, and extends substantially upward. The trunk-like upper polycrystalline silicon layer 38a; 38b is roughly a hollow cylindrical shape, and its horizontal section can be a figure, rectangle, or other suitable shape. The dendritic polycrystalline silicon layer 32a; 32b is recovered from the trunk-like upper layer The inner surface of the crystalline silicon layer 38a; 38b first extends inward in a horizontal direction, and then extends upward in a vertical direction. Since the shape of the storage electrode of the present invention is very special, it is referred to as a "tree-shaped storage electrode" in this specification, and the resulting capacitor is referred to as a "tree-shaped storage capacitor". Please refer to FIG. 2H, and then form a dielectric film layer 40a; 40b on the surfaces of the storage electrodes 26a, 32a, 38a; and 26b, 32b, 38b, respectively. The dielectric film layer 40a; 40b may be, for example, a silicon dioxide layer, a silicon nitride layer, a NO (silicon nitride / silicon dioxide) structure, a ΟΝΟ (silicon dioxide / silicon nitride / silicon dioxide) structure, or any Similar. Then, on the surfaces of the dielectric film layers 40a and 40b, the counter electrode 42 made of polycrystalline silicon is formed. The manufacturing process of the counter electrode can be achieved by the following steps: CVD method is used to precipitate a polycrystalline silicon layer with a thickness of, for example, 1000 angstroms: and then doped with, for example, N-type impurities to improve its conductivity (please read the notes on the back before filling in this Page) • The paper size of the binding and binding book is applicable to China National Standard (CNS) A4 (21〇 < 297 gong) 03 13twf.doc / 002 B7 Printed by the Consumer Labor Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 2. Description of the invention (θ); Finally, the polysilicon layer is defined by traditional photomask patterning and etching techniques to complete the storage capacitor of each memory cell of DRAM. Although it is not shown in Figure 2H, those familiar with this art should understand that the structure of Figure 2H can be made according to the traditional process technology for bit lines, bonding pads, interconnection wires, and isolation protection layers (passivation) , And packaging, etc., to complete the DRAM integrated circuit. Since these processes are not related to the features of the present invention, they will not be repeated here. In the preferred embodiment, the lowermost polycrystalline silicon layer 26 is defined as a trunk-like lower polycrystalline silicon layer 26a; 26b, which is divided into memory cells in the process steps described in FIG. 2F. However, in accordance with another preferred embodiment of the present invention, the polycrystalline silicon layer 26 can also be defined as a trunk-like lower polycrystalline silicon layer 26a that is divided into memory cells after the deposition described in FIG. 2B; 26b, and then follow similar steps. In the above-mentioned preferred embodiment, the storage electrode has only one layer of dendritic electrode layer like an L-shaped cross section. However, the present invention is not limited to this, and the number of layers of the dendritic electrode layer having a storage electrode resembling an L-shaped cross-section may be two, three, or more. The next preferred embodiment will describe a storage electrode having two dendritic-like electrode layers having an L-shaped cross section. Next, referring to FIGS. 3A to 3E, a second preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail. This preferred embodiment of the semiconductor memory device is a semiconductor memory of the present invention. The second preferred embodiment of the device manufacturing method is manufactured. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2C, and then DRAM storage electrodes of different structures are manufactured by different processes. In Figures 3A to 3E, the parts similar to those in Figure 2C are the same \ ml HH ί In m (please read the note f on the back of M before filling in this page). County (CNS) A4 present grid (plus X29V;! ^) 3096〇44wfd〇c / ° 02 A7 B7 The Ministry of Economic Affairs Central Bureau of Standardization Beigong Consumer Cooperative printed the fifth, invention description (leaf) number label. Please refer to FIGS. 2C and 3A, and then alternately deposit an insulating layer and a polycrystalline silicon layer by CVD, that is, as shown in FIG. 3A, sequentially insulate an insulating layer 44, a polycrystalline silicon layer 46, and an insulating layer 48 , A polycrystalline silicon layer 50, and an insulating layer 52. The insulating layers 44, 48 and 52 are, for example, silicon dioxide, and the insulating layers 44; 48 and the polycrystalline silicon layer 46; 50 have a thickness of, for example, about 1,000 angstroms, and the insulating layer 52 has a thickness of, for example, about 7000 angstroms. In order to improve the conductivity of the polycrystalline silicon layer, for example, arsenic ions can be implanted into the polycrystalline silicon layer. Please refer to FIG. 3B, and then use the CMP technique to grind the surface of the structure in FIG. 3A at least until the portions above the columnar insulating layers 28a and 28b come out. Please refer to FIG. 3C, and then use Fu Tong ’s photolithography and etching technology to sequentially etch the insulating layer 52, polycrystalline silicon 50, insulating layer 48, polycrystalline silicon layer 46, insulating layer 44, and polycrystalline silicon layer 26. An opening 54 is formed to define the storage electrode of the storage capacitor of each memory cell. That is, by this step, the polycrystalline silicon layers 50, 46, and 26 are cut into sections 50a; 50b, 46a; 46b, and 26a; 26b. Then, polycrystalline silicon sidewalls 56a; 56b are formed on the side walls of the opening 54. In the preferred embodiment, the polycrystalline silicon sidewalls 56a and 56b can be formed by the following steps: depositing a polycrystalline silicon layer with a thickness of, for example, about 1000 angstroms; and then etching back. In order to improve the conductivity of the polycrystalline silicon layer, for example, arsenic ions can be implanted into the polycrystalline silicon layer. Please refer to FIG. 3D, and then use the wet etching method and the etching protection layer 22 as the etching end point to remove the exposed silicon dioxide layer, that is, to remove the insulating layers 52, 48 and 44, and the columnar insulating layer 28a And 28b. Take this step to complete the storage of the storage capacitor of the dynamic random access memory (please read the precautions on the back before filling out this page). Install. The paper is stabbed again _ 家 县 (CNS) 以 秘 (2丨 0 > < 297 publication) 03 I3twf.doc / 002 A7 03 I3twf.doc / 002 A7 Printed B7 by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economy V. Invention description (&) pole, as shown in Figure 3D Shown by the trunk-like lower polycrystalline silicon layer 26a; 26b, trunk-like upper polycrystalline silicon layer 56a; 56b, and two layers of dendritic polycrystalline silicon layer 46a, 50a with a L-like cross-section; 46b and 50b together. The trunk-like lower polycrystalline silicon layer 26a; 26b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM, and has a T-shaped cross section. The lower end of the trunk-like upper polycrystalline silicon layer 56a; 56b is connected to the periphery of the trunk-like lower polycrystalline silicon layer 26a; 26b, and extends substantially upward. The trunk-like upper polycrystalline silicon layer 56a; 56b is generally hollow and cylindrical, and its horizontal cross-section may be circular, rectangular, or other suitable shape. Two layers of dendritic polycrystalline silicon layers 46a, 50a; 46b, 50b are respectively from the inner surface of the trunk-like upper polycrystalline silicon 56a; 56b, extending inward in the horizontal direction for a distance, and then approximately Extend vertically. Please refer to FIG. 3E, and then form a dielectric film layer 58a; 58b on the surfaces of the storage electrodes 26a, 46a, 50a; and 26b, 46b, 50b, respectively. Then, on the surfaces of the dielectric film layers 58a and 58b, a counter electrode 60 made of polycrystalline silicon is formed. The process of the counter electrode can be achieved by the following steps: depositing a polycrystalline silicon layer with a thickness of, for example, 1000 Angstroms by CVD; then doping with, for example, N-type impurities to improve its conductivity; and finally defined by traditional mask making and etching techniques The polycrystalline silicon layer completes the storage capacitor of each memory cell of the DRAM. In the first and second preferred embodiments described above, the dendritic electrode layers of the storage electrode each have an L-like cross-section. However, the present invention is not limited to this, and the next preferred embodiment will describe a type of dendritic electrode layer having a cylindrical cross-section. Next, with reference to FIGS. 4A to 4D, a third preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention, a semiconducting 18 (please read the note item on the back before filling this page) • Binding. -The paper size of the binding book is applicable to the Chinese National Standard (CNS) A4 (210X297mm) 03 1 3twf.doc / 002 Printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A7 B7_ V. Description of the invention (硌) This preferred embodiment of the volume memory device is manufactured by the third preferred embodiment of a semiconductor memory device manufacturing method of the present invention. The preferred embodiment is shown in FIG. 2C Based on the structure, the DRAM storage electrodes with different structures are made by different processes. In Figures 4A to 4D, the parts similar to those in Figure 2C are marked with the same numbers. Please refer to Figures 2C and 4A, Next, polysilicon sidewall spacers 62a; 62b are formed on the sidewalls of the columnar insulating layers 28a; 28b. In the preferred embodiment, the polysilicon sidewall spacers 62a; 62b can be formed by the following steps: depositing a polycrystalline silicon layer , The thickness of which is, for example, about 1000 angstroms; In order to improve the conductivity of the polycrystalline silicon layer, for example, arsenic ions can be implanted into the polycrystalline silicon layer. Then, a thick insulating layer 64 is deposited by CVD, preferably to fill the columnar insulating layer 28a; 28b of Please refer to Figure 4B, and then use CMP technology to polish the surface of the structure in Figure 4A, preferably until the columnar insulating layers 28a and 28b, and the parts above the polycrystalline sand sidewalls 62a and 62b are exposed Please refer to Figure 4C, and then use the traditional mask making and lithography techniques to sequentially etch the thick insulating layer 64 and the polycrystalline silicon layer 26 to form an opening 66 to define the storage capacitor storage of each memory cell Electrode. That is, this step cuts the polycrystalline layer 26 into sections 26a; 26b. Then, polysilicon sidewalls 68a; 68b are formed on the sidewalls of p 66. Please refer to Figure 4D, followed by wet The contact etching method uses the contact protection layer 22 as the etching end point to remove the exposed silicon dioxide layer, that is, the insulating layer M and the columnar insulating layers 28a and 2Sb. This step completes the dynamic random access memory The storage electrode of the body's storage capacitor is as shown in Figure 4D. The Zhang scale applies to the Chinese National Standard (CNS> A4 present format (210X297mm) (please read the precautions on the back before filling in this page) -install · line 03 1 3twf.doc / 002 A7 B7 Central Bureau of Standards of the Ministry of Economic Affairs Printed by the employee consumer cooperative V. Description of the invention (/ 1) Shown as a trunk-like lower polycrystalline silicon layer 26a; 26b, a trunk-like upper polycrystalline silicon layer 68a; 68b, and a class with a column-like profile The dendritic polycrystalline silicon layers 62a; 62b are formed together. The trunk-like lower polycrystalline silicon layers 26a; 26b are connected to the drain region 16a; 16b of the transfer transistor of the DRAM, and have a T-shaped cross section. The lower end of the trunk-like upper polycrystalline silicon layer 68a; 68b is connected to the periphery of the trunk-like lower polycrystalline silicon layer 26a; 26b, and extends substantially upward. The trunk-like upper polycrystalline silicon layer 68a; 68b is generally hollow and cylindrical, and its horizontal cross-section may be circular, rectangular, or other suitable shape. The dendrite-like polycrystalline silicon layers 62a; 62b extend from the upper surface of the trunk-like lower polycrystalline silicon layers 26a; 26b, respectively, generally upward. In this preferred embodiment, the dendrite-like polycrystalline silicon layer 62a; 62b is generally hollow cylindrical 'whose horizontal cross-section can be circular, rectangular, or other suitable shape, mainly in accordance with the columnar insulating layer 28a; 28b Depending on the shape. The dendritic polycrystalline silicon layer 62a; 62b is located inside the trunk-like upper polycrystalline silicon layer 68a; 68b. The following fourth preferred embodiment will describe a structure in which the storage electrode includes a dendritic electrode layer having an L-shaped cross section, and a columnar dendritic electrode layer. The fourth preferred embodiment uses the features of the manufacturing methods of the third and first preferred embodiments to achieve a structure combining the third and first preferred embodiments. Next, a fourth preferred embodiment of a semiconductor memory device with a tree-shaped storage capacitor of the present invention will be described in detail with reference to FIGS. 5A to 5C. This preferred embodiment of a semiconductor memory device is a semiconductor memory of the present invention. The fourth preferred embodiment of the device manufacturing method. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2C, and then DRAM storage electrodes of different structures are manufactured by different processes. In Figures 5A to 5C, the parts similar to those in Figure 2C are the same 20 (please read the note $ item on the back and then fill out this page). Pack. The paper size of the binding book is applicable to China National Standard (CNS) A4 specification (2 丨 〇Χ 297mm) 03! 3twf.doc / 002 A7 B7 The Ministry of Economic Affairs Central Prototype Bureau printed by the Consumer Labor Cooperative V. The description of the invention (丨?) Is numbered. Please refer to FIGS. 2C and 5A. Then, on the side walls of the columnar insulating layers 28a; 28b, polysilicon sidewall spacers 70a; 70b are formed, respectively. Polycrystalline silicon sidewall spacers 70a; 70b can be achieved by the following steps: depositing a polycrystalline silicon layer with a thickness of, for example, 100 angstroms by CVD; and then etching back to form the sidewalls. Then, an insulating layer 72 and a polycrystalline silicon layer 74 are sequentially deposited by CVD. After that, a thick insulating layer 76 is deposited. Please refer to FIG. 5B, and then complete the structure shown in FIG. 5B by the similar processes described above for 2E and 2F. That is, using CMP technology, the surface of the structure shown in FIG. 5A is polished, preferably until the columnar insulating layers 28a; 28b, and the polycrystalline silicon sidewall spacers 70a; 70b are exposed. Then, using traditional photomask patterning and etching techniques, the insulating layer 76, the polycrystalline silicon layer 74, the insulating coating 72, and the polycrystalline silicon layer 26 are sequentially etched to form an opening 78 to define the storage capacitor of each memory cell Storage electrode. That is, by this step, the polycrystalline silicon layers 74 and 26 are cut into sections 74a; 74b and 26a; 26b. Then, polysilicon sidewalls 80a; 80b are formed on the side walls of the opening 78. Please refer to FIG. 5C, and then use the wet etching method and the etching protection layer 22 as the etching end point to remove the exposed silicon dioxide layer, that is, remove the insulating layers 76 and 72, and the columnar insulating layers 28a and 28b . By this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, as shown in FIG. 5C, which is composed of a trunk-like lower polycrystalline silicon layer 26a; 26b, a trunk-like upper polycrystalline silicon layer 80a 80b, a dendritic polycrystalline silicon layer 70a with a column-shaped cross section; 70b, and a dendritic polycrystalline silicon layer 74a; 74b with an L-like cross section are formed together; (Please read the precautions on the back before filling in this page)-Packing. The paper size of the binding is applicable to the Chinese National Standard (CNS) Μ specification (210X297mm) _6 gas. _02 Printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (/?) The trunk-like lower polycrystalline silicon layer 26a; 26b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM, and has a T-like profile. The trunk-like upper polycrystalline silicon noodle 80a; the lower end of 80b is connected to the periphery of the trunk-like lower polycrystalline silicon layer 26a; 26b, and extends substantially upward. The trunk-like upper polycrystalline silicon layer 80a; 80b is roughly a hollow cylindrical shape, and its horizontal cross-section may be circular, rectangular, or other suitable shape. The dendritic polycrystalline silicon layer 74a with an L-shaped cross section; 74b extends from the inner surface of the trunk-like upper polycrystalline silicon layer 80a; 80b, extending inward in a horizontal direction first and then in a vertical direction Extend upward. The column-like dendritic polycrystalline silicon layer 70a; 70b respectively extends from the upper surface of the trunk-like lower polycrystalline silicon layer 26a; 26b, and extends upward. The dendrite-like polycrystalline silicon layer 70a; 70b is roughly hollow cylindrical. The following fifth preferred embodiment uses different manufacturing methods to form storage electrodes having a similar structural shape as the above fourth preferred embodiment. Next, with reference to FIGS. 6A to 6D, a fifth preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail. This preferred embodiment of the semiconductor memory device is a semiconductor memory Manufactured in the fifth preferred embodiment of the device manufacturing method. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2C, and then DRAM storage electrodes of different structures are manufactured by different processes. In Figs. 6A to 6D, the parts similar to those in Fig. 2C are marked with the same numbers. Please refer to FIGS. 2C and 6A, and then alternately deposit a polycrystalline silicon layer and an insulating layer by CVD, that is, sequentially deposit a polycrystalline silicon layer 84, an insulating layer 86, and a polycrystalline silicon layer as shown in FIG. 6A 88, and a thick insulating layer 90. Please refer to Figure 6B, and then use CMP technology to polish the 6A Figure 22 (please read the precautions on the back before filling this page) -install
、1T 線 本紙張尺度適用中國國家梂牟(CNS ) A4規格(210X297公釐) 03 1 3twf.doc/002 A7 B7 經濟部中央樣準局員工消費合作社印裝 五、發明説明(Μ ) 構的表面,至少直到柱狀絕緣層28a和28b上方的部份露 出爲止。 請參照第6C圖,接著利用傳統的光罩製版和蝕刻技 術,依序蝕刻絕緣層90、複晶砂層88、絕緣層86、複晶 矽層84、和複晶砂層26,形成一開口 92,以界定出各記 憶單元的儲存電容器之儲存電極。亦即藉此步驟將複晶矽 層88、84、和26切割成若干區段88a; 88b、84a; 84b、 和26a; 26b。然後在開口 92的側壁上形成複晶矽邊牆94a; 94b。 請參照第6D圖,接著以濕式蝕刻法,並以蝕刻保護層 22爲蝕刻終點,將暴露出的二氧化矽層去除’亦即去除絕 緣層90、86、以及柱狀絕緣層28a和28b »藉此步驟即 完成動態隨機存取記憶體的儲存電容器之儲存電極’其如 第6D圖所示係由類樹幹狀的下複晶矽層26a; 26b、類樹 幹狀的上複晶矽層94a; 94b、以及兩層具有似L形剖面的 類樹枝狀複晶矽層84a,88a; 84b,88b所一起構成。類樹幹 狀的下複晶矽層26a; 26b連接到DRAM的轉移電晶體之汲 極區16a; 16b,且具有似T形的剖面。類樹幹狀的上複晶 矽層94a; 94b的下端連接於類樹幹狀的下複晶矽層26a; 26b的週邊,且大致往上延伸出。類樹幹狀的上複晶矽層 94a; 94b大致爲中空筒狀,其水平剖面可爲圖形、矩形、 或其他適當的形狀。兩層類樹枝狀複晶矽層84a,88a; 84b, 88b則分別從類樹幹狀的上複晶矽層94a; 94b的內表面, 先以約水平方向往內延伸一段距離後’再以約垂直方向往 上延伸。本較佳實施例與上述第二較佳實施例(第3A至 23 (請先閲讀背面之注意事項再填寫本頁) -裝. 訂 線 本紙張尺度適用中國國家標準(CNS )以洗格(210X297公釐) 03 1 3twf.doc/002 A7 B7 五、發明説明(d) 3E圖)不同結構之處,在於類樹枝狀複晶矽層84a; 84b的 下方部份係與類樹幹狀的下複晶矽層26a; 26b之上表面直 接接觸,因而形成較類似於上述第四較佳實施例的儲存電 極結構形狀。 在下一個較佳實施例中,係以不同的製程形成不同結 構的儲存電極。該較佳實施例的儲存電極結構非常類似上 述的第二較佳實施例結構,唯一不同之處是其類樹幹狀的 下複晶矽層具有一中空結構的部份’以增加儲存電極的表 面積。 接著將參照第7A至7D圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第六較佳實施例’半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第六較佳實施例所製造的。 本較佳實施例係以第2A圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第7A至7D圖中,與第2A圖相似的部份係以相同 的編號標示。 請參照第7A和2A圖,接著,以CVD法沈積一平坦化 的絕緣層96,其例如爲BPSG。然後,再以CVD法沈積 一蝕刻保護層98,其例如爲矽氮化物層。之後,利用傳統 的光罩製版和触刻技術,依序蝕刻該蝕刻保護層98、平坦 化絕緣層96、和閘極氧化層I4,以形成儲存電極接觸窗 100a和100b,其係分別由蝕刻保護層98的上表面延伸到 汲極區16a和16b的表面。接著,沈積一複晶矽層102。 爲了提高複晶矽層的導電性,可將例如砷離子植入到複晶 24 (請先閱讀背面之注意事項再填寫本頁) -裝.、 1T line paper size is applicable to China National Anchor (CNS) A4 specification (210X297mm) 03 1 3twf.doc / 002 A7 B7 Central Provincial Bureau of the Ministry of Economic Affairs Employee Consumer Cooperative Printed V. Invention Description (Μ) The surface, at least until the portions above the columnar insulating layers 28a and 28b are exposed. Please refer to FIG. 6C, and then etch the insulating layer 90, the polycrystalline sand layer 88, the insulating layer 86, the polycrystalline silicon layer 84, and the polycrystalline sand layer 26 in order to form an opening 92 using conventional photomask patterning and etching techniques To define the storage electrode of the storage capacitor of each memory cell. That is, by this step, the polycrystalline silicon layers 88, 84, and 26 are cut into sections 88a; 88b, 84a; 84b, and 26a; 26b. 94b is formed on the side wall of the opening 92 on the side wall of the polycrystalline silicon. Please refer to FIG. 6D, and then use the wet etching method and the etching protection layer 22 as the etching end point to remove the exposed silicon dioxide layer, that is, to remove the insulating layers 90, 86, and the columnar insulating layers 28a and 28b »In this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed. As shown in FIG. 6D, it is composed of a trunk-like lower polycrystalline silicon layer 26a; 26b, a trunk-like upper polycrystalline silicon layer. 94a; 94b, and two layers of dendritic polycrystalline silicon layers 84a, 88a; 84b, 88b having an L-shaped cross section. The trunk-like lower polycrystalline silicon layer 26a; 26b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM, and has a T-like profile. The lower end of the trunk-like upper polycrystalline silicon layer 94a; 94b is connected to the periphery of the trunk-like lower polycrystalline silicon layer 26a; 26b, and extends substantially upward. The trunk-like upper polycrystalline silicon layer 94a; 94b is roughly a hollow cylindrical shape, and its horizontal section may be a figure, a rectangle, or other appropriate shapes. The two dendritic polycrystalline silicon layers 84a, 88a; 84b, 88b respectively extend from the inner surface of the trunk-like upper polycrystalline silicon layer 94a; 94b, extending inward in the horizontal direction for a distance, and then approximately Extend vertically. This preferred embodiment and the above second preferred embodiment (No. 3A to 23 (please read the precautions on the back before filling in this page)-Packing. The paper size of the binding book is applicable to the Chinese National Standard (CNS) to wash the grid ( 210X297mm) 03 1 3twf.doc / 002 A7 B7 5. Description of the invention (d) 3E) The difference in structure lies in the dendritic polycrystalline silicon layer 84a; the lower part of 84b is under the trunk-like shape The upper surface of the polycrystalline silicon layer 26a; 26b is in direct contact, thus forming a shape similar to that of the storage electrode structure of the fourth preferred embodiment described above. In the next preferred embodiment, storage electrodes of different structures are formed by different processes. The storage electrode structure of this preferred embodiment is very similar to the structure of the second preferred embodiment described above, the only difference is that its trunk-like lower polycrystalline silicon layer has a hollow structure 'to increase the surface area of the storage electrode . Next, with reference to FIGS. 7A to 7D, a sixth preferred embodiment of a semiconductor memory device having a tree-type storage capacitor of the present invention will be described in detail. This preferred embodiment of a semiconductor memory device is a semiconductor memory Manufactured in the sixth preferred embodiment of the device manufacturing method. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2A, and then DRAM storage electrodes of different structures are manufactured by different processes. In Figs. 7A to 7D, the parts similar to those in Fig. 2A are marked with the same numbers. Please refer to FIGS. 7A and 2A. Next, a planarized insulating layer 96 is deposited by CVD, for example, BPSG. Then, an etch protection layer 98, such as a silicon nitride layer, is deposited by CVD. Afterwards, the etching protection layer 98, the planarization insulating layer 96, and the gate oxide layer I4 are sequentially etched in order to form storage electrode contact windows 100a and 100b, which are respectively etched The upper surface of the protective layer 98 extends to the surfaces of the drain regions 16a and 16b. Next, a polycrystalline silicon layer 102 is deposited. In order to improve the conductivity of the polycrystalline silicon layer, for example, arsenic ions can be implanted into the polycrystalline 24 (please read the precautions on the back before filling this page)-installed.
、1T 經濟部中央標準局員工消費合作社印裝 本紙張尺度適用中國國家樣率(CNS) Α4規格(210χ2()7公釐) 03 \ 3twf.doc/002 A7 B7 經濟部中央樣準局貝工消費合作社印製 五 '發明説明(认) 矽層中。如圖所示,複晶矽層102覆蓋蝕刻保護層98的表 面、以及儲存電極接觸窗l〇〇a和100b的內壁表面,但未 塡滿儲存電極接觸窗l〇〇a和100b,因而使複晶矽層102 具有一似U形剖面的中空結構部份。 請參照第7B圖,接著沈積一厚的絕緣層,其例如爲二 氧化矽層,厚度約7000埃。再利用傳統的光罩製版和蝕刻 技術定義絕緣層,因而形成如圖所示的柱狀絕緣層l〇4a 和104b。柱狀絕緣層104a和104b的較佳位置大致係分別 對應於汲極區16a和16b上方的區域,且能塡滿複晶矽層 102的中空結構部份。柱狀絕緣層之間形成凹口 106。 接著以類似第二較佳實施例的製造方法,亦即針對第 3A至3D圖所述者,完成本較佳實施例的儲存電極結構。 請參照第7C圖,接著以CVD法交替沈積絕緣層和複 晶矽層,亦即依序沈積一絕緣層106、一複晶矽層108、 —絕緣層110、一複晶矽層112、和一厚絕緣層114。然 後利用CMP技術,硏磨本結構的表面,至少直到柱狀絕緣 層104a和104b上方的部份露出爲止。 請參照第7D圖,接著利用傳統的光罩製版和蝕刻技 術,依序蝕刻絕緣層114、複晶矽層112、絕緣層110、 複晶矽層108、絕緣層106、和複晶砂層102,形成一開 口,以界定出各記憶單元的儲存電容器之儲存電極。亦即 藉此步驟將複晶矽層Π2、108、和102切割成若干區段 112a; 112b、108a; 108b、和 102a; 102b。然後在開口的 側壁上形成複晶矽邊牆116a; 116b。之後,以濕式蝕刻法, 並以蝕刻保護層98爲蝕刻終點,將暴露出的二氧化矽層去 25 本紙張尺度適用中國國家橾準(CNS ) A4规格(210X297公釐} (請先閲讀背面之注意事項再填寫本頁) •裝. 、?! 線 03 1 3twf doc/〇〇2 B7 經濟邹中央標準局員工消費合作社印製 五、發明説明(〕>) 除’亦即去除絕緣層114、110和106、以及柱狀絕緣層 ^仏和104b。藉此步驟即完成動態隨機存取記憶體的儲 存電容器之儲存電極,其如第7D圖所示十分類似第3D圖 的結構’不同之處係在於類樹幹狀的下複晶矽層l〇2a; 102b具有一中空結構部份,以更增加儲存電極的表面積。 在下一個較佳實施例中,係以不同的製程形成不同結 構的儲存電極。該較佳實施例的儲存電極結構非常類似上 述的第二較佳實施例結構,不同之處是其類樹幹狀的下複 晶砂層水平部份之下表面未與其下方的蝕刻保護層接 觸’而相距一段距離’以更增加儲存電極的表面積。 接著將參照第8A至8E圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第七較佳實施例,半導 體記憶元件的此一較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第七較佳實施例所製造的。 本較佳實施例係以第2A圖所示的較佳實施例之結構 爲基礎’再以不同的製程製作不同結構的Dram儲存電 極。在第8A至8E圖中,與第2A圖相似的部份係以相同 的編號標示。 請參照第8A和2A圖,接著,以CVD法沈積一平坦化 的絕緣層120 ’其例如爲BPSG。然後,再以CVD法沈積 一倉虫刻保護層122,其例如爲矽氮化物層。復以CVD法沈 積—絕緣層124 ’其例如爲二氧化矽,厚度例如約爲2000 埃。之後’利用傳統的光罩製版和蝕刻技術,依序蝕刻絕 緣層124、蝕刻保護層122、平坦化絕緣層120、和閘極 氧化層14 ’以形成儲存電極接觸窗126a和126b,其係分 26、 1T The standard paper size of the printed copy of the Employees ’Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs is applicable to China ’s National Sample Rate (CNS) Α4 specification (210 × 2 () 7 mm) 03 \ 3twf.doc / 002 A7 B7 Ministry of Economic Affairs The Consumer Cooperative printed the five 'invention description (recognition) in the silicon layer. As shown, the polycrystalline silicon layer 102 covers the surface of the etching protection layer 98 and the inner wall surfaces of the storage electrode contact windows 100a and 100b, but the storage electrode contact windows 100a and 100b are not filled, so The polycrystalline silicon layer 102 has a hollow structure part with a U-shaped cross section. Please refer to FIG. 7B, and then deposit a thick insulating layer, such as a silicon dioxide layer, with a thickness of about 7000 angstroms. Then, the traditional photomask patterning and etching techniques are used to define the insulating layer, thereby forming the columnar insulating layers 104a and 104b as shown. The preferred positions of the columnar insulating layers 104a and 104b generally correspond to the areas above the drain regions 16a and 16b, respectively, and can fill the hollow structure portion of the polycrystalline silicon layer 102. Notches 106 are formed between the columnar insulating layers. Then, a manufacturing method similar to the second preferred embodiment, that is, those described in FIGS. 3A to 3D, is used to complete the storage electrode structure of the preferred embodiment. Please refer to FIG. 7C, then alternately deposit an insulating layer and a polycrystalline silicon layer by CVD, that is, sequentially deposit an insulating layer 106, a polycrystalline silicon layer 108, an insulating layer 110, a polycrystalline silicon layer 112, and One thick insulating layer 114. Then, using the CMP technique, the surface of the structure is polished at least until the portions above the columnar insulating layers 104a and 104b are exposed. Please refer to FIG. 7D, and then etch the insulating layer 114, the polycrystalline silicon layer 112, the insulating layer 110, the polycrystalline silicon layer 108, the insulating layer 106, and the polycrystalline sand layer 102 in sequence using traditional photomask patterning and etching techniques, An opening is formed to define the storage electrode of the storage capacitor of each memory cell. That is, by this step, the polycrystalline silicon layers II2, 108, and 102 are cut into sections 112a; 112b, 108a; 108b, and 102a; 102b. Then, polycrystalline silicon sidewalls 116a; 116b are formed on the side walls of the opening. After that, using wet etching method and etching protection layer 98 as the end point of etching, the exposed silicon dioxide layer is removed to 25. The paper standard is applicable to China National Standard (CNS) A4 specification (210X297mm) (Please read first Note on the back and then fill out this page) • Install.,?! Line 03 1 3twf doc / 〇〇2 B7 Economic Zou Central Standards Bureau employee consumer cooperative printed five. Description of invention () >) Except that the insulation is removed The layers 114, 110 and 106, and the columnar insulating layers ^ q and 104b. This step completes the storage electrode of the storage capacitor of the dynamic random access memory, which is very similar to the structure of FIG. 3D as shown in FIG. 7D. The difference is that the trunk-like lower polycrystalline silicon layer 102a; 102b has a hollow structure part to increase the surface area of the storage electrode. In the next preferred embodiment, different structures are formed by different processes The storage electrode structure of this preferred embodiment is very similar to the structure of the second preferred embodiment described above, except that its trunk-like surface of the lower part of the lower polycrystalline sand layer is not protected from etching underneath Floor Touch 'a distance away' to increase the surface area of the storage electrode. Next, referring to Figures 8A to 8E, the seventh preferred embodiment of a semiconductor memory device with a tree-shaped storage capacitor according to the present invention will be described in detail. This preferred embodiment is manufactured by the seventh preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2A 'The Dram storage electrodes with different structures are made in different processes. In Figures 8A to 8E, the parts similar to those in Figure 2A are marked with the same numbers. Please refer to Figures 8A and 2A, and then use the CVD method A planarized insulating layer 120 'is deposited, for example, BPSG. Then, a protective layer 122, which is a silicon nitride layer, is deposited by CVD, for example, a silicon nitride layer. An insulating layer 124' is deposited by CVD, for example: Silicon dioxide, for example, about 2000 Angstroms thick. Afterwards, using traditional photomask patterning and etching techniques, the insulating layer 124, the etching protective layer 122, the planarizing insulating layer 120, and the gate oxide layer 1 are etched in sequence 4 'to form storage electrode contact windows 126a and 126b, which are divided into 26
(請先閱讀背面之注意事項再填寫本頁) -裝· ,•11 線 309644 wf. doc/002 B7 五、發明説明(碍) 別由絕緣層124的上表面延伸到汲極區l6a和1 面。接著,沈積一複晶矽層丨28。如圖所示,複晶的袠 塡滿儲存電極接觸窗和126b,且覆褰絕^ 層128 表面。 124的 請參照第8B圖,接著沈積一厚的絕緣靥,其 氧化矽層,厚度約7000埃。再利用. 、1如 技術定義絕緣層,因而形成如圖所示的柱 和130b。柱狀絕緣層130a和130b 對應於汲極區16a和16b上方的區域 成凹口 129。 狀絕緣餍 經濟部中央標準局員工消费合作社印裝 接著以類似第二較佳實施例的製造方法,#β 3Α至3D圖所述者’完成本較佳實施例的儲存電^針對第 請參照第8C圖,接著以CVD法交替沈棟絕結構。 晶矽層,亦即依序沈積一絕緣層132、一複晶砂層複 一絕緣層130、一複晶矽層138、和一厚絕緣靥14〇 4、 後利用CMP技術,硏磨本結構的表面,至少直到柱狀絕然 層130a和l3〇b上方的部份露出爲止。 緣 請參照第8D圖’接著利用傳統的光罩製版和蝕刻技 術’依序蝕刻絕緣層140、複晶矽層138、絕緣層131、 複晶矽層134、絕緣層132、和複晶矽層128,形成一開 口142 ’以界定出各記憶單元的儲存電容器之儲存電極!1 亦即藉此步驟將複晶矽層138、134、和128切割成若干 區段 138a; 138b、134a; 134b、和 128a; 128b。然後在開 口 M2的側壁上形成複晶矽邊牆丨44a;丨44b。 請參照第8E圖,接著以濕式蝕刻法,並以蝕刻保護層 27 本紙張(度適用中國國家樣率(CNS ) A4規格(2丨〇χ297公竣) {讀先閑讀背面之注意事項再填"本頁j 等 -*1T· 03 1 3twf.doc/002 A7 B7 五、發明説明( 122爲触刻終點’將暴露出的二氧化砂層去除’亦即去除 絕緣層140、136、132和124、以及柱狀絕緣層130a和 130b。藉此步驟即完成動態隨機存取記憶體的儲存電容器 之儲存電極’其如第8E圖所示十分類似第330圖的結構, 不同之處係在於類樹幹狀的下複晶矽層128a; 128b水平部 份之下表面未與其下方的蝕刻保護層122接觸’而相距一 段距離,以更增加儲存電極的表面積。 在上述第一至第七較佳實施例中’儲存電極的類樹枝 狀電極層係呈單節直立式構件或呈L形剖面的兩節式彎摺 構件。然而,本發明並不限於此’類樹枝狀電極層因彎摺 而構成的節數目,可以爲三節、四節、或更多。下—個較 佳實施例即將描述類樹枝狀電極層具有四節結構的儲存 電極。 接著將參照第9A至9E圖,詳述本發明的一種具有樹 型儲存電容器的半導體記憶元件之第八較佳實施例,半導 體記憶元件的此—較佳實施例,係由本發明的一種半導體 記憶元件製造方法之第八較佳實施例所製造的。 本較佳實施例係以第2B圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第9A至9E圖中,與第2B圖相似的部份係以相同 的編號標示。 請參照第9A和2B圖,接著,沈積一層厚的絕緣層, 其例如爲二氧化矽,厚度例如約7000埃。再利用傳統的光 罩製版技術形成一光阻層152,並以非等向性蝕刻曝露出 的絕緣層之一部份,因而形成如圖所示的凸起絕緣層丨50a 28 (請先閱讀背面之注意事項再填寫本頁) -* 經濟部中央標隼局員工消費合作社印聚 本紙張尺度適用中國國家標準(CNS) Λ4規格(210x 297公釐) 03 1 3twf.doc/〇02(Please read the precautions on the back before filling in this page)-Install ·, • 11 lines 309644 wf. Doc / 002 B7 5. Description of the invention (impediments) Do not extend from the upper surface of the insulating layer 124 to the drain region l6a and 1 surface. Next, a polycrystalline silicon layer 28 is deposited. As shown in the figure, the compound crystal is filled with the storage electrode contact window and 126b, and covers the surface of the insulating layer 128. Please refer to Figure 8B for 124, and then deposit a thick insulating layer of silicon oxide with a thickness of about 7000 angstroms. Reuse. 1. The insulation layer is defined as in the technique, thus forming the pillars and 130b as shown in the figure. The columnar insulating layers 130a and 130b are notched 129 corresponding to the areas above the drain regions 16a and 16b. Insulation-like insulation The Ministry of Economic Affairs Central Standards Bureau employee consumer cooperative printing and printing and then using a manufacturing method similar to the second preferred embodiment, # β 3Α to 3D figure described 'Complete the storage of this preferred embodiment of the electricity Figure 8C, then alternately sink the insulating structure by CVD method. The crystalline silicon layer, that is, depositing an insulating layer 132, a polycrystalline sand layer, an insulating layer 130, a polycrystalline silicon layer 138, and a thick insulating layer 140 in sequence, and then using CMP technology to polish the structure The surface, at least until the portions above the columnar insulating layers 130a and 130b are exposed. Please refer to Figure 8D for "following the use of traditional mask patterning and etching techniques" to sequentially etch the insulating layer 140, polycrystalline silicon layer 138, insulating layer 131, polycrystalline silicon layer 134, insulating layer 132, and polycrystalline silicon layer 128, an opening 142 'is formed to define the storage electrode of the storage capacitor of each memory cell! That is, the polycrystalline silicon layers 138, 134, and 128 are cut into sections 138a; 138b, 134a; 134b, And 128a; 128b. Then, a polycrystalline silicon edge wall is formed on the side wall of the opening M2 丨 44a; 丨 44b. Please refer to Figure 8E, followed by the wet etching method and the etching protection layer 27 papers (applicable to the Chinese National Sample Rate (CNS) A4 specification (2 丨 〇χ297)) {read the precautions before reading the back Refill " this page j etc .- * 1T · 03 1 3twf.doc / 002 A7 B7 5. Description of the invention (122 is the end point of the engraving 'remove the exposed sand dioxide layer', that is, remove the insulating layers 140, 136, 132 and 124, and columnar insulating layers 130a and 130b. With this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, which is very similar to the structure shown in FIG. In the trunk-like lower polycrystalline silicon layer 128a; the lower surface of the horizontal portion of 128b is not in contact with the etching protection layer 122 below it and is at a distance to further increase the surface area of the storage electrode. In the preferred embodiment, the dendritic electrode layer of the storage electrode is a single-node upright member or a two-section bent member with an L-shaped cross section. However, the present invention is not limited to this kind of dendritic electrode layer due to bending The number of sections can be three , Four sections, or more. The next preferred embodiment will describe a dendritic electrode layer with a four-section storage electrode. Next, referring to FIGS. 9A to 9E, a tree-shaped storage capacitor of the present invention will be described in detail. The eighth preferred embodiment of the semiconductor memory element of the semiconductor memory device, this-the preferred embodiment is manufactured by the eighth preferred embodiment of a method for manufacturing a semiconductor memory element of the present invention. Based on the structure of the preferred embodiment shown in Fig. 2B, DRAM storage electrodes with different structures are fabricated by different processes. In Figs. 9A to 9E, the parts similar to those in Fig. 2B are given the same number Please refer to Figures 9A and 2B, and then deposit a thick insulating layer, such as silicon dioxide, with a thickness of about 7000 angstroms. Then, a photoresist layer 152 is formed using traditional photomask plate-making technology Isotropically etch a part of the exposed insulating layer, thus forming a raised insulating layer as shown in the picture 丨 50a 28 (Please read the precautions on the back before filling this page)-* Employee of Central Falcon Bureau, Ministry of Economic Affairs Dispel This paper cooperatives printed poly scale applicable Chinese National Standard (CNS) Λ4 Size (210x 297 mm) 03 1 3twf.doc / 〇02
經濟部中央標隼局員工消费合作社印裝 五、發明説明(4) 和 150b 。 請參照第9B圖,接著以光阻浸蝕(Photoresist erosion )技術去除光阻層i52—厚度,而形成較薄較小的 光阻層152a,藉此又曝露出凸起絕緣餍150a和150b的一 部份上表面。 請再參照第9C圖,接著,再以非等向性蝕刻凸起絕緣 層150a和15(^曝露出的上表面部份及殘留的絕緣層,至 複晶矽層26露出爲止,以便形成具有階梯狀的柱狀絕緣層 l5〇c和150d結構。最後去光阻。 接著以類似第一較佳實施例的製造方法’亦即針對第 2D至2G圖所述者,完成本較佳實施例的儲存電極結構。 請參照第9D圖,接著以CVD法依序沈積一絕緣層 I54、一複晶矽層156、和一厚絕緣層158。接著利用機 械化學式硏磨技術,硏磨其結構的表面,至少直到柱狀絕 緣層150c和l5〇d上方的表面露出爲止。 請參照第9E圖,接著利用傳統的光罩製版和蝕刻技 術,依序蝕刻絕緣層158 '複晶矽層156、絕緣層154、 和複晶矽層26,形成一開口,以界定出各記憶單元的儲存 電容器之儲存電極。亦即藉此步驟將複晶矽層156和26 切割成若干區段156a; 156b和26a; 26b。然後在開口的側 壁上形成複晶矽邊牆159a和159b。 接著以濕式蝕刻法,並以蝕刻保護層22爲蝕刻終點, 將暴露出的二氧化矽層去除,亦即去除絕緣層158和154、 以及柱狀絕緣層15〇c和I50d。藉此步驟即完成動態隨機 存取記憶體的儲存電容器之儲存電極,其如第9E圖所示 29 本紙悵尺度遑用中國國家樣準(CNS ) A4規格(2丨0 <297公釐) (請先閱讀背面之注意事項真填寫本頁) -燊· t· -s r 03 I 3twf.doc/002 03 I 3twf.doc/002 經濟部中央標隼局員工消費合作社印製 B7 五、發明説明ΡΊ ) 係由類樹幹狀的下複晶矽層26a; 26b、類樹幹狀的上複晶 矽層159a; 159b、以及具有四節彎摺形剖面(或雙L形剖 面)的類樹枝狀複晶矽層156a; 156b所一起構成。類樹枝 狀複晶矽層156a; 156b是從類樹幹狀的上複晶矽層159a; 159b的內表面,先以約水平方向往內延伸一段距離後,再 以約垂直方向往上延伸另一段距離,接著又以約水平方向 往內延伸一段距離,最後以約垂直方向往上延伸出。 依照本較佳實施例之構想,柱狀絕緣層或凸起絕緣層 的形狀之不同,即可改變類樹枝狀複晶矽層的延伸形狀及 延伸角度,故本發明的柱狀絕緣層或凸起絕緣層的形狀並 不應限於上述者。實際上,也可利用其他的手段來變化出 各種形狀,例如在第2C圖的情況中,若以等向性 (isotropic )蝕刻或濕式蝕刻來代替非等向性 (anisotropic )飽刻方式,對該厚絕緣層施行蝕刻,可得 類三角形的絕緣層;或者同樣在第2C圖的情況中,於柱 狀絕緣層28a和28b形成之後,再形成邊牆絕緣層於柱狀 絕緣層28a和28b的側壁上,也可得另一種不同形狀的柱 狀絕緣層。因此類樹枝狀複晶矽層可以有多種不同角度之 延伸形狀。 依照本較佳實施例之構想,若要製作更多節的類樹枝 狀複晶矽層結構,可以第9B和9C圖的結構爲基礎,再進 行光阻浸蝕步驟和凸起絕緣層的非等向錬刻步驟一次或 多次’以形成更多階梯的柱狀絕緣層結檸。 在上述第一至第八較佳實施例中,均是利用CMP技術 將位在柱狀絕緣層上方的複晶矽層予以去除截斷。然而’ 30 本紙張尺度適用中國國家標隼(CNS規格(2丨0X 297公釐 (請先閱绩背面之注意事項再填寫本頁) 訂 線 03 ntwf.doc/002 A7 B7 經濟部中央榡隼局貝工消费合作杜印^ 五、發明説明(β ) 本發明並不限於此,下一個較佳實施例即將描述利用傳統 的光罩製版和蝕刻技術’將位在柱狀絕緣層上方的複晶矽 層予以切割的製程,以及因而形成的不同儲存電極結構。 接著將參照第10A至10D圖’詳述本發明的一種具有 樹型儲存電容器的半導體記憶元件之第九較佳實施例,半 導體記憶元件的此一較佳實施例,係由本發明的一種半導 體記憶元件製造方法之第九較佳實施例所製造的。 本較佳實施例係以第2C圖所示的較佳實施例之結構 爲基礎,再以不同的製程製作不同結構的DRAM儲存電 極。在第10A至10D圖中,與第2C圖相似的部份係以相 同的編號標示。 請參照第10A和2C圖,接著以CVD法交替沈積絕緣 層和複晶矽層,亦即如第l〇A圖所示依序沈積一絕緣層 160、一複晶砂層162、一絕緣層164、一複晶砂層166、 和一厚絕緣層168。絕緣層160、164和168例如爲二氧 化矽,絕緣層160; 164和複晶矽層162; 166的厚度均例如 約1000埃。厚絕緣層168的厚度較佳是可塡滿複晶矽層 166凹凸表面的凹口。 請參照第10B圖,接著利用傳統的光罩製版和蝕刻技 術’依序触刻絕緣層168、複晶矽層166、絕緣層164、 複晶矽層162、絕緣層160、和複晶矽層26 ’形成一開口 170,以界定出各記憶單元的儲存電容器之儲存電極。亦 即藉此步驟將複晶矽層166、162、和26切割成若干區段 166a; 166b ' 162a; 162b、和 26a; 26b。然後在開口 170 的側壁上形成複晶矽邊牆172a; 172b ° 本紙張尺度適用中國國家標隼(CNS ) Α4规格(2丨0x297公鏟) (請先閲讀背面之注意事項再填寫本頁) -裝. -β 線 03 1 3twf.doc/0〇2 A7 B7 五、發明説明(4 ) 請參照第i〇c圖’接著利用傳統的光罩製版和蝕刻技 術’依序蝕刻複晶矽層166a; 166b、絕緣層164、和複晶 矽層162a; 162b ’形成開口 174a; 174b,用以將位於柱狀 絕緣層28a; 28b上方的複晶矽層166a; i66b和i62a; U2b 予以開口,以便露出其內部的二氧化矽。 * 請參照第10D圖,接著以濕式蝕刻法,並以軸刻保護 層22爲餓刻終點,將暴露出的—氧化砂層去除,亦即去除 絕緣層168、164、和160、以及柱狀絕緣層28a和28b。 藉此步驟即完成動態隨機存取記憶體的儲存電容器 存電極,其如第10D圖所示係由類樹幹狀的下複晶砂層26a; 26b、類樹幹狀的上複晶矽層172a; 172b、以及具有三節^ 彎摺形剖面的二層類樹枝狀複晶矽層162a,166a; 162b, 166b所一起構成。二層類樹枝狀複晶砂層162a,166a; 162b, i66b係從類樹幹狀的上複晶砂層172a; 172b的內表面,先 以約水平方向往內延伸出一段距離後,再以約垂直方向往 上延伸一距離,最後以約水平方向往內延伸。 熟習此藝者應可瞭解,上述本發明各個較佳實施例的 構想特徵,除了可以單獨應用之外,亦可混合應用,而再 達成非常多種不同結構的儲存電極和儲存電容器。這些儲 存電極和儲存電容器的結構都應在本發明的保護範圍之 內。 應注意雖然在圖式中轉移電晶體的汲極均爲矽基底表 面的擴散區結構,然本發明並不限於此,任何適當的汲極 結構均可應用於本發明,例如溝槽式(trench )汲極即爲 —例0 32 本紙張尺度適用中國國家橾率(CNS ) A4規格(210X297公釐) {請先閲讀背面之注意事項再填寫本頁) -裝. -訂 經濟部十央標準局員工消費合作社印裝 03 1 3twf. doc/002 A7 B7 五、發明説明(外) 再者,也應注意圖式中各構件部份的形狀、尺寸、和 延伸的角度,僅爲繪示方便所作的示意表示,其與實際情 況或有差異,故不應用以限制本發明。 雖然本發明已以若千較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍內,當可作些許之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者爲準。 (請先閱讀背面之注意事項再填寫本頁) •裝. 經濟部中央標準局員工消費合作社印装 33 本紙張尺度遴用中國國家標準(CNS ) A4規格(210X 297公釐)Printed by the Employee Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economic Affairs V. Invention Instructions (4) and 150b. Please refer to FIG. 9B, and then the photoresist erosion (Photoresist erosion) technique is used to remove the photoresist layer i52-thickness to form a thinner and smaller photoresist layer 152a, thereby exposing one of the raised insulating layers 150a and 150b Part of the upper surface. Please refer to FIG. 9C again, and then anisotropically etch the raised insulating layers 150a and 15 (^ the exposed upper surface portion and the remaining insulating layer until the polycrystalline silicon layer 26 is exposed to form Stepped columnar insulating layer 15c and 150d structure. Finally, the photoresist is removed. Then, the present preferred embodiment is completed by a manufacturing method similar to the first preferred embodiment, that is, as described in FIGS. 2D to 2G The storage electrode structure. Please refer to FIG. 9D, and then sequentially deposit an insulating layer I54, a polycrystalline silicon layer 156, and a thick insulating layer 158 by CVD method. Then, using mechanical and chemical grinding technology, the structure of the electrode is polished. The surface is at least until the surface above the columnar insulating layers 150c and 150d is exposed. Please refer to FIG. 9E, and then etch the insulating layer 158 'polycrystalline silicon layer 156 and the insulating layer in sequence using traditional mask patterning and etching techniques The layer 154, and the polycrystalline silicon layer 26 form an opening to define the storage electrode of the storage capacitor of each memory cell. That is, the polycrystalline silicon layers 156 and 26 are cut into several sections 156a by this step; 156b and 26a ; 26b. Then form on the side wall of the opening The polysilicon sidewalls 159a and 159b are formed. Then, the exposed silicon dioxide layer is removed by the wet etching method and the etching protection layer 22 is used as the etching end point, that is, the insulating layers 158 and 154 and the columnar insulation are removed Layer 15〇c and I50d. This step is to complete the storage electrode of the storage capacitor of the dynamic random access memory, which is shown in Figure 9E 29. The paper size is not in line with the Chinese National Standard (CNS) A4 specification (2 丨0 < 297mm) (Please read the precautions on the back and fill in this page)-燊 · t · -sr 03 I 3twf.doc / 002 03 I 3twf.doc / 002 Central Standard Falcon Bureau Employee Consumer Cooperative Printed B7 V. Description of the invention (PΊ) consists of a trunk-like lower polycrystalline silicon layer 26a; 26b, a trunk-like upper polycrystalline silicon layer 159a; 159b, and a four-section bend-shaped section (or double L-shaped) (Section) of the dendritic polycrystalline silicon layer 156a; 156b together. Dendrite-like polycrystalline silicon layer 156a; 156b is from the inner surface of the trunk-like upper polycrystalline silicon layer 159a; 159b, first extending inward in a horizontal direction, then extending another segment in a vertical direction The distance then extends inward in a horizontal direction, and then extends upward in a vertical direction. According to the conception of this preferred embodiment, the different shapes of the columnar insulating layer or the convex insulating layer can change the extending shape and the extending angle of the dendritic polycrystalline silicon layer. Therefore, the columnar insulating layer or the convex of the present invention The shape of the insulating layer should not be limited to the above. In fact, other methods can also be used to change various shapes. For example, in the case of Figure 2C, if isotropic etching or wet etching is used instead of anisotropic saturation, By etching this thick insulating layer, a triangular-like insulating layer can be obtained; or in the case of FIG. 2C, after the columnar insulating layers 28a and 28b are formed, a side wall insulating layer is formed on the columnar insulating layer 28a and On the side wall of 28b, another column-shaped insulating layer of different shape can also be obtained. Therefore, the dendritic polycrystalline silicon layer can have various extended shapes at different angles. According to the conception of this preferred embodiment, to fabricate more sections of dendritic polycrystalline silicon layer structure, the structure of Figure 9B and 9C can be used as the basis, and then the photoresist etching step and the unevenness of the raised insulating layer Steps are engraved one or more times to form more stepped columnar insulating layers. In the above-mentioned first to eighth preferred embodiments, the polycrystalline silicon layer above the columnar insulating layer is removed by CMP technology. However, the '30 paper size is applicable to China's national standard falcon (CNS specifications (2 丨 0X 297mm (please read the notes on the back of the performance first and then fill in this page) Stranding 03 ntwf.doc / 002 A7 B7 Central Ministry of Economics Falcon Bureau Veritas Consumer Cooperation Du Yin ^ V. Description of the invention (β) The present invention is not limited to this. The next preferred embodiment will describe the use of traditional photomask plate-making and etching techniques to place the complex above the columnar insulating layer. The process of cutting the crystalline silicon layer and the different storage electrode structures thus formed. Next, the ninth preferred embodiment of a semiconductor memory device with a tree-shaped storage capacitor according to the present invention will be described in detail with reference to FIGS. 10A to 10D. This preferred embodiment of the memory element is manufactured by the ninth preferred embodiment of a semiconductor memory element manufacturing method of the present invention. This preferred embodiment is structured as the preferred embodiment shown in FIG. 2C As a basis, different processes are used to make DRAM storage electrodes with different structures. In Figures 10A to 10D, parts similar to those in Figure 2C are marked with the same numbers. Please refer to Figures 10A and 2C, Next, an insulating layer and a polycrystalline silicon layer are alternately deposited by CVD, that is, an insulating layer 160, a polycrystalline sand layer 162, an insulating layer 164, a polycrystalline sand layer 166, and 166 are sequentially deposited as shown in FIG. 10A. A thick insulating layer 168. The insulating layers 160, 164 and 168 are, for example, silicon dioxide, the insulating layer 160; 164 and the polycrystalline silicon layer 162; 166 have a thickness of, for example, about 1000 angstroms. The thickness of the thick insulating layer 168 is preferably Fill the notches on the uneven surface of the polycrystalline silicon layer 166. Please refer to Figure 10B, and then use the traditional mask making and etching techniques to sequentially insulate the insulating layer 168, polycrystalline silicon layer 166, insulating layer 164, polycrystalline The silicon layer 162, the insulating layer 160, and the polycrystalline silicon layer 26 'form an opening 170 to define the storage electrode of the storage capacitor of each memory cell. That is, the polycrystalline silicon layers 166, 162, and 26 are cut by this step Into several sections 166a; 166b '162a; 162b, and 26a; 26b. Then the polycrystalline silicon edge wall 172a is formed on the side wall of the opening 170; 172b ° This paper scale is applicable to China National Standard Falcon (CNS) Α4 specifications (2 丨0x297 male shovel) (Please read the precautions on the back before filling in this page) -Installation. -Β 线 0 3 1 3twf.doc / 0〇2 A7 B7 Fifth, the description of the invention (4) Please refer to figure i〇c 'then use the traditional photomask plate making and etching technology' to sequentially etch the polycrystalline silicon layer 166a; 166b, insulating layer 164, and the polycrystalline silicon layer 162a; 162b 'to form an opening 174a; 174b, for the polycrystalline silicon layer 166a; i66b and i62a; U2b is opened above the columnar insulating layer 28a; 28b, so as to expose the internal two Silicon oxide. * Please refer to Figure 10D, and then use wet etching method, and use the shaft engraved protective layer 22 as the end point of hunger to remove the exposed-oxidized sand layer, that is, remove the insulating layers 168, 164, and 160, and the columnar Insulation layers 28a and 28b. With this step, the storage capacitor storage electrode of the dynamic random access memory is completed, as shown in FIG. 10D, which is composed of a trunk-like lower polycrystalline sand layer 26a; 26b, a trunk-like upper polycrystalline silicon layer 172a; 172b And a two-layer dendritic polycrystalline silicon layer 162a, 166a; 162b, 166b with a three-section bend-shaped cross section. The two-layer dendritic polycrystalline sand layer 162a, 166a; 162b, i66b is from the inner surface of the trunk-like upper polycrystalline sand layer 172a; 172b, extending inward in the horizontal direction for some distance, then in the vertical direction Extend upward for a distance, and finally extend inward approximately horizontally. Those skilled in the art should understand that the above-mentioned conceptual features of the preferred embodiments of the present invention can be used alone or in combination to achieve storage electrodes and storage capacitors of many different structures. The structure of these storage electrodes and storage capacitors should fall within the protection scope of the present invention. It should be noted that although the drains of the transfer transistors in the drawings are all diffused region structures on the surface of the silicon substrate, the invention is not limited thereto, and any suitable drain structure can be applied to the invention, such as trench ) Jiji is—Example 0 32 The paper size is applicable to China National Standard (CNS) A4 specification (210X297mm) (Please read the precautions on the back before filling this page) Printed by the Bureau ’s Consumer Cooperative Society 03 1 3twf. Doc / 002 A7 B7 V. Description of the invention (outside) Furthermore, the shape, size, and extension angle of each component in the diagram should also be noted, for convenience of illustration only The schematic representation made may be different from the actual situation, so it should not be used to limit the present invention. Although the present invention has been disclosed as above in preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this skill can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the attached patent application. (Please read the precautions on the back before filling in this page) • Packing. Printed and printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 33 This paper size is selected according to the Chinese National Standard (CNS) A4 specification (210X 297mm)
Claims (1)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW85110009A TW309644B (en) | 1996-08-16 | 1996-08-16 | Semiconductor memory device with capacitor (3) |
US08/735,560 US5739060A (en) | 1996-08-16 | 1996-10-23 | Method of fabricating a capacitor structure for a semiconductor memory device |
GB9701848A GB2321766A (en) | 1996-08-16 | 1997-01-30 | Method of fabricating a capacitor structure for a semiconductor memory device |
FR9705116A FR2752483A1 (en) | 1996-08-16 | 1997-04-25 | METHOD FOR MANUFACTURING A SEMICONDUCTOR MEMORY DEVICE HAVING A CAPACITOR STRUCTURE |
DE19720213A DE19720213C2 (en) | 1996-08-16 | 1997-05-14 | Method of manufacturing a semiconductor memory device |
JP14049697A JP3218579B2 (en) | 1996-08-16 | 1997-05-29 | Method for forming capacitor configuration of semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW85110009A TW309644B (en) | 1996-08-16 | 1996-08-16 | Semiconductor memory device with capacitor (3) |
Publications (1)
Publication Number | Publication Date |
---|---|
TW309644B true TW309644B (en) | 1997-07-01 |
Family
ID=51566302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW85110009A TW309644B (en) | 1996-08-16 | 1996-08-16 | Semiconductor memory device with capacitor (3) |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW309644B (en) |
-
1996
- 1996-08-16 TW TW85110009A patent/TW309644B/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW308727B (en) | Semiconductor memory device with capacitor (4) | |
TW304288B (en) | Manufacturing method of semiconductor memory device with capacitor | |
JP4060572B2 (en) | Semiconductor memory device and manufacturing method thereof | |
TW416095B (en) | Semiconductor device and method of manufacturing the same | |
JP2501501B2 (en) | Method for manufacturing semiconductor memory-memory of device-capacitor used in cell and structure thereof | |
TW201826268A (en) | Arrays of memory cells individually comprising a capacitor and an elevationally-extending transistor and method thereof, methods of forming a tier of an array of memory cells | |
TW417286B (en) | Semiconductor device and method of manufacturing the same | |
TW304290B (en) | The manufacturing method for semiconductor memory device with capacitor | |
JPH06188384A (en) | Capacitor preparation of semiconductor memory | |
TW312831B (en) | Manufacturing method of semiconductor memory device with capacitor(3) | |
JP3227485B2 (en) | Method for manufacturing semiconductor memory device | |
TW306064B (en) | Semiconductor memory device with capacitor (part 6) | |
TW309644B (en) | Semiconductor memory device with capacitor (3) | |
TW312829B (en) | Semiconductor memory device with capacitor(6) | |
TW308729B (en) | Semiconductor memory device with capacitor (3) | |
US5739060A (en) | Method of fabricating a capacitor structure for a semiconductor memory device | |
TW312828B (en) | Manufacturing method of semiconductor memory device with capacitor(5) | |
KR100743294B1 (en) | Integrated circuit array having at least one capacitor and method for producing the same | |
US6525363B1 (en) | Integrated circuit configuration with at least one capacitor and method for producing the same | |
TW306063B (en) | Semiconductor memory device with capacitor (part 2) | |
TW306065B (en) | Semiconductor memory device with capacitor (part 5) | |
TW304289B (en) | Manufacturing method of semiconductor memory device with capacitor | |
TW312830B (en) | Semiconductor memory device with capacitor(7) | |
TW308728B (en) | Semiconductor memory device with capacitor (4) | |
TW306035B (en) | Manufacturing method of semiconductor memory device with capacitor (part 7) |