TW306034B - Semiconductor memory device with capacitor (part 1) - Google Patents

Semiconductor memory device with capacitor (part 1) Download PDF

Info

Publication number
TW306034B
TW306034B TW85109989A TW85109989A TW306034B TW 306034 B TW306034 B TW 306034B TW 85109989 A TW85109989 A TW 85109989A TW 85109989 A TW85109989 A TW 85109989A TW 306034 B TW306034 B TW 306034B
Authority
TW
Taiwan
Prior art keywords
conductive layer
trunk
semiconductor memory
layer
dendritic
Prior art date
Application number
TW85109989A
Other languages
Chinese (zh)
Inventor
Fang-Chinq Jaw
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW85109989A priority Critical patent/TW306034B/en
Priority to US08/706,704 priority patent/US5744833A/en
Priority to JP09005086A priority patent/JP3024675B2/en
Priority to GB9701850A priority patent/GB2321768A/en
Priority to FR9705111A priority patent/FR2752488A1/en
Priority to DE19720220A priority patent/DE19720220A1/en
Application granted granted Critical
Publication of TW306034B publication Critical patent/TW306034B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A semiconductor memory device with capacitor comprises of: (1) one substrate; (2) one transfer transistor formed on the substrate, and including drain and source region; (3) one storage capacitor electrically coupled to one of drain and source region of the transfer transistor; The storage capacitor comprises of: (1) one trunk-type like conductive layer with one bottom electrically coupled to one of drain and source region of the transfer transistor, and with one upward extending part from the bottom with one approximately upward direction; (2) one branch-type like up conductive layer electrically coupled to above of the trunk-type like conductive layer; (3) at least one branch-type like down conductive layer with one cross section like L-shape and connected to on down surface of the branch-type like up conductive layer, in which the trunk-type like conductive layer, the branch-type like up conductive layer, and type branch-type like down conductive layer constitue one storage electrode of the storage capacitor;(4) one dielectric formed on the trunk-type like conductive layer, and exposed surface of the branch-type down conductive layer; and (5) one up conductive layer formed on the dielectric to constitute one opposed electrode of the storage capacitor.

Description

306034 經濟部中央標準局員工消费合作社印t A7 ---___Β7__ 五、發明説明(1 ) 本發明是有關於一種具有電容器的半導體記憶體元件 (Semiconductor Memory Device ),且特別是有關於一 種動態隨機存取記憶體(Dynamic Random Access Memory; DRAM )的—記憶單元(Memory Cell )結構,其包含一轉 移電 bb 體(Transfer Transistor )和一樹型(tree- type )儲存電容器。 第1圖是一 DRAM元件的一記憶單元之電路示意圖。如 圖所不,—個記憶單元是由一轉移電晶體T和一儲存電容 器C組成。轉移電晶體τ的源極係連接到一對應的位元線 BL,汲極連接到儲存電容器c的一儲存電極6 ( st〇rage e 1 ectrode ),而閘極則連接到—對應的字元線。儲存 電香器C的一相對電極8 ( 〇pp〇sed electr〇de )係連接到 —固定電壓源,而在儲存電極6和相對電極8之間則設置一 介電膜層7。 在傳統DRAM的儲存電容量少於1M ( mega=百萬)位元 時,於積體電路製程中,主要是利用二度空間的電容器來 實現,亦即泛稱的平坦型電容器(pUnar type c—)。-平坦型電容器需佔用半導體基底的-相當 大的面積來儲存電荷,故並不適合應用於高度的積集化。 高度積集化的DRAM,例如大於指位元的儲存電容量者,需 要利用—度空間的電容器來實現,例如所謂的堆叠型 (stacked type )或溝槽型(trench巧卯)電容器。 與平坦i電谷器比較,堆疊型或溝槽型電容器可以在記 憶單元的尺寸已進-步縮小的情況下,仍能獲得相當大的 3 本“尺度賴巾 a ------ (請先閱讀背面之注意事項再填寫本頁) .裝-306034 Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A7 ---___ Β7__ V. Description of the invention (1) The present invention relates to a semiconductor memory device with capacitors (Semiconductor Memory Device), and in particular to a dynamic random A memory cell (Memory Cell) structure of a DRAM (Dynamic Random Access Memory; DRAM), which includes a Transfer Transistor and a tree-type storage capacitor. Figure 1 is a schematic circuit diagram of a memory cell of a DRAM device. As shown in the figure, a memory cell is composed of a transfer transistor T and a storage capacitor C. The source of the transfer transistor τ is connected to a corresponding bit line BL, the drain is connected to a storage electrode 6 (storage e 1 ectrode) of the storage capacitor c, and the gate is connected to the corresponding character line. A counter electrode 8 (〇pp〇sed electrode) of the electric storage device C is connected to a fixed voltage source, and a dielectric film layer 7 is provided between the storage electrode 6 and the counter electrode 8. When the storage capacity of traditional DRAM is less than 1M (mega = million) bits, in the integrated circuit manufacturing process, it is mainly realized by capacitors with two-dimensional space, which is generally known as flat capacitors (pUnar type c- ). -Flat capacitors require a considerable area of the semiconductor substrate to store charge, so they are not suitable for high accumulation. Highly integrated DRAMs, such as those with a storage capacity greater than a bit, need to be realized with capacitors of one-degree space, such as so-called stacked type or trench type capacitors. Compared with the flat-type electronic valley device, the stacked or trench capacitor can still obtain a fairly large 3 "standard scale a" when the size of the memory cell has been further reduced. Please read the precautions on the back before filling out this page).

-IT 經濟部中央標隼局員工消f合作社印聚 306034 A7 -----B7_ 五、發明説明(2 ) 電容量。雖然如此,當記憶體元件再進入更高度的積集化 時’例如具有64M位元容量的DRAM,單純的三度空間電容 器結構已不再適用。 解決之道之一是利用所謂的緒型(fin type )堆疊電 容器。綠型堆疊電容器之相關技術可參考Ema等人的論文 "3-Dimensional Stacked Capacitor Cell for 16M and 64M DRAMs , International Electron Devices Meeting, pp. 592-595,Dec. 1988。鰭型堆疊電容器主要是其電極和介 電膜層係由複數個堆疊層,延伸成一水平鰭狀結構,以便 增加電極的表面積。DRAM的鰭型堆疊電容器的相關美國專 利可以參考第5, 071,783號、第5, 126, 810號、第5, 196, 365 號、以及第5, 206, 787號。 另一種解決之道是利用所謂的筒型(cylindrical type )堆疊電容器。筒型堆疊電容器之相關技術可參考-IT Ministry of Economic Affairs Central Standard Falcon Bureau Employee Consumer Cooperation Cooperative Printed and Collected 306034 A7 ----- B7_ V. Description of Invention (2) Electric Capacity. Nonetheless, when memory devices enter a higher degree of integration, such as DRAMs with 64M-bit capacity, the simple three-dimensional spatial capacitor structure is no longer suitable. One of the solutions is to use so-called fin type stacking capacitors. For the related technology of green stacked capacitors, please refer to the paper "3-Dimensional Stacked Capacitor Cell for 16M and 64M DRAMs, International Electron Devices Meeting, pp. 592-595, Dec. 1988" by Ema et al. Fin-type stacked capacitors are mainly composed of a plurality of stacked layers of electrodes and dielectric film layers, which extend into a horizontal fin-like structure in order to increase the surface area of the electrodes. The relevant U.S. patents for DRAM fin-type stacked capacitors can be found in Nos. 5,071,783, 5,126,810, 5,196,365, and 5,206,787. Another solution is to use so-called cylindrical type (cylindrical type) stacked capacitors. The related technology of cylindrical stacked capacitors can refer to

Wakamiya 等人的論文“Novel Stacked Capacitor Cell for 64-Mb DRAM”, 1989 Symposium on VLSI Technology DigestThe paper "Novel Stacked Capacitor Cell for 64-Mb DRAM" by Wakamiya et al., 1989 Symposium on VLSI Technology Digest

Of Technical Papers,pp. 69-70。筒型堆疊電容器主要 是其電極和介電膜層係延伸成一垂直筒狀結構,以便增加 電極的表面積。DRAM的筒型堆疊電容器的相關美國專利可 以參考第5, 077, 688號。 隨著積集度的不斷增加’ dram記憶單元的尺寸仍會再 縮小。如熟習此藝者所知,記憶單元尺寸縮小,儲存電容 器的電容值也會減少。電容值的減少將導致因α射線入射所 引起的軟錯誤(soft error )機會增加。因此,此藝者仍 4 本紙張尺度適用中國國家標準(CNS ) Λ4規^Τ2Κ)Χ:!97公f ) (請先閱讀背面之注意事項再填寫本頁) —裝· 、?τ 3〇6〇34 A7 B7 五、發明説明(3 ) ~ ~ 不斷在尋找新的錯存電容器結構及其製造方法,希望在储 存電容器所佔的平面尺寸被縮小的情況,仍能維持所要的 電容值。 緣此,本發明的一主要目的就是在提供一種具有電容器 的半導體記憶體元件,其電容器具有—樹狀結構,以增加 電容器的儲存電極之表面積。 蛵濟部中央標準局員工消費合作社印製 依照本發明之—特點’―種具有電容器的半導體記憶體 兀件包括-基底;—轉移電晶體形成在基底上,並包括设 極和源極區’·以及—儲存電容器,電性耦接到轉栘電晶體 的设極區上。其中儲存電容器包括—類樹幹狀導電層,具 有—底部,電性耦接到轉移電晶體的汲極區上,類樹幹狀 導電層又具有—向上延伸部,以—大致向上的方向,從底 部延伸出。儲存電容器也包括至少—類樹枝狀導電層,具 有-似L形的剖面,類樹枝狀導電層的—末端連接在類樹 幹狀導電層的外表面上。類樹幹狀導電層和類樹枝狀導電 層構成儲存電容器的—儲存電極。—介電層形成在類樹幹 狀導電層和類樹枝狀導電層曝露出的表面上。一上導電 層’形成在彳電層±,以構成儲存電容器的—相對電極。 依照本發明的一較佳實施例,儲存電容器可包括二個或 更多大致平行的類樹枝狀導電層,每一個均具有—似L形 的剖面,且其一末端均連接在類樹幹狀導電層的外表面 上。該些類樹枝狀導電層的自由末端係不等高。 依照本發明的另一較佳實施例,儲存電容器可更包括一 第二導電增,其具有—末端連接在類樹幹狀導電層的外表 本紙張尺度適用中國國参標準(CNS ) A4規格(210 X 297公缝) 經濟部中央標準局員工消費合作社印裝 A7 ____________B7 五、發明説明(4 ) 面上、以及一住外延伸部,以一大致水平的方向,從該末 端往外延伸出。第二導電層係位在類樹枝狀導電層的下 方。 依照本發明的再一較佳實施例,類樹幹狀導電層可包括 一下樹幹部電性耦接到轉栘電晶體的汲極區上,且具有一 似T形的剖面;以及—上樹幹部從下樹幹部的上表面延伸 出。類樹枝狀導電層的該末端係連接在上樹幹部的外表面 上。上樹幹部可具有一似U形的剖面。類樹幹狀導電層也 可具有一似U形的剖面。類樹枝狀導電層也可具有—似雙l 形的剖面。 依照本發明的另一特點,一種具有電容器的半導體記憶 體元件包括一基底;一轉移電晶體形成在基底上,並具有 汲極和源極區;以及—儲存電容器,電性耦接到轉移電晶 體的汲極區上。其中儲存電容器包括一類樹幹狀導電層, 其具有一底部,電性耦接到轉移電晶體的汲極區上。類樹 幹狀導電層又具有—向上延伸部,以—大致向上的方向, 從底部延伸出。儲存電容器也包括至少一類樹枝狀導電 層,類樹枝狀導電層包括至少—第—延伸段和—第二延伸 段。第一延伸段的一末端連接在類樹幹狀導電層的外表面 上,而第二延伸段則以一角度,從第一延伸段的另一末端 延伸出。類樹幹狀導電層和類樹枝狀導電層構成儲存電容 器的一儲存電極。一介電層形成在類樹幹狀導電層和類樹 枝狀導電層曝露出的表面上。—上導電層形成在介電層 上’以構成儲存電容器的一相對電極。 6 本紙張尺度视格(21GX297M )—--——- (請先聞讀背面之注意事項再填寫本頁)Of Technical Papers, pp. 69-70. Cylindrical stacked capacitors mainly consist of electrodes and dielectric film layers extending into a vertical cylindrical structure in order to increase the surface area of the electrodes. The related U.S. patent of the DRAM barrel stacked capacitor can be referred to No. 5,077,688. As the degree of accumulation continues to increase, the size of the dram memory cell will continue to shrink. As known to those skilled in the art, as the size of the memory cell decreases, the capacitance of the storage capacitor also decreases. Decreasing the capacitance value will increase the chance of soft errors caused by the incident α rays. Therefore, this artist still uses the 4 Chinese paper standards (CNS) Λ4 regulations ^ Τ2Κ) Χ :! 97 公 f) (please read the precautions on the back and then fill out this page) — 装 ·,? Τ 3〇 6〇34 A7 B7 V. Description of the invention (3) ~ ~ We are constantly looking for new staggered capacitor structures and their manufacturing methods, hoping to maintain the desired capacitance value when the plane size occupied by the storage capacitor is reduced. Therefore, a main object of the present invention is to provide a semiconductor memory device having a capacitor, the capacitor having a tree structure to increase the surface area of the storage electrode of the capacitor. Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy and Economics in accordance with the present invention-Features "-A semiconductor memory element with a capacitor includes-a substrate;-A transfer transistor is formed on the substrate and includes the set electrode and the source region · And—storage capacitor, electrically coupled to the pole-setting region of the switch transistor. The storage capacitor includes a trunk-like conductive layer with a bottom, electrically coupled to the drain region of the transfer transistor, and a trunk-like conductive layer with an upward extension in a generally upward direction from the bottom Stretch out. The storage capacitor also includes at least a dendritic conductive layer having an L-like cross-section, and the end of the dendritic conductive layer is connected to the outer surface of the trunk-like conductive layer. The trunk-like conductive layer and the dendritic-like conductive layer constitute the storage electrode of the storage capacitor. -The dielectric layer is formed on the exposed surface of the trunk-like conductive layer and the dendritic conductive layer. An upper conductive layer is formed on the electrical layer ± to constitute the opposing electrode of the storage capacitor. According to a preferred embodiment of the present invention, the storage capacitor may include two or more substantially parallel dendritic conductive layers, each of which has an L-shaped cross section, and one end thereof is connected to the trunk-like conductive The outer surface of the layer. The free ends of these dendritic conductive layers are unequal in height. According to another preferred embodiment of the present invention, the storage capacitor may further include a second conductivity increaser, which has an appearance connected to a trunk-like conductive layer at the end. The paper size is applicable to the Chinese National Standards (CNS) A4 specification (210 X 297 male seam) A7 ____________B7 printed by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the invention (4) The surface and an external extension extend from the end outward in a generally horizontal direction. The second conductive layer is located below the dendritic conductive layer. According to yet another preferred embodiment of the present invention, the trunk-like conductive layer may include a lower trunk portion electrically coupled to the drain region of the switch transistor, and having a T-shaped cross section; and an upper trunk portion It extends from the upper surface of the lower trunk. The end of the dendritic conductive layer is connected to the outer surface of the upper trunk. The upper trunk portion may have a U-shaped section. The trunk-like conductive layer may also have a U-like profile. The dendritic conductive layer may also have a double l-shaped cross section. According to another feature of the present invention, a semiconductor memory device having a capacitor includes a substrate; a transfer transistor is formed on the substrate and has a drain and a source region; and a storage capacitor electrically coupled to the transfer circuit On the drain region of the crystal. The storage capacitor includes a type of trunk-like conductive layer with a bottom, which is electrically coupled to the drain region of the transfer transistor. The trunk-like conductive layer has-an upwardly extending portion-extending from the bottom in a substantially upward direction. The storage capacitor also includes at least one type of dendritic conductive layer, and the dendritic conductive layer includes at least a first extension and a second extension. One end of the first extension is connected to the outer surface of the trunk-like conductive layer, and the second extension extends from the other end of the first extension at an angle. The trunk-like conductive layer and the dendritic-like conductive layer constitute a storage electrode of the storage capacitor. A dielectric layer is formed on the exposed surface of the trunk-like conductive layer and the branch-like conductive layer. -An upper conductive layer is formed on the dielectric layer 'to constitute an opposite electrode of the storage capacitor. 6 The standard size of the paper (21GX297M) —————- (please read the precautions on the back before filling this page)

-C60 經濟部中央標準局員工消費合作社印裝 Α7 Β7 ·*·、發明説明(5 ) ~~ 依照本發明的又一較佳實施例,類樹枝狀導電層可更包 括一第三延伸段,以一第二角度從第二延伸段延伸出。第 一延伸段和第三延伸均係大致以一水平方向延伸,而第二 延伸段則大致以一垂直方向延伸。 依照本發明的又一特點,一種具有電容器的半導體記憶 體元件包括一基底;一轉移電晶體形成在基底上,並具有 汲極和源極區;以及一儲存電容器,電性耦接到轉移電晶 體的汲極區上。其中儲存電容器包括一類樹幹狀導電層, 其具有一底部,電性耦接到轉移電晶體的汲極區上,類樹 幹狀導電層又具有一柱形延伸部,以一大致向上的方向, 從底部延伸出。儲存電容器也包括至少一類樹枝狀導電 層,其具有厂末端連接在類樹幹狀導電層的外表面上。類 樹枝狀導電層又具有一向外延伸部,從該末端往外延伸 出類樹幹狀導電層和類樹枝狀導電層構成儲存電容器的 一儲存電極。一介電層形成在類樹幹狀導電層和類樹枝狀 導電層曝露出的表面上。一上導電層形成在介電層上,以 構成儲存電容器的一相對電極。 依照本發明又一較佳實施例,類樹幹狀導電層的柱形延 伸部包括一中空的部份。又,類樹枝狀導電層的向外延伸 部具有一多節彎摺形狀的剖面。儲存電容器也可包括複數 個大致平行延伸的類樹枝狀導電層,每一個類樹枝狀導電 層的一末端均連接在類樹幹狀導電層的外表面上。 為θ襄本發明之上述和其他目的、特徵、和優點能更明顯 易懂’下文特舉若干較佳實施例,並配合所附圖式,作詳 7 本紙張尺度適用中國^ίΤ^Τ^Τ2·Γ〇χ297公楚) (請先閱讀背面之注意事項再填寫本頁) 丨裝- ,1Τ 經濟部中央標準局員工消費合作社印製 A7 __ B7 五、發明説明(6 ) ~ ' ~~~~— 細說明如下: 圖式之簡單說明: 第1圖是一 DRAM元件的—記德單元之電路示意圖。 第2A至2G圖係一系列剖面圖,用以解釋本發明的—種 半導體記憶元件製造方法之第—較佳實施例,以及本 的一種半導體記憶元件之第一較佳實施例。 第3A至3D圖係—系列剖面圖,用以解釋本發明的 半導體記憶元件製造方法之第二較佳實施例,以及本 的一種半導體記憶元件之第二較佳實施例。 第4A和4B圖係剖面圖,用以解釋本發明的—種半導體 記憶元件製造方法之第三較佳實施例,以及本發明的—種 半導體記憶元件之第三較佳實施例。 第5A至5D圖係一系列剖面圖,用以解釋本發明的—種 半導體記憶元件製造方法之第四較佳實施例,以及本發明 的一種半導體記憶元件之第四較佳實施例。 第6A和6B圖係剖面圖,用以解釋本發明的一種半導體 記憶元件製造方法之第五較佳實施例,以及本發明的一種 半導體記憶元件之第五較佳實施例》 第7A和7B圖係剖面圖,用以解釋本發明的一種半導體 s己憶元件製造方法之第六較佳實施例,以及本發明的一種 半導體記憶元件之第六較佳實施例。 第8A至8F圖係一系列剖面圖,用以解釋本發明的—種 半導體記憶元件製造方法之第七較佳實施例,以及本發明 的一種半導體記憶元件之第七較佳實施例。 8 本紙張尺度適用中國國家標準(CNS )八4規格(210X297公釐) ---1--,,---{ I裝------,玎------^ (請先閱讀背面之注意事項再填寫本頁} 經濟部中央標準局員工消費合作社印製 306034 A7 了^---—— __ 五、發明説明(7 ) -~〜- 、第9A至9D圖係—系列剖面圖,用以解釋本發明的—種 半導體記憶元件製造方法之第八較佳實施例,以及本發明 的—種半導體記憶元件之第八較佳實施例。 '第10A至l〇D圖係—系列剖面圖,用以解釋本發明的一 種半導體記憶元件製造方法之第九較佳實施例,以及本發 明的—種半導體記憶元件之第九較佳實施例、 、接著將參照第2A至2G圖,詳述本發明的—種具有樹型 儲存電容器的半導體記憶元件之第一較佳實施例,半導體 自已憶兀件的此一較佳實施例,係由本發明的一種半導體記 憶兀件製造方法之第一較佳實施例所製造的。 請參照第2A圖,首先將一矽基底1〇的表面進行熱氧化 製程,例如以矽的局部氧化(L〇c〇s )技術來達成,因而 形成場區氧化層12,其厚度例如約3〇〇〇埃(angstr〇ms)。 接著,再將矽基底10進行熱氧化製程,以形成一閘極氧化 層14 ’其厚度例如約15〇埃。然後,利用一 CVD (化學氣 相沈積)或LPCVD (低壓CVD )法,在矽基底1 〇的整個表 面上沈積—複晶矽層,其厚度例如約2000埃。為了提高複 晶矽層的導電性’可將磷離子植入到複晶矽層中。較佳地, 可再沈積一耐火金屬(refract〇ry metal )層,然後施行 退火(anneal )步驟’即形成金屬複晶矽化合物層 (polycide ),以更提高其導電性。該耐火金屬可例如為 鎢(Tungsten ),沈積厚度例如約2〇〇〇埃。之後,利用傳 統的光罩製版(photolithography )和蝕刻技術定義 (pattern )金屬複晶矽化合物層,因而形成如第2A圖所 9 本紙浪尺度適用中國國家標準(CNS ) Λ4規格(210X297公釐) ---1--L----^ I裝------訂------ (請先閲讀背面之注意事項再填寫本頁} Α7 Β7 3〇6〇34 、發明説明(8 ) ~~~' 示的閘極(或稱字元線)WL1至WL4。接著,例如以砷離子 植入到矽基底10中,以形成汲極區16a和16b、以及源極 區18a和18b。在此步驟中,字元線WL1至WL4係當作罩幕 層,而離子植入的劑量例如約i x 1〇i5 at〇ms/cm2,能量則 約 70KeV 。 、 請參照第2B圖,接著,以CVD法沈積一平坦化的絕緣 層20,其例如為bpsg (硼磷矽破璃),厚度約7〇〇〇埃。 然後’再以CVD法沈積一蝕刻保護層(etchingpr〇tecti〇n layer ) 22,其例如為矽氮化物層(si [ic〇n nitride ), 厚度約1000埃。之後,沈積—厚的絕緣層,其例如為二氧 化矽層,厚度約7000埃。再利用傳統的光罩製版和蝕刻技 術定義絕緣層,因而形成如圖所示的柱狀絕緣層24 (insulatingpiiur >柱狀絕緣層24之間形成凹口 23。 雖然在圖式中柱狀絕緣層24係繪成獨立分離的,然其僅是 為了繪示及說明方便,實際上,從上視圖看,其係連在— 起的。 、請參照第2C圖,接著以CVD法依序沈積—絕緣層26、 —複晶矽層28、和一絕緣層3〇。絕綠層26和30例如為二 氧化矽,絕緣層26和複晶矽層28的厚度均例如約丨〇〇〇埃, 而絕緣層30的厚度則例如約7〇〇〇埃。為了提高複晶矽層 28的導電性,可將砷離子植入到複晶妙層“中。 請參照第2D圖,接著利用機械化學式研磨( mechanical poUsh; CMp )技術,研磨第%圖結構的表面, 至少直到複晶矽層28被切斷成若干區段28a和2肋 本紙張尺度中_家標準(CNS ) Μ規格(27^79_7公廣) (請先閱讀背面之注意事項再填寫本頁) 丨裝. 、1Τ 經濟部中央標隼局員工消費合作社印51 五 經濟部中央標準局員工消費合作社印製 A7 B7 、發明説明(9 ) ~ ,請參照第2E圖,接著利用傳統的光罩製版和蝕刻技 術依序蝕刻絕緣盾30、複晶矽層28a和28b、絕緣層26、 蝕刻保護層22、平坦化絕緣層2〇、以及閘極氧化層14, 以形成儲存電極接觸窗(st〇rage eiectr〇de c〇ntact holes ) 32a和32b,其係分別由絕緣層3〇的上表面延伸 ^汲極區16a和16b的表面。然後’再重填(refiu )複 晶矽34a和34b到儲存電極接觸窗32a和3肋中。此複晶矽 重填製程可以CVD法沈積一複晶矽層再回蝕刻達成。 、請參照第2F圖,接著以濕式蝕刻法(wet奴吮丨叫), 並以蝕刻保護層22為蝕刻終點,將暴露出的二氧化矽層去 2亦即去除絕緣層3〇和26、以及柱狀絕緣層24。藉此 步驟即完成動態隨機存取記憶體的儲存電容器之儲存電 極’其如圖所示係由類樹幹狀的複晶矽層34a; 3扑、以及 具有L形剖面的類樹枝狀複晶碎層28a;挪所—起構成。 5幹狀的複晶砂層如灿連接到嶋的轉移電晶體之 16b。類樹枝狀複晶石夕㈣a;挪從類樹幹狀 層34a;灿的外表面,先以約水平方向延伸出— 段:離後,再以約垂直方向延伸。由於本發明的儲存電極 非常特殊,故在本說明書中乃以“樹型儲存電極,,稱 之,且因而製成之電容器則稱為“樹型儲存電容器”。 2照第2G[g’接著在儲存電極34a,如和⑽,挪 例如πτ &分別形成—介電膜層36a; 36b。介電膜層36a; 36b 化矽;:禮氧化妙層一' 5夕氮化物層、N〇 “夕氮化物/二氧 口 〇N〇 (—氧化矽/矽氮化物/二氧化矽)結構、 1 1 本紙狀度賴中咖 ^ ^ I裝------訂------{ V (請先閱讀背面之注意事項再填寫本頁) A7 經濟部中央標隼局員工消費合作社印裂 五、發明説明(10) 或任何類似者。然後’在介電膜層36a和36b的表面上,形 成由複晶矽製成的相對電極3 8。相對電極的製程可由下列 步驟達成以CVD法沈積一複晶f夕層,其厚度例如為1 〇 〇 〇 埃;再摻入例如N型雜質,以提高其導電性;最後以傳統 光罩製版和蝕刻技術定義複晶矽層,完成DRAM各記憶單元 的儲存電容器。 雖然第2G圖未顯示,然熟習此藝者應瞭解,第%圖的 結構可依傳統製程技術製作位元線、焊墊(b〇ndingpad )、 互連導線(interc〇nnection )、隔絕保護層 (passivation)、以及包裝等等,以完成卯賴積體電路。 由於這些製程非關本發明之特徵,故於此不多作赘述。 在此較佳貫施例中,儲存電極只具有一層的類樹枝狀電 極層。然而,本發明並不限於此,儲存電極的類樹枝狀電 極層乙層數可為二層、三層、或更多。下一個較佳實施例 即將描述具有二層類樹枝狀電極層的儲存電極。 、接著將參照第3A至3D圖,詳述本發明的—種具有樹型 儲存電容器的半導體記憶元件之第二較佳實施例,半導體 記麽、元件的此一較佳實施例,係由本發明的一種半導體記 隐兀件製造方法之第二較佳實施例所製造的。 本較佳實施例係以第2B圖所示的較佳實施例之結構為 基礎,再以不同的製程製作不同結構的DRAM儲存電極。在 第3A至3D圖中’與第2β圖相似的部份係以相同的編號標 讀 先 閱 讀 背 面 5 意 事 項 再 填 寫 本 頁 I 裝 訂 不 請參照第2B和3A圖’接著以CVD法交替沈積絕緣眉和-C60 Printed Α7 Β7 · * ·, Description of Invention (5) ~~ In accordance with yet another preferred embodiment of the present invention, the dendritic conductive layer may further include a third extension section, It extends from the second extension at a second angle. Both the first extension and the third extension extend approximately in a horizontal direction, while the second extension extends approximately in a vertical direction. According to still another feature of the present invention, a semiconductor memory device having a capacitor includes a substrate; a transfer transistor is formed on the substrate and has drain and source regions; and a storage capacitor electrically coupled to the transfer circuit On the drain region of the crystal. The storage capacitor includes a trunk-like conductive layer with a bottom that is electrically coupled to the drain region of the transfer transistor. The trunk-like conductive layer has a cylindrical extension in a generally upward direction from The bottom extends out. The storage capacitor also includes at least one type of dendritic conductive layer having a factory end connected to the outer surface of the trunk-like conductive layer. The dendritic-like conductive layer further has an outwardly extending portion, and a trunk-like conductive layer and a dendritic-like conductive layer extending outward from the end constitute a storage electrode of the storage capacitor. A dielectric layer is formed on the exposed surface of the trunk-like conductive layer and the dendritic-like conductive layer. An upper conductive layer is formed on the dielectric layer to constitute an opposite electrode of the storage capacitor. According to yet another preferred embodiment of the present invention, the cylindrical extension of the trunk-like conductive layer includes a hollow portion. Also, the outwardly extending portion of the dendritic conductive layer has a section with a multi-node bending shape. The storage capacitor may also include a plurality of dendritic conductive layers extending substantially in parallel, and one end of each dendritic conductive layer is connected to the outer surface of the trunk-like conductive layer. The above and other objectives, features, and advantages of the present invention can be more clearly understood for the purpose of θ. The following are some preferred embodiments, in conjunction with the attached drawings, for details. 7 This paper size applies to China ^ ίΤ ^ Τ ^ Τ2 · Γ〇χ297 Gongchu) (Please read the precautions on the back before filling out this page) 丨 Installed-, 1T Printed by the employee consumer cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 __ B7 V. Description of the invention (6) ~ '~~ ~~ — The detailed description is as follows: A brief description of the diagram: Figure 1 is a schematic diagram of the circuit of a DRAM component-Kede unit. Figures 2A to 2G are a series of cross-sectional views for explaining the first preferred embodiment of a method of manufacturing a semiconductor memory device of the present invention, and the first preferred embodiment of a semiconductor memory device of the present invention. Figures 3A to 3D are a series of cross-sectional views for explaining the second preferred embodiment of the semiconductor memory device manufacturing method of the present invention and the second preferred embodiment of a semiconductor memory device of the present invention. FIGS. 4A and 4B are cross-sectional views for explaining the third preferred embodiment of the semiconductor memory device manufacturing method of the present invention and the third preferred embodiment of the semiconductor memory device of the present invention. Figures 5A to 5D are a series of cross-sectional views for explaining a fourth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a fourth preferred embodiment of a semiconductor memory device of the present invention. FIGS. 6A and 6B are cross-sectional views for explaining a fifth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a fifth preferred embodiment of a semiconductor memory device of the present invention. FIGS. 7A and 7B It is a cross-sectional view for explaining a sixth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a sixth preferred embodiment of a semiconductor memory device of the present invention. 8A to 8F are a series of cross-sectional views for explaining a seventh preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a seventh preferred embodiment of a semiconductor memory device of the present invention. 8 The size of this paper is in accordance with Chinese National Standard (CNS) 8.4 specifications (210X297 mm) --- 1-,, --- {I installed ------, 玎 ------ ^ (please Read the precautions on the back before filling in this page} 306034 A7 is printed by the Employees ’Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs ^ ---—— __ V. Description of the invention (7)-~~-, 9A to 9D drawing system— A series of cross-sectional views to explain the eighth preferred embodiment of the semiconductor memory device manufacturing method of the present invention and the eighth preferred embodiment of the semiconductor memory device of the present invention. Is a series of cross-sectional diagrams for explaining a ninth preferred embodiment of a method for manufacturing a semiconductor memory device of the present invention, and a ninth preferred embodiment of a semiconductor memory device of the present invention. 2G, detailing the first preferred embodiment of a semiconductor memory device with a tree-shaped storage capacitor of the present invention, this preferred embodiment of a semiconductor self-memory device is manufactured by a semiconductor memory device of the present invention Manufactured by the first preferred embodiment of the method. Please refer to Figure 2A, first The surface of a silicon substrate 10 is subjected to a thermal oxidation process, for example, by local oxidation of silicon (L〇c〇s) technology, thus forming a field oxide layer 12, the thickness of which is about 300 angstroms (angstr〇). ms). Then, the silicon substrate 10 is subjected to a thermal oxidation process to form a gate oxide layer 14 ′ with a thickness of, for example, about 15 angstroms. Then, a CVD (chemical vapor deposition) or LPCVD (low pressure CVD) method is used On the entire surface of the silicon substrate 10, a polycrystalline silicon layer is deposited with a thickness of, for example, about 2000 angstroms. In order to improve the conductivity of the polycrystalline silicon layer, phosphorus ions can be implanted into the polycrystalline silicon layer. Preferably A refractory metal layer can be deposited, and then an annealing step is performed to form a metal polycrystalline silicon compound layer (polycide) to further improve its conductivity. The refractory metal can be, for example, tungsten ( Tungsten), the deposition thickness is for example about 2000 angstroms. After that, the metal polycrystalline silicon compound layer is defined using traditional photolithography and etching techniques, thus forming the paper wave scale as shown in Figure 2A. China Standard (CNS) Λ4 specifications (210X297mm) --- 1--L ---- ^ I installed ------ ordered ------ (Please read the notes on the back before filling this page } Α7 Β7 3〇6〇34, invention description (8) ~~~ 'shown gate (or word line) WL1 to WL4. Then, for example, arsenic ions are implanted into the silicon substrate 10 to form a The polar regions 16a and 16b, and the source regions 18a and 18b. In this step, the word lines WL1 to WL4 are used as a mask layer, and the dose of ion implantation is, for example, about ix 10i5 at〇ms / cm2, The energy is about 70KeV. 2. Please refer to FIG. 2B. Next, a planarized insulating layer 20 is deposited by CVD, which is, for example, bpsg (boron phosphorus silicon broken glass), and has a thickness of about 7000 angstroms. Then, an etching protection layer (etching technology layer) 22 is deposited by CVD, which is, for example, a silicon nitride layer (si [icon nitride]) with a thickness of about 1000 angstroms. After that, a thick insulating layer, for example a silicon dioxide layer, is deposited with a thickness of about 7000 Angstroms. The traditional photomask patterning and etching techniques are then used to define the insulating layer, thus forming a columnar insulating layer 24 as shown (insulatingpiiur > notch 23 is formed between the columnar insulating layers 24. Although the columnar insulating Layer 24 is drawn to be separated independently, but it is only for the convenience of drawing and explanation. In fact, from the top view, it is connected together. Please refer to Figure 2C, and then deposited in sequence by CVD method -An insulating layer 26,-a polycrystalline silicon layer 28, and an insulating layer 30. The green layers 26 and 30 are, for example, silicon dioxide, and the thickness of the insulating layer 26 and the polycrystalline silicon layer 28 are, for example, about 10,000 angstroms. The thickness of the insulating layer 30 is, for example, about 7000 angstroms. In order to improve the conductivity of the polycrystalline silicon layer 28, arsenic ions can be implanted into the polycrystalline wonderful layer. Please refer to FIG. 2D, and then use the mechanical CMp (mechanical poUsh; CMp) technology, which polishes the surface of the first figure structure, at least until the polycrystalline silicon layer 28 is cut into several sections 28a and 2 ribbed paper scales in the _ home standard (CNS) Μ specification (27 ^ 79_7 Public Broadcast) (Please read the precautions on the back before filling out this page) 丨 Install. 1Τ Printed by the Employee Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economic Affairs 51 Printed A7 B7, Invention Instructions (9) ~ by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs, please refer to Figure 2E, then use traditional photomask plate making and etching techniques The insulating shield 30, the polycrystalline silicon layers 28a and 28b, the insulating layer 26, the etch protection layer 22, the planarization insulating layer 20, and the gate oxide layer 14 are sequentially etched to form a storage electrode contact window c〇ntact holes) 32a and 32b, which extend from the upper surface of the insulating layer 30 ^ the surface of the drain region 16a and 16b. Then 'refill (refiu) polycrystalline silicon 34a and 34b to the storage electrode contact window 32a and 3 ribs. This polysilicon refill process can be achieved by depositing a polysilicon layer by CVD and then etching back. Please refer to Figure 2F, then use wet etching (wet slave), and use The etching protection layer 22 is an etching end point, and the exposed silicon dioxide layer 2 is removed, that is, the insulating layers 30 and 26, and the columnar insulating layer 24 are removed. By this step, the storage capacitor of the dynamic random access memory is completed The storage electrode 'is shown in the figure by the class tree Dry polycrystalline silicon layer 34a; 3 bounces, and a dendritic polycrystalline broken layer 28a with an L-shaped cross-section; it is made up. 5 Dry polycrystalline sand layer such as Can is connected to the transfer transistor 16b. Dendrite-like polymorphic yushi (a); moved away from the trunk-like layer 34a; the outer surface of Can, firstly extends in a horizontal direction-segment: after separation, and then extends in a vertical direction. Due to the storage electrode of the present invention It is very special, so in this specification, it is called "tree-shaped storage electrode," and the capacitor made therefrom is called "tree-shaped storage capacitor." 2According to the 2G [g ', then on the storage electrode 34a, such as and ⑽, for example, πτ & form a dielectric film layer 36a; 36b, respectively. Dielectric film layer 36a; 36b silicon oxide; ceremonial oxidation layer 1 ′ 5 evening nitride layer, N0 ″ evening nitride / diode 〇N〇 (—silicon oxide / silicon nitride / silicon dioxide) structure , 1 1 paper-like degree Lai Zhong Coffee ^ ^ I installed ------ order ------ {V (please read the precautions on the back before filling out this page) A7 Employee consumption of Central Standard Falcon Bureau Cooperative Society Printed Fifth, Invention Description (10) or any similar. Then, on the surfaces of the dielectric film layers 36a and 36b, a counter electrode 38 made of polycrystalline silicon is formed. The process of the counter electrode can be achieved by the following steps Depositing a polycrystalline silicon oxide layer by CVD with a thickness of, for example, 1,000 Angstroms; then doping with, for example, N-type impurities to improve its conductivity; and finally defining the polycrystalline silicon layer by traditional photomask patterning and etching techniques, Complete storage capacitors for each memory cell of DRAM. Although not shown in Figure 2G, those familiar with this art should understand that the structure of Figure 1 can be used to manufacture bit lines, bonding pads, and interconnecting wires according to traditional manufacturing techniques. (Interc〇nnection), isolation protection layer (passivation), and packaging, etc., to complete the Maolai Circuit. Since these processes are not related to the features of the present invention, they will not be repeated here. In the preferred embodiment, the storage electrode has only one layer of dendritic electrode layer. However, the present invention is not limited to this. The number of layers of the dendritic electrode layer B of the storage electrode may be two, three, or more. The next preferred embodiment will describe a storage electrode having a two-layer dendritic electrode layer. 3D diagram, detailing the second preferred embodiment of the present invention-a semiconductor memory device with a tree-shaped storage capacitor, this preferred embodiment of a semiconductor memory device, a device, is a semiconductor memory device of the present invention Manufactured by the second preferred embodiment of the manufacturing method. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2B, and then DRAM storage electrodes of different structures are manufactured by different processes. In Figures 3A to 3D, 'the parts similar to those in Figure 2β are marked with the same number, read the back 5 first, and then fill in this page I. Please refer to Figures 2B and 3A for binding. Then alternate deposition by CVD method Yuanmeihe

經濟部中夬標隼局員工消費合作社印製 A7 B7 五、發明説明(11 ) 複晶矽層,亦即如圖所示依序沈積一絕緣層40、一複晶砂 層42、一絕緣層44、一複晶矽層46、和一絕緣層48。絕 緣層40、44和48例如為二氧化矽,絕緣層40; 44和複晶 矽層42; 46的厚度均例如約1〇〇〇埃,而絕緣層48的厚度 則例如約7000埃。為了提高複晶矽層的導電性,可將砷離 子植入到複晶砂層中。 請參照第3Β圖,接著利用CMP技術,研磨第3Α圖結構 的表面,至少直到複晶矽層42和46被切斷成若干區段42a; 46a 和 42b; 46b 為止。 請參照第3C圖,接著利用傳統的光罩製版和触刻技 術’形成儲存電極接觸窗,其係分別由絕緣層48的上表面 延伸到汲極區16a和16b的表面。然後,再重填複晶矽5〇a 和50b到儲存電極接觸窗中。此複晶矽重填製程可以CVD 法沈積一複晶矽層再回蝕刻達成。接著以濕式蝕刻法,並 以蝕刻保護層22為蝕刻終點,將暴露出的二氧化矽層去 除’亦即去除絕緣層40、44和48、以及柱狀絕緣層24。 藉此步騾即完成動態隨機存取記憶體的儲存電容器之儲存 電極’其如圖所示係由類樹幹狀的複晶矽層50a; 5〇b、以 及具有L形剖面的二層類樹枝狀複晶矽層42a, 46a; 42b, 46b所一起構成。類樹幹狀的複晶矽層5〇a; 50b連接到DRAM 的轉移電晶體之汲極區16a; 16b。類樹枝狀複晶矽層42a, 46a;42b,46b從類樹幹狀的複晶矽層50a; 50b的外表面, 先以約水平方向延伸出一段距離後,再以約垂直方向延 伸0 ---i--^---Γ I裝------訂------Γ 缽 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標率(CNS ) A4規格(210X297公釐) 經濟部中央標隼局”負工消費合作社印笨 A7 —____ B7_ 五、發明説明(12 ) 請參照第3D圖,接著在儲存電極5〇a,46a, 42以和 50b, 46b, 42b的表面上分別形成一介電膜層52a; 52b。 然後,在介電膜層52a和52b的表面上,形成由複晶矽製成 的相對電極54。相對電極的製程可由下列步驟達成:以eVD 法沈積一複晶矽層;再摻入例如N型雜質,以提高其導電 性;最後以傳統光罩製版和蝕刻技術定義複晶矽層,完成 DRAM各記憶單元的儲存電容器。 在上述第一和第二較佳實施例中,儲存電極最下方一層 的類樹枝狀電極層之下表面與蝕刻保護層22之間有一距 離,並不直接接觸。然而,本發明並不限於此,下—個較 佳實施例即將描述最下方一層的類樹枝狀電極層之下表面 與蝕刻保護層22直接接觸的儲存電極結構。 接著將參照第4A和4B圖,詳述本發明的一種具有樹型 儲存電容器的半導體記憶元件之第三較佳實施例,半導體 記億元件的此一較佳實施例,係由本發明的一種半導體記 憶元件製造方法之第三較佳實施例所製造的。 本較佳實施例係以第2B圖所示的較佳實施例之結構為 基礎’再以不同的製程製作不同結構的DRAM儲存電極。在 第4A和4B圖中,與第2B圖相似的部份係以相同的編號標 示。 請參照第2B和4A圖,接著以CVD法依序沈積一複晶矽 層60、一絕緣層62、一複晶矽層64、和一絕緣層66。 請再參照第4B圖’接著利用CMp技術,研磨第ο圖所 不的結構表面’至少直到複晶矽層6〇和64被切斷成若干區 裝------訂------f線 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標辛( CNS ) Λ4規格(210x 297公廣) 經濟部中央標準局員工消費合作社印製 306034 A7 五、發明説明(13) — --- 段60a; 64a和60b; 64b為止。接著利用傳統的光罩製版和 蝕刻技術,形成儲存電極接觸窗,再重填複晶矽68a和6肋 到儲存電極接觸窗中。接著以濕式蝕刻法,並以蝕刻保護 層22為蝕刻終點,將暴露出的二氧化矽層去除。 至此步騾即完成動態隨機存取記憶體的儲存電容器之 儲存電極,其如圖所示係由類樹幹狀的複晶矽層68a; 68b、 以及具有L形剖面的二層類樹枝狀複晶矽層6〇a,64a; 6〇b, 64b所起構成。類樹幹狀的複晶矽層68a; 68b連接到DRAM 的轉移電晶體之汲極區16a; 16b。類樹枝狀複晶矽層6〇a, 64a; 60b’ 64b從類樹幹狀的複晶矽層68a; 68b的外表面, 先以約水平方向延伸出一段距離後,再以約垂直方向延 伸《類樹枝狀複晶矽層60a; 60b之下表面係與蝕刻保護層 22直接接觸,而形成與上兩個較佳實施例不同的結構。 在上述第一、第二和第三較佳實施例中,儲存電極的類 樹幹狀電極層係一體的構件然而,本發明並不限於此, 下一個較佳實施例即將描述類樹幹狀電極層係由複數個部 份構成的儲存電極。 接著將參照第5Α至5D圖’詳述本發明的一種具有樹型 儲存電容器的半導體記憶元件之第四較佳實施例,半導體 記憶元件的此一較佳實施例,係由本發明的一種半導體記 憶元件製造方法之第四較佳實施例所製造的。 本較佳實施例係以第2Α圖所示的較佳實施例之結構為 基礎’再以不同的製程製作不同結構的DRAM儲存電極。在 第5A至5D圖中,與第2A圖相似的部份係以相同的編號標 本紙张尺度適用中國國家標隼(CNS > Λ4規格(210X 297公釐) . · ^-裝------訂------^ ^ (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 A7 ______B7 五、發明説明(14 ) --^ 示。 請參照第2A和5A圖,接著,以CVD法沈積—平坦化的 絕緣潛70,其例如為BPSG。再以CVD法沈積—蝕刻保護層 72,其例如為矽氮化物層。然後,利用傳統的光罩製版和 蝕刻技術,依序蝕刻矽氮化物層72和平坦化絕緣層7〇,以 形成儲存電極接觸窗76a和76b,其係分別由矽氮化物層 72的上表面延伸到汲極區16a和16b的表面。然後,再以 CVD法沈積一複晶矽層,使複晶矽填滿儲存電極接觸窗 和76b ,並摻入雜質以增加其導電性。之後,利用傳統的 光罩製版和蝕刻技術,定義出各記憶單元儲存電極的一下 部份74a; 74b,其如圖所示具有似τ形的剖面。 請參照第5Β圖,接著沈積一厚的絕緣層,其例如為二 氧化矽層。再利用傳統的光罩製版和蝕刻技術定義絕緣 層,因而形成如圖所示的柱狀絕緣層78。接著以cyj)法依 序沈積一絕緣層80、一複晶矽層82、和一絕緣層84。 請參照第5C圖,接著利用CMP技術,研磨第5β圖結構 的表面’至少直到複晶矽層82被切斷成若干區段82a和82b 為止。 請再參照第5D圖,接著利用傳統的光罩製版和蝕刻技 術,依序I虫刻絕緣層84、複晶矽層82a和82b、以及絕緣 層80,以形成接觸窗,其係分別由絕緣層84的上表面延伸 到儲存電極下部份74a和74b的表面。然後,再重填複晶矽 到接觸窗中’以形成各記憶單元儲存電極的一上部份86a; 86b。此複晶矽重填製程可以cVD法沈積—複晶矽層再回蝕 1 6 本紙張尺度適用中國國家樣準( (請先閱讀背面之注意事項再填寫本頁) 、裝 訂------^ '--·___ 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(15 ) 刻達成》接著⑽式㈣法’並μ刻保護層?2為触刻紙 點,將暴露出的一氧化砂層去除,亦即去除絕緣眉料 、 以及柱狀絕緣層78。 ' 至此步驟即完成動態隨機存取記憶體的儲存電容 儲存電極’其結構形狀與第2F圖所示較佳實施例之不同, 係多了一約水平方向延伸的類樹枝狀複晶砂部份,亦即儲 存電極下部份74a; 74b的水平延伸部份。 在上述第-至第四較佳實施例中,儲存電極_樹幹狀 電極層係為實心構件。然而,本發明並不限於此,下—個 較佳實施例即將描述類樹幹狀電極層係具有中空部份的 存電極結構。 接著將參照第6A和6B圖,詳述本發明的一種具有樹型 儲存電容器的半導體記憶元件之第五較佳實施例,半導體 記憶元件的此一較佳實施例,係由本發明的一種半導體記 憶元件製造方法之第五較佳實施例所製造的。 本較佳實施例係以第2D圖所示的較佳實施例之結構為 基礎,再以不同的製程製作不同結構的DRAM儲存電極。在 第6A和6B圖中,與第2D圖相似的部份係以相同的編號標 示0 请參照第6A和2D圖,接著利用傳統的光罩製版和蝕刻 技術’依序蝕刻絕緣層30 '複晶矽層28a和28b、絕緣層 26、蝕刻保護層22、平坦化絕緣層2〇、以及閘極氧化層 14 ’以形成儲存電極接觸窗87a和87b,其係分別由絕緣 層30的上表面延伸到汲極區16a和16b的表面。然後,以 (請先閲讀背面之注意事項再填寫本頁) 丨裝· -訂 ( 2I〇X 297^ ) 經濟部中央標率局員工消費合作社印製 A7 ______ B7 ' . 五、發明説明(16) ~~~~'~ CVD法沈積一複晶矽層,使在儲存電極接觸窗87a和 中,複bb矽只形成在儲存電極接觸窗87a和8 7b的内壁上, 但未填滿儲存電極接觸窗87a和87b。之後,以傳統的光罩 製版和蝕刻技術,定義出各記憶單元儲存電極的類樹幹狀 複晶矽層88a; 88b,如圖所示其具有似u形的剖面,以更 增加儲存電極的表面積。 請參照第6Β圖,接著以濕式蝕刻法,並以蝕刻保護層 22為蝕刻終點,將暴露出的二氧化矽層去除,亦即去除絕 緣層30和26、以及柱狀絕緣層24。藉此步騾即完成動態 隨機存取記憶體的儲存電容器之儲存電極,其結構形狀與 第2F圖所示較佳實施例之不同,係在類樹幹狀複晶矽層 88b具有中空的部份,並呈現1|形的剖面,因而有更大的儲 存電容量。 下一個較佳實施例亦將描述類樹幹狀電極層係具有中 空部份的儲存電極結構。 接著將參照第7A和7B圖,詳述本發明的—種具有樹型 儲存電容器的半導體記憶元件之第六較佳實施例,半導體 記憶元件的此一較佳實施例,係由本發明的一種半導體記 憶元件製造方法之第六較佳實施例所製造的。 本較佳貫施例係以第5C圖所示的較佳實施例之結構為 基礎,再以不同的製程製作不同結構的DRAM儲存電極。在 第7A和7B|g中,與第5C圖相似的部份係以相同的編號標 不。 請參照第7A和5C圖,接著利用傳統的光罩製版和蝕刻 18 本紙張尺度ii/fl f國—國家;( CNS ) Λ4規格(2ι()χ297公廣] - ------- (請先閱讀背面之注意事項再填寫本頁) -裝· 訂 經濟部中央標準局員工消费合作社印51 3C6〇34 a? B7 五、發明説明(17 ) 技術’依序蝕刻絕緣層84、複晶矽層82a和82b、以及絕 緣層80,以形成接觸窗90a和90b,其係分別由絕緣層84 的上表面延伸到儲存電極下部份74a和74b的表面。然後, 以CVD法沈積一複晶矽層,再回蝕刻,以便在接觸窗9〇a 和90b的内壁上形成複晶矽邊牆(side-wal 1 spacer ) 92a 和92b。複晶矽邊牆92a和92b構成儲存電極的類樹幹狀電 極之上部份’且具有中空的部份,並呈現U形的剖面,以 增加儲存電極的表面積。 請參照第7B圖,接著以濕式蝕刻法,並以蝕刻保護層 72為蝕刻終點,將暴露出的二氧化矽層去除,亦即去除絕 緣層84和80、以及柱狀絕緣層78。至此步驟即完成動態 隨機存取記憶體的儲存電容器之儲存電極,其結構形狀與 第5D圖所示較佳實施例之不同,係儲存電極的類樹幹狀電 極之上部份,具有中空的部份,並呈現^形的剖面。 在上述第一至第六較佳實施例中,儲存電極的類樹枝狀 電極層係呈L形剖面的兩節式彎摺構件。然而,本發明並 不限於此’類樹枝狀電極層因彎摺而構成的節數目,可以 為二節、四節、或更多。下一個較佳實施例即將描述類樹 枝狀電極層具有四節結構的儲存電極。 接著將參照第8A至8F圖,詳述本發明的一種具有樹型 儲存電容器的半導體記憶元件之第七較佳實施例,半導體 記憶元件的此一較佳實施例,係由本發明的一種半導體記 憶元件製造方法之第七較佳實施例所製造的。 本較佳實施例係以第2A圖所示的較佳實施例之結構為 本紙張纽糾巾咖家€Τ?^Λ4規格(2jOX 297^y (請先閱讀背面之注意事項再填寫本頁) -裝-Printed A7 B7 by Employee Consumers Cooperative of Zhongshou Standard Falcon Bureau, Ministry of Economic Affairs 5. Description of invention (11) Polycrystalline silicon layer, that is, an insulating layer 40, a polycrystalline sand layer 42 and an insulating layer 44 are deposited in sequence as shown in the figure , A polycrystalline silicon layer 46, and an insulating layer 48. The insulating layers 40, 44, and 48 are, for example, silicon dioxide, and the insulating layers 40; 44 and the polycrystalline silicon layer 42; 46 have a thickness of, for example, about 1000 angstroms, and the insulating layer 48 has a thickness of, for example, about 7000 angstroms. In order to improve the conductivity of the polycrystalline silicon layer, arsenic ions can be implanted into the polycrystalline sand layer. Please refer to FIG. 3B, and then use CMP technology to polish the surface of the structure in FIG. 3A, at least until the polycrystalline silicon layers 42 and 46 are cut into sections 42a; 46a and 42b; 46b. Please refer to FIG. 3C, and then use the conventional mask making and lithography techniques to form a storage electrode contact window, which extends from the upper surface of the insulating layer 48 to the surfaces of the drain regions 16a and 16b, respectively. Then, the polycrystalline silicon 50a and 50b are refilled into the storage electrode contact window. This polycrystalline silicon refill process can be achieved by depositing a polycrystalline silicon layer by CVD and then etching back. Then, using the wet etching method and the etching protection layer 22 as the etching end point, the exposed silicon dioxide layer is removed, that is, the insulating layers 40, 44 and 48, and the columnar insulating layer 24 are removed. With this step mule, the storage electrode of the storage capacitor of the dynamic random access memory is completed, which is shown as a trunk-like polycrystalline silicon layer 50a; 50b, and a two-layer tree branch with an L-shaped cross section Shaped polycrystalline silicon layers 42a, 46a; 42b, 46b together. The trunk-like polycrystalline silicon layer 50a; 50b is connected to the drain region 16a of the transfer transistor of the DRAM; 16b. The dendritic polycrystalline silicon layers 42a, 46a; 42b, 46b extend from the outer surface of the trunk-like polycrystalline silicon layer 50a; 50b, extending a distance in the horizontal direction first, and then extending in the vertical direction 0- -i-^ --- Γ I installed ------ ordered ------ Γ bowl (please read the notes on the back before filling in this page) This paper standard is applicable to China National Standard Rate (CNS) A4 size (210X297 mm) The Central Standard Falcon Bureau of the Ministry of Economic Affairs, “Negative Workers’ Consumer Cooperative, Yinben A7 —____ B7_ V. Description of the invention (12) Please refer to the 3D drawing, and then at the storage electrodes 5〇a, 46a, 42 and A dielectric film layer 52a; 52b is formed on the surfaces of 50b, 46b, and 42b, respectively. Then, on the surfaces of the dielectric film layers 52a and 52b, a counter electrode 54 made of polycrystalline silicon is formed. The process of the counter electrode can be The following steps are achieved: depositing a polycrystalline silicon layer by eVD method; then doping with, for example, N-type impurities to improve its conductivity; and finally defining the polycrystalline silicon layer by traditional mask making and etching techniques to complete the storage of each memory cell of DRAM Capacitors. In the above first and second preferred embodiments, the dendritic electrode at the bottom layer of the storage electrode There is a distance between the lower surface and the etching protection layer 22, which is not in direct contact. However, the present invention is not limited to this, the next preferred embodiment will describe the lower surface of the lowermost dendritic electrode layer and the etching The storage electrode structure in which the protective layer 22 directly contacts. Next, referring to FIGS. 4A and 4B, a third preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail. The preferred embodiment is manufactured by the third preferred embodiment of a method for manufacturing a semiconductor memory device according to the present invention. The preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2B. Process for making DRAM storage electrodes with different structures. In Figures 4A and 4B, the parts similar to those in Figure 2B are marked with the same numbers. Please refer to Figures 2B and 4A, and then deposit them in sequence by CVD. Crystalline silicon layer 60, an insulating layer 62, a polycrystalline silicon layer 64, and an insulating layer 66. Please refer to Figure 4B 'then use the CMp technique to polish the structure surface shown in Figure ο' at least until the polysilicon Floor 6〇 and 64 are cut into a number of districts ------ order ------ f line (please read the precautions on the back before filling in this page) This paper standard is applicable to China National Standard (CNS) Λ4 specifications (210x 297 Kuang Guang) Printed 306034 A7 by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of the invention (13) --- paragraph 60a; 64a and 60b; 64b. Then use traditional photomask to make and etch Technology to form the storage electrode contact window, and then refill the polycrystalline silicon 68a and 6 ribs into the storage electrode contact window. Then, the wet etching method and the etching protection layer 22 are used as the etching end point to remove the exposed silicon dioxide layer. At this point, the mule completes the storage electrode of the storage capacitor of the dynamic random access memory, which is shown as a trunk-like polycrystalline silicon layer 68a; 68b, and a two-layer dendritic polymorph with an L-shaped profile The silicon layer is composed of 6〇a, 64a; 6〇b, 64b. The trunk-like polycrystalline silicon layer 68a; 68b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM. The dendritic polycrystalline silicon layer 60a, 64a; 60b '64b extends from the outer surface of the trunk-like polycrystalline silicon layer 68a; 68b, extending a distance approximately horizontally, then extending approximately vertically The lower surface of the dendritic polycrystalline silicon layer 60a; 60b is in direct contact with the etching protection layer 22, forming a structure different from the above two preferred embodiments. In the first, second, and third preferred embodiments described above, the trunk-like electrode layer of the storage electrode is an integral member. However, the present invention is not limited to this, and the next preferred embodiment will describe the trunk-like electrode layer. It is a storage electrode composed of a plurality of parts. Next, a fourth preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail with reference to FIGS. 5A to 5D. This preferred embodiment of a semiconductor memory device is a semiconductor memory of the present invention. The fourth preferred embodiment of the device manufacturing method. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2A. Then, different structures of DRAM storage electrodes are fabricated by different processes. In Figures 5A to 5D, the parts similar to those in Figure 2A are the same numbered specimen paper size applicable to the Chinese National Standard Falcon (CNS > Λ4 specifications (210X 297 mm). · ^ -Installed --- --- Subscribe ------ ^ ^ (Please read the precautions on the back before filling in this page) A7 ______B7 printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (14)-^ Instructions. Please Referring to FIGS. 2A and 5A, next, a CVD method is used to deposit and planarize the insulating latent 70, which is, for example, BPSG. Then, a CVD method is used to deposit and etch the protective layer 72, which is, for example, a silicon nitride layer. Then, the conventional Photomask patterning and etching techniques sequentially etch the silicon nitride layer 72 and the planarization insulating layer 70 to form storage electrode contact windows 76a and 76b, which extend from the upper surface of the silicon nitride layer 72 to the drain region, respectively The surfaces of 16a and 16b. Then, a polycrystalline silicon layer is deposited by CVD method, so that the polycrystalline silicon fills the storage electrode contact window and 76b, and impurities are added to increase its conductivity. After that, a traditional photomask is used to make a plate And etching technology, define the lower part of each memory cell storage electrode 74a; 74b, As shown in the figure, it has a τ-shaped cross-section. Please refer to Figure 5B, and then deposit a thick insulating layer, such as a silicon dioxide layer. The traditional photomask patterning and etching techniques are then used to define the insulating layer, thus forming The columnar insulating layer 78 is shown in the figure. Then, an insulating layer 80, a polycrystalline silicon layer 82, and an insulating layer 84 are sequentially deposited by the cyj) method. Please refer to FIG. 5C, and then use the CMP technique to polish the surface of the structure in FIG. 5β at least until the polycrystalline silicon layer 82 is cut into sections 82a and 82b. Please refer to FIG. 5D again, and then use traditional photomask patterning and etching techniques to sequentially insulate the insulating layer 84, the polycrystalline silicon layers 82a and 82b, and the insulating layer 80 to form contact windows, which are respectively insulated by The upper surface of the layer 84 extends to the surfaces of the lower portions 74a and 74b of the storage electrode. Then, refill the polycrystalline silicon into the contact window 'to form an upper portion 86a; 86b of each memory cell storage electrode. This polycrystalline silicon refilling process can be deposited by the cVD method—the polycrystalline silicon layer is then etched back 1 6 This paper size is applicable to the Chinese national standard ((please read the precautions on the back before filling this page), binding ----- -^ '-· ___ Printed A7 B7 by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs V. Description of the invention (15) Engraved "Next ⑽ 式 ㈣ 法' and μ engraved the protective layer? 2 is the point of engraving the paper, which will be exposed The oxidized sand layer is removed, that is, the insulating material and the columnar insulating layer 78 are removed. 'At this step, the storage capacitor storage electrode of the dynamic random access memory is completed. Its structural shape and the preferred implementation shown in Figure 2F The difference is that there is one more dendritic polycrystalline sand portion extending approximately horizontally, that is, the horizontally extending portion of the storage electrode lower portion 74a; 74b. In the first to fourth preferred embodiments described above The storage electrode_trunk electrode layer system is a solid member. However, the present invention is not limited to this. The next preferred embodiment will describe a storage electrode structure with a hollow portion like a trunk-like electrode layer system. Figures 6A and 6B detail one of the present invention A fifth preferred embodiment of a semiconductor memory element having a tree-shaped storage capacitor, this preferred embodiment of a semiconductor memory element is manufactured by a fifth preferred embodiment of a method of manufacturing a semiconductor memory element of the present invention. The preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 2D, and then the DRAM storage electrodes with different structures are made by different processes. In FIGS. 6A and 6B, the parts similar to those in FIG. 2D It is marked with the same number 0. Please refer to Figures 6A and 2D, and then use the traditional mask making and etching techniques to 'sequentially etch the insulating layer 30' polycrystalline silicon layers 28a and 28b, insulating layer 26, etching protective layer 22, The insulating layer 20 and the gate oxide layer 14 'are planarized to form storage electrode contact windows 87a and 87b, which extend from the upper surface of the insulating layer 30 to the surfaces of the drain regions 16a and 16b, respectively. Then, please (please Read the precautions on the back first and then fill out this page) 丨 Installation ·-Order (2I〇X 297 ^) Printed by the Ministry of Economic Affairs Central Standard Rate Bureau Employee Consumer Cooperative A7 ______ B7 '. Fifth, the invention description (16) ~~~~ '~ CVD method to deposit a polycrystalline silicon , So that in the storage electrode contact windows 87a and middle, compound bb silicon is only formed on the inner walls of the storage electrode contact windows 87a and 87b, but the storage electrode contact windows 87a and 87b are not filled. After that, the traditional photomask is used to make Etching technology defines the trunk-like polycrystalline silicon layers 88a; 88b of the storage electrodes of each memory cell, as shown in the figure, which has a u-shaped cross-section to increase the surface area of the storage electrode. Please refer to Figure 6B, followed by In the wet etching method, the etching protection layer 22 is used as the etching end point to remove the exposed silicon dioxide layer, that is, the insulating layers 30 and 26 and the columnar insulating layer 24 are removed. By this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed. The structure and shape of the storage electrode are different from the preferred embodiment shown in FIG. 2F. The trunk-like polycrystalline silicon layer 88b has a hollow portion. , And presents a 1 | -shaped cross-section, so it has a larger storage capacity. The next preferred embodiment will also describe a storage electrode structure having a hollow portion like a trunk-like electrode layer. Next, referring to FIGS. 7A and 7B, a sixth preferred embodiment of the present invention, a semiconductor memory element having a tree-shaped storage capacitor, will be described in detail. This preferred embodiment of the semiconductor memory element is a semiconductor of the present invention. The sixth preferred embodiment of the manufacturing method of the memory device. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 5C, and then DRAM storage electrodes with different structures are manufactured by different processes. In Figures 7A and 7B | g, parts similar to those in Figure 5C are marked with the same numbers. Please refer to Figures 7A and 5C, and then use the traditional photomask to make and etch 18 paper standards ii / fl f country-country; (CNS) Λ4 specifications (2ι () χ297 Gongguang]-------- (Please read the precautions on the back before filling in this page)-Binding · Order 51 CCC034 a? Employee's Consumer Cooperative Printed by the Central Standards Bureau of the Ministry of Economic Affairs. The crystalline silicon layers 82a and 82b and the insulating layer 80 form contact windows 90a and 90b, which extend from the upper surface of the insulating layer 84 to the surfaces of the lower portions of the storage electrodes 74a and 74b, respectively. Then, a CVD method is used to deposit a The polycrystalline silicon layer is etched back to form side-wal 1 spacers 92a and 92b on the inner walls of the contact windows 90a and 90b. The polycrystalline silicon side walls 92a and 92b constitute the storage electrode The upper part of the trunk-like electrode has a hollow part and presents a U-shaped cross section to increase the surface area of the storage electrode. Please refer to FIG. 7B, followed by the wet etching method and the etching protection layer 72 as Etching the end point, removing the exposed silicon dioxide layer, that is, removing the insulating layers 84 and 80, and Columnar insulating layer 78. At this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, and its structural shape is different from the preferred embodiment shown in FIG. 5D, which is the upper part of the trunk-like electrode of the storage electrode It has a hollow portion and a ^ -shaped cross section. In the above-mentioned first to sixth preferred embodiments, the dendritic electrode layer of the storage electrode is a two-section bending member with an L-shaped cross section. The present invention is not limited to the number of nodes formed by this kind of dendritic electrode layer due to bending, and may be two nodes, four nodes, or more. The next preferred embodiment will describe the dendritic electrode layer having four nodes A storage electrode with a structure. Next, referring to FIGS. 8A to 8F, a seventh preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor according to the present invention will be described in detail. The seventh preferred embodiment of a semiconductor memory device manufacturing method of the invention is manufactured. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 4 Specifications (2jOX 297 ^ y (Please read the Notes on the back to fill out Page) - equipment -

、1T A7 A7 經濟部中央標準局員工消費合作社印" 五、發明説明(18 ) — =:再以不同的製程製作不同結構的卯媚儲存電極 請至曙’與第2A圖相似的部份係以相同的 不° 請參照第8A和2Α®ι ία-,; 圖,接著,以CVD法沈積一平坦化的 絕緣層100,其例如為ΒρςΓ 為BPSG。然後,再以CVD法沈積一蝕 刻保護層102,其例如為妙氮化物層(nitride)。之後, 沈積—厚的絕緣層,其例如為二氧化砂層。再利用傳統的 光罩製版技術形成—光阻眉1〇6,並以非等向性蚀刻曝露 出的二氧化砂層之—部份,因而形成如圖所示的凸起 層 104。 請參照第8β圖,接著以光阻浸蝕(photoresist erosion )技術去除光阻層1〇6—厚度,而形成較薄較小的 光阻層106a,藉此又曝露出凸起絕緣層1〇4的—部份上表 面。 請參照第8C圖’接著,再以非等向性蝕刻凸起絕緣層 104曝露出的上表面部份及殘留的絕緣層,直至矽氮化物層 102露出為止,以便形成具有階梯狀的凸起絕緣層丨〇4a結 構。最後去光阻。 請參照第8D圖,接著依上面針對第2C和2D圖所述的 類似步驟進行’以完成如第8D圖所示的結構。亦即先以cvd 法依序沈積一絕緣層108、一複晶矽層、和—絕緣層112。 接著利用機械化學式研磨技術,研磨其結構的表面,至少 直到複晶矽層被切斷成若干區段1 l〇a和1 l〇b為止。 請參照第8E圖,接著利用傳統的光罩製版和蝕刻技 20 本紙張尺度適用t國國家標準(CNS ) Λ4規格(2丨0Χ 297公楚) ---:_丨卜丨_ί .裝— — (請先閲讀背面之注意事項再填寫本頁) *1T_ 經濟部中央標準局員工消費合作社印製 A7 _____ B7 .. .. _______ _ 五、發明説明(19 ) 術’依序蝕刻絕緣層112、複晶矽層11 Oa和11 Ob、絕緣層 108、蝕刻保護層1〇2、平坦化絕緣層1〇〇、以及閘極氧化 層14 ’以形成儲存電極接觸窗U4a和114b,其係分別由 絕緣層112的上表面延伸到汲極區丨6a和16b的表面。然 後’再重填複晶矽116a和116b到儲存電極接觸窗114a和 114b中。此複晶矽重填製程可以cvd法沈積一複晶矽層再 回蝕刻達成。 請參照第8F圖,接著以濕式蝕刻法,並以蝕刻保護層 102為蝕刻終點,將暴露出的二氧化矽層去除,亦即去除絕 緣層112和1〇8、以及柱狀絕緣層i〇4a。藉此步驟即完成 動態隨機存取記憶體的儲存電容器之儲存電極,其如圖所 示係由類樹幹狀的複晶矽層116a; 116b、以及具有四節彎 摺形剖面(或雙L形剖面)的類樹枝狀複晶矽層u〇a; u〇b 所一起構成。類樹幹狀複晶矽層116a; i16b連接到dram 的轉移電晶體之汲極區16a; 16b。類樹枝狀複晶矽層i丨〇a; 11 〇b從類樹幹狀複晶矽層116a; 116b的外表面,先以約水 平方向延伸出一段距離後,再以約垂直方向延伸另一段距 離,接著又以約水平方向延伸一段距離,最後以約垂直方 向延伸一段距離。 依照本較佳貫施例之構想,柱狀絕緣層或凸起絕緣層的形 狀之不同,即可改變類樹枝狀複晶矽層的延伸形狀及延伸 角度,故本發明的柱狀絕緣層或凸起絕緣層的形狀並不應 限於上述者。實際上,也可利用其他的手段來變化出各種 形狀,例如在第2B圖的情況中,若以等向性(is〇tr〇pic) 2 1 本紙張尺度適用中國國家橾準(CNS ) Α4規格(2丨Οχ 297公楚) (請先閱讀背面之注意事項再填寫本頁) 裝·、 1T A7 A7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy " V. Description of the invention (18) — =: Then use different processes to make different structures of glamourous storage electrodes. Please go to Shu 'for the similar parts to Figure 2A For the same temperature, please refer to Figures 8A and 2Α®ια-; Figure, then, a CVD method is used to deposit a planarized insulating layer 100, which is, for example, ΒρςΓ for BPSG. Then, an etch protection layer 102 is deposited by CVD, which is, for example, a nitride layer. After that, a thick insulating layer is deposited, which is for example a layer of sand dioxide. Then, the conventional photomask plate-making technology is used to form the photoresist eyebrow 106, and anisotropically etch the exposed part of the sand dioxide layer, thereby forming the raised layer 104 as shown in the figure. Please refer to FIG. 8β, and then the photoresist erosion technique is used to remove the photoresist layer 106-thickness to form a thinner and smaller photoresist layer 106a, thereby exposing the raised insulating layer 104 -Part of the upper surface. Please refer to FIG. 8C. Then, anisotropically etch the exposed upper surface portion of the raised insulating layer 104 and the remaining insulating layer until the silicon nitride layer 102 is exposed to form a stepped protrusion Insulation layer 丨 〇4a structure. Finally, remove the photoresist. Please refer to Figure 8D, and then follow similar steps described above for Figures 2C and 2D to complete the structure shown in Figure 8D. That is, an insulating layer 108, a polycrystalline silicon layer, and an insulating layer 112 are sequentially deposited by the cvd method. Next, the surface of the structure is polished using mechanochemical polishing technology, at least until the polycrystalline silicon layer is cut into several sections 1 10a and 1 10b. Please refer to Figure 8E, and then use the traditional photomask plate making and etching techniques. The paper size is applicable to the national standard (CNS) Λ4 specification (2 丨 0Χ 297 Gongchu) ---: _ 丨 卜 丨 _ί. 装— — (Please read the precautions on the back before filling out this page) * 1T_ Printed A7 _____ B7 ..... _______ _ by the Consumers ’Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. 5. Description of the invention (19) Sequentially etch the insulating layer 112, the polycrystalline silicon layers 11 Oa and 11 Ob, the insulating layer 108, the etch protection layer 102, the planarization insulating layer 100, and the gate oxide layer 14 'to form storage electrode contact windows U4a and 114b, which is They respectively extend from the upper surface of the insulating layer 112 to the surfaces of the drain regions 6a and 16b. Then, the polycrystalline silicon 116a and 116b are refilled into the storage electrode contact windows 114a and 114b. This polysilicon refill process can be achieved by depositing a polysilicon layer by cvd method and then etching back. Please refer to FIG. 8F, and then use the wet etching method and the etching protection layer 102 as the etching end point to remove the exposed silicon dioxide layer, that is, to remove the insulating layers 112 and 108, and the columnar insulating layer i 〇4a. By this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed, which is shown as a trunk-like polycrystalline silicon layer 116a; 116b, and has a four-node bend-shaped cross-section (or double L-shaped (Section) of the dendritic polycrystalline silicon layer u〇a; u〇b together. The trunk-like polycrystalline silicon layer 116a; i16b is connected to the drain region 16a of the transfer transistor of the dram; 16b. The dendritic polycrystalline silicon layer i | 〇a; 11 〇b extends from the outer surface of the trunk-like polycrystalline silicon layer 116a; 116b, extending a distance in the horizontal direction, and then extending another distance in the vertical direction , And then extend a distance in the horizontal direction, and finally extend a distance in the vertical direction. According to the conception of this preferred embodiment, the difference in the shape of the columnar insulating layer or the convex insulating layer can change the extending shape and the extending angle of the dendritic polycrystalline silicon layer. The shape of the raised insulating layer should not be limited to the above. In fact, other methods can also be used to change various shapes, for example, in the case of Figure 2B, if the paper is based on the isotropy (is〇tr〇pic) 2 1 the Chinese National Standard (CNS) Α4 Specifications (2 丨 Οχ 297 Gongchu) (Please read the precautions on the back before filling out this page)

、1T 經濟部中央標準局員工消費合作社印賢 A7 B7 五、發明説明(20 ) ' 蝕刻或濕式蝕刻來代替非等向性(ani s〇tr〇pic )蝕刻方 式,對該厚絕緣層施行蝕刻,可得類三角形的絕緣層;或 者同樣在第2B圖的情況中,於柱狀絕緣層24形成之後,再 形成邊牆絕緣層於柱狀絕緣層24的側壁上,也可得另一種 不同形狀的柱狀絕緣層。因此類樹枝狀複晶矽層可以有多 種不同角度之延伸形狀。 依照本較佳實施例之構想,若要製作更多節的類樹枝狀 複晶矽層結構,可以第8B和8C圖的結構為基礎,再進行光 阻浸蝕步驟和凸起絕緣層的時間控制非等向蝕刻步騾一次 或多次,以形成更多階梯的凸起絕緣層結構。 在上述第—至第七較佳實施例中,均是利用CMP技術將 各記憶單元的儲存電極分割開。然而,本發明並不限於此, 下一個較佳實施例即將描述利用傳統的光罩製版和蝕刻技 術,將各記憶單元的儲存電極分割開的製程,以及因而形 成的不同儲存電極結構。 接著將參照第9A至9D圖,詳述本發明的—種具有樹型 儲存電容器的半導體記憶元件之第八較佳實施例,半導體 纪憶元件的此一較佳實施例,係由本發明的—種半導體記 憶元件製造方法之第八較佳實施例所製造的。 本較佳貫施例係以第3A圖所示的較佳實施例之結構為 基礎’再以不同的製程製作不同結構的DRAM儲存電極。在 第9A至9D圖中,與第3A圖相似的部份係以相同的編號標 示。 請參照第9A和3A圖’接著蝕刻最上一層的二氧化妙層 22 本紙張尺廋適用中國國家標準(CNS ) Λ4规格(210X 297公绝) ^ U---f^------、玎------f (請先閱讀背面之注意事項再填寫本頁) A7 A7 經濟部中央標隼局員工消費合作社印製 B7 五、發明説明(21 ) 48 ’或者利用CMP技術,研磨第3A圖結構的表面,直到最 上一層的複晶矽層46露出為止。至此即成第9A圖所示的結 構。 請參照第9B圖,接著’利用傳統的光罩製版技術形成 —光阻層120 ,並依序以非等向性蝕刻未被覆蓋的複晶矽 層46、二氧化矽層44、和複晶矽層42。在此步驟中,各 記憶單元的儲存電極被分割開,形成複晶矽區段42c; 42d; 46c; 46d。最後去光阻。 請參照第9C圖’接著利用傳統的光罩製版和蝕刻技 術’形成儲存電極接觸窗122a和122b,其係分別由絕緣層 48的上表面延伸到汲極區16a和16b的表面❶然後,再重 填複晶矽124a和124b到儲存電極接觸窗122a和122b中。 此複晶矽重填製程可以CVD法沈積一複晶矽層再回蝕刻達 成。 請參照第9D圖’接著以濕式蝕刻法,並以蝕刻保護層 22為蝕刻終點,將暴露出的二氧化矽層去除,亦即去除絕 緣層40、44和48、以及柱狀絕緣層24。藉此步驟即完成 動態隨機存取記憶體的儲存電容器之儲存電極,其如圖所 示係由類樹幹狀的複晶矽層124a; 124b、以及具有三節彎 摺t p!j面的—層類樹枝狀複晶石夕層42c, 46c; 42d,46d所 —起構成。類樹幹狀的複晶矽層l24a; l24b連接到DRAM 的轉移電晶體之汲極區16a; 16b。類樹枝狀複晶矽層42c, 42d,46d則從類樹幹狀複晶矽層124a; 124b的外表 面’先以約水平方向延伸出一段距離後,再以約垂直方向 23 --------{丨裝------訂------^ Μ (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準( CNS > Λ4規格(210X 297公釐) A7 306034 五、發明説明(22 ) --- 延伸一距離,最後以約水平方向延伸。 在上述第一至第七較佳實施例之任一例中,類樹枝狀複 晶矽層的上末端均大致位在—相同的水平面;第八較佳實 施例中,類樹枝狀複晶矽層的外側末端則大致位在—相同 的垂直面。然而,本發明並不限於此,第八較佳實施例若 再利用光阻浸姓技術,則可達成類樹枝狀複晶5夕層的上末 端係不等高;或者類樹枝狀複晶砂層的外側末端係位在不 相同的垂直2。下—個㈣實施例即將描述類樹枝狀複晶 矽層的上端咼度不一致的儲存電極結構。 接著將參照I10AS l〇D ®,詳述本發明的—種具有樹 型儲存電容器的半導體記憶元件之第九較佳實施例,半導 體記It元件的此-較佳實施例,係由本發明的—種半導體 記憶元件製造方法之第九較佳實施例所製造的。 本較佳貫施例係以第9A圖所示的較佳實施例之結構為 基礎,再以不同的製程製作不同結構的⑽履儲存電極。在 第10A至10D圖中,與第9A圖相似的部份係以相同的編號 標示。 ^請參照第10A和9A圖,接著,利用傳統的光罩製版技 術形成一光阻層13〇 ,並依序以非等向性蝕刻未被覆蓋的 複晶矽層46和二氧化矽層44❶在此步驟中,複晶矽層46 被分割開,形成複晶矽區段46e; 46f。 清參照第10B圖,接著以光阻浸蝕技術去除光咀層上 —厚度,而形成較薄較小的光阻層13〇a,因而又曝露出複 晶矽層46e和46f的一部份上表面◊然後,以非等向性蝕 本紙張尺度_ 家料(CNS ) Λ4規格( (請先閱讀背面之注意事項再填寫本頁)、 1T Yinxian A7 B7, Employee Cooperative of Central Bureau of Standards, Ministry of Economic Affairs V. Invention Description (20) ”Etching or wet etching instead of anisotropic (ani s〇tr〇pic) etching method, the thick insulation layer is implemented Etching can obtain a triangle-like insulating layer; or in the case of FIG. 2B, after forming the columnar insulating layer 24, and then forming a side wall insulating layer on the side wall of the columnar insulating layer 24, another type of Columnar insulating layers of different shapes. Therefore, the dendritic polycrystalline silicon layer can have various extended shapes at different angles. According to the conception of this preferred embodiment, if more sections of dendritic polycrystalline silicon layer structure are to be fabricated, the structure of Figures 8B and 8C can be used as the basis, followed by the photoresist etching step and the time control of the raised insulating layer The non-isotropic etching step mules one or more times to form a more stepped raised insulating layer structure. In the above-mentioned first to seventh preferred embodiments, the storage electrode of each memory cell is divided by CMP technology. However, the present invention is not limited to this, and the next preferred embodiment will describe the process of dividing the storage electrodes of each memory cell by using the conventional mask making and etching techniques, and the different storage electrode structures formed thereby. Next, referring to FIGS. 9A to 9D, the eighth preferred embodiment of the semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail. This preferred embodiment of the semiconductor memory device is provided by the present invention— Manufactured by the eighth preferred embodiment of a semiconductor memory device manufacturing method. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 3A, and then DRAM storage electrodes of different structures are manufactured by different processes. In Figs. 9A to 9D, the parts similar to those in Fig. 3A are marked with the same numbers. Please refer to Figures 9A and 3A, and then etch the top layer of the second layer of dioxide dioxide. This paper size is applicable to the Chinese National Standard (CNS) Λ4 specification (210X 297 public) ^ U --- f ^ ------ 、 玎 ------ f (Please read the precautions on the back before filling out this page) A7 A7 Printed B7 by the Ministry of Economy Central Standard Falcon Bureau Employee Consumer Cooperative V. Invention description (21) 48 'Or use CMP technology, The surface of the structure in FIG. 3A is polished until the top polysilicon layer 46 is exposed. This is the structure shown in Fig. 9A. Please refer to FIG. 9B, and then use the traditional mask-making technology to form the photoresist layer 120, and sequentially anisotropically etch the uncovered polycrystalline silicon layer 46, silicon dioxide layer 44, and polycrystalline Silicon layer 42. In this step, the storage electrodes of each memory cell are divided to form polycrystalline silicon sections 42c; 42d; 46c; 46d. Finally, remove the photoresist. Please refer to FIG. 9C 'Then use the traditional mask making and etching technology' to form storage electrode contact windows 122a and 122b, which extend from the upper surface of the insulating layer 48 to the surfaces of the drain regions 16a and 16b ❶ and then The polysilicon 124a and 124b are refilled into the storage electrode contact windows 122a and 122b. This polycrystalline silicon refilling process can be achieved by depositing a polycrystalline silicon layer by CVD and then etching back. Please refer to FIG. 9D. Then, the wet etching method and the etching protection layer 22 are used as the etching end point to remove the exposed silicon dioxide layer, that is, the insulating layers 40, 44 and 48, and the columnar insulating layer 24 are removed. . By this step, the storage electrode of the storage capacitor of the dynamic random access memory is completed. As shown in the figure, it is composed of a trunk-like polycrystalline silicon layer 124a; 124b, and a three-layer tp! J plane The dendrite polycrystal evening layer 42c, 46c; 42d, 46d together. The trunk-like polycrystalline silicon layer l24a; l24b is connected to the drain region 16a; 16b of the transfer transistor of the DRAM. The dendritic polycrystalline silicon layers 42c, 42d, 46d extend from the trunk-like polycrystalline silicon layer 124a; the outer surface of 124b 'first extends a distance in a horizontal direction, and then in a vertical direction 23 ----- --- {丨 装 ------ book ------ ^ Μ (please read the precautions on the back before filling in this page) This paper size is applicable to Chinese national standards (CNS > Λ4 specifications (210X 297 Mm) A7 306034 V. Description of the invention (22) --- extends a distance, and finally extends in a horizontal direction. In any of the above first to seventh preferred embodiments, the dendritic polycrystalline silicon layer The upper ends are approximately at the same horizontal plane; in the eighth preferred embodiment, the outer ends of the dendritic polycrystalline silicon layer are approximately at the same vertical plane. However, the present invention is not limited to this, the eighth In the preferred embodiment, if the photoresist immersion technique is used again, the upper end of the dendritic polymorphic layer 5 can be unequal in height; or the outer end of the dendritic polymorphic sand layer can be located at a different vertical 2 The next example will describe the storage electrode junction with inconsistencies at the upper end of the dendritic polycrystalline silicon layer. Next, the ninth preferred embodiment of a semiconductor memory device having a tree-shaped storage capacitor of the present invention will be described in detail with reference to I10AS l〇D ®, and this-preferred embodiment of a semiconductor memory It device is determined by the present invention -A ninth preferred embodiment of a semiconductor memory device manufacturing method. This preferred embodiment is based on the structure of the preferred embodiment shown in FIG. 9A, and then different structures are manufactured by different processes ⑽Storage electrode. In Figures 10A to 10D, parts similar to those in Figure 9A are marked with the same number. ^ Please refer to Figures 10A and 9A, and then use the traditional photomask plate-making technology to form a light Resist layer 13〇, and anisotropically etch the uncovered polycrystalline silicon layer 46 and the silicon dioxide layer 44❶ In this step, the polycrystalline silicon layer 46 is divided to form a polycrystalline silicon section 46e 46f. Refer to Figure 10B, and then use photoresist etching technique to remove the upper thickness of the nozzle layer to form a thinner and smaller photoresist layer 13〇a, thus exposing one of the polycrystalline silicon layers 46e and 46f Part of the upper surface ◊ Then, anisotropically etch the paper scale_ Home material (CNS) Λ4 specifications ((Please read the notes on the back before filling this page)

•人 —裝I 經濟部中央標準局員工消費合作杜印製 經濟部中央標準局員工消費合作社印装 A7 ------ B7 五、發明説明(23 ) ~ ~ 未被覆蓋的複晶5夕層4 6 e; 4 6 f ;和4 2。在此步驟中,複晶 砂層46e和46f更形縮小而形成複晶矽區段46g; 46h,而 複晶砂眉42則被分割開,形成複晶矽區段42g; 42h。之後, 以非等向性蝕刻未被覆蓋的二氧化矽層44和4〇,直到複晶 矽層42g和42h的上端表面露出為止。最後去光阻。 請參照第10C圖,接著利用傳統的光罩製版和蝕刻技 術’形成儲存電極接觸窗132a和132b,其係分別由絕緣層 48的上表面延伸到汲極區16a和16b的表面。然後,再重 填複晶矽134a和134b到儲存電極接觸窗132a和132b中。 此複晶妙重填製程可以CVD法沈積一複晶矽層再回蝕刻達 成。 請參照第10 D圖,接著以濕式蝕刻法,並以蝕刻保護層 22為蝕刻終點,將暴露出的二氧化矽層去除,亦即去除絕 緣層40、44和48、以及柱狀絕緣層24。藉此步騍即完成 動態隨機存取記憶體的儲存電容器之儲存電極,其如圖所 示係由類樹幹狀的複晶矽層134a; 134b、以及具有l形剖 面的一層類樹枝狀複晶矽層42g,46g; 42h,46h所一起構 成。類樹幹狀的複晶矽層134a; 134b連接到DRAM的轉移電 晶體之汲極區l6a; 16b。類樹枝狀複晶矽層42g,46g; 42h, 46h則從類樹幹狀複晶矽層i34a; i34b的外表面,先以約 水平方向延伸出一段距離後,再以約垂直方向延伸,而且 類樹枝狀複晶矽層46g; 46h的上端略比類樹枝狀複晶矽層 42g; 42h的上端高。 熟習此項技藝者應可瞭解,上述本發明各個較佳實施例 25 本紙张尺度適用中國國家標隼(CNS )八4規格(2i〇X297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 A7 B7 五、發明説明(24 ) —~' 的構想特徵’除了可以單獨應用之外,亦可混合應用,而 再達成非常多種不同結構的儲存電極和儲存電容器。這些 儲存電極和儲存電容器的結構都應在本發明的保護範圍之 內。 應注意雖然在圖式中轉移電晶體的汲極均為矽基底表 面的擴散區結構’然本發明並不限於此,任何適當的汲極 結構均可應用於本發明,例如溝槽式(trench)汲極即為 —例。 再者,也應注意圖式中各構件部份的形狀、尺寸、和延 伸的角度等’僅為繪示方便所作的示意表示,其與實除情 況或有差異,故不應用以限制本發明。 雖然本發明已以若干較佳實施例揭露如上,然其並非用 以限定本發明’任何熟習此技藝者,在不脱離本發明之精 神和範圍內,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 ----!-----h -裝------訂-----k 4 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局!貝工消费合作社印製• Person-installed I. The Ministry of Economic Affairs, Central Standards Bureau employee consumption cooperation du printed by the Ministry of Economic Affairs, Central Standards Bureau employee consumption cooperative printed A7 ------ B7 V. Invention description (23) ~ ~ Uncovered Fujing 5 The evening layer 4 6 e; 4 6 f; and 4 2. In this step, the polycrystalline sand layers 46e and 46f are further reduced in size to form polycrystalline silicon sections 46g; 46h, and the polycrystalline sand eyebrow 42 is divided to form polycrystalline silicon sections 42g; 42h. Thereafter, the uncovered silicon dioxide layers 44 and 40 are anisotropically etched until the upper end surfaces of the polycrystalline silicon layers 42g and 42h are exposed. Finally, remove the photoresist. Referring to FIG. 10C, the storage electrode contact windows 132a and 132b are formed by conventional mask making and etching techniques, which extend from the upper surface of the insulating layer 48 to the surfaces of the drain regions 16a and 16b, respectively. Then, the polycrystalline silicon 134a and 134b are refilled into the storage electrode contact windows 132a and 132b. This polycrystalline refill process can be achieved by depositing a polycrystalline silicon layer by CVD and then etching back. Please refer to FIG. 10D, and then use the wet etching method and the etching protection layer 22 as the etching end point to remove the exposed silicon dioxide layer, that is, remove the insulating layers 40, 44 and 48, and the columnar insulating layer twenty four. In this way, the storage electrode of the storage capacitor of the dynamic random access memory is completed. As shown in the figure, it is composed of a trunk-like polycrystalline silicon layer 134a; 134b, and a layer of dendritic-like polycrystal with an l-shaped profile The silicon layer 42g, 46g; 42h, 46h together. The trunk-like polycrystalline silicon layer 134a; 134b is connected to the drain region 16a of the transfer transistor of the DRAM; 16b. The dendritic polycrystalline silicon layer 42g, 46g; 42h, 46h from the outer surface of the trunk-like polycrystalline silicon layer i34a; i34b, extending a distance in the horizontal direction, and then extending in the vertical direction, and The dendritic polycrystalline silicon layer 46g; the upper end of 46h is slightly higher than the dendritic polycrystalline silicon layer 42g; the upper end of 42h. Those skilled in the art should understand that the above-mentioned preferred embodiments of the present invention 25 are all suitable for the Chinese National Standard Falcon (CNS) 84 specifications (2i〇X297mm) (please read the precautions on the back before filling in this Page) Order A7 B7 V. Description of the invention (24) — ~ The "conceived features" can be used in addition to individual applications, but can also be used in combination, and then achieve a very wide variety of storage electrodes and storage capacitors of different structures. The structure of these storage electrodes and storage capacitors should fall within the protection scope of the present invention. It should be noted that although the drains of the transfer transistors in the drawings are all diffused region structures on the surface of the silicon substrate, although the present invention is not limited thereto, any suitable drain structure can be applied to the present invention, such as trench ) Jiji is an example. In addition, it should also be noted that the shapes, sizes, and extension angles of various components in the drawings are only schematic representations for convenience of illustration, which may be different from the actual situation, so it should not be used to limit the present invention. . Although the present invention has been disclosed above in a number of preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this art can make some changes and retouching without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the attached patent application. ----! ----- h -installed ------ order ----- k 4 (Please read the notes on the back before filling this page) Central Bureau of Standards, Ministry of Economic Affairs! Printed by Beigong Consumer Cooperative

本纸掁尺度適用中國^^The size of this paper is suitable for China ^^

Claims (1)

306034 ll --------D8___ 六、申請專利範圍 1. 一種具有電容器的半導體記憶體元件包括: 一基底; 一轉移電晶體,形成在該基底上,並包括汲極和源極 區;以及 一儲存電容器’電性耦接到該轉移電晶體的汲極和源極 區I ~"'上 , 該儲存電容器包括 一類樹幹狀導電層’具有—底部,電性耦接到該轉移電 晶體的該汲極和源極區之—上,該類樹幹狀導電層又具有 一向上延伸部,以一大致向上的方向,從該底部延伸出, 至少一類樹枝狀導電層,具有一似形的剖面,該類樹 枝狀導電層的一末端連接在該類樹幹狀導電層的外表面 上,該類樹幹狀導電層和類樹枝狀導電層構成該儲存電容 器的一儲存電極, 一介電層,形成在該類樹幹狀導電層和類樹枝狀導電層 曝露出的表面上,以及 —上導電層,形成在該介電層上,以構成該儲存電容器 的一相對電極。 經濟部中央標準局員工消費合作社印製 ...............一裝…: (請先閲讀背面之注意事項再填寫本頁) 線 2. 如申請專利範圍| !項所述之半導體記憶體元件, 2中該儲存電容器包括二個大致平行的類樹枝狀導電層, 每-個均具有―似L形的剖面,且其—末端均連接在該類 樹幹狀導電層的外表面上》 3. 如申請專利範圍第2項所述之半導體記億體元件, 其中該二倘類樹枝狀導電層的另—自由末端係不位在同—306034 ll -------- D8___ VI. Patent application 1. A semiconductor memory device with a capacitor includes: a substrate; a transfer transistor formed on the substrate and including the drain and source regions ; And a storage capacitor 'electrically coupled to the drain and source regions I ~ "of the transfer transistor, the storage capacitor includes a type of trunk-shaped conductive layer' has a bottom, electrically coupled to the transfer Above the drain and source regions of the transistor, the trunk-like conductive layer has an upward extension, extending from the bottom in a generally upward direction, and at least one type of dendritic conductive layer has a similar The shape of the profile, one end of the dendritic conductive layer is connected to the outer surface of the trunk-like conductive layer, the trunk-like conductive layer and the dendritic conductive layer constitute a storage electrode of the storage capacitor, a dielectric A layer formed on the exposed surface of the trunk-like conductive layer and the dendritic-like conductive layer, and an upper conductive layer formed on the dielectric layer to constitute a relative electricity of the storage capacitor . Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs ............... One pack ... (Please read the precautions on the back before filling out this page) Line 2. If applying for a patent | The semiconductor memory device described in item 2, the storage capacitor includes two substantially parallel dendritic-like conductive layers, each of which has an L-like cross-section, and its ends are connected to the trunk-like shape "On the outer surface of the conductive layer" 3. The semiconductor memory device as described in item 2 of the patent application scope, in which the other free ends of the two types of dendritic conductive layers are not located at the same time. 本紙張尺度適用中s g *標準(CNS)A4規格(⑽公發)The paper size is applicable to the s g * standard (CNS) A4 specification (⑽ public) 經濟部中央標準局員工消費合作社印製 4. 如申請專利範圍第i項所述之半導體記憶體元件, 其中該儲存電容器更包括一第二導電層,其具有一末端連 接在該類樹幹狀導電層的外表面上、以及一往外延伸部, 以一大致水平的方向,從該末端往外延伸出。 5. 如申請專利範圍第4項所述之半導體記憶體元件, 其中該第二導電層係位在該類樹枝狀導電層的下方。 6. 如申請專利範圍第1項所述之半導體記憶體元件, 其中該類樹幹狀導電層包括一下樹幹部電性耦接到該轉移 電晶體的該汲極和源極區之一上,且具有一似ΐ形的剖面; 以及一上樹幹部從該下樹幹部的上表面延伸出。 7. 如申請專利範圍第6項所述之半導體記憶體元件, 其中該類樹枝狀導電層的該末端係連接在該上樹幹部的外 表面上。 8. 如申請專利範圍第6項所述之半導體記憶體元件, 其中該上樹幹部具有一似ϋ形的剖面。 9. 如申請專利範圍第ΐ項所述之半導體記憶體元件, 其中該類樹幹狀導電層具有―似U形的剖面。 10. 如申請專利範圍第丨項所述之半導體記憶體元件, 其中該類樹枝狀導電層具有—似雙L形的剖面。 11. 一種具有電容器的半導體記憶體元件包括: 一基底; 轉移電晶體’形成在該基底上,並包括波極和源極 區;以及 28Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 4. The semiconductor memory device as described in item i of the patent application scope, wherein the storage capacitor further includes a second conductive layer having an end connected to the trunk-like conductive type The outer surface of the layer and an outwardly extending portion extend outwardly from the end in a substantially horizontal direction. 5. The semiconductor memory device as described in item 4 of the patent application, wherein the second conductive layer is located below the dendritic conductive layer. 6. The semiconductor memory device as described in item 1 of the patent application scope, wherein the trunk-like conductive layer includes a trunk portion electrically coupled to one of the drain and source regions of the transfer transistor, and Has a l-shaped cross section; and an upper trunk extends from the upper surface of the lower trunk. 7. The semiconductor memory device as described in item 6 of the patent application scope, wherein the end of the dendritic conductive layer is connected to the outer surface of the upper trunk portion. 8. The semiconductor memory device as described in item 6 of the patent application scope, wherein the upper trunk portion has a ϋ-shaped cross section. 9. The semiconductor memory device as described in item 1 of the patent application scope, wherein the trunk-like conductive layer of this type has a U-like cross-section. 10. The semiconductor memory device as described in item 丨 of the patent application range, wherein the dendritic conductive layer has a double L-shaped cross section. 11. A semiconductor memory device having a capacitor includes: a substrate; a transfer transistor is formed on the substrate and includes a wave electrode and a source region; and 28 (請先閱讀背面之注意事項再填寫本頁) -裝. 訂 % _ έ青專利範圍 、-儲存電容器,電性耦接到該轉移電晶體的汲極和源極 區—上, 該儲存電容器包括 曰類樹幹狀導電層’具有-底部,電性耦接到該轉移電 晶體的該圾極和源極區之—上,該類樹幹狀導電層又具有 —向上延伸部’以-大致向上的方向,從該底部延伸出, 至少一類樹枝狀導電層,包括至少一第—延伸段和一第 二延伸段’該第—延伸㈣—末端連接在該類樹幹狀導電 層的外表面上’該第一延伸段以—角《,從該第—延伸段 的另一末端延伸出,該類樹幹狀導電層和類樹枝狀導電層 構成該儲存電容器的一儲存電極, 一介電層,形成在該類樹幹狀導電層和類樹枝狀導電層 曝露出的表面上,以及 一上導電層,形成在該介電層上,以構成該儲存電容器 的一相對電極。 12·如申請專利範圍第丨丨項所述之半導體記億體元 件,其中該類樹枝狀導電層更包括一第三延伸段,以一第 二角度從該第二延伸段延伸出。 13. 如申請專利範圍第12項所述之半導體記憶體元 件’其中該第一延伸段和第三延伸均係大致以一水平方向 延伸而該第—延伸段則大致以一垂直方向延伸。 14. 如申請專利範圍第〗1項所述之半導體記憶體元 件’其中該儲存電容器包括二個大致平行的類樹枝狀導電 層’每一個類樹枝狀導電層的一末端均連接在該類樹幹狀 申请專利範圍 導電層的外表面上。 15. 如申請專利範圍第14項所述之半導體記憶體元 件’其中該二個類樹枝狀導電層的第二延伸段之自由末端 係不位在同一平面。 16. 如申請專利範圍第11項所述之半導體記憶體元 件其中該儲存電容器更包括一第二導電層,其具有一末 端連接在該類樹幹狀導電層的外表面上、以及一往外延伸 段’以一大致水平的方向,從該末端往外延伸出。 件 寫 本 頁 17. 如申請專利範圍第16項所述之半導體記憶體元 其中該第二導電層係位在該類樹枝狀導電層的下方。 件 18. 如申請專利範圍第u項所述之半導體記憶體元 其中該類樹幹狀導電層包括一下樹幹部電性耦接到該 玎 轉移電晶體的該汲極和源極區之一上,且具有一似τ形的 剖面;以及一上樹幹部從該下樹幹部的上表面延伸出。 19. 如申請專利範圍第18項所述之半導體記憶體元 件,其中該類樹枝狀導電層的該末端係連接在該上樹幹部 的外表面上。 經濟部中央標準局員工消費合作社印製 20. 如申請專利範圍第18項所述之半導體記憶體元 件,其中該上樹幹部具有一似U形的剖面。 21. 如申請專利範圍第η項所述之半導體記憶體元 件,其中該類樹幹狀導電層具有一似U形的剖面。 22. —種具有電容器的半導體記憶體元件包括: 一基底; 轉移電晶體’形成在該基底上’並包括汲極和源極 30 卜紙張尺度適用中國a家標準(CNS)A4規格(雇297公梦)· 申請專利範圍 區;以及 -儲存電容器’電性耦接到該轉移電晶體的 區之一上, 該儲存電容器包括 -類樹幹狀導電層,具有—底部,電性耦接到該轉移電 晶體的該汲極和源極區之—上,該類樹幹狀導電層又具有 一柱形延伸部,以一大致向上的方向,從該底部延伸出, 至少類樹枝狀導電層,具有一末端連接在該類樹幹狀 f電膚的外表面±,該類樹枝狀導電層又具有—向外延伸 部,從該末端往外延伸出,該類樹幹狀導電層和類樹枝狀 導電層構成該儲存電容器的一儲存電極, 訂 介電層’形成在該類樹幹狀導電層和類樹枝狀導電層 曝露出的表面上,以及 上導電層’形成在該介電層上,以構成該儲存電容器 的一相對電極。 23·如申請專利範圍第22項所述之半導體記億體元 件’其中該類樹幹狀導電層的該柱形延伸部包括一中空的 部份。 經濟部中央標準局員工消費合作社印製 24. 如申請專利範圍第22項所述之半導體記憶體元 件’其中該類樹枝狀導電層的該向外延伸部具有一多節彎 摺形狀的剖面^ 25. 如申請專利範圍第22項所述之半導體記憶體元 件’其中該儲存電容器包括複數個大致平行延伸的類樹枝 狀導電層’每一個類樹枝狀導電層的一末端均連接在該類 3 1 本紙張尺/tiW中s s諸準(CNS)峨格⑽Χ297公私 8 8 8 8 ABCD 經濟部中央標準局員工消費合作社印製 申請專利範圍 樹幹狀導電層的外表面上。 32 (請先閲讀背面之注意事項再填寫本頁) 裝 線 本紙張尺度適用中國國家標準(CNS)A4规格(210X297公釐)(Please read the precautions on the back before filling in this page)-Install. Order% _ EQing patent scope,-Storage capacitor, electrically coupled to the drain and source regions of the transfer transistor, the storage capacitor It includes a trunk-like conductive layer 'having a bottom, electrically coupled to the garbage electrode and the source region of the transfer transistor, the trunk-like conductive layer having an upward extension' to-generally upward Direction extending from the bottom, at least one kind of dendritic conductive layer, including at least a first-extended section and a second extended section 'The first-extended (iv) -end is connected to the outer surface of the trunk-shaped conductive layer of this type' The first extension section extends from the other end of the first extension section at an angle-, and the trunk-like conductive layer and the dendritic-like conductive layer constitute a storage electrode and a dielectric layer of the storage capacitor. On the exposed surface of the trunk-like conductive layer and the dendritic-like conductive layer, and an upper conductive layer are formed on the dielectric layer to constitute a counter electrode of the storage capacitor. 12. The semiconductor memory element as described in item 1 of the patent application scope, wherein the dendritic conductive layer further includes a third extension extending from the second extension at a second angle. 13. The semiconductor memory element as described in item 12 of the patent application scope, in which both the first extension and the third extension extend substantially in a horizontal direction and the first extension extends substantially in a vertical direction. 14. The semiconductor memory device described in item 1 of the scope of patent application 'wherein the storage capacitor includes two substantially parallel dendritic conductive layers', one end of each dendritic conductive layer is connected to the trunk The patent application covers the outer surface of the conductive layer. 15. The semiconductor memory element as described in item 14 of the scope of the patent application wherein the free ends of the second extensions of the two dendritic conductive layers are not on the same plane. 16. The semiconductor memory device as recited in item 11 of the patent application range, wherein the storage capacitor further includes a second conductive layer having an end connected to the outer surface of the trunk-like conductive layer, and an outward extension 'Extend outward from the end in a substantially horizontal direction. Item Write this page 17. The semiconductor memory cell as described in item 16 of the patent application scope, wherein the second conductive layer is located below the dendritic conductive layer. Item 18. The semiconductor memory element as described in item u of the scope of the patent application wherein the trunk-like conductive layer includes a trunk portion electrically coupled to one of the drain and source regions of the transfer transistor, And has a τ-shaped cross-section; and an upper trunk extends from the upper surface of the lower trunk. 19. The semiconductor memory device as described in item 18 of the patent application range, wherein the end of the dendritic conductive layer is connected to the outer surface of the upper trunk portion. Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 20. The semiconductor memory element as described in item 18 of the patent application scope, in which the upper trunk has a U-shaped profile. 21. The semiconductor memory element as described in item η of the scope of the patent application, in which the trunk-like conductive layer has a U-shaped cross-section. 22. A semiconductor memory device with a capacitor includes: a substrate; the transfer transistor is 'formed on the substrate' and includes the drain and the source 30. The paper standard is applicable to China ’s Standard A (CNS) A4 specification (employed 297 Gongmeng) · patent application area; and-a storage capacitor 'is electrically coupled to one of the areas of the transfer transistor, the storage capacitor includes a trunk-like conductive layer having a bottom, electrically coupled to the Above the drain and source regions of the transfer transistor, the trunk-like conductive layer has a columnar extension extending from the bottom in a generally upward direction, at least a dendritic conductive layer, having One end is connected to the outer surface of the trunk-like f-type skin, and the dendritic conductive layer has an outward extending portion, which extends outward from the end. The trunk-like conductive layer and the dendritic-like conductive layer constitute A storage electrode of the storage capacitor, a dielectric layer is formed on the exposed surface of the trunk-like conductive layer and dendritic conductive layer, and an upper conductive layer is formed on the dielectric layer to An opposite electrode constituting the storage capacitor. 23. The semiconductor memory element as described in item 22 of the scope of the patent application, wherein the cylindrical extension of the trunk-like conductive layer includes a hollow portion. Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 24. The semiconductor memory device as described in item 22 of the patent scope, wherein the outwardly extending portion of the dendritic conductive layer has a section with a multi-bend shape ^ 25. The semiconductor memory device as described in item 22 of the scope of the patent application 'where the storage capacitor includes a plurality of dendritic conductive layers extending substantially in parallel'. One end of each dendritic conductive layer is connected to the category 3 1 This paper ruler / tiW ss Zhuzhun (CNS) Ege ⑽Χ297 public and private 8 8 8 8 ABCD Ministry of Economic Affairs Central Standards Bureau employee consumer cooperative printed on the outer surface of the trunk-like conductive layer of the patent scope. 32 (Please read the precautions on the back before filling out this page) Binding This paper size is applicable to China National Standard (CNS) A4 (210X297mm)
TW85109989A 1996-08-16 1996-08-16 Semiconductor memory device with capacitor (part 1) TW306034B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
TW85109989A TW306034B (en) 1996-08-16 1996-08-16 Semiconductor memory device with capacitor (part 1)
US08/706,704 US5744833A (en) 1996-08-16 1996-09-06 Semiconductor memory device having tree-type capacitor
JP09005086A JP3024675B2 (en) 1996-08-16 1997-01-14 Semiconductor memory device with tree-type capacitor
GB9701850A GB2321768A (en) 1996-08-16 1997-01-30 Stacked capacitor
FR9705111A FR2752488A1 (en) 1996-08-16 1997-04-25 SEMICONDUCTOR MEMORY DEVICE HAVING A SHAFT TYPE CAPACITOR
DE19720220A DE19720220A1 (en) 1996-08-16 1997-05-14 Semiconductor memory device with capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW85109989A TW306034B (en) 1996-08-16 1996-08-16 Semiconductor memory device with capacitor (part 1)

Publications (1)

Publication Number Publication Date
TW306034B true TW306034B (en) 1997-05-21

Family

ID=51566043

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85109989A TW306034B (en) 1996-08-16 1996-08-16 Semiconductor memory device with capacitor (part 1)

Country Status (1)

Country Link
TW (1) TW306034B (en)

Similar Documents

Publication Publication Date Title
TW308727B (en) Semiconductor memory device with capacitor (4)
TW304288B (en) Manufacturing method of semiconductor memory device with capacitor
TW307045B (en)
IT9021551A1 (en) METHOD FOR THE MANUFACTURE OF A SEMICONDUCTOR.
TW304290B (en) The manufacturing method for semiconductor memory device with capacitor
TW312831B (en) Manufacturing method of semiconductor memory device with capacitor(3)
JP3024675B2 (en) Semiconductor memory device with tree-type capacitor
TW406405B (en) Manufacture method of the trench-type capacitor
TW312829B (en) Semiconductor memory device with capacitor(6)
TW306034B (en) Semiconductor memory device with capacitor (part 1)
TW306064B (en) Semiconductor memory device with capacitor (part 6)
JP3364244B2 (en) Method for manufacturing semiconductor memory device
TW312828B (en) Manufacturing method of semiconductor memory device with capacitor(5)
TW306036B (en) Semiconductor memory device with capacitor (part 2)
TW308729B (en) Semiconductor memory device with capacitor (3)
TW304289B (en) Manufacturing method of semiconductor memory device with capacitor
US6080632A (en) Method of fabricating a semiconductor memory device having a tree-type capacitor
JPH1079490A (en) Capacitor structure of semiconductor memory device
TW306063B (en) Semiconductor memory device with capacitor (part 2)
TW306065B (en) Semiconductor memory device with capacitor (part 5)
GB2321767A (en) Stacked capacitor
TW306035B (en) Manufacturing method of semiconductor memory device with capacitor (part 7)
TW308728B (en) Semiconductor memory device with capacitor (4)
JP3024676B2 (en) Method of manufacturing semiconductor memory device having tree-type capacitor
TW293175B (en) Stack capacitor of FIN structure for DRAM cell