TW202420758A - 光耦合器 - Google Patents

光耦合器 Download PDF

Info

Publication number
TW202420758A
TW202420758A TW111142465A TW111142465A TW202420758A TW 202420758 A TW202420758 A TW 202420758A TW 111142465 A TW111142465 A TW 111142465A TW 111142465 A TW111142465 A TW 111142465A TW 202420758 A TW202420758 A TW 202420758A
Authority
TW
Taiwan
Prior art keywords
gallium nitride
nitride light
optical coupler
sensing switch
light emitter
Prior art date
Application number
TW111142465A
Other languages
English (en)
Other versions
TWI832541B (zh
Inventor
王地寶
Original Assignee
台亞半導體股份有限公司
Filing date
Publication date
Application filed by 台亞半導體股份有限公司 filed Critical 台亞半導體股份有限公司
Priority to TW111142465A priority Critical patent/TWI832541B/zh
Priority claimed from TW111142465A external-priority patent/TWI832541B/zh
Priority to US18/489,562 priority patent/US20240154054A1/en
Application granted granted Critical
Publication of TWI832541B publication Critical patent/TWI832541B/zh
Publication of TW202420758A publication Critical patent/TW202420758A/zh

Links

Abstract

本發明提供一種光耦合器,包括基板、氮化鎵光發射器、氮化鎵光感測開關、反射結構及傳遞介質。氮化鎵光發射器及氮化鎵光感測開關設置於該基板上且彼此保持電性隔絕;氮化鎵光發射器用以依據輸入訊號發射光訊號;氮化鎵光感測開關用以感測光訊號並依據光訊號產生輸出訊號;反射結構用以反射光訊號;傳遞介質至少介於氮化鎵光發射器、氮化鎵光感測開關及反射結構之間。其中自氮化鎵光發射器發射之光訊號係於傳遞介質內傳遞,並經由反射結構反射後斜向傳遞至氮化鎵光感測開關。

Description

光耦合器
本發明係關於一種光耦合器,尤指一種以氮化鎵為主材料之光耦合器。
一般針對供電電壓差較大之不同元件間之訊號傳輸,需要使用耦合器(coupler)或隔離器(isolator)來保持電性隔絕並作為執行訊號傳輸媒介。目前常見之耦合器包括光耦合器(optocoupler)或電磁耦合器(digital coupler)。光耦合器是利用發光二極體作為光源,並藉由相應之光敏元件來達到電-光-電之訊號轉換及傳輸。然而,習知光耦合器大多以矽材料製成,且需要以兩片晶片分別製作發光部件及收光部件,在製程上較為複雜且成本較高。此外,習知光耦合器之切換頻率有限,需要加設額外電路才能勉強將切換頻率從1MBd提高至10MBd,在使用上多有限制。
電磁耦合器是利用相鄰之不同電磁感應元件達到電-電磁波-電之訊號轉換及傳輸,且電磁耦合器之切換頻率可應用至25MBd以上且功耗較低。然而,電磁耦合器會因為使用電磁波而容易產生電磁干擾或被電磁干擾等問題,進而造成使用上之困擾。此外,電磁耦合器需要額外設置調變/解調電路,而佔有一定之整體晶片面積與產生額外之功耗。
因此,如何設計出能改善前述問題之光耦合器,實為一個值得研究之課題。
本發明之目的在於提供一種以氮化鎵為主材料之光耦合器。
為達上述目的,本發明之光耦合器包括基板、氮化鎵光發射器、氮化鎵光感測開關、反射結構及傳遞介質。氮化鎵光發射器及氮化鎵光感測開關設置於基板上且彼此保持電性隔絕;氮化鎵光發射器用以依據輸入訊號發射光訊號;氮化鎵光感測開關用以感測光訊號並依據光訊號產生輸出訊號;反射結構用以反射光訊號;傳遞介質至少介於氮化鎵光發射器、氮化鎵光感測開關及反射結構之間。其中自氮化鎵光發射器發射之光訊號係於傳遞介質內傳遞,並經由反射結構反射後斜向傳遞至氮化鎵光感測開關。
在本發明之一實施例中,氮化鎵光發射器包括至少一LED結構或至少一發光高電子遷移率電晶體結構。
在本發明之一實施例中,氮化鎵光發射器包括第一LED結構及第二LED結構,第一LED結構與第二LED結構彼此反向並聯,且輸入訊號可為交流訊號。
在本發明之一實施例中,氮化鎵光感測開關包括至少一BJT結構或至少一高電子遷移率電晶體結構。
在本發明之一實施例中,氮化鎵光感測開關包括第一BJT結構及第二BJT結構,第一BJT結構與第二BJT結構彼此彼此串聯,以放大該輸出訊號。
在本發明之一實施例中,傳遞介質至少局部覆蓋氮化鎵光發射器及氮化鎵光感測開關,且反射結構設置於傳遞介質上。
在本發明之一實施例中,傳遞介質由具有光傳遞特性之封裝材料或絕緣材料所構成。
在本發明之一實施例中,傳遞介質為SiO 2、Si 3N 4或環氧樹脂。
在本發明之一實施例中,光耦合器更包括外圍封裝結構,至少封裝氮化鎵光發射器、氮化鎵光感測開關及傳遞介質,其中反射結構設置於外圍封裝結構朝向氮化鎵光發射器及氮化鎵光感測開關之內側表面。
在本發明之一實施例中,傳遞介質為空氣。
在本發明之一實施例中,氮化鎵光發射器所發射之光訊號之波長介於300nm至500nm之間。
在本發明之一實施例中,基板為矽基板或藍寶石基板。
在本發明之一實施例中,光耦合器更包括複數緩衝層,其中當基板為矽基板時,複數緩衝層設置於氮化鎵光發射器及基板之間以及氮化鎵光感測開關及基板之間。
據此,本發明之光耦合器將氮化鎵製成之光發射器及光感測開關設置於同一基板上並保持兩者之間電性隔絕,不需額外設置調變電路,藉以縮減整體晶片面積、簡化製程且降低成本,並能提升訊號切換頻率。此外,本發明之光耦合器主要藉由斜向光之反射有效傳遞訊號,也不會產生電磁干擾等問題。
由於各種態樣與實施例僅為例示性且非限制性,故在閱讀本說明書後,具有通常知識者在不偏離本發明之範疇下,亦可能有其他態樣與實施例。根據下述之詳細說明與申請專利範圍,將可使該等實施例之特徵及優點更加彰顯。
於本文中,係使用「一」或「一個」來描述本文所述的元件和組件。此舉只是為了方便說明,並且對本發明之範疇提供一般性的意義。因此,除非很明顯地另指他意,否則此種描述應理解為包括一個或至少一個,且單數也同時包括複數。
於本文中,用語「第一」或「第二」等類似序數詞主要是用以區分或指涉相同或類似的元件或結構,且不必然隱含此等元件或結構在空間或時間上的順序。應了解的是,在某些情形或組態下,序數詞可以交換使用而不影響本創作之實施。
於本文中,用語「包括」、「具有」或其他任何類似用語意欲涵蓋非排他性之包括物。舉例而言,含有複數要件的元件或結構不僅限於本文所列出之此等要件而已,而是可以包括未明確列出但卻是該元件或結構通常固有之其他要件。
請一併參考圖1A及圖1B,其中圖1A為本發明之光耦合器之概略示意圖,圖1B為本發明之光耦合器之電路方塊圖。如圖1A及圖1B所示,本發明之光耦合器1主要包括基板10、氮化鎵光發射器20、氮化鎵光感測開關30、反射結構40及傳遞介質50。基板10主要作為可供設置本發明之光耦合器1之電路元件或/及材料層之基礎結構件。在本發明中,基板10可為非摻雜之矽基板或藍寶石基板,然而基板10之材料可依據設計需求不同而改變。
氮化鎵光發射器20設置於基板10上,且氮化鎵光發射器20以氮化鎵作為主要半導體材料而製成。氮化鎵光發射器20用以接收輸入訊號V in,並依據輸入訊號V in發射光訊號。在本發明中,氮化鎵光發射器20包括至少一發光二極體(Light Emitting Diode,簡稱LED)結構或至少一發光高電子遷移率電晶體(Light Emitting High Electron Mobility Transistor,簡稱LE-HEMT)結構,且至少一LED結構或至少一LE-HEMT結構之設置數量係依據設計需求不同而改變。在本發明之一實施例中,氮化鎵光發射器20所發射之光訊號之波長介於300nm至500nm之間,也就是說,該光訊號大致介於紫外光至藍光之範圍內,但本發明不以此為限。
氮化鎵光感測開關30設置於基板10上,且氮化鎵光感測開關30以氮化鎵作為主要半導體材料而製成。氮化鎵光感測開關30用以感測氮化鎵光發射器20所發射之光訊號,並依據該光訊號產生相應之感測訊號,進而產生輸出訊號V out;也就是說,氮化鎵光感測開關30可一併提供光訊號之感測功能以及產生輸出訊號V out之開關切換功能。在本發明中,氮化鎵光感測開關30包括至少一雙極性接面型電晶體(bipolar junction transistor,簡稱BJT)結構或至少一高電子遷移率電晶體(High Electron Mobility Transistor,簡稱HEMT)結構,且至少一BJT結構或至少一LE-HEMT結構之設置數量係依據設計需求不同而改變。在設計上,氮化鎵光發射器20與氮化鎵光感測開關30之間需要保持電性隔絕(如圖1A中虛線部分所隔出之區域,可利用結構設計或/及材料達到電性隔絕效果)。
反射結構40用以反射氮化鎵光發射器20所發射之光訊號至氮化鎵光感測開關30。反射結構40主要設置於光訊號之傳遞路徑上。在本發明中,反射結構40係以鋁或膨體聚四氟乙烯(expanded polytetrafluoroethylene,簡稱e-PTFE)所構成。
傳遞介質50至少介於氮化鎵光發射器20、氮化鎵光感測開關30及反射結構40之間。傳遞介質50至少局部覆蓋氮化鎵光發射器20及氮化鎵光感測開關30,使得前述光訊號可於傳遞介質50內傳遞。在本發明中,傳遞介質50可由具有光傳遞特性之封裝材料或絕緣材料所構成,以藉由傳遞介質50一併提供光傳遞以及晶片封裝或/及電性隔絕之效果。前述封裝材料係為高分子化合物材料,例如環氧樹脂(Expoy),但封裝材料也可採用其他高分子化合物材料來取代;前述絕緣材料可採用SiO 2或Si 3N 4。在本發明之一實施例中,傳遞介質50也可以為空氣或其他介質,係依據設計需求不同而改變。此外,在本發明之一實施例中,當傳遞介質50為固體時,反射結構40可設置於傳遞介質50上。
本發明之光耦合器1可將所接收之輸入訊號V in轉換為輸出訊號V out,且輸入訊號V in與輸出訊號V out具有相同或相反相位之波形。在本發明中,輸入訊號V in可為自高電壓區取得之電壓訊號,而輸出訊號V out可為供應至低電壓區之電壓訊號,但本發明不以此為限,例如V in可為自低壓區取得之電壓訊號,而V out可為自高壓區取得之電壓訊號。因此,應用本發明之光耦合器1可藉由光傳遞而有效達到高電壓區與低電壓區之間之訊號傳輸效果。
以下將針對本發明之光耦合器之不同實施例之細部結構及電路配置作進一步說明。請參考圖2為本發明之光耦合器之第一實施例之示意圖。如圖2所示,在本發明中,於基板10上可藉由有機金屬化學氣相沈積(Metalorganic Chemical Vapor Deposition,簡稱MOCVD)製程形成氮化鎵光發射器20及氮化鎵光感測開關30之主要結構。在本實施例中,本發明之光耦合器1之基板10係採用非摻雜之藍寶石基板。氮化鎵光發射器20自基板10側起依序包括無摻雜氮化鎵層21、N型氮化鎵層22、本質(intrinsic)氮化銦鎵/氮化鎵主動層23、P型氮化鎵/氮化鋁鎵層24、P型氮化鎵層25及透明電極26。N型氮化鎵層22及透明電極26可分別藉由電接點271、272電性連接外部元件,以接收輸入訊號V in。透明電極26可採用氧化銦錫(Indium Tin Oxides,簡稱ITO)或其他類似材料製成,而該些電接點271、272可採用鈦或鋁製成。氮化鎵光發射器20藉由前述多層結構可形成LED結構,其中藉由本質氮化銦鎵/氮化鎵主動層23產生光訊號,並經由透明電極26射出。
氮化鎵光感測開關30自基板10側起依序包括無摻雜氮化鎵層31、第一N型氮化鎵層32、本質氮化銦鎵/氮化鎵主動層33、P型氮化鎵/氮化鋁鎵層34、P型氮化鎵層35及第二N型氮化鎵層36。第一N型氮化鎵層32及第二N型氮化鎵層36可分別藉由電接點371、372電性連接外部元件,以傳輸輸出訊號V out。該些電接點371、372可採用鈦或鋁製成。氮化鎵光感測開關30藉由前述多層結構可形成BJT結構,其中藉由P型氮化鎵層35作為基極以接收光訊號,第一N型氮化鎵層32作為集極,且第二N型氮化鎵層36作為射極。在本發明中,針對構成前述氮化鎵光發射器20及氮化鎵光感測開關30之相同材料層均可採用同一MOCVD製程來形成(例如無摻雜氮化鎵層21及無摻雜氮化鎵層31、N型氮化鎵層22及第一N型氮化鎵層32…,以此類推),以簡化本發明之光耦合器1之製程步驟。
隔絕層60形成於基板10上。隔絕層60至少局部覆蓋氮化鎵光發射器20及氮化鎵光感測開關30,且藉由隔絕層60阻隔氮化鎵光發射器20及氮化鎵光感測開關30,使得氮化鎵光發射器20及氮化鎵光感測開關30之間保持電性隔絕。在本實施例中,隔絕層60可採用SiO 2或Si 3N 4所組成,但本發明不以此為限。此外,於本發明之光耦合器1之製程中,可將前述氮化鎵光發射器20之透明電極26及電接點271、272,以及氮化鎵光感測開關30之P型氮化鎵層35之局部區域、第二N型氮化鎵層36及電接點371、372外露於隔絕層80,以利於光訊號之傳遞或/及與相應之元件或電源電性連接。
在本實施例中,藉由封裝製程可將封裝材料(例如環氧樹脂)覆蓋整個基板10及設置於其上之氮化鎵光發射器20及氮化鎵光感測開關30,以形成整體之封裝結構作為傳遞介質50;而反射結構40可設置於傳遞介質50上。因此,自氮化鎵光發射器20發射之光訊號可於傳遞介質50內傳遞,並經由反射結構40反射後斜向傳遞至氮化鎵光感測開關30。在本發明之一較佳實施例中,為了避免傳遞介質50受到紫外光照射而容易產生材料裂解現象,此處氮化鎵光發射器20所發射之光訊號之波長限制於400nm至500nm之間,也就是說,該光訊號大致介於藍光之範圍內,但本發明不以此為限。據此,本發明之光耦合器1之各部件可整合於單一基板10上以形成單一晶片結構,簡化製程之複雜度並縮減晶片尺寸。本發明之光耦合器1藉由氮化鎵光感測開關30結合光感測及開關切換功能,且在不需要設置額外電路之前提下,切換速率可上探20MBd至50MBd,更能提供較佳之訊號傳輸效果。
請參考圖3為本發明之光耦合器之第二實施例之示意圖。本實施例為前述第一實施例之結構變化例,差異點在於傳遞介質及封裝結構之改變。如圖3所示,在本實施例中,本發明之光耦合器1a更包括外圍封裝結構70。外圍封裝結構70為一個中空殼體,且藉由外圍封裝結構70至少將基板10、氮化鎵光發射器20、氮化鎵光感測開關30及傳遞介質50a封裝並固定於其內部。反射結構40a設置於外圍封裝結構70朝向氮化鎵光發射器20及氮化鎵光感測開關30之內側表面。於氮化鎵光發射器20及氮化鎵光感測開關30與反射結構40a之間充滿空氣,以作為傳輸介質50a。因此,自氮化鎵光發射器20發射之光訊號同樣可於傳遞介質50a內傳遞,並經由反射結構40反射後斜向傳遞至氮化鎵光感測開關30。由於空氣不會受到紫外光照射而產生材料裂解現象,因此在本實施例中,此處氮化鎵光發射器20所發射之光訊號之波長可介於300nm至500nm之間,也就是說,該光訊號可涵蓋紫外光之範圍,但本發明不以此為限。
請參考圖4為本發明之光耦合器之第三實施例之示意圖。本實施例為前述第一實施例之結構變化例,差異點在於反射結構、傳遞介質及封裝結構之改變。如圖4所示,在本實施例中,本發明之光耦合器1b係以隔絕層60b(即絕緣材料)作為傳輸介質50b。藉由增加隔絕層60b之厚度,使得隔絕層60b之頂面與氮化鎵光發射器20之P型氮化鎵層25及氮化鎵光感測開關30之P型氮化鎵層35之間保持適當間距,以容許光訊號傳遞。在本發明之一實施例中,前述適當間距約為3μm至10μm,但本發明不以此為限。反射結構40b設置於隔絕層60b之頂面。為了避免反射結構40b因前述適當間距過小而容易與透明電極26或電接點27電接觸,此處反射結構40b係採用e-PTFE所構成。而封裝結構80b可採用環氧樹脂或陶瓷材料製成。因此,自氮化鎵光發射器20發射之光訊號同樣可於傳遞介質50b內傳遞,並經由反射結構40b反射後斜向傳遞至氮化鎵光感測開關30。
請參考圖5為本發明之光耦合器之第四實施例之示意圖。本實施例為前述第一實施例之結構變化例,差異點在於複數緩衝層之設置。如圖5所示,在本實施例中,本發明之光耦合器1c更包括複數緩衝層28、38,其中當基板10為矽基板時,複數緩衝層28、38分別設置於氮化鎵光發射器20c之無摻雜氮化鎵層21及基板10之間以及氮化鎵光感測開關30c之無摻雜氮化鎵層31及基板10之間。緩衝層28、38可採用氮化鋁、氮化鋁鎵或碳化矽所製成。藉由複數緩衝層28、38之設置,使得於矽基板上藉由執行前述MOPVD製程而更容易形成各半導體層之磊晶效果。前述矽基板配合緩衝層之相關設置技術亦可應用於前述第二實施例或第三實施例以取代藍寶石基板之使用,在此不多加贅述。
請參考圖6為本發明之光耦合器之第五實施例之示意圖。本實施例為前述第一實施例之結構變化例,差異點在於改變氮化鎵光發射器20d及氮化鎵光感測開關30d之結構設置。如圖6所示,在本實施例中,本發明之光耦合器1d之基板10係採用非摻雜之矽基板。氮化鎵光發射器20d自基板10側起依序包括緩衝層28、無摻雜氮化鎵層21、N型氮化鎵層22、氮化鋁鎵層29、P型氮化鎵層25及透明電極26。N型氮化鎵層22、氮化鋁鎵層29及透明電極26可分別設置電接點271d、272d、273d。透明電極26可採用氧化銦錫或其他類似材料製成,而電接點271d、272d、273d可採用鈦或鋁製成。氮化鎵光發射器20d藉由前述多層結構可形成LE-HEMT結構,其中電接點271d作為射極,電接點272d作為閘極,電接點273d作為汲極,且藉由氮化鋁鎵層29產生光訊號,並經由透明電極26射出。
氮化鎵光感測開關30d自基板10側起依序包括緩衝層28、無摻雜氮化鎵層31、第一N型氮化鎵層32、P型氮化鎵/氮化鋁鎵層34、P型氮化鎵層35及第二N型氮化鎵層36。第一N型氮化鎵層32及第二N型氮化鎵層36可分別設置電接點371、372。電接點371、372可採用鈦或鋁製成。氮化鎵光感測開關30d藉由前述多層結構可形成BJT結構,其中藉由P型氮化鎵層35作為基極以接收光訊號,第一N型氮化鎵層32作為集極,且第二N型氮化鎵層36作為射極。同樣地,針對構成前述氮化鎵光發射器20d及氮化鎵光感測開關30d之相同材料層均可採用同一MOCVD製程來形成,以簡化本發明之光耦合器1d之製程步驟。
至於本實施例中,有關本發明之光耦合器1d所採用之反射結構40、傳遞介質50及隔絕層60可參考前述第一實施例至第三實施例中任一者之相同結構設置。此外,當本發明之光耦合器1d之基板10採用非摻雜之藍寶石基板時,即可省略前述緩衝層28、38之相關製程。
請一併參考圖7A及圖7B,其中圖7A為本發明之光耦合器之第六實施例之概略示意圖,圖7B為本發明之光耦合器之第六實施例之另一概略示意圖。圖7B係以概略以俯視角度呈現本發明之光耦合器之第六實施例之部分結構及線路配置,且圖7B中兩條平行虛線部分所隔出之區域表示電性隔絕,合先敘明。本實施例為前述第一實施例之結構變化例,差異點在於改變氮化鎵光發射器之LED結構之數量。如圖7A及圖7B所示,在本實施例中,本發明之光耦合器1e之氮化鎵光發射器20e包括第一LED結構L1及第二LED結構L2,且第一LED結構L1及第二LED結構L2彼此反向並聯設置。在設計上,第一LED結構L1之N型氮化鎵層22藉由電接點271電性連接第二LED結構L2之透明電極26e之電接點272e,第一LED結構L1之透明電極26藉由電接點272電性連接第二LED結構L2之N型氮化鎵層22e之電接點271e,再分別藉由電接點271e、272e電性連接外部元件。此時,輸入訊號V in可為交流訊號,使得本發明之光耦合器1e形成可讀取交流輸入驅動電流之光耦合器。
請一併參考圖8A及圖8B,其中圖8A為本發明之光耦合器之第七實施例之概略示意圖,圖8B為本發明之光耦合器之第七實施例之另一概略示意圖。圖8B係以概略以俯視角度呈現本發明之光耦合器之第七實施例之部分結構及線路配置,且圖8B中兩條平行虛線部分所隔出之區域表示電性隔絕,合先敘明。本實施例為前述第一實施例之結構變化例,差異點在於改變氮化鎵光感測開關之BJT結構之數量。如圖8A及圖8B所示,在本實施例中,本發明之光耦合器1f包括第一BJT結構B1及第二BJT結構B2,且第一BJT結構B1及第二BJT結構B2彼此串聯設置。在設計上,第一BJT結構B1之射極藉由電接點372電性連接第二BJT結構B2之基極之電接點373f,第一BJT結構B1之集極藉由電接點371電性連接第二BJT結構B2之集極之電接點371f,再分別藉由第二BJT結構B2之射極之電接點372f與集極之電接點371f電性連接外部元件。因此,藉由第一BJT結構B1及第二BJT結構B2可針對輸出訊號V out可產生訊號放大效果,使得本發明之光耦合器1f形成可放大輸出電流之光耦合器。
以上實施方式本質上僅為輔助說明,且並不欲用以限制申請標的之實施例或該等實施例的應用或用途。此外,儘管已於前述實施方式中提出至少一例示性實施例,但應瞭解本發明仍可存在大量的變化。同樣應瞭解的是,本文所述之實施例並不欲用以透過任何方式限制所請求之申請標的之範圍、用途或組態。相反的,前述實施方式將可提供本領域具有通常知識者一種簡便的指引以實施所述之一或多種實施例。再者,可對元件之功能與排列進行各種變化而不脫離申請專利範圍所界定的範疇,且申請專利範圍包含已知的均等物及在本專利申請案提出申請時的所有可預見均等物。
1、1a、1b、1c、1d、1e、1f:光耦合器 10:基板 20、20c、20d、20e、20f:氮化鎵光發射器 21:無摻雜氮化鎵層 22:N型氮化鎵層 23:本質氮化銦鎵/氮化鎵主動層 24:P型氮化鎵/氮化鋁鎵層 25:P型氮化鎵層 26:透明電極 271、271d、271e、271f、272、272d、272e、272f、273d:電接點 28:緩衝層 29:氮化鋁鎵層 30、30c、30d、30e、30f:氮化鎵光感測開關 31:無摻雜氮化鎵層 32:第一N型氮化鎵層 33:本質氮化銦鎵/氮化鎵主動層 34:P型氮化鎵/氮化鋁鎵層 35:P型氮化鎵層 36:第二N型氮化鎵層 371、371e、371f、372、372e、372f、373f:電接點 38:緩衝層 40、40a、40b:反射結構 50、50a、50b:傳遞介質 60、60b:隔絕層 70:外圍封裝結構 80:封裝結構 V in:輸入訊號 V out:輸出訊號 L1:第一LED結構 L2:第二LED結構 B1:第一BJT結構 B2:第二BJT結構
圖1A為本發明之光耦合器之概略示意圖。 圖1B為本發明之光耦合器之電路方塊圖。 圖2為本發明之光耦合器之第一實施例之示意圖。 圖3為本發明之光耦合器之第二實施例之示意圖。 圖4為本發明之光耦合器之第三實施例之示意圖。 圖5為本發明之光耦合器之第四實施例之示意圖。 圖6為本發明之光耦合器之第五實施例之示意圖。 圖7A為本發明之光耦合器之第六實施例之概略示意圖。 圖7B為本發明之光耦合器之第六實施例之另一概略示意圖。 圖8A為本發明之光耦合器之第七實施例之概略示意圖。 圖8B為本發明之光耦合器之第七實施例之另一概略示意圖。
1:光耦合器
10:基板
20:氮化鎵光發射器
30:氮化鎵光感測開關
40:反射結構
50:傳遞介質
Vin:輸入訊號
Vout:輸出訊號

Claims (13)

  1. 一種光耦合器,包括: 一基板; 一氮化鎵光發射器,設置於該基板上,該氮化鎵光發射器用以依據一輸入訊號發射一光訊號; 一氮化鎵光感測開關,設置於該基板上並與該氮化鎵光發射器保持電性隔絕,該氮化鎵光感測開關用以感測該光訊號並依據該光訊號產生一輸出訊號; 一反射結構,用以反射該光訊號;以及 一傳遞介質,至少介於該氮化鎵光發射器、該氮化鎵光感測開關及該反射結構之間; 其中自該氮化鎵光發射器發射之該光訊號係於該傳遞介質內傳遞,並經由該反射結構反射後斜向傳遞至該氮化鎵光感測開關。
  2. 如請求項1所述之光耦合器,其中該氮化鎵光發射器包括至少一LED結構或至少一發光高電子遷移率電晶體結構。
  3. 如請求項2所述之光耦合器,其中該氮化鎵光發射器包括一第一LED結構及一第二LED結構,該第一LED結構與該第二LED結構彼此反向並聯,且該輸入訊號可為一交流訊號。
  4. 如請求項1所述之光耦合器,其中該氮化鎵光感測開關包括至少一BJT結構或至少一高電子遷移率電晶體結構。
  5. 如請求項4所述之光耦合器,其中該氮化鎵光感測開關包括一第一BJT結構及一第二BJT結構,該第一BJT結構與該第二BJT結構彼此彼此串聯,以放大該輸出訊號。
  6. 如請求項1所述之光耦合器,其中該傳遞介質至少局部覆蓋該氮化鎵光發射器及該氮化鎵光感測開關,且該反射結構設置於該傳遞介質上。
  7. 如請求項6所述之光耦合器,其中該傳遞介質由具有光傳遞特性之封裝材料或絕緣材料所構成。
  8. 如請求項7所述之光耦合器,其中該傳遞介質為SiO 2、Si 3N 4或環氧樹脂。
  9. 如請求項1所述之光耦合器,更包括一外圍封裝結構,至少封裝該氮化鎵光發射器、該氮化鎵光感測開關及該傳遞介質,其中該反射結構設置於該外圍封裝結構朝向該氮化鎵光發射器及該氮化鎵光感測開關之一內側表面。
  10. 如請求項9所述之光耦合器,其中該傳遞介質為空氣。
  11. 如請求項1所述之光耦合器,其中該氮化鎵光發射器所發射之該光訊號之波長介於300nm至500nm之間。
  12. 如請求項1所述之光耦合器,其中該基板為一矽基板或一藍寶石基板。
  13. 如請求項12所述之光耦合器,更包括複數緩衝層,其中當該基板為矽基板時,該複數緩衝層設置於該氮化鎵光發射器及該基板之間以及該氮化鎵光感測開關及該基板之間。
TW111142465A 2022-11-07 2022-11-07 光耦合器 TWI832541B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111142465A TWI832541B (zh) 2022-11-07 2022-11-07 光耦合器
US18/489,562 US20240154054A1 (en) 2022-11-07 2023-10-18 Optocoupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111142465A TWI832541B (zh) 2022-11-07 2022-11-07 光耦合器

Publications (2)

Publication Number Publication Date
TWI832541B TWI832541B (zh) 2024-02-11
TW202420758A true TW202420758A (zh) 2024-05-16

Family

ID=90824871

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111142465A TWI832541B (zh) 2022-11-07 2022-11-07 光耦合器

Country Status (2)

Country Link
US (1) US20240154054A1 (zh)
TW (1) TWI832541B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299841A1 (en) * 2012-05-11 2013-11-14 Infineon Technologies Austria Ag GaN-Based Optocoupler
US9560718B2 (en) * 2012-11-02 2017-01-31 Laurence P. Sadwick Dimmer with motion and light sensing
US20190013960A1 (en) * 2016-02-29 2019-01-10 Innosys, Inc. Switched Wireless Signaling
EP3796575A1 (en) * 2019-09-17 2021-03-24 Infineon Technologies AG Optocoupler with side-emitting electromagnetic radiation source
US11700068B2 (en) * 2020-05-18 2023-07-11 Ayar Labs, Inc. Integrated CMOS photonic and electronic WDM communication system using optical frequency comb generators

Similar Documents

Publication Publication Date Title
JP5973693B2 (ja) 発光素子及び発光素子パッケージ
TWI446586B (zh) 發光裝置
JP5806994B2 (ja) 光結合装置
TW201135978A (en) Light emitting device, method of manufacturing the same
JP2011119734A (ja) 発光素子、発光素子製造方法、発光素子パッケージ、及び照明システム
WO2013067953A1 (zh) 一种半导体变压结构和具有其的芯片
KR20100055749A (ko) 발광 다이오드 패키지 및 그 제조방법
KR20080087251A (ko) 커패시터를 구비하는 발광 다이오드
CN109427946B (zh) 半导体器件封装件
KR20170143336A (ko) 반도체 소자 및 이를 포함하는 표시 장치
TW202420758A (zh) 光耦合器
TWI832541B (zh) 光耦合器
JP5778466B2 (ja) 発光素子、発光素子パッケージ、及び照明システム
KR20120039412A (ko) 발광 소자, 발광 소자 제조방법, 발광 소자 패키지 및 조명 시스템
US6759688B2 (en) Monolithic surface mount optoelectronic device and method for fabricating the device
WO2023168701A1 (zh) 光耦合装置
KR101662239B1 (ko) 발광 소자, 그 제조 방법 및 발광 소자 패키지
US20220328743A1 (en) Display panel
KR20190098625A (ko) 반도체 소자
TWI839910B (zh) 聲耦合器
WO2020013501A1 (ko) 반도체 소자
JPH03101173A (ja) フオトカプラー
KR20180057144A (ko) 반도체 소자 및 이를 포함하는 반도체 패키지
KR20180002212A (ko) 반도체 소자 모듈
KR101633813B1 (ko) 발광 소자, 그 제조 방법, 및 발광 소자 패키지