WO2023168701A1 - 光耦合装置 - Google Patents

光耦合装置 Download PDF

Info

Publication number
WO2023168701A1
WO2023168701A1 PCT/CN2022/080382 CN2022080382W WO2023168701A1 WO 2023168701 A1 WO2023168701 A1 WO 2023168701A1 CN 2022080382 W CN2022080382 W CN 2022080382W WO 2023168701 A1 WO2023168701 A1 WO 2023168701A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
optical coupling
coupling device
light
current conversion
Prior art date
Application number
PCT/CN2022/080382
Other languages
English (en)
French (fr)
Inventor
覃国恒
李依群
王刚
周业颖
Original Assignee
开发晶照明(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 开发晶照明(厦门)有限公司 filed Critical 开发晶照明(厦门)有限公司
Priority to PCT/CN2022/080382 priority Critical patent/WO2023168701A1/zh
Priority to CN202280039295.6A priority patent/CN117425845A/zh
Priority to CN202310078841.3A priority patent/CN116387297A/zh
Priority to US18/119,340 priority patent/US20230275178A1/en
Publication of WO2023168701A1 publication Critical patent/WO2023168701A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/161Semiconductor device sensitive to radiation without a potential-jump or surface barrier, e.g. photoresistors
    • H01L31/162Semiconductor device sensitive to radiation without a potential-jump or surface barrier, e.g. photoresistors the light source being a semiconductor device with at least one potential-jump barrier or surface barrier, e.g. a light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/125Composite devices with photosensitive elements and electroluminescent elements within one single body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • H04B10/802Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections for isolation, e.g. using optocouplers

Definitions

  • the present invention relates to an optical coupling device, and in particular to an optical coupling device utilizing blue light transmission.
  • Optocouplers are photoelectric conversion components that use light beams to transmit electrical signals. Furthermore, the optical coupler can convert the electrical signal at the input end into an optical signal, and then convert the optical signal into an electrical signal after being coupled to the output end. Optocouplers have a good isolation effect on input and output electrical signals and are widely used in various circuits.
  • Existing optical couplers usually use infrared light to transmit signals, and usually include a transmitting element for generating optical signals and a light receiving element for receiving optical signals.
  • the materials constituting the emitting element and the light receiving element are usually gallium arsenide, silicon or germanium. Due to the poor temperature resistance of these materials, when existing optocouplers need to operate in high temperature environments, the current conversion efficiency will be reduced and the output signal will be weak. Furthermore, the operating temperature of existing optocouplers is lower than 110°C, and the response frequency is low (cannot exceed 100KHz). Therefore, existing optocouplers cannot meet the needs of circuits operating at high frequencies or at high temperatures.
  • the technical problem to be solved by the present invention is to provide an optical coupling device that can be applied to circuit systems that need to operate at high temperatures or high frequencies.
  • the optical coupling device includes a first chip and a second chip.
  • One of the first chip and the second chip is a light output chip, the other is a light sensing chip, and a light output surface of the light output chip is disposed facing a light receiving surface of the light sensing chip.
  • the first chip and the second chip are both gallium nitride chips.
  • the optical coupling device has a reference current conversion efficiency under the conditions of an input current of 10 mA and an ambient temperature of 25°C, and under the conditions of an input current of 10 mA and an ambient temperature of 150°C, the current conversion rate of the optical coupling device is consistent with the reference current conversion.
  • the ratio between rates is greater than or equal to 0.6.
  • the first chip is used to generate a first beam with a first peak wavelength
  • the second chip is used to generate a second beam with a second peak wavelength.
  • the first peak wavelength ranges from 400nm to 500nm
  • the second peak wavelength is The wavelength range is from 400nm to 500nm.
  • the first peak wavelength ranges from 420nm to 447.5nm
  • the second peak wavelength ranges from 455nm to 500nm.
  • the first chip is a light output chip
  • the second chip is a light sensing chip
  • the ratio between the area of the light receiving surface and the area of the light output surface is greater than or equal to 0.8.
  • the optical coupling device also includes a coating structure.
  • the coating structure includes a light-transmitting layer, and the light-transmitting layer is filled into the first chip. and the second chip, and covers the light output surface and the light receiving surface.
  • the dielectric constant of the material constituting the light-transmitting layer is less than or equal to 10.
  • the top surface of the light-transmitting layer is higher than or equal to the top surface of the first chip and the top surface of the second chip, and one end surface of the light-transmitting layer protrudes from one side surface of the first chip, or is in contact with the first chip.
  • the side surfaces of the chip are flush.
  • the coating structure further includes: an inner encapsulation layer covering the first chip, the second chip and the light-transmitting layer, wherein the reflectivity of the material of the inner encapsulation layer to blue light is greater than or equal to 60%.
  • the coating structure further includes: an outer packaging layer that covers the outer surface of the inner packaging layer, wherein the dielectric constant of the material of the outer packaging layer is less than or equal to 10.
  • the optical coupling device further includes: a carrier, the carrier includes an insulating layer, and the dielectric constant of the material constituting the insulating layer is less than or equal to 10.
  • the ratio between the reverse current conversion efficiency and the forward current conversion efficiency of the optical coupling device is from 0.1 to 1.3.
  • the first chip and the second chip are stacked in a vertical direction, and the optical coupling device includes a coating structure.
  • the coating structure also includes a light-transmitting layer. The light-transmitting layer is sandwiched between the light output surface and the light receiving surface. between.
  • the optical coupling device further includes: a carrier, wherein the first chip is flip-chip mounted on the carrier, and the second chip is electrically connected to the carrier through a plurality of bonding wires.
  • the coating structure further includes: an inner encapsulation layer, the inner encapsulation layer covers the first chip, the second chip and the plurality of bonding wires, and the Shore hardness D of the inner encapsulation layer is less than 60.
  • the coating structure further includes: an outer packaging layer, the outer packaging layer covers the outer surface of the inner packaging layer, and the material of the outer packaging layer has a reflectivity of blue light higher than 60%.
  • the response frequency of the optical coupling device is greater than or equal to 1MHz.
  • the optical coupling device includes a light output chip and a light receiving chip.
  • the optical output chip is a gallium nitride chip, and the optical coupling device has a reference current conversion rate under the conditions of an input current of 10mA and an ambient temperature of 25°C. Under the conditions of an input current of 10mA and an ambient temperature of 150°C, the current of the optical coupling device The ratio between the slew rate and the reference current slew rate is greater than or equal to 0.6.
  • the optical coupling device includes: a first chip used to generate a first light beam, and a second chip used to generate a second light beam.
  • the first peak wavelength of the first light beam and the second peak wavelength of the second light beam are both between 400 nm and 500nm.
  • One of the first chip and the second chip is a light output chip, the other is a light sensing chip, and the response frequency of the optical coupling device is greater than or equal to 1 MHz.
  • the first peak wavelength is smaller than the second peak wavelength, and the difference between the first peak wavelength and the second peak wavelength is greater than or equal to 5 nm.
  • the difference between the first peak wavelength and the second peak wavelength is less than or equal to 5 nm.
  • the optical coupling device has a reference current conversion rate under the conditions of an input current of 10 mA and an ambient temperature of 25°C.
  • the optical coupling device measures a reference current conversion rate under the conditions of an input current of 10 mA and an ambient temperature of -25°C to 150°C.
  • the ratio between the current conversion rate and the reference current conversion rate is greater than or equal to 0.6.
  • the first chip is a light output chip
  • the second chip is a light receiving chip
  • the forward current conversion efficiency of the optical coupling device is greater than or equal to 0.5%
  • the reverse current conversion efficiency of the optical coupling device is greater than or equal to 0.1%.
  • the optical coupling device provided by the present invention can use "one of the first chip and the second chip is a light output chip, the other is a light sensing chip, and the first
  • the chip and the second chip are both gallium nitride chips" or “the light output chip is a gallium nitride chip”, so that the optical coupling device has higher thermal stability and higher response frequency.
  • FIG. 1 is a schematic three-dimensional view of an optical coupling device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic top view of the optical coupling device without the covering structure according to the first embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of section III-III in FIG. 1 .
  • Figure 4 is a schematic cross-sectional view of a chip according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a chip according to another embodiment of the present invention.
  • Figure 6 is a schematic cross-sectional view of a chip according to another embodiment of the present invention.
  • FIG. 7 shows the relationship between the forward current conversion efficiency and the forward input current of the optical coupling device according to the first embodiment of the present invention.
  • FIG. 8 shows the relationship between the reverse current conversion efficiency and the reverse input current of the optical coupling device according to the first embodiment of the present invention.
  • FIG. 9 is a schematic three-dimensional view of the optical coupling device according to the second embodiment of the present invention.
  • FIG. 10 is a schematic top view of the optical coupling device without the covering structure according to the second embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of the XI-XI section in FIG. 9 .
  • FIG. 12 shows the relationship between forward current conversion efficiency and forward input current of the optical coupling device according to the second embodiment of the present invention.
  • FIG. 13 shows the relationship between the reverse current conversion efficiency and the reverse input current of the optical coupling device according to the second embodiment of the present invention.
  • Figure 14 shows the relative current conversion efficiency of the optical coupling device of the embodiment of the present invention and the comparative example at different ambient temperatures.
  • FIG. 1 is a schematic three-dimensional view of an optical coupling device according to a first embodiment of the present invention.
  • the optical coupling device Z1 of this embodiment includes a carrier 1, a first chip 2, a second chip 3 and a covering structure 4.
  • the carrier 1 may be a circuit substrate or a bracket.
  • the carrier 1 in this embodiment is a circuit substrate, and may be a single-layer circuit board or a multi-layer circuit board. Please refer to FIGS. 2 and 3 .
  • FIG. 2 is a schematic top view of the optical coupling device without the covering structure according to the first embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of section III-III in FIG. 1 .
  • the carrier 1 of this embodiment includes an insulating layer 10, a first pad group 11, a second pad group 12, a first electrode group 13 and a second electrode group 14, but the invention is not limited thereto.
  • the material constituting the insulating layer 10 may be selected from ceramics, epoxy fiberglass materials (FR4), bismaleimide triazine (BT) resin, and other materials.
  • the ceramic is, for example, aluminum oxide (Al 2 O 3 ) or aluminum nitride (AlN), but the invention is not limited thereto.
  • the material of the insulating layer 10 can be selected from a low dielectric constant material to reduce the parasitic capacitance of the optical coupling device Z1 so that the optical coupling device Z1 has a higher frequency response and can operate at high frequencies.
  • the dielectric constant of the material of the insulating layer 10 is less than or equal to 10.
  • the insulating layer 10 has a first side 10 a and a second side 10 b opposite to the first side 10 a.
  • the first pad group 11 and the second pad group 12 are located on the first side 10a of the insulating layer 10 and are spaced apart from each other.
  • the first pad group 11 includes two first pads 11A, 11B
  • the second pad group 12 includes two second pads 12A, 12B.
  • the first electrode group 13 and the second electrode group 14 are located on the second side 10b of the insulating layer 10, and the first electrode group 13 and the second electrode group 14 are spaced apart from each other.
  • the first electrode group 13 includes a first positive electrode 13A and a first negative electrode 13B, and the first positive electrode 13A and the first negative electrode 13B are electrically connected respectively through two first conductive pillars 15A, 15B. Connected to the two first pads 11A, 11B.
  • the second electrode group 14 includes a second positive electrode 14A and a second negative electrode 14B, and the second positive electrode 14A and the second negative electrode 14B are respectively electrically connected to the two conductive pillars 16A and 16B. second pads 12A and 12B. Accordingly, the optical coupling device Z1 can be electrically connected to the external circuit through the first electrode group 13 and the second electrode group 14 .
  • the first chip 2 and the second chip 3 are disposed on the carrier 1 .
  • One of the first chip 2 and the second chip 3 is a light output chip, and the other is a light sensing chip.
  • the first chip 2 is a light output chip
  • the second chip 3 is a light sensing chip.
  • the first chip 2 is a light sensing chip.
  • the first chip 2 and the second chip 3 are disposed on the carrier 1 through the first pad group 11 and the second pad group 12 respectively.
  • the first chip 2 and the second chip 3 may be chips with a horizontal structure or chips with a vertical structure, which is not limited by the present invention.
  • the first chip 2 and the second chip 3 are arranged side by side on the carrier 1 and are separated from each other to define a gap.
  • the surface where the electrodes of the first chip 2 are located is defined as the front surface of the first chip 2
  • the surface opposite to the front surface is defined as the back surface 2 a.
  • the surface where the electrodes of the second chip 3 are located is defined as the front surface of the second chip 3, and the surface opposite to the front surface is defined as the back surface 3a.
  • the first chip 2 is disposed on the carrier 1 with the back surface 2a facing upward
  • the second chip 3 is also disposed on the carrier 1 with the back surface 3a facing upward.
  • the first chip 2 faces the second chip 3 with its side surface 2s having the largest area.
  • the second chip 3 also faces the first chip 2 with its side surface 3s having the largest area.
  • the side surface 2s of the first chip 2 serves as the light output surface
  • the side surface 3s of the second chip 3 serves as the light receiving surface.
  • the top view shapes of the first chip 2 and the second chip 3 are both rectangular. Viewed from a top view, the long side of the first chip 2 is substantially parallel to the long side of the second chip 3, and the first chip 2 and the second chip 3 are aligned with each other in a first direction D1. In this way, most of the light beam generated by the light output surface (the side surface 2s of the first chip 2) can enter the light receiving surface (the side surface 3s of the second chip 3), which can improve the current conversion efficiency, where the current conversion efficiency is equal to the light
  • the output current of the coupling device (I output ) is divided by the input current (I input ) (ie, I output /I input ). It is worth mentioning that although in this embodiment, the first chip 2 and the second chip 3 are arranged in such a way that their side surfaces with the largest areas are opposite and aligned with each other in the first direction D1, the present invention does not Limited to this.
  • the main functional materials constituting the first chip 2 and the second chip 3 are both gallium nitride. That is to say, the first chip 2 and the second chip 3 are both gallium nitride chips. Compared with chips made of gallium arsenide, silicon, germanium and other materials, gallium nitride chips have better heat resistance and better thermal stability, allowing the optical coupling device Z1 to operate in higher environments. operating temperature.
  • FIG. 4 shows a schematic cross-sectional view of a chip according to an embodiment of the present invention.
  • the chip M1 can be applied in the optical coupling device Z1 shown in FIG. 1 to serve as a light output chip or a light sensing chip.
  • the chip M1 may include a substrate M10, an epitaxial light-emitting structure M11, and two electrodes M12, M13.
  • the material of the substrate M10 may be sapphire, silicon carbide, gallium nitride or silicon, which is not limited by the present invention. In this embodiment, the material of the substrate M10 is sapphire.
  • the epitaxial light-emitting structure M11 is disposed on the substrate M10 and has an N-type semiconductor layer M110, a P-type semiconductor layer M111 and a light-emitting stack M112.
  • the N-type semiconductor layer M110 is disposed on the substrate M10, and the light-emitting stack M112 and the P-type semiconductor layer M111 are sequentially disposed on the N-type semiconductor layer M110.
  • the embodiment shown in FIG. 4 is not intended to limit the present invention. In other embodiments, the positions of the N-type semiconductor layer M110 and the P-type semiconductor layer M111 can also be interchanged.
  • the material of the N-type semiconductor layer M110 is silicon-doped gallium nitride.
  • the material of the P-type semiconductor layer M111 is magnesium-doped gallium nitride or magnesium-doped aluminum gallium nitride.
  • the light-emitting stack M112 is located between the N-type semiconductor layer M110 and the P-type semiconductor layer M111 for generating light beams. In detail, by applying a bias voltage to the electrodes M12 and M13, a current can be generated through the N-type semiconductor layer M110, the light-emitting stack M112 and the P-type semiconductor layer M111, and the light-emitting stack M112 is excited to generate a light beam with a specific peak wavelength.
  • the light-emitting stack M112 may include a plurality of alternately stacked gallium nitride layers (barrier layers) and a plurality of indium gallium nitride layers (well layers). By controlling the indium concentration of the indium gallium nitride layer, the peak wavelength of the light beam generated by chip M1 can be adjusted.
  • the two electrodes M12 and M13 are electrically connected to the N-type semiconductor layer M110 and the P-type semiconductor layer M111 respectively, and are electrically connected to the first pad group 11 or the second pad group 12 shown in FIG. 1 .
  • one of the electrodes M12 is electrically connected to the N-type semiconductor layer M110, and the other electrode M13 is electrically connected to the P-type semiconductor layer M111.
  • the chip M1 has a horizontal structure and is a flip chip.
  • the two electrodes M12 and M13 will be located on the same side of the chip M1, and the chip M1 usually has a reflective structure (not shown) on one side of the electrodes M12 and M13, so that the light emitted by the chip M1 mainly comes from the substrate M10 is emitted from the surface SA, and at the same time, part of the light is emitted from the four side surfaces of the chip M1.
  • the chip M1 when the chip M1 is used in the optical coupling device Z1 shown in FIG. 1 as a light output chip or a light sensing chip, one side surface of the chip M1 will serve as a light output chip. surface or light-receiving surface.
  • FIG. 5 is a schematic cross-sectional view of a chip according to another embodiment of the present invention.
  • the chip M2 of this embodiment also includes a reflective layer M14, and the reflective layer M14 is disposed on the surface SA of the substrate M10.
  • the material of the reflective layer M14 has high reflectivity for the light beam generated by the chip M1.
  • the reflective layer M14 may be a metal layer, such as an aluminum layer. Accordingly, most of the light beam generated by the light-emitting stack M112 is emitted from the side surface of the chip M1.
  • the chip M1 of this embodiment is used in the optical coupling device Z1 in FIG. 1 as the light output chip (first chip 2), the current conversion efficiency can be further improved.
  • FIG. 6 shows a schematic cross-sectional view of a chip according to another embodiment of the present invention.
  • the same components of the chip M3 of this embodiment as the chip M1 shown in FIG. 5 have the same numbers, and the same parts will not be described again.
  • the chip M3 provided in this embodiment is a horizontally structured chip and is a formal chip.
  • the two electrodes M12 and M13 are also located on the same side of the chip M3, but there is no reflective structure designed on the side with the electrodes M12 and M13, so that the light emitted by the chip M3 mainly comes from the side with the electrodes M12 and M13.
  • chip M3 of this embodiment is used in the optical coupling device Z1 in FIG. 1 , the chip M3 is disposed with the base M10 facing the carrier 1 and can be disposed on the carrier 1 through wire bonding.
  • the first chip 2 and the second chip 3 can respectively select any of the chips M1-M3 shown in Figures 4 to 6, and can be mounted or flip-chip (or flip-chip).
  • the way is arranged on the carrier 1.
  • the first chip 2 and the second chip 3 are both the chip M2 shown in FIG. 5 , and are disposed on the carrier 1 in a flip-chip manner.
  • the first chip 2 and the second chip 3 in this embodiment are both blue light chips.
  • the first chip 2 can be used to generate a first light beam with a first peak wavelength, and the range of the first peak wavelength is 400 nm. to 500nm.
  • the preferred range of the first peak wavelength is from 420nm to 460nm.
  • the blue light chip (first chip 2) used to generate the peak wavelength range from 420nm to 460nm has better thermal stability and enables the optical coupling device Z1 to have higher photoelectric conversion efficiency and lower response time.
  • the second chip 3 serves as a light sensing chip and can be used to generate a second light beam with a second peak wavelength, and the second peak wavelength ranges from 400 nm to 500 nm.
  • the second peak wavelength may be greater than or equal to the first peak wavelength.
  • the optical coupling device Z1 is only used to transmit signals in one direction, the second peak wavelength may be greater than the first peak wavelength.
  • the current conversion efficiency of the optical coupling device Z1 can be improved by increasing the difference between the second peak wavelength and the first peak wavelength.
  • the difference between the first peak wavelength and the second peak wavelength may be greater than or equal to 5 nm, preferably greater than 10 nm, so that the optical coupling device Z1 has better current conversion efficiency.
  • the first chip 2 and the second chip 3 can use useless stock of general lighting, that is, blue light with a wavelength between 420nm ⁇ 447.5nm or 455nm ⁇ 500nm (or 460nm ⁇ 500nm)
  • the chip has a first peak wavelength ranging from 420 nm to 447.5 nm, and a second peak wavelength ranging from 455 nm to 500 nm.
  • the range of the first peak wavelength and the range of the second peak wavelength can both be between 420nm and 447.5nm, or both can be between 455nm and 500nm.
  • the optical coupling device Z1 when the optical coupling device Z1 is only used for one-way signal transmission, making the area of the light receiving surface larger than the area of the light output surface can also improve the current conversion efficiency of the optical coupling device Z1. Furthermore, in this embodiment, the ratio between the area of the light receiving surface (such as the side surface 3s of the second chip 3) and the area of the light output surface (such as the side surface 2s of the first chip 2) can be Greater than or equal to 1.3.
  • the optical coupling device Z1 provided by the embodiment of the present invention It can be used not only for one-way signal transmission, but also for two-way signal transmission.
  • the area of the light receiving surface and the area of the light output surface can be adjusted to make the optical coupling device Z1 meet different application requirements.
  • the area of the light receiving surface such as the side surface 3s of the second chip 3
  • the light output surface such as the side surface 2s of the first chip 2
  • the ratio between the areas can be greater than or equal to 0.8.
  • the area of the light output surface and the area of the light receiving surface may be approximately the same.
  • the difference between the first peak wavelength of the first beam and the second peak wavelength of the second beam may be less than or equal to 5 nm.
  • the first chip 2 serves as a light output chip and the second chip 3 serves as a light sensing chip
  • forward transmission is defined.
  • the percentage between the current value output by the second chip 3 and the current value input to the first chip 2 is defined as the forward current conversion efficiency.
  • the second chip 3 serves as a light output chip and the first chip 2 serves as a light sensing chip
  • reverse transmission is defined.
  • the percentage between the current value output by the first chip 2 and the current value input to the second chip 3 is defined as the reverse current conversion efficiency.
  • the reverse direction of the optical coupling device Z1 can be The current conversion efficiency is close to the forward current conversion efficiency. Accordingly, the optical coupling device Z1 can be used to transmit signals in both directions.
  • the optical coupling device Z1 of this embodiment also includes a coating structure 4 , and the coating structure 4 covers the carrier 1 , the first chip 2 and the second chip 3 . It should be noted that the first electrode group 13 and the second electrode group 14 are not covered by the coating structure 4 but are exposed outside the coating structure 4 .
  • the coating structure 4 includes a light-transmitting layer 40 , an inner encapsulation layer 41 and an outer encapsulation layer 42 .
  • the light-transmitting layer 40 fills the gap between the first chip 2 and the second chip 3 and covers the side surface 2s (light output surface) of the first chip 2 and the side surface 3s (light receiving surface) of the second chip 3.
  • the light-transmitting layer 40 can allow the first light beam generated by the first chip 2 and the second light beam generated by the second chip 3 to pass through.
  • the material of the light-transmitting layer 40 can be selected to have a low dielectric constant to reduce the parasitic capacitance of the optical coupling device Z1 so that the optical coupling device Z1 has a higher frequency response.
  • the material of the light-transmitting layer 40 can be selected with a dielectric constant less than 10. In a preferred embodiment, a material with a dielectric constant less than 4 is selected. In addition, the material of the light-transmitting layer 40 may also be an insulating material that can withstand high temperatures, such as epoxy resin.
  • the top surface 40t of the light-transmitting layer 40 can be higher than or equal to the back surface 2a of the first chip 2 and the back surface 3a of the second chip 3, and one end surface of the light-transmitting layer 40 can protrude from the other side of the first chip 2 surface, or flush with the side surface of the first chip 2 . Accordingly, it is possible to avoid reducing the areas of the light receiving surface and the light output surface and improve the current conversion efficiency.
  • the top surface 40t of the light-transmitting layer 40 of this embodiment is flush with the back surface 2a of the first chip 2 (or the back surface 3a of the second chip 3), and one end surface of the light-transmitting layer 40 is flush with the first chip.
  • the side surfaces of 2 (or the side surfaces of the second chip 3) are aligned, but the invention is not limited thereto.
  • the inner packaging layer 41 covers the first chip 2 , the second chip 3 and the light-transmitting layer 40 .
  • the inner encapsulation layer 41 has a high reflectivity for the first light beam and the second light beam to reduce light loss.
  • both the first light beam and the second light beam are blue light, so the reflectivity of the material of the inner encapsulation layer 41 to the blue light can be greater than or equal to 60%.
  • the material of the inner encapsulation layer 41 may be epoxy resin containing barium sulfate (BaSO 4 ) powder, but the present invention is not limited thereto.
  • the outer encapsulation layer 42 covers the outer surface of the inner encapsulation layer 41 and a portion of the carrier 1 .
  • the outer packaging layer 42 may be made of a material with a dielectric constant less than 10.
  • the outer packaging layer 42 may be made of an opaque glue material to prevent external ambient light from interfering with optical signal transmission.
  • the outer encapsulating layer 42 can also use general glue material or be omitted.
  • the forward current conversion efficiency of the optical coupling device Z1 may be greater than or equal to 0.4%, and the reverse current conversion efficiency may be greater than or equal to 0.1%.
  • the ratio between the reverse current conversion efficiency and the forward current conversion efficiency of the optical coupling device Z1 may be from 0.1 to 0.7.
  • the ratio between the reverse current conversion efficiency and the forward current conversion efficiency of the optical coupling device Z1 may be from 0.7 to 1.3.
  • FIG. 7 shows the relationship between the forward current conversion efficiency and the forward input current of the optical coupling device according to the first embodiment of the present invention
  • FIG. 8 shows the reverse current conversion efficiency and the reverse current conversion efficiency of the optical coupling device according to the first embodiment of the present invention. relationship curve to the input current. It should be noted that the curves shown in Figures 7 and 8 are the results obtained by measuring the optical coupling device Z1 at a temperature of 25°C.
  • the forward current conversion efficiency of the optical coupling device Z1 can reach more than 0.45%.
  • the forward current conversion efficiency does not fluctuate greatly due to changes in the forward input current, and has high stability.
  • the reverse current conversion efficiency of the optical coupling device Z1 can also reach more than 0.1%, and within the common input current range of the optical coupling device, such as the 2-50mA input current range, the reverse current conversion efficiency It has little fluctuation due to changes in reverse input current and has high stability.
  • the chips used in existing infrared optical couplers are mainly composed of gallium arsenide materials, and the current conversion efficiency is only 0.02% to 0.1%.
  • existing infrared optical couplers use infrared light to transmit signals, but their energy is weak and cannot be used for bidirectional signal transmission.
  • the embodiments of the present invention can also only use GaN blue light chips such as M1, M2, and M3 as the light output chip, but this is not limiting. GaN blue light serves as a light receiving chip.
  • the light receiving chip can also be a photosensitive device, such as a photodiode, a transistor, a photoresistor or a photoelectric thyristor.
  • a photosensitive device such as a photodiode, a transistor, a photoresistor or a photoelectric thyristor.
  • Optocouplers made with this combination also have good temperature resistance.
  • the optical coupling device Z1 of the embodiment of the present invention uses blue light of a specific wavelength band to transmit signals, and not only has higher forward current conversion efficiency, but also has higher reverse current conversion efficiency. Based on the above, the optical coupling device Z1 of this embodiment can be used not only for one-way signal transmission, but also for bi-directional signal transmission.
  • the response frequency of the optical coupling device Z1 provided by the embodiment of the present invention may be greater than or equal to 1 MHz, or even greater than or equal to 10 MHz. In a more preferred embodiment, the response frequency of the optical coupling device Z1 provided by the embodiment of the present invention may be greater than or equal to 50 MHz. And in most embodiments, both forward and reverse current conversion efficiencies can reach the same level of response frequency.
  • FIG. 9 is a schematic three-dimensional view of the optical coupling device according to the second embodiment of the present invention.
  • FIG. 10 is a schematic top view of the optical coupling device according to the second embodiment of the present invention, with the covering structure omitted.
  • FIG. 11 is a schematic cross-sectional view of the XI-XI section in FIG. 9 .
  • the same or similar components of the optical coupling device Z2 of this embodiment as those of the optical coupling device Z1 of the first embodiment have the same reference numerals, and the same parts will not be described again.
  • the first chip 2 and the second chip 3 of the optical coupling device Z2 are stacked along a vertical direction. Furthermore, in this embodiment, the first chip 2 is disposed on the carrier 1 , and the second chip 3 is disposed on the first chip 2 .
  • the first chip 2 may be the chip M1 shown in FIG. 4 , which is disposed on the carrier 1 in a flip-chip manner.
  • the second chip 3 may be any of the chips M1 and M3 shown in FIG. 4 or FIG. 6 , and is disposed on the first chip 2 with the front side (the surface where the electrodes are located) facing upward.
  • the two electrodes (not numbered) of the second chip 3 can be electrically connected to each other through two bonding wires 5A and 5B. Two second pads 12A and 12B.
  • the back surface 3a of the second chip 3 faces the back surface 2a of the first chip 2.
  • the back surface 2a of the first chip 2 can be used as a light output surface
  • the back surface 3a of the second chip 3 can be used as a light receiving surface.
  • the heat energy generated by the light output chip during operation is usually higher than that of the light sensing chip. Accordingly, by arranging the first chip 2 as the light output chip on the carrier 1 , the heat energy generated by the first chip 2 is more easily transferred to the carrier 1 and dissipated.
  • the area of the light receiving surface is greater than or equal to 0.8 times the area of the light output surface, or the difference between the first peak wavelength of the first light beam and the second peak wavelength of the second light beam is less than or equal to Equal to 5nm, the optical coupling device Z2 can be applied to bidirectional signal transmission.
  • the ratio between the area of the light receiving surface and the area of the light output surface is greater than or equal to 1.3, or the first peak wavelength and the third The difference between the two peak wavelengths is greater than or equal to 5 nm, which enables the optical coupling device Z2 to have higher current conversion efficiency and response frequency.
  • the light-transmitting layer 40' is sandwiched between the back surface 2a of the first chip 2 and the back surface 3a of the second chip 3.
  • the light-transmitting layer 40' can be made of a material with a low dielectric constant and high light transmittance for blue light.
  • the inner packaging layer 41' of the coating structure 4' will cover the first chip 2, the second chip 3 and the plurality of bonding wires 5A, 5B to protect the first chip 2, the second chip 3 and the plurality of bonding wires 5A, 5B. Bonding wires 5A, 5B.
  • a glue material with a higher thixotropy can be selected, preferably a glue material with a thixotropy coefficient greater than or equal to 3.5.
  • the Shore hardness D of the inner packaging layer 41' is less than 60, which can avoid applying excessive stress to the bonding wires 5A, 5B and causing the bonding wires 5A, 5B to break.
  • the material of the inner encapsulation layer 41' in this embodiment can be a low dielectric constant transparent resin that can withstand high temperatures, such as epoxy resin, which is not limited by the present invention.
  • the outer encapsulation layer 42' of the coating structure 4' will cover the outer surface of the inner encapsulation layer 41', and the material of the outer encapsulation layer 42' can be selected to have high reflectivity for the first beam and the second beam. materials to reduce light loss.
  • both the first light beam and the second light beam are blue light, so the reflectivity of the material of the outer packaging layer 42' to the blue light can be greater than or equal to 60%.
  • the outer packaging layer 42' may be made of epoxy resin containing barium sulfate (BaSO 4 ) powder, but the present invention is not limited thereto.
  • the forward current conversion efficiency of the optical coupling device Z2 may be greater than or equal to 0.5%, and the reverse current conversion efficiency may be greater than or equal to 0.1%.
  • the ratio between the reverse current conversion efficiency and the forward current conversion efficiency of the optical coupling device Z1 may be from 0.1 to 0.7.
  • the ratio between the reverse current conversion efficiency and the forward current conversion efficiency of the optical coupling device Z1 may be from 0.7 to 1.3.
  • FIG. 12 shows the relationship between the forward current conversion efficiency and the forward input current of the optical coupling device according to the second embodiment of the present invention.
  • FIG. 13 shows the relationship between the reverse current conversion efficiency and the reverse input current of the optical coupling device according to the second embodiment of the present invention. It should be noted that the curves shown in Figures 12 and 13 are the results obtained by measuring the optical coupling device Z2 at a temperature of 25°C.
  • the forward current conversion efficiency of the optical coupling device Z2 can reach more than 11.6%.
  • the forward current conversion efficiency is less affected by the input current and has higher stability.
  • the reverse current conversion efficiency of the optical coupling device Z2 can reach more than 3.5%, and in a wider input current range, such as the 2-150mA input current range, the reverse current conversion efficiency is affected by The influence of input current is also very small, and it has high stability.
  • the back surface 2a of the first chip 2 and the back surface 3a of the second chip are respectively used as the light output surface and On the light-receiving surface, the light emitted by the first chip 2 enters the light-emitting stack of the second chip 3 more uniformly and directly, resulting in higher current conversion efficiency.
  • the current conversion efficiency of the optical coupling device Z2 may be greater than or equal to 5 times the current conversion efficiency of the optical coupling device Z1 of the first embodiment.
  • the optical coupling device Z2 of this embodiment not only has high forward current conversion efficiency, but also has high reverse current conversion efficiency.
  • the optical coupling device Z2 provided by the embodiment of the present invention has a higher response frequency.
  • FIG. 14 shows the relative current conversion efficiency of the optical coupling device under different ambient temperatures according to the embodiment of the present invention and the comparative example.
  • the curve C1 represents the relative current conversion efficiency of the comparative example under different ambient temperatures
  • the curve C2 represents the relative current conversion efficiency of the embodiment of the present invention under different ambient temperatures.
  • the comparative example is an existing infrared optical coupler, and the material of the chip used in the comparative example is mainly gallium arsenide.
  • the input current was set to 10 mA.
  • the current conversion efficiencies of the comparative examples and embodiments measured at each ambient temperature are normalized relative to the current conversion efficiencies obtained under the conditions of an input current of 10 mA and an ambient temperature of 25°C.
  • the current conversion efficiency measured by the optical coupling devices Z1 and Z2 of the embodiment under the conditions of an input current of 10 mA and an ambient temperature of 25°C is set as the reference current conversion efficiency.
  • the current conversion efficiency measured by the optical coupling devices Z1 and Z2 of the embodiment at each ambient temperature is divided by the reference current conversion efficiency to obtain the relative current conversion efficiency corresponding to each ambient temperature. That is, the relative current conversion efficiency represents the ratio of the current conversion efficiency at a specific ambient temperature to the reference current conversion efficiency.
  • the current conversion efficiency of the infrared optical coupler of the comparative example measured under the conditions of an input current of 10 mA and an ambient temperature of 25°C was set as the reference current conversion efficiency. After that, the measured current conversion efficiency of the comparative example at each ambient temperature is divided by the reference current conversion efficiency to obtain the relative current conversion efficiency corresponding to the comparative example at each ambient temperature.
  • the relative current conversion rates of the optical coupling devices Z1 and Z2 of the embodiment do not change significantly with changes in ambient temperature. Furthermore, the current conversion rate measured by the optical coupling devices Z1 and Z2 under the conditions of the ambient temperature ranging from -25°C to 150°C, or even from -55°C to 150°C, is consistent with the reference current conversion rate.
  • the ratio between the rates (relative current conversion efficiency) is greater than or equal to 0.6, usually greater than 0.7, or even greater than 0.8.
  • the relative current conversion rate of the infrared optical coupler of the comparative example has dropped to 0.6. That is to say, when the ambient temperature is 110° C., the current conversion rate of the comparative example has decayed to 60% of its reference current conversion rate. When the ambient temperature is 150°C, the relative current conversion rate of the comparative example has been reduced to 0.4.
  • the optical coupling devices Z1 and Z2 provided by the embodiments of the present invention have high thermal stability. Even when operating at an ambient temperature of 150°C, the current conversion efficiency of the optical coupling devices Z1 and Z2 can still be maintained at at least 60% of its reference current conversion efficiency, usually up to more than 70%, or even more than 80%. Accordingly, compared with the comparative example, the optical coupling devices Z1 and Z2 of the embodiment of the present invention can operate at an ambient temperature of at least 150° C. or even higher.
  • the optical coupling device provided by the present invention can use "one of the first chip 2 and the second chip 3 is a light output chip, the other is a light sensing chip, and
  • the first chip 2 and the second chip 3 are both gallium nitride chips" or the technical solution "the light output chip is a gallium nitride chip", so that the optical coupling devices Z1 and Z2 have higher thermal stability and higher response frequency.
  • the optical coupling devices Z1 and Z2 provided by the present invention can operate at an ambient temperature of at least 125°C, or even higher.
  • the response frequency of the optical coupling devices Z1 and Z2 provided by the embodiment of the present invention may be greater than or equal to 1 MHz, or even greater than or equal to 10 MHz.
  • the response frequency of the optical coupling devices Z1 and Z2 provided by the embodiment of the present invention can be greater than or equal to 50MHz.
  • both the first chip 2 and the second chip 3 use gallium nitride chips, which not only have higher forward current conversion efficiency, but also have higher reverse current conversion efficiency. conversion efficiency to current. Therefore, the optical coupling devices Z1 and Z2 according to the embodiment of the present invention can be used not only for one-way signal transmission, but also for bi-directional signal transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

本发明提供一种光耦合装置。光耦合装置包括第一芯片以及第二芯片。第一芯片与所述第二芯片的其中一者为光输出芯片,另一者为光感测芯片,且光输出芯片的一光输出面是面对于光感测芯片的一光接收面设置。第一芯片与所述第二芯片都是氮化镓芯片。借此,光耦合装置可应用在需要在高温或高频操作的电路系统。

Description

光耦合装置 技术领域
本发明涉及一种光耦合装置,特别是涉及一种利用蓝光传输的光耦合装置。
背景技术
光耦合器是利用光束来传输电信号的光电转换元件。进一步而言,光耦合器可将输入端的电信号转换为光信号,在光信号耦合到输出端后再被转换为电信号。光耦合器对于输入与输出的电信号有良好的隔离作用,而被广泛地应用在各种电路中。
现有的光耦合器通常是利用红外光来传输信号,且通常是包括用以产生光信号的发射元件,以及用以接收光信号的光接收元件。目前,构成发射元件以及光接收元件的材料通常为砷化镓、硅或锗。由于这些材料本身的耐温特性较差,当现有的光耦合器需在高温环境下操作时,电流转换效率会降低,且输出信号较弱。进一步而言,现有的光耦合器的工作温度低于110℃,且响应频率偏低(无法超过100KHz)。因此,现有的光耦合器无法满足在高频操作或者高温操作的电路的需求。
发明内容
本发明所要解决的技术问题在于,提供一种光耦合装置,其可应用在需要在高温或高频操作的电路系统。
为了解决上述的技术问题,本发明所采用的其中一技术方案是提供一种光耦合装置。光耦合装置包括第一芯片以及第二芯片。第一芯片与第二芯片的其中一者为光输出芯片,另一者为光感测芯片,且光输出芯片的一光输出面是面对于光感测芯片的一光接收面设置。第一芯片与第二芯片都是氮化镓芯片。
进一步地,光耦合装置在输入电流10mA及环境温度25℃的条件下具 有一参考电流转换效率,且在输入电流10mA及环境温度150℃的条件下,光耦合装置的电流转换率与参考电流转换率之间的比值大于或等于0.6。
进一步地,第一芯片用以产生具有第一峰值波长的第一光束,第二芯片用以产生具有第二峰值波长的第二光束,第一峰值波长的范围是由400nm至500nm,第二峰值波长的范围是由400nm至500nm。
优选地,第一峰值波长的范围是由420nm至447.5nm,第二峰值波长的范围是由455nm至500nm。
进一步地,第一芯片为光输出芯片,第二芯片为光感测芯片,光接收面的面积与光输出面的面积之间的比值大于等于0.8。
进一步地,第一芯片与第二芯片并排地设置,且彼此分隔而定义出一空隙,光耦合装置还包括一包覆结构,包覆结构包括一透光层,透光层填入第一芯片与第二芯片之间的空隙,并覆盖光输出面与光接收面。优选地,构成透光层的材料的介电常数小于或等于10。
优选地,透光层的顶面高于或等于第一芯片的顶面以及第二芯片的顶面,且透光层的一侧端面凸出于第一芯片的一侧表面,或者与第一芯片的侧表面平齐。
进一步地,包覆结构还包括:一内封装层,内封装层覆盖第一芯片、第二芯片以及透光层,其中,内封装层的材料对蓝光的反射率大于或等于60%。
进一步地,包覆结构还包括:一外封装层,其包覆内封装层的外表面,其中,外封装层的材料的介电常数小于或等于10。
进一步地,光耦合装置还进一步包括:一承载件,承载件包括一绝缘层,且构成绝缘层的材料的介电常数小于或等于10。
进一步地,光耦合装置的反向电流转换效率与正向电流转换效率之间的比值是由0.1至1.3。
进一步地,第一芯片与第二芯片在垂直方向上堆叠设置,且光耦合装置包括一包覆结构,包覆结构还包括一透光层,透光层夹设在光输出面与光接收面之间。
进一步地,光耦合装置还进一步包括:一承载件,其中,第一芯片倒装设置在承载件上,第二芯片通过多条接合线电性连接承载件。
优选地,包覆结构还进一步包括:一内封装层,内封装层覆盖第一芯片、第二芯片以及多条接合线,且内封装层的肖氏硬度D小于60。
进一步地,包覆结构还进一步包括:一外封装层,外封装层包覆内封装层的外表面,且外封装层的材料对于蓝光的反射率高于60%。
进一步地,光耦合装置的响应频率大于或等于1MHz。
为了解决上述的技术问题,本发明所采用的另一技术方案是提供一种光耦合装置。光耦合装置包括一光输出芯片以及一光接收芯片。光输出芯片为氮化镓芯片,且光耦合装置在输入电流10mA及环境温度25℃的条件下具有一参考电流转换率,在输入电流10mA及环境温度150℃的条件下,光耦合装置的电流转换率与参考电流转换率之间的比值大于或等于0.6。
为了解决上述的技术问题,本发明所采用的另一技术方案是提供一种光耦合装置。光耦合装置包括:用以产生第一光束的第一芯片,与用以产生第二光束的第二芯片,第一光束的第一峰值波长与第二光束的第二峰值波长都介于400nm至500nm。第一芯片与第二芯片的其中一者为光输出芯片,另一者为光感测芯片,光耦合装置的响应频率大于或等于1MHz。
进一步地,第一峰值波长小于第二峰值波长,且第一峰值波长与第二峰值波长之间的差值大于或等于5nm。
进一步地,第一峰值波长与第二峰值波长之间的差值小于或等于5nm。
进一步地,光耦合装置在输入电流10mA及环境温度25℃的条件下具有一参考电流转换率,光耦合装置在输入电流10mA及环境温度介于-25℃至150℃的条件下,所量测的电流转换率与参考电流转换率之间的比值大于或等于0.6。
进一步地,第一芯片为光输出芯片,第二芯片为光接收芯片,且光耦合装置的正向电流转换效率大于或等于0.5%,光耦合装置的反向电流转换效率大于或等于0.1%。
本发明的其中一有益效果在于,本发明所提供的光耦合装置,其能通过“第一芯片与第二芯片的其中一者为光输出芯片,另一者为光感测芯片,且第一芯片与第二芯片都是氮化镓芯片”或者“光输出芯片是氮化镓芯片”的技术方案,以使光耦合装置具有较高的热稳定性以及较高的响应频率。
为使能进一步了解本发明的特征及技术内容,请参阅以下有关本发明的 详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。
附图说明
图1为本发明第一实施例的光耦合装置的立体示意图。
图2为本发明第一实施例的光耦合装置省略包覆结构的俯视示意图。
图3为图1的III-III剖面的剖面示意图。
图4为本发明一实施例的芯片的剖面示意图。
图5为本发明另一实施例的芯片的剖面示意图。
图6为本发明另一实施例的芯片的剖面示意图。
图7显示本发明第一实施例的光耦合装置的正向电流转换效率与正向输入电流的关系曲线。
图8显示本发明第一实施例的光耦合装置的反向电流转换效率与反向输入电流的关系曲线。
图9为本发明第二实施例的光耦合装置的立体示意图。
图10为本发明第二实施例的光耦合装置省略包覆结构的俯视示意图。
图11为图9的XI-XI剖面的剖面示意图。
图12显示本发明第二实施例的光耦合装置的正向电流转换效率与正向输入电流的关系曲线。
图13显示本发明第二实施例的光耦合装置的反向电流转换效率与反向输入电流的关系曲线。
图14显示本发明实施例与比较例的光耦合装置在不同环境温度下的相对电流转换效率。
具体实施方式
以下是通过特定的具体实施例来说明本发明所公开有关“光耦合装置”的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以实行或应用,本说明书中的各项细节也可基于不同观点与应用,在不背离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘, 事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。
请参照图1,图1为本发明第一实施例的光耦合装置的立体示意图。本实施例的光耦合装置Z1包括承载件1、第一芯片2、第二芯片3以及包覆结构4。
承载件1可以是电路基板或者是支架。本实施例的承载件1为电路基板,且可以是单层线路板或多层线路板。请参照图2与图3,图2为本发明第一实施例的光耦合装置省略包覆结构的俯视示意图。图3为图1的III-III剖面的剖面示意图。
本实施例的承载件1包括绝缘层10、第一接垫组11、第二接垫组12、第一电极组13以及第二电极组14,但本发明不以此为限。在一实施例中,构成绝缘层10的材料可选自陶瓷、环氧树脂玻纤材料(FR4)、双马来酰亚胺三嗪(BT)树脂等材质。陶瓷例如是氧化铝(Al 2O 3)或氮化铝(AlN),但本发明并不限制。须说明的是,绝缘层10的材料可以选择低介电常数材料,以降低光耦合装置Z1的寄生电容,使光耦合装置Z1具有较高的频率响应,而可操作在高频下。在一较佳实施例中,绝缘层10的材料的介电常数小于或等于10。
如图2与图3所示,绝缘层10具有第一侧10a以及与第一侧10a相对的第二侧10b。第一接垫组11与第二接垫组12是位于绝缘层10的第一侧10a,且两者彼此分隔设置。在本实施例中,第一接垫组11包括两个第一接垫11A,11B,且第二接垫组12包括两个第二接垫12A,12B。
另外,第一电极组13与第二电极组14是位于绝缘层10的第二侧10b,且第一电极组13与第二电极组14彼此分隔设置。在本实施例中,第一电极组13包括第一正电极13A与第一负电极13B,且第一正电极13A与第一负电极13B通过两个第一导电柱15A,15B而分别电性连接到两个第一接垫11A,11B。相似地,第二电极组14包括第二正电极14A与第二负电极14B,且第二正电极14A与第二负电极14B通过两个第二导电柱16A,16B而分别电性连接到两个第二接垫12A,12B。据此,光耦合装置Z1可通过第一电极组13以及第二电极组14,而电性连接于外部电路。
请配合参照图1至图3,第一芯片2与第二芯片3设置在承载件1上。第一芯片2与第二芯片3的其中一者为光输出芯片,而另一者为光感测芯片。当第一芯片2为光输出芯片时,第二芯片3为光感测芯片。当第二芯片3为光输出芯片时,第一芯片2为光感测芯片。
在本实施例中,第一芯片2与第二芯片3是分别通过第一接垫组11与第二接垫组12而设置在承载件1上。第一芯片2与第二芯片3可以是具有水平结构的芯片,或者是具有垂直结构的芯片,本发明并不限制。
另外,第一芯片2与第二芯片3是并排地设置在承载件1上,且彼此分隔而定义出一空隙。如图3所示,在本发明中,定义第一芯片2的电极所在的表面为第一芯片2的正面,而定义与正面相反的表面为背面2a。相似地,定义第二芯片3的电极所在的表面为第二芯片3的正面,而定义与正面相反的表面为背面3a。第一芯片2是以背面2a朝上而设置在承载件1上,第二芯片3也是以背面3a朝上,而设置在承载件1上。
在本实施例中,第一芯片2以面积最大的侧表面2s面向第二芯片3。相似地,第二芯片3也是以面积最大的侧表面3s面对第一芯片2。当第一芯片2为光输出芯片时,第二芯片3为光感测芯片时,第一芯片2的侧表面2s作为光输出面,且第二芯片3的侧表面3s作为光接收面。
如图2所示,第一芯片2与第二芯片3的俯视形状都是长方形。由俯视方向观察,第一芯片2的长边会大致平行于第二芯片3的长边,且第一芯片2与第二芯片3在一第一方向D1上相互对齐。如此,光输出面(第一芯片2的侧表面2s)所产生的光束大部分都可进入光接收面(第二芯片3的侧表面3s),可提高电流转换效率,其中电流转换效率等于光耦合装置的输出电流(I output)除以输入电流(I input)(即I output/I input)。值得一提的是,虽然在本实施例中,第一芯片2与第二芯片3均是以面积最大的侧表面相对且在第一方向D1上相互对齐的方式设置,且但本发明并不限于此。
本发明实施例中,构成第一芯片2与第二芯片3的主要功能性材料都是氮化镓。也就是说,第一芯片2与第二芯片3都是氮化镓芯片。相较于砷化镓、硅、锗等材料所构成的芯片而言,氮化镓芯片的耐热性较佳,且具有较佳的热稳定性,使光耦合装置Z1可在较高的环境温度下操作。
请配合参照图4,显示本发明一实施例的芯片的剖面示意图。芯片M1 可被应用在图1所示的光耦合装置Z1中,以作为光输出芯片或者光感测芯片。芯片M1可以包括基底M10、外延发光结构M11以及两个电极M12,M13。基底M10的材料可以是蓝宝石、碳化硅、氮化镓或者是硅等材料,本发明并不限制。在本实施例中,基底M10的材料为蓝宝石。外延发光结构M11设置于基底M10上,并具有N型半导体层M110、P型半导体层M111以及发光叠层M112。在本实施例中,N型半导体层M110设置在基底M10上,而发光叠层M112以及P型半导体层M111依序设置在N型半导体层M110上。然而,图4所绘示的实施例并非用以限制本发明。在其他实施例中,N型半导体层M110与P型半导体层M111的位置也可以互换。
在本实施例中,N型半导体层M110的材料为掺杂硅的氮化镓。另外,P型半导体层M111的材料为掺杂镁的氮化镓或者是掺杂镁的氮化铝镓。发光叠层M112位于N型半导体层M110与P型半导体层M111之间,用以产生光束。详细而言,通过对电极M12,M13施加偏压,可产生通过N型半导体层M110、发光叠层M112以及P型半导体层M111的电流,而激发发光叠层M112产生具有特定峰值波长的光束。
发光叠层M112可包括交替堆叠的多个氮化镓层(势垒层)以及多个氮化铟镓层(阱层)。通过控制氮化铟镓层的铟浓度,可以调整芯片M1所产生的光束的峰值波长。
两个电极M12,M13分别电性连接于N型半导体层M110与P型半导体层M111,以电性连接于图1所示的第一接垫组11或是第二接垫组12。在本实施例中,其中一电极M12电性连接N型半导体层M110上,而另一电极M13电性连接P型半导体层M111。在图4所示的实施例中,芯片M1具有水平结构,并为倒装芯片。因此,两个电极M12,M13会位于芯片M1的相同侧,且通常在芯片M1具有电极M12,M13的一侧设计有反光结构(图未示),而使芯片M1发出的光主要从基底M10的表面SA射出,同时有一部分光从芯片M1的四侧表面射出。
除此之外,在一实施例中,当芯片M1被应用在图1所示的光耦合装置Z1中,作为光输出芯片或者光感测芯片时,芯片M1的其中一侧表面会作为光输出面或者光接收面。
请参照图5,为本发明另一实施例的芯片的剖面示意图。本实施例的芯 片M2与图4的芯片M1相同的元件具有相同的标号,且相同的部分不再赘述。本实施例与图4的实施例的差异在于,本实施例的芯片M2还包括一反射层M14,且反射层M14是设置在基底M10的表面SA上。反射层M14的材料对于芯片M1所产生的光束具有高反射率。举例而言,反射层M14可以是金属层,如:铝层。据此,发光叠层M112所产生的光束大部分由芯片M1的侧表面射出。当本实施例的芯片M1应用在图1的光耦合装置Z1作为光输出芯片(第一芯片2)时,可以进一步提升电流转换效率。
请参照图6,显示本发明另一实施例的芯片的剖面示意图。本实施例的芯片M3与图5所示的芯片M1相同的元件具有相同的标号,且相同的部分不再赘述。本实施例所提供的芯片M3为水平结构的芯片,并为正装芯片。在本实施例中,两个电极M12,M13也位于芯片M3的相同侧,但其在具有电极M12,M13的一侧不会设计反光结构,而使芯片M3发出的光主要从具有电极M12,M13的一侧射出,同时有一部分光从芯片M3的四侧表面以及穿透M10从表面SA射出。当本实施例的芯片M3应用在图1的光耦合装置Z1中时,芯片M3是以基底M10朝向承载件1设置,且可通过打线接合方式设置在承载件1上。
请再参照图1至图3,第一芯片2与第二芯片3可以各别选择图4至图6所示的任一个芯片M1-M3,并可通过正装或者倒装(或覆晶)的方式设置在承载件1上。在较佳实施例中,第一芯片2与第二芯片3都是图5所示的芯片M2,并以倒装的方式设置在承载件1上。
本实施例的第一芯片2与第二芯片3都是蓝光芯片。当光耦合装置Z1只用于单向传输信号,且第一芯片2为光输出芯片时,第一芯片2可用来产生具有第一峰值波长的第一光束,第一峰值波长的范围是由400nm至500nm。第一峰值波长的较佳范围是由420nm至460nm。须说明的是,用来产生峰值波长范围落在420nm至460nm的蓝光芯片(第一芯片2)具有较好的热稳定性,并可使光耦合装置Z1具有较高的光电转换效率以及较低的响应时间。
另一方面,第二芯片3作为光感测芯片,可用来产生具有第二峰值波长的第二光束,且第二峰值波长的范围是由400nm至500nm。第二峰值波长可大于或等于第一峰值波长。当光耦合装置Z1只用于单向传输信号时,第二 峰值波长可大于第一峰值波长。可通过增加第二峰值波长与第一峰值波长之间的差值,来提高光耦合装置Z1的电流转换效率。
在一实施例中,第一峰值波长与第二峰值波长之间的差值可大于或等于5nm,较佳是大于10nm,以使光耦合装置Z1具有较好的电流转换效率。在一具有更高成本优势的实施例中,第一芯片2与第二芯片3可采用普通照明的无用库存,也就是波长介于420nm~447.5nm或455nm~500nm(或460nm~500nm)的蓝光芯片,例如但不限于:第一峰值波长的范围是由420nm至447.5nm,且第二峰值波长的范围455nm至500nm。当然第一峰值波长的范围与第二峰值波长的范围可均介于420nm~447.5nm或均介于455nm~500nm。
另外,当光耦合装置Z1只用于单向传输信号时,使光接收面的面积大于光输出面的面积,也能提升光耦合装置Z1的电流转换效率。进一步而言,在本实施例中,光接收面(如:第二芯片3的侧表面3s)的面积与光输出面(如:第一芯片2的侧表面2s)的面积之间的比值可大于或等于1.3。
值得一提的是,通过使用氮化镓芯片做为光输出芯片(如:第一芯片2)与光感测芯片(如:第二芯片3),本发明实施例所提供的光耦合装置Z1不只可用于单向传输信号,也可用于双向传输信号。
因此,可调整光接收面的面积与光输出面的面积,使光耦合装置Z1符合不同的应用需求。具体而言,当光耦合装置Z1要应用在双向信号传输时,光接收面(如:第二芯片3的侧表面3s)的面积与光输出面(如:第一芯片2的侧表面2s)的面积之间的比值可大于或等于0.8。在一实施例中,也可以使光输出面的面积与光接收面的面积大致相同。
此外,当光耦合装置Z1进行双向信号传输时,第一芯片2与第二芯片3会轮流输出与接收第一光束与第二光束。因此,在这个情况下,第一光束的第一峰值波长与第二光束的第二峰值波长之间的差值可小于或等于5nm。
当第一芯片2作为光输出芯片,第二芯片3作为光感测芯片时,定义为正向传输。在本发明实施例中,当光耦合装置Z1在正向传输时,由第二芯片3输出的电流值与输入第一芯片2的电流值之间的百分比,被定义为正向电流转换效率。另外,当第二芯片3作为光输出芯片,第一芯片2作为光感测芯片时,定义为反向传输。当光耦合装置Z1在反向传输时,由第一芯片2 输出的电流值与输入第二芯片3的电流值之间的百分比,被定义为反向电流转换效率。
通过使第一峰值波长与第二峰值波长之间的差值小于或等于5nm,或是使光接收面的面积与光输出面的面积比值大于或等于0.8,可以使光耦合装置Z1的反向电流转换效率接近于正向电流转换效率。据此,光耦合装置Z1可用于在双向传输信号。
请再参照图1与图3,本实施例的光耦合装置Z1还包括包覆结构4,且包覆结构4覆盖承载件1、第一芯片2以及第二芯片3。须说明的是,第一电极组13与第二电极组14并未被包覆结构4覆盖,而裸露在包覆结构4外。
详细而言,包覆结构4包括透光层40、内封装层41以及外封装层42。透光层40填入第一芯片2与第二芯片3之间的空隙,并覆盖第一芯片2的侧表面2s(光输出面)以及第二芯片3的侧表面3s(光接收面)。透光层40可允许第一芯片2所产生的第一光束以及第二芯片3所产生的第二光束通过。另外,透光层40的材料可以选择具有低介电常数的材料,以降低光耦合装置Z1的寄生电容,使光耦合装置Z1具有较高的频率响应。举例而言,透光层40的材料可以选择介电常数小于10的材料,较佳实施例是选用介电常数小于4的材料。此外,透光层40的材料也可以选择可耐高温的绝缘材料,如:环氧树脂。
透光层40的顶面40t可高于或等于第一芯片2的背面2a与第二芯片3的背面3a,且透光层40的一侧端面可凸出于第一芯片2的另一侧表面,或者与第一芯片2的侧表面切齐。据此,可以避免缩减光接收面与光输出面的面积,而提高电流转换效率。
参照图3,本实施例的透光层40的顶面40t与第一芯片2的背面2a(或第二芯片3的背面3a)平齐,且透光层40的一侧端面与第一芯片2的侧表面(或第二芯片3的侧表面)切齐,但本发明不以此为限。
内封装层41包覆第一芯片2、第二芯片3以及透光层40。内封装层41对于第一光束与第二光束具有较高的反射率,以降低光损失。在本实施例中,第一光束与第二光束都是蓝光,因此内封装层41的材料对蓝光的反射率可大于或等于60%。在一实施例中,内封装层41的材料可以是含有硫酸钡(BaSO 4)粉末的环氧树脂,但本发明不以此为限。
外封装层42包覆内封装层41的外表面,以及一部分承载件1。外封装层42可以选择介电常数小于10的材料。除此之外,外封装层42的材料可以是不透光的胶材,以避免外界环境光干扰光信号传输。然而,在一实施例中,外封装层42也可使用一般胶材或者被省略。
在本实施例中,光耦合装置Z1的正向电流转换效率可大于或等于0.4%,且反向电流转换效率可大于或等于0.1%。在一实施例中,当光耦合装置Z1只应用于单向信号传输时,光耦合装置Z1的反向电流转换效率与正向电流转换效率之间的比值可由0.1至0.7。然而,当光耦合装置Z1要用于双向信号传输时,光耦合装置Z1的反向电流转换效率与正向电流转换效率之间的比值可由0.7至1.3。
请参照图7以及图8。图7显示本发明第一实施例的光耦合装置的正向电流转换效率与正向输入电流的关系曲线,而图8显示本发明第一实施例的光耦合装置的反向电流转换效率与反向输入电流的关系曲线。须先说明的是,图7与图8所示的曲线都是在25℃的温度下,对光耦合装置Z1进行量测而得到的结果。
如图7所示,光耦合装置Z1的正向电流转换效率可达0.45%以上。另外,在光耦合装置常用输入电流范围内,例如2~50mA输入电流范围内,正向电流转换效率受正向输入电流变化的波动不大,具有较高的稳定性。另外,如图8所示,光耦合装置Z1的反向电流转换效率也可达0.1%以上,且在光耦合装置常用输入电流范围内,例如2~50mA输入电流范围内,反向电流转换效率受反向输入电流变化的波动不大,具有较高的稳定性。
须说明的是,现有的红外光耦合器中所应用的芯片主要由砷化镓材料所构成,电流转换效率只有0.02%至0.1%。此外,现有的红外光耦合器利用红外光来传输信号,能量较弱,无法应用于双向信号传输。可顺带一提的是,当对双向信号传输没有要求的情况下,本发明前后文的实施例也可仅采用如M1,M2,M3所示例的GaN蓝光芯片作为光输出芯片,但并不限定GaN蓝光作为光接收芯片。也就是说,光接收芯片还可以为光敏器件,例如光敏二极管、三极管、光敏电阻或者光电晶闸管。以这样的组合制作的光耦合器也同样具有良好的耐温性能。
相较之下,本发明实施例的光耦合装置Z1利用特定波段的蓝光来传输 信号,不仅具有较高的正向电流转换效率,也具有较高的反向电流转换效率。基于上述,本实施例的光耦合装置Z1不仅可用于单向信号传输,也可用于双向信号传输。另外,本发明实施例所提供的光耦合装置Z1的响应频率可大于或等于1MHz,甚至可大于或等于10MHz。在一更佳实施例中,本发明实施例所提供的光耦合装置Z1的响应频率可大于或等于50MHz。且在大多数实施例中,正向与反向电流转换效率均能达到同样级别的响应频率。
请参照图9至图11。图9为本发明第二实施例的光耦合装置的立体示意图,图10为本发明第二实施例的光耦合装置省略包覆结构的俯视示意图。图11为图9的XI-XI剖面的剖面示意图。本实施例的光耦合装置Z2与第一实施例的光耦合装置Z1相同或相似的元件具有相同的标号,且相同的部分不再赘述。
本实施例中,光耦合装置Z2的第一芯片2以及第二芯片3沿着一垂直方向堆叠。进一步而言,在本实施例中,第一芯片2设置在承载件1上,而第二芯片3设置在第一芯片2上。
在本实施例中,第一芯片2可以是图4所示的芯片M1,以倒装方式设置在承载件1上。另外,第二芯片3可以是图4或图6所示的任一个芯片M1,M3,且以正面(电极所在的表面)朝上而设置在第一芯片2上。进一步而言,如图10所示,当第二芯片3设置在第一芯片2上时,第二芯片3的两电极(未标号)可通过两条接合线5A,5B而分别电性连接到两个第二接垫12A,12B。
由于第一芯片2是倒装设置在承载件1上,而第二芯片3是正面朝上设置在第一芯片2上,因此第二芯片3的背面3a会面对于第一芯片2的背面2a。当第一芯片2与第二芯片3分别作为光输出芯片与光感测芯片时,第一芯片2的背面2a可作为光输出面,而第二芯片3的背面3a可作为光接收面。
另外,光输出芯片在操作时所产生的热能通常会高于光感测芯片。据此,通过将作为光输出芯片的第一芯片2设置在承载件1上,第一芯片2所产生的热能较容易被传递到承载件1而被散出。
在一实施例中,使光接收面的面积大于或等于光输出面的面积的0.8倍,或者使第一光束的第一峰值波长与第二光束的第二峰值波长之间的差值小于或等于5nm,可使光耦合装置Z2可被应用于双向信号传输。
在一实施例中,当光耦合装置Z2只应用于单向信号传输时,使光接收面的面积与光输出面的面积之间的比值大于或等于1.3,或是使第一峰值波长与第二峰值波长之间的差值大于或等于5nm,可使光耦合装置Z2具有较高的电流转换效率与响应频率。
另外,本实施例的包覆结构4’中,透光层40’是夹设在第一芯片2的背面2a与第二芯片3的背面3a之间。如前文所述,透光层40’可以选择具有低介电常数,且对于蓝光具有高透光率的材料。
请参照图11,包覆结构4’的内封装层41’会覆盖第一芯片2、第二芯片3以及多条接合线5A,5B,以保护第一芯片2、第二芯片3以及多条接合线5A,5B。在一实施例中,内封装层41’在被完全固化之前,可以选择触变性较高的胶材,较佳是触变系数大于或等于3.5的胶材。
此外,在一实施例中,内封装层41’的肖氏硬度D小于60,可以避免对接合线5A,5B施加过大的应力而导致接合线5A,5B断裂。另外,本实施例的内封装层41’的材料可选择可耐高温的低介电常数透明树脂,如:环氧树脂,本发明并不限制。
请参照图11,包覆结构4’的外封装层42’会包覆内封装层41’的外表面,且外封装层42’的材料可以选择对第一光束与第二光束具有高反射率的材料,以降低光损失。在本实施例中,第一光束与第二光束都是蓝光,因此外封装层42’的材料对蓝光的反射率可大于或等于60%。在一实施例中,外封装层42’的材料可以是含有硫酸钡(BaSO 4)粉末的环氧树脂,但本发明不以此为限。
在本实施例中,光耦合装置Z2的正向电流转换效率可大于或等于0.5%,且反向电流转换效率可大于或等于0.1%。在一实施例中,当光耦合装置Z1只应用于单向信号传输时,光耦合装置Z1的反向电流转换效率与正向电流转换效率之间的比值可由0.1至0.7。然而,当光耦合装置Z1要用于双向信号传输时,光耦合装置Z1的反向电流转换效率与正向电流转换效率之间的比值可由0.7至1.3。
请参照图12与图13,图12显示本发明第二实施例的光耦合装置的正向电流转换效率与正向输入电流的关系曲线。图13显示本发明第二实施例的光耦合装置的反向电流转换效率与反向输入电流的关系曲线。须先说明的 是,图12与图13所示的曲线都是在25℃的温度下,对光耦合装置Z2进行量测而得到的结果。
如图12所示,光耦合装置Z2的正向电流转换效率可达11.6%以上。之外,其在更广的输入电流范围内,例如2~150mA输入电流范围内,正向电流转换效率受输入电流的影响更小,具有更高的稳定性。另外,如图13所示,光耦合装置Z2的反向电流转换效率可达3.5%以上,且其在更广的输入电流范围内,例如2~150mA输入电流范围内,反向电流转换效率受输入电流的影响也很小,具有高的稳定性。
值得一提的是,相较于第一实施例的光耦合装置Z1,本实施例的光耦合装置Z2中,以第一芯片2的背面2a与第二芯片的背面3a分别作为光输出面与光接收面,第一芯片2发出的光更多且更均匀、更直接地进入第二芯片3的发光叠层,会具有更高的电流转换效率。在本发明实施例中,光耦合装置Z2的电流转换效率可大于或等于第一实施例的光耦合装置Z1的电流转换效率的5倍。
本实施例的光耦合装置Z2不仅具有较高的正向电流转换效率,也具有较高的反向电流转换效率。另外,本发明实施例所提供的光耦合装置Z2具有更高的响应频率。
请参照图14,其显示本发明实施例与比较例的光耦合装置在不同环境温度下的相对电流转换效率。曲线C1代表比较例在不同环境温度下的相对电流转换效率,而曲线C2代表本发明实施例在不同环境温度下的相对电流转换效率。比较例为现有的红外光耦合器,且比较例中所使用的芯片的材料主要是砷化镓。
在各环境温度下量测比较例与实施例的电流转换效率时,输入电流都被设定为10mA。另外,在各环境温度下所量测的比较例与实施例电流转换效率,都会相对于其在输入电流10mA与环境温度25℃的条件下所得到的电流转换效率归一化(normalized)。
举例而言,实施例的光耦合装置Z1,Z2在输入电流10mA与环境温度25℃的条件下所测得的电流转换效率,被设定为参考电流转换效率。之后,将实施例的光耦合装置Z1,Z2于各环境温度所量测到的电流转换效率除以参考电流转换效率,来得到各环境温度所对应的相对电流转换效率。也就是 说,相对电流转换效率代表特定环境温度下的电流转换效率与参考电流转换效率的比值。
相似地,比较例的红外光耦合器在输入电流10mA与环境温度25℃的条件下所测得的电流转换效率,被设定为参考电流转换效率。之后,将比较例于各环境温度所量测到的电流转换效率除以参考电流转换效率,可得到比较例在各环境温度所对应的相对电流转换效率。
由图14可以看出,实施例的光耦合装置Z1,Z2的相对电流转换率并未随着环境温度的变化而有大幅度改变。进一步而言,光耦合装置Z1,Z2在环境温度介于-25℃至150℃的条件下,甚至介于-55℃至150℃的条件下所量测的电流转换率与所述参考电流转换率之间的比值(相对电流转换效率)大于或等于0.6,通常为大于0.7,甚至可大于0.8。
相较之下,在输入电流10mA及环境温度110℃的条件下,比较例的红外光耦合器的相对电流转换率已降到0.6。也就是说,当环境温度110℃时,比较例的电流转换率就已经衰减到其参考电流转换率的60%。当环境温度150℃时,比较例的相对电流转换率已降低至0.4。
基于上述,本发明实施例所提供的光耦合装置Z1,Z2具有较高的热稳定性。即便操作在环境温度150℃下,光耦合装置Z1,Z2的电流转换效率仍可维持在其参考电流转换效率的至少60%,通常可达70%以上,甚至可在80%以上。据此,相较于比较例,本发明实施例的光耦合装置Z1,Z2可以操作在至少150℃,甚至是更高的环境温度下。
[本发明的有益效果]
本发明的其中一有益效果在于,本发明所提供的光耦合装置,其能通过“第一芯片2与第二芯片3的其中一者为光输出芯片,另一者为光感测芯片,且第一芯片2与第二芯片3都是氮化镓芯片”或者“光输出芯片是氮化镓芯片”的技术方案,以使光耦合装置Z1,Z2具有较高的热稳定性以及较高的响应频率。
进一步而言,本发明所提供的光耦合装置Z1,Z2可以操作在至少125℃,甚至是更高的环境温度下。另外,本发明实施例所提供的光耦合装置Z1,Z2的响应频率可大于或等于1MHz,甚至可大于或等于10MHz。在一更佳实施例中,本发明实施例所提供的光耦合装置Z1,Z2的响应频率可大于或等于 50MHz。
另一方面,本发明实施例的光耦合装置Z1,Z2中,第一芯片2与第二芯片3都采用氮化镓芯片,不仅具有较高的正向电流转换效率,也具有较高的反向电流转换效率。因此,本发明实施例的光耦合装置Z1,Z2不仅可用于单向信号传输,还可被用于双向信号传输。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求书的保护范围,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求书的保护范围内。

Claims (23)

  1. 一种光耦合装置,其特征在于,所述光耦合装置包括:
    一第一芯片;以及
    一第二芯片,其中,所述第一芯片与所述第二芯片的其中一者为光输出芯片,另一者为光感测芯片,所述光输出芯片的一光输出面是面对于所述光感测芯片的一光接收面设置,且所述第一芯片与所述第二芯片都是氮化镓芯片。
  2. 根据权利要求1所述的光耦合装置,其特征在于,所述光耦合装置在输入电流10mA及环境温度25℃的条件下具有一参考电流转换效率,且在输入电流10mA及环境温度150℃的条件下,所述光耦合装置的电流转换率与所述参考电流转换率之间的比值大于或等于0.6。
  3. 根据权利要求1所述的光耦合装置,其特征在于,所述第一芯片用以产生具有第一峰值波长的第一光束,所述第二芯片用以产生具有第二峰值波长的第二光束,所述第一峰值波长的范围是由400nm至500nm,所述第二峰值波长的范围是由400nm至500nm。
  4. 根据权利要求3所述的光耦合装置,其特征在于,所述第一峰值波长的范围是由420nm至447.5nm,所述第二峰值波长的范围是由455nm至500nm。
  5. 根据权利要求1所述的光耦合装置,其特征在于,所述第一芯片为所述光输出芯片,所述第二芯片为所述光感测芯片,所述光接收面的面积与所述光输出面的面积之间的比值大于等于0.8。
  6. 根据权利要求1所述的光耦合装置,其特征在于,所述第一芯片与所述第二芯片并排地设置,且彼此分隔而定义出一空隙,所述光耦合装置还包括一包覆结构,所述包覆结构包括一透光层,所述透光层填入所述第一芯片 与所述第二芯片之间的所述空隙,并覆盖所述光输出面与所述光接收面。
  7. 根据权利要求6所述的光耦合装置,其特征在于,构成所述透光层的材料的介电常数小于或等于10。
  8. 根据权利要求6所述的光耦合装置,其特征在于,所述透光层的顶面高于或等于所述第一芯片的顶面以及所述第二芯片的顶面,且所述透光层的一侧端面凸出于所述第一芯片的一侧表面,或者与所述第一芯片的所述侧表面平齐。
  9. 根据权利要求6所述的光耦合装置,其特征在于,所述包覆结构还包括:一内封装层,所述内封装层覆盖所述第一芯片、所述第二芯片以及所述透光层,其中,所述内封装层的材料对蓝光的反射率大于或等于60%。
  10. 根据权利要求9所述的光耦合装置,其特征在于,所述包覆结构还包括:一外封装层,其包覆所述内封装层的外表面,其中,所述外封装层的材料的介电常数小于或等于10。
  11. 根据权利要求1所述的光耦合装置,其特征在于,所述光耦合装置还进一步包括:一承载件,所述承载件包括一绝缘层,且构成所述绝缘层的材料的介电常数小于或等于10。
  12. 根据权利要求1所述的光耦合装置,其特征在于,所述光耦合装置的反向电流转换效率与正向电流转换效率之间的比值是由0.1至1.3。
  13. 根据权利要求1所述的光耦合装置,其特征在于,所述第一芯片与所述第二芯片在垂直方向上堆叠设置,且所述光耦合装置包括一包覆结构,所述包覆结构还包括一透光层,所述透光层夹设在所述光输出面与所述光接收面之间。
  14. 根据权利要求13所述的光耦合装置,其特征在于,所述光耦合装置还进一步包括:一承载件,其中,所述第一芯片倒装设置在所述承载件上,所述第二芯片通过多条接合线电性连接所述承载件。
  15. 根据权利要求13所述的光耦合装置,其特征在于,所述包覆结构还进一步包括:一内封装层,所述内封装层覆盖所述第一芯片、所述第二芯片以及多条所述接合线,且所述内封装层的肖氏硬度D小于60。
  16. 根据权利要求15所述的光耦合装置,其特征在于,所述包覆结构还进一步包括:一外封装层,所述外封装层包覆所述内封装层的外表面,且所述外封装层的材料对于蓝光的反射率高于60%。
  17. 根据权利要求1所述的光耦合装置,其特征在于,所述光耦合装置的响应频率大于或等于1MHz。
  18. 一种光耦合装置,其特征在于,所述光耦合装置包括:一光输出芯片以及一光接收芯片,其中,所述光输出芯片为氮化镓芯片,且所述光耦合装置在输入电流10mA及环境温度25℃的条件下具有一参考电流转换率,在输入电流10mA及环境温度150℃的条件下,所述光耦合装置的电流转换率与所述参考电流转换率之间的比值大于或等于0.6。
  19. 一种光耦合装置,其特征在于,所述光耦合装置包括:用以产生第一光束的一第一芯片,与用以产生一第二光束的一第二芯片,所述第一光束的第一峰值波长与所述第二光束的第二峰值波长都介于400nm至500nm,所述第一芯片与所述第二芯片的其中一者为光输出芯片,另一者为光感测芯片,所述光耦合装置的响应频率大于或等于1MHz。
  20. 根据权利要求19所述的光耦合装置,其特征在于,所述第一峰值波长小于所述二峰值波长,且所述第一峰值波长与所述第二峰值波长之间的差值大于或等于5nm。
  21. 根据权利要求19所述的光耦合装置,其特征在于,所述第一峰值波长与所述第二峰值波长之间的差值小于或等于5nm。
  22. 根据权利要求19所述的光耦合装置,其特征在于,所述光耦合装置在输入电流10mA及环境温度25℃的条件下具有一参考电流转换率,所述光耦合装置在输入电流10mA及环境温度介于-25℃至150℃的条件下,所量测的电流转换率与所述参考电流转换率之间的比值大于或等于0.6。
  23. 根据权利要求19所述的光耦合装置,其特征在于,所述第一芯片为所述光输出芯片,所述第二芯片为所述光接收芯片,且所述光耦合装置的正向电流转换效率大于或等于0.45%,所述光耦合装置的反向电流转换效率大于或等于0.1%。
PCT/CN2022/080382 2022-03-11 2022-03-11 光耦合装置 WO2023168701A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/080382 WO2023168701A1 (zh) 2022-03-11 2022-03-11 光耦合装置
CN202280039295.6A CN117425845A (zh) 2022-03-11 2022-03-11 光耦合装置
CN202310078841.3A CN116387297A (zh) 2022-03-11 2023-02-02 光耦合装置
US18/119,340 US20230275178A1 (en) 2022-03-11 2023-03-09 Optocoupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080382 WO2023168701A1 (zh) 2022-03-11 2022-03-11 光耦合装置

Publications (1)

Publication Number Publication Date
WO2023168701A1 true WO2023168701A1 (zh) 2023-09-14

Family

ID=86960436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080382 WO2023168701A1 (zh) 2022-03-11 2022-03-11 光耦合装置

Country Status (3)

Country Link
US (1) US20230275178A1 (zh)
CN (2) CN117425845A (zh)
WO (1) WO2023168701A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116309A (ja) * 1994-10-18 1996-05-07 Sumitomo Electric Ind Ltd 青色発光素子を用いた耐熱光リンク
CN102147512A (zh) * 2010-02-09 2011-08-10 亿光电子工业股份有限公司 光耦合器
CN108735853A (zh) * 2017-04-20 2018-11-02 亿光电子工业股份有限公司 光耦合器
CN111830647A (zh) * 2020-06-30 2020-10-27 宁波群芯微电子有限责任公司 光电耦合装置
CN113125005A (zh) * 2021-03-22 2021-07-16 北海惠科光电技术有限公司 一种光电感应装置和光电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116309A (ja) * 1994-10-18 1996-05-07 Sumitomo Electric Ind Ltd 青色発光素子を用いた耐熱光リンク
CN102147512A (zh) * 2010-02-09 2011-08-10 亿光电子工业股份有限公司 光耦合器
CN108735853A (zh) * 2017-04-20 2018-11-02 亿光电子工业股份有限公司 光耦合器
CN111830647A (zh) * 2020-06-30 2020-10-27 宁波群芯微电子有限责任公司 光电耦合装置
CN113125005A (zh) * 2021-03-22 2021-07-16 北海惠科光电技术有限公司 一种光电感应装置和光电系统

Also Published As

Publication number Publication date
CN116387297A (zh) 2023-07-04
CN117425845A (zh) 2024-01-19
US20230275178A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
TW543128B (en) Surface mounted and flip chip type LED package
KR101517644B1 (ko) 발광장치 및 그 제조방법
TWI587537B (zh) Optocoupler
CN101740685B (zh) 发光器件封装
KR20170013828A (ko) 발광 장치 및 그 제조 방법
KR20170044032A (ko) 발광 디바이스, 통합 발광 디바이스 및 발광 모듈
TW201943100A (zh) 發光二極體裝置的製作方法
JP5806994B2 (ja) 光結合装置
US9559264B2 (en) Light emitting device package and light emitting apparatus including the package
CN109427946B (zh) 半导体器件封装件
WO2023168701A1 (zh) 光耦合装置
KR102471689B1 (ko) 반도체 소자 패키지
US10847676B2 (en) Semiconductor device and semiconductor device package including same
US20180337309A1 (en) Radiation-emitting semiconductor chip, optoelectronic component comprising a radiation-emitting semiconductor chip, and method of coating a radiation-emitting semiconductor chip
TWI513053B (zh) 發光二極體封裝結構
EP3451396A1 (en) Semiconductor device package
KR20120051969A (ko) 발광소자
US6759688B2 (en) Monolithic surface mount optoelectronic device and method for fabricating the device
US20130082291A1 (en) Light Emitting Devices with Low Packaging Factor
TWI832541B (zh) 光耦合器
JPH03191572A (ja) 光半導体装置
TW202420758A (zh) 光耦合器
KR101662239B1 (ko) 발광 소자, 그 제조 방법 및 발광 소자 패키지
TWI708085B (zh) 電子裝置
TW202341413A (zh) 半導體光耦合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930339

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280039295.6

Country of ref document: CN