TW202404286A - Integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver - Google Patents

Integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver Download PDF

Info

Publication number
TW202404286A
TW202404286A TW112138238A TW112138238A TW202404286A TW 202404286 A TW202404286 A TW 202404286A TW 112138238 A TW112138238 A TW 112138238A TW 112138238 A TW112138238 A TW 112138238A TW 202404286 A TW202404286 A TW 202404286A
Authority
TW
Taiwan
Prior art keywords
channel
channels
clock
signal
signals
Prior art date
Application number
TW112138238A
Other languages
Chinese (zh)
Inventor
呂岳全
章晉祥
Original Assignee
円星科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/529,575 external-priority patent/US11055241B2/en
Application filed by 円星科技股份有限公司 filed Critical 円星科技股份有限公司
Publication of TW202404286A publication Critical patent/TW202404286A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Communication Control (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Electronic Switches (AREA)

Abstract

An integrated circuit in a transmitter includes a multi-lane interface, N signal generating circuits, a lane selection circuit and a control circuit. The multi-lane interface has N lanes. M of the N signal generating circuits are configured to generate M clock signals respectively. (N-M) of the N signal generating circuits are configured to generate (N-M) data signals respectively. The lane selection circuit selects M of the N lanes as M clock lanes by coupling the M clock signals to the M clock lanes respectively, and couples one of the (N-M) data signals to one of remaining (N-M) lanes, serving as (N-M) data lanes, according to a data select signal. The control circuit generates the data select signal according to a first lane identifier corresponding to a lane identifier of the one of the (N-M) lanes. The data select signal has a signal value mapping to the first lane identifier.

Description

時脈前送介面接收器之中具有可通用於時脈與資料通道之通道的積體電路Integrated circuitry in a clock forward interface receiver with channels for both clock and data channels

本揭示內容係關於時脈前送介面(clock forwarding interface),尤指一種位於時脈前送介面接收器之中具有可通用於時脈與資料通道之通道的積體電路,以及時脈前送介面接收器的實體層(physical layer)。This disclosure relates to a clock forwarding interface, and more particularly to an integrated circuit in a clock forwarding interface receiver having channels for both clock and data channels, and clock forwarding The physical layer of the interface receiver.

某些通訊系統利用時脈前送方案以在傳輸器與接收器之間提供高速資料傳輸。於此時脈前送方案中,一時脈訊號連同一或多個資料訊號從一傳輸器傳送至一接收器。舉例來說,該接收器可包含一時脈前送介面,其具有一時脈通道(clock lane)與多條資料通道(data lane)。該時脈通道上的一時脈訊號連同該些資料通道上的多個資料訊號會從該傳輸器向前傳送(forward)至該接收器。因此,該接收器可利用該傳輸器所向前傳送之該時脈訊號來擷取該些資料訊號。視所使用的實體層(physical layer,PHY)規格而定,該時脈前送介面之中各通道(亦即,時脈通道或資料通道)可以是用於時脈或資料傳輸之點對點(point-to-point)、雙線(two-wire)或三線(three-wire)介面。Some communication systems utilize clock forwarding schemes to provide high-speed data transfer between transmitters and receivers. In this pulse forwarding scheme, a clock signal along with one or more data signals are transmitted from a transmitter to a receiver. For example, the receiver may include a clock forwarding interface having a clock lane and multiple data lanes. A clock signal on the clock channel together with a plurality of data signals on the data channels are forwarded from the transmitter to the receiver. Therefore, the receiver can utilize the clock signal forwarded by the transmitter to retrieve the data signals. Depending on the physical layer (PHY) specification used, each channel (ie, clock channel or data channel) in the clock forwarding interface can be a point-to-point (point) for clock or data transmission. -to-point), two-wire (two-wire) or three-wire (three-wire) interface.

本揭示的實施例提供了一種位於時脈前送介面接收器之中具有可通用於時脈與資料通道之通道的積體電路,及其相關的實體層。Embodiments of the present disclosure provide an integrated circuit in a clock forward interface receiver with channels for both clock and data channels, and its associated physical layers.

本揭示的某些實施例包含一種位於一傳輸器中的積體電路。該積體電路包含一多通道介面、N個訊號產生電路、一通道選取電路及一控制電路。該多通道介面具有N條通道。N是大於1的整數。該N個訊號產生電路耦接於該多通道介面。該N個訊號產生電路中的M個訊號產生電路分別用以產生M個時脈訊號,且該N個訊號產生電路中的(N-M)個訊號產生電路分別用以產生(N-M)個資料訊號,M是小於N的正整數。該通道選取電路耦接於該多通道介面與該N個訊號產生電路之間,用以藉由將該M個時脈訊號分別耦接於該N條通道中的M條通道,來將該M條通道選為M條時脈通道,並根據一資料選取訊號將該(N-M)個資料訊號中的一資料訊號耦接於剩餘的(N-M)條通道中的一通道。該(N-M)條通道作為(N-M)條資料通道。該控制電路用以根據一第一通道識別碼產生該資料選取訊號。該第一通道識別碼係對應於該(N-M)條通道中該通道之通道識別碼。該資料選取訊號具有匹配於該第一通道識別碼的訊號值。Certain embodiments of the present disclosure include an integrated circuit in a transmitter. The integrated circuit includes a multi-channel interface, N signal generation circuits, a channel selection circuit and a control circuit. The multi-channel interface has N channels. N is an integer greater than 1. The N signal generating circuits are coupled to the multi-channel interface. The M signal generating circuits among the N signal generating circuits are respectively used to generate M clock signals, and the (N-M) signal generating circuits among the N signal generating circuits are used to generate (N-M) data signals respectively, M is a positive integer less than N. The channel selection circuit is coupled between the multi-channel interface and the N signal generating circuits, and is used to couple the M clock signals to M channels among the N channels respectively. The channels are selected as M clock channels, and one of the (N-M) data signals is coupled to one of the remaining (N-M) channels according to a data selection signal. The (N-M) channels serve as (N-M) data channels. The control circuit is used to generate the data selection signal according to a first channel identification code. The first channel identification code corresponds to the channel identification code of the channel among the (N-M) channels. The data selection signal has a signal value matching the first channel identification code.

本揭示的某些實施例包含一種位於一傳輸器中的積體電路。該積體電路包含一多通道介面、N個訊號產生電路、一通道選取電路及一控制電路。該多通道介面具有N條通道。N是大於1的整數。該N個訊號產生電路耦接於該多通道介面。該N個訊號產生電路中的M個訊號產生電路分別用以產生M個時脈訊號,且該N個訊號產生電路中的(N-M)個訊號產生電路分別用以產生(N-M)個資料訊號,M是小於N的正整數。該通道選取電路耦接於該多通道介面與該N個訊號產生電路之間,用以將該N條通道中的M條通道選為M條時脈通道,剩餘的(N-M)條通道作為(N-M)條資料通道。在一模式中,該N條通道中的一通道係根據一時脈選取訊號被選為用於輸出該M個時脈訊號中的一時脈訊號的一時脈通道。在另一模式中,該N條通道中的該通道係根據一資料選取訊號而作為用於輸出該(N-M)個資料訊號中的一資料訊號。該控制電路用以產生該時脈選取訊號與該資料選取訊號。在該另一模式中,該控制電路用以根據一第一通道識別碼產生該資料選取訊號。該第一通道識別碼係對應於該N條通道中該通道之通道識別碼,且該資料選取訊號具有匹配於該N條通道中該通道之通道識別碼的訊號值。Certain embodiments of the present disclosure include an integrated circuit in a transmitter. The integrated circuit includes a multi-channel interface, N signal generation circuits, a channel selection circuit and a control circuit. The multi-channel interface has N channels. N is an integer greater than 1. The N signal generating circuits are coupled to the multi-channel interface. The M signal generating circuits among the N signal generating circuits are respectively used to generate M clock signals, and the (N-M) signal generating circuits among the N signal generating circuits are used to generate (N-M) data signals respectively, M is a positive integer less than N. The channel selection circuit is coupled between the multi-channel interface and the N signal generation circuits, and is used to select M channels among the N channels as M clock channels, and the remaining (N-M) channels as ( N-M) data channels. In one mode, one of the N channels is selected as a clock channel for outputting one of the M clock signals based on a clock selection signal. In another mode, the channel of the N channels is used to output a data signal of the (N-M) data signals based on a data selection signal. The control circuit is used to generate the clock selection signal and the data selection signal. In the other mode, the control circuit is used to generate the data selection signal according to a first channel identification code. The first channel identification code corresponds to the channel identification code of the channel among the N channels, and the data selection signal has a signal value matching the channel identification code of the channel among the N channels.

本揭示的某些實施例包含一種一接收器的實體層。該實體層包含一實體媒體連接層( physical medium attachment layer,PMA)以及一實體編碼子層(physical coding sublayer,PCS)。該實體媒體連接層用以輸出分別相關於M個不同時脈域的M個第一時脈訊號。M是大於1的整數。該實體編碼子層具有N條第一通道,並耦接於該實體媒體連接層。N是大於M的整數。該實體編碼子層用以將該N條第一通道中的M條通道選為M條第一時脈通道,並經由該M條第一時脈通道接收該M個第一時脈訊號。該N條第一通道中剩餘的(N-M)條通道中的一或多條通道作為一或多條第一資料通道。Certain embodiments of the present disclosure include a physical layer of a receiver. The physical layer includes a physical medium attachment layer (PMA) and a physical coding sublayer (PCS). The physical media connection layer is used to output M first clock signals respectively related to M different clock domains. M is an integer greater than 1. The physical coding sub-layer has N first channels and is coupled to the physical media connection layer. N is an integer greater than M. The physical coding sublayer is used to select M channels among the N first channels as M first clock channels, and receive the M first clock signals via the M first clock channels. One or more channels among the remaining (N-M) channels among the N first channels serve as one or more first data channels.

藉由可通用於時脈通道與資料通道的至少一通道,接收側之實體層可支援傳輸側之不同的通道組態。例如,實體層可分為多個實體介面以支援多個傳輸器。此外,可根據一時脈/資料通道之通道識別碼來選擇該時脈/資料通道,以方便時脈/資料通道的選取。By using at least one channel that is common to both the clock channel and the data channel, the physical layer on the receiving side can support different channel configurations on the transmitting side. For example, the physical layer can be divided into multiple physical interfaces to support multiple transmitters. In addition, a clock/data channel can be selected based on its channel identification code to facilitate clock/data channel selection.

以下揭示內容提供了多種實施方式或例示,其能用以實現本揭示內容的不同特徵。下文所述之參數值、元件與配置的具體例子用以簡化本揭示內容。當可想見,這些敘述僅為例示,其本意並非用於限制本揭示內容。此外,本揭示內容可能會在複數個實施例中重複使用元件符號及/或標號。此種重複使用乃是基於簡潔與清楚的目的,且其本身不代表所討論的不同實施例及/或組態之間的關係。The following disclosure provides various implementations, or examples, by which various features of the present disclosure can be implemented. Specific examples of parameter values, components, and configurations described below are used to simplify this disclosure. It should be understood that these descriptions are only examples and are not intended to limit the disclosure. In addition, this disclosure may reuse reference symbols and/or reference numerals in multiple embodiments. Such repeated use is for the purposes of brevity and clarity and does not in itself represent a relationship between the various embodiments and/or configurations discussed.

再者,當可理解,若將一部件描述為與另一部件「連接(connected to)」或「耦接(coupled to)」,則兩者可直接連接或耦接,或兩者間可能出現其他中間(intervening)部件。Furthermore, it will be understood that if one component is described as being "connected to" or "coupled to" another component, it may be that the two components are directly connected or coupled, or that interactions between the two components may be present. Other intervening components.

採用時脈前送介面之接收器的實體層可使用專用的時脈通道(dedicated clock lane)來接收經由傳輸側(transmitter side)之時脈通道所傳送的時脈訊號。然而,在傳輸器之時脈通道與多條資料通道彼此互換以滿足某些通訊要求的應用中,此接收器將不再適用。例如,位於傳輸側的傳輸裝置的個數可能會改變。又例如,位於傳輸側的傳輸裝置可能會在某些操作情境中,將時脈通道與資料通道互換使用。The physical layer of a receiver using a clock forwarding interface can use a dedicated clock lane to receive the clock signal transmitted via the clock lane on the transmitter side. However, in applications where the clock channel and multiple data channels of the transmitter are interchangeable to meet certain communication requirements, this receiver will no longer be suitable. For example, the number of transmission devices located on the transmission side may change. For another example, a transmission device located on the transmission side may use clock channels and data channels interchangeably in certain operating scenarios.

本揭示提供了位於一時脈前送介面接收器(clock forwarding interface receiver)之中具有可通用於(interchangeable between)時脈與資料通道之通道的一例示性積體電路。在某些實施例中,該例示性積體電路可實施於該時脈前送介面接收器之實體層的子層(sublayer)中,諸如實體媒體連接層(physical medium attachment layer,PMA)或實體編碼子層(physical coding sublayer,PCS)。藉由該例示性積體電路,該時脈前送介面接收器可適應於時脈通道與資料通道之間的互換使用,進而支援傳輸側之不同的通道組態(lane arrangement)。The present disclosure provides an exemplary integrated circuit in a clock forwarding interface receiver with channels interchangeable between clock and data channels. In some embodiments, the exemplary integrated circuit may be implemented in a sublayer of the physical layer of the clock forward interface receiver, such as a physical medium attachment layer (PMA) or physical Coding sublayer (physical coding sublayer, PCS). Through the exemplary integrated circuit, the clock forwarding interface receiver can be adapted to be used interchangeably between a clock channel and a data channel, thereby supporting different lane arrangements on the transmit side.

圖1是根據本揭示某些實施例的一例示性多通道通訊系統(multi-lane communication system)的功能方塊示意圖。多通道通訊系統100包含位於一傳輸側TS之K個傳輸器TX[0]~TX[K-1]以及位於一接收側(receiver side)RS之一接收器104,其中K是正整數。K個傳輸器TX[0]~TX[K-1]中的各傳輸器可包含一多通道介面(亦即,K個多通道介面TF[0]~TF[K-1]的其中之一)以傳輸時脈資訊與資料資訊。K個多通道介面TF[0]~TF[K-1]中的各多通道介面可包含至少一時脈通道與至少一資料通道(圖1未示)。FIG. 1 is a functional block diagram of an exemplary multi-lane communication system according to certain embodiments of the present disclosure. The multi-channel communication system 100 includes K transmitters TX[0]˜TX[K-1] located on a transmission side TS and a receiver 104 located on a receiving side RS, where K is a positive integer. Each of the K transmitters TX[0]~TX[K-1] may include a multi-channel interface (ie, one of the K multi-channel interfaces TF[0]~TF[K-1] ) to transmit clock information and data information. Each of the K multi-channel interfaces TF[0]˜TF[K-1] may include at least one clock channel and at least one data channel (not shown in Figure 1).

接收器104用以經由一通訊連結(communication link)106與K個傳輸器TX[0]~TX[K-1]中的各傳輸器進行通訊。接收器104之一實體層108可採用時脈前送方案來接收通訊連結106上所傳送的時脈資訊與資料資訊。因此,至少一時脈訊號可連同至少一資料訊號從傳輸側TS向前傳送至接收側RS。實體層108包含一積體電路110,其可設置於實體層108之實體媒體連接層或實體編碼子層。積體電路110可適應於傳輸側TS之多種通道組態(lane arrangements/configurations)。舉例來說,積體電路110可操作在一模式以與傳輸側TS進行通訊,其中傳輸側TS使用單一通道作為一時脈通道來傳輸一時脈訊號。積體電路110可操作在另一模式以與傳輸側TS進行通訊,其中傳輸側TS使用多條通道作為多條時脈通道來傳輸多個時脈訊號。The receiver 104 is used to communicate with each of the K transmitters TX[0]˜TX[K-1] via a communication link 106 . A physical layer 108 of the receiver 104 may use a clock forwarding scheme to receive clock information and data information transmitted over the communication link 106 . Therefore, at least one clock signal can be forwarded from the transmitting side TS to the receiving side RS together with at least one data signal. The physical layer 108 includes an integrated circuit 110, which can be disposed in the physical media connection layer or the physical encoding sub-layer of the physical layer 108. The integrated circuit 110 can be adapted to various lane arrangements/configurations of the transmission side TS. For example, the integrated circuit 110 may operate in a mode to communicate with the transmission side TS, where the transmission side TS uses a single channel as a clock channel to transmit a clock signal. The integrated circuit 110 can operate in another mode to communicate with the transmission side TS, where the transmission side TS uses multiple channels as multiple clock channels to transmit multiple clock signals.

於此實施例中,積體電路110包含(但不限於)一多通道介面114、一通道選取電路120以及N個取樣電路RX[0]~RX[N-1],其中N是大於1的整數。多通道介面114經由通訊連結106連接於K個多通道介面TF[0]~TF[K-1]中的各通道介面。多通道介面114包含N條通道LA[0]~LA[N-1]。N條通道LA[0]~LA[N-1]中的至少一通道可通用於時脈通道與資料通道,亦即,該至少一通道可於時脈通道與資料通道之間互換使用。In this embodiment, the integrated circuit 110 includes (but is not limited to) a multi-channel interface 114, a channel selection circuit 120 and N sampling circuits RX[0]˜RX[N-1], where N is greater than 1. integer. The multi-channel interface 114 is connected to each of the K multi-channel interfaces TF[0]˜TF[K-1] via the communication link 106. The multi-channel interface 114 includes N channels LA[0]˜LA[N-1]. At least one channel among the N channels LA[0]˜LA[N-1] can be commonly used for the clock channel and the data channel, that is, the at least one channel can be used interchangeably between the clock channel and the data channel.

通道選取電路120耦接於多通道介面114,用以將N條通道LA[0]~LA[N-1]中的M條通道選為M條時脈通道,其中M是小於N的正整數。此外,通道選取電路120可用於輸出分別在該M條時脈通道上的M個訊號CK 0~CK (M-1),亦即,M個時脈訊號。剩餘的(N-M)條通道可分別作為(N-M)條資料通道。該(N-M)條資料通道中的至少一資料通道可攜帶從傳輸側TS所傳送的資料訊號。於此實施例中,該M個時脈訊號可連同(N-M)個資料訊號(亦即,該(N-M)條通道上的(N-M)個訊號DA 0~DA (N-M-1))向前傳送,使各資料通道可攜帶一資料訊號。值得注意的是,通道選取電路120可將N條通道LA[0]~LA[N-1]中的任一通道選為時脈通道。N條通道LA[0]~LA[N-1]中的各通道均可通用於時脈通道與資料通道。 The channel selection circuit 120 is coupled to the multi-channel interface 114 and is used to select M channels among the N channels LA[0]˜LA[N-1] as M clock channels, where M is a positive integer less than N. . In addition, the channel selection circuit 120 can be used to output M signals CK 0 ˜CK (M-1) respectively on the M clock channels, that is, M clock signals. The remaining (NM) channels can be used as (NM) data channels respectively. At least one of the (NM) data channels can carry a data signal transmitted from the transmission side TS. In this embodiment, the M clock signals may be transmitted forward together with (NM) data signals (ie, (NM) signals DA 0 ~ DA (NM-1) on the (NM) channels) , so that each data channel can carry a data signal. It is worth noting that the channel selection circuit 120 can select any one of the N channels LA[0]˜LA[N-1] as the clock channel. Each channel among the N channels LA[0]~LA[N-1] can be used commonly for clock channels and data channels.

於此實施例中,通道選取電路120包含(但不限於)複數個選取級(selection stage)122與124。選取級122具有一輸入側S1與一輸出側S2。輸入側S1耦接於多通道介面114。選取級122用以將該M條時脈通道上的M個訊號CK 0~CK (M-1)從輸入側S1耦接於輸出側S2。選取級124設置於輸出側S2與N個取樣電路RX[0]~RX[N-1]之間,用以將M個訊號CK 0~CK (M-1)中的各訊號耦接於N個取樣電路RX[0]~RX[N-1]中的一或多個取樣電路。舉例來說,選取級122可實施為N對M多工器(N-to-M multiplexer),其可將N條通道LA[0]~LA[N-1]中的M條通道耦接於輸出側S2。選取級124可實施為M個時脈樹(clock tree)CT,其中各時脈樹均可將一時脈訊號(亦即,M個訊號CK 0~CK (M-1)的其中之一)分配給不止一個取樣電路。 In this embodiment, the channel selection circuit 120 includes (but is not limited to) a plurality of selection stages 122 and 124 . The selection stage 122 has an input side S1 and an output side S2. The input side S1 is coupled to the multi-channel interface 114 . The selection stage 122 is used to couple M signals CK 0 ˜CK (M-1) on the M clock channels from the input side S1 to the output side S2 . The selection stage 124 is disposed between the output side S2 and the N sampling circuits RX[0]~RX[N-1] to couple each of the M signals CK 0 to CK (M-1) to N One or more sampling circuits among the sampling circuits RX[0]~RX[N-1]. For example, the selection stage 122 may be implemented as an N-to-M multiplexer, which may couple M channels among the N channels LA[0]˜LA[N-1] to Output side S2. The selection stage 124 may be implemented as M clock trees CT, each of which may assign a clock signal (ie, one of the M signals CK 0 to CK (M-1) ). Give more than one sampling circuit.

N個取樣電路RX[0]~RX[N-1]耦接於多通道介面114及通道選取電路120,用以根據從傳輸側TS所傳送之時脈資訊與資料資訊來進行資料取樣。於此實施例中,N個取樣電路RX[0]~RX[N-1] 中的各取樣電路用以接收該M條時脈通道上的M個訊號CK 0~CK (M-1)的其中之一。此外,N個取樣電路RX[0]~RX[N-1]中的(N-M)個取樣電路分別耦接於該(N-M)條資料通道,用以接收該(N-M)條資料通道上的(N-M)個訊號DA 0~DA (N-M-1)。該(N-M)個取樣電路中的各取樣電路用以根據M個訊號CK 0~CK (M-1)的其中之一,對(N-M)個訊號DA 0~DA (N-M-1)的其中之一進行取樣。 N sampling circuits RX[0]˜RX[N-1] are coupled to the multi-channel interface 114 and the channel selection circuit 120, and are used for sampling data according to the clock information and data information transmitted from the transmission side TS. In this embodiment, each of the N sampling circuits RX[0]˜RX[N-1] is used to receive M signals CK 0 ˜CK (M-1) on the M clock channels. one of them. In addition, (NM) sampling circuits among the N sampling circuits RX[0] ~ RX[N-1] are respectively coupled to the (NM) data channels for receiving (NM) on the (NM) data channels. NM) signals DA 0 ~ DA (NM-1) . Each of the (NM) sampling circuits is used to analyze one of the (NM) signals DA 0 ~DA (NM-1) according to one of the M signals CK 0 ~CK ( M-1). Once sampled.

舉例來說(但本揭示不限於此),N個取樣電路RX[0]~RX[N-1]中的各取樣電路可包含一時脈輸入端C IN及一資料輸入端D IN。各取樣電路利用輸入至相對應之時脈輸入端C IN的訊號來對輸入至相對應之資料輸入端D IN的訊號進行取樣。藉由將N條通道LA[0]~LA[N-1]中的M條通道耦接於N個取樣電路RX[0]~RX[N-1]的N個時脈輸入端C IN,通道選取電路120可將N條通道LA[0]~LA[N-1]中的該M條通道選為該M條時脈通道。剩餘的(N-M)條通道中的各通道可耦接於一資料輸入端D IN而未耦接於該N個時脈輸入端C IN,進而作為一資料通道。因此,當各取樣電路經由其包含的資料輸入端D IN耦接於一資料通道,以及經由其包含的時脈輸入端C IN耦接於一時脈通道時,該取樣電路可利用該時脈通道上的訊號來對該資料通道上的訊號進行取樣。在某些實施例中,一時脈通道可耦接於該N個時脈輸入端C IN中的一或多個時脈輸入端,使多個取樣電路可根據相同的時脈訊號進行資料取樣。 For example (but this disclosure is not limited thereto), each of the N sampling circuits RX[0]˜RX[N-1] may include a clock input terminal C IN and a data input terminal D IN . Each sampling circuit uses the signal input to the corresponding clock input terminal C IN to sample the signal input to the corresponding data input terminal D IN . By coupling M channels among the N channels LA[0]~LA[N-1] to the N clock input terminals C IN of the N sampling circuits RX[0]~RX[N-1], The channel selection circuit 120 may select the M channels among the N channels LA[0]˜LA[N-1] as the M clock channels. Each of the remaining (NM) channels can be coupled to a data input terminal D IN rather than coupled to the N clock input terminals C IN , thereby serving as a data channel. Therefore, when each sampling circuit is coupled to a data channel via its included data input terminal D IN and coupled to a clock channel via its included clock input terminal C IN , the sampling circuit can utilize the clock channel to sample the signal on the data channel. In some embodiments, a clock channel can be coupled to one or more clock input terminals among the N clock input terminals C IN , so that multiple sampling circuits can sample data according to the same clock signal.

N個取樣電路RX[0]~RX[N-1]所輸出之取樣結果SR包含時脈資訊與資料資訊,其可傳送至積體電路110之中包含其他功能方塊(圖1未示)的輸出電路140以進行進一步的處理。舉例來說,同時耦接於M個訊號CK 0~CK (M-1)之其一與(N-M)個訊號DA 0~DA (N-M-1)之其一的一取樣電路可輸出一資料訊號,該資料訊號可作為取樣結果SR的一部分。耦接於M個訊號CK 0~CK (M-1)之其一而未耦接於(N-M)個訊號DA 0~DA (N-M-1)的一取樣電路可輸出一時脈訊號,該時脈訊號可作為取樣結果SR的另一部分。輸出電路140可根據取樣結果SR輸出M個時脈訊號與(N-M)個資料訊號。在某些實施例中,輸出電路140可包含一解串器區塊(deserializer block)。從輸出電路140所輸出之該M個時脈訊號與該(N-M)個資料訊號中的各訊號均可為多位元並列輸出訊號(multi-bit parallel output signal)。 The sampling results SR output by the N sampling circuits RX[0]~RX[N-1] include clock information and data information, which can be transmitted to the integrated circuit 110 including other functional blocks (not shown in Figure 1). output circuit 140 for further processing. For example, a sampling circuit coupled to one of the M signals CK 0 ~CK (M-1) and one of the (NM) signals DA 0 ~DA (NM-1) simultaneously can output a data signal , this data signal can be used as part of the sampling result SR. A sampling circuit coupled to one of the M signals CK 0 ~CK (M-1) but not coupled to the (NM) signals DA 0 ~DA (NM-1) can output a clock signal. The signal can be used as another part of the sampling result SR. The output circuit 140 can output M clock signals and (NM) data signals according to the sampling result SR. In some embodiments, the output circuit 140 may include a deserializer block. Each of the M clock signals and the (NM) data signals output from the output circuit 140 may be a multi-bit parallel output signal.

在某些實施例中,傳輸器可提供資訊以指示出哪一條通道應該作為一時脈通道。根據傳輸器所提供之資訊,接收器104可對通道選取電路120進行組態/設定(configure),以將適當的通道選為該時脈通道。接收器104可正確地使用該時脈通道上的訊號,以對一或多條資料通道上的訊號進行處理。In some embodiments, the transmitter may provide information indicating which channel should be used as a clock channel. According to the information provided by the transmitter, the receiver 104 can configure the channel selection circuit 120 to select the appropriate channel as the clock channel. The receiver 104 can correctly use the signal on the clock channel to process the signals on one or more data channels.

在某些實施例中,傳輸器可藉由重複一特定位元型樣(bit pattern)來產生一時脈訊號,進而指示出傳輸側RS上哪一條通道應該作為一時脈通道。舉例來說,傳輸器可重複地發送一位元型樣「01」,諸如「01010101」,以作為一時脈訊號。接收器104可藉由檢查一通道所接收的位元串流(bit stream)中是否具有一重複位元型樣,辨識出哪一條通道可作為該時脈通道。也就是說,接收器104可根據一預定重複位元型樣的偵測結果來對通道選取電路120進行組態/設定。In some embodiments, the transmitter can generate a clock signal by repeating a specific bit pattern to indicate which channel on the transmitting side RS should be used as a clock channel. For example, the transmitter may repeatedly send a one-bit pattern "01", such as "01010101", as a clock signal. The receiver 104 can identify which channel can be used as the clock channel by checking whether the bit stream received by a channel has a repeated bit pattern. In other words, the receiver 104 can configure/set the channel selection circuit 120 according to the detection result of a predetermined repeated bit pattern.

在某些實施例中,與接收器104相關的系統應用程式(system application)(圖1未示)可決定多通道介面104中的哪一條通道應該作為一時脈通道。根據系統應用程式所發送之指令,接收器104可對通道選取電路120進行組態/設定,以將適當的通道選為該時脈通道。In some embodiments, a system application (not shown in FIG. 1 ) associated with the receiver 104 may determine which channel of the multi-channel interface 104 should be used as a clock channel. According to the instructions sent by the system application, the receiver 104 can configure/set the channel selection circuit 120 to select the appropriate channel as the clock channel.

請注意,以上所述僅供說明的目的,並非用來限制本揭示的範圍。在某些實施例中,圖1所示之通道選取電路120可由單一選取級或不止兩個選取級來實施,而不致背離本揭示的範圍。在某些實施例中,圖1所示之N個取樣電路RX[0]~RX[N-1]的至少其一可利用具有不止一個資料輸出端的取樣電路來實施。Please note that the above is for illustrative purposes only and is not intended to limit the scope of this disclosure. In some embodiments, the channel selection circuit 120 shown in FIG. 1 may be implemented with a single selection stage or more than two selection stages without departing from the scope of the present disclosure. In some embodiments, at least one of the N sampling circuits RX[0]˜RX[N-1] shown in FIG. 1 can be implemented using a sampling circuit with more than one data output terminal.

藉由可通用於時脈通道與資料通道的至少一通道,接收側RS之實體層108可支援傳輸側TS之不同的通道組態。為了進一步說明接收側RS之通道互換方案(lane interchange scheme),以下提供了傳輸側TS的通道組態的某些實施例。所屬領域中的通常知識者應可瞭解接收側RS之通道互換方案可支援傳輸側TS的其他通道組態,而不致背離本揭示的範圍。The physical layer 108 of the receiving side RS can support different channel configurations of the transmitting side TS by using at least one channel that is common to both the clock channel and the data channel. In order to further explain the lane interchange scheme of the receiving side RS, some embodiments of the lane configuration of the transmitting side TS are provided below. A person of ordinary skill in the art should understand that the channel swapping scheme of the receiving side RS can support other channel configurations of the transmitting side TS without departing from the scope of this disclosure.

圖2A至圖2C繪示了根據本揭示某些實施例的圖1所示之接收器104的不同模式的示意圖。接收器104可根據傳輸側TS的不同通道組態分別操作在不同模式OP1~OP3。於圖2A所示之模式OP1中,接收器104可用來接收單一傳輸器所提供之時脈資訊與資料資訊。為方便說明,該單一傳輸器可由圖1所示之傳輸器TX[0]來代表。傳輸器TX[0]之多通道介面TF[0]包含多條通道L0[0]~L0[P],P為正整數。傳輸器TX[0]用以將通道L0[P]上的時脈訊號C0連同P條通道L0[0]~L0[P-1]上的P個資料訊號D0 0~D0 (P-1)一併輸出。 2A to 2C illustrate schematic diagrams of different modes of the receiver 104 shown in FIG. 1 according to certain embodiments of the present disclosure. The receiver 104 can operate in different modes OP1 to OP3 respectively according to different channel configurations of the transmission side TS. In the mode OP1 shown in FIG. 2A , the receiver 104 can be used to receive clock information and data information provided by a single transmitter. For convenience of explanation, the single transmitter can be represented by the transmitter TX[0] shown in FIG. 1 . The multi-channel interface TF[0] of the transmitter TX[0] includes multiple channels L0[0]~L0[P], where P is a positive integer. The transmitter TX[0] is used to transmit the clock signal C0 on the channel L0[P] together with the P data signals D0 0 ~D0 (P-1) on the P channels L0[0]~L0[P-1] output together.

接收器104用以將N條通道LA[0]~LA[N-1]的其中之一選為一時脈通道(亦即,M=1),以經由通訊連結106接收時脈訊號C0。剩餘的(N-1)條通道中的P條通道可作為P條資料通道以接收P個資料訊號D0 0~D0 (P-1)。於此實施例中,從傳輸器TX[0]所傳送之資料訊號的個數以及時脈訊號的個數兩者的總和可等於多通道介面114的通道個數(亦即,P+1=N)。因此,N條通道LA[0]~LA[N-1]中的各通道可用來接收傳輸側TX[0]所提供的訊號資訊。接收器104可將通道LA[N-1](亦即,通道L0[P]上的時脈訊號C0輸入的通道)選為該時脈通道。剩餘的(N-1)條通道LA[0]~LA[N-2]可作為(N-1)條資料通道以接收P個資料訊號D0 0~D0 (P-1)The receiver 104 is used to select one of the N channels LA[0]˜LA[N-1] as a clock channel (ie, M=1) to receive the clock signal C0 via the communication link 106 . P channels among the remaining (N-1) channels can be used as P data channels to receive P data signals D0 0 ~D0 (P-1) . In this embodiment, the sum of the number of data signals and the number of clock signals transmitted from the transmitter TX[0] may be equal to the number of channels of the multi-channel interface 114 (ie, P+1= N). Therefore, each of the N channels LA[0]~LA[N-1] can be used to receive the signal information provided by the transmission side TX[0]. The receiver 104 may select channel LA[N-1] (ie, the channel to which the clock signal C0 on channel L0[P] is input) as the clock channel. The remaining (N-1) channels LA[0]~LA[N-2] can be used as (N-1) data channels to receive P data signals D0 0 ~D0 (P-1) .

於圖2B所示之模式OP2中,接收器104可用來接收多個傳輸器所提供之時脈資訊與資料資訊,其中傳輸側TS之多條通道可作為多條時脈通道以攜帶多個時脈訊號。例如,當操作在分岔模式(bifurcation mode)時,實體層108可分成彼此不同的多個實體層以支援圖1所示之K個傳輸器TX[0]~TX[K-1]中的多個傳輸器。為方便說明,於此實施例中,該多個傳輸器可由兩個傳輸器TX[1]與TX[2]來代表。傳輸器TX[1]之多通道介面TF[1]包含多條通道L1[0]~L1[Q],Q為正整數。傳輸器TX[1]用以將通道L1[Q]上的時脈訊號C1連同Q條通道L1[0]~L1[Q-1]上的Q個資料訊號D1 0~D1 (Q-1)一併輸出。傳輸器TX[2]之多通道介面TF[2]包含多條通道L2[0]~L2[R],R為正整數。傳輸器TX[2]用以將通道L2[R]上的時脈訊號C2連同R條通道L2[0]~L2[R-1]上的R個資料訊號D2 0~D2 (R-1)一併輸出。由於傳輸側TS的兩條通道於模式OP2中均作為時脈通道,傳輸側TS於模式OP2中的通道組態不同於傳輸側TS於模式OP1中的通道組態,其採用單一通道作為時脈通道。 In the mode OP2 shown in FIG. 2B , the receiver 104 can be used to receive clock information and data information provided by multiple transmitters, in which multiple channels of the transmitting side TS can be used as multiple clock channels to carry multiple clocks. Pulse signal. For example, when operating in bifurcation mode, the physical layer 108 can be divided into multiple physical layers that are different from each other to support the K transmitters TX[0]˜TX[K-1] shown in FIG. 1 Multiple transmitters. For convenience of explanation, in this embodiment, the multiple transmitters may be represented by two transmitters TX[1] and TX[2]. The multi-channel interface TF[1] of the transmitter TX[1] includes multiple channels L1[0]~L1[Q], where Q is a positive integer. The transmitter TX[1] is used to transmit the clock signal C1 on the channel L1[Q] together with the Q data signals D1 0 ~ D1 (Q-1) on the Q channels L1[0] ~ L1 [Q-1] output together. The multi-channel interface TF[2] of the transmitter TX[2] includes multiple channels L2[0]~L2[R], where R is a positive integer. The transmitter TX[2] is used to transmit the clock signal C2 on the channel L2[R] together with the R data signals D2 0 ~ D2 (R-1) on the R channels L2[0] ~ L2 [R-1] output together. Since both channels of the transmission side TS are used as clock channels in mode OP2, the channel configuration of the transmission side TS in mode OP2 is different from the channel configuration of the transmission side TS in mode OP1, which uses a single channel as the clock aisle.

接收器104可因應模式OP2將N條通道LA[0]~LA[N-1]中的兩條通道選為兩條時脈通道(亦即,M=2),以接收傳輸側TS所傳送之複數個時脈訊號C1與C2。剩餘的(N-2)條通道中的(Q+R)條通道可作為(Q+R)條資料通道,以接收複數個資料訊號D1 0~D1 (Q-1)與D2 0~D2 (R-1)。於此實施例中,從複數個傳輸器TX[1]與TX[2]所傳送之資料訊號的個數以及時脈訊號的個數兩者的總和,可等於多通道介面114的通道個數(亦即,Q+R+2=N)。因此,N條通道LA[0]~LA[N-1]中的各通道可用來接收複數個傳輸器TX[1]與TX[2]所提供的訊號資訊。接收器104可將兩條通道LA[J]與LA[N-1](亦即,複數個時脈訊號C1與C2輸入的通道)選為兩條時脈通道。J為介於0與N-2之間的整數。剩餘的(N-2)條通道可作為(N-2)條資料通道以接收複數個資料訊號D1 0~D1 (Q-1)與D2 0~D2 (R-1)。由於通道LA[J]可在模式OP1中作為資料通道,而在模式OP2中作為時脈通道,因此,積體電路110不僅可支援單一傳輸器,也可支援多個傳輸器。 The receiver 104 can select two channels among the N channels LA[0]~LA[N-1] as two clock channels (that is, M=2) in response to the mode OP2 to receive the data transmitted by the transmission side TS. A plurality of clock signals C1 and C2. The (Q+R) channels among the remaining (N-2) channels can be used as (Q+R) data channels to receive a plurality of data signals D1 0 ~ D1 (Q-1) and D2 0 ~ D2 ( R-1) . In this embodiment, the sum of the number of data signals and the number of clock signals transmitted from the plurality of transmitters TX[1] and TX[2] may be equal to the number of channels of the multi-channel interface 114 (That is, Q+R+2=N). Therefore, each of the N channels LA[0]~LA[N-1] can be used to receive signal information provided by a plurality of transmitters TX[1] and TX[2]. The receiver 104 can select the two channels LA[J] and LA[N-1] (that is, the channels to which the plurality of clock signals C1 and C2 are input) as two clock channels. J is an integer between 0 and N-2. The remaining (N-2) channels can be used as (N-2) data channels to receive a plurality of data signals D1 0 ~D1 (Q-1) and D2 0 ~D2 (R-1) . Since channel LA[J] can be used as a data channel in mode OP1 and as a clock channel in mode OP2, the integrated circuit 110 can support not only a single transmitter but also multiple transmitters.

在某些實施例中,一或多個傳輸器具有可在資料通道與時脈通道之間互換使用的通道,以於傳輸側TS提供不同的通道組態。舉例來說,於圖2C所示之模式OP3中,接收器104可用來接收傳輸器TX[0]所提供之時脈資訊與資料資訊,其中傳輸器TX[0]可從通道L0[0]傳送時脈訊號C0,以及從P條通道L0[1]~L0[P]傳輸P個資料訊號D0 0~D0 (P-1)。相較於模式OP1,傳輸器TX[0]可致使於時脈通道上以及於資料通道上傳輸的訊號彼此互換。因此,在模式OP1中作為資料通道的通道L0[0]可在模式OP3中作為時脈通道,而在模式OP1中作為時脈通道的通道L0[P]可在模式OP3中作為資料通道。接收器140可將通道LA[0]選為時脈通道以接收時脈訊號C0。剩餘的(N-1)條通道LA[1]~LA[N-1]中的P條通道可作為P條資料通道以接收P個資料訊號D0 0~D0 (P-1)。藉由將通道LA[0]與通道LA[N-1]分別在資料通道與時脈通道之間互換使用,積體電路110可支援能夠將時脈通道與資料通道互換使用的傳輸器TX[0]。 In some embodiments, one or more transmitters have channels that can be used interchangeably between data channels and clock channels to provide different channel configurations on the transmit side TS. For example, in the mode OP3 shown in FIG. 2C , the receiver 104 can be used to receive the clock information and data information provided by the transmitter TX[0], where the transmitter TX[0] can receive the signal from the channel L0[0] Transmit clock signal C0, and transmit P data signals D0 0 ~ D0 (P-1) from P channels L0[1] ~ L0[P]. Compared with mode OP1, the transmitter TX[0] can cause the signals transmitted on the clock channel and the data channel to be interchanged with each other. Therefore, channel L0[0], which is a data channel in mode OP1, can be used as a clock channel in mode OP3, and channel L0[P], which is a clock channel in mode OP1, can be used as a data channel in mode OP3. The receiver 140 may select channel LA[0] as the clock channel to receive the clock signal C0. P channels among the remaining (N-1) channels LA[1]~LA[N-1] can be used as P data channels to receive P data signals D0 0 ~D0 (P-1) . By using channel LA[0] and channel LA[N-1] interchangeably between data channels and clock channels respectively, the integrated circuit 110 can support a transmitter TX that can use clock channels and data channels interchangeably. 0].

為便於理解本揭示的內容,以下提供某些實施例以進一步說明採用通道互換方案的時脈前送介面接收器。所屬領域中的通常知識者應可瞭解,其他基於圖1所示之積體電路110或接收器104所描述之通道互換方案的實施例均遵循本揭示的精神而落入本揭示的範疇。To facilitate understanding of the present disclosure, certain embodiments are provided below to further illustrate the clock forwarding interface receiver using the channel swapping scheme. Those of ordinary skill in the art should understand that other embodiments of the channel interchange scheme described based on the integrated circuit 110 or the receiver 104 shown in FIG. 1 follow the spirit of the present disclosure and fall within the scope of the present disclosure.

圖3是根據本揭示某些實施例的圖1所示之積體電路110的具體實施方式的示意圖。積體電路310設置於接收器300之實體層中,諸如實體媒體連接層,以接收傳輸側之一或多個傳輸器所傳送的時脈資訊與資料資訊。積體電路310可作為圖1所示之積體電路110(其包含六條可通用於時脈通道與資料通道的通道,N=6)的實施例。於此實施例中,積體電路310可包含圖1所示之複數個取樣電路RX[0]~RX[5]、一多通道介面314以及一通道選取電路320。多通道介面314以及通道選取電路320可分別作為圖1所示之多通道介面114以及通道選取電路120的實施例。FIG. 3 is a schematic diagram of a specific implementation of the integrated circuit 110 shown in FIG. 1 according to certain embodiments of the present disclosure. The integrated circuit 310 is disposed in a physical layer of the receiver 300, such as a physical media connection layer, to receive clock information and data information transmitted by one or more transmitters on the transmission side. The integrated circuit 310 can be an embodiment of the integrated circuit 110 shown in FIG. 1 (which includes six channels that can be used commonly for clock channels and data channels, N=6). In this embodiment, the integrated circuit 310 may include a plurality of sampling circuits RX[0]˜RX[5] as shown in FIG. 1 , a multi-channel interface 314 and a channel selection circuit 320 . The multi-channel interface 314 and the channel selection circuit 320 can be respectively used as embodiments of the multi-channel interface 114 and the channel selection circuit 120 shown in FIG. 1 .

於此實施例中,多通道介面314的複數條通道LA[0]~LA[5]中的各通道均可利用雙線通道(two-wire lane)來實施。雙線通道是包含一對訊號接腳(a pair of signal pins)及一放大器的差動通道(differential lane)。在某些實施例中,複數條通道LA[0]~LA[5]中的各通道均可利用其他類型的通道來實施,諸如單線通道或具有超過兩線之通道,而不致背離本揭示的範圍。In this embodiment, each of the plurality of channels LA[0]˜LA[5] of the multi-channel interface 314 can be implemented using a two-wire lane. A two-wire channel is a differential lane that includes a pair of signal pins and an amplifier. In some embodiments, each of the plurality of channels LA[0]-LA[5] may be implemented using other types of channels, such as single-wire channels or channels with more than two wires, without departing from the teachings of the present disclosure. Scope.

通道選取電路320用以將複數條通道LA[0]~LA[5]中的一或多條通道選為一或多條時脈通道。通道選取電路320可包含複數個選取級322與324,其可分別作為圖1所示之複數個選取級122與124的實施例。於此實施例中,選取級322可因應積體電路310的模式將一或兩條通道耦接於選取級324。選取級322包含(但不限於)複數個通道選取單元322.0與322.1。通道選取單元322.0用以根據一時脈選取訊號SEL 00將複數條通道LA[0]~LA[2]從輸入側S01耦接於輸出側S02。通道選取單元322.1用以根據一時脈選取訊號SEL 01將複數條通道LA[3]~LA[5]從輸入側S11耦接於輸出側S12。 The channel selection circuit 320 is used to select one or more channels among the plurality of channels LA[0]˜LA[5] as one or more clock channels. The channel selection circuit 320 may include a plurality of selection stages 322 and 324, which may serve as embodiments of the plurality of selection stages 122 and 124 shown in FIG. 1, respectively. In this embodiment, the selection stage 322 may couple one or two channels to the selection stage 324 according to the mode of the integrated circuit 310 . The selection stage 322 includes (but is not limited to) a plurality of channel selection units 322.0 and 322.1. The channel selection unit 322.0 is used to couple a plurality of channels LA[0]˜LA[2] from the input side S01 to the output side S02 according to a clock selection signal SEL 00 . The channel selection unit 322.1 is used to couple a plurality of channels LA[3]˜LA[5] from the input side S11 to the output side S12 according to a clock selection signal SEL 01 .

選取級324可將選取級322所選取的各通道上的訊號分配給不止一個取樣電路。選取級324包含(但不限於)複數個通道選取單元324.0~324.5。複數個通道選取單元324.0~324.5均可根據相對應之時脈選取訊號(亦即,複數個時脈選取訊號SEL 10~SEL 15之其一)複數個輸出側S02與S12耦接於相對應之取樣電路。關於複數個時脈選取訊號SEL 00、SEL 01與SEL 10~SEL 15的說明請容後再敘。 The selection stage 324 may distribute the signals on each channel selected by the selection stage 322 to more than one sampling circuit. The selection stage 324 includes (but is not limited to) a plurality of channel selection units 324.0˜324.5. The plurality of channel selection units 324.0-324.5 can select a signal according to the corresponding clock (that is, one of the plurality of clock selection signals SEL 10 -SEL 15 ). The plurality of output sides S02 and S12 are coupled to the corresponding Sampling circuit. The description of the plurality of clock selection signals SEL 00 , SEL 01 and SEL 10 ~ SEL 15 will be discussed later.

複數個取樣電路RX[0]~RX[5]各自的時脈輸入端C IN分別耦接於複數個通道選取單元324.0~324.5各自的輸出端。複數個取樣電路RX[0]~RX[5]各自的資料輸入端D IN分別耦接於複數條通道LA[0]~LA[5]。於此實施例中,複數個取樣電路RX[0]~RX[5]中的各取樣電路均可利用正反器(flip-flop)(諸如D型正反器(D-type flip-flop))來實施,以進行資料取樣。所屬領域中具有通常知識者應可瞭解複數個取樣電路RX[0]~RX[5]的各取樣電路均可利用其他類型的取樣電路來實施,而不致背離本揭示的範圍。 The clock input terminals C IN of the plurality of sampling circuits RX[0]˜RX[5] are respectively coupled to the respective output terminals of the plurality of channel selection units 324.0˜324.5. The data input terminals D IN of the plurality of sampling circuits RX[0]˜RX[5] are respectively coupled to the plurality of channels LA[0]˜LA[5]. In this embodiment, each of the plurality of sampling circuits RX[0]˜RX[5] can use a flip-flop (such as a D-type flip-flop). ) to implement for data sampling. Those with ordinary skill in the art should understand that each of the plurality of sampling circuits RX[0]˜RX[5] can be implemented using other types of sampling circuits without departing from the scope of the present disclosure.

圖4A至圖4C繪示了根據本揭示某些實施例的圖3所示之積體電路310的操作示意圖。於圖4A與圖4B所示之實施例中,積體電路310操作在與圖2A/2C所示之模式OP1/OP3相似的模式中,以接收來自多通道介面314的單一時脈訊號。通道選取電路320可將複數條通道LA[0]~LA[5]的其中之一選為一時脈通道,以接收該時脈訊號。通道選取電路320用以將該時脈通道上的訊號(亦即,時脈訊號)耦接於複數個取樣電路RX[0]~RX[5]中的各取樣電路。於圖4C所示之實施例中,積體電路310操作在與圖2B所示之模式OP2相似的模式中,以接收來自多通道介面314的多個時脈訊號。通道選取電路320可將複數條通道LA[0]~LA[5]之中的兩條通道選為兩條時脈通道,以接收該多個時脈訊號。通道選取電路320用以將各時脈通道上的訊號耦接於複數個取樣電路RX[0]~RX[5]中的一或多個取樣電路。4A to 4C illustrate operation diagrams of the integrated circuit 310 shown in FIG. 3 according to certain embodiments of the present disclosure. In the embodiment shown in FIGS. 4A and 4B , the integrated circuit 310 operates in a mode similar to the modes OP1 / OP3 shown in FIGS. 2A / 2C to receive a single clock signal from the multi-channel interface 314 . The channel selection circuit 320 can select one of the plurality of channels LA[0]˜LA[5] as a clock channel to receive the clock signal. The channel selection circuit 320 is used to couple the signal on the clock channel (that is, the clock signal) to each of the plurality of sampling circuits RX[0]˜RX[5]. In the embodiment shown in FIG. 4C , the integrated circuit 310 operates in a mode similar to the mode OP2 shown in FIG. 2B to receive multiple clock signals from the multi-channel interface 314 . The channel selection circuit 320 can select two channels among the plurality of channels LA[0]˜LA[5] as two clock channels to receive the plurality of clock signals. The channel selection circuit 320 is used to couple the signal on each clock channel to one or more sampling circuits among the plurality of sampling circuits RX[0]˜RX[5].

首先請參閱圖4A,積體電路310可支援「5D1C」通道組態,其中一時脈訊號5D_CLK輸入至複數條通道LA[0]~LA[2]的其中之一(於此實施例中,以輸入至通道LA[0]為例來說明)。五個資料訊號5D 0~5D 4輸入至剩餘的五條通道。通道選取單元322.0根據時脈選取訊號SEL 00將通道LA[0]耦接於輸出側S02,以將通道LA[0]選為時脈通道。複數條通道LA[1]與LA[2]未耦接於輸出側S02。此外,複數個通道選取單元324.0~324.5中的各通道選取單元可根據相對應之時脈選取訊號,將通道選取單元322.0之輸出側S02耦接於相對應之取樣電路。因此,時脈訊號5D_CLK可傳送至複數個取樣電路RX[0]~RX[5]各自的時脈輸入端C IN。分別耦接於複數條通道LA[1]~LA[5]的複數個取樣電路RX[1]~RX[5]可根據時脈訊號5D_CLK對複數個資料訊號5D 0~5D 4進行取樣。 First, please refer to FIG. 4A. The integrated circuit 310 can support the "5D1C" channel configuration, in which a clock signal 5D_CLK is input to one of the plurality of channels LA[0]~LA[2] (in this embodiment, Take input to channel LA[0] as an example to illustrate). Five data signals 5D 0 ~ 5D 4 are input to the remaining five channels. The channel selection unit 322.0 couples the channel LA[0] to the output side S02 according to the clock selection signal SEL 00 , so as to select the channel LA[0] as the clock channel. The plurality of channels LA[1] and LA[2] are not coupled to the output side S02. In addition, each of the plurality of channel selection units 324.0˜324.5 can couple the output side S02 of the channel selection unit 322.0 to the corresponding sampling circuit according to the corresponding clock selection signal. Therefore, the clock signal 5D_CLK can be sent to the respective clock input terminals C IN of a plurality of sampling circuits RX[0]˜RX[5]. A plurality of sampling circuits RX[1]˜RX[5] respectively coupled to a plurality of channels LA[1]˜LA[5] can sample the plurality of data signals 5D 0 ˜5D 4 according to the clock signal 5D_CLK.

請參閱圖4B,積體電路310可支援「5D1C」通道組態,其中時脈訊號5D_CLK輸入至複數條通道LA[3]~LA[5]的其中之一(於此實施例中,以輸入至通道LA[3]為例來說明)。複數個資料訊號5D 0~5D 4輸入至剩餘的五條通道。通道選取單元322.1根據時脈選取訊號SEL 01將通道LA[3]耦接於輸出側S12,以將通道LA[3]選為時脈通道。複數個通道選取單元324.0~324.5中的各通道選取單元可將通道選取單元322.1之輸出側S12耦接於相對應之取樣電路。因此,分別耦接於複數條通道LA[0]~LA[2]、LA[4]與LA[5]的複數個取樣電路RX[0]~RX[2]、RX[4]與RX[5]可根據時脈訊號5D_CLK對複數個資料訊號5D 0~5D 4進行取樣。 Referring to FIG. 4B, the integrated circuit 310 can support the "5D1C" channel configuration, in which the clock signal 5D_CLK is input to one of the plurality of channels LA[3]~LA[5] (in this embodiment, input Take channel LA[3] as an example to illustrate). A plurality of data signals 5D 0 ~ 5D 4 are input to the remaining five channels. The channel selection unit 322.1 couples the channel LA[3] to the output side S12 according to the clock selection signal SEL 01 , so as to select the channel LA[3] as the clock channel. Each channel selection unit among the plurality of channel selection units 324.0˜324.5 can couple the output side S12 of the channel selection unit 322.1 to the corresponding sampling circuit. Therefore, a plurality of sampling circuits RX[0]~RX[2], RX[4] and RX[ are respectively coupled to a plurality of channels LA[0]~LA[2], LA[4] and LA[5]. 5] A plurality of data signals 5D 0 ~ 5D 4 can be sampled according to the clock signal 5D_CLK.

請參閱圖4C,積體電路310可作為兩個電路介面,其均可支援「2D1C」通道組態(兩條通道作為資料通道,一條通道作為時脈通道)。於此實施例中,一時脈訊號2D_CLK0輸入至複數條通道LA[0]~LA[2]的其中之一,諸如通道LA[0]。相關的資料訊號2D 00與2D 01可輸入至剩餘的兩條通道。此外,一時脈訊號2D_CLK1輸入至複數條通道LA[3]~LA[5]的其中之一,諸如通道LA[3]。相關的資料訊號2D 10與2D 11可輸入至剩餘的兩條通道。 Referring to Figure 4C, the integrated circuit 310 can be used as two circuit interfaces, both of which can support "2D1C" channel configuration (two channels as data channels and one channel as a clock channel). In this embodiment, a clock signal 2D_CLK0 is input to one of the plurality of channels LA[0]˜LA[2], such as channel LA[0]. The relevant data signals 2D 00 and 2D 01 can be input to the remaining two channels. In addition, a clock signal 2D_CLK1 is input to one of the plurality of channels LA[3]˜LA[5], such as channel LA[3]. Relevant data signals 2D 10 and 2D 11 can be input to the remaining two channels.

通道選取單元322.0用以根據時脈選取訊號SEL 00將通道LA[0]耦接於輸出側S02。複數個通道選取單元324.0~324.2中的各通道選取單元用以根據相對應之時脈選取訊號將輸出側S02耦接於相對應之取樣電路。因此,分別耦接於複數條通道LA[1]與LA[2]的複數個取樣電路RX[1]與RX[2]可根據時脈訊號2D_CLK0對複數個資料訊號2D 00與2D 01進行取樣。相似地,通道選取單元322.1用以根據時脈選取訊號SEL 01將通道LA[3]耦接於輸出側S12。複數個通道選取單元324.3~324.5中的各通道選取單元用以根據相對應之時脈選取訊號將輸出側S12耦接於相對應之取樣電路。因此,分別耦接於複數條通道LA[4]與LA[5]的複數個取樣電路RX[4]與RX[5]可根據時脈訊號2D_CLK1對複數個資料訊號2D 10與2D 11進行取樣。由於複數個時脈選取訊號SEL 10~SEL 12中的各時脈選取訊號的訊號位準/訊號值,均可不同於複數個時脈選取訊號SEL 13~SEL 15中的各時脈選取訊號的訊號位準/訊號值,因此,複數個通道選取單元324.0~324.5可將不同的時脈訊號2D_CLK0與2D_CLK1分配給複數個取樣電路RX[0]~RX[5]。 The channel selection unit 322.0 is used to couple the channel LA[0] to the output side S02 according to the clock selection signal SEL 00 . Each channel selection unit among the plurality of channel selection units 324.0˜324.2 is used to couple the output side S02 to the corresponding sampling circuit according to the corresponding clock selection signal. Therefore, the plurality of sampling circuits RX[1] and RX[2] respectively coupled to the plurality of channels LA[1] and LA[2] can sample the plurality of data signals 2D 00 and 2D 01 according to the clock signal 2D_CLK0 . Similarly, the channel selection unit 322.1 is used to couple the channel LA[3] to the output side S12 according to the clock selection signal SEL 01 . Each channel selection unit among the plurality of channel selection units 324.3˜324.5 is used to couple the output side S12 to the corresponding sampling circuit according to the corresponding clock selection signal. Therefore, the plurality of sampling circuits RX[4] and RX[5] respectively coupled to the plurality of channels LA[4] and LA[5] can sample the plurality of data signals 2D 10 and 2D 11 according to the clock signal 2D_CLK1 . Because the signal level/signal value of each of the plurality of clock selection signals SEL 10 ~ SEL 12 may be different from the signal level/signal value of each of the plurality of clock selection signals SEL 13 ~ SEL 15 signal level/signal value, therefore, the plurality of channel selection units 324.0~324.5 can allocate different clock signals 2D_CLK0 and 2D_CLK1 to the plurality of sampling circuits RX[0]~RX[5].

藉由參照圖4A與圖4B所描述之選取操作,圖3所示之選取級322及選取級324可分別作為一6對1多工器(6-to-1 multiplexer)及一時脈樹,以支援「5D1C」通道組態。此外,藉由參照圖4C所描述之選取操作,圖3所示之選取級322可作為兩個3對1多工器(3-to-1 multiplexer),以及圖3所示之選取級324可作為兩個時脈樹,進而支援分岔模式中的「2D1C」通道組態。因此,圖3所示之通道選取電路320可藉由操作為6對M多工器(6-to-M multiplexer)及M個時脈樹,來支援一或多個傳輸器,其中M可等於1或2(取決於積體電路310的模式)。By referring to the selection operations described in FIGS. 4A and 4B , the selection stage 322 and the selection stage 324 shown in FIG. 3 can be respectively used as a 6-to-1 multiplexer (6-to-1 multiplexer) and a clock tree, so as to Supports "5D1C" channel configuration. In addition, by selecting operations described with reference to FIG. 4C , the selection stage 322 shown in FIG. 3 can function as two 3-to-1 multiplexers (3-to-1 multiplexers), and the selection stage 324 shown in FIG. 3 can As two clock trees, it further supports "2D1C" channel configuration in bifurcated mode. Therefore, the channel selection circuit 320 shown in FIG. 3 can support one or more transmitters by operating as a 6-to-M multiplexer and M clock trees, where M can be equal to 1 or 2 (depending on the mode of IC 310).

請注意,圖3所示之複數個選取級322與324之電路結構只是用於方便說明的目的,並非用來限制本揭示的範圍。在某些實施例中,選取級322可由其他電路結構來實施以提供多工器的操作。在某些實施例中,選取級324可由其他電路結構來實施以建構一或多個時脈樹。在某些實施例中,各選取的時脈通道上的訊號(諸如時脈訊號)可未耦接於各取樣電路的資料輸入端D IN。舉例來說,當圖3所示之通道LA[0]被選取為時脈通道時,通道LA[0]可未耦接於各取樣電路之資料輸入端D INPlease note that the circuit structures of the plurality of selection stages 322 and 324 shown in FIG. 3 are only for convenience of illustration and are not intended to limit the scope of the present disclosure. In some embodiments, selection stage 322 may be implemented with other circuit structures to provide multiplexer operation. In some embodiments, selection stage 324 may be implemented with other circuit structures to construct one or more clock trees. In some embodiments, the signal on each selected clock channel (such as a clock signal) may not be coupled to the data input terminal D IN of each sampling circuit. For example, when the channel LA[0] shown in FIG. 3 is selected as the clock channel, the channel LA[0] may not be coupled to the data input terminal D IN of each sampling circuit.

在某些實施例中,複數個時脈選取訊號SEL 10~SEL 12可利用相同的時脈選取訊號來實施,或者可具有相同的訊號值。在某些實施例中,複數個時脈選取訊號SEL 13~SEL 15可利用相同的時脈選取訊號來實施,或者可具有相同的訊號值。這些設計上的修飾與變化均遵循本揭示的精神而落入本揭示的範疇。 In some embodiments, a plurality of clock selection signals SEL 10 -SEL 12 may be implemented using the same clock selection signal, or may have the same signal value. In some embodiments, a plurality of clock selection signals SEL 13 - SEL 15 may be implemented using the same clock selection signal, or may have the same signal value. These design modifications and changes all follow the spirit of this disclosure and fall within the scope of this disclosure.

圖5A至圖5C繪示了本揭示某些實施例的圖1所示之積體電路110的其他具體實施方式的示意圖。圖5A至圖5C所示之複數個積體電路510A~510C中的各積體電路均可作為圖1所示之積體電路110(其包含六條可通用於時脈通道與資料通道的通道,N=6)的實施例。在這些實施例中,圖1所示之通道選取電路120可利用不同的時脈樹群組(clock tree group)來實施,以支援傳輸側之不同的通道組態。各時脈樹群組包含至少一時脈樹電路,以及一時脈樹電路包含一多工器與一時脈樹。5A to 5C are schematic diagrams of other specific implementations of the integrated circuit 110 shown in FIG. 1 according to certain embodiments of the present disclosure. Each of the plurality of integrated circuits 510A to 510C shown in FIGS. 5A to 5C can be used as the integrated circuit 110 shown in FIG. 1 (which includes six channels that can be commonly used for clock channels and data channels). , N=6) embodiment. In these embodiments, the channel selection circuit 120 shown in FIG. 1 can be implemented using different clock tree groups to support different channel configurations on the transmission side. Each clock tree group includes at least one clock tree circuit, and one clock tree circuit includes a multiplexer and a clock tree.

首先請參閱圖5A。除了通道選取電路520A之外,積體電路510A的結構與圖3所示之積體電路310的結構相似/相同。通道選取電路520A所提供的電路操作,可以與參照圖4A/4B所描述之通道選取電路320的電路操作相似/相同。於此實施例中,通道選取電路520A可利用一時脈樹群組G1來實施。時脈樹群組G1具有一時脈樹電路,其包含一多工器522A(亦即,6對1多工器)以及一時脈樹524A。多工器522A可根據一時脈選取訊號SEL A將複數條通道LA[0]~LA[5]的其中之一選為時脈通道,進而從一輸出端子T 5D輸出所選取的通道上的訊號。時脈樹524A可將輸出端子T 5D上的訊號分配給複數個取樣電路RX[0]~RX[5]中的各取樣電路。請注意,圖4A/4B所示之選取級322的電路結構可作為多工器522A的實施方式。此外,或者是,圖4A/4B所示之選取級324的電路結構可作為時脈樹524A的實施方式。由於所屬領域中具有通常知識者在閱讀圖3、圖4A與圖4B相關的段落說明之後,應可瞭解圖5A所示之通道選取電路520A於「5D1C」通道組態的操作細節,因此,關於通道選取的進一步說明在此便不再贅述。 See Figure 5A first. Except for the channel selection circuit 520A, the structure of the integrated circuit 510A is similar/identical to the structure of the integrated circuit 310 shown in FIG. 3 . The circuit operation provided by the channel selection circuit 520A may be similar/identical to the circuit operation of the channel selection circuit 320 described with reference to FIGS. 4A/4B. In this embodiment, the channel selection circuit 520A can be implemented using a clock tree group G1. The clock tree group G1 has a clock tree circuit, which includes a multiplexer 522A (ie, a 6-to-1 multiplexer) and a clock tree 524A. The multiplexer 522A can select one of the plurality of channels LA[0]~LA[5] as a clock channel according to a clock selection signal SEL A , and then output the signal on the selected channel from an output terminal T 5D . The clock tree 524A can distribute the signal on the output terminal T 5D to each of the plurality of sampling circuits RX[0]˜RX[5]. Please note that the circuit structure of the selection stage 322 shown in FIGS. 4A/4B can be used as an implementation of the multiplexer 522A. In addition, or alternatively, the circuit structure of the selection stage 324 shown in FIGS. 4A/4B can be used as an implementation of the clock tree 524A. Since a person with ordinary knowledge in the art should be able to understand the operation details of the channel selection circuit 520A shown in Figure 5A in the "5D1C" channel configuration after reading the paragraphs related to Figure 3, Figure 4A and Figure 4B, therefore, regarding Further explanation of channel selection will not be repeated here.

請參閱圖5B。除了通道選取電路520B之外,積體電路510B的結構與圖3所示之積體電路310的結構相似/相同。通道選取電路520B所提供的電路操作,可以與參照圖4C所描述之通道選取電路320的電路操作相似/相同。於此實施例中,通道選取電路520B可利用一時脈樹群組G2來實施。時脈樹群組G2具有兩個時脈樹電路,其中一時脈樹電路包含一多工器522B.0及一時脈樹524B.0,另一時脈樹電路包含一多工器522B.1及一時脈樹524B.1。多工器522B.0(亦即,3對1多工器)可根據一時脈選取訊號SEL B0將複數條通道LA[0]~LA[2]的其中之一選為時脈通道。時脈樹524B.0可將輸出端子T 2D0上的訊號分配給複數個取樣電路RX[0]~RX[2]中的各取樣電路。多工器522B.1(亦即,3對1多工器)可根據一時脈選取訊號SEL B1將複數條通道LA[3]~LA[5]的其中之一選為時脈通道。時脈樹524B.1可將輸出端子T 2D1上的訊號分配給複數個取樣電路RX[3]~RX[5]中的各取樣電路。請注意,圖4C所示之選取級322的電路結構可作為複數個多工器522B.0與522B.1的實施方式。此外,或者是,圖4C所示之選取級324的電路結構可作為複數個時脈樹524B.0與524B.1的實施方式。由於所屬領域中具有通常知識者在閱讀圖3與圖4C相關的段落說明之後,應可瞭解圖5B所示之通道選取電路520B於「2D1C」通道組態的操作細節,因此,關於通道選取的進一步說明在此便不再贅述。 See Figure 5B. Except for the channel selection circuit 520B, the structure of the integrated circuit 510B is similar/identical to the structure of the integrated circuit 310 shown in FIG. 3 . The circuit operation provided by the channel selection circuit 520B may be similar/identical to the circuit operation of the channel selection circuit 320 described with reference to FIG. 4C . In this embodiment, the channel selection circuit 520B can be implemented using a clock tree group G2. The clock tree group G2 has two clock tree circuits, one of which includes a multiplexer 522B.0 and a clock tree 524B.0, and the other clock tree circuit includes a multiplexer 522B.1 and a clock tree. Vein Tree 524B.1. The multiplexer 522B.0 (that is, a 3-to-1 multiplexer) can select one of the plurality of channels LA[0]~LA[2] as the clock channel according to a clock selection signal SEL B0 . The clock tree 524B.0 can distribute the signal on the output terminal T 2D0 to each of the plurality of sampling circuits RX[0]˜RX[2]. Multiplexer 522B.1 (that is, a 3-to-1 multiplexer) can select one of the plurality of channels LA[3]~LA[5] as a clock channel according to a clock selection signal SEL B1 . The clock tree 524B.1 can distribute the signal on the output terminal T 2D1 to each of the plurality of sampling circuits RX[3]˜RX[5]. Please note that the circuit structure of the selection stage 322 shown in FIG. 4C can be used as an implementation of a plurality of multiplexers 522B.0 and 522B.1. In addition, or alternatively, the circuit structure of the selection stage 324 shown in FIG. 4C can be used as an implementation of a plurality of clock trees 524B.0 and 524B.1. Since a person with ordinary knowledge in the art should be able to understand the operation details of the channel selection circuit 520B shown in Figure 5B in the "2D1C" channel configuration after reading the paragraphs related to Figure 3 and Figure 4C, therefore, regarding channel selection Further explanation will not be given here.

請參閱圖5C。除了通道選取電路520C之外,積體電路510C的結構與圖3所示之積體電路310的結構相似/相同。通道選取電路520C可利用一時脈樹群組G3來實施。時脈樹群組G3具有三個時脈樹電路,進而可支援設置了三條時脈通道及其相關的三條資料通道的傳輸側。於此實施例中,通道選取電路520C包含複數個多工器522C.0~522C.2(亦即,複數個2對1多工器)以及複數個時脈樹524C.0~524C.2。多工器522C.0可根據一時脈選取訊號SEL C0將複數條通道LA[0]與LA[1]的其中之一選為時脈通道。多工器522C.1可根據一時脈選取訊號SEL C1將複數條通道LA[2]與LA[3]的其中之一選為時脈通道。多工器522C.2可根據一時脈選取訊號SEL C2將複數條通道LA[4]與LA[5]的其中之一選為時脈通道。時脈樹524C.0可將輸出端子T 1D0上的訊號分配給複數個取樣電路RX[0]與RX[1]中的各取樣電路。時脈樹524C.1可將輸出端子T 1D1上的訊號分配給複數個取樣電路RX[2]與RX[3]中的各取樣電路。時脈樹524C.2可將輸出端子T 1D2上的訊號分配給複數個取樣電路RX[4]與RX[5]中的各取樣電路。 See Figure 5C. Except for the channel selection circuit 520C, the structure of the integrated circuit 510C is similar/identical to the structure of the integrated circuit 310 shown in FIG. 3 . The channel selection circuit 520C may be implemented using a clock tree group G3. Clock tree group G3 has three clock tree circuits, thereby supporting the transmission side where three clock channels and their associated three data channels are configured. In this embodiment, the channel selection circuit 520C includes a plurality of multiplexers 522C.0˜522C.2 (ie, a plurality of 2-to-1 multiplexers) and a plurality of clock trees 524C.0˜524C.2. The multiplexer 522C.0 can select one of the plurality of channels LA[0] and LA[1] as the clock channel according to a clock selection signal SEL C0 . The multiplexer 522C.1 can select one of the plurality of channels LA[2] and LA[3] as the clock channel according to a clock selection signal SEL C1 . The multiplexer 522C.2 can select one of the plurality of channels LA[4] and LA[5] as the clock channel according to a clock selection signal SEL C2 . The clock tree 524C.0 can distribute the signal on the output terminal T 1D0 to each of the plurality of sampling circuits RX[0] and RX[1]. The clock tree 524C.1 can distribute the signal on the output terminal T 1D1 to each of the plurality of sampling circuits RX[2] and RX[3]. The clock tree 524C.2 can distribute the signal on the output terminal T 1D2 to each of the plurality of sampling circuits RX[4] and RX[5].

舉例來說,複數個多工器522C.0~522C.2可將複數條通道LA[0]、LA[2]與LA[4]選為複數條時脈通道。因此,取樣電路RX[1]可根據通道LA[0]上的訊號對通道LA[1]上的訊號進行取樣。取樣電路RX[3]可根據通道LA[2]上的訊號對通道LA[3]上的訊號進行取樣。取樣電路RX[5]可根據通道LA[4]上的訊號對通道LA[5]上的訊號進行取樣。積體電路510C可分成三個介面,各介面均可支援「1D1C」通道組態(一通道可作為時脈通道,另一通道可作為資料通道)。For example, a plurality of multiplexers 522C.0˜522C.2 can select a plurality of channels LA[0], LA[2] and LA[4] as a plurality of clock channels. Therefore, the sampling circuit RX[1] can sample the signal on channel LA[1] according to the signal on channel LA[0]. The sampling circuit RX[3] can sample the signal on channel LA[3] according to the signal on channel LA[2]. The sampling circuit RX[5] can sample the signal on channel LA[5] according to the signal on channel LA[4]. The integrated circuit 510C can be divided into three interfaces, and each interface can support "1D1C" channel configuration (one channel can be used as a clock channel, and the other channel can be used as a data channel).

圖6繪示了本揭示某些實施例的圖1所示之積體電路110的另一具體實施方式的示意圖。積體電路610可作為圖1所示之積體電路110(其包含六條可通用於時脈通道與資料通道的通道,N=6)的實施例。於此實施例中,積體電路610可採用圖5A至圖5C所示之複數個時脈樹群組G1~G3,以支援不同的通道組態。積體電路610包含一通道選取電路620以及圖3所示之多通道介面314和複數個取樣電路RX[0]~RX[5]。通道選取電路620可作為圖1所示之通道選取電路120的實施例,並可包含複數個選取級622與624。FIG. 6 is a schematic diagram of another implementation of the integrated circuit 110 shown in FIG. 1 according to certain embodiments of the present disclosure. The integrated circuit 610 can be an embodiment of the integrated circuit 110 shown in FIG. 1 (which includes six channels that can be used commonly for clock channels and data channels, N=6). In this embodiment, the integrated circuit 610 may use a plurality of clock tree groups G1 to G3 as shown in FIGS. 5A to 5C to support different channel configurations. The integrated circuit 610 includes a channel selection circuit 620, the multi-channel interface 314 shown in FIG. 3 and a plurality of sampling circuits RX[0]˜RX[5]. The channel selection circuit 620 may be an embodiment of the channel selection circuit 120 shown in FIG. 1 and may include a plurality of selection stages 622 and 624.

選取級622可包含圖5A所示之時脈樹群組G1的多工器522A、圖5B所示之時脈樹群組G2的複數個多工器522B.0與522B.1,以及圖5C所示之時脈樹群組G3的複數個多工器522C.0~522C.2。選取級624可包含複數個多工器624.0~624.5。多工器624.0用以將複數個輸出端子T 5D、T 2D0與T 1D0的其中之一耦接於取樣電路RX[0]的時脈輸入端C IN。多工器624.1用以將複數個輸出端子T 5D、T 2D0與T 1D0的其中之一耦接於取樣電路RX[1]的時脈輸入端C IN。多工器624.2用以將複數個輸出端子T 5D、T 2D0與T 1D1的其中之一耦接於取樣電路RX[2]的時脈輸入端C IN。多工器624.3用以將複數個輸出端子T 5D、T 2D1與T 1D1的其中之一耦接於取樣電路RX[3]的時脈輸入端C IN。多工器624.4用以將複數個輸出端子T 5D、T 2D1與T 1D2的其中之一耦接於取樣電路RX[4]的時脈輸入端C IN。多工器624.5用以將複數個輸出端子T 5D、T 2D1與T 1D2的其中之一耦接於取樣電路RX[5]的時脈輸入端C INSelection stage 622 may include multiplexers 522A of clock tree group G1 shown in FIG. 5A , multiplexers 522B.0 and 522B.1 of clock tree group G2 shown in FIG. 5B , and FIG. 5C Shown is a plurality of multiplexers 522C.0-522C.2 of clock tree group G3. The selection stage 624 may include a plurality of multiplexers 624.0-624.5. The multiplexer 624.0 is used to couple one of the plurality of output terminals T 5D , T 2D0 and T 1D0 to the clock input terminal C IN of the sampling circuit RX[0]. The multiplexer 624.1 is used to couple one of the plurality of output terminals T 5D , T 2D0 and T 1D0 to the clock input terminal C IN of the sampling circuit RX[1]. The multiplexer 624.2 is used to couple one of the plurality of output terminals T 5D , T 2D0 and T 1D1 to the clock input terminal C IN of the sampling circuit RX[2]. The multiplexer 624.3 is used to couple one of the plurality of output terminals T 5D , T 2D1 and T 1D1 to the clock input terminal C IN of the sampling circuit RX[3]. The multiplexer 624.4 is used to couple one of the plurality of output terminals T 5D , T 2D1 and T 1D2 to the clock input terminal C IN of the sampling circuit RX[4]. The multiplexer 624.5 is used to couple one of the plurality of output terminals T 5D , T 2D1 and T 1D2 to the clock input terminal C IN of the sampling circuit RX[5].

在積體電路610用於支援「5D1C」通道組態的模式中,複數個多工器624.0~624.5中的各多工器用以將輸出端子T 5D耦接於相對應之取樣電路,使輸出端子T 5D上的時脈訊號5D_CLK可分配給各取樣電路。舉例來說,多工器522A可根據時脈選取訊號SEL A將通道LA[0]耦接於輸出端子T 5D。剩餘的複數條通道LA[1]~LA[5]可作為資料通道。分別耦接於複數條通道LA[1]~LA[5]的複數個取樣電路RX[1]~RX[5]可根據時脈訊號5D_CLK執行資料取樣操作。請注意,能夠作為一時脈樹以分配時脈訊號5D_CLK的複數個多工器624.0~624.5,可以用來實施圖5A所示之時脈樹群組G1中的時脈樹524A。 In the mode where the integrated circuit 610 is used to support the "5D1C" channel configuration, each of the multiplexers 624.0˜624.5 is used to couple the output terminal T 5D to the corresponding sampling circuit, so that the output terminal The clock signal 5D_CLK on T 5D can be assigned to each sampling circuit. For example, the multiplexer 522A can couple the channel LA[0] to the output terminal T 5D according to the clock selection signal SEL A. The remaining channels LA[1]~LA[5] can be used as data channels. A plurality of sampling circuits RX[1]˜RX[5] respectively coupled to a plurality of channels LA[1]˜LA[5] can perform data sampling operations according to the clock signal 5D_CLK. Please note that a plurality of multiplexers 624.0˜624.5 that can serve as a clock tree to distribute the clock signal 5D_CLK can be used to implement the clock tree 524A in the clock tree group G1 shown in FIG. 5A.

在積體電路610用於支援「2D1C」分岔通道組態(lane configurations with bifurcation)的另一模式中,複數個多工器624.0~624.2中的各多工器用以將輸出端子T 2D0耦接於相對應之取樣電路,使輸出端子T 2D0上的時脈訊號2D_CLK0可分配給複數個取樣電路RX[0]~RX[2]中的各取樣電路。複數個多工器624.3~624.5中的各多工器用以將輸出端子T 2D1耦接於相對應之取樣電路,使輸出端子T 2D1上的時脈訊號2D_CLK1可分配給複數個取樣電路RX[3]~RX[5]中的各取樣電路。複數個多工器624.0~624.5可以用來實施圖5B所示之時脈樹群組G2中的複數個時脈樹524B.0與524B.1。因此,複數個取樣電路RX[0]~RX[5]可分為兩組取樣電路。積體電路610所處在的實體層可操作成分開的兩個實體層,其中一實體層包含複數條通道LA[0]~LA[2]以及複數個取樣電路RX[0]~RX[2],另一實體層包含複數條通道LA[3]~LA[5]以及複數個取樣電路RX[3]~RX[5]。 In another mode in which the integrated circuit 610 is used to support "2D1C" lane configurations with bifurcation, each of the plurality of multiplexers 624.0-624.2 is used to couple the output terminal T 2D0 For the corresponding sampling circuit, the clock signal 2D_CLK0 on the output terminal T 2D0 can be distributed to each of the plurality of sampling circuits RX[0]˜RX[2]. Each multiplexer among the plurality of multiplexers 624.3˜624.5 is used to couple the output terminal T 2D1 to the corresponding sampling circuit, so that the clock signal 2D_CLK1 on the output terminal T 2D1 can be distributed to the plurality of sampling circuits RX[3 ]~RX[5] for each sampling circuit. A plurality of multiplexers 624.0˜624.5 may be used to implement a plurality of clock trees 524B.0 and 524B.1 in the clock tree group G2 shown in FIG. 5B. Therefore, the plurality of sampling circuits RX[0]~RX[5] can be divided into two groups of sampling circuits. The physical layer where the integrated circuit 610 is located can be operated into two separate physical layers. One of the physical layers includes a plurality of channels LA[0]~LA[2] and a plurality of sampling circuits RX[0]~RX[2 ], and another physical layer includes a plurality of channels LA[3]~LA[5] and a plurality of sampling circuits RX[3]~RX[5].

在積體電路610用於支援「1D1C」分岔通道組態的另一模式中,複數個多工器624.0與624.1中的各多工器用以將輸出端子T 1D0耦接於相對應之取樣電路,使輸出端子T 1D0上的時脈訊號1D_CLK0可分配給複數個取樣電路RX[0]與RX[1]中的各取樣電路。相似地,複數個多工器624.2與624.3中的各多工器用以將輸出端子T 1D1耦接於相對應之取樣電路,使輸出端子T 1D1上的時脈訊號1D_CLK1可分配給複數個取樣電路RX[2]與RX[3]中的各取樣電路。複數個多工器624.4與624.5中的各多工器用以將輸出端子T 1D2耦接於相對應之取樣電路,使輸出端子T 1D2上的時脈訊號1D_CLK2可分配給複數個取樣電路RX[4]與RX[5]中的各取樣電路。複數個多工器624.0~624.5可以用來實施圖5C所示之時脈樹群組G3中的複數個時脈樹524C.0~524C.2。因此,複數個取樣電路RX[0]~RX[5]可分為三組取樣電路。積體電路610所處在的實體層可操作成分開的三個實體層,以支援三個傳輸器。 In another mode in which the integrated circuit 610 is used to support a "1D1C" bifurcated channel configuration, each multiplexer of the plurality of multiplexers 624.0 and 624.1 is used to couple the output terminal T 1D0 to a corresponding sampling circuit , so that the clock signal 1D_CLK0 on the output terminal T 1D0 can be distributed to each of the plurality of sampling circuits RX[0] and RX[1]. Similarly, each multiplexer in the plurality of multiplexers 624.2 and 624.3 is used to couple the output terminal T 1D1 to a corresponding sampling circuit, so that the clock signal 1D_CLK1 on the output terminal T 1D1 can be distributed to a plurality of sampling circuits. Each sampling circuit in RX[2] and RX[3]. Each multiplexer in the plurality of multiplexers 624.4 and 624.5 is used to couple the output terminal T 1D2 to the corresponding sampling circuit, so that the clock signal 1D_CLK2 on the output terminal T 1D2 can be distributed to the plurality of sampling circuits RX [4 ] and each sampling circuit in RX[5]. A plurality of multiplexers 624.0-624.5 may be used to implement a plurality of clock trees 524C.0-524C.2 in the clock tree group G3 shown in FIG. 5C. Therefore, the plurality of sampling circuits RX[0]~RX[5] can be divided into three groups of sampling circuits. The physical layer in which the integrated circuit 610 is located can operate into three separate physical layers to support three transmitters.

藉由複數個多工器522A、522B.0、522B.1與522C.0~522C.2,選取級622可操作成6對M多工器,其中及M可等於1、2或3(取決於積體電路610的模式)。此外,藉由複數個多工器624.0~624.5,選取級624可操作成M個時脈樹,其中及M可等於1、2或3(取決於積體電路610的模式)。因此,積體電路610可將複數條通道LA[0]~LA[5]分成一或多個通道群組(groups of lanes),其中各通道群組包含時脈通道與資料通道,以支援一或多個傳輸器。With a plurality of multiplexers 522A, 522B.0, 522B.1 and 522C.0~522C.2, the selection stage 622 can be operated into 6 pairs of M multiplexers, where and M can be equal to 1, 2 or 3 (depending on in the integrated circuit 610 mode). In addition, with a plurality of multiplexers 624.0-624.5, the selection stage 624 can operate into M clock trees, where and M can be equal to 1, 2, or 3 (depending on the mode of the integrated circuit 610). Therefore, the integrated circuit 610 can divide the plurality of lanes LA[0]˜LA[5] into one or more lane groups (groups of lanes), where each lane group includes a clock lane and a data lane to support a or multiple transmitters.

以上參照圖6所述之電路結構與操作只是用於方便說明的目的,並非用來限制本揭示的範圍。在某些實施例中,積體電路610可操作在同時支援「3D1C」通道組態與「1D1C」通道組態的分岔模式中。舉例來說,複數個多工器624.0~624.3可用將輸出端子T 5D耦接於相對應之取樣電路,使輸出端子T 5D上的時脈訊號5D_CLK可分配給複數個取樣電路RX[0]~RX[3]中的各取樣電路。複數個多工器624.4與624.5中的各多工器用以將輸出端子T 1D2耦接於相對應之取樣電路,使輸出端子T 1D2上的時脈訊號1D_CLK2可分配給複數個取樣電路RX[4]與RX[5]中的各取樣電路。因此,積體電路610所處在的實體層可操作成分開的兩個實體層,以支援兩個具有不同資料通道個數的傳輸器。 The circuit structure and operation described above with reference to FIG. 6 are for convenience of illustration only and are not intended to limit the scope of the present disclosure. In some embodiments, the integrated circuit 610 can operate in a bifurcated mode supporting both a "3D1C" channel configuration and a "1D1C" channel configuration. For example, a plurality of multiplexers 624.0~624.3 can couple the output terminal T 5D to the corresponding sampling circuit, so that the clock signal 5D_CLK on the output terminal T 5D can be distributed to a plurality of sampling circuits RX[0]~ Each sampling circuit in RX[3]. Each multiplexer in the plurality of multiplexers 624.4 and 624.5 is used to couple the output terminal T 1D2 to the corresponding sampling circuit, so that the clock signal 1D_CLK2 on the output terminal T 1D2 can be distributed to the plurality of sampling circuits RX [4 ] and each sampling circuit in RX[5]. Therefore, the physical layer in which the integrated circuit 610 is located can be operated into two separate physical layers to support two transmitters with different numbers of data channels.

在某些實施例中,在進行資料傳輸時,不使用作為資料通道的一通道也是可行的。舉例來說,當用以支援「5D1C」通道組態時,積體電路610可使用五條或少於五條的資料通道以接收傳輸側所傳送的資料資訊。所使用的資料通道的個數可取決於傳送至多通道介面314的資料訊號的個數。In some embodiments, it is possible to not use a channel as a data channel when transmitting data. For example, when used to support a "5D1C" channel configuration, the integrated circuit 610 may use five or less than five data channels to receive data information transmitted from the transmitting side. The number of data channels used may depend on the number of data signals sent to the multi-channel interface 314 .

在某些實施例中,選取級622可利用其他多工器電路來實施,以因應積體電路610的模式來選取一或多條通道。在某些實施例中,選取級624可利用其他時脈樹結構來實施,以因應積體電路610的模式來分配一或多個時脈訊號。這些設計上的修飾與變化均遵循本揭示的精神而落入本揭示的範疇。In some embodiments, the selection stage 622 may be implemented using other multiplexer circuits to select one or more channels according to the mode of the integrated circuit 610 . In some embodiments, the selection stage 624 may be implemented using other clock tree structures to allocate one or more clock signals in response to the mode of the integrated circuit 610 . These design modifications and changes all follow the spirit of this disclosure and fall within the scope of this disclosure.

圖7繪示了本揭示某些實施例的圖1所示之積體電路110的另一具體實施方式的示意圖。積體電路710可作為圖1所示之積體電路110(其包含六條可通用於時脈通道與資料通道的通道,N=6)的實施例。於此實施例中,積體電路710可設置在實體層中的實體媒體連接層,以執行串列至並列轉換(serial-to-parallel conversion)。FIG. 7 is a schematic diagram of another implementation of the integrated circuit 110 shown in FIG. 1 according to certain embodiments of the present disclosure. The integrated circuit 710 can be an embodiment of the integrated circuit 110 shown in FIG. 1 (which includes six channels that can be used commonly for clock channels and data channels, N=6). In this embodiment, the integrated circuit 710 may be disposed in the physical media connection layer in the physical layer to perform serial-to-parallel conversion.

積體電路710包含一通道選取電路720、複數個串列至並列轉換器(serial-to-parallel converter,以下稱為「S2P轉換器」)730.0~730.5,以及圖3所示之多通道介面314。通道選取電路720可作為圖1所示之通道選取電路120的實施例,並可包含複數個選取級722與724。選取級722可包含複數個多工器722.0與722.1。多工器722.0用以根據一時脈選取訊號SEL 70將複數條通道LA[0]~LA[5]耦接於一輸出端子T 70。多工器722.0用以根據一時脈選取訊號SEL 71將複數條通道LA[0]~LA[5]耦接於一輸出端子T 71。選取級724可實施為包含一多工器724.0,其可根據一時脈選取訊號SEL 72將複數個輸出端子T 70與T 71耦接於一輸出端子T 72The integrated circuit 710 includes a channel selection circuit 720, a plurality of serial-to-parallel converters (hereinafter referred to as "S2P converters") 730.0-730.5, and the multi-channel interface 314 shown in Figure 3 . The channel selection circuit 720 may be an embodiment of the channel selection circuit 120 shown in FIG. 1 , and may include a plurality of selection stages 722 and 724 . Selection stage 722 may include a plurality of multiplexers 722.0 and 722.1. The multiplexer 722.0 is used to couple a plurality of channels LA[0]˜LA[5] to an output terminal T 70 according to a clock selection signal SEL 70 . The multiplexer 722.0 is used to couple a plurality of channels LA[0]˜LA[5] to an output terminal T 71 according to a clock selection signal SEL 71 . The selection stage 724 may be implemented to include a multiplexer 724.0, which may couple a plurality of output terminals T 70 and T 71 to an output terminal T 72 according to a clock selection signal SEL 72 .

複數個S2P轉換器730.0~730.5中的各S2P轉換器用以輸出一多位元並列輸出訊號。該多位元並列輸出訊號可以是一並列資料訊號(parallel data signal)、一位元組資料訊號(byte data signal)、一並列時脈訊號(parallel clock signal)或一位元組時脈訊號(byte clock signal)。於此實施例中,各S2P轉換器包含一取樣電路以及一解串器(deserializer)(亦即,圖3所示之複數個取樣電路RX[0]~RX[5]的其中之一以及複數個解串器DS[0]~DS[5]的其中之一)。複數個解串器DS[0]~DS[5]可作為一輸出電路740,其可根據複數個取樣電路RX[0]~RX[5]的取樣結果SR輸出一或多個時脈訊號。Each S2P converter among the plurality of S2P converters 730.0˜730.5 is used to output a multi-bit parallel output signal. The multi-bit parallel output signal may be a parallel data signal, a byte data signal, a parallel clock signal or a byte clock signal. byte clock signal). In this embodiment, each S2P converter includes a sampling circuit and a deserializer (that is, one of the plurality of sampling circuits RX[0]˜RX[5] shown in Figure 3 and a plurality of One of the deserializers DS[0]~DS[5]). The plurality of deserializers DS[0]˜DS[5] can be used as an output circuit 740, which can output one or more clock signals according to the sampling results SR of the plurality of sampling circuits RX[0]˜RX[5].

在積體電路710用於支援「5D1C」通道組態的模式中,多工器724.0用以將輸出端子T 70耦接於輸出端子T 72。當多工器722.0將複數條通道LA[0]~LA[5]的其中之一選為一時脈通道時,該時脈通道上的訊號可耦接於輸出端子T 70,並分配給複數個取樣電路RX[0]~RX[5]各自的時脈輸入端C IN。舉例來說,多工器722.0可將通道LA[0]選為時脈通道。複數個取樣電路RX[1]~RX[5]中的各取樣電路均可根據相同的時脈訊號(亦即,通道LA[0]上的訊號)進行資料取樣。解串器DS[0]可根據取樣結果SR輸出一時脈訊號(亦即,一並列時脈訊號)。請注意,在此模式中,複數個多工器722.0與724.0可作為圖5A所示之時脈樹群組G1的實施例。 In the mode where the integrated circuit 710 is used to support the "5D1C" channel configuration, the multiplexer 724.0 is used to couple the output terminal T 70 to the output terminal T 72 . When the multiplexer 722.0 selects one of the plurality of channels LA[0]~LA[5] as a clock channel, the signal on the clock channel can be coupled to the output terminal T 70 and distributed to a plurality of The respective clock input terminals C IN of the sampling circuits RX[0]~RX[5]. For example, multiplexer 722.0 may select channel LA[0] as the clock channel. Each of the plurality of sampling circuits RX[1] to RX[5] can sample data according to the same clock signal (that is, the signal on channel LA[0]). The deserializer DS[0] can output a clock signal (ie, a parallel clock signal) according to the sampling result SR. Please note that in this mode, a plurality of multiplexers 722.0 and 724.0 can serve as an embodiment of the clock tree group G1 shown in FIG. 5A.

在積體電路710用於支援「2D1C」分岔通道組態的模式中,多工器724.0用以將輸出端子T 71耦接於輸出端子T 72。當多工器722.0將複數條通道LA[0]~LA[5]的其中之一選為一時脈通道時,多工器722.1可將複數條通道LA[0]~LA[5]的其中之另一選為一時脈通道。因此,可根據所選取之時脈通道上的訊號來對剩餘的通道上的訊號進行取樣。複數個解串器DS[0]~DS[5]的其中之二可根據取樣結果SR輸出兩個時脈訊號。舉例來說,多工器722.0可將通道LA[0]選為時脈通道,複數個取樣電路RX[1]與RX[2]中的各取樣電路均可根據通道LA[0]上的訊號進行資料取樣。多工器722.1可將通道LA[3]選為時脈通道,複數個取樣電路RX[4]與RX[5]中的各取樣電路均可根據通道LA[3]上的訊號進行資料取樣。解串器DS[0]可輸出與通道LA[0]上的訊號相關的一並列時脈訊號,以及複數個解串器DS[1]與DS[2]可分別輸出與複數條通道LA[1]與LA[2]上各自的訊號相關的複數個並列資料訊號。此外,解串器DS[3]可輸出與通道LA[3]上的訊號相關的一並列時脈訊號,以及複數個解串器DS[4]與DS[5]可分別輸出與複數條通道LA[4]與LA[5]上各自的訊號相關的複數個並列資料訊號。在此模式中,複數個多工器722.0、722.1與724.0可作為圖5B所示之時脈樹群組G2的實施例。 In a mode in which the integrated circuit 710 is used to support a "2D1C" bifurcated channel configuration, the multiplexer 724.0 is used to couple the output terminal T 71 to the output terminal T 72 . When the multiplexer 722.0 selects one of the plurality of channels LA[0]~LA[5] as a clock channel, the multiplexer 722.1 can select one of the plurality of channels LA[0]~LA[5]. The other option is a clock channel. Therefore, the signals on the remaining channels can be sampled based on the signals on the selected clock channel. Two of the plurality of deserializers DS[0] to DS[5] can output two clock signals according to the sampling result SR. For example, multiplexer 722.0 can select channel LA[0] as the clock channel, and each sampling circuit in the plurality of sampling circuits RX[1] and RX[2] can be based on the signal on channel LA[0]. Carry out data sampling. Multiplexer 722.1 can select channel LA[3] as the clock channel, and each sampling circuit in the plurality of sampling circuits RX[4] and RX[5] can sample data according to the signal on channel LA[3]. The deserializer DS[0] can output a parallel clock signal related to the signal on the channel LA[0], and the plurality of deserializers DS[1] and DS[2] can respectively output the plurality of channels LA[ 1] A plurality of parallel data signals associated with respective signals on LA[2]. In addition, the deserializer DS[3] can output a parallel clock signal related to the signal on the channel LA[3], and a plurality of deserializers DS[4] and DS[5] can respectively output a plurality of channels. A plurality of parallel data signals related to the respective signals on LA[4] and LA[5]. In this mode, a plurality of multiplexers 722.0, 722.1 and 724.0 may serve as an embodiment of the clock tree group G2 shown in FIG. 5B.

以上參照圖7所述之電路結構與操作並非用來限制本揭示的範圍。舉例來說,通道選取電路720可由圖3所示之通道選取電路320或圖6所示之通道選取電路620來實施,而不致背離本揭示的範圍。又例如,通道選取電路720之中的複數個多工器722.0、722.1與724.0可設置為圖8所示之排列方式。請參閱圖8,除了通道選取電路820之外,積體電路810的結構與圖7所示之積體電路710的結構相似/相同。於此實施例中,多工器724.0可根據時脈選取訊號SEL 72將複數個時脈選取訊號SEL 70與SEL 71的其中之一耦接於輸出端子T 72。多工器722.1可根據多工器724.0所輸出之訊號將複數條通道LA[0]~LA[5]耦接於輸出端子T 71。由於所屬領域中具有通常知識者在閱讀圖1至圖7相關的段落說明之後,應可瞭解通道選取電路820的操作細節,因此,關於通道選取的進一步說明在此便不再贅述。 The circuit structure and operation described above with reference to FIG. 7 are not intended to limit the scope of the present disclosure. For example, the channel selection circuit 720 may be implemented by the channel selection circuit 320 shown in FIG. 3 or the channel selection circuit 620 shown in FIG. 6 without departing from the scope of the present disclosure. For another example, the plurality of multiplexers 722.0, 722.1 and 724.0 in the channel selection circuit 720 can be arranged as shown in FIG. 8 . Referring to FIG. 8 , except for the channel selection circuit 820 , the structure of the integrated circuit 810 is similar/identical to the structure of the integrated circuit 710 shown in FIG. 7 . In this embodiment, the multiplexer 724.0 can couple one of the plurality of clock selection signals SEL 70 and SEL 71 to the output terminal T 72 according to the clock selection signal SEL 72 . The multiplexer 722.1 can couple the plurality of channels LA[0]˜LA[5] to the output terminal T 71 according to the signal output by the multiplexer 724.0. Since those with ordinary knowledge in the art should be able to understand the operational details of the channel selection circuit 820 after reading the relevant paragraphs of FIG. 1 to FIG. 7 , further description of the channel selection will not be repeated here.

請注意,為了方便通道選取,本揭示所提供之時脈前送方案所使用的一時脈選取訊號可具有與欲選取之一時脈通道的一通道識別碼(lane identifier)相匹配的訊號值/訊號型樣(signal pattern)。通道選取電路可根據該時脈選取訊號來選取此時脈通道。在某些實施例中,該通道識別碼可以是所選取之時脈通道的通道名稱(lane name)、位於所選取之時脈通道中的訊號接腳(signal pin)的接腳名稱(pin name),或訊號接腳的接腳編號(pin number)。例如,該通道識別碼可以標註在具有所選取之時脈通道的一積體電路所設置的電路板上,或標註在封裝(encapsulate)該積體電路的封裝體(package)上 。又例如,該通道識別碼可以標註或描述於該積體電路之資料表(datasheet)、資料手冊(data book)或裝置規格(device specification)中。在某些實施例中,該通道識別碼可以是所選取之時脈通道攜帶的識別資訊。該積體電路可藉由偵測該識別資訊來決定哪條通道應該被選為時脈通道。Please note that in order to facilitate channel selection, a clock selection signal used in the clock forwarding scheme provided by this disclosure can have a signal value/signal that matches a lane identifier of a clock channel to be selected. signal pattern. The channel selection circuit can select the current clock channel according to the clock selection signal. In some embodiments, the channel identification code may be a lane name of the selected clock channel, or a pin name of a signal pin located in the selected clock channel. ), or the pin number of the signal pin. For example, the channel identification code may be marked on a circuit board provided with an integrated circuit having the selected clock channel, or on a package that encapsulates the integrated circuit. For another example, the channel identification code can be marked or described in the datasheet, data book or device specification of the integrated circuit. In some embodiments, the channel identification code may be identification information carried by the selected clock channel. The integrated circuit can determine which channel should be selected as the clock channel by detecting the identification information.

請再次參閱圖7。積體電路710另包含一控制電路750,其可用來產生複數個時脈選取訊號SEL 70~SEL 72以控制通道選取電路720。當時脈選取訊號SEL 70/SEL 71具有匹配於複數條通道LA[0]~LA[5]中的一通道的通道識別碼的訊號值時,通道選取電路720可根據時脈選取訊號SEL 70/SEL 71選取複數條通道LA[0]~LA[5]中的該通道。於此實施例中,複數條通道LA[0]~LA[5]各自的通道識別碼均可包含一數字符號(numeral symbol),以及複數條通道LA[0]~LA[5]各自的通道識別碼所包含的複數個數字符號係指示出一組連續數字(a group of consecutive numbers)。舉例來說(但本揭示不限於此),一通道所對應的一接腳名稱可作為該通道的一通道識別碼。通道LA[0]的一對訊號接腳可命名為「dp0」與「dn0」,通道LA[1]的一對訊號接腳可命名為「dp1」與「dn1」,以此類推。複數個接腳名稱dp0~dp5各自的數字符號(亦即,「0」~「5」)可指示出一組連續數字(0~5)。 See Figure 7 again. The integrated circuit 710 also includes a control circuit 750 that can be used to generate a plurality of clock selection signals SEL 70 -SEL 72 to control the channel selection circuit 720 . When the clock selection signal SEL 70 /SEL 71 has a signal value matching the channel identification code of one of the plurality of channels LA[0]˜LA[5], the channel selection circuit 720 can select the clock selection signal SEL 70 / SEL 71 selects the channel among multiple channels LA[0]~LA[5]. In this embodiment, the channel identification codes of each of the plurality of channels LA[0]~LA[5] may include a numeric symbol, and the respective channel identification codes of the plurality of channels LA[0]~LA[5] The plurality of digit symbols contained in the identification code indicates a group of consecutive numbers. For example (but this disclosure is not limited thereto), a pin name corresponding to a channel can be used as a channel identification code of the channel. The pair of signal pins of channel LA[0] can be named "dp0" and "dn0", the pair of signal pins of channel LA[1] can be named "dp1" and "dn1", and so on. The respective numerical symbols (that is, "0" to "5") of the plurality of pin names dp0 to dp5 can indicate a group of consecutive numbers (0 to 5).

於此實施例中,控制電路750可因應一控制輸入IN CT7產生複數個時脈選取訊號SEL 70~SEL 72,其中控制輸入IN CT7可指示出所選取之時脈通道的一通道識別碼的資訊。控制輸入IN CT7可包含(但不限於)一模式選取訊號mss、一通道選取訊號cks0以及一通道選取訊號cks1。模式選取訊號mss可指示出積體電路710的模式。舉例來說,模式選取訊號mss可包含一位元以指示出積體電路710是否操作在「1C」模式或「2C」模式。積體電路710操作在「1C」模式以經由多通道介面314接收單一時脈訊號。積體電路710操作在「2C」模式以經由多通道介面314接收兩個時脈訊號。 In this embodiment, the control circuit 750 can generate a plurality of clock selection signals SEL 70 -SEL 72 in response to a control input IN CT7 , where the control input IN CT7 can indicate information about a channel identification code of the selected clock channel. The control input IN CT7 may include (but is not limited to) a mode selection signal mss, a channel selection signal cks0 and a channel selection signal cks1. The mode selection signal mss can indicate the mode of the integrated circuit 710 . For example, the mode selection signal mss may include one bit to indicate whether the integrated circuit 710 operates in the "1C" mode or the "2C" mode. Integrated circuit 710 operates in "1C" mode to receive a single clock signal via multi-channel interface 314 . The integrated circuit 710 operates in the “2C” mode to receive two clock signals via the multi-channel interface 314 .

通道選取訊號cks0可包含(但不限於)三個位元,並可指示出所選取之一時脈通道(亦即,複數條通道LA[0]~LA[5]的其中之一)的一通道識別碼。通道選取訊號cks0可具有匹配於所選取之該時脈通道的該通道識別碼的位元型樣或訊號值。例如,具有位元型樣「000」(對應於訊號值「0」)之通道選取訊號cks0可指示出通道LA[0]被選為時脈通道。又例如,具有位元型樣「011」(對應於訊號值「3」)之通道選取訊號cks0可指示出通道LA[3]被選為時脈通道。The channel selection signal cks0 may include (but is not limited to) three bits, and may indicate a channel identification of a selected clock channel (ie, one of the plurality of channels LA[0]~LA[5]) code. The channel select signal cks0 may have a bit pattern or signal value that matches the channel identification code of the selected clock channel. For example, a channel select signal cks0 with bit pattern "000" (corresponding to signal value "0") may indicate that channel LA[0] is selected as the clock channel. As another example, the channel selection signal cks0 with bit pattern "011" (corresponding to signal value "3") may indicate that channel LA[3] is selected as the clock channel.

通道選取訊號cks1可包含(但不限於)三個位元,並可指示出所選取之一時脈通道(亦即,複數條通道LA[0]~LA[5]的其中之一)的一通道識別碼。通道選取訊號cks1可具有匹配於所選取之該時脈通道的該通道識別碼的位元型樣或訊號值。當積體電路710操作在「2C」模式以經由所選取之兩條時脈通道接收兩個時脈訊號時,通道選取訊號cks0可指示出所選取之該些時脈通道其中之一的一通道識別碼,通道選取訊號cks1可指示出所選取之該些時脈通道其中之另一的一通道識別碼。例如,當複數個通道選取訊號cks0與cks1於「2C」模式中分別具有位元型樣「000」與「011」時,控制輸入IN CT7可指示出通道LA[0]與通道LA[3]均被選為時脈通道以分別接收相應的時脈訊號。 The channel selection signal cks1 may include (but is not limited to) three bits, and may indicate a channel identification of a selected clock channel (ie, one of the plurality of channels LA[0]~LA[5]) code. The channel select signal cks1 may have a bit pattern or signal value that matches the channel identification code of the selected clock channel. When the integrated circuit 710 operates in the "2C" mode to receive two clock signals via the selected two clock channels, the channel selection signal cks0 may indicate a channel identification of one of the selected clock channels. The channel selection signal cks1 may indicate a channel identification code of another one of the selected clock channels. For example, when multiple channel selection signals cks0 and cks1 have bit patterns "000" and "011" respectively in "2C" mode, the control input IN CT7 can indicate channel LA[0] and channel LA[3] Both are selected as clock channels to receive corresponding clock signals respectively.

於操作中,當積體電路710操作在一模式(諸如「1C」模式)中以經由多通道介面314接收單一時脈訊號CKA時,控制電路750可因應控制輸入IN CT7產生時脈選取訊號SEL 72。時脈選取訊號SEL 72可具有一第一訊號值,使輸出端子T 70上的訊號可分配給各取樣電路。例如,控制電路750可根據模式選取訊號mss產生時脈選取訊號SEL 72。又例如,控制電路750可將模式選取訊號mss作為時脈選取訊號SEL 72。值得注意的是,在某些實施例中,控制輸入IN CT7中的模式選取訊號mss可直接輸入至多工器724.0,以作為時脈選取訊號SEL 72In operation, when the integrated circuit 710 operates in a mode (such as the "1C" mode) to receive a single clock signal CKA via the multi-channel interface 314, the control circuit 750 may generate the clock selection signal SEL in response to the control input IN CT7 72 . The clock selection signal SEL 72 can have a first signal value, so that the signal on the output terminal T 70 can be distributed to each sampling circuit. For example, the control circuit 750 can generate the clock selection signal SEL 72 according to the mode selection signal mss. For another example, the control circuit 750 may use the mode selection signal mss as the clock selection signal SEL 72 . It is worth noting that in some embodiments, the mode selection signal mss in the control input IN CT7 can be directly input to the multiplexer 724.0 to serve as the clock selection signal SEL 72 .

此外,控制電路750可根據時脈訊號CKA輸入的通道的通道識別碼來產生時脈選取訊號SEL 70。於此實施例中,控制電路750可根據通道選取訊號cks0來產生時脈選取訊號SEL 70,其中通道選取訊號cks0可指示出時脈訊號CKA輸入的通道的通道識別碼。舉例來說,當通道選取訊號cks0指示出通道LA[0]被設定為時脈通道以接收時脈訊號CKA時,控制電路750可根據通道選取訊號cks0,產生具有訊號值為「0」的時脈選取訊號SEL 70,其匹配於接腳名稱dp0/dn0的數字符號「0」(亦即,通道LA[0]的通道識別碼)。又例如,當通道選取訊號cks0指示出通道LA[3]被設定為時脈通道以接收時脈訊號CKA時,控制電路750可根據通道選取訊號cks0,產生具有訊號值為「3」的時脈選取訊號SEL 70,其匹配於接腳名稱dp3/dn3的數字符號「3」。值得注意的是,在某些實施例中,由於通道選取訊號cks0可具有匹配於所選取之時脈通道的通道識別碼,控制電路750可將通道選取訊號cks0作為時脈選取訊號SEL 70In addition, the control circuit 750 can generate the clock selection signal SEL 70 according to the channel identification code of the channel to which the clock signal CKA is input. In this embodiment, the control circuit 750 can generate the clock selection signal SEL 70 according to the channel selection signal cks0, where the channel selection signal cks0 can indicate the channel identification code of the channel to which the clock signal CKA is input. For example, when the channel selection signal cks0 indicates that the channel LA[0] is set as a clock channel to receive the clock signal CKA, the control circuit 750 can generate a clock signal with a signal value of "0" according to the channel selection signal cks0. The pulse selection signal SEL 70 matches the digital symbol "0" of the pin name dp0/dn0 (that is, the channel identification code of channel LA[0]). For another example, when the channel selection signal cks0 indicates that the channel LA[3] is set as a clock channel to receive the clock signal CKA, the control circuit 750 can generate a clock with a signal value of "3" according to the channel selection signal cks0 Select the signal SEL 70 , which matches the numeric symbol "3" in the pin name dp3/dn3. It is worth noting that in some embodiments, since the channel selection signal cks0 may have a channel identification code matching the selected clock channel, the control circuit 750 may use the channel selection signal cks0 as the clock selection signal SEL 70 .

當積體電路710操作在另一模式(諸如「2C」模式)中以經由多通道介面314接收兩個時脈訊號CKB與CKC時,控制電路750可因應控制輸入IN CT7產生時脈選取訊號SEL 72。時脈選取訊號SEL 72可具有不同於該第一訊號值之一第二訊號值。因此,輸出端子T 70上的訊號可分配給複數個取樣電路RX[0]~RX[2],而輸出端子T 71上的訊號可分配給複數個取樣電路RX[3]~RX[5]。例如,控制電路750可根據模式選取訊號mss產生時脈選取訊號SEL 72,或將模式選取訊號mss作為時脈選取訊號SEL 72。值得注意的是,在某些實施例中,控制輸入IN CT7中的模式選取訊號mss可直接輸入至多工器724.0,以作為時脈選取訊號SEL 72When the integrated circuit 710 operates in another mode (such as the "2C" mode) to receive two clock signals CKB and CKC through the multi-channel interface 314, the control circuit 750 can generate the clock selection signal SEL in response to the control input IN CT7 72 . The clock selection signal SEL 72 may have a second signal value that is different from the first signal value. Therefore, the signal on the output terminal T 70 can be allocated to a plurality of sampling circuits RX[0]~RX[2], and the signal on the output terminal T 71 can be allocated to a plurality of sampling circuits RX[3]~RX[5] . For example, the control circuit 750 can generate the clock selection signal SEL 72 according to the mode selection signal mss, or use the mode selection signal mss as the clock selection signal SEL 72 . It is worth noting that in some embodiments, the mode selection signal mss in the control input IN CT7 can be directly input to the multiplexer 724.0 to serve as the clock selection signal SEL 72 .

此外,控制電路750可根據時脈訊號CKB輸入的通道的通道識別碼來產生時脈選取訊號SEL 70,以及根據時脈訊號CKC輸入的通道的通道識別碼來產生時脈選取訊號SEL 71。於此實施例中,控制電路750可於上述另一模式(諸如「2C」模式)中,分別根據複數個通道選取訊號cks0與cks1來產生複數個時脈選取訊號SEL 70與SEL 71。例如,當複數個通道選取訊號cks0與cks1可指示出複數條通道LA[0]與LA[3]被設定為時脈通道以分別接收複數個時脈訊號CKA與CKC時,控制電路750可根據通道選取訊號cks0產生具有訊號值為「0」的時脈選取訊號SEL 70,以及根據通道選取訊號cks1產生具有訊號值為「3」的時脈選取訊號SEL 71。值得注意的是,在某些實施例中,由於複數個通道選取訊號cks0與cks1均可具有匹配於所選取之時脈通道的通道識別碼,控制電路750可將複數個通道選取訊號cks0與cks1分別作為複數個時脈選取訊號SEL 70與SEL 71In addition, the control circuit 750 can generate the clock selection signal SEL 70 according to the channel identification code of the channel to which the clock signal CKB is input, and generate the clock selection signal SEL 71 according to the channel identification code of the channel to which the clock signal CKC is input. In this embodiment, the control circuit 750 can generate a plurality of clock selection signals SEL 70 and SEL 71 according to a plurality of channel selection signals cks0 and cks1 respectively in another mode (such as the "2C" mode). For example, when a plurality of channel selection signals cks0 and cks1 can indicate that a plurality of channels LA[0] and LA[3] are set as clock channels to receive a plurality of clock signals CKA and CKC respectively, the control circuit 750 can according to The channel selection signal cks0 generates a clock selection signal SEL 70 with a signal value of "0", and a clock selection signal SEL 71 with a signal value of "3" is generated according to the channel selection signal cks1. It is worth noting that in some embodiments, since the plurality of channel selection signals cks0 and cks1 can each have a channel identification code matching the selected clock channel, the control circuit 750 can convert the plurality of channel selection signals cks0 and cks1 respectively as a plurality of clock selection signals SEL 70 and SEL 71 .

在某些實施例中,傳輸側可在發送一時脈訊號至接收側之一通道之前,發送一前導訊號(preamble signal)至該通道。藉由偵測該前導訊號是否存在,接收側可判斷出該時脈訊號是否會抵達該通道。當偵測到出現在接收側之一預定通道上的一前導訊號時,接收側可操作在分岔模式以支援多時脈傳輸(multi-clock transmission)。舉例來說,於圖7所示之實施例中,控制電路750可包含一狀態機(state machine)755以自動地選取積體電路710的模式。In some embodiments, the transmitting side may send a preamble signal to a channel on the receiving side before sending a clock signal to the channel. By detecting the presence of the pilot signal, the receiving side can determine whether the clock signal will arrive at the channel. When a preamble signal appearing on one of the predetermined channels on the receiving side is detected, the receiving side may operate in a bifurcated mode to support multi-clock transmission. For example, in the embodiment shown in FIG. 7 , the control circuit 750 may include a state machine 755 to automatically select the mode of the integrated circuit 710 .

圖9繪示了根據本揭示某些實施例的圖7所示之狀態機755的操作的示意圖。請連同圖7參閱圖9。當積體電路710之實體層啟用(enabled)時,狀態機755可停留在狀態ST0(例如,初始狀態)。於狀態ST0中,時脈選取訊號SEL 72可具有該第一訊號值,使所選取之一時脈通道上的訊號可經由輸出端子T 72分配給各取樣電路。經過一段時間T_wait之後,狀態機755可進入狀態ST1,使控制電路750可用來偵測多通道介面314是否接收一前導訊號。當該前導訊號在多通道介面314之一預定通道(亦即,所選取之另一時脈通道)上被偵測到時,狀態機755可進入狀態ST2,以及時脈選取訊號SEL 72可具有該第二訊號值,使積體電路710可操作在分岔模式。在該預定通道停用(deactivated)之後,狀態機755可回到狀態ST0。時脈選取訊號SEL 72的訊號值可被設為該第一訊號值。 FIG. 9 is a schematic diagram of the operation of the state machine 755 shown in FIG. 7 according to certain embodiments of the present disclosure. Please refer to Figure 9 in conjunction with Figure 7. When the physical layer of integrated circuit 710 is enabled, state machine 755 may stay in state ST0 (eg, initial state). In the state ST0, the clock selection signal SEL 72 can have the first signal value, so that the signal on the selected clock channel can be distributed to each sampling circuit through the output terminal T 72 . After a period of time T_wait, the state machine 755 can enter the state ST1, so that the control circuit 750 can be used to detect whether the multi-channel interface 314 receives a preamble signal. When the preamble signal is detected on one of the predetermined channels of the multi-channel interface 314 (ie, another selected clock channel), the state machine 755 may enter state ST2, and the clock select signal SEL 72 may have the The second signal value enables the integrated circuit 710 to operate in the bifurcation mode. After the predetermined channel is deactivated, state machine 755 may return to state ST0. The signal value of the clock selection signal SEL 72 may be set to the first signal value.

在某些實施例中,該預定通道可以是通道選取訊號cks1所指示的通道。藉由偵測一前導訊號是否輸入至通道選取訊號cks1所指示的通道,控制電路750可決定出時脈選取訊號SEL 72的訊號值。在某些實施例中,除了通道選取訊號cks1所指示的通道,控制電路750還可用來偵測是否有任何通道接收一前導訊號。控制電路750所偵測之各通道均可對應於狀態ST1中所偵測的該預定通道。 In some embodiments, the predetermined channel may be the channel indicated by the channel selection signal cks1. By detecting whether a preamble signal is input to the channel indicated by the channel select signal cks1, the control circuit 750 can determine the signal value of the clock select signal SEL 72 . In some embodiments, in addition to the channel indicated by the channel selection signal cks1, the control circuit 750 can also be used to detect whether any channel receives a preamble signal. Each channel detected by the control circuit 750 may correspond to the predetermined channel detected in state ST1.

以上所述的自動通道偵測操作只是用於說明的目的,並非用來限制本揭示的範圍。請再次參閱圖7,在某些實施例中,圖7所示之控制電路750可用來偵測是否有不止一個前導訊號抵達多通道介面314。當偵測出不止一個前導訊號抵達多通道介面314時,控制電路750可操作在分岔模式以支援多時脈傳輸。舉例來說,控制電路750可耦接於多通道介面314,並可在偵測出一通道上的單一前導訊號時,產生具有該第一訊號值的時脈選取訊號SEL 72。當偵測出兩條通道上的多個前導訊號時,控制電路750可產生具有該第二訊號值的時脈選取訊號SEL 72,使積體電路710操作在分岔模式。 The automatic channel detection operation described above is for illustrative purposes only and is not intended to limit the scope of the present disclosure. Referring again to FIG. 7 , in some embodiments, the control circuit 750 shown in FIG. 7 can be used to detect whether more than one pilot signal arrives at the multi-channel interface 314 . When more than one preamble signal is detected arriving at the multi-channel interface 314, the control circuit 750 may operate in a bifurcation mode to support multi-clock transmission. For example, the control circuit 750 can be coupled to the multi-channel interface 314, and can generate the clock selection signal SEL 72 having the first signal value when detecting a single preamble signal on a channel. When multiple pilot signals on two channels are detected, the control circuit 750 can generate the clock selection signal SEL 72 with the second signal value, so that the integrated circuit 710 operates in the bifurcated mode.

此外,以上所述的採用通道識別碼與控制輸入之間的匹配關係來實現通道選取的實施方式只是用於說明的目的,並非用來限制本揭示的範圍。在某些實施例中,控制電路750可包含一解碼器(decoder)(圖7未示)。該解碼器可對一通道選取訊號進行解碼,以產生用於欲選取之一時脈通道的一時脈選取訊號,其中該通道選取訊號具有匹配於該時脈通道的通道識別碼的訊號值/訊號型樣。因此,控制電路750可根據該時脈通道的通道識別碼與控制輸入IN CT7的該通道選取訊號之間的匹配關係,正確地選取該時脈通道。 In addition, the above-mentioned implementation of channel selection using the matching relationship between the channel identification code and the control input is only for illustrative purposes and is not intended to limit the scope of the present disclosure. In some embodiments, the control circuit 750 may include a decoder (not shown in FIG. 7 ). The decoder can decode a channel select signal to generate a clock select signal for a clock channel to be selected, wherein the channel select signal has a signal value/signal pattern that matches a channel identification code of the clock channel. Like. Therefore, the control circuit 750 can correctly select the clock channel according to the matching relationship between the channel identification code of the clock channel and the channel selection signal of the control input IN CT7 .

請注意,一通道選取訊號的訊號值(或一時脈選取訊號的訊號值)可直接或間接地對應/匹配(map)於欲選取之一時脈通道的通道識別碼。舉例來說,當時脈訊號CKA/CKB輸入至通道LA[0]時,通道選取訊號cks0可具有位元型樣「000001」,其對應於與接腳名稱dp0/dn0的數字符號「0」相匹配的訊號值「2 0」。此外,或者是,控制電路750可產生具有位元型樣「000001」的時脈選取訊號SEL 70,其中位元型樣「000001」對應於與接腳名稱dp0/dn0的數字符號「0」相匹配的訊號值「2 0」。又例如,當時脈訊號CKC輸入至通道LA[3]時,通道選取訊號cks1可具有位元型樣「001000」,其對應於與接腳名稱dp3/dn3的數字符號「3」相匹配的訊號值「2 3」。此外,或者是,控制電路750可產生具有位元型樣「001000」的時脈選取訊號SEL 71,其中位元型樣「001000」對應於與接腳名稱dp3/dn3的數字符號「3」相匹配的訊號值「2 3」。 Please note that the signal value of a channel selection signal (or the signal value of a clock selection signal) can directly or indirectly correspond/match (map) to the channel ID of a clock channel to be selected. For example, when the clock signal CKA/CKB is input to channel LA[0], the channel selection signal cks0 can have the bit pattern "000001", which corresponds to the digital symbol "0" corresponding to the pin name dp0/dn0. Matching signal value "2 0 ". Additionally, alternatively, the control circuit 750 may generate the clock selection signal SEL 70 having a bit pattern "000001", wherein the bit pattern "000001" corresponds to the digital symbol "0" corresponding to the pin name dp0/dn0 Matching signal value "2 0 ". For another example, when the clock signal CKC is input to channel LA[3], the channel selection signal cks1 can have the bit pattern "001000", which corresponds to the signal matching the digital symbol "3" of the pin name dp3/dn3 The value is "2 3 ". Additionally, alternatively, the control circuit 750 may generate the clock selection signal SEL 71 having a bit pattern "001000", wherein the bit pattern "001000" corresponds to the digital symbol "3" of the pin name dp3/dn3. Matching signal value "2 3 ".

在某些實施例中,其他類型的通道識別碼(諸如通道名稱、接腳編號,或通道所攜帶的識別資訊)可匹配於通道選取訊號的訊號值。在某些實施例中,控制電路750可根據其他類型的通道識別碼(諸如通道名稱、接腳編號,或通道所攜帶的識別資訊)來決定時脈選取訊號的訊號值。在某些實施例中,通道識別碼的數字符號可具有阿拉伯數字的形式、羅馬數字的形式、字母的形式,或其他類型的數字符號的形式。在某些實施例中,複數個通道識別碼各自的數字符號所指示的一組連續數字可以是複數個連續奇數、複數個連續偶數,或具有預定連續順序的複數個數字。例如,根據本揭示的某些實施例,圖7所示之複數條通道LA[0]~LA[5]的通道識別碼的某些實施例係繪示於圖10。這些設計上的修飾與變化均遵循本揭示的精神而落入本揭示的範疇。In some embodiments, other types of channel identifiers (such as channel names, pin numbers, or identification information carried by the channel) may be matched to the signal value of the channel select signal. In some embodiments, the control circuit 750 may determine the signal value of the clock selection signal based on other types of channel identification codes (such as channel names, pin numbers, or identification information carried by the channels). In some embodiments, the numeric symbols of the channel identification code may be in the form of Arabic numerals, Roman numerals, letters, or other types of numeric symbols. In some embodiments, the set of consecutive numbers indicated by the respective numeric symbols of the plurality of channel identification codes may be a plurality of consecutive odd numbers, a plurality of consecutive even numbers, or a plurality of numbers in a predetermined consecutive order. For example, according to certain embodiments of the present disclosure, some embodiments of the channel identification codes of the plurality of channels LA[0]˜LA[5] shown in FIG. 7 are shown in FIG. 10 . These design modifications and changes all follow the spirit of this disclosure and fall within the scope of this disclosure.

以上所述的通道選取操作可應用於圖1所示之積體電路110、圖3所示之積體電路310、圖5A至圖5C所示之複數個積體電路510A~510C、圖6所示之積體電路610以及圖8所示之積體電路810。舉例來說,請再次參閱圖3。積體電路310另包含一控制電路350,其可因應一控制輸入IN CT3產生複數個時脈選取訊號SEL 00、SEL 01與SEL 10~SEL 15,進而控制通道選取電路320。 The above-mentioned channel selection operation can be applied to the integrated circuit 110 shown in FIG. 1, the integrated circuit 310 shown in FIG. 3, the plurality of integrated circuits 510A˜510C shown in FIGS. The integrated circuit 610 shown in FIG. 8 and the integrated circuit 810 shown in FIG. 8 . For example, see Figure 3 again. The integrated circuit 310 also includes a control circuit 350 that can generate a plurality of clock selection signals SEL 00 , SEL 01 and SEL 10 ˜SEL 15 in response to a control input IN CT3 to control the channel selection circuit 320 .

控制輸入IN CT3可指示出所選取之時脈通道的通道識別碼的資訊。舉例來說。控制輸入IN CT3可包含複數個通道選取訊號,其中各通道選取訊號均可指示出所選取之一時脈通道的通道識別碼的資訊。控制電路350可根據一通道選取訊號產生時脈選取訊號SEL 00,以及根據另一通道選取訊號產生時脈選取訊號SEL 01。又例如,控制輸入IN CT3另可包含一模式選取訊號,其可指示出積體電路310的模式。控制電路350可根據該模式選取訊號產生複數個時脈選取訊號SEL 10~SEL 15Control input IN CT3 can indicate the channel identification code information of the selected clock channel. For example. The control input IN CT3 may include a plurality of channel selection signals, and each channel selection signal may indicate the channel identification code information of a selected clock channel. The control circuit 350 can generate the clock selection signal SEL 00 according to one channel selection signal, and generate the clock selection signal SEL 01 according to another channel selection signal. For another example, the control input IN CT3 may further include a mode selection signal, which may indicate the mode of the integrated circuit 310 . The control circuit 350 can generate a plurality of clock selection signals SEL 10 -SEL 15 according to the mode selection signal.

於「5D1C」通道組態中,複數個時脈選取訊號SEL 10~SEL 15可具有相同的訊號值,使複數個輸出側S02與S12的其中之一可耦接於各取樣電路。當時脈訊號5D_CLK輸入至複數條通道LA[0]~LA[2]中的一通道時,複數個時脈選取訊號SEL 10~SEL 15可具有一第一訊號值,使輸出側S02可耦接於各取樣電路。控制電路350可根據控制輸入IN CT3中的一通道選取訊號產生時脈選取訊號SEL 00,其中該通道選取訊號具有匹配於該通道的通道識別碼的訊號值。此外,或者是,時脈選取訊號SEL 00可具有匹配於該通道的通道識別碼的訊號值。當時脈訊號5D_CLK輸入至複數條通道LA[3]~LA[5]中的一通道時,複數個時脈選取訊號SEL 10~SEL 15可具有一第二訊號值,使輸出側S12可耦接於各取樣電路。控制電路350可根據控制輸入IN CT3中的另一通道選取訊號產生時脈選取訊號SEL 01,其中該另一通道選取訊號具有匹配於該通道的通道識別碼的訊號值。此外,或者是,時脈選取訊號SEL 01可具有匹配於該通道的通道識別碼的訊號值。 In the "5D1C" channel configuration, a plurality of clock selection signals SEL 10 ~ SEL 15 can have the same signal value, so that one of the plurality of output sides S02 and S12 can be coupled to each sampling circuit. When the clock signal 5D_CLK is input to one of the plurality of channels LA[0]~LA[2], the plurality of clock selection signals SEL 10 ~SEL 15 can have a first signal value, so that the output side S02 can be coupled in each sampling circuit. The control circuit 350 may generate the clock selection signal SEL 00 according to a channel selection signal in the control input IN CT3 , wherein the channel selection signal has a signal value matching the channel identification code of the channel. Additionally, or alternatively, the clock select signal SEL 00 may have a signal value that matches the channel identification code of the channel. When the clock signal 5D_CLK is input to one of the plurality of channels LA[3]-LA[5], the plurality of clock selection signals SEL 10 -SEL 15 can have a second signal value, so that the output side S12 can be coupled in each sampling circuit. The control circuit 350 may generate the clock selection signal SEL 01 according to another channel selection signal in the control input IN CT3 , wherein the other channel selection signal has a signal value matching the channel identification code of the channel. Additionally, or alternatively, the clock select signal SEL 01 may have a signal value that matches the channel identification code of the channel.

於「2D1C」分岔通道組態中,複數個時脈選取訊號SEL 10~SEL 12中的各時脈選取訊號均可具有一訊號值,其中該訊號值不同於複數個時脈選取訊號SEL 13~SEL 15中的各時脈選取訊號的訊號值。因此,輸出側S02可耦接於複數個取樣電路RX[0]~RX[2],而輸出側S12可耦接於複數個取樣電路RX[3]~RX[5]。由於時脈訊號2D_CLK0輸入至複數條通道LA[0]~LA[2]中的一通道,因此,控制電路350可根據控制輸入IN CT3中的一通道選取訊號產生時脈選取訊號SEL 00,其中該通道選取訊號具有匹配於該通道的通道識別碼的訊號值。此外,或者是,時脈選取訊號SEL 00可具有匹配於該通道的通道識別碼的訊號值。相似地,由於時脈訊號2D_CLK0輸入至複數條通道LA[3]~LA[5]中的一通道,因此,控制電路350可根據控制輸入IN CT3中的另一通道選取訊號產生時脈選取訊號SEL 01,其中該另一通道選取訊號具有匹配於該通道的通道識別碼的訊號值。此外,或者是,時脈選取訊號SEL 01可具有匹配於該通道的通道識別碼的訊號值。 In the "2D1C" bifurcated channel configuration, each of the plurality of clock selection signals SEL 10 ~ SEL 12 can have a signal value, wherein the signal value is different from the plurality of clock selection signals SEL 13 ~The signal value of each clock selection signal in SEL 15 . Therefore, the output side S02 can be coupled to a plurality of sampling circuits RX[0]˜RX[2], and the output side S12 can be coupled to a plurality of sampling circuits RX[3]˜RX[5]. Since the clock signal 2D_CLK0 is input to one of the plurality of channels LA[0]˜LA[2], the control circuit 350 can generate the clock selection signal SEL 00 according to a channel selection signal in the control input IN CT3 , where The channel select signal has a signal value that matches the channel ID of the channel. Additionally, or alternatively, the clock select signal SEL 00 may have a signal value that matches the channel identification code of the channel. Similarly, since the clock signal 2D_CLK0 is input to one of the plurality of channels LA[3]˜LA[5], the control circuit 350 can generate a clock selection signal according to another channel selection signal in the control input IN CT3 SEL 01 , wherein the other channel selection signal has a signal value that matches the channel identification code of the channel. Additionally, or alternatively, the clock select signal SEL 01 may have a signal value that matches the channel identification code of the channel.

在某些實施例中,時脈選取訊號SEL 00與時脈選取訊號SEL 01可實施為單一時脈選取訊號。複數個通道選取單元322.0與322.1均可根據該單一時脈選取訊號執行通道選取操作。控制電路350可根據欲選取之一或多條通道的一或多個通道識別碼,來決定該單一時脈選取訊號的訊號值/訊號型樣。舉例來說,於「5D1C」通道組態中,該單一時脈訊號具有一訊號值,其與時脈訊號5D_CLK輸入的通道的通道識別碼相匹配。又例如,於「2D1C」分岔通道組態中,該單一時脈訊號的前三個最低有效位元(least significant bit,LSB)具有一訊號值,其與複數條通道LA[0]~LA[2]的其中之一的通道識別碼相匹配。該單一時脈訊號的前三個最高有效位元(most significant bit,MSB)具有一訊號值,其與複數條通道LA[3]~LA[5]的其中之一的通道識別碼相匹配。 In some embodiments, the clock select signal SEL 00 and the clock select signal SEL 01 may be implemented as a single clock select signal. Multiple channel selection units 322.0 and 322.1 can perform channel selection operations according to the single clock selection signal. The control circuit 350 can determine the signal value/signal pattern of the single clock selection signal according to one or more channel identification codes of one or more channels to be selected. For example, in the "5D1C" channel configuration, the single clock signal has a signal value that matches the channel ID of the channel where the clock signal 5D_CLK is input. For another example, in the "2D1C" bifurcated channel configuration, the first three least significant bits (LSB) of the single clock signal have a signal value that is consistent with the plurality of channels LA[0]~LA Matches one of the channel identifiers in [2]. The first three most significant bits (MSB) of the single clock signal have a signal value that matches the channel identification code of one of the plurality of channels LA[3]˜LA[5].

相似地,請再次參閱圖1,積體電路110另包含一控制電路150,其可根據一控制輸入IN CT1產生一時脈選取訊號,或根據所選取之複數條時脈通道中的一通道的一通道識別碼產生該時脈選取訊號。控制輸入IN CT1可指示出該通道識別碼。此外,或者是,該時脈選取訊號可具有匹配於該通道識別碼的訊號值。因此,通道選取電路120可根據該時脈選取訊號來選取該通道。此外,或者是,在圖5A、圖5B、圖5C與圖6所示之實施例中,時脈選取訊號SEL A/SEL B1/SEL B2/SEL C1/SEL C2/SEL C3的訊號值可根據時脈訊號輸入的通道的通道識別碼來決定。由於所屬領域中具有通常知識者在閱讀上述關於圖7、圖8與圖3的段落說明之後,應可瞭解產生圖5A、圖5B、圖5C與圖6所示之時脈選取訊號SEL A/SEL B1/SEL B2/SEL C1/SEL C2/SEL C3的細節,因此,進一步的說明在此便不再贅述。 Similarly, please refer to FIG. 1 again. The integrated circuit 110 further includes a control circuit 150, which can generate a clock selection signal according to a control input IN CT1 , or according to a selected signal of a plurality of clock channels. The channel identification code generates the clock selection signal. Control input IN CT1 indicates the channel identification code. Additionally, or alternatively, the clock selection signal may have a signal value that matches the channel identification code. Therefore, the channel selection circuit 120 can select the channel according to the clock selection signal. In addition, alternatively, in the embodiments shown in FIG. 5A, FIG. 5B, FIG. 5C and FIG. 6, the signal value of the clock selection signal SEL A /SEL B1 /SEL B2 /SEL C1 /SEL C2 /SEL C3 can be based on Determined by the channel identification code of the clock signal input channel. Since those with ordinary knowledge in the art should understand that the clock selection signal SEL A / Details of SEL B1 /SEL B2 /SEL C1 /SEL C2 /SEL C3 , therefore, further explanation will not be repeated here.

以上所述之通道互換方案與通道選取操作的至少其一可運用於實體層的其他子層中,諸如實體編碼子層。圖11繪示了根據本揭示某些實施例的一例示性接收器的功能方塊示意圖。接收器1104可作為圖1所示之接收器104的實施例。接收器1104的實體層1108包含一實體媒體連接層(PMA)1105以及一實體編碼子層(PCS)1107。實體媒體連接層1105可採用參照圖1至圖10所述之電路結構與操作。At least one of the above-mentioned channel exchange scheme and channel selection operation can be applied to other sub-layers of the physical layer, such as the physical coding sub-layer. FIG. 11 illustrates a functional block diagram of an exemplary receiver according to certain embodiments of the present disclosure. Receiver 1104 may be an embodiment of receiver 104 shown in FIG. 1 . The physical layer 1108 of the receiver 1104 includes a physical media connection layer (PMA) 1105 and a physical coding sublayer (PCS) 1107. The physical media connection layer 1105 may adopt the circuit structure and operation described with reference to FIGS. 1 to 10 .

實體媒體連接層1105包含(但不限於)一多通道介面1114、一通道選取電路1120以及複數個S2P轉換器1130 0~1130 N-1,其中N是大於1的整數。多通道介面1114與通道選取電路1120可分別作為圖1所示之多通道介面114與通道選取電路120的實施例。多通道介面114可包含圖1所示之N條通道LA[0]~LA[N-1]。通道選取電路1120用以根據一組時脈選取訊號{SEL PMA}將多通道介面1114中的一或多條通道選為一或多條時脈通道。此外,複數個S2P轉換器1130 0~1130 N-1可利用圖1所示之N個取樣電路RX[0]~RX[N-1]與輸出電路140來實施。 The physical media connection layer 1105 includes (but is not limited to) a multi-channel interface 1114, a channel selection circuit 1120 and a plurality of S2P converters 1130 0 to 1130 N-1 , where N is an integer greater than 1. The multi-channel interface 1114 and the channel selection circuit 1120 can be respectively used as embodiments of the multi-channel interface 114 and the channel selection circuit 120 shown in FIG. 1 . The multi-channel interface 114 may include N channels LA[0]˜LA[N-1] as shown in FIG. 1 . The channel selection circuit 1120 is used to select one or more channels in the multi-channel interface 1114 as one or more clock channels according to a set of clock selection signals {SEL PMA }. In addition, a plurality of S2P converters 1130 0 to 1130 N-1 can be implemented using N sampling circuits RX[0] to RX[N-1] and the output circuit 140 shown in FIG. 1 .

實體編碼子層1107包含(但不限於)一多通道介面1116、一通道選取電路1122以及複數個處理電路1132 0~1132 N-1。多通道介面1116可作為圖1所示之多通道介面114的實施例。多通道介面1116包含耦接於實體媒體連接層1105的N條通道LS[0]~LS[N-1]。通道選取電路1122可作為圖1所示之通道選取電路120的實施例。通道選取電路1122用以根據一組時脈選取訊號{SEL PCS}將N條通道LS[0]~LS[N-1]中的一或多條通道選為一或多條時脈通道。N條通道LS[0]~LS[N-1]中的各通道均可通用於時脈通道與資料通道。此外,複數個處理電路1132 0~1132 N-1可實施為分別包含圖1所示之N個取樣電路RX[0]~RX[N-1],以根據來自實體媒體連接層1105的一或多個時脈訊號進行資料取樣。 The physical coding sublayer 1107 includes (but is not limited to) a multi-channel interface 1116, a channel selection circuit 1122 and a plurality of processing circuits 1132 0 to 1132 N-1 . The multi-channel interface 1116 may be an embodiment of the multi-channel interface 114 shown in FIG. 1 . The multi-channel interface 1116 includes N channels LS[0]˜LS[N-1] coupled to the physical media connection layer 1105 . The channel selection circuit 1122 can be used as an embodiment of the channel selection circuit 120 shown in FIG. 1 . The channel selection circuit 1122 is used to select one or more channels among the N channels LS[0]˜LS[N-1] as one or more clock channels according to a set of clock selection signals {SEL PCS }. Each channel among the N channels LS[0]~LS[N-1] can be used commonly for clock channels and data channels. In addition, the plurality of processing circuits 1132 0 to 1132 N-1 may be implemented to respectively include N sampling circuits RX[0] to RX[N-1] as shown in FIG. Multiple clock signals are used for data sampling.

於操作中,實體媒體連接層1105可用以輸出分別相關於M個不同時脈域(clock domain)的M個時脈訊號CKD 1~CKD M,M是小於N的正整數。實體編碼子層1107可將N條通道LS[0]~LS[N-1]中的M條通道選為M條時脈通道以接收M個時脈訊號CKD 1~CKD M。也就是說,實體編碼子層1107可因應實體媒體連接層1105的通道選取操作,來執行相應的通道選取操作。舉例來說,實體媒體連接層1105的多通道介面1114可接收M個傳輸器(圖11未示)所傳送之M個時脈訊號,以產生M個時脈訊號CKD 1~CKD M,其中該M個傳輸器分別操作在該M個不同時脈域。通道選取電路1120可根據一組時脈選取訊號{SEL PMA}來將多通道介面1114中的M條通道選為M條時脈通道。複數個S2P轉換器1130 0~1130 N-1中的M個S2P轉換器(耦接於所選取之M條通道)可分別產生M個時脈訊號CKD 1~CKD M。因應實體媒體連接層1105的通道選取操作,實體編碼子層1107中的通道選取電路1122可根據一組時脈選取訊號{SEL PCS}來將N條通道LS[0]~LS[N-1]中的M條通道選為M條時脈通道。N條通道LS[0]~LS[N-1]中剩餘的(N-M)條通道包含的一或多條通道可作為一或多條資料通道。複數個處理電路1132 0~1132 N-1可根據M個時脈訊號CKD 1~CKD M對該一或多條資料通道上的資料進行處理。 In operation, the physical media connection layer 1105 may be used to output M clock signals CKD 1 -CKD M respectively related to M different clock domains (clock domains), where M is a positive integer less than N. The physical coding sublayer 1107 can select M channels among the N channels LS[0]˜LS[N-1] as M clock channels to receive M clock signals CKD 1 ˜CKD M . That is to say, the physical coding sub-layer 1107 can perform corresponding channel selection operations in response to the channel selection operations of the physical media connection layer 1105. For example, the multi-channel interface 1114 of the physical media connection layer 1105 can receive M clock signals transmitted by M transmitters (not shown in Figure 11) to generate M clock signals CKD 1 to CKD M , where the The M transmitters respectively operate in the M different clock domains. The channel selection circuit 1120 can select the M channels in the multi-channel interface 1114 as M clock channels according to a set of clock selection signals {SEL PMA }. M S2P converters (coupled to the selected M channels) among the plurality of S2P converters 1130 0 to 1130 N-1 can respectively generate M clock signals CKD 1 to CKD M . In response to the channel selection operation of the physical media connection layer 1105, the channel selection circuit 1122 in the physical encoding sublayer 1107 can select N channels LS[0]~LS[N-1] according to a set of clock selection signals {SEL PCS }. The M channels in are selected as M clock channels. One or more channels included in the remaining (NM) channels among the N channels LS[0]~LS[N-1] can be used as one or more data channels. A plurality of processing circuits 1132 0 to 1132 N-1 can process data on one or more data channels according to M clock signals CKD 1 to CKD M.

一組時脈選取訊號{SEL PMA}以及一組時脈選取訊號{SEL PCS}可由實體媒體連接層1105與實體編碼子層1107共用的一控制輸入所產生。於此實施例中,實體編碼子層1107另可包含一控制電路1150,其可作為圖1所示之控制電路150的實施例。控制電路1150可根據一控制輸入IN CTRL產生一組時脈選取訊號{SEL PMA}及一組時脈選取訊號{SEL PCS}。控制輸入IN CTRL可指示出實體媒體連接層1105中所選取之時脈通道的通道識別碼,以及指示出實體編碼子層1107中所選取之時脈通道的通道識別碼。舉例來說,當控制輸入IN CTRL具有匹配於實體媒體連接層1105之通道LA[0]的通道識別碼的訊號型樣/訊號值時,控制電路1150可根據控制輸入IN CTRL產生一組時脈選取訊號{SEL PMA},使通道LA[0]可被設定為時脈通道以接收傳輸器(圖11未示)所傳送之時脈訊號。此外,控制電路1150可根據控制輸入IN CTRL產生一組時脈選取訊號{SEL PCS},使通道LS[0](具有匹配於控制輸入IN CTRL之訊號型樣/訊號值的通道識別碼)可被設定為時脈通道以接收實體媒體連接層1105所輸出的時脈訊號,其中實體媒體連接層1105所輸出之時脈訊號是因應傳輸器所傳送之時脈訊號而產生。 A set of clock selection signals {SEL PMA } and a set of clock selection signals {SEL PCS } may be generated by a control input shared by the physical media connection layer 1105 and the physical coding sublayer 1107 . In this embodiment, the physical encoding sublayer 1107 may also include a control circuit 1150, which may be an embodiment of the control circuit 150 shown in FIG. 1 . The control circuit 1150 can generate a set of clock selection signals {SEL PMA } and a set of clock selection signals {SEL PCS } according to a control input IN CTRL . The control input IN CTRL may indicate the channel identification code of the clock channel selected in the physical media connection layer 1105 and the channel identification code of the clock channel selected in the physical encoding sublayer 1107 . For example, when the control input IN CTRL has a signal pattern/signal value that matches the channel identification code of the channel LA[0] of the physical media connection layer 1105, the control circuit 1150 may generate a set of clocks according to the control input IN CTRL . Select the signal {SEL PMA } so that channel LA[0] can be set as a clock channel to receive the clock signal sent by the transmitter (not shown in Figure 11). In addition, the control circuit 1150 can generate a set of clock selection signals {SEL PCS } according to the control input IN CTRL , so that the channel LS[0] (having a channel identification code matching the signal pattern/signal value of the control input IN CTRL ) can It is configured as a clock channel to receive the clock signal output by the physical media connection layer 1105, where the clock signal output by the physical media connection layer 1105 is generated in response to the clock signal transmitted by the transmitter.

舉例來說(但本揭示不限於此),控制輸入IN CTRL可包含複數個通道選取訊號,其中各通道選取訊號均可指示出所選取之一時脈通道的通道識別碼。又例如,控制輸入IN CTRL可一模式選取訊號以及複數個通道選取訊號,其中該模式選取訊號可指示出接收器1104的模式,諸如「1C」模式或分岔模式。由於所屬領域中具有通常知識者在閱讀圖1至圖10相關的段落說明之後,應可瞭解控制電路1150可採用通道識別碼與控制輸入之間的匹配關係來控制通道選取電路1120與通道選取電路1122,因此,關於通道選取的重複說明在此便不再贅述。 For example (but this disclosure is not limited thereto), the control input IN CTRL may include a plurality of channel selection signals, wherein each channel selection signal may indicate the channel identification code of a selected clock channel. As another example, the control input IN CTRL may be a mode selection signal and a plurality of channel selection signals, wherein the mode selection signal may indicate the mode of the receiver 1104, such as "1C" mode or bifurcated mode. After reading the paragraphs related to Figures 1 to 10, a person with ordinary knowledge in the art should understand that the control circuit 1150 can use the matching relationship between the channel identification code and the control input to control the channel selection circuit 1120 and the channel selection circuit 1122, therefore, the repeated instructions on channel selection will not be described again here.

在某些實施例中,共用的控制電路1150可設置於實體媒體連接層1105中,而不是設置於實體編碼子層1107中。在某些實施例中,實體媒體連接層1105可具有一第一控制電路設置於其中,而實體編碼子層1107可具有一第二控制電路設置於其中。該第一控制電路與該第二控制電路可根據相同的控制輸入(諸如控制輸入IN CTRL)來控制通道選取操作。這些設計上的修飾與變化均遵循本揭示的精神而落入本揭示的範疇。 In some embodiments, the common control circuit 1150 may be disposed in the physical media connection layer 1105 instead of the physical encoding sublayer 1107 . In some embodiments, the physical media connection layer 1105 may have a first control circuit disposed therein, and the physical encoding sublayer 1107 may have a second control circuit disposed therein. The first control circuit and the second control circuit may control channel selection operations based on the same control input, such as control input IN CTRL . These design modifications and changes all follow the spirit of this disclosure and fall within the scope of this disclosure.

以下提供一些實施例以進一步說明採用通道互換方案的實體編碼子層1107。所屬領域中具有通常知識者應可瞭解,採用了參照圖1至圖10所述之通道互換方案的其他實體編碼子層均遵循本揭示的精神而落入本揭示的範疇。Some examples are provided below to further illustrate the physical coding sublayer 1107 using the channel interchange scheme. Those with ordinary knowledge in the art should understand that other entity encoding sub-layers that adopt the channel interchange scheme described with reference to FIGS. 1 to 10 follow the spirit of this disclosure and fall within the scope of this disclosure.

圖12繪示了根據本揭示某些實施例的圖11所示之實體編碼子層1107中的一積體電路的實施例的示意圖。實體編碼子層1207中的積體電路1210可作為圖1所示之積體電路110(其包含六條可通用於時脈通道與資料通道的通道,N=6)的實施例。於此實施例中,實體編碼子層1207用以接收實體媒體連接層(PMA)1205所傳送之時脈與資料資訊,其中實體媒體連接層1205可作為圖11所示之實體媒體連接層1105的實施例。積體電路1210可包含一多通道介面1214、一通道選取電路1220以及複數個取樣電路RM[0]~RM[5]。多通道介面1214與通道選取電路1220可分別作為圖1所示之多通道介面114與通道選取電路120的實施例。複數個取樣電路RM[0]~RM[5]可作為圖1所示之複數個取樣電路RX[0]~RX[5]的實施例。FIG. 12 is a schematic diagram of an embodiment of an integrated circuit in the physical encoding sub-layer 1107 shown in FIG. 11 according to certain embodiments of the present disclosure. The integrated circuit 1210 in the physical coding sub-layer 1207 can be used as an embodiment of the integrated circuit 110 shown in FIG. 1 (which includes six channels that can be commonly used for clock channels and data channels, N=6). In this embodiment, the physical coding sublayer 1207 is used to receive the clock and data information transmitted by the physical media connection layer (PMA) 1205, where the physical media connection layer 1205 can be used as a component of the physical media connection layer 1105 shown in Figure 11. Example. The integrated circuit 1210 may include a multi-channel interface 1214, a channel selection circuit 1220 and a plurality of sampling circuits RM[0]˜RM[5]. The multi-channel interface 1214 and the channel selection circuit 1220 can be respectively used as embodiments of the multi-channel interface 114 and the channel selection circuit 120 shown in FIG. 1 . The plurality of sampling circuits RM[0]˜RM[5] can be used as embodiments of the plurality of sampling circuits RX[0]˜RX[5] shown in FIG. 1 .

多通道介面1214耦接於實體媒體連接層1205,並包含圖11所示之複數條通道LS[0]~LS[5]。複數條通道LS[0]~LS[5]可作為圖1所示之N條通道LA[0]~LA[N-1]的實施例(亦即,N=6)。於此實施例中,複數條通道LS[0]~LS[5]中的各通道可攜帶一多位元輸出訊號(multi-bit output signal),諸如一位元組資料訊號或一位元組時脈訊號。The multi-channel interface 1214 is coupled to the physical media connection layer 1205 and includes a plurality of channels LS[0]˜LS[5] as shown in FIG. 11 . The plurality of channels LS[0]~LS[5] can be used as an embodiment of the N channels LA[0]~LA[N-1] shown in Figure 1 (that is, N=6). In this embodiment, each of the plurality of channels LS[0]˜LS[5] can carry a multi-bit output signal, such as a byte data signal or a byte clock signal.

通道選取電路1220用以將複數條通道LS[0]~LS[5]中的一或多條通道選為一或多條時脈通道。剩餘的通道中的一或多條通道可作為一或多條資料通道。通道選取電路1220包含(但不限於)複數個選取級1222與1224,其可分別作為圖1所示之複數個選取級122與124的實施例。於此實施例中,選取級1222可因應積體電路1210的模式將一或兩條通道耦接於選取級1224。選取級1222包含複數個通道選取單元1222.0與1222.1。通道選取單元1222.0用以根據一時脈選取訊號SEL 100將複數條通道LS[0]~LS[5]耦接於一輸出端子T 100。通道選取單元1222.1用以根據一時脈選取訊號SEL 101將複數條通道LS[0]~LS[5]耦接於一輸出端子T 101。選取級1224可實施為包含一通道選取單元1224.0,其可根據一時脈選取訊號SEL 102將輸出端子T 100與輸出端子T 101的其中之一耦接於一輸出端子T 102The channel selection circuit 1220 is used to select one or more channels among the plurality of channels LS[0]˜LS[5] as one or more clock channels. One or more of the remaining channels can serve as one or more data channels. The channel selection circuit 1220 includes (but is not limited to) a plurality of selection stages 1222 and 1224, which can be respectively used as embodiments of the plurality of selection stages 122 and 124 shown in FIG. 1 . In this embodiment, the selection stage 1222 may couple one or two channels to the selection stage 1224 according to the mode of the integrated circuit 1210 . The selection stage 1222 includes a plurality of channel selection units 1222.0 and 1222.1. The channel selection unit 1222.0 is used to couple a plurality of channels LS[0]˜LS[5] to an output terminal T 100 according to a clock selection signal SEL 100 . The channel selection unit 1222.1 is used to couple a plurality of channels LS[0]˜LS[5] to an output terminal T 101 according to a clock selection signal SEL 101 . The selection stage 1224 may be implemented to include a channel selection unit 1224.0, which may couple one of the output terminal T 100 and the output terminal T 101 to an output terminal T 102 according to a clock selection signal SEL 102 .

複數個取樣電路RM[0]~RM[5]耦接於多通道介面1214與通道選取電路1220,用以根據實體媒體連接層1205所傳送之時脈資訊與資料資訊來進行資料取樣。於此實施例中,複數個取樣電路RM[0]~RM[5]中的各取樣電路可包含一時脈輸入端PC IN及一資料輸入端PD IN。各取樣電路可利用輸入至相對應之時脈輸入端PC IN的訊號,對輸入至相對應之資料輸入端PD IN的訊號進行取樣。 A plurality of sampling circuits RM[0]˜RM[5] are coupled to the multi-channel interface 1214 and the channel selection circuit 1220, and are used for sampling data according to the clock information and data information transmitted by the physical media connection layer 1205. In this embodiment, each of the plurality of sampling circuits RM[0]˜RM[5] may include a clock input terminal PC IN and a data input terminal PD IN . Each sampling circuit can use the signal input to the corresponding clock input terminal PC IN to sample the signal input to the corresponding data input terminal PD IN .

在積體電路1210用於支援「4D1C」通道組態的模式中,通道選取單元1224.0用以將輸出端子T 100耦接於輸出端子T 102。當通道選取單元1222.0將複數條通道LS[0]~LS[5]中的一通道選為一時脈通道時,該時脈通道上的訊號可耦接於輸出端子T 100,並分配給複數個取樣電路RM[0]~RM[5]各自的時脈輸入端PC IN。舉例來說,當一時脈訊號輸入至通道LS[0]時,通道選取單元1222.0可將通道LS[0]選為時脈通道,而複數個取樣電路RM[0]~RM[5]中的四個取樣電路可根據相同的時脈訊號(亦即,通道LS[0]上的訊號)來進行資料取樣。 In the mode where the integrated circuit 1210 is used to support the "4D1C" channel configuration, the channel selection unit 1224.0 is used to couple the output terminal T 100 to the output terminal T 102 . When the channel selection unit 1222.0 selects one of the plurality of channels LS[0]~LS[5] as a clock channel, the signal on the clock channel can be coupled to the output terminal T 100 and distributed to a plurality of The respective clock input terminals PC IN of the sampling circuits RM[0]~RM[5]. For example, when a clock signal is input to channel LS[0], the channel selection unit 1222.0 can select channel LS[0] as the clock channel, and the plurality of sampling circuits RM[0]~RM[5] The four sampling circuits can sample data based on the same clock signal (ie, the signal on channel LS[0]).

在積體電路1210用於支援「2D1C」分岔通道組態的模式中,通道選取單元1224.0用以將輸出端子T 101耦接於輸出端子T 102。當通道選取單元1222.0將複數條通道LS[0]~LS[5]中的一通道選為一時脈通道時,通道選取單元1222.1可複數條通道LS[0]~LS[5]中的另一通道選為一時脈通道。因此,可根據所選取之複數條時脈通道上的訊號來對剩餘的複數條通道上的訊號進行取樣。例如,當兩個時脈訊號分別輸入至通道LS[1]與通道LS[4]時,通道選取單元1222.0可將通道LS[1]選為一時脈通道,而通道選取單元1222.1可將通道LS[4]選為另一時脈通道。複數個取樣電路RM[0]~RM[5]中的四個取樣電路可根據涉及不同時脈域的這兩個時脈訊號來進行資料取樣。 In the mode where the integrated circuit 1210 is used to support the "2D1C" bifurcated channel configuration, the channel selection unit 1224.0 is used to couple the output terminal T 101 to the output terminal T 102 . When the channel selection unit 1222.0 selects one of the plurality of channels LS[0]~LS[5] as a clock channel, the channel selection unit 1222.1 selects another one of the plurality of channels LS[0]~LS[5]. The channel is selected as a clock channel. Therefore, the signals on the remaining plurality of clock channels can be sampled according to the signals on the selected plurality of clock channels. For example, when two clock signals are input to channel LS[1] and channel LS[4] respectively, the channel selection unit 1222.0 can select channel LS[1] as a clock channel, and the channel selection unit 1222.1 can select channel LS [4] Select another clock channel. Four sampling circuits among the plurality of sampling circuits RM[0]~RM[5] can perform data sampling according to the two clock signals involving different clock domains.

值得注意的是,實體編碼子層1207可採用前文所述之通道選取操作。於此實施例中,積體電路1210另包含一控制電路1250,其可根據一控制輸入IN CT12產生複數個時脈選取訊號SEL 100~SEL 102,進而控制通道選取電路1220。舉例來說,當實體媒體連接層1205所傳送之一時脈訊號於「4D1C」通道組態中輸入至複數條通道LS[0]~LS[5]中的一通道時,控制電路1250可根據控制輸入IN CT12產生時脈選取訊號SEL 100,其可指示出該通道的通道識別碼。又例如,當兩個時脈訊號於「2D1C」分岔通道組態中輸入至複數條通道LS[0]~LS[5]中的兩條通道時,控制電路1250可根據控制輸入IN CT12產生時脈選取訊號SEL 100,其可指示出該兩條通道的其中之一的通道識別碼。此外,控制電路1250可根據控制輸入IN CT12產生時脈選取訊號SEL 101,其可指示出該兩條通道的其中之另一的通道識別碼。 It is worth noting that the physical coding sub-layer 1207 can adopt the channel selection operation described above. In this embodiment, the integrated circuit 1210 further includes a control circuit 1250 that can generate a plurality of clock selection signals SEL 100 ˜SEL 102 according to a control input IN CT12 to control the channel selection circuit 1220 . For example, when a clock signal transmitted by the physical media connection layer 1205 is input to one of the plurality of channels LS[0]˜LS[5] in the “4D1C” channel configuration, the control circuit 1250 can control The input IN CT12 generates a clock selection signal SEL 100 , which indicates the channel identification code of the channel. For another example, when two clock signals are input to two of the plurality of channels LS[0]~LS[5] in the "2D1C" bifurcated channel configuration, the control circuit 1250 can generate according to the control input IN CT12 The clock selection signal SEL 100 can indicate the channel identification code of one of the two channels. In addition, the control circuit 1250 can generate the clock selection signal SEL 101 according to the control input IN CT12 , which can indicate the channel identification code of the other one of the two channels.

以上所述之通道選取操作可應用於資料通道選取操作。舉例來說,通道選取電路1220另包含複數個通道選取單元1232.0~1232.3,其可由控制電路1250所產生的複數個資料選取訊號SEL 110~SEL 113所控制。於此實施例中,複數個通道選取單元1232.0~1232.3可將實體媒體連接層1205所傳送之資料分別提供給複數個取樣電路RM[0]、RM[2]、RM[3]與RM[5]。 The channel selection operation described above can be applied to the data channel selection operation. For example, the channel selection circuit 1220 also includes a plurality of channel selection units 1232.0-1232.3, which can be controlled by a plurality of data selection signals SEL 110 -SEL 113 generated by the control circuit 1250. In this embodiment, the plurality of channel selection units 1232.0˜1232.3 can provide the data transmitted by the physical media connection layer 1205 to the plurality of sampling circuits RM[0], RM[2], RM[3] and RM[5 respectively. ].

在「4D1C」通道組態的模式中(複數條通道LS[0]~LS[5]的其中之一被選為時脈通道),控制電路1250可根據控制輸入IN CT12產生複數個資料選取訊號SEL 110~SEL 113,其中控制輸入IN CT12可指示出攜帶實體媒體連接層1205所傳送之資料訊號的四條通道各自的通道識別碼。舉例來說,複數個資料選取訊號SEL 110~SEL 113各自的訊號值可分別匹配於該四條通道各自的通道識別碼。 In the "4D1C" channel configuration mode (one of the plurality of channels LS[0]~LS[5] is selected as the clock channel), the control circuit 1250 can generate a plurality of data selection signals according to the control input IN CT12 SEL 110 ~ SEL 113 , in which the control input IN CT12 can indicate the channel identification codes of each of the four channels carrying the data signals transmitted by the physical media connection layer 1205. For example, the respective signal values of the plurality of data selection signals SEL 110 ~ SEL 113 can be respectively matched with the channel identification codes of the four channels.

在「2D1C」通道組態的模式中(複數條通道LS[0]~LS[5]其中的兩條通道選為時脈通道),控制電路1250可根據控制輸入IN CT12產生複數個資料選取訊號SEL 110與SEL 111,其中控制輸入IN CT12可指示出該兩條通道各自的通道識別碼。該兩條通道可攜帶與通道選取單元1222.0所輸出之時脈訊號相關的資料訊號。舉例來說,複數個資料選取訊號SEL 110與SEL 111各自的訊號值可分別匹配於該兩條通道各自的通道識別碼。此外,控制電路1250可根據另外兩條通道各自的通道識別碼產生複數個資料選取訊號SEL 112與SEL 113,其中該另外兩條通道可攜帶與通道選取單元1222.1所輸出之時脈訊號相關的資料訊號。舉例來說,複數個資料選取訊號SEL 112與SEL 113各自的訊號值可分別匹配於該另外兩條通道各自的通道識別碼。 In the "2D1C" channel configuration mode (two of the plurality of channels LS[0]~LS[5] are selected as clock channels), the control circuit 1250 can generate a plurality of data selection signals according to the control input IN CT12 SEL 110 and SEL 111 , the control input IN CT12 can indicate the channel identification codes of the two channels. The two channels can carry data signals related to the clock signal output by the channel selection unit 1222.0. For example, the respective signal values of the plurality of data selection signals SEL 110 and SEL 111 can be respectively matched with the respective channel identification codes of the two channels. In addition, the control circuit 1250 can generate a plurality of data selection signals SEL 112 and SEL 113 according to the respective channel identification codes of the other two channels, wherein the other two channels can carry data related to the clock signal output by the channel selection unit 1222.1 signal. For example, the signal values of the plurality of data selection signals SEL 112 and SEL 113 can respectively match the channel identification codes of the other two channels.

由於所屬領域中具有通常知識者應可瞭解,於時脈前送方案中所採用的資料通道選取操作可以與參照圖1至圖11所述的時脈通道選取操作相似/相同,因此,重複的說明在此便不再贅述。Since those with ordinary knowledge in the art should understand that the data channel selection operation used in the clock forwarding scheme can be similar/identical to the clock channel selection operation described with reference to Figures 1 to 11, therefore, repeated The explanation will not be repeated here.

在某些實施例中,控制電路1250可由實體媒體連接層1205與實體編碼子層1207所共用。舉例來說,控制電路1250可產生一或多個時脈選取訊號,以控制實體媒體連接層1205的時脈選取操作。又例如,控制電路1250可使用通道選取電路1220的一或多個時脈選取訊號,來控制實體媒體連接層1205的通道選取電路(圖12未示),進而使實體媒體連接層1205與實體編碼子層1207各自的通道選取操作彼此一致。In some embodiments, the control circuit 1250 may be shared by the physical media connection layer 1205 and the physical encoding sublayer 1207. For example, the control circuit 1250 may generate one or more clock selection signals to control the clock selection operation of the physical media connection layer 1205 . For another example, the control circuit 1250 can use one or more clock selection signals of the channel selection circuit 1220 to control the channel selection circuit (not shown in FIG. 12 ) of the physical media connection layer 1205, thereby causing the physical media connection layer 1205 to communicate with the physical encoding. The respective channel selection operations of the sub-layers 1207 are consistent with each other.

值得注意的是,圖12所示之通道選取電路1220的電路結構與操作只是用於說明的目的。在某些實施例中,通道選取電路1220可利用圖1所示之通道選取電路120、圖3所示之通道選取電路320、圖5A至圖5C所示之複數個通道選取電路520A~520C、圖6所示之通道選取電路620、圖7所示之通道選取電路720、圖8所示之通道選取電路820,以及前文所述相關的設計變化來實施,而不致背離本揭示的範圍。It is worth noting that the circuit structure and operation of the channel selection circuit 1220 shown in FIG. 12 are for illustration purposes only. In some embodiments, the channel selection circuit 1220 may utilize the channel selection circuit 120 shown in FIG. 1, the channel selection circuit 320 shown in FIG. 3, a plurality of channel selection circuits 520A˜520C shown in FIGS. 5A to 5C, The channel selection circuit 620 shown in FIG. 6, the channel selection circuit 720 shown in FIG. 7, the channel selection circuit 820 shown in FIG. 8, and the related design changes described above can be implemented without departing from the scope of the present disclosure.

舉例來說,請參閱圖13,其繪示了根據本揭示某些實施例的圖11所示之實體編碼子層1107中的一積體電路的另一實施例的示意圖。除了通道選取電路1320以外,實體編碼子層1307的積體電路1310的結構可以與圖12所示之積體電路1210的結構相似/相同。於此實施例中,通道選取電路1320中的選取級1322包含一通道選取單元1322.a、一通道選取單元1322.b以及圖12所示之通道選取單元1222.1。通道選取單元1322.a可根據時脈選取訊號SEL 100將複數條通道LS[0]~LS[5]耦接於一輸出端子T 13A,其中輸出端子T 13A耦接於複數個取樣電路RM[0]~RM[2]各自的時脈輸入端PC IN。通道選取單元1322.b可根據時脈選取訊號SEL 100將複數條通道LS[0]~LS[5]耦接於一輸出端子T 13B,其中輸出端子T 13B耦接於通道選取單元1224.0。由於所屬領域中具有通常知識者在閱讀圖1至圖12相關的段落說明之後,應可瞭解通道選取電路1320的操作細節,因此,進一步的說明在此便不再贅述。 For example, please refer to FIG. 13 , which illustrates a schematic diagram of another embodiment of an integrated circuit in the physical encoding sub-layer 1107 shown in FIG. 11 according to certain embodiments of the present disclosure. Except for the channel selection circuit 1320, the structure of the integrated circuit 1310 of the physical encoding sublayer 1307 may be similar/identical to the structure of the integrated circuit 1210 shown in FIG. 12 . In this embodiment, the selection stage 1322 in the channel selection circuit 1320 includes a channel selection unit 1322.a, a channel selection unit 1322.b and the channel selection unit 1222.1 shown in FIG. 12 . The channel selection unit 1322.a can couple a plurality of channels LS[0]˜LS[5] to an output terminal T 13A according to the clock selection signal SEL 100 , wherein the output terminal T 13A is coupled to a plurality of sampling circuits RM[ 0]~RM[2] respective clock input terminal PC IN . The channel selection unit 1322.b can couple a plurality of channels LS[0]˜LS[5] to an output terminal T 13B according to the clock selection signal SEL 100 , where the output terminal T 13B is coupled to the channel selection unit 1224.0. Since a person with ordinary knowledge in the art should be able to understand the operational details of the channel selection circuit 1320 after reading the relevant paragraphs of FIG. 1 to FIG. 12 , further description will not be repeated here.

此外,以上所述之通道選取方案也可應用傳輸側。圖14繪示了根據本揭示某些實施例的一例示性多通道通訊系統的功能方塊示意圖。多通道通訊系統1400可包含一傳輸器1402以及一接收器1404。傳輸器1402可作為圖1所示之K個傳輸器TX[0]~TX[K-1]的其中之一的實施例。接收器1404可採用參照圖1至圖13所述之電路結構與操作。於此實施例中,傳輸器1402可致使於時脈通道上以及於資料通道上傳輸的訊號彼此互換。傳輸器1402包含(但不限於)複數個訊號產生電路1410.0~1410.2、一通道選取電路1420、複數個並列至串列轉換器(parallel-to-serial converter,以下稱為「P2S轉換器」)1430.0~1430.2、一多通道介面1440以及一控制電路1450。In addition, the channel selection scheme described above can also be applied to the transmission side. FIG. 14 illustrates a functional block diagram of an exemplary multi-channel communication system according to certain embodiments of the present disclosure. Multi-channel communication system 1400 may include a transmitter 1402 and a receiver 1404. The transmitter 1402 may be an embodiment of one of the K transmitters TX[0]˜TX[K-1] shown in FIG. 1 . The receiver 1404 may adopt the circuit structure and operation described with reference to FIGS. 1-13. In this embodiment, the transmitter 1402 can cause the signals transmitted on the clock channel and the data channel to be interchanged with each other. The transmitter 1402 includes (but is not limited to) a plurality of signal generation circuits 1410.0-1410.2, a channel selection circuit 1420, and a plurality of parallel-to-serial converters (hereinafter referred to as "P2S converters") 1430.0 ~1430.2, a multi-channel interface 1440 and a control circuit 1450.

複數個訊號產生電路1410.0~1410.2中的各訊號產生電路可在資料匯流排(data bus)上產生一多位元輸出訊號,諸如一並列時脈訊號或一並列資料訊號。於此實施例中,訊號產生電路1410.0與訊號產生電路1410.1均可由一資料訊號產生器來實施,而訊號產生電路1410.2可由一時脈訊號產生器來實施。因此,複數個訊號產生電路1410.0與1410.1可分別在複數個資料匯流排DB0與DB1產生複數個並列資料訊號PD0與PD1。訊號產生電路1410.2可在資料匯流排DB2產生一並列時脈訊號PC0。Each of the plurality of signal generating circuits 1410.0-1410.2 can generate a multi-bit output signal on a data bus, such as a parallel clock signal or a parallel data signal. In this embodiment, the signal generating circuit 1410.0 and the signal generating circuit 1410.1 can both be implemented by a data signal generator, and the signal generating circuit 1410.2 can be implemented by a clock signal generator. Therefore, the plurality of signal generating circuits 1410.0 and 1410.1 can generate a plurality of parallel data signals PD0 and PD1 on the plurality of data buses DB0 and DB1 respectively. The signal generating circuit 1410.2 can generate a parallel clock signal PC0 on the data bus DB2.

通道選取電路1420耦接於複數個訊號產生電路1410.0~1410.2,用以將複數個訊號產生電路1410.0~1410.2所產生的複數個多位元輸出訊號分配給複數個P2S轉換器1430.0~1430.2。於此實施例中,通道選取電路1420包含複數個通道選取單元1422.0~1422.2,其中各通道選取單元可根據相對應之選取訊號(亦即,複數個選取訊號SEL T0~SEL T2的其中之一)來輸出複數個資料匯流排DB0~DB2上的複數個輸出訊號的其中之一。 The channel selection circuit 1420 is coupled to the plurality of signal generating circuits 1410.0˜1410.2, and is used to distribute the plurality of multi-bit output signals generated by the plurality of signal generating circuits 1410.0˜1410.2 to the plurality of P2S converters 1430.0˜1430.2. In this embodiment, the channel selection circuit 1420 includes a plurality of channel selection units 1422.0˜1422.2, where each channel selection unit can select according to a corresponding selection signal (ie, one of the plurality of selection signals SEL T0 ˜SEL T2 ). To output one of the plurality of output signals on the plurality of data buses DB0~DB2.

複數個P2S轉換器1430.0~1430.2中的各P2S轉換器可將一並列輸出訊號轉換為一串列輸出訊號(serial output signal)。多通道介面1440可作為圖1所示之K個多通道介面TF[0]~TF[K-1]的其中之一的實施例。多通道介面1440可包含複數條通道LT[0]~LT[2]。複數條通道LT[0]~LT[2]中的至少一通道可通用於時脈通道與資料通道。於此實施例中,複數條通道LT[0]~LT[2]中的各通道可利用一雙線通道來實施,該雙線通道是包含一對訊號接腳的差動通道。通道LT[0]的包含的一對訊號接腳可命名為「dpt0」與「dnt0」,通道LT[1]的包含的一對訊號接腳可命名為「dpt1」與「dnt1」,以此類推。在某些實施例中,複數條通道LT[0]~LT[2]中的各通道均可利用其他類型的通道來實施,諸如單線通道或具有超過兩線之通道,而不致背離本揭示的範圍。Each P2S converter among the plurality of P2S converters 1430.0˜1430.2 can convert a parallel output signal into a serial output signal. The multi-channel interface 1440 can be an embodiment of one of the K multi-channel interfaces TF[0]˜TF[K-1] shown in FIG. 1 . The multi-channel interface 1440 may include a plurality of channels LT[0]˜LT[2]. At least one channel among the plurality of channels LT[0]~LT[2] can be used commonly for the clock channel and the data channel. In this embodiment, each of the plurality of channels LT[0]˜LT[2] can be implemented using a two-wire channel, which is a differential channel including a pair of signal pins. The pair of signal pins included in channel LT[0] can be named "dpt0" and "dnt0", and the pair of signal pins included in channel LT[1] can be named "dpt1" and "dnt1". Analogy. In some embodiments, each of the plurality of channels LT[0]˜LT[2] may be implemented using other types of channels, such as single-wire channels or channels with more than two wires, without departing from the teachings of the present disclosure. Scope.

控制電路1450用以根據一控制輸入IN CT14產生複數個選取訊號SEL T0~SEL T2,進而控制通道選取電路1420。複數個選取訊號SEL T0~SEL T2中各選取訊號的訊號值均可根據控制輸入IN CT14來決定,其中控制輸入IN CT14可指示出一通道所對應之通道識別碼。舉例來說,接收器1404可將通道1406.0作為一時脈通道,以接收傳輸器1402所傳送之時脈資訊。通道1406.1與通道1406.2均可作為接收器1404的資料通道。藉由將訊號產生電路1410.2耦接於P2S轉換器1430.0,通道選取單元1422.0可根據選取訊號SEL T0將通道LT[0](其耦接於通道1406.0)選為一時脈通道。控制電路1450可根據通道LT[0]的通道識別碼(諸如接腳名稱「dpt0/dnt0」或通道名稱「LT[0]」)來決定選取訊號SEL T0的訊號值。此外,通道選取單元1422.1可根據選取訊號SEL T1將通道LT[1]選為一資料通道,以及通道選取單元1422.2可根據選取訊號SEL T2將通道LT[2]選為一資料通道。由於所屬領域中具有通常知識者在閱讀上述關於接收側之時脈/資料通道選取操作的段落說明之後,應可瞭解通道選取電路1420的時脈/資料通道選取操作的細節,因此,進一步的說明在此便不再贅述。 The control circuit 1450 is used to generate a plurality of selection signals SEL T0 ˜SEL T2 according to a control input IN CT14 to thereby control the channel selection circuit 1420 . The signal value of each of the plurality of selection signals SEL T0 ~ SEL T2 can be determined according to the control input IN CT14 , where the control input IN CT14 can indicate the channel identification code corresponding to a channel. For example, the receiver 1404 can use the channel 1406.0 as a clock channel to receive the clock information transmitted by the transmitter 1402. Both channel 1406.1 and channel 1406.2 can be used as data channels of the receiver 1404. By coupling the signal generation circuit 1410.2 to the P2S converter 1430.0, the channel selection unit 1422.0 can select the channel LT[0] (which is coupled to the channel 1406.0) as a clock channel according to the selection signal SEL T0 . The control circuit 1450 may determine the signal value of the selection signal SEL T0 according to the channel identification code of the channel LT[0] (such as the pin name "dpt0/dnt0" or the channel name "LT[0]"). In addition, the channel selection unit 1422.1 can select the channel LT[1] as a data channel according to the selection signal SEL T1 , and the channel selection unit 1422.2 can select the channel LT[2] as a data channel according to the selection signal SEL T2 . Since a person with ordinary knowledge in the art should be able to understand the details of the clock/data channel selection operation of the channel selection circuit 1420 after reading the above description of the clock/data channel selection operation on the receiving side, further explanation is provided. I won’t go into details here.

以上所述之電路結構只是用於說明的目的,並非用來限制本揭示的範圍。在某些實施例中,上述之多通道介面的通道個數可根據不同的設計需求及應用而改變。舉例來說,多通道介面可根據不同的實施例而包含四條通道、八條通道或其他通道個數。在某些實施例中,上述之一或多個通道選取單元可利用一或多個多工器來實施,或利用其他具有訊號路徑選擇能力的電路來實施。在某些實施例中,上述之一或多個多工器可基於反相器、或邏輯閘(OR-logic gate)、其他具有訊號路徑選擇能力的電路,或其組合來實施。The circuit structure described above is for illustrative purposes only and is not intended to limit the scope of the present disclosure. In some embodiments, the number of channels of the above-mentioned multi-channel interface can be changed according to different design requirements and applications. For example, the multi-channel interface may include four channels, eight channels, or other channel numbers according to different embodiments. In some embodiments, one or more of the above-mentioned channel selection units may be implemented using one or more multiplexers, or other circuits with signal path selection capabilities. In some embodiments, one or more of the multiplexers described above may be implemented based on inverters, OR-logic gates, other circuits with signal path selection capabilities, or combinations thereof.

藉由可通用於時脈通道與資料通道的至少一通道,接收側之實體層可支援傳輸側之不同的通道組態。例如,實體層可分為多個實體介面以支援多個傳輸器。此外,可根據一時脈/資料通道之通道識別碼來選擇該時脈/資料通道,以方便時脈/資料通道的選取。By using at least one channel that is common to both the clock channel and the data channel, the physical layer on the receiving side can support different channel configurations on the transmitting side. For example, the physical layer can be divided into multiple physical interfaces to support multiple transmitters. In addition, a clock/data channel can be selected based on its channel identification code to facilitate clock/data channel selection.

上文的敘述簡要地提出了本揭示某些實施例的特徵,而使得所屬領域之通常知識者能夠更全面地理解本揭示的多種態樣。本揭示所屬領域之通常知識者當可理解,其可輕易地利用本揭示內容作為基礎,來設計或更動其他工藝與結構,以實現與此處所述之實施方式相同的目的及/或到達相同的優點。本揭示所屬領域之通常知識者應當明白,這些均等的實施方式仍屬於本揭示內容的精神與範圍,且其可進行各種變更、替代與更動,而不會背離本揭示內容的精神與範圍。The foregoing description briefly sets out features of certain embodiments of the present disclosure to enable those of ordinary skill in the art to more fully understand the various aspects of the present disclosure. It will be understood by those of ordinary skill in the art to which this disclosure belongs that they can easily use this disclosure as a basis to design or modify other processes and structures to achieve the same purposes and/or achieve the same results as the embodiments described herein. advantages. Those of ordinary skill in the art to which this disclosure belongs should understand that these equivalent embodiments still belong to the spirit and scope of this disclosure, and that various changes, substitutions, and alterations may be made without departing from the spirit and scope of this disclosure.

1D_CLK0~1D_CLK2,CKA,CKB,CKC,CKD 1~CKD M:時脈訊號 5D 0~5D 4,2D 00,2D 01,2D 10,2D 11:資料訊號 100,1400:多通道通訊系統 104,300,1104,1404:接收器 106:通訊連結 108,1108:實體層 110,310,510A~510C,610,710,810,1210,1310:積體電路 114,314,1114,1116,1214,TF[0]~TF[N-1]:多通道介面 120,320,520A,520B,520C,620,720,820:通道選取電路 1120,1122,1220,1320,1420:通道選取電路 122,124,322,324,622,624,722,724,1222,1224,1322:選取級 140,740,1440:輸出電路 150,350,750,1150,1250,1450:控制電路 322.0,322.1,324.0~324.5,1222.0,1222.1,1224.0:通道選取單元 1232.0~1232.3,1322.a,1322.b,1422.0~1422.2:通道選取單元 522A,522B.0,522B.1,522C.0~522C.2:多工器 722.0,722.1,724.0:多工器 524A,524B.0,524B.1,524C.0~524C.2,CT:時脈樹 730.0~730.5,1130 0~1130 N-1:串列至並列轉換器 755:狀態機 1105,1205:實體媒體連接層 1107,1207,1307:實體編碼子層 1132 0~1132 N-1:處理電路 1402,TX[0]~TX[N-1]:傳輸器 1406.0~1406.2,LA[0]~LA[N-1],L0[0]~L0[P]:通道 L1[0]~L1[Q],L2[0]~L2[R],LS[0]~LS[N-1],LT[0]~LT[2]:通道 1410.0~1410.2:訊號產生電路 1430.0~1430.2:並列至串列轉換器 C0~C3,5D_CLK,2D_CLK0,2D_CLK1:時脈訊號 C IN,PC IN:時脈輸入端 CK 0~CK (M-1):訊號 cks0,cks1:通道選取訊號 D0 0~D0 (P-1),D1 0~D1 (Q-1),D2 0~D2 (R-1):資料訊號 DA 0~DA (N-M-1):訊號 DB0~DB2:資料匯流排 D IN,PD IN:資料輸入端 DP_a~DP_f,DN_a~DN_f,dpt0~dpt2,dnt0~dnt2:接腳名稱 dp0~dp5,dn0~dn5,DP_0~DP_5,DN_0~DN_5:接腳名稱 DS[0]~DS[5]:解串器 G1~G3:時脈樹群組 IN CT1,IN CT3,IN CT7,IN CT12,IN CT14,IN CTRL:控制輸入 mss:模式選取訊號 OP1~OP3:模式 PC0:並列時脈訊號 PD0,PD1:並列資料訊號 RS:接收側 RX[0]~RX[N-1],RM[0]~RM[5]:取樣電路 S1,S01,S11:輸入側 S2,S02,S12:輸出側 SEL 00,SEL 01,SEL 10~SEL 15,SEL A,SEL B0,SEL B1:時脈選取訊號 SEL 110~SEL 113:資料選取訊號 SEL C0~SEL C2,SEL 70~SEL 72,SEL 100~SEL 102:時脈選取訊號 SEL T0~SEL T2:選取訊號 SR:取樣結果 ST0~ST2:狀態 T_wait:一段時間 T 100~T 102,T 13A,T 13B:輸出端子 T 5D,T 2D0,T 2D1,T 1D0,T 1D1,T 1D2,T 70~T 72:輸出端子 TS:傳輸側 {SEL PMA},{SEL PCS}:一組時脈選取訊號 1D_CLK0~1D_CLK2,CKA,CKB,CKC,CKD 1 ~CKD M : Clock signal 5D 0 ~5D 4 , 2D 00, 2D 01 , 2D 10 , 2D 11 : Data signal 100, 1400 : Multi-channel communication system 104, 300, 1104 , 1404: Receiver 106: Communication link 108, 1108: Physical layer 110, 310, 510A~510C, 610, 710, 810, 1210, 1310: Integrated circuit 114, 314, 1114, 1116, 1214, TF[0]~TF[N-1]: Multiple Channel interface 120, 320, 520A, 520B, 520C, 620, 720, 820: Channel selection circuit 1120, 1122, 1220, 1320, 1420: Channel selection circuit 122, 124, 322, 324, 622, 624, 722, 724, 1222, 1224, 1322: Selection stage 14 0,740,1440: Output circuit 150,350,750,1150,1250,1450 : Control circuit 322.0, 322.1, 324.0~324.5, 1222.0, 1222.1, 1224.0: Channel selection unit 1232.0~1232.3, 1322.a, 1322.b, 1422.0~1422.2: Channel selection unit 522A, 522B.0, 522B.1, 522C.0 ~522C.2: Multiplexer 722.0, 722.1, 724.0: Multiplexer 524A, 524B.0, 524B.1, 524C.0~524C.2, CT: Clock tree 730.0~730.5, 1130 0 ~1130 N-1 : Serial to parallel converter 755: State machine 1105, 1205: Physical media connection layer 1107, 1207, 1307: Physical encoding sublayer 1132 0 ~ 1132 N-1 : Processing circuit 1402, TX[0]~TX[N-1 ]: Transmitter 1406.0~1406.2, LA[0]~LA[N-1], L0[0]~L0[P]: Channel L1[0]~L1[Q], L2[0]~L2[R] ,LS[0]~LS[N-1],LT[0]~LT[2]: Channel 1410.0~1410.2: Signal generation circuit 1430.0~1430.2: Parallel to serial converter C0~C3,5D_CLK,2D_CLK0,2D_CLK1 : Clock signal C IN , PC IN : Clock input terminal CK 0 ~CK (M-1) : Signal cks0, cks1: Channel selection signal D0 0 ~D0 (P-1) , D1 0 ~D1 (Q-1 ) ,D2 0 ~D2 (R-1) : data signal DA 0 ~DA (NM-1) : signal DB0~DB2: data bus D IN , PD IN : data input terminal DP_a~DP_f,DN_a~DN_f,dpt0 ~dpt2,dnt0~dnt2: pin names dp0~dp5, dn0~dn5,DP_0~DP_5, DN_0~DN_5: pin names DS[0]~DS[5]: deserializer G1~G3: clock tree group Group IN CT1 , IN CT3 , IN CT7 , IN CT12 , IN CT14 , IN CTRL : control input mss: mode selection signal OP1~OP3: mode PC0: parallel clock signal PD0, PD1: parallel data signal RS: receiving side RX[ 0]~RX[N-1],RM[0]~RM[5]: Sampling circuit S1, S01, S11: Input side S2, S02, S12: Output side SEL 00 , SEL 01 , SEL 10 ~SEL 15 , SEL A , SEL B0 , SEL B1 : Clock selection signal SEL 110 ~ SEL 113 : Data selection signal SEL C0 ~ SEL C2 , SEL 70 ~ SEL 72 , SEL 100 ~ SEL 102 : Clock selection signal SEL T0 ~ SEL T2 : Selection signal SR: sampling result ST0~ST2: state T_wait: a period of time T 100 ~ T 102 , T 13A , T 13B : output terminal T 5D , T 2D0 , T 2D1 , T 1D0 , T 1D1 , T 1D2 , T 70 ~ T 72 : Output terminal TS: Transmission side {SEL PMA }, {SEL PCS }: A set of clock selection signals

搭配附隨圖式來閱讀下文的實施方式,可清楚地理解本揭示的多種態樣。應注意到,根據本領域的標準慣例,圖式中的各種特徵並不一定是按比例進行繪製的。事實上,為了能夠清楚地描述,可任意放大或縮小某些特徵的尺寸。 圖1是根據本揭示某些實施例的一例示性多通道通訊系統的功能方塊示意圖。 圖2A至圖2C是根據本揭示某些實施例的圖1所示之接收器的不同模式的示意圖。。 圖3是根據本揭示某些實施例的圖1所示之積體電路的具體實施方式的示意圖。 圖4A至圖4C是根據本揭示某些實施例的圖3所示之積體電路的操作示意圖。 圖5A至圖5C是根據本揭示某些實施例的圖1所示之積體電路的其他具體實施方式的示意圖。 圖6是根據本揭示某些實施例的圖1所示之積體電路的另一具體實施方式的示意圖。 圖7是根據本揭示某些實施例的圖1所示之積體電路的另一具體實施方式的示意圖。 圖8是根據本揭示某些實施例的圖1所示之積體電路的另一具體實施方式的示意圖。 圖9是根據本揭示某些實施例的圖7所示之狀態機的操作的示意圖。 圖10是根據本揭示某些實施例的用於圖7所示之複數條通道的通道識別碼的具體實施方式的示意圖。 圖11是根據本揭示某些實施例的一例示性接收器的功能方塊示意圖。 圖12是根據本揭示某些實施例的圖11所示之實體編碼子層中的一積體電路的實施例的示意圖。 圖13是根據本揭示某些實施例的圖11所示之實體編碼子層中的一積體電路的另一實施例的示意圖。 圖14是根據本揭示某些實施例的一例示性多通道通訊系統的功能方塊示意圖。 The various aspects of the present disclosure can be clearly understood by reading the following embodiments in conjunction with the accompanying drawings. It should be noted that, in accordance with standard practice in the art, various features in the drawings have not necessarily been drawn to scale. In fact, the dimensions of certain features may be arbitrarily exaggerated or reduced for clarity of description. FIG. 1 is a functional block diagram of an exemplary multi-channel communication system according to certain embodiments of the present disclosure. 2A to 2C are schematic diagrams of different modes of the receiver shown in FIG. 1 according to certain embodiments of the present disclosure. . FIG. 3 is a schematic diagram of a specific implementation of the integrated circuit shown in FIG. 1 according to certain embodiments of the present disclosure. 4A to 4C are operational schematic diagrams of the integrated circuit shown in FIG. 3 according to certain embodiments of the present disclosure. 5A to 5C are schematic diagrams of other specific implementations of the integrated circuit shown in FIG. 1 according to certain embodiments of the present disclosure. FIG. 6 is a schematic diagram of another implementation of the integrated circuit shown in FIG. 1 according to certain embodiments of the present disclosure. FIG. 7 is a schematic diagram of another implementation of the integrated circuit shown in FIG. 1 according to certain embodiments of the present disclosure. FIG. 8 is a schematic diagram of another implementation of the integrated circuit shown in FIG. 1 according to certain embodiments of the present disclosure. Figure 9 is a schematic diagram of the operation of the state machine shown in Figure 7 in accordance with certain embodiments of the present disclosure. FIG. 10 is a schematic diagram of a specific implementation of channel identification codes for the plurality of channels shown in FIG. 7 according to certain embodiments of the present disclosure. FIG. 11 is a functional block diagram of an exemplary receiver according to certain embodiments of the present disclosure. FIG. 12 is a schematic diagram of an embodiment of an integrated circuit in the physical coding sub-layer shown in FIG. 11 according to certain embodiments of the present disclosure. FIG. 13 is a schematic diagram of another embodiment of an integrated circuit in the physical coding sub-layer shown in FIG. 11 according to certain embodiments of the present disclosure. 14 is a functional block diagram of an exemplary multi-channel communication system according to certain embodiments of the present disclosure.

1400:多通道通訊系統 1400:Multi-channel communication system

1402:傳輸器 1402:Transmitter

1404:接收器 1404:Receiver

1406.0~1406.2,LT[0]~LT[2]:通道 1406.0~1406.2,LT[0]~LT[2]: channel

1420:通道選取電路 1420: Channel selection circuit

1422.0~1422.2:通道選取單元 1422.0~1422.2: Channel selection unit

1410.0~1410.2:訊號產生電路 1410.0~1410.2: Signal generation circuit

1430.0~1430.2:並列至串列轉換器 1430.0~1430.2: Parallel to serial converter

1440:輸出電路 1440:Output circuit

1450:控制電路 1450:Control circuit

DB0~DB2:資料匯流排 DB0~DB2: data bus

INCT14:控制輸入 IN CT14 : Control input

PC0:並列時脈訊號 PC0: Parallel clock signal

PD0,PD1:並列資料訊號 PD0, PD1: parallel data signal

SELT0~SELT2:選取訊號 SEL T0 ~SEL T2 : Select signal

dpt0~dpt2,dnt0~dnt2:接腳名稱 dpt0~dpt2,dnt0~dnt2: pin name

Claims (20)

一種位於一傳輸器中的積體電路,包含: 一多通道介面,具有N條通道,N是大於1的整數; N個訊號產生電路,耦接於該多通道介面,其中該N個訊號產生電路中的M個訊號產生電路分別用以產生M個時脈訊號,且該N個訊號產生電路中的(N-M)個訊號產生電路分別用以產生(N-M)個資料訊號,M是小於N的正整數; 一控制電路,用以根據一控制輸入產生一組選取訊號,該控制輸入指示出該N條通道中M條通道各自的通道識別碼,其中該M條通道中的每一通道耦接於一接收器的一時脈通道,該接收器之該時脈通道用以接收該M個時脈訊號的其中之一;以及 一通道選取電路,耦接於該多通道介面與該N個訊號產生電路之間,該通道選取電路係由該組選取訊號所控制,以將該M個時脈訊號與該(N-M)個資料訊號分配至該N條通道,其中該通道選取電路用以藉由將該M個時脈訊號分別耦接於該M條通道,來將該M條通道選為M條時脈通道,該通道選取電路另用以將該(N-M)個資料訊號分別耦接於剩餘的(N-M)條通道,剩餘的該(N-M)條通道作為(N-M)條資料通道。 An integrated circuit in a transmitter containing: A multi-channel interface with N channels, where N is an integer greater than 1; N signal generating circuits are coupled to the multi-channel interface, wherein M signal generating circuits among the N signal generating circuits are respectively used to generate M clock signals, and (N-M) of the N signal generating circuits The signal generation circuits are respectively used to generate (N-M) data signals, where M is a positive integer less than N; A control circuit for generating a set of selection signals according to a control input indicating respective channel identification codes of M channels among the N channels, wherein each of the M channels is coupled to a receiving A clock channel of the receiver, the clock channel of the receiver is used to receive one of the M clock signals; and A channel selection circuit is coupled between the multi-channel interface and the N signal generation circuits. The channel selection circuit is controlled by the set of selection signals to combine the M clock signals with the (N-M) data. Signals are distributed to the N channels, wherein the channel selection circuit is used to select the M channels as M clock channels by coupling the M clock signals to the M channels respectively, and the channel selects The circuit is further used to couple the (N-M) data signals to the remaining (N-M) channels respectively, and the remaining (N-M) channels serve as (N-M) data channels. 如請求項1所述之積體電路,其中該控制輸入包含一通道選取訊號,該通道選取訊號具有匹配於該M條通道之其一的通道識別碼的訊號值。The integrated circuit of claim 1, wherein the control input includes a channel selection signal, and the channel selection signal has a signal value matching a channel identification code of one of the M channels. 如請求項1所述之積體電路,其中該控制輸入另指示出該(N-M)條通道各自的通道識別碼,且該控制輸入包含一通道選取訊號,該通道選取訊號具有匹配於該(N-M)條通道之其一的通道識別碼的訊號值。The integrated circuit as described in claim 1, wherein the control input further indicates the channel identification code of each of the (N-M) channels, and the control input includes a channel selection signal, the channel selection signal has a value matching the (N-M) ) The signal value of the channel ID of one of the channels. 如請求項1所述之積體電路,其中該通道選取電路包含: N個通道選取單元,分別由該組選取訊號中的N個選取訊號所控制,其中每一通道選取單元經由N個資料匯流排耦接於該N個訊號產生電路,並用以根據相對應之一選取訊號,輸出該N個資料匯流排上的N個輸出訊號中的一輸出訊號;該N個輸出訊號中的M個輸出訊號係為該M個時脈訊號,而剩餘的(N-M)個輸出訊號係為該(N-M)個資料訊號。 The integrated circuit as described in claim 1, wherein the channel selection circuit includes: N channel selection units are respectively controlled by N selection signals in the group of selection signals. Each channel selection unit is coupled to the N signal generation circuits through N data buses and is used to generate signals according to the corresponding one. Select a signal to output one of the N output signals on the N data buses; the M output signals of the N output signals are the M clock signals, and the remaining (N-M) output signals The signals are the (N-M) data signals. 如請求項4所述之積體電路,其中該M個時脈訊號與該(N-M)個資料訊號中的每一訊號均為一多位元輸出訊號;該積體電路另包含: N個並列至串列轉換器,分別耦接於該N個通道選取單元,其中每一並列至串列轉換器用以將相對應之一通道選取單元所輸出之一輸出訊號轉換為一串列輸出訊號,並將該串列輸出訊號輸出至該N條通道之中耦接於該並列至串列轉換器的一通道。 The integrated circuit of claim 4, wherein each of the M clock signals and the (N-M) data signals is a multi-bit output signal; the integrated circuit further includes: N parallel-to-serial converters are respectively coupled to the N channel selection units, where each parallel-to-serial converter is used to convert an output signal output by a corresponding channel selection unit into a serial output signal, and output the serial output signal to a channel coupled to the parallel-to-serial converter among the N channels. 如請求項1所述之積體電路,其中該M個時脈訊號與該(N-M)個資料訊號中的每一訊號均為一多位元輸出訊號;該積體電路另包含: N個並列至串列轉換器,耦接於該通道選取電路與該多通道介面之間,該N個並列至串列轉換器用以將該M個時脈訊號與該(N-M)個資料訊號分別轉換為N個串列輸出訊號,並將該N個串列輸出訊號分別輸出至該N條通道。 The integrated circuit of claim 1, wherein each of the M clock signals and the (N-M) data signals is a multi-bit output signal; the integrated circuit further includes: N parallel-to-serial converters are coupled between the channel selection circuit and the multi-channel interface. The N parallel-to-serial converters are used to separate the M clock signals and the (N-M) data signals. Convert into N serial output signals, and output the N serial output signals to the N channels respectively. 如請求項1所述之積體電路,其中該N條通道各自的通道識別碼均包含一數字符號,以及該N條通道各自的通道識別碼所包含的複數個數字符號係指示出一組連續數字。The integrated circuit as described in claim 1, wherein the channel identification codes of each of the N channels each include a numeric symbol, and the plurality of numeric symbols included in the channel identification codes of each of the N channels indicate a group of consecutive Numbers. 如請求項1所述之積體電路,其中該M條通道中的一通道的通道識別碼係為該M條通道中的該通道的通道名稱。The integrated circuit of claim 1, wherein the channel identification code of one of the M channels is the channel name of the channel of the M channels. 如請求項1所述之積體電路,其中該M條通道中的一通道的通道識別碼係為該M條通道中的該通道所包含的訊號接腳的接腳名稱或接腳編號。The integrated circuit as described in claim 1, wherein the channel identification code of one of the M channels is the pin name or pin number of the signal pin included in the channel of the M channels. 一種位於一傳輸器中的積體電路,包含: 一多通道介面,具有N條通道,N是大於1的整數; N個訊號產生電路,耦接於該多通道介面,其中該N個訊號產生電路中的M個訊號產生電路分別用以產生M個時脈訊號,且該N個訊號產生電路中的(N-M)個訊號產生電路分別用以產生(N-M)個資料訊號,M是小於N的正整數; 一控制電路,用以根據一控制輸入產生一組選取訊號,該控制輸入指示出該N條通道中M條通道各自的通道識別碼,其中該M條通道中的每一通道耦接於一接收器的一時脈通道,該接收器之該時脈通道用以接收該M個時脈訊號的其中之一;以及 一通道選取電路,耦接於該多通道介面與該N個訊號產生電路之間,該通道選取電路係由該組選取訊號所控制,以將該M個時脈訊號與該(N-M)個資料訊號分配至該N條通道,其中該通道選取電路用以將該M條通道選為M條時脈通道,剩餘的(N-M)條通道作為(N-M)條資料通道;在一模式中,該N條通道中的一通道係根據該組選取訊號被選為用於輸出該M個時脈訊號中的一時脈訊號的一時脈通道;在另一模式中,該N條通道中所選取的該通道係根據該組選取訊號作為用於輸出該(N-M)個資料訊號中的一資料訊號的一資料通道。 An integrated circuit in a transmitter containing: A multi-channel interface with N channels, where N is an integer greater than 1; N signal generating circuits are coupled to the multi-channel interface, wherein M signal generating circuits among the N signal generating circuits are respectively used to generate M clock signals, and (N-M) of the N signal generating circuits The signal generation circuits are respectively used to generate (N-M) data signals, where M is a positive integer less than N; A control circuit for generating a set of selection signals according to a control input indicating respective channel identification codes of M channels among the N channels, wherein each of the M channels is coupled to a receiving A clock channel of the receiver, the clock channel of the receiver is used to receive one of the M clock signals; and A channel selection circuit is coupled between the multi-channel interface and the N signal generation circuits. The channel selection circuit is controlled by the set of selection signals to combine the M clock signals with the (N-M) data. The signals are distributed to the N channels, wherein the channel selection circuit is used to select the M channels as M clock channels, and the remaining (N-M) channels are used as (N-M) data channels; in a mode, the N One of the channels is selected as a clock channel for outputting one of the M clock signals based on the set of selection signals; in another mode, the selected channel of the N channels A signal is selected based on the set as a data channel for outputting a data signal among the (N-M) data signals. 如請求項10所述之積體電路,其中該控制輸入包含一通道選取訊號,該通道選取訊號具有匹配於該M條通道之其一的通道識別碼的訊號值。The integrated circuit of claim 10, wherein the control input includes a channel selection signal having a signal value matching a channel identification code of one of the M channels. 如請求項10所述之積體電路,其中該控制輸入另指示出該(N-M)條通道各自的通道識別碼,且該控制輸入包含一通道選取訊號,該通道選取訊號具有匹配於該(N-M)條通道之其一的通道識別碼的訊號值。The integrated circuit of claim 10, wherein the control input further indicates the channel identification code of each of the (N-M) channels, and the control input includes a channel selection signal, the channel selection signal has a value matching the (N-M) ) The signal value of the channel ID of one of the channels. 如請求項10所述之積體電路,其中該通道選取電路包含: N個通道選取單元,分別由該組選取訊號中的N個選取訊號所控制,其中每一通道選取單元經由N個資料匯流排耦接於該N個訊號產生電路,並用以根據相對應之一選取訊號,輸出該N個資料匯流排上的N個輸出訊號中的一輸出訊號;該N個輸出訊號中的M個輸出訊號係為該M個時脈訊號,而剩餘的(N-M)個輸出訊號係為該(N-M)個資料訊號。 The integrated circuit as described in claim 10, wherein the channel selection circuit includes: N channel selection units are respectively controlled by N selection signals in the group of selection signals. Each channel selection unit is coupled to the N signal generation circuits through N data buses and is used to generate signals according to the corresponding one. Select a signal to output one of the N output signals on the N data buses; the M output signals among the N output signals are the M clock signals, and the remaining (N-M) outputs The signals are the (N-M) data signals. 如請求項13所述之積體電路,其中該M個時脈訊號與該(N-M)個資料訊號中的每一訊號均為一多位元輸出訊號;該積體電路另包含: N個並列至串列轉換器,分別耦接於該N個通道選取單元,其中每一並列至串列轉換器用以將相對應之一通道選取單元所輸出之一輸出訊號轉換為一串列輸出訊號,並將該串列輸出訊號輸出至該N條通道之中耦接於該並列至串列轉換器的一通道。 The integrated circuit of claim 13, wherein each of the M clock signals and the (N-M) data signals is a multi-bit output signal; the integrated circuit further includes: N parallel-to-serial converters are respectively coupled to the N channel selection units, where each parallel-to-serial converter is used to convert an output signal output by a corresponding channel selection unit into a serial output signal, and output the serial output signal to a channel coupled to the parallel-to-serial converter among the N channels. 如請求項10所述之積體電路,其中該M個時脈訊號與該(N-M)個資料訊號中的每一訊號均為一多位元輸出訊號;該積體電路另包含: N個並列至串列轉換器,耦接於該通道選取電路與該多通道介面之間,該N個並列至串列轉換器用以將該M個時脈訊號與該(N-M)個資料訊號分別轉換為N個串列輸出訊號,並將該N個串列輸出訊號分別輸出至該N條通道。 The integrated circuit of claim 10, wherein each of the M clock signals and the (N-M) data signals is a multi-bit output signal; the integrated circuit further includes: N parallel-to-serial converters are coupled between the channel selection circuit and the multi-channel interface. The N parallel-to-serial converters are used to separate the M clock signals and the (N-M) data signals. Convert into N serial output signals, and output the N serial output signals to the N channels respectively. 如請求項10所述之積體電路,其中該N條通道各自的通道識別碼均包含一數字符號,以及該N條通道各自的通道識別碼所包含的複數個數字符號係指示出一組連續數字。The integrated circuit of claim 10, wherein the channel identification codes of each of the N channels each include a numeric symbol, and the plurality of numeric symbols included in the channel identification codes of each of the N channels indicate a group of consecutive Numbers. 如請求項10所述之積體電路,其中該M條通道中的一通道的通道識別碼係為該M條通道中的該通道的通道名稱。The integrated circuit of claim 10, wherein the channel identification code of one of the M channels is the channel name of the channel of the M channels. 如請求項10所述之積體電路,其中該M條通道中的一通道的通道識別碼係為該M條通道中的該通道所包含的訊號接腳的接腳名稱或接腳編號。The integrated circuit of claim 10, wherein the channel identification code of one of the M channels is the pin name or pin number of the signal pin included in the channel of the M channels. 一種位於一傳輸器中的積體電路,包含: 一多通道介面,具有N條通道,N是大於1的整數; N個訊號產生電路,耦接於該多通道介面,其中該N個訊號產生電路中的M個訊號產生電路分別用以產生M個時脈訊號,且該N個訊號產生電路中的(N-M)個訊號產生電路分別用以產生(N-M)個資料訊號,M是小於N的正整數;以及 一通道選取電路,具有一輸入側與一輸出側,該輸入側耦接於該N個訊號產生電路,該輸出側耦接於該多通道介面,其中當該N條通道中的M條通道耦接於一接收器所包含的用以接收該M個時脈訊號的M條時脈通道時,該通道選取電路用以藉由將自該輸入側接收的該M個時脈訊號分別耦接於位於該輸出側的該M條通道,來將該M條通道選為該傳輸器的M條時脈通道,該通道選取電路另用以將自該輸入側接收的(N-M)個資料訊號分別耦接至位於該輸出側的剩餘的(N-M)條通道,剩餘的該(N-M)條通道作為(N-M)條資料通道。 An integrated circuit in a transmitter containing: A multi-channel interface with N channels, where N is an integer greater than 1; N signal generating circuits are coupled to the multi-channel interface, wherein M signal generating circuits among the N signal generating circuits are respectively used to generate M clock signals, and (N-M) of the N signal generating circuits The signal generation circuits are respectively used to generate (N-M) data signals, M is a positive integer less than N; and A channel selection circuit has an input side and an output side, the input side is coupled to the N signal generation circuits, the output side is coupled to the multi-channel interface, wherein when M channels among the N channels are coupled When connected to M clock channels included in a receiver for receiving the M clock signals, the channel selection circuit is used to couple the M clock signals received from the input side to The M channels located on the output side are used to select the M channels as the M clock channels of the transmitter. The channel selection circuit is also used to separately couple the (N-M) data signals received from the input side. Connected to the remaining (N-M) channels located on the output side, the remaining (N-M) channels serve as (N-M) data channels. 如請求項19所述之積體電路,其中該M個時脈訊號與該(N-M)個資料訊號中的每一訊號均為一多位元輸出訊號;該積體電路另包含: N個並列至串列轉換器,耦接於該通道選取電路與該多通道介面之間,該N個並列至串列轉換器用以將該M個時脈訊號與該(N-M)個資料訊號分別轉換為N個串列輸出訊號,並將該N個串列輸出訊號分別輸出至該N條通道。 The integrated circuit of claim 19, wherein each of the M clock signals and the (N-M) data signals is a multi-bit output signal; the integrated circuit further includes: N parallel-to-serial converters are coupled between the channel selection circuit and the multi-channel interface. The N parallel-to-serial converters are used to separate the M clock signals and the (N-M) data signals. Convert into N serial output signals, and output the N serial output signals to the N channels respectively.
TW112138238A 2019-08-01 2020-07-29 Integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver TW202404286A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/529,575 2019-08-01
US16/529,575 US11055241B2 (en) 2017-11-06 2019-08-01 Integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver

Publications (1)

Publication Number Publication Date
TW202404286A true TW202404286A (en) 2024-01-16

Family

ID=74483599

Family Applications (3)

Application Number Title Priority Date Filing Date
TW109125629A TWI754337B (en) 2019-08-01 2020-07-29 Physical layer and integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver
TW112138238A TW202404286A (en) 2019-08-01 2020-07-29 Integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver
TW110149320A TWI821844B (en) 2019-08-01 2020-07-29 Integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109125629A TWI754337B (en) 2019-08-01 2020-07-29 Physical layer and integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110149320A TWI821844B (en) 2019-08-01 2020-07-29 Integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver

Country Status (2)

Country Link
CN (1) CN112311405B (en)
TW (3) TWI754337B (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961347B1 (en) * 2000-06-20 2005-11-01 Hewlett-Packard Development Company, L.P. High-speed interconnection link having automated lane reordering
US7571271B2 (en) * 2005-09-28 2009-08-04 Ati Technologies Ulc Lane merging
TWI358906B (en) * 2008-08-15 2012-02-21 Ind Tech Res Inst Burst-mode clock and data recovery circuit using p
US8468398B2 (en) * 2011-01-20 2013-06-18 Advanced Micro Devices, Inc. Loopback testing with phase alignment of a sampling clock at a test receiver apparatus
KR20130033059A (en) * 2011-09-26 2013-04-03 한국전자통신연구원 Multi-lane based ethernet apparatus and lane operating method for dynamic lane operation
US8686754B2 (en) * 2012-07-05 2014-04-01 Stmicroelectronics International N.V. Configurable lane architecture in source synchronous systems
US8700825B1 (en) * 2012-11-16 2014-04-15 Altera Corporation Heterogeneous high-speed serial interface system with phase-locked loop architecture and clock distribution system
US9825755B2 (en) * 2013-08-30 2017-11-21 Qualcomm Incorporated Configurable clock tree
US9755818B2 (en) * 2013-10-03 2017-09-05 Qualcomm Incorporated Method to enhance MIPI D-PHY link rate with minimal PHY changes and no protocol changes
US9203599B2 (en) * 2014-04-10 2015-12-01 Qualcomm Incorporated Multi-lane N-factorial (N!) and other multi-wire communication systems
CN105224485B (en) * 2014-07-03 2019-05-07 刘伯安 A kind of method of reseptance and device of pervasive serial data
CN104579455B (en) * 2015-02-04 2018-08-14 上海航天测控通信研究所 A kind of multiple data channel of satellite-borne data transmission transmitter independently selects processing unit
CN106921386B (en) * 2015-12-24 2019-11-01 瑞昱半导体股份有限公司 Half rate clock data recovery circuit
US9794055B2 (en) * 2016-03-17 2017-10-17 Intel Corporation Distribution of forwarded clock
US10256801B2 (en) * 2016-08-31 2019-04-09 M31 Technology Corporation Integrated circuit with clock detection and selection function and related method and storage device
US10795853B2 (en) * 2016-10-10 2020-10-06 Intel Corporation Multiple dies hardware processors and methods
US10506139B2 (en) * 2017-08-03 2019-12-10 Mediatek Inc. Reconfigurable pin-to-pin interface capable of supporting different lane combinations and/or different physical layers and associated method
US10387360B2 (en) * 2017-11-06 2019-08-20 M31 Technology Corporation Integrated circuits adaptable to interchange between clock and data lanes for use in clock forward interface receiver

Also Published As

Publication number Publication date
CN112311405A (en) 2021-02-02
TWI821844B (en) 2023-11-11
TW202215806A (en) 2022-04-16
TW202107867A (en) 2021-02-16
CN112311405B (en) 2022-06-14
TWI754337B (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP4035532B2 (en) Method and apparatus for implementing variable width links
EP1825382B1 (en) Low protocol, high speed serial transfer for intra-board or inter-board data communication
US6381293B1 (en) Apparatus and method for serial data communication between plurality of chips in a chip set
US20230195663A1 (en) Integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver
US20030128702A1 (en) Communication method and apparatus for assigning device identifier
JPH02172327A (en) Coding, decoding and transmission method and coding and decoding device
US8464145B2 (en) Serial interface devices, systems and methods
JP2875160B2 (en) Digital data encoding method
JP2002108805A (en) Method and apparatus for transmitting control information across serialized bus interface
TWI821844B (en) Integrated circuit having lanes interchangeable between clock and data lanes in clock forward interface receiver
JP3780419B2 (en) Data transfer control device and electronic device
US20200341937A1 (en) Data transmission code and interface
US7301961B1 (en) Method and apparatus for configuring signal lines according to idle codes
US8612663B1 (en) Integrated circuit devices, systems and methods having automatic configurable mapping of input and/or output data connections
US10496582B1 (en) Flexible multi-domain GPIO expansion
CN211956461U (en) Serial data communication circuit and system
TWI652912B (en) Receiver for clock feedforward interface to accommodate integrated circuit of clock and data channel interchange
Benotto et al. Design and test of the Digital Opto Hybrid Module for the CMS Tracker Inner Barrel and Disks.
US12038864B2 (en) Signal processing circuit and reception device
US20230087104A1 (en) Signal processing circuit and reception device
JP2019507517A (en) Method and apparatus for processing multi-rate data
CN100353351C (en) Signal encoding method capable of reducing tandem ATA separated entity layer interface signal numbers
CN112860607A (en) Multi-channel data processing circuit and system
JPS60107168A (en) Signal transmission and reception circuit
JPH0795249A (en) Ternary transmission device