TW202326221A - 用於測量樣品的方法與施行此方法的顯微鏡 - Google Patents

用於測量樣品的方法與施行此方法的顯微鏡 Download PDF

Info

Publication number
TW202326221A
TW202326221A TW111139048A TW111139048A TW202326221A TW 202326221 A TW202326221 A TW 202326221A TW 111139048 A TW111139048 A TW 111139048A TW 111139048 A TW111139048 A TW 111139048A TW 202326221 A TW202326221 A TW 202326221A
Authority
TW
Taiwan
Prior art keywords
sample
microscope
alignment
angle
distance
Prior art date
Application number
TW111139048A
Other languages
English (en)
Inventor
迪米奇 克拉克寇夫
章 黃
湯瑪斯 柯柏
亞歷克斯 布克斯包姆
阿莫 艾維夏
Original Assignee
德商卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司Smt有限公司 filed Critical 德商卡爾蔡司Smt有限公司
Publication of TW202326221A publication Critical patent/TW202326221A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • G03F7/706839Modelling, e.g. modelling scattering or solving inverse problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/417Imaging recording with co-ordinate markings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明涉及一種以一顯微鏡測量一樣品的方法,該方法包括使用相對於該樣品的一頂面具有一第一角度的一聚焦平面掃描該樣品,並基於該第一角度計算一置信距離。該方法另包括選擇該樣品上的多個對準標記中的至少一個,用於執行該掃描步驟的一橫向對準及/或用於執行該掃描步驟的一輸出的一橫向對準。特別是,在該選擇步驟中所選的該至少一個對準標記,是選自於放置在距該聚焦平面與該頂面的一交叉點的該置信距離內的該等對準標記。

Description

用於測量樣品的方法與施行此方法的顯微鏡
本發明一般涉及一種以一顯微鏡測量一樣品的方法,以及施行所述方法的一顯微鏡。更具體地說,該方法允許以一定角度對樣品進行多次掃描的橫向對準。
在各種技術領域,通常不僅需要檢查樣品的表面,還需要檢查其整個垂直深度。在某些情況下,這可以藉由使用能穿透樣品的成像裝置來實現。在某些情況下無法,例如由於樣品或其材料的複雜性。
作為一示例,已知於其中施行垂直結構的半導體裝置。例如,結構可能是垂直連接、電晶體、電容器極板等。研究這些結構如何沿其垂直方向演變通常很有意思。
例如,垂直結構能夠連接位於樣品各個水平層的組件。若垂直結構具有與計劃不同的一垂直演變,例如,若它們相對於其設計方向有一角度,則存在短路或錯失連接的風險。
已知且如圖1A示意性地繪示一種允許進行此評估的方法。一樣品100設置有一頂面101,其通常實質上是平坦的。該樣品的一部分被研磨離開頂面101,例如藉由使用一研磨束110,如一聚焦離子束(Focused ion beam,FIB)。該研磨能夠以相對於頂面101的一角度103完成。這導致一個以上的斜面102,如圖所繪示。
圖1B示意性地繪示與圖1A相同的樣品100,其具有一較大的頂面101圍繞包括斜面102的區域。如圖1B中可見,樣品100能夠藉由使用一聚焦平面130來成像,聚焦平面130相對於頂面101呈一角度131。較佳地,角度131與角度103相當,甚至較佳為相同。這允許斜面102以一焦點成像,該焦點追蹤斜面102的傾斜定向。掃描能夠用一成像束120進行操作,例如一SEM或更一般是一帶電粒子顯微鏡。
如圖1C的示意性繪示,之後樣品100能夠進一步研磨成一更傾斜的表面102a,該表面在垂直方向Z上能夠低於平面102,然後沿著聚焦平面130a再進行一次掃描。然後能夠進行進一步的研磨,接著沿聚焦平面130b進行一次掃描,該平面也可能低於Z方向上的聚焦平面103a。以此方式,藉由重複研磨及掃描步驟,可以實現後續影像,顯示樣品100內實現的垂直結構沿垂直方向Z的演變。
因此,樣品的掃描可能需要沿多個聚焦平面130、130a、130b拍攝的多個影像。為了獲得樣品100的單一影像或3D模型,因此有必要將該等多個影像組合在一起。為了做到這一點,尤其需要將各種影像正確地相互對準,特別是在平行於頂面101的方向上,在圖中指示為XZ平面。
影像的正確對準很重要,因為它確保正確重建在樣品100中測量的垂直結構的演變。
為了允許此橫向對準,能夠在頂面101上施行多個對準標記150,如圖1D所繪示。
當沿聚焦平面130掃描樣品時,並非所有對準標記150都是清晰的。特別是,如圖1B所繪示,由於在聚焦平面130與頂面101之間的一散焦高度140、141,一些對準標記150可能離聚焦平面130太遠,以便以足夠的精度成像以進行後續的橫向對準。也就是說,掃描裝置120的景深能夠小於散焦高度140、141,在某些位置,由於聚焦平面130的傾斜,高度140、141增加。由於景深減少,一些標記150可能因此被放置在成像束120的一可接受焦點之外,導致在該等多個影像的組合過程中出現後續誤差。
因此需要提供一種方式,允許多個影像彼此正確對準,以便能夠正確重建影像樣品100。
獨立項的特徵滿足此需要。附屬項的特徵定義具體實施例。
本發明通常基於這樣的概念,即靠近聚焦平面與樣品頂面交叉點的一對準標記比遠離該交叉點的對準標記,會以更好的對焦進行成像。因此,本發明的具體態樣涉及如何選擇一適當的對準標記及/或如何實現該等對準標記,從而確保有一適當的對準標記可用。
因此,一具體實施例能夠涉及一種以一顯微鏡測量一樣品的方法,該方法包括以下步驟:使用相對於樣品的一頂面具有一第一角度的一聚焦平面掃描樣品,基於該第一角度計算一置信距離(confidence distance),選擇樣品上的多個對準標記中的至少一個,用於執行掃描步驟的一橫向對準及/或用於執行掃描步驟的一輸出的一橫向對準。特別是,在選擇步驟中能夠選的該至少一個對準標記,是選自於放置在距聚焦平面與頂面的一交叉點(intersection)的置信距離內的該等對準標記。
多虧此布置,可以選擇確保一正確橫向對準的一對準標記。另一個優點是,能夠在不測量標記的一散焦特性的情況下選擇對準標記,這可能需要大量計算,而僅基於標記相對於交叉點的位置。
在一些施行方式中,該第一角度可大於5度,較佳為大於15度,及/或小於70度,較佳為小於50度。
多虧此布置,可以在一廣泛的測量範圍內使用本發明。
在一些施行方式中:其中該樣品能夠包括至少具有一斜面的一區域,該斜面相對於頂面能夠具有一第二角度,其中第一角度與第二角度最多能夠相差10度及/或10%。
多虧此布置,可以使用追蹤斜面垂直演變的一聚焦平面來測量斜面。
在一些施行方式中:置信距離是能夠在垂直於該交叉點的一方向上測量的。
在一些施行方式中:置信距離是能夠在平行於該頂面的一方向上測量的。
多虧此布置,可以用一簡單的計算方式定義其中對準標記被較佳定位的區域。
在一些施行方式中,計算置信距離的步驟,能夠基於一最大容許散焦值。
多虧此布置,該方法可以適應不同的精度要求,並允許選擇不同的對準標記作為最大容許散焦值的函數。
在一些施行方式中:最大容許散焦值能夠是一最大容許散焦高度。
多虧此布置,可以基於所用顯微鏡的技術規格,輕鬆地定義最大容許散焦值。
在一些施行方式中,該計算步驟能夠包括計算 ConfDist = f (ϕ) 其中 - ϕ為第一角度(131), - ConfDist為置信距離(270), - f為一函數,隨ϕ減少而增加。
多虧此布置,可以用一簡單的計算方式計算一置信距離。
在一些施行方式中,方法另可包括以一個以上的對準標記標記樣品的步驟。
多虧此布置,可以以增加橫向對準的精度及/或減少對準多個圖片(picture)所需的對準標記數量的一方式,來施行在該選擇步驟中所選的該等對準標記。
在一些施行方式中,該標記步驟能夠包括在距交叉點的置信距離內實現一個以上的對準標記。
在一些施行方式中,該標記步驟能夠包括實現一個以上的對準標記,使得兩個相鄰對準標記之間的一分離距離為 D ≤ 2 × h MAX/ tan(ϕ) 其中 - D為分離距離, - ϕ為第一角度(131), - h MAX為一最大容許散焦高度(140、141)。
在一些施行方式中,該標記步驟能夠包括實現一個以上的對準標記,使得兩個相鄰對準標記之間的一分離距離為 D ≤ 2 × ConfDist 其中 - D為分離距離, - ConfDist為置信距離(270)。
多虧這些布置,可以以改善後續橫向對準及/或減少必需標記數量的一方式,相對於交叉點定位該等對準標記。
在一些施行方式中,該方法另可包括研磨該樣品以在該樣品中實現一個以上的斜面的步驟。
多虧此布置,能夠施行多個研磨表面,較佳為以相應的掃描步驟逐步地施行,使得能夠沿其深度掃描樣品。
在一些施行方式中,研磨步驟及標記步驟能夠以相同組件施行。
多虧此布置,可以減少施行該方法所用的組件數量。
另一具體實施例可關於一種顯微鏡,該顯微鏡包括一控制器以及一記憶體,其中該記憶體能夠儲存指令,該等指令配置為使該控制器控制該顯微鏡,以執行上述的任一方法步驟。
另一具體實施例可關於一種用於一顯微鏡的軟體產品,該產品包括指令,該等指令配置為使一控制器控制該顯微鏡,以執行上述的任一方法步驟。
本揭示內容的一些示例,通常提供多個電路或其他電氣裝置。對電路及其他電氣裝置以及每一電氣裝置提供的功能的所有引用,不旨在限制僅包含本文中例示及描述的內容。雖然特定的標籤可以分配給所揭示的各種電路或其他電氣裝置,但這些標籤並不旨在限制電路及其他電氣裝置的操作範圍。這些電路及其他電氣裝置,能夠基於所需的特定電氣施行類型以任何方式相互組合及/或分離。可以認知到,本文揭示的任何電路或其他電氣裝置,可以包含任意數量的微控制器、一圖形處理器(Graphics processor unit,GPU)、積體電路、記憶體裝置(例如,快閃記憶體、隨機存取記憶體(Random access memory,RAM)、唯讀記憶體(Read only memory,ROM)、可擦拭可規劃唯讀記憶體(Electrically programmable read only memory,EPROM)、電子可擦拭可規劃唯讀記憶體(Electrically erasable programmable read only memory,EEPROM)或其他合適的變體),以及相互配合以執行本文揭示操作的軟體。此外,任何一個以上的電氣裝置,能夠配置成執行一程式碼,該程式碼體現在一非暫態電腦可讀媒體中,該媒體被程式化為執行所揭示的任意數量的功能。
在下文中,將參照附圖對本發明的具體實施例進行詳細描述。可以理解到,以下對具體實施例的描述不應理解為限制性的。本發明的範圍不旨受限於下面描述的具體實施例或附圖,這些都僅供例示。
附圖應被視為示意圖,且附圖中所示的元件不一定按比例示出。相反,呈現各種元件,使得其功能及一般目的對於本領域具有通常知識者變得顯而易見。附圖中所示或本文中描述的功能塊、裝置、組件或其他物理或功能單元之間的任何連接或耦合,也能夠藉由一間接連接或耦合來施行。組件之間的一耦合也能夠藉由一無線連接建立。功能塊可以在硬體、韌體、軟體或其組合中施行。
圖2A示意性地繪示用於測量一樣品100的一方法200,而圖2B示意性地繪示一樣品100的一俯視圖,以釐清方法200的操作。
方法200允許以一顯微鏡測量一樣品100。在較佳的施行方式中,樣品100能夠是一半導體樣品,如一晶圓或其一部分,其可稱為試樣(coupon),儘管本發明可以應用於任何類型的樣品。樣品100可以包括一頂面101,其實質上平坦並且沿一方向延伸,在圖中指示為方向XZ。在較佳的施行方式中,樣品100能夠被定位在顯微鏡中,使得頂面101實質上對應於水平方向,儘管本發明不限於此。因此,在下文中,每當參考頂面101的平面時,也可以理解為對應於水平方向。在較佳的施行方式中,顯微鏡能夠是一掃描電子顯微鏡、SEM、一原子力顯微鏡、AFM、一氦離子顯微鏡、HIM或任何已知更一般類型的顯微鏡,特別是任何類型的帶電粒子顯微鏡。
如圖1D中可見,樣品100能夠包括至少具有至少一斜面102的一區域,斜面102相對於頂面101具有一角度103。角度103被理解為由斜面102與頂面101的交叉點所形成的較小角度。
在較佳的施行方式中,角度103能夠大於5度,較佳為大於15度,及/或小於70度,較佳為小於50度。
在較佳的施行方式中,具有一個以上的斜面102的區域,能夠佔據樣品表面的百分比大於5%,較佳為大於10%,及/或小於85%,較佳為小於80%。
如進一步在圖1D中可見,樣品100的剩餘頂面101,例如樣品100的表面中未被具有斜面102之區域佔據的部分,能夠包括一個以上的對準標記150。
方法200能夠包括一步驟S210,使用相對於樣品100的頂面101而具有一角度131的一聚焦平面130掃描樣品100。角度131被理解為由聚焦平面130與頂面101的交叉點所形成的較小角度。
在較佳的施行方式中,角度131能夠大於5度,較佳為大於15度,及/或小於70度,較佳為小於50度。
較佳地,角度131與角度103最多相差10度,較佳為最多5度,及/或較小角度的最多10%。在更佳的施行方式中,角度103與131實質上相等,或相同。
多虧此布置,可以使用追蹤斜面102演變的一聚焦位置來掃描斜面102,特別是沿垂直方向,在圖中指示為方向Y,從而確保整個斜面102以一高解析度成像。
方法200另可包括基於角度131計算一置信距離270的步驟S220。可以注意到,儘管在圖2A中步驟S220被指示為在步驟S210之後進行,但本發明不限於此。特別是,在較佳的施行方式中,步驟S220可以在步驟S210之後進行,而在替代較佳的施行方式中,步驟S220可以在步驟S210之前進行。
置信距離270的目的,將從下面的描述中變得更清楚,即是計算一距離,有助於選擇一個以上的適當的對準標記150,以確保由顯微鏡所拍攝的多個影像正確對準。因此,可計算置信距離270,以便定義從聚焦平面130與頂面101的一交叉點260的一距離,在該距離內,顯微鏡的聚焦能力被認為足以對對準標記150進行正確成像。
本領域具有通常知識者將清楚,除了考慮角度131的值之外,置信距離270的計算能取決於多種因素,如對準標記150的最大容許散焦,其對於不同的應用、對準標記150的形狀等可以是不同的。
在較佳的施行方式中,置信距離270能夠計算為 ConfDist = f (ϕ) 其中 - ϕ為第一角度(131), - ConfDist為置信距離(270), - f為一函數,隨ϕ減少而增加,至少在一定的ϕ範圍內是如此。
在較佳的施行方式中,函數f可以包括一三角函數,較佳為一餘弦,導致f的值隨著餘弦的增加而增加,較佳是以一線性方式。
方法200另可包括一步驟S230,選擇樣品100上的多個對準標記150、250/1-250/6中的至少一個,用於執行掃描步驟S210的一橫向對準及/或用於執行掃描步驟S210的一輸出的一橫向對準。
也就是說,在一些較佳的施行方式中,所選的一個以上的對準標記,能夠用在掃描之前對準多個掃描步驟S210,使它們的輸出在多個掃描之間自動對準,並因此可以組合而無需進一步處理。替代地,或附加地,在一些較佳的施行方式中,所選的一個以上的對準標記能夠用於對準多個掃描步驟S210的輸出,使得該等掃描步驟能夠在無需精確的橫向對準的情況下執行,且所得輸出影像能夠在後處理期間接續地相互對準。
因此很顯然,選擇步驟S230能夠在掃描步驟S210之前或之後進行。特別是,在一些較佳的施行方式中,選擇步驟S230能夠在掃描步驟S210之前進行,使得各個掃描步驟能對準。替代地,或附加地,選擇步驟S230能夠在掃描步驟S210之後進行,使得各個掃描步驟的輸出能對準。
為了能夠選擇適當的對準標記,在選擇步驟S230中所選的該至少一個對準標記,可以是選自於放置在距聚焦平面130與頂面101的一交叉點260的置信距離270內的對準標記150、250/1-250/6。
特別是,如圖1D及2B中可見,聚焦平面130與頂面101的交叉點指示為交叉點260,因此對應於頂面101上的一線。放置在距交叉點260大於置信距離270一段距離的對準標記,由於其解析度受到離聚焦平面130太遠的負面影響,不適合正確對準。例如在圖 2B 中的對準標記250/1、250/2、250/5及250/6的情況下。相反地,放置在距交叉點260的置信距離270內的對準標記,如對準標記250/3及250/4是合適的,且能夠藉由選擇步驟S230進行選擇。
以此方式,本發明允許選擇與一給定掃描步驟S210相關聯的對準標記,以及相應的聚焦平面130,其可以確保由多個掃描產生的多個影像的正確對準。
在較佳的施行方式中,按照與交叉點260的距離順序,選擇步驟S230還可以包括選擇一個以上的對準標記150。也就是說,在由交叉點260及置信距離270定義的區域內若有多個對準標記150可用,則選擇步驟S230還能夠基於這些對準標記與交叉點260的距離,進一步選擇這些對準標記的子集,從最接近交叉點260的對準標記開始,及/或當需要超過一個對準標記時,按照其與交叉點260的距離順序,選擇其他的對準標記。
在較佳的施行方式中,置信距離270是能夠在垂直於交叉點260的一方向上測量的。在更佳的施行方式中,置信距離270是能夠在平行於頂面101的一方向上測量的。
在較佳的施行方式中,計算步驟S220另可基於最大容許散焦值。較佳地,該最大容許散焦值能夠產生置信距離270的一上限。本領域具有通常知識者將清楚,能夠考慮多種替代方式來定義該最大容許散焦值。例如,在一些示例中,可以定義為在對準標記150上所需的最小解析度。 替代地,或附加地,在一些示例中,可以定義為距景深中心的最大距離。本領域具有通常知識者將清楚,如何基於該最大容許散焦值的任何給定指示來計算置信距離270。在較佳的施行方式中,該最大容許散焦值能夠定義為一最大容許散焦高度140、141。
在一些施行方式中,因此可以施行多個連續的研磨及掃描步驟,如圖2C所繪示。
特別是,方法200C包括重複執行兩個步驟。在第一步驟中,掃描步驟S210能夠通過選擇步驟S230,選擇相應的適當標記共同施行對準。在方法200C的一第一執行,第一步驟還能夠包括步驟S220,在一些施行方式中,其可以在連續循環中被避免。在方法200C的第二步驟中執行一研磨步驟,以便除去樣品100的一部分並產生一較低的斜面102a。
此重複執行的掃描研磨步驟,允許沿其垂直方向Y測量樣品100。在一些具體實施例中,方法200C能夠執行循環一預定義次數,較佳為其在樣品100中要達到的深度及/或沿垂直方向所需解析度的函數。更佳地,在執行掃描及研磨循環之後,方法200C能夠包括基於影像重建樣品100模型的一未示出步驟,其中該重建係基於影像對準,而影像對準則基於在步驟S130中選擇的對準標記。更佳地,在重建步驟之後,方法200C能夠包括評估樣品100內的垂直結構的一未示出步驟,較佳為基於該重建模型。
圖3A示意性地繪示用於測量一樣品100的一方法300,而圖3B示意性地繪示一樣品100的一俯視圖,以釐清方法300的操作。
方法300與方法200的差異在於,還能夠包括以一個以上的對準標記150、250/1-250/6標記樣品100的一步驟S340。步驟S340較佳在步驟S210及S230之前進行,同時能夠在步驟S220之前或之後進行。方法300因此特別有利,因為它基於其預期用途來決定對準標記150的位置、形狀及更一般的任何特性。例如,在一些示例中,在具有一較低角度131的聚焦平面130的應用中,可以施行比具有一較高角度131的應用更少數量的對準標記150。因此,可以有利地先為角度131設置一個值,然後執行樣品100的標記,以避免不需要的對準標記150,其需要更長的處理時間且因此增加成本。此外,從下面的說明中將變得很清楚,在一些示例中,可以使用相同的組件來施行樣品100的標記及斜面102的研磨,從而簡化樣品100的處理。
在較佳的施行方式中,標記步驟S340包括在距交叉點260的置信距離270內實現一個以上的對準標記150、250/1-250/6。以這種方式,能夠確保在距交叉點260的置信距離270內至少有一個對準標記可用。
在較佳的施行方式中,在標記步驟S340所實現的一個以上的對準標記,是在距與交叉點260相關聯的斜面102的一預定距離內、沿交叉點260的方向實現的。該預定距離較佳小於100微米,甚至更較佳小於50微米。這有利地確保對準標記能夠被成像,並且因此可用於對準目的,而無需在離斜面102太遠的區域進行掃描,從而減少掃描時間。較佳地,在一些施行方式中,在標記步驟S340所實現的一個以上的對準標記是在與交叉點260的一縱向延伸相交的一位置處實現。
在較佳的施行方式中,標記步驟能S340夠包括實現一個以上的對準標記150、250/1-250/6 ,使得兩個相鄰對準標記250/3-250/4之間的分離距離380為 D ≤ 2 × h MAX/ tanϕ 其中 - D為分離距離, - ϕ為該第一角度131, - h MAX為一最大容許散焦高度140、141。
替代地,或附加地,在較佳施行方式中,標記步驟S340能夠包括實現一個以上的對準標記150、250/1-250/6使得兩個相鄰對準標記250/3-250/4之間的分離距離380為 D ≤ 2 × ConfDist 其中 - D為分離距離, - ConfDist為置信距離270。
多虧這些施行方式,能夠有利地確保對準標記150可用於沿多個聚焦平面130、130a、130b的多個掃描。這有利地使得有可能實現標記150,而不需要在X方向上重新對準標記150。
替代地,或附加地,在較佳施行方式中,標記步驟S340能夠包括實現一個以上的對準標記150、250/1-250/6,使得兩個相鄰對準標記250/3-250/4之間的分離距離380是與兩個連續聚焦平面130、130a、130b相關聯的交叉點260之間的距離的函數。例如,在一些示例中,分離距離380能夠是與兩個連續聚焦平面130、130a、130b相關聯的交叉點260之間距離的一倍數。該倍數較佳可以是一整數倍數。這有利地使得有可能具有對準標記的一間距,該間距是交叉點260的間距的函數。
替代地,或附加地,在較佳施行方式中,標記步驟S340能夠包括根據前述那些條件其中之一,實現一個以上的對準標記150、250/1-250/6,其導致最短的分離距離380。
在一些施行方式中:其中一組研磨及相應的聚焦平面130、130a、130b是連續施行的,標記步驟S340能夠包括實現一個以上的對準標記150、250/1-250/6,使得對該等準標記基於定位在多個聚焦平面中間的一聚焦平面進行定位。也就是說,聚焦平面130、 130a、130b能夠導致多個交叉點260。位於多個交叉點中間的交叉點可用作這組研磨及相應的聚焦平面130、130a、130b的參考交叉點。以這種方式,中間的聚焦平面的散焦引入的誤差最小,其餘聚焦平面的平均誤差也最小。
能夠定義幾組這樣的聚焦平面130、130a、130b,其具有多個聚焦平面130、130a、130b,其數量是最大可接受散焦的一函數。也就是說,選擇在該組末端的聚焦平面130、130a、130b,使得沿這些平面掃描樣品時對準標記的散焦在可接受的一最大散焦值範圍內。
以此方式,可對每組這樣的平面僅施行一個對準標記,從而減少了需要施行的對準標記的數量。
在較佳的施行方式中,如圖3B中可見,兩個相鄰對準標記150之間的分離距離380能夠理解為兩個相鄰標記250的同一點之間的距離,例如每個標記150的中心,或最左邊的角落等。在較佳的施行方式中,標記150能夠在X方向上以恆定的間距實現,由此該間距是分離距離380。
上述具體實施例已經參照選擇至少一個對準標記來說明,該對準標記允許對沿相應的聚焦平面130、130a、130b所拍攝的一給定掃描影像,進行正確的橫向對準。在某些情況下,為此目的選擇一單一對準標記就足夠了。
當該等對準標記以在重建樣品模型時已知的一個方式定位時,這是特別有利的。例如,在一些示例中,一第一影像能夠使用對準標記250/4進行對準,一第二影像能夠使用對準標記250/3進行對準。樣品模型的重建能夠基於對準標記250/3及250/4之間的一已知距離。
在一些較佳的施行方式中,較佳能夠選擇至少兩個對準標記,較佳地定位在垂直於交叉點260的一方向上的不同位置,用於至少兩個掃描影像,並且較佳用於所有的掃描影像。
多虧後一種施行方式,例如能夠基於對準標記250/4及250/5對準一第一掃描影像,而一第二掃描影像例如能夠基於對準標記250/3及250/4進行對準。藉由選擇存在於兩個影像中的至少一個標記,在此示例中為標記250/4,能夠基於共同對準標記來達成影像的橫向對準。很明顯,這可以延伸到包括一共同標記的任意數量的影像。
藉由為每個掃描影像選擇超過一個標記,一旦兩個標記中的一個不再與相鄰影像重疊,則另一個標記可能重疊。例如,參考上述示例,能夠例如基於對準標記250/2及250/3對準一第三掃描影像。以這種方式,在第二影像層次,對準標記250/4能夠用於與第一影像對準,而對準標記250/3能夠用於與第三影像對準。
這種作法的優點是,相鄰影像之間的對準可以通過一共同對準標記來達成,因此不需要知道任何不同標記的各別位置。
本領域具有通常知識者將清楚,在上述描述的背景中,該等相鄰影像能夠理解為產生自相鄰聚焦平面的掃描影像及/或產生自相鄰研磨步驟的掃描影像。
圖4示意性地繪示用於測量一樣品100的一方法400。
方法400與方法200的差異在於,還能夠包括研磨具有一個以上斜面102的樣品100的一步驟S450。步驟S450較佳在步驟S210及S230之前進行,同時能夠在步驟S220之前或之後進行。如前面所討論的,方法400因此特別有利,因為它允許知道角度103,這也使得角度131能夠從中導出。
可以清楚的是,步驟S340及S450能夠根據一替代具體實施例,在另一種方法中進一步組合。這還提供了配置斜面102及標記150的優勢,以便為後續的對準提供足夠的標記150,同時包含處理時間。
在較佳的施行方式中,研磨步驟S450及標記步驟S340能夠使用相同的組件施行。較佳地,這可以藉由使用聚焦離子束或更一般地任何已知的研磨手段(或裝置)來達成。有利地,此組件還能夠構成顯微鏡的一部分,如下文所述,使得研磨手段(或裝置) 及掃描手段(或裝置)的對準能夠在顯微鏡的配置下僅進行一次。儘管上面已經參照一方法描述了本發明,但很明顯的,每個方法步驟都能夠藉由各別的手段或裝置來進行。
圖5示意性地繪示一顯微鏡500的元件,包括一控制器590以及一記憶體591。記憶體591可以儲存指令,該等指令被配置成使控制器590控制顯微鏡500,以執行方法200、300、400。而且,顯微鏡500另可包括掃描手段592,例如掃描電子手段(或裝置)或用於原子力顯微鏡的探針,其能夠由控制器590按照方法200、300、400所描述的該等步驟進行控制,特別是步驟S210。
圖6示意性地繪示一顯微鏡600的元件。顯微鏡600與顯微鏡500的不同之處在於研磨手段(或裝置)693的附加存在。該研磨手段(或裝置)可以由任何已知的研磨手段(或裝置)體現,例如聚焦離子束,並且尤其是可用於施行步驟S340及S450。
因此已經描述了如何使用一顯微鏡及/或控制一顯微鏡的一方法來促進所拍攝的多個掃描影像的橫向對準,以便評估樣品沿其深度的內部結構。所描述的該等具體實施例特別允許選擇適當的標記,以進行精確的橫向對準及/或標記的有效實現,從而產生高效的掃描工作流程。
儘管本發明是定義在所附的申請專利範圍中,但應當理解,本發明也可以根據以下具體實施例定義:
具體實施例1:一種以一顯微鏡測量一樣品(100)的方法(200、300、400),該方法包括以下步驟: 使用相對於樣品(100)的一頂面(101)的具有一第一角度(131)的一聚焦平面(130),掃描(S210)樣品(100), 基於第一角度(131)計算(S220)一置信距離(270), 選擇(S230)樣品(100)上的多個對準標記(150、250/1-250/6)中的至少一個,用於執行掃描步驟(S210)的一橫向對準及/或用於執行掃描步驟(S210)的一輸出的一橫向對準, 其中在選擇步驟(S230)中所選的該至少一個對準標記(250/3、250/4),是選自於放置在距聚焦平面(130)與頂面(101)的一交叉點(260)的置信距離(270)內的該等對準標記(150、250/1-250/6)。
具體實施例2:如具體實施例1所述的方法(200、300、400), 其中第一角度(131)大於5度,較佳為大於15度,及/或小於70度,較佳為小於50度。
具體實施例3:如具體實施例1或2所述的方法(200、300、400), 其中樣品(100)包括至少具有一斜面(102)的一區域,斜面(102)相對於頂面(101)具有一第二角度(103), 其中第一角度(131)與第二角度(103)最多相差10度及/或10%。
具體實施例4:如具體實施例1至3中任一者所述的方法(200、300、400), 其中置信距離(270)是在垂直於交叉點(260)的一方向上測量的。
具體實施例5:如具體實施例1至4中任一者所述的方法(200、300、400), 其中置信距離(270)是在平行於頂面(101)的一方向上測量的。
具體實施例6:如具體實施例1至5中任一者所述的方法(200、300、400), 其中該計算置信距離(270)的步驟(S220),是基於一最大容許散焦值。
具體實施例7:如具體實施例6所述的方法(200、300、400), 其中該最大容許散焦值為一最大容許散焦高度(140、141)。
具體實施例8:如具體實施例1至7中任一者所述的方法(300), 其中該計算步驟(S220)包括計算 ConfDist = f (ϕ) 其中 - ϕ為第一角度(131), - ConfDist為置信距離(270), - f為一函數,隨ϕ減少而增加。
具體實施例9:如具體實施例1至8中任一者所述的方法(300),另包括: 以一個以上的對準標記(150、250/1-250/6)標記樣品(100)的步驟(S340)。
具體實施例10:如具體實施例9所述的方法(300), 其中標記步驟(S340)包括在距交叉點(260)的置信距離(270)內實現一個以上的對準標記(150、250/1-250/6)。
具體實施例11:如具體實施例9所述的方法(300), 其中標記步驟(S340)包括實現一個以上的對準標記(150、250/1-250/6),使得兩個相鄰對準標記(250/3-250/4)之間的一分離距離(380)為 D ≤ 2 × h MAX/ tan(ϕ) 其中 - D為該分離距離, - ϕ為第一角度(131), - h MAX為一最大容許散焦高度(140、141)。
具體實施例12:如具體實施例9所述的方法(300), 其中標記步驟(S340)包括實現一個以上的對準標記(150、250/1-250/6),使得兩個相鄰對準標記(250/3-250/4)之間的一分離距離(380)為 D ≤ 2 × ConfDist - 其中 - D為該分離距離, - ConfDist為置信距離(270)。
具體實施例13:如具體實施例1至12中任一者所述的方法(400),另包括 研磨樣品(100)以在樣品(100)中實現一個以上的斜面(102)的步驟(S450)。
具體實施例14:如具體實施例13結合具體實施例9至12中任一者所述的方法(300、400),其中研磨步驟(S450)及標記步驟(S340)是以相同組件(110、693)施行。
具體實施例15:一種顯微鏡(500、600)包括 一控制器(590),以及 一記憶體(591), 其中記憶體(591)儲存指令,該等指令配置為使控制器(590)控制顯微鏡(500、600),以執行具體實施例1至14中任一者所述的方法(200、300、400)。
具體實施例16:一種用於一顯微鏡(500、600)的軟體產品,該產品包括指令,該等指令配置為使一控制器(590)控制顯微鏡(500、600),以執行具體實施例1至14中任一者所述的方法(200、300、400)。雖然本發明已經對某些較佳具體實施例進行了繪示及描述,但本領域具有通常知識者在閱讀及理解說明書後,將可想出等同物和修改。本發明包括所有此類等同物及修改,並且僅受所附申請專利範圍的限制。
100:樣品 101:頂面 102、102a:斜面 103:角度 110:研磨束 120:成像束、掃描裝置 130、130a、130b:聚焦平面 131:角度 140、141:散焦高度 150、250/1-250/6:對準標記 200:用於測量樣品的方法 200C:方法 260:交叉點 270:置信距離 300:用於測量樣品的方法 380:分離距離 400:用於測量樣品的方法 500:顯微鏡 590:CPU 591:記憶體 592:掃描手段 600:顯微鏡 693:研磨手段 S210:掃描步驟 S220:計算距離 S230:選擇步驟 S340:標記步驟 S450:研磨步驟
在整個說明中,參考附圖以便於理解,其中類似的附圖標號表示類似的元件,且其中:
圖1A-1D示意性地繪示樣品100的立體圖,用於描述根據現有技術水準測量樣品的一方法的階段;
圖2A示意性地繪示用於測量一樣品100的一方法200;
圖2B示意性地繪示一樣品100的一俯視圖;
圖2C示意性地繪示用於測量一樣品100的一方法200C;
圖3A示意性地繪示用於測量一樣品100的一方法300;
圖3B示意性地繪示一樣品100的一俯視圖;
圖4示意性地繪示用於測量一樣品100的一方法400;
圖5示意性地繪示一顯微鏡500的元件;
圖6示意性地繪示一顯微鏡600的元件。
200:用於測量樣品的方法
S210:掃描步驟
S220:計算距離
S230:選擇步驟

Claims (20)

  1. 一種以一顯微鏡測量一樣品的方法,該方法包括以下步驟: 用相對於該樣品的一頂面的具有一第一角度的一聚焦平面,掃描該樣品, 基於該第一角度計算一置信距離, 選擇該樣品上的多個對準標記中的至少一個,用於執行該掃描步驟的一橫向對準及/或用於執行該掃描步驟的一輸出的一橫向對準, 其中在該選擇步驟中所選的該至少一個對準標記,是選自於放置在距該聚焦平面與該頂面的一交叉點的該置信距離內的該等對準標記。
  2. 如請求項1所述的方法, 其中該第一角度大於5度,較佳為大於15度,及/或小於70度,較佳為小於50度。
  3. 如請求項1所述的方法, 其中該樣品包括至少具有一斜面的一區域,該斜面相對於該頂面具有一第二角度, 其中該第一角度與該第二角度最多相差10度及/或10%。
  4. 如請求項1所述的方法, 其中該置信距離是在垂直於該交叉點的一方向上測量的。
  5. 如請求項1所述的方法, 其中該置信距離是在平行於該頂面的一方向上測量的。
  6. 如請求項1所述的方法, 其中計算該置信距離的該步驟是基於一最大容許散焦值。
  7. 如請求項6所述的方法, 其中該最大容許散焦值為一最大容許散焦高度。
  8. 如請求項1所述的方法, 其中該計算步驟包括計算 ConfDist = f (ϕ) 其中 ϕ為該第一角度, ConfDist為該置信距離, f為一函數,其隨ϕ減少而增加。
  9. 如請求項1所述的方法,另包括以下步驟: 以一個以上的對準標記標記該樣品。
  10. 如請求項9所述的方法, 其中該標記步驟包括在距該交叉點的該置信距離內實現一個以上的對準標記。
  11. 如請求項9所述的方法, 其中該標記步驟包括實現一個以上的對準標記,使得兩個相鄰對準標記之間的一分離距離為 D ≤ 2 × h MAX/ tan(ϕ) 其中 D為該分離距離, ϕ為該第一角度, h MAX為一最大容許散焦高度。
  12. 如請求項9所述的方法, 其中該標記步驟包括實現一個以上的對準標記,使得兩個相鄰對準標記之間的一分離距離為 D ≤ 2 × ConfDist 其中 D為該分離距離, ConfDist為該置信距離。
  13. 如請求項1所述的方法,另包括以下步驟: 研磨該樣品以在該樣品中實現一個以上的斜面。
  14. 如請求項13所述的方法,另包括以下步驟: 以一個以上的對準標記標記該樣品,其中該研磨步驟及該標記步驟是以相同的組件施行。
  15. 一種顯微鏡包括: 一控制器,以及 一記憶體, 其中該記憶體儲存多個指令,該等指令配置為使該控制器控制該顯微鏡,以執行請求項1所述的方法。
  16. 一種用於一顯微鏡的軟體產品,該產品包括多個指令,該等指令配置為使一控制器控制該顯微鏡,以執行請求項1所述的方法。
  17. 如請求項15所述的顯微鏡,其中該記憶體儲存多個指令,該等指令配置為使該控制器控制該顯微鏡,以執行請求項2所述的方法。
  18. 如請求項15所述的顯微鏡,其中該記憶體儲存多個指令,該等指令配置為使該控制器控制該顯微鏡,以執行請求項3所述的方法。
  19. 如請求項15所述的顯微鏡,其中該記憶體儲存多個指令,該等指令配置為使該控制器控制該顯微鏡,以執行請求項4所述的方法。
  20. 如請求項15所述的顯微鏡,其中該記憶體儲存多個指令,該等指令配置為使該控制器控制該顯微鏡,以執行請求項5所述的方法。
TW111139048A 2021-11-09 2022-10-14 用於測量樣品的方法與施行此方法的顯微鏡 TW202326221A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/522,167 2021-11-09
US17/522,167 US11848172B2 (en) 2021-11-09 2021-11-09 Method for measuring a sample and microscope implementing the method

Publications (1)

Publication Number Publication Date
TW202326221A true TW202326221A (zh) 2023-07-01

Family

ID=84360622

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111139048A TW202326221A (zh) 2021-11-09 2022-10-14 用於測量樣品的方法與施行此方法的顯微鏡

Country Status (3)

Country Link
US (1) US11848172B2 (zh)
TW (1) TW202326221A (zh)
WO (1) WO2023083619A1 (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4384275B2 (ja) 1998-03-24 2009-12-16 株式会社ルネサステクノロジ 荷電ビームによる加工方法およびその加工システム並びに荷電ビームによる観察方法およびその観察システム
JP4691529B2 (ja) * 2007-07-20 2011-06-01 株式会社日立ハイテクノロジーズ 荷電粒子線装置、及び試料加工観察方法
US20090309022A1 (en) * 2008-06-12 2009-12-17 Hitachi High-Technologies Corporation Apparatus for inspecting a substrate, a method of inspecting a substrate, a scanning electron microscope, and a method of producing an image using a scanning electron microscope
TWI492244B (zh) 2012-07-18 2015-07-11 Hermes Microvision Inc 單色器、帶電粒子束裝置、減少帶電粒子束之能量散佈的方法以及能量過濾帶電粒子束的方法
FR3020141B1 (fr) 2014-04-17 2018-01-05 Horiba Jobin Yvon Sas Appareil et procede de microscopie a balayage de faisceau optique
LU92740B1 (de) 2015-06-11 2016-12-12 Leica Microsystems Abtastmikroskop
CN108398775B (zh) 2018-04-24 2019-11-22 清华大学 荧光显微镜系统的对焦方法及装置
CN109839400A (zh) 2019-01-23 2019-06-04 中国科学院上海应用物理研究所 一种基于kb镜聚焦的同步辐射共聚焦荧光实验装置
CN113950704A (zh) 2019-06-07 2022-01-18 卡尔蔡司Smt有限责任公司 具有改良3d体积图像重建精度的横截面成像
WO2021180600A1 (en) 2020-03-13 2021-09-16 Carl Zeiss Smt Gmbh Method of cross-section imaging of an inspection volumes in wafer

Also Published As

Publication number Publication date
US11848172B2 (en) 2023-12-19
WO2023083619A1 (en) 2023-05-19
US20230145897A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US11195296B2 (en) Information processing apparatus, method of processing distance information, and recording medium recording distance information processing program
JP4418841B2 (ja) 作業装置及びその校正方法
TW473848B (en) Electron-beam exposure method
JP2008258200A (ja) プローブ装置、プロービング方法及び記憶媒体
WO2016121073A1 (ja) パターンマッチング装置、及びパターンマッチングのためのコンピュータプログラム
JP2005533320A (ja) 画像解析の方法、装置およびソフトウェア
JP2019020292A (ja) パターン検査装置及びパターン検査方法
US20220276043A1 (en) Shape measuring device, system with fabricating unit and shape measuring device, and method
JP2013036831A (ja) キャリブレーション装置及び歪み誤差算出方法
JP5049246B2 (ja) 物体形状評価装置
JP2004272459A (ja) 三次元形状の自動生成装置、自動生成方法、そのプログラム、及びそのプログラムを記録した記録媒体
TW202326221A (zh) 用於測量樣品的方法與施行此方法的顯微鏡
JP6029293B2 (ja) 走査型電子顕微鏡の画像処理装置、および、走査方法
JP6560547B2 (ja) 境界点抽出方法およびトータルステーションを用いた測定方法
KR101867390B1 (ko) 레이저 가공장치 및 레이저 가공방법
US20190019651A1 (en) Imaging system and imaging method
JP4996585B2 (ja) 画像校正評価装置及び画像校正評価プログラム
TWI795788B (zh) 圖案檢查裝置以及輪廓線對準量取得方法
US11915908B2 (en) Method for measuring a sample and microscope implementing the method
JP4053951B2 (ja) 突起の高さ測定方法および測定装置
JP5206499B2 (ja) 測定方法、測定装置、測定制御プログラム
JP2005181092A (ja) 突起の高さ測定方法および測定装置
JP2015095524A (ja) 描画装置、および物品の製造方法
CN108534708A (zh) 一种双目三维扫描仪组件及扫描方法
He et al. Experimental and Computational Study of Error and Uncertainty in Real-Time Camera-Based Tracking of a Two-Dimensional Marker for Orthopedic Surgical Navigation