TW202316117A - 用於控制自動化測試設備(ate)的控制裝置、ate、用於控制ate的方法、用於操作ate的方法和用於執行包括溫度估計或確定的此類方法的計算機程序 - Google Patents

用於控制自動化測試設備(ate)的控制裝置、ate、用於控制ate的方法、用於操作ate的方法和用於執行包括溫度估計或確定的此類方法的計算機程序 Download PDF

Info

Publication number
TW202316117A
TW202316117A TW111129116A TW111129116A TW202316117A TW 202316117 A TW202316117 A TW 202316117A TW 111129116 A TW111129116 A TW 111129116A TW 111129116 A TW111129116 A TW 111129116A TW 202316117 A TW202316117 A TW 202316117A
Authority
TW
Taiwan
Prior art keywords
dut
contact structure
temperature
ate
control device
Prior art date
Application number
TW111129116A
Other languages
English (en)
Other versions
TWI823507B (zh
Inventor
延斯 埃德爾曼
安東 托馬
Original Assignee
日商愛德萬測試股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商愛德萬測試股份有限公司 filed Critical 日商愛德萬測試股份有限公司
Publication of TW202316117A publication Critical patent/TW202316117A/zh
Application granted granted Critical
Publication of TWI823507B publication Critical patent/TWI823507B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2834Automated test systems [ATE]; using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2868Complete testing stations; systems; procedures; software aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2868Complete testing stations; systems; procedures; software aspects
    • G01R31/287Procedures; Software aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Control Of Temperature (AREA)

Abstract

根據本發明的實施例包括一種用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的控制裝置,所述DUT使用或例如經由被測裝置接觸結構,例如使用或經由探針或例如使用或經由DUT插座,來電耦合至所述自動化測試設備。所述控制裝置被配置為使用熱模型,例如使用所述DUT接觸結構的熱模型或使用例如包括所述DUT接觸結構的熱模型的熱模型,來確定或估計所述DUT接觸結構的溫度。此外,所述控制裝置被配置為根據所確定或估計或例如所建模的溫度來影響例如控制、調節、去啟動和/或限制施加至所述DUT接觸結構的信號。其他實施例包括被配置為使用熱模型來確定或估計DUT接觸件的溫度的自動化測試設備和控制裝置。

Description

用於控制自動化測試設備(ATE)的控制裝置、ATE、用於控制ATE的方法、用於操作ATE的方法和用於執行包括溫度估計或確定的此類方法的計算機程序
根據本發明的實施例涉及用於控制自動化測試設備(ATE)的控制裝置、ATE、用於控制ATE的方法、用於操作ATE的方法和用於執行包括溫度估計或確定的此類方法的計算機程序。
根據本發明的其他實施例涉及探針防護裝置。
為了更好地理解本發明,本發明的實施例解決的問題尤其是關於現有解決方案的動機。
半導體生產過程中的質量保證是通過積體電路(IC)測試來實現的。每個IC都需要根據其規格進行測試,以保證其質量。
自動化測試設備(ATE)用於為被測裝置(DUT)提供電源和刺激,並測量與預期進行比較的信號。
圖1示出用於測試被測裝置的IC晶圓級測試設置的示意圖。圖1a)示出具有多個被測裝置的晶圓,例如裸管晶101。作為示例,圖1b)示出裸管晶101中的一個,包括被金屬接觸焊墊103圍繞的DUT電路102。作為示例,圖1c)示出探針107,所述探針107通過圖1b)所示的裸管晶101的穿孔氧化物層105接觸金屬接觸焊墊103中的一個。
IC晶圓級100測試用於未封裝裝置(如裸管晶101)的質量保證或在晶圓分類期間識別缺陷以避免不必要的封裝成本。
例如,測試系統與DUT電路102之間的可靠電接觸可能是必不可少的。
DUT提供經由探針107連接至測試系統的金屬接觸焊墊103。
探針107由金屬構成以將電流傳導至DUT。IC 101通常具有數百個接觸焊墊103(此處為簡化圖示)以同時連接來進行測試,從而導致探針的微小機械尺寸。因此,例如,探針可能容易出現細小誤差。
從測試系統到DUT 101的正確信號傳送可能需要經由探針107和DUT焊墊103進行合理的連接。探針尖可能擦洗和刮擦晶片焊墊103的金屬表面106以獲得牢固的接觸,這可能通過氧化、機械磨損和焊墊殘留物106的污染而造成探針尖的磨損。測試期間溫度升高可能加速磨損過程。晶片溫度可以是指定的測試參數;由於電流流動而產生的自熱進一步對探針接觸件104產生應力。為了減輕這些應力因素,探針可能經歷清潔循環以去除探針尖端處的污染物並例如盡可能多地恢復機械參數。探針的機械應力與熱應力的增加可能最終導致不可逆的退化,例如由電氣或機械探針參數的負面變化(磨損、彈簧張力降低、熔化)引起的不可逆的退化。
降額可能是緩解壓力情況下探針過熱的常用方法。因此,每個探針所施加的電流可能應當保持低於(例如,大部分顯著低於)其額定最大電流額定值。然而,即使使用降額,仍可能觀察到探針“燒毀”,例如,很可能是由於從探針尖到晶片焊墊的接觸質量較弱以及過電流情況的組合。增加的探針溫度可能通過增加的電阻導致功率增加,這會最終導致熱失控。
綜上所述,現有技術的問題是探針的熱應力可能導致過熱和不可逆的退化和損壞,諸如彈簧張力降低或尖端熔化。這可能導致IC生產中斷。探針卡可能需要昂貴且耗時的維修,甚至探針卡完全丟失,IC生產可能進一步停機。
因此,希望獲得一種允許減少甚至避免用於裝置測試的接觸元件的退化和/或損壞的概念。此外,希望這種概念在系統複雜性、實施工作與損壞減輕的有效性之間提供更好的折衷。
這通過本申請的獨立請求項的主題來實現。
根據本發明的其他實施例由本申請的附屬請求項的主題限定。
根據本發明的實施例包括一種用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的控制裝置,所述DUT使用或例如經由被測裝置接觸結構,例如使用或經由探針或例如使用或經由DUT插座,來電耦合至所述自動化測試設備。所述控制裝置被配置為使用熱模型,例如使用所述DUT接觸結構的熱模型或使用例如包括所述DUT接觸結構的熱模型的熱模型,來確定或估計所述DUT接觸結構的溫度。此外,所述控制裝置被配置為根據所確定或估計或例如所建模的溫度來影響例如控制、調節、去啟動和/或限制施加至所述DUT接觸結構的信號。
根據本發明的實施例基於使用熱模型來確定或估計DUT接觸結構的溫度的思想,以便影響施加至DUT接觸結構的信號。
在測試場景中,可為DUT提供例如預定測試信號。例如,這可以是DUT目標電壓或DUT目標電流。由於DUT應當例如附接至測試設置(例如自動化測試設備的測試頭)或從測試設置去除,因此可很容易地使用接觸結構,例如探針或其他被配置為向DUT提供電接觸的元件。如前所述,這些DUT接觸結構可能受到磨損,尤其是熱致磨損。
發明人認識到,如果接觸結構的溫度保持在特定閾值以下,則可避免或減輕磨損和其他接觸結構損壞。一個挑戰可能是在測試期間追蹤此溫度,其中,測試信號可快速連續地改變或調整。此外,在某些情況下,可能難以收集關於DUT接觸結構與所述DUT或DUT接觸件之間的接觸表面(例如所述DUT的接合焊墊或接觸焊墊)的精確知識。不良接觸可能導致所述接觸結構上的熱負荷增加,從而導致溫度升高,從而導致損壞。
因此,發明人認識到可使用熱模型(例如包括DUT接觸結構的熱模型)來執行對所述DUT接觸結構的所述溫度的追蹤。這可允許將所述DUT接觸結構的所述溫度保持在沒有問題的溫度邊界內。例如,可實時執行所述溫度的追蹤。例如,與溫度測量相比,可更快地提供所估計或確定的溫度。甚至可以預測溫度變化,從而為所述DUT調整測試和/或信號提供。
無論如何,為了影響所述DUT接觸結構的所述溫度,施加至所述DUT接觸結構的信號(例如為所述DUT提供的信號),或包括用於所述DUT的信號的信號(例如測試信號)可受到基於使用所述熱模型來確定或估計的所述溫度的影響。例如,影響可包括對所述信號(例如電流)的控制或調節、或去啟動、或切斷或限制。
因此,可減少或甚至避免所述接觸元件的退化和/或損壞。換言之,可減少甚至避免探針過熱和不可逆的退化和損壞。可有效地減輕損壞,並且出於此目的,可省略所述接觸結構處的附加溫度測量,使得例如僅現有電流和電壓測量值和/或僅少數附加電壓和/或電流測量值可用於允許例如實時追蹤所述溫度。因此,本發明構思可以通過耗費較少精力並降低對系統複雜性的影響來實施。
此外,本發明的實施例解決的其他問題可能是探針的熱應力可能導致過熱和不可逆的退化和損壞,諸如彈簧張力降低或尖端熔化。這可能導致IC生產中斷。探針卡可能需要昂貴且耗時的維修,甚至探針卡完全丟失,IC生產可能進一步停機。這些問題可通過或使用本發明的實施例來克服。
根據本發明的其他實施例,所述熱模型包括所述DUT接觸結構的熱模型,它例如可考慮所述DUT接觸結構的熱容量、所述DUT傳導結構的熱傳導,並可選地還考慮熱所述DUT接觸結構的熱環境的熱特性和/或輻射特性。替代地或附加地,所述熱模型包括所述DUT接觸件的熱模型,例如DUT接觸焊墊和/或例如DUT接合焊墊,所述熱模型用於將所述DUT電耦合至所述自動化測試設備並可用於例如考慮所述DUT接觸件的熱容量、所述DUT接觸件的熱傳導,並可選地還考慮所述DUT接觸件的熱環境的熱特性和/或輻射特性。替代地或附加地,所述熱模型聯合地對所述DUT接觸結構和所述DUT接觸件進行建模。
除了信息,例如關於所述DUT接觸結構的熱模型信息,所述熱模型還可包括關於DUT接觸件的信息。簡而言之,所述DUT接觸結構例如可以是所述ATE側上的ATE與DUT之間的接觸佈置的第一部分,並且所述DUT接觸件例如可以是所述DUT側上的ATE與DUT之間的接觸佈置的第二部分。
如前所述,所述DUT接觸結構例如可以是探針,並且所述DUT接觸件例如可以是DUT接觸焊墊。因此,整個接觸佈置可包括所述針和所述焊墊。所述熱模型可用於描述這種接觸佈置的任何或所有部分,因此包括所述接觸結構和/或接觸件或其混合物的熱模型,例如在描述所述接觸結構的第一部分和描述所述接觸件的第二部分中可能未明確剖析的模型。所述熱模型尤其可包括所述接觸結構與所述接觸件之間的接觸表面,例如作為所述接觸件的一部分,或以不同的方式建模。
因此,所述熱模型可根據特定應用的要求來構建,例如關於可用計算能力和/或建模精度。這允許附加的自由度,並允許以高精度確定或估計所述DUT接觸結構的所述溫度。
根據本發明的其他實施例,所述熱模型包括模型參數化,其中,所述模型參數化被配置為表示所述DUT接觸結構的熱行為。此外,所述控制裝置被配置為根據施加至所述DUT接觸結構的所述信號的電流的測量值和/或根據所述接觸結構的電壓的測量值來調整所述模型參數化,以便附加地表示所述DUT接觸結構和所述DUT接觸件的界面的熱行為,所述界面用於利用所述熱模型將所述DUT電耦合至所述自動化測試設備;和/或附加地利用所述熱模型表示所述DUT接觸件的熱行為,以便確定或估計所述DUT接觸結構的溫度。
所述模型可包括可根據應用的硬體的特定特性進行適應的默認參數化。作為示例,描述探針的電阻的參數可與考慮所述DUT的所述接觸焊墊的術語相適應,例如附加電阻。此類參數適應可例如基於測量來在運行時執行,例如實時執行。因此,所述熱模型可以是自適應模型,從而允許關於溫度估計值的良好準確性。
根據本發明的其他實施例,所述控制裝置被配置為使用例如施加至所述DUT接觸結構的所述信號的電流測量值、使用所述熱模型並使用電位差(例如,電壓)的測量值來確定或估計所述DUT接觸結構的所述溫度,所述電位差等於所述DUT接觸結構上的電位差(例如,電壓),或所述電位差包括所述接觸結構上的電位差(例如,電壓)或例如近似於跨所述接觸結構的電位差,或表示跨所述接觸結構的電位差,或所述電位差表示所述DUT接觸結構的ATE側端與所述DUT的接觸焊墊之間的電壓降,或所述電位差表示所述DUT接觸結構的ATE側端與用於將所述DUT電耦合至所述自動化測試設備的DUT接觸件之間的電壓降,或所述電位差表示通往包括所述DUT接觸結構的所述DUT的過渡處的電壓降。
根據實施例,可使用多個可選測量值以模擬或評估所述熱模型。因此,本發明的概念可容易地適應特定硬體設置,例如僅包括用於測量電壓的有限選項的特定硬體設置。
根據本發明的其他實施例,所述控制裝置被配置為使用所述熱模型並使用電壓測量值和電流測量值來確定或估計所述DUT接觸結構的所述溫度,所述電壓測量值描述跨所述DUT接觸結構和跨例如從所述自動化測試設備或從負載板朝向包括所述DUT接觸結構和例如DUT接觸件和所述被測裝置內的一些可選佈線的所述被測裝置的過渡處上的電壓降,所述電流測量值至少近似地描述流經所述DUT接觸結構的電流。
例如,可確定跨所述DUT接觸結構或跨從ATE至DUT的對應過渡處的所述電壓降(作為所述熱模型的一部分)的測量值連同關於所述流經所述結構或過渡的所述電流、的信息、可能導致溫度變化的功率或能量。在知道此類電壓和電流以及因此功率和/或能量的情況下,可精確地評估或確定所述接觸結構的所述溫度。
根據本發明的其他實施例,所述控制裝置被配置為確定(例如測量)或根據兩個單獨的電壓測量值計算,所述DUT接觸結構的ATE側端與所述DUT的DUT接觸結構之間的電壓(=之間的電位差),所述DUT接觸結構例如可等於被所述DUT接觸結構接觸的所述DUT接觸件或可與被所述DUT接觸結構接觸的所述DUT接觸件導電耦合,例如與由所述DUT接觸結構接觸的所述DUT接觸件處於基本相同的電位。此外,所述控制裝置被配置為使用所確定的電壓來使用所述熱模型來確定或估計所述DUT接觸結構的所述溫度。
在實際應用中,可能難以精確測量所述接觸結構上的電壓降。另一方面,測量所述DUT接觸結構的ATE側端與所述DUT的DUT接觸件之間的電壓可能就足夠,以便為所述熱模型提供足夠的信息來有效描述所述接觸結構中的溫度變化。這可允許簡化地測量所述接觸結構的電壓。
根據本發明的其他實施例,所述控制裝置被配置為確定(例如測量或計算)由所述ATE介面提供的電流,例如裝置電源的輸出、或與所述DUT接觸結構耦合的模擬或數字ATE通道模塊的輸出、或流經所述DUT接觸結構的電流,並使用所確定的電流來使用所述熱模型確定或估計所述DUT接觸結構的所述溫度。
許多ATE系統可提供內部功能性,以便測量或設置用介面提供的電流。因此,可通過有限的附加努力來應用本發明概念。此外,所述ATE介面的所述電流例如可近似為施加至所述接觸結構的所述信號。此外,可基於所確定的電流來確定施加至所述接觸結構的所述信號(例如電流),例如減去提供或傳導至其他電路系統的子電流。因此,由所述ATE介面提供的所述電流或甚至流經所述DUT接觸結構的所述電流的知識可允許精確估計或確定所述接觸結構的所述溫度,例如基於功率或能量的確定(例如,結合電壓測量值,諸如前面解釋的所述電壓測量值)。
根據本發明的其他實施例,所述控制裝置被配置為測量或接收由所述ATE介面提供的電流的測量值,例如通過所述裝置電源的輸出,或通過與所述DUT接觸結構耦合的模擬或數字的ATE通道模塊的輸出。此外,所述控制裝置被配置為確定(例如計算)流經與所述ATE介面耦合的一個或多個電容器的電流,例如使用關係i C= C du/dt。此外,所述控制裝置被配置為使用所測得的電流並使用流經與所述ATE介面耦合的一個或多個電容器的所確定的電流來導出(例如計算)流經所述DUT接觸結構的電流,例如通過從所測得的電流減去流經所述一個或多個電容器的電流。
通常,可例如至少部分地得到補償所述ATE中的可能影響施加至所述接觸結構的所述信號的其他電路系統的影響。對於電源,例如提供電流的ATE介面,可使用電容器來穩定所述ATE介面的所述輸出信號。因此,可補償影響,例如流經所述電容器的電流,例如將其從所述ATE介面的輸出電流減去,以便確定提供給所述接觸結構的所述電流。因此,可以良好的準確度確定或估計所述接觸結構的所述溫度,同時還能夠使用附加的電路系統來進行測試優化,例如以例如去耦電容器的形式。
根據本發明的其他實施例,所述控制裝置被配置為使用以下各項中的至少一者來確定或估計所述DUT接觸結構的所述溫度:環境溫度,例如上面安裝所述DUT接觸結構的空氣溫度或負載板的溫度、例如DUT的晶圓溫度、例如DUT的晶片溫度、所述接觸結構的載流能力、所述接觸結構的熱傳導值、所述接觸結構的熱對流值和/或持續時間,例如所述信號施加至所述DUT接觸結構的持續時間。
可考慮多個參數以便提高溫度估計或確定的準確性。基於特定的測試設置或ATE,可用參數可能合併在所述熱模型中。
根據本發明的其他實施例,所述環境溫度和/或所述晶圓溫度和/或所述晶片溫度是相應的測得溫度或相應的設定點溫度。
不一定要測量這些溫度才能將其合併在所述模型中。因此,可使用設定點值來考慮這些參數。因此,溫度估計或確定的準確度可提高,或甚至以較低的附加努力提高。
根據本發明的其他實施例,所述控制裝置被配置為使用所述熱模型來確定或估計所述DUT接觸結構的溫度的時間演變。
所述時間演變甚至可包括未來的溫度過程,或換句話說,溫度預測。此外,所述溫度的所述時間演變可用於決定或預測何時可能由於即將發生的接觸結構損壞而必須停止測試。因此,所述時間演變的確定和/或估計允許提取附加的測試信息。
根據本發明的其他實施例,所述控制裝置被配置為使用所述DUT接觸結構的熱時間常數的至多1/100的時間分辨率來確定或估計所述DUT接觸結構的所述溫度。
例如,可關於預定測試信號的波動性來選擇所述時間分辨率。這樣,可能足夠快地檢測到過熱以避免損壞。另一方面,可根據所述接觸結構和/或DUT接觸件和/或其組合的時間常數來選擇所述時間分辨率。例如,分辨率應小於PN(例如探針)的熱時間常數的1/100。例如,PN的10 ms時間常數需要少於0.1 msec的時間分辨率。
根據本發明的其他實施例,所述控制裝置被配置為根據所確定或估計的溫度來控制或去啟動施加至所述DUT接觸結構的所述信號。
經由去啟動或控制所述信號,所述DUT接觸結構的升高的溫度可降低直到它低於臨界極限,或所述DUT接觸結構的所述溫度可在它達到臨界極限之前降低。因此,可避免接觸結構損壞。
根據本發明的其他實施例,所述控制裝置被配置為在少於或等於所述控制裝置時間的分辨率兩倍的時間內去啟動施加至所述DUT接觸結構的所述信號。
在例如實時知道所述所估計或確定的溫度的情況下,可實時或例如在運行時執行所述信號的控制或去啟動,例如在所述接觸結構的熱過程的時間常數內,例如考慮施加至所述接觸結構的所述信號,從而可避免過熱。例如,反應時間應小於或等於時間分辨率的2倍。例如,對於0.1 msec的時間分辨率,去啟動時間應小於0.2 msec。
根據本發明的其他實施例,例如由所述ATE施加至所述DUT接觸結構的信號是測試信號(例如測試刺激)和/或電源信號(例如電流)中的至少一者。
所述測試信號或測試刺激可被配置為將所述DUT置於預定狀態,例如以便測試所述DUT的行為。所述信號或刺激可適於在所述DUT處產生預定電壓或電位。使用例如如前所解釋的本發明的溫度估計或確定,可根據所執行的測試來選擇所述測試信號,例如,無需特別考慮所述導電結構的加熱問題,因為本發明的概念可允許監控所述傳導結構。
根據本發明的其他實施例,所述DUT接觸結構包括或例如是探針和/或DUT插座的導體(例如DUT測試插座的導體)。
可經由本發明的溫度估計或確定來監視或監督被配置為提供ATE與DUT之間的電連接的任何接觸元件。
根據本發明的其他實施例,其中,所述控制裝置被配置為響應於檢測到所述DUT接觸結構的所確定或估計的溫度超過閾值來減少或關閉或例如切斷或限制施加至所述DUT接觸結構的電流,以便防止對所述接觸結構的損壞。
所述電流例如可以是所述DUT的饋電電流。例如,這種饋電電流的一部分可以是施加至所述DUT的信號(例如,另一部分可被傳導至諸如去耦電容器等其他電路系統)。根據實施例,可關閉或切斷所述電流,例如將電流減小至0 A,或僅限制所述電流,例如減小到可允許所述傳導結構冷卻至低於特定閾值的值。因此,可有效地保護所述傳導結構。
根據本發明的其他實施例,所述控制裝置被配置為確定加熱功率,使用乘積的隊列來加熱所述建模的DUT接觸結構所述乘積的第一因數等於或基於所測得的電壓,第二因數等於或基於測得的電流。
這可允許精確地確定或估計所述導電結構的所述溫度。
根據本發明的其他實施例,所述控制裝置被配置為使用熱模型,例如使用所述DUT接觸件的熱模型或使用包括所述DUT接觸件的熱模型的熱模型,來確定或估計用於將所述DUT電耦合至所述自動化測試設備的DUT接觸件的溫度。此外,所述控制裝置被配置為根據所述DUT接觸件的所確定或估計(例如建模)的溫度並取決於所述DUT接觸結構的所確定或估計的溫度來影響(例如控制、調節、去啟動和/或限制)施加至所述DUT接觸結構的所述信號。
除了估計DUT接觸結構的溫度(它可以是來自所述ATE側的ATE與DUT之間的連接元件的溫度)之外,可估計或確定DUT接觸件的溫度,例如DUT接合焊墊或接觸焊墊(它可以是來自所述DUT側的ATE與DUT之間的連接的元件的溫度),因此基於此調整施加至所述接觸結構的所述信號。例如,這些溫度可相等或至少近似相等。作為示例,所述接觸結構可以是探針,經由所述DUT接觸件提供從所述ATE或提供電流的ATE介面至所述DUT的連接,作為接觸焊墊的示例。針和焊墊可形成在ATE與DUT之間提供電接觸的接觸佈置。例如,在這兩個元件之間可能出現臨界熱行為。此外,針和焊墊的溫度可能密切相關。因此,可估計兩者的溫度。這也可包括估計或確定所述兩個元件之間的界面的溫度,通常在DUT接觸結構與DUT接觸件之間,例如探針與接觸焊墊之間的接觸表面。
這可允許有效地減輕損壞或避免損壞。還應當注意,也可減少或避免對所述DUT接觸件(例如接觸焊墊)的損壞或磨損。例如,熔化的探針殘留物可能影響所述接觸焊墊的質量。
根據本發明的其他實施例包括一種自動化測試設備(ATE),包括控制裝置,所述控制裝置包括單獨或組合使用的本文解釋的任何功能性和/或部件,以及ATE資源,例如被配置為提供施加至所述DUT接觸結構的所述信號的裝置電源或數字通道模塊或模擬通道模塊。此外,所述控制裝置被配置為影響所述ATE資源,以便根據所確定或估計的溫度來影響施加至所述DUT接觸結構的所述信號。
例如,所述控制裝置可以是被配置為調節或控制所述ATE資源的源調節單元。根據其他實施例,所述控制裝置例如可以是附加裝置,它被配置為影響源調節單元,從而使用或經由所述源調節單元影響所述ATE資源。所述ATE資源例如可提供包括施加至所述DUT接觸結構的所述信號的電流。被配置為影響所述ATE資源的所述控制裝置可提供簡單且有效的可能性,以將本發明的概念合併至現有ATE系統中,並且附加複雜性較低。
根據本發明的其他實施例,所述自動化測試設備包括第一測量單元和第二測量單元,所述第一測量單元被配置為測量施加至所述DUT接觸結構的所述信號的電流,所述第二測量單元被配置為測量所述DUT接觸結構的所述ATE側端與所述DUT的DUT接觸件之間的電壓(例如電位差)。此外,所述第一測量單元和所述第二測量單元被配置為向所述控制裝置提供所測得電壓的相應測量值和施加至所述DUT接觸結構的所述信號的所述電流的所述測量值,以便允許確定或允許估計所述DUT接觸結構的所述溫度。
例如,所述電流可以是由ATE介面提供的饋電電流。例如,所述電流可包括施加至所述DUT接觸結構的所述信號,例如電流。然而,所述ATE的其他電路系統,例如去耦電容器,可例如使用或耗散由所述ATE介面提供的所述電流的另一部分。可選地,所述電流例如可以是施加至所述DUT接觸結構的所述信號。
作為示例,所述第二測量單元可包括多個(例如兩個)電壓測量元件(例如測量所述接觸結構的ATE側與接地之間的電壓以及所述接觸結構的所述DUT側例如經由DUT接觸件與接地之間的電壓),以便測量所述接觸結構和/或所述DUT接觸件的所述電壓。如前所述,利用測得的電壓和電流,可在所述熱模型中確定或考慮加熱所述接觸結構和/或所述DUT接觸件的能量,從而允許精確確定所述接觸結構的所述溫度。
根據本發明的其他實施例,所述ATE資源包括用於提供所述施加至DUT接觸結構的所述信號的ATE介面。此外,去耦電容器耦合至所述ATE介面,並且所述去耦電容器被配置為穩定由所述ATE介面提供的所述信號。替代地或附加地,所述去耦電容器被配置為將所述DUT與由所述ATE的其他電路系統元件產生的噪聲去耦。本發明的概念也可應用於包括附加電路系統的ATE設置,例如去耦電容器。
根據本發明的其他實施例,所述控制裝置被配置為考慮所述去耦電容器對施加至所述DUT接觸結構的所述信號的影響,以便確定或估計所述DUT接觸結構的所述溫度。
如前所述,由所述ATE介面提供的饋電信號的一部分可被傳導至所述耦合電容器,使得所述饋電信號的僅另一部分施加至所述傳導結構。這種影響,或例如測得的ATE介面信號與有效地施加至所述傳導結構的信號之間的這種差異,可由所述控制裝置考慮。因此,通過經由信號損耗(例如傳導至所述電容器的電流)適應的有限測量複雜性(ATE介面信號,例如電流),可確定關於施加至所述接觸結構的所述信號以及因此其溫度的精確信息。
根據本發明的其他實施例,使用對施加至所述DUT接觸結構的所述信號的所述電流的測量值、使用關於所述DUT的目標電壓的預定信息和/或使用所述DUT接觸結構的ATE側端與所述DUT的DUT接觸件之間的電壓(例如,電位差)的測量、和/或使用所述DUT的電壓測量值,所述控制裝置被配置為考慮所述去耦電容器的影響。
例如,所述去耦電容器可被佈置為與所述DUT和所述DUT傳導結構並聯。因此,可使用提供給所述DUT傳導結構和/或所述DUT的所述電壓的電壓差或電壓梯度來確定或近似傳導至所述去耦電容器的電流。可使用關於預定目標電壓或測量值的信息來確定所述電壓的此過程。作為示例,所述第二測量單元可被配置為提供此類測量值。因此,所述電容器的影響可能是可從所述ATE介面處測量的電流減去電流i c= dU/dt,(其中,dU/dt是電壓變化,例如差值或梯度),以便確定施加至所述傳導結構的所述電流。因此,可精確確定所述傳導結構的所述溫度。
根據本發明的其他實施例,所述自動化測試設備包括被配置為調節提供給所述DUT接觸結構的ATE輸出信號的電壓和/或電流的源調節器。此外,所述控制裝置被配置為例如動態地例如實時影響所述源調節器,例如通過改變電壓目標值和/或電流目標值,或例如通過去啟動所述ATE輸出信號,或例如通過改變所述目標電壓或所述目標電流的時間演變的速度,根據所述DUT接觸結構的所確定或估計的溫度,例如響應於檢測到建模的例如瞬時溫度達到或超過閾值或以漸進方式。
因此,本發明的控制裝置可併入在現有ATE系統中,從而影響源調節器。因此,本發明概念的優點可在具有有限附加複雜性的現有ATE系統中使用。
根據本發明的其他實施例,所述自動化測試設備被配置為響應於所述控制裝置已影響施加至所述DUT接觸結構的所述的信號事實或響應於所述控制裝置對施加至所述DUT接觸結構的所述信號的影響超過預定允許程度的事實來將測試標記為失敗。
所述控制裝置對施加至所述接觸結構的所述信號以及因此對所述DUT的影響可改變預定測試規範。因此,儘管避免硬體損壞可能更重要,但測試週期可能必須標記為失敗,或未按照規範執行,以防所述信號受到影響。這可允許例如以自動化方式容易地整理出測試結果,使得本發明的損壞減輕不會導致測試被錯誤解釋。
根據本發明的其他實施例,所述自動化測試設備被配置為提供信號,所述信號施加至一個或多個力DUT接觸結構。此外,所述自動化測試設備被配置為從一個或多個感測DUT接觸結構接收感測信號,其中,例如,所述感測信號表示由施加至所述一個或多個力DUT接觸結構的信號在所述DUT上產生的電壓。此外,所述自動化測試設備被配置為確定所述力DUT接觸結構中的一個的ATE側端與所述感測信號之間的電位差,例如電壓。此外,所述自動化測試設備被配置為使用所述熱模型並使用所確定的電位差來確定所述溫度。
在實際應用中,所述DUT接觸結構可包括一個或多個力DUT接觸結構和/或一個或多個感測DUT接觸結構。提供給所述DUT接觸結構的電流可經由多個力DUT接觸結構(例如,力探針)提供給所述DUT,從而減少所述力DUT接觸結構中的每個上的負載,從而減少熱磨損。所述熱模型可考慮此類結構以準確地提供關於所述DUT接觸結構中的所述溫度或甚至關於力DUT接觸結構溫度的信息和/或感測所述DUT接觸結構的差異化信息。
根據本發明的其他實施例,所述熱模型被配置為考慮熱歷史,例如當脈衝序列施加至所述DUT接觸結構並且所述DUT接觸結構沒有足夠的時間以返回至兩個電流脈衝之間的初始溫度時。
例如,所述熱歷史可併入在所述熱模型的狀態信息中,例如以熱狀態空間模型的狀態的形式。例如,熱歷史也可存儲在表格或一系列數據點中。基於所述熱歷史,可以增加的準確度執行溫度估計或確定。
根據本發明的其他實施例,所述熱模型被配置為考慮從所述DUT接觸結構至DUT接觸件的過渡處的實際接觸電阻(例如電流),例如使用即時電阻測量或使用過渡處的電壓降,其中,所述DUT使用或例如經由所述被測裝置接觸件來電耦合至所述自動化測試設備。
例如,所述過渡可以是所述DUT接觸結構與所述DUT接觸件之間的界面。所述界面或過渡可以是接觸結構與DUT接觸件之間的接觸表面。考慮所述接觸電阻可允許準確地確定或估計所述DUT接觸結構和/或所述DUT接觸件的溫度。
根據本發明的其他實施例包括一種用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的方法(所述DUT使用或例如經由被測裝置接觸件(例如DUT焊墊、DUT bga球)來電耦合至自動化測試設備),其中,所述控制裝置被配置為使用熱模型(例如使用DUT接觸件的熱模型或使用包括DUT接觸件的熱模型的熱模型)來確定或估計DUT接觸件的溫度。此外,所述控制裝置被配置為根據所確定或估計(例如建模)的溫度來影響例如控制、調節、去啟動和/或限制施加至所述DUT接觸件的信號。
基於與之前解釋的類似考慮,控制裝置可例如確定或估計DUT接觸件的溫度而不確定或估計所述DUT接觸結構的溫度。因此,可基於所述DUT接觸件的所述溫度來執行施加至所述接觸結構的所述信號的影響。
然而,應當注意,之前在確定或估計DUT接觸結構的上下文中解釋的所有方面、特徵和功能性可與被配置為確定或估計所述DUT接觸件的所述溫度的所述控制裝置併入或使用或添加至所述控制裝置,單獨或組合使用。
根據本發明的其他實施例,所述被測裝置接觸件是DUT針腳或DUT焊墊(例如DUT接合焊墊或DUT測試焊墊)和/或DUT球柵陣列(bga)球。
根據本發明的實施例包括一種用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的方法,所述DUT使用或例如經由被測裝置接觸結構(例如使用或經由探針或使用或經由DUT插座)來電耦合至所述自動化測試設備。所述方法包括使用所述熱模型來確定或估計所述DUT接觸結構的溫度(例如使用所述DUT接觸結構的熱模型或使用包括所述DUT接觸結構的熱模型的熱模型)並根據所確定的或估計的(例如建模的)溫度來影響(例如控制、調節、去啟動和/或限制)施加至所述DUT接觸結構的信號。
根據本發明的實施例包括一種用於操作用於測試被測裝置(DUT)的自動化測試設備(ATE)的方法,所述DUT使用或例如經由被測裝置接觸結構(例如使用或經由探針或例如使用或經由DUT插座)來電耦合至所述自動化測試設備。所述方法包括:利用ATE資源,例如裝置電源或數字通道模塊或模擬通道模塊,提供施加至所述DUT接觸結構的信號;以及使用所述熱模型來確定或估計所述DUT接觸結構的溫度;以及影響所述ATE資源,以便根據所確定或估計的溫度來影響施加至所述DUT接觸結構的所述信號。
根據本發明的實施例包括一種用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的方法,所述DUT使用或例如經由被測裝置接觸件(例如DUT焊墊、DUT bga球)來電耦合至所述自動化測試設備。所述方法包括使用所述熱模型來確定或估計所述DUT接觸件的溫度(例如使用所述DUT接觸件的熱模型或使用包括所述DUT接觸件的熱模型的熱模型)並根據所確定的或估計的(例如建模的)溫度來影響(例如控制、調節、去啟動和/或限制)施加至所述DUT接觸件的信號。
根據本發明的其他實施例包括一種計算機程序,用於在所述計算機程序在計算機上運行時執行本文所述的任何方法。
上述方法基於與上述控制裝置和/或自動化測試設備相同的考慮。
另外,所述方法可通過所有特徵和功能性來完成,這些特徵和功能也關於所述控制裝置和/或所述自動化測試設備進行描述。
即使出現在不同的附圖中,相同或等效元件或具有相同或等效功能性的元件也在以下描述中由相同或等效的附圖標記表示。
在以下描述中,闡述多個細節以提供對本發明的實施例的更徹底的解釋。然而,對於本領域技術人員顯而易見的是,可以在沒有這些具體細節情況下實踐本發明的實施例。在其他情況下,以框圖形式而不是詳細地示出眾所周知的結構和裝置,以避免模糊本發明的實施例。此外,除非另有特別說明,否則下文描述的不同實施例的特徵可相互組合。
圖2示出根據本發明實施例的用於控制自動化測試設備的控制裝置;圖2示出用於控制自動化測試設備(ATE)220的控制裝置210。如可選地所示,ATE 220電耦合至具有DUT接觸結構240的被測裝置(DUT)230。作為另一可選特徵,電耦合另外提供有DUT接觸件250。通常,可為DUT接觸結構240和DUT接觸件250中的至少一者提供電耦合。
ATE 220可被配置為對DUT 230執行電氣測試。因此,在圖2的示例中,經由DUT接觸結構240和DUT接觸件250提供電連接。在測試期間,由ATE 220經由接觸結構240提供給DUT 230的信號可能增加接觸結構240和/或DUT接觸件250的溫度。例如,為了防止結構240過熱,控制裝置可模擬熱模型,以便追蹤結構240的溫度。基於溫度,控制裝置可調整由ATE提供的信號以影響結構240的溫度,從而防止熱損壞。反之亦然,熱模型可被配置為模擬DUT接觸件250的溫度,和/或接觸結構240與接觸件250之間的過渡和/或接觸結構240與接觸件250的組合的溫度。基於這種溫度模擬或估計,可調整施加至DUT接觸結構240的信號。
被測裝置接觸件例如可以是DUT針腳或DUT焊墊(例如DUT接合焊墊或DUT測試焊墊)和/或DUT球柵陣列(bga)球。
圖3示出根據本發明實施例的熱模型的示意圖。作為示例,熱模型310包括測得的電壓和電流輸入U和I以及參數輸入。作為示例,模型310具有溫度T、溫度變化的熱常數t_th、導電結構的標稱電流CCC_spec、導電結構的標稱電阻R_nom、溫度變化的熱阻R_th和最高溫度T_max。例如,模型310可輸出建模為T的溫度。
基於輸入,可實時模擬熱模型310,例如在允許在熱損壞發生之前調整施加至DUT的信號的時間限制內。因此,可執行測試信號的快速影響和/或調節。
熱模型310可選地可包括不同的輸入。取決於熱模型的特定應用和類型,可使用其他輸入參數以確定DUT接觸結構和/或DUT接觸焊墊的溫度。模型310的輸入和/或可由控制裝置用來估計或確定DUT接觸結構的溫度和/或DUT接觸件的溫度的信息的其他示例可以是環境溫度,例如上面安裝DUT接觸結構的空氣溫度或負載板的溫度、例如DUT的晶圓溫度、例如DUT的晶片溫度、接觸結構的載流能力、接觸結構的熱傳導值、接觸結構的熱對流值和/或持續時間,例如信號施加至DUT接觸結構的持續時間。
此外,應當注意,用作模型或控制裝置的輸入的任何或所有上述溫度可被測量或可以是預定設定點溫度。
此外,模型310可以是適合於提供溫度信息的任何類型的模型,所述溫度信息可允許防止對DUT接觸結構和/或DUT接觸件的熱損壞。因此,熱模型310例如可以是DUT接觸結構或DUT接觸件或DUT接觸結構和DUT接觸件的熱模型,其中,DUT接觸結構和DUT接觸件可以是其交互被建模的兩個不同模型部分,或者其中,熱模型310將DUT接觸結構和DUT接觸件描述為不可分離的系統。作為示例,模型310例如可以是狀態空間模型,或在模擬軟體(例如LTspice®或MATLAB)中描述的任何其他模型。
作為包括結構不同部分的模型310的替代或補充,可適應模型310的參數化以表示DUT接觸結構與DUT接觸件之間的連接的不同方面。作為示例,標稱參數,例如標稱電阻,可例如對DUT傳導結構和/或DUT接觸件的熱行為的某個方面進行建模。模型310可以是自適應模型,例如,根據模型的狀態來調整參數,例如標稱電阻。隨著溫度升高,傳導結構和接觸件的電阻可能發生變化。因此,可適應模型參數。
也可執行此適應以便在更通用的熱模型310中包括DUT接觸件的行為或DUT接觸結構與DUT接觸件之間的過渡,例如僅描述具有標稱參數的接觸結構。適應可由控制裝置執行。
此外,本發明的控制裝置可使用熱模型310來追蹤DUT接觸結構和/或DUT接觸件隨時間的估計溫度,例如以便分析溫度的時間演變。
如前所述,使用熱模型的一個創造性優勢是確定或評估DUT接觸結構的溫度的可能性,例如,比使用測量值可能顯著更快,這甚至會因為附加硬體而增加附加的複雜性和成本。為了利用此速度,控制裝置可例如使用DUT接觸結構的熱時間常數的至多1/100的時間分辨率來確定或估計DUT接觸結構的溫度。
作為另一可選特徵,模型310可考慮或追蹤或保存熱歷史,例如,當脈衝序列施加至DUT接觸結構並且DUT接觸結構沒有足夠的時間返回至兩個電流脈衝之間的初始溫度時。
熱模型的另一輸入例如可以是實際接觸電阻,例如在從DUT接觸結構至DUT接觸件的過渡處。
圖4示出根據本發明實施例的自動化測試設備(ATE)。圖4示出包括控制裝置410和ATE資源420的ATE 400。ATE資源420被配置為提供施加至DUT接觸結構的信號422。DUT 440經由接觸結構430和DUT接觸件450電耦合至ATE 400。控制裝置410被配置為影響412 ATE資源420,以便根據確定或估計的溫度來影響施加至DUT接觸結構430的信號422。如前所述,溫度可以是DUT接觸結構430、DUT接觸件450的所估計或確定的溫度,或包括DUT接觸結構430和DUT接觸件450的接觸佈置的溫度。如前所述,溫度估計或確定可由控制裝置410使用熱模型來執行。
作為另一可選特徵,ATE 400包括第一測量單元460和第二測量單元470。第一測量單元460可測量信號424,例如施加至DUT接觸結構430的信號422的電流。第二測量單元470可測量DUT接觸結構430的電壓差或電位差。例如,信號424可近似等於或甚至等於信號422。然而,第一測量單元460可改變信號424和附加電路,例如可選的去耦電容器480也可導致被提供給DUT接觸結構430的信號422與由ATE資源420提供的信號424之間的差異。
作為另一可選特徵,如圖4所示,ATE資源可包括ATE介面490,以用於提供施加至DUT接觸結構430的信號422。此外,去耦電容器480可被配置為穩定由ATE介面490提供的信號422和/或將DUT 440與由ATE 400的其他電路系統元件產生的噪聲去耦。
在實際應用中,第二測量單元470的電壓測量可以不同方式執行。例如,由於傳導結構的低電阻和必要的測量線對第二測量單元470的影響,準確測量傳導結構430上的電壓降可能具有挑戰性。通常,第二測量單元470可測量DUT接觸結構的ATE側端與DUT的DUT接觸件之間的電壓。然而,測得的電位差例如也可等於DUT接觸結構430上的電位差,或可包括接觸結構430上的電位差,或可近似於跨接觸結構430的電位差,或可表示跨接觸結構430的電位差,或可表示DUT接觸結構430的ATE側端與DUT 450的接觸焊墊之間的電壓降,或可表示DUT接觸結構430的ATE側端與DUT接觸件450之間的電壓降,或可表示通往包括DUT接觸結構430的DUT 440的過渡處的電壓降。這在圖4中示出為帶有可選的測量線472、474和476。作為示例,可在導電結構的一端和導電結構的另一端(472+474)之間精確測量導電結構430的電壓。然而,這例如可能是不可能的,因此可在導電結構的一端與DUT接觸件450(472+476)之間測量導電結構430的電壓。
無論如何,第一測量單元460和第二測量單元470可向控制裝置410提供462、472其相應測量結果。控制裝置410可使用測量來評估熱模型,例如以便決定是否影響施加至DUT接觸結構422的信號,例如經由通過影響ATE資源420來影響信號424。
控制裝置410可被配置為基於根據任何解釋的選項測量的電壓和由測量單元460測量的信號424(例如電流)來確定或估計DUT接觸結構430的溫度。
因此,根據優選實施例,控制裝置410可例如使用熱模型並使用電壓測量值和電流測量值來確定或估計DUT接觸結構430的溫度,電壓測量值描述跨DUT接觸結構430或跨朝向包括DUT接觸結構430的被測裝置440的過渡處的電壓降,電流測量值至少近似地描述流經DUT接觸結構430的電流。
根據另一優選實施例,控制裝置410可確定DUT接觸結構430的ATE側端與DUT的DUT接觸件450之間的電壓,並使用所確定的電壓來使用熱模型來確定或估計DUT接觸結構430的溫度。
作為另一可選特徵,控制裝置410可確定由與DUT接觸結構430耦合的ATE介面490提供的信號424(例如,電流)或信號422(例如,流經DUT接觸結構430的電流),並使用所確定的信號(例如,電流)來使用熱模型來確定或估計DUT接觸結構430的溫度。換言之,控制裝置可能例如不容易被提供關於信號424和/或422的準確信息,並因此可能例如基於第一測量單元460的受干擾的測量值,例如使用由ATE的其他傳感器提供的其他測量信息,來確定這些信號。
如前所述,諸如去耦電容器480等元件可改變由ATE介面490提供的信號424,使得接觸結構422處的信號422不等於信號424。因此,作為另一可選特徵,控制裝置410可例如測量或接收信號424的測量值,例如由ATE介面490提供的電流,並可確定流經去耦電容器480的信號(例如,電流),並可使用測得的電流424並使用流經去耦電容器480的所確定的電流來導出信號422,例如流經DUT接觸結構422的電流。
因此,作為另一可選特徵,控制裝置410可例如考慮去耦電容器對施加至DUT接觸結構的信號422的影響,以便確定或估計DUT接觸結構430的溫度。如前所述,這可包括考慮從例如測量信號424至去耦電容器480的電流損失,使得僅將信號424的一部分提供給DUT接觸結構430。
此外,可選地,為了考慮去耦電容器對信號424的影響,控制裝置410可例如使用例如由第一測量單元460執行的信號424的測量值、施加至DUT接觸結構的信號的測量值和關於目標或測試電壓(可以是DUT的設定點值)的信息和DUT接觸結構的電壓的測量值(例如呈任何近似或形式,如前所述)和/或DUT的電壓測量值中的至少一者。
作為另一可選特徵,控制裝置410可根據所確定或估計的溫度來影響414(例如,控制或去啟動)施加至DUT接觸結構430的信號422。因此,控制裝置410可例如指示ATE資源420調整或改變或去啟動信號424。這種去啟動可例如實時執行,例如使得對溫度升高的反應可比超過臨界閾值的溫度更快地執行。作為示例,可在小於或等於控制裝置的時間分辨率的兩倍的時間內執行去啟動施加至DUT接觸結構430的信號422。
作為另一可選特徵,施加至DUT接觸結構430的信號422可以是測試信號(例如測試刺激)和/或電源信號(例如電流)中的至少一者。可選地,DUT接觸結構430可例如包括或甚至可以是探針和/或DUT插座的導體,例如DUT測試插座的導體。
作為另一可選特徵,控制裝置410可例如被配置為檢測DUT接觸結構的溫度超過預定閾值,或可比預定溫度梯度閾值更快地增加。作為對這種檢測的反應,控制裝置410可關閉或關斷或限制施加至DUT接觸結構422的信號422,以防止接觸結構受到損壞。
作為另一可選特徵,控制裝置410可例如使用乘積的隊列來確定加熱功率,從提供電流測量值的第一測量單元460接收第一因數並從提供電壓測量值的第二測量單元470接收第二因數,例如以便將加熱功率用作熱模型的輸入來用此信息模擬熱模型。這可允許以高精度估計或確定接觸結構的溫度。
作為另一可選特徵,ATE 400可包括源調節器500。源調節器500可被配置為調節提供給DUT接觸結構的ATE輸出信號的電壓和/或電流。作為示例,圖4所示的源調節器500可影響426 ATE資源420,例如以便提供具有預定特性的信號424。例如,在控制裝置410檢測到DUT接觸結構430熱失控的情況下,控制裝置可影響416源調節器以適應信號424。作為另一示例,源調節器500可例如包括控制裝置410,或控制裝置410可包括源調節器500的功能性。本發明概念不限於本發明的ATE 400內的特定功能性分佈。
可選地,控制裝置410可被配置為評估接收到的信號和/或自身提供的輸入,以便為測試或例如測試循環提供驗證信息。例如,控制裝置410可將測試標記為不成功,以防控制裝置410必須影響414 ATE資源和/或必須影響416源調節器500,以便影響信號424。
圖5示出根據本發明實施例的自動化測試設備(ATE)的測量單元的示意圖。圖5示出經由表示為501的信號路徑和探針502連接至DUT的測試器源507。測量電流504。可能存在去耦電容器511。流經探針502的電流產生電壓降,所述電壓降使用專用測量線509和510來測量。測量505 DUT電壓。源507由源調節單元508控制,所述源調節單元508得到目標參數設置,如電壓和鉗位電流。探針502的耗散功率導致溫度升高。測得的電流504、測得的探針上的電壓降與時間的乘積可等於探針的熱能,前提是流入去耦電容器511的能量至少近似地是可忽略的,這在DUT電源穩定的情況下是可假設的。
應用源調節單元內的熱模型來計算探針的近似溫度變化。作為示例,源調節單元可以是或可包括被配置為評估熱模型的控制裝置。它使用測得的電流504和電壓505和506並將它們與探針的載流能力、近似的熱傳導和熱對流值、環境溫度和時間等參數相結合。結果,增加的近似溫度可導致源調節單元508中的電流減小以驅動探針502的溫度下降來防止進一步擴大的熱應力。
熱失控可能因早期檢測到應力因素而中斷。
圖6示出根據本發明實施例的DUT接觸結構的示意性側視圖。圖6示出包括感測DUT接觸結構610和兩個力DUT接觸結構620的DUT接觸結構。這些結構耦合至包括三個DUT接觸焊墊630的DUT 640的DUT接觸件。
一般而言,根據本發明實施例的ATE可將信號施加至一個或多個力DUT接觸結構620,並可從一個或多個感測DUT接觸結構610接收感測信號。此外,ATE(例如,ATE的控制裝置)可確定力DUT接觸結構中的一個的ATE側端與感測信號之間的電位差,並且ATE(例如,ATE的控制裝置)可使用熱模型並使用所確定的電位差來確定溫度。
關於圖6,參考圖5:存在專用測量線509,它應最終在DUT晶片上終結,以通過感測獲得準確的核心電壓。帶接觸電阻的測力探針用502表示。實際上,根據實施例,可存在多個平行的力探針來分配所需的電流。可使用感測探針來準確測量DUT晶片上的核心電壓。
底部的晶片(此處例如在圖6中,DUT 640)由2個力探針提供。感測探針為509。509、510測量由502引起的電流流動期間並聯的力探針上的電壓降506。
在下文中,本發明的方面和優點參考圖7至圖11解釋,同時示出建模的溫度案例研究。
圖7示出DUT接觸結構的溫度和提供給DUT接觸結構的電流隨時間變化的第一示例。在100 ms時,400 mA的DC電流710在50℃的環境溫度下被提供給DUT接觸結構。DUT接觸結構的溫度720在40 ms內增加至約120℃。施加至接觸結構的電流例如可以是接觸結構的標稱電流,這可能導致接觸結構上的可容忍熱負載。因此,接觸結構可能能夠承受120℃的溫度而不會增加熱磨損。
圖8示出DUT接觸結構的溫度和提供給DUT接觸結構的電流隨時間變化的第二示例.在400 ms與500 ms之間,脈衝電流810在50℃的環境溫度下施加至DUT接觸結構。脈衝電流的占空比為D = 50%,即電流的開/關關係為50:50。電流的幅度為400 mA × 1.4 = 560 mA。DUT接觸結構的溫度820也在40 ms內升高至約120℃並穩定下來,類似於圖7所示的示例。
還應當注意,圖8所示的溫度升高發生在脈衝序列上。因此,如前所述,在熱模型中考慮熱歷史是有利的,以便預測或控制接觸結構的溫度。此外,可根據接觸結構的熱時間常數選擇時間分辨率,以防止過熱。
圖9示出DUT接觸結構的溫度和提供給DUT接觸結構的電流隨時間變化的第三示例。在600 ms時,幅度為400 mA × 3.8 = 1.52 A且持續時間為約4 ms的單脈衝電流910在50℃的環境溫度下施加至DUT接觸結構。DUT接觸結構的溫度920在1 ms內增加至120℃。儘管脈衝電流可能是標稱電流值的380%,但短期過載可能導致接觸結構的溫度受限,例如由於有限的脈衝時間。
DUT接觸結構的溫度在不到4 ms的時間內升高到300℃以上的溫度。雖然升高的溫度會導致應力和熱磨損,但如果儘快消除應力條件,短期過載可能導致接觸結構承受的應力是可承受的。
溫度升高將持續延長電流。DUT接觸結構的溫度將在約6 ms內升高到高於440℃的溫度,在約10 ms內升高到高於600℃的溫度,並進一步升高。這種溫度可能是破壞性的並可能導致或引起DUT接觸結構的損壞。因此,根據本發明的實施例,可採取對策。作為示例,可例如在達到臨界溫度之前提前例如以電流的形式降低能量。
如圖7至圖9所示,多個測試信號,例如電流,可施加至DUT接觸結構。DUT接觸結構的溫度可在非常有限的時間跨度內升高,從而可能在短時間內超過臨界溫度。如圖7至圖9所示,根據本發明的實施例可用於多個測試信號,並可防止臨界溫度的發生。例如,DUT接觸結構可被配置為在高達約120℃的溫度下工作,並具有有限的熱磨損。因此,根據實施例的控制裝置可追蹤DUT接觸結構的溫度,例如如圖7至圖9所示,並可不得干預圖7和圖8所示的情況。
另一方面,當檢測到溫度快速升高時,如圖9所示,在超過120℃附近的標稱溫度區間之前,控制裝置可影響提供給DUT接觸結構的電流。此外,如對本領域技術人員顯而易見的,從圖7至圖9所示的時間標度可看出,對於溫度測量值而言,溫度升高可能發生得太快而無法做出快速反應,例如對策。因此,如發明人所認識到,使用熱模型可允許在對DUT接觸結構造成損壞之前的臨界反應時間內作出反應,甚至可執行溫度預測,以便在早期進行干預。
除了使用本發明構思之外,可在短時間內運行高電流測試,同時仍然能夠避免對接觸結構的熱損壞。通過對接觸結構的溫度的估計或確定,即使對於如此短的高電流突發,也有可能控制溫度。
圖10示出根據本發明實施例的用於控制自動化測試設備的第一方法。用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的方法1000,(所述DUT使用或例如經由被測裝置接觸結構來電耦合至自動化測試設備,例如使用或經由探針或使用或經由DUT插座)包括:使用熱模型(例如使用DUT接觸結構的熱模型或使用包括DUT接觸件的熱模型的熱模型結構)來確定或估計1010 DUT接觸結構的溫度,並根據所確定的或估計(例如所建模)的溫度來影響1020(例如,控制、調節、去啟動和/或限制)施加至DUT接觸結構的信號。
圖11示出根據本發明實施例的用於操作自動化測試設備的方法。用於操作用於測試被測裝置(DUT)的自動化測試設備(ATE)的方法1100(所述DUT使用或例如經由被測裝置接觸結構來電耦合至自動化測試設備,例如使用或經由探針或使用或經由DUT插座)包括:利用ATE資源(例如裝置電源或數字通道模塊或模擬通道模塊)提供1110施加至DUT接觸結構的信號,使用熱模型來確定或估計1120 DUT接觸結構的溫度,並影響1130 ATE資源,以便根據所確定或估計的溫度來影響施加至DUT接觸結構的信號。
圖12示出根據本發明實施例的用於控制自動化測試設備的第二方法。用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的方法1200(所述DUT使用或經由被測裝置接觸件(例如DUT焊墊、DUT bga球)來電耦合至自動化測試設備)包括:使用熱模型(例如使用DUT接觸件的熱模型或使用包括DUT接觸件的熱模型的熱模型)來確定或估計1210 DUT接觸件的溫度,並根據所確定的或估計(例如所建模)的溫度來影響1220(例如,控制、調節、去啟動和/或限制)施加至DUT接觸件的信號。
一般而言,根據本發明的實施例可解決在晶圓測試、晶圓探測和使用探針卡的測試中出現的問題。
儘管已經在裝置的上下文中描述了一些方面,但顯然這些方面也表示對應方法的描述,其中,塊或裝置對應於方法步驟或方法步驟的特徵。類似地,在方法步驟的上下文中描述的方面也表示對應裝置的對應塊或項或特徵的描述。
取決於某些實現要求,本發明的實施例可以硬體或軟體實現。可使用數字存儲介質來執行所述實施,例如軟碟、DVD、CD、ROM、PROM、EPROM、EEPROM或閃存,所述數字存儲介質上面存儲有電子可讀控制信號,它們會(或能夠)與可編程計算機系統協作,從而執行相應的方法。
根據本發明的一些實施例包括具有電子可讀控制信號的數據載體,它能夠與可編程計算機系統協作,從而執行本文描述的方法中的一個。
通常,本發明的實施例可實現為具有程序代碼的計算機程序產品,當計算機程序產品在計算機上運行時,所述程序代碼可操作用於執行方法中的一個。程序代碼可例如存儲在機器可讀載體上。
其他實施例包括存儲在機器可讀載體上的用於執行本文描述的方法中的一個的計算機程序。
換言之,本發明方法的實施例因此是具有程序代碼的計算機程序,所述程序代碼用於在計算機程序在計算機上運行時執行本文描述的方法中的一個。
因此,本發明方法的另一實施例是數據載體(或數字存儲介質或計算機可讀介質),包括上面記錄的用於執行本文所述方法中的一個的計算機程序。
因此,本發明方法的另一實施例是表示用於執行本文所述方法中的一個的計算機程序的數據流或信號序列。數據流或信號序列可例如被配置為經由數據通信連接傳送,例如經由互聯網傳送。 另一實施例包括處理裝置,例如計算機或可編程邏輯裝置,所述處理裝置被配置為或適於執行本文描述的方法中的一個。 另一實施例包括上面安裝有用於執行本文所述方法中的一個的計算機程序的計算機。 在一些實施例中,可編程邏輯裝置(例如現場可程式化邏輯閘陣列)可用于執行本文描述的方法的一些或所有功能性。在一些實施例中,現場可程式化邏輯閘陣列可與微處理器協作以執行本文描述的方法中的一個。通常,這些方法優選地由任何硬體裝置執行。 上述實施例僅用於說明本發明的原理。應當理解,本文描述的佈置和細節的修改和變化對於本領域的其他技術人員來說將是顯而易見的。因此,意圖是僅受所附專利請求項的範圍的限制,而不是受本文實施例的描述和解釋所呈現的具體細節的限制。
100:IC晶圓級 101:裸管晶 102:DUT電路 103:金屬接觸焊墊 104:探針接觸件 105:穿孔氧化物層 106:金屬表面 107:探針 210:控制裝置 220:自動化測試設備(ATE) 230:被測裝置(DUT) 240:DUT接觸結構 250:DUT接觸件 310:模型 400:ATE 410:控制裝置 412:影響 414:影響 416:影響 420:ATE資源 422:信號 424:信號 426:影響 430:DUT接觸結構 440:DUT 450:DUT接觸件 460:第一測量單元 462:測量線 470:第二測量單元 472:測量線 474:測量線 476:測量線 480:去耦電容器 490:ATE介面 500:源調節器 501:信號路徑 502:探針 503:DUT 504:電流 505:電壓 506:電壓 507:源 508:源調節單元 509:測量線 510:測量線 511:去耦電容器 610:感測DUT接觸結構 620:力DUT接觸結構 630:DUT接觸焊墊 640:DUT 1000、1100、1200:方法 1010、1020、1110、1120、1130、1210、1220:步驟
附圖不一定按比例繪製,而是重點通常放在示出本發明的原理上。在以下描述中,參考以下附圖描述本發明的各個實施例,其中: 圖1示出用於測試被測裝置的IC晶圓級測試設置的示意圖; 圖2示出根據本發明實施例的用於控制自動化測試設備的控制裝置; 圖3示出根據本發明實施例的熱模型的示意圖; 圖4示出根據本發明實施例的自動化測試設備(ATE); 圖5示出根據本發明實施例的自動化測試設備(ATE)的測量單元的示意圖; 圖6示出根據本發明實施例的DUT接觸結構的示意性側視圖; 圖7示出DUT接觸結構的溫度和提供給DUT接觸結構的電流隨時間變化的第一示例; 圖8示出DUT接觸結構的溫度和提供給DUT接觸結構的電流隨時間變化的第二示例; 圖9示出DUT接觸結構的溫度和提供給DUT接觸結構的電流隨時間變化的第三示例; 圖10示出根據本發明實施例的用於控制自動化測試設備的第一方法; 圖11示出根據本發明實施例的用於操作自動化測試設備的方法;以及 圖12示出根據本發明實施例的用於控制自動化測試設備的第二方法。
210:控制裝置
220:自動化測試設備(ATE)
230:被測裝置(DUT)
240:DUT接觸結構
250:DUT接觸件

Claims (35)

  1. 一種用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的控制裝置,所述DUT使用被測裝置接觸結構來電耦合至所述自動化測試設備, 其中,所述控制裝置被配置為使用熱模型來確定或估計所述DUT接觸結構的溫度, 其中,所述控制裝置被配置為根據所確定或估計的溫度來影響施加至所述DUT接觸結構的信號。
  2. 如請求項1所述的控制裝置,其中,所述熱模型包括所述DUT接觸結構的熱模型;和/或 其中,所述熱模型包括DUT接觸件的熱模型,所述DUT接觸件用於將所述DUT電耦合至所述自動化測試設備;和/或 其中,所述熱模型聯合地對所述DUT接觸結構和所述DUT接觸件進行建模。
  3. 如請求項1所述的控制裝置,其中,所述熱模型包括模型參數化,其中,所述模型參數化被配置為表示所述DUT接觸結構的熱行為;並且 其中,所述控制裝置被配置為根據施加至所述DUT接觸結構的所述信號的電流的測量值和/或根據所述接觸結構的電壓的測量值來調整所述模型參數化,以便 附加地表示所述DUT接觸結構和所述DUT接觸件的界面的熱行為,所述界面用於利用所述熱模型將所述DUT電耦合至所述自動化測試設備;和/或 附加地利用所述熱模型表示所述DUT接觸件的熱行為, 以便確定或估計所述DUT接觸結構的溫度。
  4. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為使用所述熱模型並使用電位差的測量值以及使用電流測量值來確定或估計所述DUT接觸結構的所述溫度, 所述電位差等於所述DUT接觸結構上的電位差,或 所述電位差包括所述接觸結構上的電位差,或 所述電位差表示所述DUT接觸結構的ATE側端與所述DUT的接觸焊墊之間的電壓降,或 所述電位差表示所述DUT接觸結構的ATE側端與用於將所述DUT電耦合至所述自動化測試設備的DUT接觸件之間的電壓降,或 所述電位差表示通往包括所述DUT接觸結構的所述DUT的過渡處的電壓降。
  5. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為使用所述熱模型並使用電壓測量值和電流測量值來確定或估計所述DUT接觸結構的所述溫度,所述電壓測量值描述跨所述DUT接觸結構或跨朝向包括所述DUT接觸結構的所述被測裝置的過渡處的電壓降,所述電流測量值至少近似地描述流經所述DUT接觸結構的電流。
  6. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為確定所述DUT接觸結構的ATE側端與所述DUT的DUT接觸件之間的電壓,並使用所確定的電壓來使用所述熱模型確定或估計所述DUT接觸結構的所述溫度。
  7. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為確定由與所述DUT接觸結構耦合的ATE介面提供的電流或流經所述DUT接觸結構的電流,並使用所確定的電流來使用所述熱模型確定或估計所述DUT接觸結構的所述溫度。
  8. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為測量或接收由與所述DUT接觸結構耦合的ATE介面提供的電流的測量值;並且 其中,所述控制裝置被配置為確定流經與所述ATE介面耦合的一個或多個電容器的電流;並且 其中,所述控制裝置被配置為使用所測得的電流並使用流經與所述ATE介面耦合的一個或多個電容器的所確定電流來導出流經所述DUT接觸結構的電流。
  9. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為使用以下各項中的至少一者來確定或估計所述DUT接觸結構的所述溫度: 環境溫度; 晶圓溫度; 晶片溫度; 所述接觸結構的載流能力, 所述接觸結構的熱傳導值, 所述結構的熱對流值;和/或 持續時間。
  10. 如請求項9所述的控制裝置,其中,所述環境溫度和/或所述晶圓溫度和/或所述晶片溫度是相應的測得溫度或相應的設定點溫度。
  11. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為使用所述熱模型來確定或估計所述DUT接觸結構的溫度的時間演變。
  12. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為使用所述DUT接觸結構的熱時間常數的至多1/100的時間分辨率來確定或估計所述DUT接觸結構的所述溫度。
  13. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為根據所確定或估計的溫度來控制或去啟動施加至所述DUT接觸結構的所述信號。
  14. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為在少於或等於所述控制裝置時間的分辨率兩倍的時間內去啟動施加至所述DUT接觸結構的所述信號。
  15. 如請求項1所述的控制裝置,其中,施加至所述DUT接觸結構的信號是測試信號和/或電源信號中的至少一者。
  16. 如請求項1所述的控制裝置,其中,所述DUT接觸結構包括探針和/或DUT插座的導體。
  17. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為響應於檢測到所述DUT接觸結構的所確定或估計的溫度超過閾值來減少或關閉或限制施加至所述DUT接觸結構的電流,以便防止對所述接觸結構的損壞。
  18. 如請求項1所述的控制裝置,其中,所述熱模型被配置為確定加熱功率,使用乘積的隊列來加熱所述建模的DUT接觸結構,所述乘積的第一因數等於或基於所測得的電壓,第二因數等於或基於測得的電流。
  19. 如請求項1所述的控制裝置,其中,所述控制裝置被配置為使用熱模型來確定或估計DUT接觸件的溫度,所述DUT接觸件用於將所述DUT電耦合至所述自動化測試設備;並且 其中,所述控制裝置被配置為根據所述DUT接觸件的所確定或估計的溫度並根據所述DUT接觸結構的所確定或估計的溫度來影響施加至所述DUT接觸件的所述信號。
  20. 一種自動化測試設備(ATE),包括: 如請求項1至19中任一項所述的控制裝置;以及 ATE資源,被配置為提供施加至所述DUT接觸結構的所述信號; 其中,所述控制裝置被配置為影響所述ATE資源,以便根據所確定或估計的溫度來影響施加至所述DUT接觸結構的所述信號。
  21. 如請求項20所述的自動化測試設備,其中,所述自動化測試設備包括: 第一測量單元,被配置為測量施加至所述DUT接觸結構的所述信號的電流;以及 第二測量單元,被配置為測量所述DUT接觸結構的ATE側端與所述DUT的DUT接觸件之間的電壓;並且 其中,所述第一測量單元和所述第二測量單元被配置為向所述控制裝置提供所測得電壓的相應測量值和施加至所述DUT接觸結構的所述信號的所述電流的所述測量值,以便允許確定或允許估計所述DUT接觸結構的所述溫度。
  22. 如請求項20或21中任一項所述的自動化測試設備,其中,所述ATE資源包括用於提供施加至所述DUT接觸結構的所述信號的ATE介面;並且 其中,去耦電容器耦合至所述ATE介面;並且 其中,所述去耦電容器被配置為穩定由所述ATE介面提供的所述信號;和/或 其中,所述去耦電容器被配置為將所述DUT與由所述ATE的其他電路系統元件產生的噪聲去耦。
  23. 如請求項22所述的自動化測試設備,其中,所述控制裝置被配置為考慮所述去耦電容器對施加至所述DUT接觸結構的所述信號的影響,以便確定或估計所述DUT接觸結構的所述溫度。
  24. 如請求項23所述的自動化測試設備,其中,所述控制裝置被配置為使用以下各項來考慮所述去耦電容器的影響: 施加至所述DUT接觸結構的所述信號的所述電流的測量值;以及 關於所述DUT的目標電壓的預定信息,和/或 所述DUT接觸結構的ATE側端與所述DUT的所述DUT接觸件之間的電壓的測量值;和/或 所述DUT的電壓測量值。
  25. 如請求項20所述的自動化測試設備,其中,所述自動化測試設備包括源調節器,所述源調節器被配置為調節被提供給所述DUT接觸結構的ATE輸出信號的電壓和/或電流,並且 其中,所述控制裝置被配置為根據所述DUT接觸結構的所確定或估計的溫度來影響所述源調節器。
  26. 如請求項20所述的自動化測試設備,其中,所述自動化測試設備被配置為響應於所述控制裝置已影響施加至所述DUT接觸結構的所述的信號的事實或響應於所述控制裝置對施加至所述DUT接觸結構的所述信號的影響超過預定允許程度的事實來將測試標記為失敗。
  27. 如請求項20所述的自動化測試設備,其中,所述自動化測試設備被配置為提供施加至一個或多個力DUT接觸結構的信號,並且, 其中,所述自動化測試設備被配置為從一個或多個感測DUT接觸結構接收感測信號,並且 其中,所述自動化測試設備被配置為確定所述力DUT接觸結構中的一個的ATE側端與所述感測信號之間的電位差,並且 其中,所述自動化測試設備被配置為使用所述熱模型並使用所確定的電位差來確定所述溫度。
  28. 如請求項20所述的自動化測試設備,其中,所述熱模型被配置為考慮熱歷史。
  29. 如請求項20所述的自動化測試設備,其中,所述熱模型被配置為考慮從所述DUT接觸結構至DUT接觸件的過渡處的實際接觸電阻,其中,所述DUT使用所述被測裝置接觸件來電耦合至所述自動化測試設備。
  30. 一種用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的控制裝置,所述DUT使用被測裝置接觸件來電耦合至所述自動化測試設備, 其中,所述控制裝置被配置為使用熱模型來確定或估計所述DUT接觸件的溫度, 其中,所述控制裝置被配置為根據所確定或估計的溫度來影響施加至所述DUT接觸件的信號。
  31. 如請求項30所述的控制裝置,其中,所述被測裝置接觸件是DUT針腳或DUT焊墊和/或DUT球柵陣列(bga)球。
  32. 一種用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的方法,所述DUT使用被測裝置接觸結構來電耦合至所述自動化測試設備,所述方法包括: 使用熱模型來確定或估計所述DUT接觸結構的溫度;以及 根據所確定或估計的溫度來影響施加至所述DUT接觸結構的信號。
  33. 一種用於操作用於測試被測裝置(DUT)的自動化測試設備(ATE)的方法,所述DUT使用被測裝置接觸結構來電耦合至所述自動化測試設備,所述方法包括: 利用ATE資源提供施加至所述DUT接觸結構的信號;以及 使用所述熱模型來確定或估計所述DUT接觸結構的溫度;以及 影響所述ATE資源,以便根據所確定或估計的溫度來影響施加至所述DUT接觸結構的所述信號。
  34. 一種用於控制用於測試被測裝置(DUT)的自動化測試設備(ATE)的方法,所述DUT使用被測裝置接觸件來電耦合至所述自動化測試設備,所述方法包括: 使用熱模型來確定或估計所述DUT接觸件的溫度;以及 根據所確定或估計的溫度來影響施加至所述DUT接觸件的信號。
  35. 一種計算機程序,用於在所述計算機程序在計算機上運行時執行如請求項32至34中任一項所述的方法。
TW111129116A 2021-09-30 2022-08-03 用於控制自動化測試設備(ate)的控制裝置、ate、用於控制ate的方法、用於操作ate的方法和用於執行包括溫度估計或確定的此類方法的計算機程序 TWI823507B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/EP2021/077031 2021-09-30
PCT/EP2021/077031 WO2023051927A1 (en) 2021-09-30 2021-09-30 Control devices for controlling an automated test equipment (ate), ate, methods for controlling an ate, methods for operating an ate and computer programs for performing such methods, comprising a temperature estimation or determination

Publications (2)

Publication Number Publication Date
TW202316117A true TW202316117A (zh) 2023-04-16
TWI823507B TWI823507B (zh) 2023-11-21

Family

ID=78085639

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111129116A TWI823507B (zh) 2021-09-30 2022-08-03 用於控制自動化測試設備(ate)的控制裝置、ate、用於控制ate的方法、用於操作ate的方法和用於執行包括溫度估計或確定的此類方法的計算機程序

Country Status (6)

Country Link
US (1) US20230384361A1 (zh)
JP (1) JP7457208B2 (zh)
KR (1) KR20230047949A (zh)
CN (1) CN116209910A (zh)
TW (1) TWI823507B (zh)
WO (1) WO2023051927A1 (zh)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993418B2 (en) * 1999-03-16 2006-01-31 Sigma Systems Corporation Method and apparatus for latent temperature control for a device under test
JP2001281294A (ja) 1999-09-17 2001-10-10 Nec Corp デバイス温度特性測定装置
US7394271B2 (en) * 2004-02-27 2008-07-01 Wells-Cti, Llc Temperature sensing and prediction in IC sockets
JP2007088203A (ja) 2005-09-22 2007-04-05 Tokyo Electron Ltd ウエハ検査装置およびウエハ検査方法、ならびにコンピュータプログラム
DE102006022475A1 (de) 2006-05-13 2007-11-15 Infineon Technologies Ag Verfahren zum Ausgleichen einer durch eine Temperaturänderung hervorgerufenen Positionsänderung einer Nadelkarte
US8531202B2 (en) * 2007-10-11 2013-09-10 Veraconnex, Llc Probe card test apparatus and method
TWI567400B (zh) * 2011-07-14 2017-01-21 馬維爾以色列股份有限公司 積體電路測試方法及裝置
US20140070831A1 (en) * 2012-08-27 2014-03-13 Advantest Corporation System and method of protecting probes by using an intelligent current sensing switch
US9638718B2 (en) * 2014-08-07 2017-05-02 Advantest Corporation ATE thermal overload detection and recovery techniques
JP6406221B2 (ja) 2015-11-17 2018-10-17 三菱電機株式会社 半導体装置の評価装置及び評価方法
US20190086468A1 (en) * 2017-09-21 2019-03-21 Advantest Corporation Device under test temperature synchronized with test pattern
US10514416B2 (en) * 2017-09-29 2019-12-24 Advantest Corporation Electronic component handling apparatus and electronic component testing apparatus
JP7345320B2 (ja) 2019-04-25 2023-09-15 東京エレクトロン株式会社 検査装置及びプローブカードの温度調整方法
US11047905B2 (en) 2019-05-31 2021-06-29 Analog Devices International Unlimited Company Contactor with integrated memory
JP7427996B2 (ja) 2020-02-13 2024-02-06 富士電機株式会社 半導体装置の試験方法
CN113432737A (zh) 2020-03-19 2021-09-24 长鑫存储技术有限公司 晶圆卡盘温度量测及温度校准的方法和温度量测系统

Also Published As

Publication number Publication date
KR20230047949A (ko) 2023-04-10
WO2023051927A1 (en) 2023-04-06
TWI823507B (zh) 2023-11-21
CN116209910A (zh) 2023-06-02
JP7457208B2 (ja) 2024-03-27
US20230384361A1 (en) 2023-11-30
JP2023547033A (ja) 2023-11-09

Similar Documents

Publication Publication Date Title
US7839158B2 (en) Method of detecting abnormality in burn-in apparatus
US7338818B2 (en) Systems and arrangements to assess thermal performance
US20160116528A1 (en) Thermal Control
TWI519795B (zh) 使用智慧型電流感測開關保護探針之系統及方法
US11187747B2 (en) Inspection system and malfunction analysis/prediction method for inspection system
Tian et al. Monitoring IGBT's health condition via junction temperature variations
JPWO2005017543A1 (ja) 温度制御装置及び温度制御方法
CN106443401A (zh) 一种功率mos器件温升和热阻构成测试装置和方法
JP6314392B2 (ja) 測定装置および測定方法
KR102412330B1 (ko) 테스트 기기 보호 회로
JP2013518285A (ja) 静止電流(iddq)指示および試験装置および方法
TWI823507B (zh) 用於控制自動化測試設備(ate)的控制裝置、ate、用於控制ate的方法、用於操作ate的方法和用於執行包括溫度估計或確定的此類方法的計算機程序
US20230184823A1 (en) Methods and devices for testing a device under test using test site specific control signaling
US6989684B2 (en) System for and method of assessing chip acceptability and increasing yield
KR100935234B1 (ko) 번인 테스트를 위한 개별 전류 설정 장치 및 방법
CN118033362A (zh) 在测试温度下测试集成电路(ic)器件的方法
US20230384365A1 (en) Wafer test system and operating method thereof
Ramamoorthy et al. Measurement and characterization of die temperature sensor
EP4009061A2 (en) Test device control method and test device
TW201616147A (zh) 半導體電路測試裝置偵測熱切換之方法
KR20160071160A (ko) 반도체 장치