TW202312438A - 用於3d記憶體之選擇閘極結構及製造方法 - Google Patents

用於3d記憶體之選擇閘極結構及製造方法 Download PDF

Info

Publication number
TW202312438A
TW202312438A TW111128757A TW111128757A TW202312438A TW 202312438 A TW202312438 A TW 202312438A TW 111128757 A TW111128757 A TW 111128757A TW 111128757 A TW111128757 A TW 111128757A TW 202312438 A TW202312438 A TW 202312438A
Authority
TW
Taiwan
Prior art keywords
layer
memory
sgd
transistor
select gate
Prior art date
Application number
TW111128757A
Other languages
English (en)
Inventor
姜昌錫
北島知彦
吉鏞 李
姜聲官
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202312438A publication Critical patent/TW202312438A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits

Abstract

描述一種半導體記憶體元件及製造方法。半導體記憶體元件包括記憶體陣列,其包括至少一個汲極選擇閘極(SGD)電晶體及至少一個記憶體電晶體,該記憶體陣列具有至少一個搭接區域及至少一個搭接接觸件,搭接接觸件將汲極選擇閘極(SGD)電晶體連接至搭接線。

Description

用於3D記憶體之選擇閘極結構及製造方法
本揭示案之實施例係關於電子元件的領域,及用於製造電子元件之方法及裝置。更特定而言,本揭示案之實施例提供汲極選擇閘極(select-gate-for-drain; SGD)電晶體及其形成方法。
半導體技術飛速進步,且元件尺寸已隨著技術進步而縮小以提供每單位空間更快的處理及儲存。在NAND元件中,串電流需要足夠高以獲得足夠電流來區分接通(ON)及關斷(OFF)單元。串電流取決於載流子遷移率,藉由擴大矽通道之晶粒大小來增強該載流子遷移率。
當前3D-NAND元件在兩個狹縫之間具有多個記憶體孔,該等3D-NAND元件具有包括氧化物材料及氮化物材料的交替層之記憶體堆疊。為了由字線及位元線存取每一單元,需要藉由汲極選擇閘極(SGD)切口來劃分狹縫之間的記憶體孔。舉例而言,具有八個記憶體孔及一個虛設孔之東芝96L堆疊3D NAND具有一個SGD切口,其將該等孔分離成兩組。為了減小3D-NAND之陣列大小,需要增加狹縫之間的孔數(nHole)。若nHole增加8個孔以上,則對於相同技術而言,需要一個以上SGD切口。應可藉由位元線(bit line; BL)與字線(word line; WL)之組合單獨地存取同一位元線位準下的孔。換言之,藉由汲極選擇閘極(SGD)及位元線獨立地選擇同一位元線下的孔。出於此目的,應藉由SGD切口使狹縫之間的SGD分離。當狹縫之間的孔數(nHole)小(例如,≤ 8)時,一個SGD切口將汲極選擇閘極(SGD)分離開。然而,當狹縫之間的孔數(nHole)大(例如,≥ 12)時,每四個孔需要添加SGD切口。
因此,此項技術中需要一種具有汲極選擇閘極(SGD)切口之3D-NAND元件,及製造3D-NAND元件的方法。
本揭示案之一或更多個實施例係針對一種半導體記憶體元件。在一或更多個實施例中,一種半導體記憶體元件包括:記憶體陣列,其包括至少一個汲極選擇閘極(SGD)電晶體及至少一個記憶體電晶體,該記憶體陣列具有至少一個搭接區域及至少一個搭接接觸件,該搭接接觸件將汲極選擇閘極(SGD)電晶體連接至搭接線。
本揭示案之其他實施例係針對一種半導體記憶體元件。在一或更多個實施例中,一種半導體記憶體元件包括:在基板上之記憶體堆疊,該記憶體堆疊包括字線及介電材料之交替層;延伸經過記憶體堆疊之複數個記憶體電晶體;經填充之狹縫,延伸經過記憶體堆疊且與該複數個記憶體電晶體相鄰;及在記憶體堆疊之頂部部分中的複數個汲極選擇閘極(SGD)電晶體,其中該複數個汲極選擇閘極(SGD)電晶體中之至少一者電連接至搭接線。
本揭示案之額外實施例係針對一種形成半導體元件之方法。在一或更多個實施例中,一種形成半導體元件之方法包括:形成延伸經過記憶體堆疊之複數個記憶體孔,該記憶體堆疊包括在基板上之第一層及第二層的交替層;在該複數個記憶體孔中沉積電晶體層以形成複數個記憶體串;在該複數個記憶體串中之每一者的頂表面上形成位元線襯墊;在記憶體堆疊之頂部部分上形成汲極選擇閘極(SGD)電晶體;形成延伸經過記憶體堆疊至基板之狹縫;移除第一層以在記憶體堆疊中形成開口;在該開口中沉積介電材料;使第二層凹陷以形成凹陷區域;在該凹陷區域中沉積低電阻率材料;填充該狹縫以形成經填充之狹縫;形成汲極選擇閘極接觸件;及在記憶體堆疊之頂表面上形成搭接線,該搭接線接觸該汲極選擇閘極接觸件。
在描述本揭示案之若干例示性實施例之前,應理解,本揭示案並不限於以下描述中所闡述之構造或製程步驟的細節。本揭示案能夠有其他實施例且能夠以各種方式來實踐或執行。
在以下描述中,闡述諸多特定細節(諸如,特定材料、化學性質、元件尺寸,等),以便提供對本揭示案之實施例中的一或更多者之透徹理解。然而,一般技藝人士將顯而易見,可在無此些特定細節的情況下實踐本揭示案之一或更多個實施例。在其他情形下,未詳細描述半導體製造製程、技術、材料、設備等,以避免不必要地混淆本描述。藉由所包括之描述,一般技藝人士將能夠實施適當的功能而無需不必要實驗。
雖然在隨附圖式中描述並示出了本揭示案之某些例示性實施例,但應理解,此些實施例僅為說明性的且並不限制本揭示案,且本揭示案並不受限於所示出並描述之特定構造及佈置,因為一般技藝人士可想到各種修改。
如在本說明書及附加申請專利範圍中所使用,可互換地使用術語「前驅物」、「反應物」、「反應性氣體」及其類似術語,以指代可與基板表面反應之任何氣體物質。
根據一或更多個實施例,關於膜或膜層之術語「在……上」包括該膜或層直接沉積在表面(例如,基板表面)上,以及在該膜或層與表面(例如,基板表面)之間存在一或更多個底層。因此,在一或更多個實施例中,片語「在基板表面上」旨在包括一或更多個底層。在其他實施例中,片語「直接在……上」指代層或膜與表面(例如,基板表面)接觸,其中無介入層。因此,片語「層直接在基板表面上」指代層與基板表面直接接觸,其中無層在其間。
在基於氧化物材料及氮化物材料之交替層的記憶體堆疊之現有3D NAND元件中,使用基於矽(Si)的材料作為字線之非替換字線製程為用以避免字線替換製程的製程困難之替代方式。然而,基於多晶矽之字線的劣勢中之一者在於與氧化物/氮化物(ON)模具中之鎢(W)相比較而言高的字線電阻。為了減小多晶矽字線電阻,已使用字線邊緣矽化。然而,未暴露於狹縫之汲極選擇閘極(SGD)無法使用用低電阻材料蓋住之字線。單元之整體效能受SGD閘極之電阻(R)、與SGD閘極連接之電容(C)及SGD之延遲時間(RC延遲)影響。因此,SGD之RC延遲的減小為基於Si之字線方案中的關鍵問題。因此,一或更多個實施例有利地提供一種結構及整合方法以藉由採用搭接線來改良SGD之RC延遲。在一或更多個實施例中,至少一個SGD在一個以上位置處搭接有較低電阻之金屬線。
一或更多個實施例提供用於製造包括至少一個汲極選擇閘極(SGD)電晶體及至少一個記憶體電晶體的記憶體陣列之結構及方法。該記憶體陣列具有至少一個搭接區域及至少一個搭接接觸件。該搭接接觸件將汲極選擇閘極(SGD)電晶體連接至搭接線。一或更多個實施例之元件及製造方法有利地具有SGD,該SGD具有減小的RC延遲。在一或更多個實施例中,至少一個搭接區域包括第一複數個記憶體孔,其密度小於非搭接區域中之第二複數個記憶體孔。
在一或更多個實施例中,可在隔離環境(例如,群集製程工具)中執行金屬沉積及其他製程。因此,本揭示案之一些實施例提供具有相關製程模組之整合式工具系統以實施該等方法。
第1圖繪示用於形成記憶體元件之例示性方法10的流程圖。熟習此項技術者將認識到,方法10可包括所繪示製程中之任一者或全部。另外,對於一些部分而言,可改變個別製程之次序。在不偏離本揭示案的情況下,方法10可以所列舉製程中之任一者開始。
參考第1圖,在操作15處,形成記憶體堆疊。在操作20處,在記憶體堆疊中形成字線階梯。在操作25處,記憶體孔經圖案化而穿過記憶體堆疊。在操作30處,在記憶體孔中沉積電晶體層。在操作35處,形成位元線襯墊。在操作40處,圖案化汲極選擇閘極(SGD)切口。在操作45處,在藉由汲極選擇閘極切口形成之開口中沉積介電質。在操作50處,元件經狹縫圖案化。在操作55處,移除並替換共同源極線之犧牲層。在操作60處,蝕刻共同源極線以形成共同源極線接觸區域。在操作65處,形成字線。在操作70處,在字線上形成低電阻率材料。在操作75處,藉由介電材料填充狹縫。在操作80處,形成汲極選擇閘極接觸件。在操作85處,形成搭接線。在操作90處,形成位元線襯墊螺柱。在操作95處,形成字線接觸件。
第2圖至第21C圖繪示遵循為第1圖中的方法10所繪示之製程流程之記憶體元件100的一部分。
第2圖根據本揭示案之一或更多個實施例繪示電子元件100之初始或起始記憶體堆疊。在一些實施例中,如所繪示,第2圖中所示之電子元件100按層形成在裸基板102上。第2圖之電子元件由基板102、共同源極線103及記憶體堆疊130製成。
基板102可為熟習此項技術者所已知之任何適當材料。如在本說明書及附加申請專利範圍中所使用,術語「基板」指代製程在其上起作用之表面,或表面的一部分。熟習此項技術者亦將理解,除非上下文中另外明確指出,否則對基板之引用可僅指代基板的一部分。另外,對在基板上沉積的引用可意謂裸基板及具有沉積或形成於其上之一或更多個膜或特徵的基板。
如本文中所使用,「基板」指代在製造製程期間在其上執行膜處理的任何基板或形成於基板上之材料表面。舉例而言,取決於應用,可在其上執行處理之基板表面包括諸如以下各者之材料:矽、氧化矽、應變矽、絕緣體上矽(silicon on insulator; SOI)、摻碳的氧化矽、非晶矽、摻雜矽、鍺、砷化鎵、玻璃、藍寶石,及任何其他材料,諸如金屬、金屬氮化物、金屬合金及其他導電材料。基板包括但不限於半導體晶圓。可將基板暴露於預處理製程,以研磨、蝕刻、還原、氧化、羥化、退火及/或烘烤基板表面。除了直接在基板自身之表面上進行膜處理以外,在本揭示案中,亦可在形成於基板上的底層(如以下更詳細地揭示)上執行所揭示之膜處理步驟中的任一者,且術語「基板表面」旨在包括該等底層,如上下文中所指示。因此,例如,在膜/層或部分膜/層已沉積至基板表面上的情況下,最新沉積之膜/層的已暴露表面成為基板表面。
在一或更多個實施例中,共同源極線103在基板102上。共同源極線103亦可稱作半導體層。共同源極線103可藉由熟習此項技術者所已知之任何適當技術形成,且可由任何適當材料製成,包括但不限於多晶矽(poly-silicon, poly-Si)。在一些實施例中,共同源極線103包括若干不同導電的或半導體材料。舉例而言,在一或更多個實施例中,如第2圖中所繪示,共同源極線103包括在基板102上之多晶矽層104、在該多晶矽層上之犧牲層106,及在該犧牲層106上之第二多晶矽層104。
在一或更多個實施例中,犧牲層106可形成在多晶矽層104上且可由任何適當材料製成。在一些實施例中,在後續製程中移除並替換犧牲層106。在一些實施例中,犧牲層106未被移除且保留在記憶體元件100內。在此情形下,術語「犧牲」具有擴展含義以包括永久層且可稱作導電層。在所繪示實施例中,如以下進一步描述,在操作70中移除犧牲層106。在一或更多個實施例中,犧牲層106包括可相對於相鄰多晶矽層104選擇性地被移除之材料。在一或更多個實施例中,犧牲層包括氮化物材料(例如,氮化矽(SiN)),或氧化物材料(例如,氧化矽(SiO x))。
在一或更多個實施例中,氧化物層108形成在共同源極線103之頂表面上。氧化物層108可包括熟習此項技術者所已知之任何適當材料。在一或更多個實施例中,氧化物層108包括氧化矽(SiO x)。
在一或更多個實施例中,記憶體堆疊130形成在共同源極線103上之氧化物層108上。在所繪示實施例中,記憶體堆疊130包括複數個交替的第一層110及第二層112。雖然第2圖中所繪示之記憶體堆疊130具有三對交替的第一層110及第二層112,但熟習此項技術者認識到,此僅係出於說明性目的。記憶體堆疊130可具有任何數目個交替的第一層110及第二層112。舉例而言,在一些實施例中,記憶體堆疊130包括192對交替的第一層110及第二層112。在其他實施例中,記憶體堆疊130包括大於50對交替的第一層110及第二層112,或大於100對交替的第一層110及第二層112,或大於300對交替的第一層110及第二層112。
在一或更多個實施例中,第二層112為替換層。在一或更多個實施例中,第一層110及第二層112獨立地包括介電材料。在一或更多個實施例中,介電材料可包括熟習此項技術者所已知之任何適當介電材料。如本文中所使用,術語「介電材料」指代可在電場中極化之電絕緣體。在一些實施例中,介電材料包括氧化物、摻碳的氧化物、多孔二氧化矽(SiO 2)、二氧化矽(SiO)、氮化矽(SiN)、二氧化矽/氮化矽、碳化物、氧碳化物、氮化物、氧氮化物、氧碳氮化物、聚合物、磷矽酸鹽玻璃、氟矽酸鹽(SiOF)玻璃或有機矽酸鹽玻璃(SiOCH)中之一或更多者。
在一或更多個實施例中,第二層112包括相對於第一層110而言具有蝕刻選擇性之材料,以使得可在不實質性影響第一層110的情況下移除第二層112。在一或更多個實施例中,第一層110包括矽(Si)層,且第二層112包括矽鍺(SiGe)層。
可使個別交替層形成為任何適當厚度。在一些實施例中,每個第二層112之厚度大致相等。在一或更多個實施例中,每個第二層112具有第二層厚度。在一些實施例中,每個第一層110之厚度大致相等。如在此方面所使用,大致相等之厚度彼此相差+/-5%以內。在一些實施例中,在第二層112與第一層110之間形成矽層(未示出)。與第二層112或第一層110之層的厚度相比較而言,矽層之厚度可相對薄。在一或更多個實施例中,第一層110具有在自約0.5 nm至約30 nm之範圍中的厚度,包括約1 nm、約3 nm、約5 nm、約7 nm、約10 nm、約12 nm、約15 nm、約17 nm、約20 nm、約22 nm、約25 nm、約27 nm及約30 nm。在一或更多個實施例中,第一層110具有在自約0.5 nm至約40 nm之範圍中的厚度。在一或更多個實施例中,第二層112具有在自約0.5 nm至約30 nm之範圍中的厚度,包括約1 nm、約3 nm、約5 nm、約7 nm、約10 nm、約12 nm、約15 nm、約17 nm、約20 nm、約22 nm、約25 nm、約27 nm及約30 nm。在一或更多個實施例中,第二層112具有在自約0.5 nm至約40 nm之範圍中的厚度。
在一或更多個實施例中,藉由化學氣相沉積(chemical vapor deposition; CVD)或物理氣相沉積(physical vapor deposition; PVD)來沉積第一層110及第二層112。在一些實施例中,藉由電漿增強化學氣相沉積(plasma enhanced  chemical  vapor  deposition; PE-CVD)來沉積第一層110及第二層112。可使個別交替層形成為任何適當厚度。在一些實施例中,每個第二層112之厚度大致相等。在一或更多個實施例中,每個第二層112具有第一第二層厚度。在一些實施例中,每個第一層110之厚度大致相等。如在此方面所使用,大致相等之厚度彼此相差+/-5%以內。在一或更多個實施例中,第一層110具有在自約0.5 nm至約30 nm之範圍中的厚度,包括約1 nm、約3 nm、約5 nm、約7 nm、約10 nm、約12 nm、約15 nm、約17 nm、約20 nm、約22 nm、約25 nm、約27 nm及約30 nm。在一或更多個實施例中,第二層112具有在自約0.5 nm至約30 nm之範圍中的厚度,包括約1 nm、約3 nm、約5 nm、約7 nm、約10 nm、約12 nm、約15 nm、約17 nm、約20 nm、約22 nm、約25 nm、約27 nm及約30 nm。
在一或更多個實施例中,汲極選擇閘極材料116形成在記憶體堆疊130之頂表面上。在一或更多個實施例中,汲極選擇閘極式閘極材料116形成在氧化物層114之頂表面上。在一或更多個實施例中,汲極選擇閘極式閘極材料116包括多晶矽或金屬中之一或更多者。金屬可包括熟習此項技術者所已知之任何適當材料。在一些實施例中,該金屬為耐火金屬。在一或更多個實施例中,金屬可選自鎢(W)、鉬(Mo)、釕(Ru)、銥(Ir)、鉭(Ta)、鈦(Ti)及鋨(Os)中之一或更多者。
在一或更多個實施例中,氧化物材料118形成在汲極選擇閘極材料116之頂表面上。氧化物材料118可包括熟習此項技術者所已知之任何適當材料。在一些實施例中,該氧化物材料包括氧化矽(SiO x)。
參考第3圖,在方法10之操作20處,形成階梯構形。在一或更多個實施例中,該階梯構形會暴露第二層112之頂表面134。如以下所描述,頂表面134可用以為將形成之字線接觸件提供空間。可沉積適當填充材料135以佔據階梯構形131之外的空間。如熟習此項技術者將理解,適當填充材料135可為防止相鄰字線之間電短路的任何材料。階梯構形中,每一字線具有比下方字線更小之寬度(在諸圖中自左向右繪示)。對如「在……上方」及「在……下方」之相對術語的使用不應被視為將本揭示案之範疇限於空間上之實體定向。
應注意,為了易於說明,第4圖至第21圖中未示出階梯構形,但如熟習此項技術者將認識到,階梯構形係存在的。
第4圖至第5B圖繪示經由記憶體堆疊130形成記憶體串。參考第4圖,在操作25處,經由記憶體堆疊130打開/圖案化記憶體孔通道120。在一些實施例中,打開記憶體孔通道120包括蝕刻穿過氧化物層118、汲極選擇閘極材料116、氧化物層114、記憶體堆疊130、共同源極線103並蝕刻至基板102中。記憶體孔通道120具有側壁,該等側壁延伸經過記憶體堆疊130,從而暴露了第二層112之表面126及第一層110之表面124。
汲極選擇閘極式閘極材料116具有經暴露作為記憶體孔通道120之側壁的表面136。記憶體孔通道120延伸至基板102中達一距離,以使得記憶體孔通道120之側壁表面136、124、126及底部115形成在基板102內。記憶體孔通道120之底部115可形成在基板102的厚度內之任一點處。在一些實施例中,記憶體孔通道120延伸至基板102中之厚度在基板102的厚度之自約10%至約90%之範圍中,或在自約20%至約80%之範圍中,或在自約30%至約70%之範圍中,或在自約40%至約60%之範圍中。在一些實施例中,記憶體孔通道120延伸至基板102中之距離達大於或等於10 nm。在一些實施例中,記憶體孔通道120自汲極選擇閘極(SGD)閘極116之頂表面及氧化物層118延伸經過記憶體堆疊至基板之底表面。
第5A圖示出其中在記憶體孔通道120中形成電晶體層128之操作30。可藉由熟習此項技術者所已知之任何適當技術來形成電晶體層128。在一些實施例中,藉由保形沉積製程形成電晶體層。在一些實施例中,藉由原子層沉積或化學氣相沉積中之一或更多者形成電晶體層。
在一或更多個實施例中,電晶體層128的沉積為大體上保形的。如本文中所使用,「大體上保形」之層指代其中厚度始終(例如,在側壁之頂部、中間及底部上及在記憶體孔通道120之底部上)大約相同的層。大體上保形之層的厚度變化小於或等於約5%、2%、1%或0.5%。記憶體孔中之電晶體層128可包括氧化鋁(AlO)層、阻擋氧化物層、陷阱層、穿隧氧化物層及通道層中之一或更多者。
參考第5B圖(其為第5A圖的區域132之擴展圖),在一或更多個實施例中,電晶體層128包括記憶體孔通道120中之氧化鋁層128a、阻擋氧化物層128b、氮化物陷阱層128c、穿隧氧化物層128d及通道材料128e。在一或更多個實施例中,通道材料182e包括多晶矽。在一或更多個實施例中,氧化鋁層128a在記憶體孔通道120之側壁上沉積在記憶體孔通道120中的側壁上。
取決於(例如)記憶體孔通道120之尺寸,電晶體層128可具有任何適當厚度。在一些實施例中,電晶體層128具有在自約0.5 nm至約50 nm之範圍中、或在自約0.75 nm至約35 nm之範圍中、或在自約1 nm至約20 nm之範圍中的厚度。
在一或更多個實施例中,電晶體層128包括記憶體電晶體,且電晶體層128獨立地包括選自氧化鋁(AlO)、阻擋氧化物、陷阱材料、穿隧氧化物及通道層/通道材料之一或更多個電晶體層。
第6A圖至第7B圖示出方法10之操作35,此處在電晶體層128之頂表面上及在氧化物層118中形成位元線襯墊136。在一或更多個實施例中,在汲極選擇閘極(SGD)電晶體之汲極側上形成位元線襯墊136。位元線襯墊136可為熟習此項技術者所已知之任何適當材料,包括但不限於多晶矽。參考第6A圖及第6B圖,回蝕電晶體層128以形成凹槽131。如第7A圖及第7B圖中所繪示,接著藉由位元線襯墊136填充凹槽131。
參考第8圖,在操作40處,將選擇閘極蝕刻/切割至記憶體堆疊中以形成開口138。在一些實施例中,此可稱作圖案化汲極選擇閘極切口(SGD)。開口138自氧化物層118之頂表面延伸至氧化物層114之頂表面。可藉由熟習此項技術者所已知之任何適當手段來進行蝕刻/圖案化。在一或更多個實施例中,形成開口138包括汲極選擇閘極(SGD)分離蝕刻。
參考第9圖,在操作45處,在開口138中形成汲極選擇閘極(SGD)隔離。在一或更多個實施例中,形成汲極選擇閘極(SGD)隔離包括在開口138中沉積介電材料140。可藉由熟習此項技術者所已知之任何適當技術來沉積介電材料140。在一或更多個實施例中,藉由原子層沉積(atomic layer deposition; ALD)來沉積介電材料140。介電材料140可包括熟習此項技術者所已知之任何適當介電材料。在一或更多個實施例中,介電材料140包括氧化矽(SiO x)或氧氮化矽(SiON)中之一或更多者。
在一些未繪示實施例中,介電材料140可沉積在開口138中,並在氧化物層118之頂表面上形成覆蓋層。可接著藉由熟習此項技術者所已知之任何適當技術來移除該覆蓋層。舉例而言,在一或更多個實施例中,可藉由化學機械平坦化(chemical mechanical planarization; CMP)移除覆蓋層。
參考第10圖,在方法10之操作50處,記憶體堆疊130經狹縫圖案化以形成狹縫圖案化之開口142,其自氧化物層118之頂表面延伸至共同源極線103之犧牲層106。
第11圖繪示方法10之操作55,此處移除共同源極線103中之犧牲層106以形成開口144。可藉由熟習此項技術者所已知之任何適當技術移除犧牲層106,包括但不限於選擇性蝕刻、熱磷酸及其類似者。
第12A圖及第12B圖(其為第12A圖的區域132之擴展圖)示出方法10之操作60,此處暴露通道材料128e以形成共同源極線接觸區域145。藉由移除在共同源極線接觸區域145中之氧化鋁(AlO)層128a、阻擋氧化物層128b、陷阱層128c及穿隧氧化物層128d而暴露通道材料128e。
第13A圖及第13B圖示出方法10之操作55,此處在開口144中沉積多晶矽層146,從而替換共同源極線犧牲層106。多晶矽層146可經摻雜或不經摻雜。
操作65,此處形成字線。
第14A圖至第15B圖繪示操作65,此處形成字線。參考第14A圖及第14B圖,移除第二層112以形成開口148。可藉由熟習此項技術者所已知之任何適當手段來移除第二層112。在一或更多個實施例中,藉由選擇性蝕刻(例如,選擇性濕式蝕刻或選擇性乾式蝕刻)移除第二層112。移除第二層112會形成開口148。
第15A圖及第15B圖示出在開口148中沉積保形介電層150。第15B圖為第15A圖之區域132的放大圖。介電層150可包括熟習此項技術者所已知之任何適當介電材料。在一或更多個實施例中,介電層150為低介電常數的介電質,其包括但不限於諸如(例如)二氧化矽、氧化矽、摻碳的氧化物(carbon doped oxide; 「CDO」)(例如,摻碳二氧化矽)、多孔二氧化矽(SiO 2)、氮化矽(SiN)或其任何組合之材料。雖然術語「氧化矽」可用以描述介電層136,但熟習此項技術者將認識到,本揭示案並不限於特定的化學計量。舉例而言,術語「氧化矽」及「二氧化矽」均可用以描述具有成任何適當的化學計量比率之矽及氧原子的材料。對於本揭示案中所列出之其他材料而言同樣如此,例如,氮化矽、氧氮化矽、氧化鋁、氧化鋯及其類似者。在特定實施例中,介電層150包括氧化矽。
在操作70處,有利地形成低電阻字線。在一或更多個實施例中,使字線包括低電阻率材料可為有利的。在一些實施例中,低電阻率材料具有在自5 μΩcm至100 μΩcm之範圍中的電阻率。在一些實施例中,如第16圖及第17圖中所繪示,可藉由使字線凹陷並在字線的凹陷部分中選擇性地生長低電阻率材料而形成低電阻率材料。在其他實施例中,可藉由沉積金屬層並使字線區域中及共同源極線區域中之金屬矽化而形成低電阻率材料。
參考第16圖,使字線第一材料層110凹陷以形成凹陷區域147。參考第17圖,低電阻率材料152在狹縫142中保形地沉積至凹陷區域147中。低電阻率材料152可包括熟習此項技術者所已知之任何適當材料。在一或更多個實施例中,低電阻率材料152包括鎢(W)、釕(Ru)、鋁(Al)、銥(Ir)、鉭(Ta)、鈦(Ti)、鉑(Pt)、鉬(Mo)、鎳(Ni)或其矽化物中之一或更多者。因此,在一或更多個實施例中,低電阻率材料152包括鎢(W)、釕(Ru)、銥(Ir)、鉭(Ta)、鈦(Ti)、鉑(Pt)、鉬(Mo)、鎳(Ni)、矽化鎢(WSi)、矽化釕(RuSi))、矽化鋁(AlSi)、矽化銥(IrSi)、矽化鉭(TaSi)、矽化鈦(TiSi)、矽化鉑(PtSi)、矽化鉬(MoSi)及矽化鎳(NiSi)中之一或更多者。因此,在一或更多個實施例中,記憶體電晶體包括第一材料110及第二材料152,該第一材料110具有比第二材料152高的電阻。因此,多晶矽字線包括第一材料及第二材料,該第一材料110具有比第二材料152高的電阻,該第二材料152與狹縫區域(亦即,經填充之狹縫142)相鄰。
在一或更多個實施例中,藉由絕緣體材料填充狹縫142。絕緣體材料可為熟習此項技術者所已知之任何適當材料。在一或更多個實施例中,絕緣體材料選自氧化矽、氮化矽及氧氮化矽中之一或更多者。
第18A圖至第21C圖示出正常陣列區域及SGD搭接區域之橫截面圖103、100、105及107以清楚地示出SGD搭接線。
參考第18A圖及第18B圖,形成用以使SGD與搭接線連接之接觸件。SGD接觸孔158經圖案化,其形成在其中缺少絕緣體孔之區域中。可連同非陣列區域中之其他接觸件一起形成搭接接觸線。
參考第19A圖及第19B圖,形成搭接線區域160。可連同非陣列區域中之其他金屬化一起形成搭接線區域160。
參考第20A圖及第20B圖,藉由阻障金屬及金屬中之一或更多者填充搭接線區域160以形成搭接線162。阻障金屬可包括熟習此項技術者所已知之任何適當材料。在一或更多個實施例中,阻障金屬包括鈦(Ti)、氮化鈦(TiN)、鉭(Ta)及氮化鉭(TaN)中之一或更多者。金屬可包括熟習此項技術者所已知之任何適當材料。在一或更多個實施例中,金屬包括鎢(W)、鋁(Al)、銅(Cu)、鈦(Ti)、鉭(Ta)、釕(Ru)及鉬(Mo)中之一或更多者。在特定實施例中,搭接線162包括鎢(W)。
參考第21A圖至第21C圖,形成包括位元線168、位元線接觸件166及位元線螺柱164之搭接接觸件。
在其他實施例中,提供一種形成半導體元件之方法。該半導體元件可具有三維垂直記憶體串,其包括汲極選擇閘極(SGD)電晶體。在一或更多個實施例中,形成半導體元件之方法包括形成延伸經過記憶體堆疊之複數個記憶體孔。該記憶體堆疊包括在基板上之第一層及第二層的交替層。在複數個記憶體孔中沉積電晶體層以形成複數個記憶體串。在該複數個記憶體串中之每一者的頂表面上形成位元線襯墊。接著在記憶體堆疊之頂部部分上形成汲極選擇閘極(SGD)電晶體。記憶體堆疊經圖案化以形成延伸經過記憶體堆疊至基板之狹縫。移除第一層以在記憶體堆疊中形成開口,且在該開口中沉積介電材料。使第二層凹陷以形成凹陷區域,且在該凹陷區域中沉積低電阻率材料。填充該狹縫以形成經填充之狹縫。接著形成汲極選擇閘極接觸件,且在記憶體堆疊之頂表面上形成搭接線。該搭接線接觸該汲極選擇閘極接觸件。
本揭示案之額外實施例係針對用於形成所述記憶體元件及方法之處理工具900,如第22圖中所示。
群集工具900包括具有複數個側之至少一個中央移送站921、931。機器人925、935定位在中央移送站921、931內,且經配置以使機器人葉片及晶圓移動至複數個側中之每一者。
群集工具900包括連接至中央移送站之複數個處理腔室902、904、906、908、910、912、914、916及918(亦稱作製程站)。各個處理腔室提供與相鄰製程站相隔離之單獨處理區域。處理腔室可為任何適當腔室,包括但不限於預清潔腔室、緩衝腔室、(若干)移送空間、晶圓定向器/脫氣腔室、低溫冷卻腔室、沉積腔室、退火腔室、蝕刻腔室及字線沉積腔室。製程腔室及部件之特定佈置可取決於群集工具而變化,且不應被視為限制本揭示案之範疇。
在一些實施例中,群集工具900包括汲極選擇閘極(SGD)圖案化腔室。一些實施例之汲極選擇閘極(SGD)圖案化腔室包括一或更多個選擇性蝕刻腔室。
在第22圖中所示之實施例中,工廠介面950連接至群集工具900之前部。工廠介面950包括在工廠介面950之前部951上的裝載腔室954及卸載腔室956。雖然將裝載腔室954示為在左邊且將卸載腔室956示為在右邊,但熟習此項技術者將理解,此僅代表一種可能的配置。
裝載腔室954及卸載腔室956之大小及形狀可取決於(例如)正在群集工具900中處理之基板而變化。在所示實施例中,確定裝載腔室954及卸載腔室956的大小以保持晶圓盒,該晶圓盒具有定位在該盒內之複數個晶圓。
機器人952在工廠介面950內且可在裝載腔室954與卸載腔室956之間移動。機器人952能夠經由工廠介面950將晶圓自裝載腔室954中之盒移送至裝載閘腔室960。機器人952亦能夠將晶圓自裝載閘腔室962經由工廠介面950移送至卸載腔室956中之盒。如熟習此項技術者將理解,工廠介面950可具有一個以上機器人952。舉例而言,工廠介面950可具有在裝載腔室954與裝載閘腔室960之間移送晶圓的第一機器人,及在裝載閘962與卸載腔室956之間移送晶圓的第二機器人。
所示群集工具900具有第一部分920及第二部分930。第一部分920經由裝載閘腔室960、962連接至工廠介面950。第一部分920包括第一移送腔室921,該第一移送腔室921具有定位於其中之至少一個機器人925。機器人925亦稱作機器人式晶圓運輸機構。第一移送腔室921相對於裝載閘腔室960、962、製程腔室902、904、916、918及緩衝腔室922、924居中定位。一些實施例之機器人925為多臂機器人,其能夠獨立地一次移動一個以上晶圓。在一些實施例中,第一移送腔室921包括一個以上機器人式晶圓移送機構。第一移送腔室921中之機器人925經配置以在第一移送腔室921周圍的腔室之間移動晶圓。個別晶圓被承載在位於第一機器人式機構之遠端處的晶圓運輸葉片上。
在第一部分920中處理晶圓之後,可經由直通腔室將該晶圓傳遞至第二部分930。舉例而言,腔室922、924可為單向或雙向的直通腔室。直通腔室922、924可用以(例如)在第二部分930中的處理之前低溫冷卻晶圓,或允許進行晶圓冷卻或後處理然後移回至第一部分920。
系統控制器990與第一機器人925、第二機器人935、第一複數個處理腔室902、904、916、918及第二複數個處理腔室906、908、910、912、914通訊。系統控制器990可為可控制處理腔室及機器人之任何適當部件。舉例而言,系統控制器990可為包括中央處理單元、記憶體、適當電路及儲存器之電腦。
製程可大體作為軟體常用程式儲存在系統控制器990之記憶體中,當由處理器執行時,該軟體常用程式使處理腔室執行本揭示案之製程。亦可藉由第二處理器(未示出)來儲存及/或執行軟體常式,該第二處理器位於遠離處理器所控制的硬體之處。亦可以硬體執行本揭示案之方法的部分或全部。如此,製程可以軟體實施並使用電腦系統執行,以硬體實施為(例如)特殊應用積體電路或其他類型之硬體實施,或實施為軟體與硬體之組合。當藉由處理器執行時,軟體常式將通用電腦轉換為專用電腦(控制器),其控制腔室操作以使得製程得以執行。
在一或更多個實施例中,一種處理工具包括:中央移送站,包括經配置以移動晶圓之機器人;複數個製程站,每一製程站連接至中央移送站並提供與相鄰製程站之處理區域分離開的處理區域,該複數個製程站包括汲極選擇閘極(SGD)圖案化腔室;及控制器,其連接至中央移送站及該複數個製程站,該控制器經配置以啟動機器人以便使晶圓在製程站之間移動,並控制發生在該等製程站中之每一者中的製程。
一或更多個實施例提供一種包括指令之非暫時性電腦可讀媒體,當由處理腔室之控制器執行時,該等指令使處理腔室執行如下操作:形成延伸經過記憶體堆疊之複數個記憶體孔,該記憶體堆疊包括在基板上之第一層及第二層的交替層;在該複數個記憶體孔中沉積電晶體層以形成複數個記憶體串;在該複數個記憶體串中之每一者的頂表面上形成位元線襯墊;在記憶體堆疊之頂部部分上形成汲極選擇閘極(SGD)電晶體;形成延伸經過記憶體堆疊至基板之狹縫;移除第一層以在記憶體堆疊中形成開口;在該開口中沉積介電材料;使第二層凹陷以形成凹陷區域;在該凹陷區域中沉積低電阻率材料;填充該狹縫以形成經填充之狹縫;形成汲極選擇閘極接觸件;及在記憶體堆疊之頂表面上形成搭接線,該搭接線接觸該汲極選擇閘極接觸件。
除非本文中另有指示或明顯上下文相矛盾,否則在描述本文所論述之材料及方法的上下文中(尤其是在以下申請專利範圍的上下文中),術語「一(a)」及「一(an)」以及「該」及類似指代詞之使用應被解釋為涵蓋單數形式及複數形式。除非本文中另外指定,否則本文中值範圍的列舉僅旨在用作單獨指代在該範圍內之每個單獨值的簡寫方法,且每個單獨值皆被併入本說明書中,就如同其在本文中被單獨敘述一樣。除非本文中另外指出或明顯與上下文矛盾,否則本文所述之所有方法可以任何適當次序執行。除非另有要求,否則本文所提供之任何及所有實例或例示性語言(例如,「諸如」)的使用僅旨在更佳地說明材料及方法,且不對範疇構成限制。說明書中之語言皆不應被解釋為指示任何未主張的要素對於所揭示材料及方法的實踐係必不可少的。
貫穿本說明書對「一個實施例」、「某些實施例」、「一或更多個實施例」或「一實施例」之引用意謂結合實施例描述之特定特徵、結構、材料或特性被包括在本揭示案之至少一個實施例中。因此,貫穿本說明書各處出現的諸如「在一或更多個實施例中」、「在某些實施例中」、「在一個實施例中」或「在一實施例中」之片語未必指代本揭示案之同一實施例。另外,可在一或更多個實施例中以任何適當方式組合特定特徵、結構、材料或特性。
儘管已參考特定實施例描述了本文中之揭示內容,但應理解,此些實施例僅說明本揭示案之原理及應用。熟習此項技術者將顯而易見,可在不脫離本揭示案之精神及範疇的情況下對本揭示案之方法及設備作出各種修改及變化。因此,預期本揭示案包括在附加申請專利範圍及其等效物之範疇內的修改及變化。
10:方法 15:操作 20:操作 25:操作 30:操作 35:操作 40:操作 45:操作 50:操作 55:操作 60:操作 65:操作 70:操作 75:操作 80:操作 85:操作 90:操作 95:操作 100:記憶體元件 102:裸基板 103:共同源極線 104:多晶矽層 106:犧牲層 108:氧化物層 110:第一層 112:第二層 114:氧化物層 115:底部 116:汲極選擇閘極材料 118:氧化物材料 120:記憶體孔通道 124:表面 126:表面 128:電晶體層 128a:氧化鋁層 128b:阻擋氧化物層 128c:氮化物陷阱層 128d:穿隧氧化物層 128e:通道材料 130:記憶體堆疊 131:階梯構形 132:區域 134:頂表面 135:填充材料 136:表面 138:開口 140:介電材料 142:狹縫圖案化之開口 144:開口 145:共同源極線接觸區域 146:多晶矽層 147:凹陷區域 148:開口 150:保形介電層 152:低電阻率材料 158:SGD接觸孔158 160:搭接線區域 162:搭接線 164:位元線螺柱 166:位元線接觸件 168:位元線 900:處理工具 902:處理腔室 904:處理腔室 906:處理腔室 908:處理腔室 910:處理腔室 912:處理腔室 914:處理腔室 916:處理腔室 918:處理腔室 920:第一部分 921:中央移送站 922:緩衝腔室 924:緩衝腔室 925:機器人 930:第二部分 931:中央移送站 935:機器人 950:工廠介面 951:前部 952:機器人 954:裝載腔室 956:卸載腔室 960:裝載閘腔室 962:裝載閘腔室 990:系統控制器 992:CPU 994:記憶體 996:I/O 998:電路
因此,可詳細地理解本揭示案之上述特徵的方式,可藉由參考實施例獲得以上簡要概述的本揭示案之更特定描述,該等實施例中的一些在附加圖式中加以繪示。然而,應注意,附加圖式僅繪示本揭示案之典型實施例,且因此不應被視為對本揭示案之範疇的限制,因為本揭示案可准許其他同等有效的實施例。在隨附圖式之諸圖中藉助於實例但非限制的方式繪示如本文所述之實施例,圖中相同元件符號指示類似元件。
第1圖根據本文所述實施例繪示形成記憶體元件之方法的製程流程圖。
第2圖根據一或更多個實施例繪示具有記憶體堆疊之電子元件的橫截面圖。
第3圖根據一或更多個實施例繪示在形成記憶體堆疊的階梯圖案之後電子元件之橫截面圖。
第4圖根據一或更多個實施例繪示電子元件之橫截面圖。
第5A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第5B圖根據一或更多個實施例繪示區域132之擴展圖。
第6A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第6B圖根據一或更多個實施例繪示區域132之擴展圖。
第7A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第7B圖根據一或更多個實施例繪示區域132之擴展圖。
第8圖根據一或更多個實施例繪示電子元件之橫截面圖。
第9圖根據一或更多個實施例繪示電子元件之橫截面圖。
第10圖根據一或更多個實施例繪示電子元件之橫截面圖。
第11圖根據一或更多個實施例繪示電子元件之橫截面圖。
第12A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第12B圖根據一或更多個實施例繪示區域132之擴展圖。
第13A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第13B圖根據一或更多個實施例繪示區域132之擴展圖。
第14A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第14B圖根據一或更多個實施例繪示區域132之擴展圖。
第15A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第15B圖根據一或更多個實施例繪示區域132之擴展圖。
第16圖根據一或更多個實施例繪示電子元件之橫截面圖。
第17圖根據一或更多個實施例繪示電子元件之橫截面圖。
第18A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第18B圖根據一或更多個實施例繪示電子元件之橫截面圖。
第19A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第19B圖根據一或更多個實施例繪示電子元件之橫截面圖。
第20A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第20B圖根據一或更多個實施例繪示電子元件之橫截面圖。
第21A圖根據一或更多個實施例繪示電子元件之橫截面圖。
第21B圖根據一或更多個實施例繪示電子元件之橫截面圖。
第21C圖根據一或更多個實施例繪示電子元件之橫截面圖。
第22圖根據一或更多個實施例繪示群集工具。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
102:裸基板
103:共同源極線
104:多晶矽層
108:氧化物層
110:第一層
116:汲極選擇閘極材料
118:氧化物材料
140:介電材料
146:多晶矽層
150:保形介電層
152:低電阻率材料
162:搭接線

Claims (20)

  1. 一種半導體記憶體元件,包括: 一記憶體陣列,包括至少一個汲極選擇閘極(SGD)電晶體及至少一個記憶體電晶體,該記憶體陣列具有至少一個搭接區域及至少一個搭接接觸件,該至少一個搭接接觸件將一汲極選擇閘極(SGD)電晶體連接至一搭接線。
  2. 如請求項1所述之半導體記憶體元件,該至少一個搭接區域包括一第一複數個記憶體孔,其密度小於一非搭接區域中之一第二複數個記憶體孔。
  3. 如請求項1所述之半導體記憶體元件,其中該汲極選擇閘極(SGD)電晶體包括一多晶矽字線。
  4. 如請求項1所述之半導體記憶體元件,其中該記憶體電晶體包括一第一材料及一第二材料,該第一材料具有比該第二材料高的一電阻。
  5. 如請求項4所述之半導體記憶體元件,其中該第二材料與該記憶體陣列之一狹縫區域相鄰。
  6. 如請求項1所述之半導體記憶體元件,其中該搭接線包括鎢(W)、鋁(Al)、銅(Cu)、鈦(Ti)、鉭(Ta)、鉬(Mo)及釕(Ru)中之一或更多者。
  7. 一種半導體記憶體元件,包括: 一記憶體堆疊,在一基板上,該記憶體堆疊包括字線及介電材料之交替層; 複數個記憶體電晶體,延伸經過該記憶體堆疊; 一經填充之狹縫,延伸經過該記憶體堆疊且與該複數個記憶體電晶體相鄰;以及 複數個汲極選擇閘極(SGD)電晶體,在該記憶體堆疊之一頂部部分中,其中該複數個汲極選擇閘極(SGD)電晶體中之至少一者電連接至一搭接線。
  8. 如請求項7所述之半導體記憶體元件,其中該複數個汲極選擇閘極(SGD)電晶體中之每一者包括一多晶矽字線。
  9. 如請求項7所述之半導體記憶體元件,其中該多晶矽字線包括一第一材料及一第二材料,該第一材料具有比該第二材料高的一電阻,該第二材料與該經填充之狹縫相鄰。
  10. 如請求項9所述之半導體記憶體元件,其中該第二材料包括鎢(W)、鉬(Mo)、鈦(Ti)、鋁(Al)、釕(Ru)、鉭(Ta)或其一矽化物中之一或更多者。
  11. 如請求項7所述之半導體記憶體元件,其中該複數個記憶體電晶體中之每一者包括選自氧化鋁(AlO)、一阻擋氧化物、一陷阱材料、一穿隧氧化物及一通道材料之一或更多個電晶體層。
  12. 如請求項7所述之半導體記憶體元件,其中該經填充之狹縫包括選自氧化矽、氮化矽及氧氮化矽中之一或更多者的一絕緣體材料。
  13. 如請求項7所述之半導體記憶體元件,其中該基板為一共同源極線,該共同源極線包括一犧牲層、一氧化物層及一多晶矽層。
  14. 如請求項7所述之半導體記憶體元件,其中該搭接線包括鎢(W)、鋁(Al)、銅(Cu)、鈦(Ti)、鉭(Ta)、鉬(Mo)及釕(Ru)中之一或更多者。
  15. 一種形成一半導體元件之方法,該方法包括以下步驟: 形成延伸經過一記憶體堆疊之複數個記憶體孔,該記憶體堆疊包括在一基板上之一第一層及一第二層的交替層; 在該複數個記憶體孔中沉積電晶體層以形成複數個記憶體串; 在該複數個記憶體串中之每一者的一頂表面上形成一位元線襯墊; 在該記憶體堆疊之一頂部部分上形成一汲極選擇閘極(SGD)電晶體; 形成延伸經過該記憶體堆疊至該基板之一狹縫; 移除該第一層以在該記憶體堆疊中形成一開口; 在該開口中沉積一介電材料; 使該第二層凹陷以形成一凹陷區域; 在該凹陷區域中沉積一低電阻率材料; 填充該狹縫以形成一經填充之狹縫; 形成一汲極選擇閘極接觸件;以及 在該記憶體堆疊之一頂表面上形成一搭接線,該搭接線接觸該汲極選擇閘極接觸件。
  16. 如請求項15所述之方法,其中該等電晶體層包括一氧化鋁(AlO)層、一阻擋氧化物層、一陷阱層、一穿隧氧化物層及一通道層中之一或更多者。
  17. 如請求項15所述之方法,其中該低電阻率材料包括鎢(W)、釕(Ru)、鋁(Al)、銥(Ir)、鉭(Ta)、鈦(Ti)、鉑(Pt)、鉬(Mo)、鎳(Ni)或其一矽化物中之一或更多者。
  18. 如請求項15所述之方法,其中該經填充之狹縫包括選自氧化矽、氮化矽及氧氮化矽中之一或更多者的一絕緣體材料。
  19. 如請求項15所述之方法,其中該基板為一共同源極線,該共同源極線包括一犧牲層、一氧化物層及一多晶矽層。
  20. 如請求項15所述之方法,其中該搭接線包括鎢(W)、鋁(Al)、銅(Cu)、鈦(Ti)、鉭(Ta)、鉬(Mo)及釕(Ru)中之一或更多者。
TW111128757A 2021-08-03 2022-08-01 用於3d記憶體之選擇閘極結構及製造方法 TW202312438A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163228765P 2021-08-03 2021-08-03
US63/228,765 2021-08-03

Publications (1)

Publication Number Publication Date
TW202312438A true TW202312438A (zh) 2023-03-16

Family

ID=85153518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111128757A TW202312438A (zh) 2021-08-03 2022-08-01 用於3d記憶體之選擇閘極結構及製造方法

Country Status (5)

Country Link
US (1) US20230040627A1 (zh)
KR (1) KR20230020366A (zh)
CN (1) CN117716802A (zh)
TW (1) TW202312438A (zh)
WO (1) WO2023014776A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101624975B1 (ko) * 2009-11-17 2016-05-30 삼성전자주식회사 3차원 반도체 기억 소자
JP2015170643A (ja) * 2014-03-05 2015-09-28 株式会社東芝 不揮発性半導体記憶装置
KR20210018725A (ko) * 2019-08-09 2021-02-18 삼성전자주식회사 3차원 반도체 메모리 소자
US11276704B2 (en) * 2019-10-11 2022-03-15 Tokyo Electron Limited Device and method of forming with three-dimensional memory and three-dimensional logic
KR20210045538A (ko) * 2019-10-16 2021-04-27 삼성전자주식회사 불휘발성 메모리 장치

Also Published As

Publication number Publication date
US20230040627A1 (en) 2023-02-09
WO2023014776A1 (en) 2023-02-09
KR20230020366A (ko) 2023-02-10
CN117716802A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US11758722B2 (en) Three-dimensional memory device with deposited semiconductor plugs and methods for forming the same
KR20180079255A (ko) 반도체 디바이스 및 그 제조 방법
CN110088906B (zh) 三维存储器件中的高k电介质层及其形成方法
US11189635B2 (en) 3D-NAND mold
US11587796B2 (en) 3D-NAND memory cell structure
TW202205576A (zh) 記憶體裝置及其製作方法
US11930637B2 (en) Confined charge trap layer
TW202312438A (zh) 用於3d記憶體之選擇閘極結構及製造方法
TWI837494B (zh) 用於3d nand之選擇閘極隔離
US20220319601A1 (en) Selection gate separation for 3d nand
US20220059555A1 (en) Selection gate separation for 3d nand
US20230164993A1 (en) Nand cell structure with charge trap cut
US20220367560A1 (en) Poly-silicon based word line for 3d memory
US11978669B2 (en) Semiconductor structure with a laminated layer
TW202318576A (zh) 用於三維dram的選擇性矽化物沉積