TW202309965A - 帶電粒子光學裝置、帶電粒子設備及方法 - Google Patents

帶電粒子光學裝置、帶電粒子設備及方法 Download PDF

Info

Publication number
TW202309965A
TW202309965A TW111125240A TW111125240A TW202309965A TW 202309965 A TW202309965 A TW 202309965A TW 111125240 A TW111125240 A TW 111125240A TW 111125240 A TW111125240 A TW 111125240A TW 202309965 A TW202309965 A TW 202309965A
Authority
TW
Taiwan
Prior art keywords
array
lens array
charged particle
sample
control
Prior art date
Application number
TW111125240A
Other languages
English (en)
Other versions
TWI824604B (zh
Inventor
歐文 史羅特
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202309965A publication Critical patent/TW202309965A/zh
Application granted granted Critical
Publication of TWI824604B publication Critical patent/TWI824604B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/026Means for avoiding or neutralising unwanted electrical charges on tube components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/004Charge control of objects or beams
    • H01J2237/0041Neutralising arrangements
    • H01J2237/0044Neutralising arrangements of objects being observed or treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • H01J2237/04924Lens systems electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1501Beam alignment means or procedures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Abstract

本發明揭示一種用於朝向一樣品投射一帶電粒子多射束之方法,其包含:使用包含用於該等各別子射束之複數個控制透鏡之一控制透鏡陣列來操縱一帶電粒子多射束之各別子射束;控制該控制透鏡陣列以操縱該等子射束,使得該等子射束由一射束整形孔徑陣列中之各別孔徑整形,使得每一子射束之帶電粒子之小於一臨限電流通過該射束整形孔徑陣列中之該等各別孔徑,該射束整形孔徑陣列在該控制透鏡陣列之順流方向,包含用於該等各別子射束之複數個孔徑;及控制該控制透鏡陣列以操縱該等子射束使得至少一定比例之該等子射束之至少該臨限電流通過該射束整形孔徑陣列中之該等各別孔徑。

Description

帶電粒子光學裝置、帶電粒子設備及方法
本文中所提供之實施例大體而言係關於帶電粒子光學裝置、帶電粒子設備及用於朝向一樣品投射一帶電粒子多射束之方法。
在製造半導體積體電路(IC)晶片時,在製作程序期間,由於例如光學效應及入射粒子,在基板(亦即晶圓)或遮罩上不可避免地出現非所要圖案缺陷,從而減少良率。因此,監測非所要圖案缺陷的程度為IC晶片製造中之重要程序。更一般而言,基板或其他物件/材料之表面的檢測及/或量測係其製造期間及/或之後的重要程序。
具有帶電粒子射束之圖案檢測工具已用於檢測物件,例如偵測圖案缺陷。此等工具通常使用電子顯微鏡技術,諸如掃描電子顯微鏡(SEM)。在SEM中,藉助最終減速步驟以處於相對高能量的初級電子射束為目標,以便以相對低著陸能量著陸在樣品上。電子射束經聚焦為樣品上之探測點。探測點處之材料結構與來自電子射束之著陸電子之間的交互作用致使自表面發射電子,諸如次級電子、反向散射電子或歐傑電子。可自樣品之材料結構發射所產生次級電子。藉由掃描在樣品表面上方作為探測點之初級電子射束,可橫跨樣品之表面發射次級電子。藉由自樣品表面收集此等發射次級電子,圖案檢測工具可獲得表示樣品之表面之材料結構的特性的影像。包含反向散射電子及次級電子之電子射束之強度可基於樣品之內部及外部結構之性質而變化,且從而可指示樣品是否具有缺陷。
當初級電子射束掃描樣品時,由於射束電流較大,樣品上可累積電荷,此可影響影像品質。材料結構可用光照明及/或用電子泛射,以便在缺陷檢測期間改良缺陷對比度。舉例而言,為了調節樣品上之累積電荷,可採用高級電荷控制器(ACC)模組來照明樣品上之光射束,諸如雷射射束,以便控制由於諸如光導電性、光電或熱效應的效應而控制累積電荷。可能難以在樣品上照明光射束。舉例而言,圖案檢測工具之尺寸可能使得光射束難以到達樣品。
另外或替代地,可提供泛射柱以用電子泛射樣品。泛射柱與將電子射束聚焦至樣品上進行檢測的SEM檢測柱分開。在泛射柱與SEM檢測柱之間切換可需要移動樣品,以使得樣品之同一部分經歷兩個程序。移動可為執行檢測所需的總時間的重要因素。
本揭示內容之一目的係提供支援增加用於涉及改良的影像對比度以輔助缺陷檢測的檢測的產出量的實施例。
根據本發明之第一態樣,提供一種用於帶電粒子設備之帶電粒子光學裝置,其經組態以朝向樣品投射帶電粒子多射束,該帶電粒子光學裝置包含:控制透鏡陣列,其包含:複數個控制透鏡,其經組態以調整帶電粒子多射束之各別子射束之帶電粒子光學參數,用於由各別順流方向物鏡聚焦;射束整形孔徑陣列,其在控制透鏡陣列之順流方向,包含用於各別子射束之複數個孔徑;及控制器,其經組態以控制控制透鏡陣列以使得控制透鏡選擇性地(a)操縱各別子射束使得各別子射束由射束整形孔徑陣列中之各別孔徑整形使得每一子射束之帶電粒子之小於臨限電流通過射束整形孔徑陣列中之各別孔徑,及(b)操縱各別子射束使得至少一定比例之子射束之至少臨限電流通過射束整形孔徑陣列中之各別孔徑。
根據本發明之第二態樣,提供一種用於朝向樣品投射帶電粒子多射束之方法,該方法包含:將包含複數個控制透鏡之控制透鏡陣列用於各別子射束來操縱帶電粒子多射束之各別子射束;控制控制透鏡陣列以操縱子射束,使得子射束由射束整形孔徑陣列中之各別孔徑整形,使得每一子射束之帶電粒子之小於臨限電流通過射束整形孔徑陣列中之各別孔徑,在控制透鏡陣列之順流方向,包含用於各別子射束之複數個孔徑;及控制控制透鏡陣列以操縱子射束使得至少一定比例之子射束之至少臨限電流通過射束整形孔徑陣列中之各別孔徑。
現在將詳細地參考例示性實施例,該等實施例之實例在隨附圖式中說明。以下描述參考隨附圖式,其中除非另外表示,否則不同圖式中之相同數字表示相同或相似的元件。在例示性實施例的以下描述中闡述的實施方案並不表示與本發明一致的所有實施方案。替代地,其僅為與如所附申請專利範圍中之與本發明相關的態樣一致的設備及方法的實例。
電子裝置之計算能力的增強,減少裝置的實體大小,此可藉由顯著地增加IC晶片上之諸如電晶體、電容器、二極體等電路組件之封裝密度來實現。此係藉由提高的解析度實現的,從而使得能夠製造較小的結構。舉例而言,拇指甲大小且在2019年或更早可獲得的智慧型手機之IC晶片可包括超過20億個電晶體,每一電晶體之大小不到人類頭髮的1/1000。因此,半導體IC製造係複雜且耗時的程序(具有數百個單獨的步驟)就不足為奇。甚至在一個步驟中之誤差有可能劇烈地影響最終產品的功能。僅一個「致命缺陷」即可導致裝置故障。製造程序之目標係改良程序之整體良率。舉例而言,欲獲得50步程序之75%的良率(其中步驟可指示在晶圓上形成的層的數目),每一個別步驟必須具有大於99.4%的良率。若每一個別步驟具有95%的良率,則整個程序良率將低至7%。
雖然IC晶片製造設施中期望高程序良率,但維持高基板(亦即,晶圓)產出量(定義為每小時處理的基板的數目)亦為很重要。缺陷的存在可影響高程序良率及高基板產出量。若需要操作員介入來再檢測缺陷,則上述情形尤其為真。因此,藉由檢測工具(諸如掃描電子顯微鏡(「SEM」))對微米及奈米級缺陷的高產出量偵測及識別對於維持高良率及低成本係很重要的。
SEM包含掃描裝置及偵測器設備。掃描裝置包含照明設備,該照明設備包含用於產生初級電子之電子源,及用於用初級電子之一或多個聚焦射束掃描諸如基板之樣品的投射設備。至少照明設備或照明系統及投射設備或投射系統可一起被稱為帶電粒子光學系統或設備。初級帶電粒子與樣品交互作用並產生次級帶電粒子。當掃描樣品時,偵測設備自樣品捕獲次級帶電粒子,以使得SEM可創建樣品之掃描區之影像。對於高產出量檢測,檢測設備中之一些使用初級帶電粒子之多個聚焦射束,亦即多射束。多射束之組件射束可被稱為子射束或小射束。多射束可同時掃描樣品之不同部分。多射束檢測設備因此可以比單射束檢測設備高得多的速度檢測樣品。
下文描述已知多射束檢測設備之實施方案。
諸圖為示意性的。因此為了清楚起見放大圖式中之組件的相對尺寸。在以下圖式描述中,相同或相似的參考編號係指相同或相似的組件或實體,且僅描述相對於個別實施例的不同之處。雖然描述及圖式針對電子光學系統(或電子光學裝置),但應瞭解,實施例並不用於將本揭示內容限制於特定帶電粒子。因此,貫穿本文件的對電子的引用可更一般而言被認為係對帶電粒子的引用,其中帶電粒子不一定係電子。舉例而言,對電子設備的引用可較通常被認為對帶電粒子設備的引用。
現在參考 1,其為說明例示性電子射束檢測設備100的示意圖。 1之電子射束檢測設備100包括主腔室10、裝載鎖定腔室20、電子設備40 (其亦可被稱為電子評估設備或電子射束系統或工具)、設備前端模組(EFEM) 30及控制器50。電子設備40位於主腔室10內。
EFEM 30包括第一裝載埠30a及第二裝載埠30b。EFEM 30可包括額外裝載埠。舉例而言,第一裝載埠30a及第二裝載埠30b可接收欲被檢測的含有基板(例如,半導體基板或由其他材料製成的基板)或樣品(基板、晶圓及樣品在下文中統稱為「樣品」)的基板前開式晶圓傳送盒(front opening unified pod,FOUP)。EFEM 30中之一或多個機器人臂(未繪示)將樣品輸送至裝載鎖定腔室20。
裝載鎖定腔室20用於移除樣品周圍的氣體。此會產生真空,該真空係低於周圍環境壓力之局部氣壓。裝載鎖定腔室20可連接至裝載鎖定真空泵系統(未繪示),該裝載鎖定真空泵系統移除裝載鎖定腔室20中之氣體粒子。裝載鎖定真空泵系統之操作使得裝載鎖定腔室能夠達到低於大氣壓力之第一壓力。在達到第一壓力之後,一或多個機器人臂(未繪示)將樣品自裝載鎖定腔室20輸送至主腔室10。主腔室10連接至主腔室真空泵系統(未繪示)。主腔室真空泵系統移除主腔室10中之氣體粒子,以使得樣品周圍中之壓力達到低於第一壓力之第二壓力。在達到第二壓力之後,樣品輸送至電子設備40,藉由該電子設備可對樣品進行檢測。電子設備40包含電子光學裝置41。電子光學裝置41可為經組態以朝向樣品208投射至少一個電子射束之電子光學柱,或經組態以將至少一個電子射束聚焦至樣品208上之物鏡模組。電子光學裝置41亦可包含經組態以偵測自樣品208發射之電子的偵測器模組,及/或經組態以調整至少一個電子射束之電子光學參數的控制透鏡模組。在一實施例中,電子光學柱可包含物鏡模組及偵測器模組,並且視情況包含控制透鏡模組。在一實施例中,電子光學裝置41包含物鏡總成,其可被包含在電子光學柱中。物鏡總成包含物鏡陣列,該物鏡陣列與一或多個其他電子光學組件(諸如偵測器陣列及視情況控制透鏡陣列)相關聯(例如整合)。電子光學裝置41可為用於朝向樣品208投射多射束之多射束電子光學裝置41。在一實施例中,電子光學裝置41包含多柱,該多柱包含複數個電子光學柱,該電子光學柱經組態以朝向樣品208投射各別電子射束或電子多射束。
控制器50電連接至電子設備40之電子光學裝置41之電子光學組件。控制器50可為經組態以控制電子射束檢測設備100的處理器(諸如電腦)。控制器50亦可包括經組態以執行各種信號及影像處理功能的處理電路系統。雖然控制器50在 1中經繪示為在包括主腔室10、裝載鎖定腔室20及EFEM 30的結構外部,但應瞭解控制器50可為該結構之一部分。控制器50可位於電子射束檢測設備100之組件元件中之一者中,或其可分佈在組件元件中之至少兩者上方。控制器可被認為係電子光學裝置41之一部分。雖然本揭示內容提供容納電子射束檢測工具之主腔室10之實例,但應注意,本揭示內容之各態樣在其最廣泛的意義上並不限於容納電子射束檢測工具之腔室。相反,應瞭解,前述原理亦可應用於在第二壓力下操作的其他工具及其他設備配置。
現在參考 2,其為說明例示性電子設備40的示意圖,該例示性電子設備包括作為 1之例示性電子射束檢測設備100之一部分的多射束電子光學裝置41。多射束電子光學裝置41包含電子源201及投射設備230。電子設備40進一步包含電動載物台209及樣品架207。投射設備230可被稱為電子光學裝置41。樣品架207由電動載物台209支撐,以便固持樣品208 (例如,基板或遮罩)以進行檢測。多射束電子光學裝置41可進一步包含偵測器240 (例如電子偵測裝置)。
電子源201可包含陰極(未繪示)及擷取器或陽極(未繪示)。在操作期間,電子源201經組態以自陰極發射電子作為初級電子。初級電子由擷取器及/或陽極提取或加速以形成初級電子射束202。
投射設備230經組態以將初級電子射束202轉換成複數個子射束211、212、213並將每一子射束引導至樣品208上。儘管為了簡單起見說明了三個子射束,但可存在數十、數百或數千個子射束。子射束可被稱為小射束。
控制器50可連接至 1之電子射束檢測設備100之各種部分,諸如電子源201、偵測器240、投射設備230及電動載物台209。控制器50可執行各種影像及信號處理功能。控制器50亦可產生各種控制信號來主控電子射束檢測設備100之操作,包括多射束電子設備40。
投射設備230可經組態以將子射束211、212及213聚焦至樣品208上以進行檢測並且可在樣品208之表面上形成三個探測點221、222及223。投射設備230可經組態以偏轉初級子射束211、212及213以橫跨樣品208之表面之區段中之個別掃描區掃描探測點221、222及223。回應於初級子射束211、212及213入射於樣品208上之探測點221、222及223上,自樣品208產生電子,該等電子包括次級電子及反向散射電子。次級電子通常具有≤ 50 eV的電子能量。實際的次級電子可具有小於5 eV的能量,但低於50 eV的任何電子通常被視為次級電子。反向散射電子通常具有在0 eV與初級子射束211、212及213之著陸能量之間的電子能量。由於偵測到的能量小於50 eV的電子一般被視為次級電子,因此一定比例的實際反向散射電子將計數為次級電子。
偵測器240經組態以偵測諸如次級電子及/或反向散射電子的信號粒子並產生對應信號,該等信號被發送至信號處理系統280,例如以構建樣品208之對應掃描區之影像。偵測器240可併入至投射設備230中。
信號處理系統280可包含經組態以處理來自偵測器240的信號以便形成影像的電路(未繪示)。信號處理系統280可另外被稱為影像處理系統。信號處理系統可併入至多射束電子設備40之組件中,諸如偵測器240 (如在 2中所示)。然而,信號處理系統280可併入至電子射束檢測設備100或多射束電子設備40之任何組件中,諸如作為投射設備230或控制器50之一部分。信號處理系統280可包括影像獲取器(未繪示)及儲存裝置(未繪示)。舉例而言,信號處理系統可包含處理器、電腦、伺服器、大型主機、終端機、個人電腦、任何種類的行動計算裝置及其類似物,或其組合。影像獲取器可包含控制器之處理功能之至少一部分。因此,影像獲取器可包含至少一或多個處理器。影像獲取器可以通信方式耦合至准許信號通信之偵測器240,諸如導電體、光纖纜線、可攜式儲存媒體、IR、藍芽、網際網路、無線網路、無線電及其他,或其組合。影像獲取器可自偵測器240接收信號,可處理信號中所包含的資料並且可由此構建影像。影像獲取器因此可獲取樣品208之影像。影像獲取器亦可執行各種後處理功能,諸如產生輪廓,在所獲取影像上疊加指示符,及其類似物。影像獲取器可經組態以對所獲取影像執行亮度及對比度等的調整。儲存器可為諸如硬碟、隨身碟、雲端儲存器、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體及其類似物的儲存媒體。儲存器可與影像獲取器耦合,並且可用於將經掃描原始影像資料保存為原始影像及經後處理影像。
信號處理系統280可包括量測電路系統(例如,類比轉數位轉換器)以獲得所偵測到次級電子的分佈。在偵測時間窗口期間收集之電子分佈資料可與入射在樣品表面上之初級子射束211、212及213中之每一者之對應掃描路徑資料組合使用,以重建經檢測之樣品結構之影像。所重建影像可用於揭示樣品208之內部或外部結構的各種特徵。從而,所重建影像可用於揭示樣品中可存在的任何缺陷。
控制器50可控制電動載物台209以在樣品208之檢測期間移動樣品208。控制器50可使得電動載物台209能夠至少在樣品檢測期間沿一方向較佳地連續地(例如以恆定速度)移動樣品208。控制器50可控制電動載物台209之移動,以使得其取決於各種參數改變樣品208之移動的速度。舉例而言,控制器50可取決於掃描程序之檢測步驟之特性來控制載物台速度(包括其方向)。
特此以引用方式併入本文中的US2020118784、US20200203116、US 2019/0259570及US2019/0259564中揭示了已知的多射束系統,諸如上文所描述之電子設備40及電子射束檢測設備100。
如在 2中所展示,在一實施例中,電子設備40包含投射總成60。投射總成60可為模組並且可被稱為ACC模組。投射總成60經配置以引導光射束62,使得光射束62進入電子光學裝置41與樣品208之間。
當電子射束掃描樣品208時,由於射束電流較大,樣品208上可累積電荷,此可影響影像品質。為了調節樣品上之累積電荷,可採用投射總成60將光射束62照明在樣品208上,以便控制由於諸如光電導性、光電或熱效應等效應引起的累積電荷。
在一實施例中,投射系統60包含光源61。光源61經組態以發射光射束62。在一實施例中,光源61為雷射光源。雷射光提供同調光射束62。然而,可替代地使用其他類型的光源。在一實施例中,光源61經組態以發射具有在自450 nm至850 nm的範圍內的波長之光射束62。
在一實施例中,投射總成60包含光學系統63。在一實施例中,光學系統63經組態以將光射束62聚焦為在垂直於樣品208之表面的方向上比在平行於表面的方向上更窄。在一實施例中,光學系統63包含圓柱形透鏡64。圓柱形透鏡64經組態以使光射束62在一個方向上比在正交方向上更多地聚焦。圓柱形透鏡增加光源61之設計自由度。在一實施例中,光源61經組態以發射具有圓形剖面之光射束62。圓柱形透鏡64經組態以聚焦光射束62,使得光射束具有橢圓形剖面。在一實施例中,光學系統63包含反射表面65、66,諸如鏡面。舉例而言,可提供兩個反射表面65、66。
下文結合 3描述可用於本發明之電子設備40之組件,圖3係電子設備40的示意圖。 3之電子設備40可對應於上文所提及之電子設備40 (其亦可被稱為系統或工具)。
如在 3中所示,在一實施例中,電子設備40包含電子源201、大型準直器270、大型掃描偏轉器265、子射束形成陣列252、控制透鏡陣列250、物鏡陣列241及射束整形孔徑陣列或射束整形陣列262。
如在 3中所示,在一實施例中,電子設備40包含電子源201。電子源201可包含陰極(未繪示)及擷取器或陽極(未繪示)。在操作期間,電子源201經組態以自陰極發射電子作為初級電子。初級電子由擷取器及/或陽極提取或加速以形成初級電子射束。期望地,電子源201係在亮度與總發射電流之間具有良好折衷的高亮度熱場發射器。
如在 3中所展示,在一實施例中,電子設備40包含大型準直器270。大型準直器270可為電子光學裝置41之一部分。替代地,大型準直器270可與電子光學裝置41分離。電子源201將電子引導朝向大型準直器270。在射束被分裂成多射束之前,大型準直器270作用於來自源201之射束。大型準直器270使射束之各別部分彎曲一定量,該量有效地確保自射束導出之子射束中之每一者的射束軸大體上法向地(亦即與樣品208之標稱表面成大體上90°)入射於樣品208上。因此每一子射束之路徑至少旨在與樣品208之表面正交。大型準直器270將大型準直應用於射束。大型準直器270因此可作用於所有射束,而非包含準直器元件陣列,每一準直器元件經組態以作用於射束之不同個別部分。大型準直器270可包含磁性透鏡或磁性透鏡配置,該磁性透鏡配置包含複數個磁性透鏡子單元(例如,形成多極配置之複數個電磁體)。替代或另外地,大型準直器可至少部分地以靜電方式實施。微準直器可包含靜電透鏡或包含複數個靜電透鏡子單元的靜電透鏡配置。大型準直器270可使用磁性及靜電透鏡的組合。
在另一配置(未繪示)中,大型準直器270可部分地或全部地被設置在子射束形成陣列之順流方向的準直器元件陣列更換。每一準直器元件準直各別子射束。準直器元件陣列可使用MEMS製造技術形成以便在空間上緊湊。準直器元件陣列可為源201之順流方向之射束路徑中之第一偏轉或聚焦電子光學陣列元件。準直器元件陣列可位於控制透鏡陣列250之逆流方向。準直器元件陣列可與控制透鏡陣列250位於同一模組中。
如在 3中所展示,在一實施例中,電子設備40包含子射束形成陣列252。子射束形成陣列252可為電子光學裝置41之一部分。替代地,子射束形成陣列252可與電子光學裝置41分離。子射束形成陣列252經組態以由初級電子射束形成子射束。子射束可自射束導出,例如,使用界定射束限制孔徑陣列之子射束形成陣列252 (亦被稱為射束限制孔徑陣列)。射束可在遇到控制透鏡陣列250時分成子射束,如下文所描述。子射束在進入控制透鏡陣列250時大體上平行。
如在 3中,在一實施例中,電子光學裝置41包含物鏡陣列241。物鏡陣列241包含複數個物鏡。物鏡陣列241可為可互換模組。可互換模組可以諸如偵測器陣列及/或控制透鏡陣列的其他電子光學元件為特徵。
在大型準直器270下面(亦即電子源201之順流方向或遠離電子源),存在控制透鏡陣列250。控制透鏡陣列250中之控制透鏡經組態以在子射束到達物鏡陣列241之前對子射束施加聚焦動作。預聚焦可減少子射束之發散度或增加子射束之收斂速率。控制透鏡陣列250及物鏡陣列241一起操作以提供組合焦距。無中間焦點之組合操作可減少像差的風險。另外或替代地,控制透鏡陣列250中之控制透鏡經組態以控制子射束之張角及/或控制子射束的縮小率(亦即放大率)及/或控制著陸能量。
期望使用控制透鏡陣列250來判定著陸能量。然而,可另外使用物鏡陣列241來控制著陸能量。在此類狀況下,物鏡上方之電位差在選擇不同的著陸能量時改變。期望藉由改變物鏡上方的電位差來部分地改變著陸能量的情況的一個實例將防止子射束之焦點過於靠近於物鏡。在此情況下,存在物鏡陣列241之組件不得不過薄而無法製造的風險。對於在此位置處的偵測器亦可認為如此。例如,在著陸能量降低的狀況下會發生此情況。此係因為物鏡之焦距大致與所使用之著陸能量成比例。藉由降低物鏡上方之電位差,且從而降低物鏡內部之電場,使物鏡之焦距再次變大,從而使焦點位置位於物鏡下面較遠。應注意,僅使用物鏡會限制放大率的控制。此配置不能控制縮小率及/或張角。此外,使用物鏡控制著陸能量可能意指物鏡將在遠離其最佳場強操作。亦即,除非物鏡之機械參數(諸如其電極之間的間距)可例如藉由交換物鏡來調整。
控制透鏡陣列250包含複數個控制透鏡。每一控制透鏡包含至少一個電極,較佳地連接至各別電位源之至少兩個電極(例如,兩個或三個電極)。控制透鏡陣列250可包含連接至各別電位源之一或多個(例如三個)板電極陣列。控制透鏡陣列250與物鏡陣列241相關聯(例如,兩個陣列彼此靠近定位及/或彼此機械連接及/或作為一個單元一起控制)。每一控制透鏡可與各別物鏡相關聯。控制透鏡陣列250定位於物鏡陣列241之逆流方向。
控制透鏡陣列250可被認為係除了物鏡陣列241之電極之外的一或多個電極。控制透鏡陣列250提供用於控制子射束的額外自由度。包含在控制透鏡陣列250中之更多數目的電極提供更多數目的自由度。舉例而言,此等額外電極可准許獨立於物鏡陣列241之場強的著陸能量及/或放大率控制。在一些設計中,控制透鏡因此可為物鏡之一部分。因此,對此等電極的引用可作為物鏡之一部分,而非諸如控制透鏡之單獨透鏡。對此類配置中之控制透鏡的引用係對物鏡之功能等效電極的引用。
控制透鏡陣列250包含用於每一子射束211、212、213的控制透鏡。控制透鏡陣列250之功能係相對於射束之縮小率最佳化射束張角及/或控制遞送至物鏡陣列241之射束能量,物鏡陣列將子射束211、212、213引導至樣品208上。物鏡陣列241可定位於電子光學裝置41之基部處或附近。控制透鏡陣列250係可選的,但較佳用於最佳化物鏡陣列241逆流方向之子射束。
為了便於說明,透鏡陣列在本文中由橢圓形陣列示意性地描繪(如在 3中所示)。每一橢圓形表示透鏡陣列中之透鏡中之一者。橢圓形通常用於表示透鏡,類似於光學透鏡中經常採用的雙凸面形式。然而,在諸如本文中所論述之帶電粒子配置的上下文中,將理解透鏡陣列通常將以靜電方式操作,且因此可不需要採用雙凸面形狀之任何實體元件。透鏡陣列可替代地包含多個具有孔徑之板。
3之實施例中,提供大型掃描偏轉器265以致使在樣品208上方掃描子射束。大型掃描偏轉器265偏轉射束之各別部分以致使在樣品208上方掃描子射束。在一實施例中,大型掃描偏轉器265包含大型多極偏轉器,例如具有八個或更多極。偏轉諸如致使在一個方向(例如平行於單個軸,諸如X軸)上或在兩個方向(例如相對於兩個不平行的軸,諸如X及Y軸)上橫跨樣品208掃描自射束導出之子射束。大型掃描偏轉器265大體地作用於所有射束,而非包含偏轉器元件陣列,每一偏轉器元件經組態以作用於射束之不同的個別部分。在所示實施例中,大型掃描偏轉器265設置在大型準直器270與控制透鏡陣列250之間。
在另一配置(未繪示)中,大型掃描偏轉器265可部分或全部由掃描偏轉器陣列更換。掃描偏轉器陣列包含複數個掃描偏轉器。可使用MEMS製造技術來形成掃描偏轉器陣列。每一掃描偏轉器掃描樣品208上方之各別子射束。掃描偏轉器陣列因此可包含用於每一子射束之掃描偏轉器。每一掃描偏轉器可使子射束在一個方向(例如平行於單個軸線,諸如X軸)上或在兩個方向(例如相對於兩個非平行軸線,諸如X軸及Y軸)上偏轉。偏轉諸如致使在一個或兩個方向(亦即,一維或二維)上橫跨樣品208掃描子射束。掃描偏轉器陣列可位於物鏡陣列241之逆流方向。掃描偏轉器陣列可位於控制透鏡陣列250之順流方向。儘管參考與掃描偏轉器相關聯的單個子射束,但子射束群組可與掃描偏轉器相關聯。在一實施例中,可使用EP2425444 (該文件特此以全文引用的方式併入本文中,具體地與掃描偏轉器相關)中所描述之掃描偏轉器來實施掃描偏轉器陣列。與大型掃描偏轉器相比,掃描偏轉器陣列(例如,使用如上文所提及之MEMS製造技術來形成)可在空間上更緊湊。掃描偏轉器陣列可與物鏡陣列241位於同一模組中。
在其他實施例中,提供大型掃描偏轉器265及掃描偏轉器陣列兩者。在此類配置中,可藉由一起(較佳地同步地)控制大型掃描偏轉器及掃描偏轉器陣列,來實現在樣品表面上方掃描子射束。
在一些實施例中,電子光學裝置41進一步包含子射束形成陣列252。子射束形成陣列252界定射束限制孔徑陣列子射束形成陣列252可被稱為逆流方向限制孔徑陣列或逆流方向射束限制孔徑陣列。子射束形成陣列252可包含具有複數個孔徑之板(其可為板狀體)。子射束形成陣列252自由源201發射之電子射束形成子射束。子射束形成陣列252可阻擋(例如,吸收)除了促進形成子射束的彼等以外的射束部分,以便不干擾順流方向之子射束。子射束形成陣列252可被稱為一子射束界定孔徑陣列或一逆流方向限制器。子射束形成陣列252之孔徑可具有至少20 μm、視情況至少50 μm、視情況至少100 μm及視情況120 μm的直徑。孔徑的節距具有可等於射束孔徑406之孔徑的節距。
在一些實施例中,如在 3中所例示,電子光學裝置41為一物鏡陣列總成(其為包含物鏡陣列241之一單元)並且包含一射束整形孔徑陣列或射束整形陣列262。射束整形陣列262界定射束限制孔徑之一陣列。射束整形陣列262可被稱為一順流方向限制器、順流方向限制孔徑陣列或最終射束限制孔徑陣列。射束整形陣列262可包含具有複數個孔徑的一板(其可為板狀體)。射束整形陣列262可位於自控制透鏡陣列250之至少一個電極(視情況自所有電極)的順流方向。在一些實施例中,射束整形陣列262位於自物鏡陣列241之至少一個電極(視情況自所有電極)的順流方向。
在一配置中,射束整形陣列262在結構上與物鏡陣列241之電極整合。期望地,射束整形陣列262位於低靜電場強度之區域中。射束限制孔徑中之每一者與物鏡陣列241中之一對應物鏡對準。對準使得來自對應物鏡之子射束之一部分可通過射束限制孔徑並衝擊至樣品208上。每一射束限制孔徑具有一射束限制效應,僅允許入射至射束整形陣列262上之子射束之選定部分通過射束限制孔徑。所選定部分可使得僅通過物鏡陣列中之各別孔徑之中心部分的各別子射束之一部分到達樣品。中心部分可具有一圓形剖面及/或以子射束之一射束軸為中心。
本文中所描述之電子光學裝置41中之任一者可進一步包含一偵測器240。偵測器240偵測自樣品208發射之電子。偵測到的電子可包括由SEM偵測到的電子中之任一者,包括自樣品208發射之次級及/或反向散射電子。偵測器240之例示性構造在 7中繪示並且在下文參考 8 至圖 10更詳細地描述。
4示意性地描繪根據一實施例的電子設備40。與上文所描述之彼等特徵相同的特徵被賦予相同的參考編號。為了簡明起見,此等特徵不參考 4詳細描述。舉例而言,源201、大型準直器270、物鏡陣列241及樣品208可如上文所描述。
在一實施例中,電子設備40包含陣列聚光透鏡231。可存在數十個、數百個或數千個聚光透鏡231。聚光透鏡231可包含多電極透鏡並且具有基於EP1602121A1的構造,特定而言該文件特此以引用的方式併入至將電子射束分裂成複數個子射束的透鏡陣列的揭示內容,其中陣列為每一子射束提供透鏡。聚光透鏡231陣列可採取至少兩個板的形式,充當電極,其中每一板中之孔徑彼此對準並且對應於子射束之位置。板中之至少兩者在操作期間維持處於不同的電位以實現所要的透鏡效應。
在一配置中,聚光透鏡231陣列由三個板陣列形成,其中電子在其進入及離開每一透鏡時具有相同能量,該配置可被稱為單透鏡(Einzel lens)。因此,色散僅發生在單透鏡本身內(在透鏡之入口電極與出口電極之間),藉此限制了離軸色差。當聚光透鏡之厚度較小時,例如數mm,此類像差具有較小或可忽略不計的效應。
如上文所描述,在一實施例中,偵測器240位於物鏡陣列241與樣品208之間。偵測器240可面向樣品208。替代地,如在 4中所示,在一實施例中,包含複數個物鏡之物鏡陣列241位於偵測器240與樣品208之間。
在一實施例中,偏轉器陣列95位於偵測器240與物鏡陣列241之間。在一實施例中,偏轉器陣列95包含韋恩濾光器,以使得偏轉器陣列可被稱為射束分離器。偏轉器陣列95經組態以提供磁場以將投射至樣品208之電子與來自樣品208之次級電子分開。
在一實施例中,偵測器240經組態以參考電子的能量(亦即取決於帶隙)來偵測信號粒子。此類偵測器240可被稱為間接電流偵測器。自樣品208發射之次級電子自電極之間的場獲得能量。次級電極一旦其到達偵測器240就具有足夠的能量。
5 4中所示的電子設備40之一部分的近視圖。在一實施例中,偵測器240包含電子至光子轉換器陣列91。電子至光子轉換器陣列91包含複數個螢光條92。每一螢光條92位於電子至光子轉換器陣列91的平面中。至少一個螢光條92經配置在兩個毗鄰的朝向樣品208投射之電子射束之間。
在一實施例中,螢光條92大體上沿水平方向延伸。替代地,電子至光子轉換器陣列91可包含具有用於投射的電子射束之開口93的螢光材料板。
投射的電子射束,在 5中用虛線指示,投射穿過電子至光子轉換器陣列91之平面,經由螢光條92之間的開口93,朝向偏轉器陣列95。
在一實施例中,偏轉器陣列95包含磁性偏轉器96及靜電偏轉器97。靜電偏轉器97經組態以抵消磁性偏轉器96的偏轉,以使投射的電子射束傳輸朝向樣品208。因此,投射的電子射束可在水平面中小範圍地移位。在偏轉器陣列95之順流方向之射束大體上平行於在偏轉器陣列95之逆流方向之射束。
在一實施例中,物鏡陣列241包含用於將在樣品208中產生的次級電子導引朝向偏轉器陣列95的複數個板。對於相對於所投射電子射束以相反方向行進的次級電子,靜電偏轉器97不抵消磁偏轉器96的偏轉。相反,靜電偏轉器97及磁偏轉器96對次級電子的偏轉相加。因此,次級電子被偏轉以相對於光軸以一定角度行進,以便將次級電子傳輸至偵測器240之螢光條92上。
在螢光條92處,在次級電子之入射時產生光子。在一實施例中,光子經由光子輸送單元自螢光條92輸送至光電偵測器(未繪示)。在一實施例中,光子輸送單元包含光纖98陣列。每一光纖98包含配置為毗鄰於或附接至螢光條92中之一者以將來自螢光條92之光子耦合至光纖98中之一端,以及經配置以將來自光纖98之光子投射至光偵測器上的另一端。
在一實施例中,聚光透鏡陣列231及大型準直器270經配置成使得子射束之間的節距為至少500 μm並且視情況為至少1 mm。子射束之間的節距大到足以容納每射束或射束列的韋恩濾光器及光纖98。在一實施例中,聚光透鏡陣列231之聚光透鏡具有至少100 μm、視情況至少200 μm及視情況至少500 μm之直徑。
6為根據實施例之例示性多射束電子設備40的示意圖。在一實施例中,電子設備40包含電子源201、大型準直器270、子射束形成陣列252、偵測器240、偏轉器陣列95、控制透鏡陣列250、物鏡陣列241及射束整形陣列262。
舉例而言,電子源201及大型準直器270可起作用並且具有如上文參考 3所描述之特徵。與如上文參考 3所描述的相同的電子設備40之特徵在此不再重複以避免描述的重複。在替代配置中,準直器及子射束形成陣列252之功能及位置可不同。子射束形成陣列252可形成靜電聚光透鏡之一部分或與靜電聚光透鏡相關聯,諸如大型聚光透鏡或聚光透鏡陣列。子射束形成陣列可為大型準直器之最順流方向元件或靜電大型準直器之最順流方向電極之毗鄰順流方向。此類聚光透鏡可具有例如平行板之兩個或多於兩個電極。替代地,子射束形成陣列可在聚光透鏡陣列之逆流方向或形成聚光透鏡陣列之逆流方向元件。在一配置中,射束形成陣列將來自源之射束分裂成複數個子射束。因此,聚光透鏡陣列中之每一透鏡可對應於相關聯子射束。在此類配置之實施例中,準直器可在射束形成陣列之順流方向,例如在聚光透鏡之中間焦點之平面處。準直器可為大型準直器或可為偏轉器陣列之準直器陣列。準直器用作如較早所描述之配置中所描述。亦即,將子射束引導在準直器之順流方向,使得其軌跡大體上彼此平行並且較佳地正交於樣品之表面。
舉例而言,子射束形成陣列252可起作用並且具有如上文參考 3所描述之特徵。然而,在一實施例中,子射束形成陣列252經配置成使得子射束之間的節距為至少500 μm且視情況至少1 mm。子射束之間的節距大到足以容納每射束或射束列的韋恩濾光器及光纖98。在一實施例中,子射束形成陣列252之孔徑具有至少100 μm、視情況至少200 μm,及視情況500 μm的直徑。
舉例而言,偵測器240、偏轉器陣列95、控制透鏡陣列250、物鏡陣列241及射束整形陣列262可起作用並且具有如上文參考 4 5所描述之特徵。與如上文參考 4 5所描述的相同的電子設備40之特徵在此不再重複以避免描述的重複。
射束整形陣列262與物鏡陣列241相關聯。控制透鏡陣列250位於射束整形陣列262之逆流方向。控制透鏡陣列250經組態以使子射束聚焦穿過射束整形陣列262之各別孔徑。子射束形成陣列252位於偵測器240之逆流方向。子射束形成陣列252有助於減少電子射束對光纖98的照明。
任何實施例之物鏡陣列241可包含至少兩個電極,其中界定孔徑陣列。換言之,物鏡陣列包含至少兩個具有複數個孔或孔徑的電極。 7繪示電極242、243,其為具有各別孔徑陣列245、246之例示性物鏡陣列241之一部分。電極中之每一孔徑之位置對應於另一電極中對應孔徑之位置。對應孔徑在使用中對多射束中之同一射束、子射束或射束群組進行操作。換言之,至少兩個電極中之對應孔徑與子射束路徑(亦即,子射束路徑220中之一者)對準並沿著其配置。因此,電極各自設有孔徑,各別子射束211、212、213藉由該等孔徑傳播。
物鏡陣列241可包含兩個電極(如在 7中所示)或三個電極,或可具有更多的電極(未繪示)。僅具有兩個電極的物鏡陣列241可具有比具有更多電極之物鏡陣列241更低的像差。三電極物鏡可在電極之間具有更大的電位差,且因此實現更強透鏡。額外電極(亦即多於兩個電極)為控制電子軌跡提供額外的自由度,例如聚焦次級電子以及入射射束。此類額外電極可被認為形成控制透鏡陣列250。兩個電極透鏡優於單透鏡的益處為入射射束的能量不一定與出射射束相同。有利地,此兩電極透鏡陣列上之電位差使得其能夠用作加速或減速透鏡陣列。
物鏡陣列241之毗鄰電極沿著子射束路徑彼此間隔開。毗鄰電極之間的距離,其中絕緣結構可如下文所描述定位,大於物鏡。
較佳地,設置在物鏡陣列241中之電極中之每一者係板。電極可另外被描述為扁平薄片。較佳地,電極中之每一者係平面的。換言之,電極中之每一者將較佳地設置為平面形式的較薄扁平板。當然,電極不需要係平面的。舉例而言,電極可歸因於由於高靜電場所致的力而彎曲。較佳設置平面電極,此係因為此使得電極的製造更容易,因為可使用已知的製作方法。平面電極亦可係較佳的,此係因為其可在不同電極之間提供更準確的孔徑對準。
物鏡陣列241可經組態以將電子射束縮小到小於1/10,期望地在1/100至1/50的範圍內或更小。
偵測器240經設置以偵測自樣品208發射之次級及/或反向散射電子。偵測器240定位在物鏡234與樣品208之間。偵測器240可另外被稱為偵測器陣列或感測器陣列,且術語「偵測器」及「感測器」在整個申請案中可互換使用。
在一實施例中,電子光學裝置41經組態以朝向樣品208投射電子射束。電子光學裝置41可包含物鏡陣列241。電子光學裝置41可包含偵測器240。物鏡陣列(亦即物鏡陣列241)可與偵測器陣列(亦即偵測器240)及/或任何射束(亦即子射束)相對應。
下文描述例示性偵測器240。然而,對偵測器240的任何提及可酌情為單個偵測器(亦即至少一個偵測器)或多個偵測器。偵測器240可包含偵測器元件405 (例如,諸如捕獲電極之感測器元件)。偵測器240可包含任何適當類型的偵測器。例如,可使用例如直接偵測電子電荷的捕獲電極、閃爍體或PIN元件。偵測器240可為直流偵測器或間接電流偵測器。偵測器240可為如下文關於 8 至圖 10所描述之偵測器。
偵測器240可定位於物鏡陣列241與樣品208之間。偵測器240經組態以接近樣品208。偵測器240可極其靠近於樣品208。替代地,偵測器240與樣品208之間可存在較大的間隙。偵測器240可定位於裝置中以便面向樣品208。替代地,偵測器240可定位在電子光學裝置41中之別處,使得面向樣品208之電子光學裝置之一部分不同於偵測器,且因此並非偵測器。舉例而言,偵測器240可具有至少與物鏡陣列241之電極相關聯的部分。
對於 2 至圖 4中所示類型之多射束系統,較佳地,電子光學柱與樣品208之間的距離小於或等於大約50 μm。該距離經判定為樣品208之面向電子光學柱之表面與電子光學柱之面向樣品208之表面的距離。
8為偵測器240的仰視圖,該偵測器模組包含基板404,在該基板上設置複數個偵測器元件405,每一偵測器元件環繞射束孔徑406。射束孔徑406可藉由蝕刻穿過基板404來形成。在 8中所繪示之配置中,射束孔徑406在六角形密積陣列中。例如,射束孔徑406亦可以不同方式配置成矩形陣列。 8中之六角形配置之射束配置可比正方形射束配置更密積。偵測器元件405可配置成矩形陣列或六角形陣列。
在一實施例中,射束孔徑406具有至少50 μm、視情況至少100 μm、視情況至少200 μm及視情況210 μm的節距P。更大的節距允許射束孔徑406之直徑d更大。在一實施例中,射束孔徑406具有至多1000 μm、視情況至多500μm及視情況至多250 μm的節距P。射束孔徑406之節距界定投射朝向樣品208之電子多射束之子射束的節距。在一實施例中,電子多射束之子射束具有至少50 μm、視情況至少100 μm、視情況至少200 μm及視情況210 μm的節距。在一實施例中,射束孔徑406具有小於節距P之直徑d。在一實施例中,射束孔徑406具有至少10 μm,並且視情況至少20 μm的直徑d。在一實施例中,射束孔徑406具有至多100 μm、視情況至多50 μm及視情況至多30 μm的直徑d。較小的直徑d改良解析度,使得可偵測到較小的缺陷。
9以較大比例繪示偵測器240之一部分的剖面。偵測器元件405形成偵測器240之最底部(亦即最靠近於樣品208)表面。在偵測器元件405與基板404之主體之間可設置邏輯層407。信號處理系統之至少一部分可併入至邏輯層407中。
佈線層408設置在基板404之背面上或其內,並藉由基板穿孔409連接至邏輯層407。基板穿孔409的數目不必與射束孔徑406的數目相同。特定而言,若電極信號在邏輯層407中經數位化,則可僅需要少量的矽穿孔來提供資料匯流排。佈線層408可包括控制線、資料線及電力線。應注意,儘管有射束孔徑406,但仍存在用於所有必要連接的足夠空間。偵測模組402亦可使用雙極或其他製造技術來製作。印刷電路板及/或其他半導體晶片可設置在偵測器240之背面上。
當與具有可調諧著陸能量的工具一起使用時,上文所描述之整合式偵測器陣列特別有利,此係因為可針對一定範圍的著陸能量最佳化次級電子捕獲。
偵測器240可藉由將CMOS晶片偵測器整合至物鏡陣列241之底部電極中來實施。將偵測器240整合至物鏡陣列241或電子光學裝置41之其他組件中允許偵測與多個各別子射束相關發射的電子。CMOS晶片較佳地經定向以面向樣品(因為樣品與電子光學柱之底部之間的距離較小(例如,50 μm或更少))。在一實施例中,用以捕獲次級電子的偵測器元件405形成在CMOS裝置之表面金屬層中。偵測器元件405可形成在其他層中。CMOS之功率及控制信號可藉由矽穿孔連接至CMOS。為了堅固,較佳地,帶有孔的被動矽基板為CMOS晶片屏蔽高電場。
為了使偵測效率最大化,期望使偵測器元件405之表面儘可能大,以使得物鏡陣列240之大體上所有區(除了孔徑)被偵測器元件405佔據。另外或替代地,每一偵測器元件405具有大體上等於陣列節距的直徑(亦即,上文關於物鏡總成241之電極所描述之孔徑陣列節距)。因此,每一偵測器元件之直徑可小於大約600 μm,且較佳地在大約50 μm與500 μm之間。如上文所描述,可取決於樣品208與偵測器240之間的預期距離來選擇節距。在一實施例中,偵測器元件405之外形為圓形,但此可製成正方形以使偵測區最大化。亦可使基板穿孔409之直徑最小化。電子射束之典型大小為大約5至15微米。
在一實施例中,單個偵測器元件405環繞每一射束孔徑406。在另一實施例中,在每一射束孔徑406周圍提供複數個偵測器元件405。由環繞一個射束孔徑406之偵測器元件405所捕獲的電子可組合成單個信號或用於產生獨立信號。偵測器元件405可徑向分開。偵測器元件405可形成複數個同心環孔或環。偵測器元件405可成角度地分開。偵測器元件405可形成複數個扇形片或區段。該等區段可具有相似的角大小及/或相似的面積。電極元件可不僅徑向地而且角度地或以任何其他方便的方式分離。
然而,偵測器元件405之更大表面導致更大的寄生電容,因此導致更低的帶寬。處於此原因,可期望限制偵測器元件405之外徑。尤其在較大偵測器元件405僅給出稍微較大的偵測效率但顯著較大的電容的狀況下。圓形(環形)偵測器元件405可在收集效率與寄生電容之間提供良好的折衷。
偵測器元件405的更大外徑亦可能導致更大的串擾(對鄰近孔之信號的靈敏度)。此亦可為使偵測器元件405之外徑更小的原因。尤其在較大偵測器元件405僅給出稍微較大的偵測效率但顯著較大的串擾的狀況下。
由偵測器元件405收集的電子電流被放大,例如藉由諸如TIA的放大器。
在一實施例中,物鏡陣列241係可互換模組,可單獨使用或與諸如控制透鏡陣列250及/或偵測器陣列240及/或射束整形陣列262及/或射束形成陣列252的其他元件組合。可互換模組可為現場可更換的,亦即該模組可由現場工程師交換為新模組。在一實施例中,多個可互換模組包含在工具內並且可在可操作位置與不可操作位置之間交換而無需打開電子設備40。
在一實施例中,可互換模組包含電子光學組件,且具體地可為電子光學裝置,該電子光學組件位於准許致動以定位組件的載物台上。在一實施例中,可互換模組包含載物台。在一配置中,載物台及可互換模組可為工具40之整體部分。在一配置中,可互換模組僅限於載物台及裝置,諸如其所支撐之電子光學裝置。在一配置中,載物台係可移除的。在替代設計中,包含載物台之可互換模組係可移除的。用於可互換模組的電子設備40之部分係可隔離的,亦即電子設備40之部分由在可互換模組逆流方向之閥及其順流方向之閥界定。可操作閥以將閥之間的環境分別與閥之逆流方向及順流方向的真空隔離,從而使得可互換模組能夠自電子設備40移除,同時在與可互換模組相關聯之電子設備40之部分之逆流方向及順流方向維持真空。在一實施例中,可互換模組包含載物台。該載物台經組態以相對於射束路徑支撐裝置,諸如電子光學裝置。在一實施例中,模組包含一或多個致動器。致動器與載物台相關聯。致動器經組態以相對於射束路徑移動裝置。此類致動可用於使裝置及射束路徑相對於彼此對準。
在一實施例中,可互換模組為微機電系統(MEMS)模組。MEMS為使用微加工技術製成的小型化機械及機電元件。在一實施例中,可互換模組經組態為可在電子設備40內更換。在一實施例中,可互換模組經組態為可現場更換。可現場更換旨在意指模組可被移除並更換為相同或不同的模組,同時維持電子光學工具40所位於的真空。僅電子設備40之對應於模組之段經排氣以用於移除及返回或更換模組。
控制透鏡陣列250可與物鏡陣列241在相同的模組中,亦即形成物鏡陣列總成或物鏡配置,或其可在單獨模組中。
在一些實施例中,提供一或多個像差校正器,其減少子射束中之一或多個像差。可在任何實施例中設置一或多個像差校正器,例如作為電子光學裝置之一部分,及/或作為光學透鏡陣列總成之一部分,及/或作為評估系統之一部分。在一實施例中,至少一子組像差校正器中之每一者定位於中間焦點中之各別者中或直接毗鄰於中間焦點中之各別者(例如,在中間影像平面中或毗鄰於中間影像平面)。子射束在諸如中間平面之焦平面中或在該焦平面附近具有最小剖面面積。與在別處(亦即,中間平面之逆流方向或順流方向)可用相比(或與將在不具有中間影像平面之替代配置中可用相比),上述情形為像差校正器提供更多空間。
在一實施例中,定位於中間焦點(或中間影像平面)中或直接毗鄰於中間焦點(或中間影像平面)之像差校正器包含偏轉器,以校正對於不同射束似乎處於不同位置處之源201。可使用校正器來校正由源導致的巨觀像差,該等巨觀像差會妨礙每一子射束與對應物鏡之間的良好對準。
像差校正器可校正妨礙恰當柱對準之像差。此類像差亦可導致子射束與校正器之間的對準偏差(misalignment)。出於此原因,可期望另外或替代地將像差校正器定位於聚光透鏡231處或其附近(例如,其中每一此類像差校正器與聚光透鏡231中之一或多者整合,或直接毗鄰於該等聚光透鏡中之一或多者)。上述情形係期望的,此係因為在聚光透鏡231處或其附近,像差將不會導致對應子射束之移位,此係因為聚光透鏡豎直地靠近射束孔徑或與射束孔徑重合。然而,將校正器定位於聚光透鏡處或其附近的挑戰在於,相對於更遠下游之位置,子射束在此位置處各自具有相對較大的剖面面積及相對較小的節距。像差校正器可為如EP2702595A1中所揭示之基於CMOS的個別可程式化偏轉器或如EP2715768A2中所揭示之多極偏轉器陣列,其中兩個文件中對小射束操縱器的描述特此以引用的方式併入本文中。
在一些實施例中,至少一子組像差校正器中之每一者與物鏡陣列241整合,或直接毗鄰於物鏡陣列241。在一實施例中,此等像差校正器減少以下各項中之一或多者:場曲率;對焦誤差;及像散。另外或替代地,一或多個掃描偏轉器(未繪示)可與物鏡陣列241整合或直接毗鄰於該等物鏡,以在樣品208上方掃描子射束211、212、213。在一實施例中,可使用US 2010/0276606中所描述之掃描偏轉器,該文件以全文引用的方式併入本文中。
偵測器可設置有多個部分,且更具體地,多個偵測部分。包含多個部分之偵測器可與子射束211、212、213中之一者相關聯。因此,一個偵測器240的多個部分可經組態以偵測自樣品208發射的與初級射束(其原本可被稱為子射束211、212、213)中之一者相關的信號粒子。換言之,包含多個部分之偵測器可與物鏡總成之電極中之至少一者中之孔徑中之一者相關聯。更具體地,包含多個部分之偵測器405可圍繞單個孔徑406配置,如在 9中所示,其提供此類偵測器之實例。
如在 10中所示,偵測器元件405包含內部偵測部分405A及外部偵測部分405B,孔徑406經界定在該偵測器元件中且經組態用於電子射束的通過。內部偵測部分405A環繞偵測器之孔徑406。外部偵測部分405B自內部偵測部分405A的徑向向外。偵測器的形狀通常可為圓形的。因此,內部偵測部分及外部偵測部分可為同心環。
本發明可應用於各種不同的工具架構。舉例而言,電子設備40可包含複數個多射束電子光學柱。電子光學柱可包含在任何上述實施例或態樣中所描述之電子光學裝置41。作為複數個電子光學柱(或多柱工具),裝置可經配置成陣列,其數目可為二至一百電子光學柱或更多電子光學柱。電子設備40可採取如關於 3所描述及在 3中所描繪或如關於 4中描述及在 4中所描繪之實施例的形式。電子光學柱可視情況包含源。
如上文所提及,為了增加電子射束檢測的對比度,可在檢測樣品208之前在樣品208之表面上安置電荷。此程序被稱為泛射。對於基於電壓對比度的檢測,需要高密度泛射。低密度泛射可用於評估模式,例如在計量或檢測應用中。
如在 3中所示,在一實施例中,電子光學器件41用於電子設備40,該電子設備經組態以朝向樣品208投射電子多射束。電子光學裝置41可為經組態以朝向樣品208投射至少一個電子射束之電子光學柱,或經組態以將至少一個電子射束聚焦至樣品208上之物鏡模組。電子光學裝置41亦可包含經組態以偵測自樣品208發射之電子的偵測器模組,及/或經組態以調整至少一個電子射束之電子光學參數的控制透鏡模組。在一實施例中,電子光學柱可包含物鏡模組及偵測器模組,並且視情況包含控制透鏡模組。在一實施例中,電子光學裝置41包含物鏡總成,其可被包含在電子光學柱中。物鏡總成包含物鏡陣列,該物鏡陣列與一或多個其他電子光學組件(諸如偵測器陣列及視情況控制透鏡陣列)相關聯(例如整合)。電子光學裝置41可為用於朝向樣品208投射多射束之多射束電子光學裝置41。在一實施例中,電子光學裝置41包含多柱,該多柱包含複數個電子光學柱,該電子光學柱經組態以朝向樣品208投射各別電子射束或電子多射束。
如在 3中所示,在一實施例中,電子光學裝置41包含子射束形成陣列252、控制透鏡陣列250、射束整形陣列262及物鏡陣列241。另外,控制器50連接至控制透鏡陣列250。控制器50可被認為至少部分地包含在電子光學裝置41中。
如在 3中所示,控制透鏡陣列250包含複數個控制透鏡。控制透鏡經組態以調整電子多射束之各別子射束之電子光學參數,例如子射束上之焦點。子射束至少由各別順流方向物鏡聚焦。舉例而言,可藉由各別物鏡及控制透鏡一起操作來聚焦子射束。
如在 3中所示,射束整形陣列262在控制透鏡陣列順流方向。射束整形陣列262包含用於電子多射束之各別子射束的複數個孔徑。射束整形陣列262在子射束整形陣列252順流方向。因此,射束整形陣列262之孔徑對由子射束整形陣列252形成的子射束進行操作。在一實施例中,射束整形陣列262之孔徑具有至少10 μm、視情況至少20 μm、視情況至少25 μm及視情況至少50 µm的直徑。子射束可在檢測模式(例如基於電壓對比度的缺陷檢測)中成形,該檢測模式可為一類型之評估模式(用於缺陷檢測應用、缺陷再檢測應用或計量應用)。下文對檢測模式的引用可係指評估模式,
在一實施例中,控制器50經組態以控制控制透鏡陣列250,以使得控制透鏡選擇性地操縱各別子射束。在操縱各別子射束時,控制透鏡陣列250之控制透鏡確保各別子射束由射束整形陣列262之各別孔徑整形。藉由射束整形陣列262之各別孔徑對子射束的此類整形判定每一子射束之電子之小於臨限電流通過射束整形陣列262之各別孔徑。在一實施例中,控制器50進一步經組態以控制控制透鏡陣列250。可控制控制透鏡陣列250,以使得控制透鏡選擇性地操縱各別子射束。各別子射束之此類選擇性操縱判定至少一定比例之子射束之至少臨限電流通過射束整形陣列262之各別孔徑。控制器50經組態以控制控制透鏡陣列250以控制通過射束整形陣列262之孔徑之子射束的比例。
3繪示其中控制器50控制控制透鏡陣列250以使得控制透鏡操縱各別子射束使得各別子射束由射束整形陣列262之各別孔徑整形的情況。由射束整形陣列262之各別孔徑對子射束的整形使得每一子射束之電子之小於臨限電流通過射束整形陣列262之各別孔徑。亦即,射束整形陣列262之孔徑各自在諸如剖面的尺寸上小於各別子射束之相似尺寸,亦即各別孔徑整形的子射束。因此,子射束相對於射束整形陣列262之各別孔徑整形,使得防止子射束之電子之一定比例電流通過射束整形陣列262。子射束之一定比例之電子被阻止到達樣品208,亦即藉由射束整形陣列262。例如在檢測模式或評估模式期間,通過射束整形陣列262之子射束之電子的比例可為至多50%、視情況至多35%、視情況至多20%並且視情況至多10%。在檢測模式或評估模式期間,子射束可如此整形。
11為以不同方式控制之圖3之電子光學裝置41的示意圖。 3繪示其中控制器50以不同方式控制控制透鏡陣列250的情況。控制器50控制控制透鏡陣列250之控制透鏡,以使得控制透鏡操縱各別子射束。控制器50對各別子射束的操縱使得至少一定比例之子射束之至少臨限電流通過射束整形陣列262之順流方向。亦即,一定比例之子射束通過射束整形陣列262之各別孔徑。在一實施例中,大體上所有的子射束通過射束整形陣列262之孔徑。亦即,各別子射束之全部電流大體上通過射束整形陣列262之各別孔徑。替代地,可阻擋一定比例的電子電流。然而,足夠的電子電流,亦即在子射束中,通過射束整形陣列262之孔徑,用於泛射例如樣品208。在泛射模式期間可實現處於或高於臨限值之子射束之足夠電流。例如在泛射模式期間,穿過射束整形陣列262之子射束之電子比例可為至少50%、視情況至少80%、視情況至少90%、視情況至少95% ,且視情況大體上100%。
控制器50經組態以選擇性地控制控制透鏡陣列250以控制子射束,如在 3中及在 11中所示。在一實施例中,控制器50經組態以在 3 11中所示的設定之間切換。在一實施例中,控制器50經組態以控制控制透鏡陣列250以 3中所示之模式或以 11中所示之模式操作。亦即,控制器50可控制控制透鏡陣列250以選擇性地以泛射模式或檢測模式操作。
在一實施例中,控制器50經組態以控制電子設備40以在滿足效能條件時執行樣品208之表面的泛射。亦即,在泛射模式下的操作取決於效能條件。此類效能條件係當至少一定比例之子射束之至少臨限電流通過射束整形陣列262之各別孔徑時。電子設備40經組態以具有操作之泛射模式及操作之評估模式,諸如檢測模式。
在一實施例中,使用與用於檢測或評估亦即樣品208相同的初級電子射束進行泛射。期望本發明之一實施例實現泛射而不需要與用於檢測的電子光學柱分離的用於泛射的電子光學柱。藉由使用相同的電子光學柱進行泛射及檢測兩者,樣品208相對於電子光學裝置41需要較少的移動或不需要移動,以便對樣品208的已經歷泛射之表面執行檢測。為了以高對比度檢測樣品208,相對於電子光學柱移動樣品208需要更少的時間。預期本發明之一實施例藉由減少執行用泛射檢測所需的時間來增加產出量。
樣品208上之電子電流在子射束被控制使得其到達樣品208的電流大於臨限電流時比在子射束經整形以使得小於臨限電流到達樣品208時大。亦即,樣品208上之電流在至少一定比例之子射束之至少臨限電流通過射束整形陣列262之各別孔徑時比在子射束由射束整形陣列262之各別孔徑整形使得每一子射束之電子之小於臨限電流通過射束整形陣列262之各別孔徑時大。
臨限電流可被稱為泛射臨限值。在一實施例中,當子射束由射束整形陣列之各別孔徑整形使得每一子射束之電子之小於臨限電流通過射束整形陣列之各別孔徑時,臨限電流係子射束之電流的至少三倍。臨限電流,例如泛射電流,為檢測電流的至少三倍。視情況,泛射電流為檢測電流的至少五倍,視情況至少10倍,且視情況至少20倍。
在一實施例中,使用複數個子射束同時執行泛射。此與可使用單個泛射射束之其他系統形成對比。藉由同時使用多個子射束,減少樣品208與電子光學器件241之間所需的相對移動速度。預期本發明之一實施例減少電動載物台209的設計需求。
射束整形陣列262之孔徑大小係固定的。藉由控制控制透鏡陣列250,本發明之實施例預期實現電子射束電流的改變,用於泛射及檢測,而不需要孔徑之大小改變。
如在 11中所示,在一實施例中,控制器50經組態以控制控制透鏡將各別子射束聚焦至各別中間焦點。提供中間焦點使得每一子射束的更大比例通過射束整形陣列262之各別孔徑。
11中所示之配置中,中間焦點被繪示為與射束整形陣列262之孔徑大約齊平;亦即,中間焦點可位於沿著各別子射束之路徑與射束整形陣列262相同的位置處,例如接近樣品例如近乎帶電粒子裝置41之順流方向端。然而,中間焦點可設置在射束整形陣列262之逆流方向或順流方向之不同位置處。
如在 11中所示,在一實施例中,中間焦點在控制透鏡陣列250之順流方向。舉例而言,中間焦點可在控制透鏡陣列250與樣品208之間。在替代實施例中,焦點將在樣品208下面。
在一實施例中,控制器50經組態以控制控制透鏡聚焦各別子射束以減少射束整形陣列262處之子射束的剖面。在射束整形陣列262處具有減少剖面的單個子射束具有小於射束整形孔徑陣列262之各別射束整形孔徑之剖面的剖面。此可自 3 11之間的比較看出。在 11中,控制器50控制控制透鏡聚焦各別子射束以減少(相對於 3中所示的情況)其在射束整形陣列262處的剖面。此增加通過射束整形陣列262之孔徑的子射束之電流之比例。
如在 11中所示,可控制所有子射束以增加其到達樣品208之電流的比例,以便執行泛射。在替代實施例中,控制一定比例但並非全部的子射束以執行泛射。
如在 3中,在一實施例中,電子光學裝置41包含物鏡陣列241。物鏡陣列241在控制透鏡陣列250之順流方向。控制透鏡陣列250經組態以調整隨後由物鏡陣列241聚焦的子射束之電子光學參數。如在 3中所示並且如上文所述,物鏡陣列241包含複數個物鏡。當子射束由射束整形陣列262整形時,物鏡經組態以將各別子射束聚焦在樣品208上。射束整形陣列262可與物鏡陣列241之任何電極或板相關聯。在一實施例中,如在 3中所示,射束整形陣列262與物鏡陣列241之電極相關聯,例如定位在其順流方向,該電極定位在各別子射束之路徑的最順流方向。在泛射期間,物鏡不需要將子射束聚焦在樣品208之表面上。
12為例如 3之電子光學裝置41之一部分之近視圖。 12為物鏡陣列241及控制透鏡陣列250之近視圖。如在 12中所示,在一實施例中,射束整形陣列262與物鏡陣列241相關聯。射束整形陣列262可在物鏡陣列241之順流方向。舉例而言,射束整形陣列262可包含附接至物鏡陣列241之順流方向電極243的板。射束整形陣列262之板可與物鏡陣列241之順流方向電極243整體形成。替代地,射束整形陣列262可遠離物鏡陣列241。射束整形陣列262可形成為與物鏡陣列241之任何電極242、243分開的組件。
如在 12中所示,在一實施例中,射束整形陣列262在物鏡陣列241之順流方向。在替代實施例中,射束整形陣列262在物鏡陣列241之進一步逆流方向,諸如均勻逆流方向,其中諸如控制透鏡之透鏡元件在射束整形陣列262之逆流方向。此類透鏡元件用於聚焦穿過射束整形陣列262之各別孔徑之各別子射束。舉例而言,射束整形陣列262可連接至物鏡陣列241之逆流方向電極242或與其整體形成。在一實施例中,射束整形陣列262定位於物鏡陣列241與控制透鏡陣列250之間。
如在 12中所示,控制透鏡陣列250與物鏡陣列241相關聯。如上文所描述,控制透鏡陣列250可被認為提供除了物鏡陣列241之電極242、243之外的電極。控制透鏡陣列250之額外電極允許進一步的自由度來控制子射束之電子光學參數。在一實施例中,控制透鏡陣列250可被認為係物鏡陣列241之額外電極,實現物鏡陣列241之各別物鏡之額外功能性。在一配置中,此等電極可被認為係物鏡陣列之一部分,從而為物鏡陣列241之物鏡提供額外功能性。在此類配置中,控制透鏡被認為係對應物鏡之一部分,甚至控制透鏡僅被稱為物鏡之一部分的程度。
如在 12中所示,在一實施例中,控制透鏡陣列250及物鏡陣列241共用共同電極。在 12中所示之配置中,控制透鏡陣列250包含三個電極253、254、255。在一實施例中,控制透鏡陣列250之順流方向電極255及物鏡陣列241之逆流方向電極242形成共同電極。同一導電板可用於控制透鏡陣列250之順流方向電極255及物鏡陣列241之逆流方向電極242兩者。共同電極配置允許特定而言緊湊的物鏡總成。在替代實施例中,控制透鏡陣列250之順流方向電極255遠離物鏡陣列241之逆流方向電極242。控制透鏡陣列250之電極可與物鏡陣列241之電極分離。
12中所示之配置中,控制透鏡陣列250包含三個電極253、254、255。在替代實施例中,例如,控制透鏡陣列250可包含一個電極或兩個電極。
在一實施例中,控制器50經組態以控制施加至控制透鏡陣列250之中間電極254及順流方向電極255的電壓,以便調整傳入子射束的焦點。子射束之焦點可使得射束整形陣列262不再係射束限制的(或更少的射束限制)。更多或可能全部的子射束電流通過電子光學裝置241之射束整形陣列262。
在一實施例中,控制器50經組態以控制物鏡陣列241之物鏡作為加速透鏡操作。控制器50可控制施加至物鏡陣列241之電極242、243的電壓,使得物鏡將朝向樣品208之子射束之電子加速。
在一實施例中,控制器50經組態以控制物鏡陣列241之物鏡作為減速透鏡操作。控制器50可控制施加至物鏡陣列241之電極242、243的電壓,使得物鏡使投射朝向樣品208之子射束之電子減速。
控制器50經組態以在電子光學設備裝置41的使用期間調整施加至電極242、243的電壓。在一實施例中,控制器50經組態以控制物鏡在加速與減速投射朝向樣品208之電子之間切換。
如在 12中所示,在一實施例中,電子光學裝置41包含子射束形成陣列252。子射束形成陣列252經組態以將電子射束分成包含子射束之電子多射束。因此,子射束形成陣列252自例如來自源201之電子射束產生電子多射束之子射束。在替代實施例中,子射束形成陣列252與電子光學裝置41分開提供。電子光學裝置41及子射束形成陣列252可在電子設備40中組合在一起。子射束形成陣列252中之孔徑可經定大小以使所產生的子射束之電流最大化。子射束形成陣列252之幾何形狀可有助於判定在泛射模式期間由子射束施加至樣品的最高電流。
在一實施例中,子射束形成陣列252之孔徑界定圖案。該圖案可為網格。網格包含規則配置之孔徑。替代地,孔徑可不規則地配置。在一實施例中,網格為六角形或直線的。六角形網格可允許每單位面積的子射束密度更大。來自電子源201之電子射束可與子射束形成陣列252交互作用以產生多射束配置或子射束陣列。多射束配置(或子射束陣列)可具有對應於網格之的圖案的圖案,例如其中每一子射束對應於在子射束形成陣列252中界定的孔徑。
12中所示之配置中,子射束形成陣列252與控制透鏡陣列250相關聯。舉例而言,子射束形成陣列252可與控制透鏡陣列250之逆流方向電極253相關聯。在一實施例中,子射束形成陣列252提供控制透鏡陣列250之最逆流方向電極252。舉例而言,子射束形成陣列252可包含連接至逆流方向電極253或與逆流方向電極253整體形成的板。在替代實施例中,子射束形成陣列252被提供為與控制透鏡陣列250之電極253、254、255實體分離的組件。
如在 12中所示,在一實施例中,子射束形成陣列252在控制透鏡陣列250之逆流方向。在此一實施例中,電子光學裝置41包含偵測器240。偵測器240可形成為二維偵測器陣列,該偵測器陣列包含複數個偵測器元件405,該複數個偵測器元件位於沿著射束路徑之位置處,該射束路徑經組態以偵測自樣品208發射之信號粒子。在一實施例中,偵測器元件405與電子多射束之各別子射束相關聯。
如在 12中所示,在一實施例中,偵測器240之至少一部分位於控制透鏡陣列250與樣品208之間。亦即,偵測器240可包含至少兩個陣列,每一陣列位於沿著朝向樣品之初級射束路徑之不同位置處。此類偵測器240之偵測器陣列因此可分佈在電子光學柱之不同位置處,例如作為不同的二維偵測器陣列。在一實施例中,所有的偵測器陣列在控制透鏡陣列250與樣品208之間;亦即,無偵測器240之偵測器陣列經定位在控制透鏡陣列250之逆流方向。在一實施例中,偵測器240之一部分在控制透鏡陣列250與樣品208之間,且偵測器240之一部分在控制透鏡陣列250之逆流方向。舉例而言, 5繪示一實例,其中偵測器240具有在控制透鏡陣列250之逆流方向(相對於朝向樣品208之初級射束或子射束的方向,亦即投射朝向樣品208之電子的方向)的偵測器陣列。在一實施例中,所有偵測器240在控制透鏡陣列250之逆流方向。
如在 12中所示,在一實施例中,偵測器240之至少一部分(例如偵測器240之偵測器陣列)在射束整形陣列262與樣品208之間。舉例而言,如在 12中所示,在一實施例中,偵測器240與物鏡陣列241相關聯。偵測器240可採用一個偵測器陣列的形式。在不同的配置中,偵測器240可具有多於一個偵測器陣列,其中至少一者定位在 12中所描繪之偵測器陣列之逆流方向,且該額外偵測器陣列未在 12中描繪。偵測器240可形成在樣品208之逆流方向的電子光學裝置241之最終表面。偵測器240面向樣品208;亦即,偵測器陣列中之偵測器元件可面向樣品208。偵測器240可由相對於物鏡陣列241及/或射束整形陣列262之順流方向電極243固定的板支撐。
在一實施例中,控制器50經組態以控制電子設備40操作以偵測由樣品208發射之信號粒子。在用控制器50對電子設備40的此類控制中,當子射束由射束整形陣列262整形時使用多射束。此類整形子射束可意指每一子射束之帶電粒子(例如,電子)之小於臨限電流通過射束整形陣列262之各別孔徑。當檢測電流被提供至樣品208時,偵測到信號粒子。當提供泛射電流時,可不執行偵測。亦即,偵測器元件例如由控制器50 (或另一控制器)控制以停止操作,偵測器240之偵測器元件被控制以使得其不發射偵測信號及/或由偵測器元件產生之偵測信號未由在檢測模式期間處理偵測器信號的處理器處理。
如在 12中所示,射束整形陣列262之孔徑在尺寸上小於控制透鏡陣列250之各別孔徑。射束整形陣列262為投射朝向樣品208之子射束之電子的電流提供限制因素。在檢測(亦即檢測模式)期間,射束整形陣列262較佳地接近樣品208,經組態以對子射束進行整形(例如限制)。
在一實施例中,電子設備40包含如在圖(例如至少 3)中依照以下註釋描繪為多柱裝置之複數個電子光學裝置241。此類多柱設備可包含以陣列(諸如以矩形或六角形圖案)配置的複數個電子光學柱。多柱設備之每一柱可具有在本文中揭示之 3中所描繪且參考本文中揭示之 3揭示之配置之特徵及功能性(有以下差異)的特徵。此類差異包括具有準直器陣列,諸如例如整合至例如與子射束形成陣列之孔徑相關聯(較佳地緊接在其順流方向)之物鏡陣列總成中之準直偏轉器。每一準直偏轉器經指派至多射束之各別子射束。差異可包含整合至例如與物鏡陣列241相關聯之物鏡陣列總成中之掃描偏轉器陣列。具有掃描偏轉器陣列及準直器陣列係有益的,此係因為此類裝置係靜電的而非磁性的。具有磁性裝置之電子光學柱架構難以整合至多柱配置中,因為磁性裝置與多柱配置之周圍柱的干擾。
在一實施例中,提供用於朝向樣品208投射電子多射束的方法。方法可由控制器50執行。
在一實施例中,該方法包含使用控制透鏡陣列250來操縱電子多射束之各別子射束,該控制透鏡陣列包含用於各別子射束之複數個控制透鏡。舉例而言,可控制控制透鏡以控制子射束朝向射束整形陣列262之張角。控制器50控制施加至控制透鏡陣列250之電極253、254、255的電壓以便操縱子射束。
在一實施例中,該方法包含控制控制透鏡陣列250來操縱子射束,使得子射束由射束整形陣列262之各別孔徑來整形。藉由射束整形陣列262之各個孔徑對子射束之此類整形判定每一子射束之電子的小於臨限電流通過射束整形陣列262之各別孔徑,在控制透鏡陣列250之順流方向;控制透鏡陣列250包含用於各別子射束之複數個孔徑。為了檢測樣品208,需要較低的電流,使得子射束經整形係恰當的。
在一實施例中,該方法包含控制控制透鏡陣列250來操縱子射束,使得至少一定比例之子射束之至少臨限電流通過射束整形陣列262之各別孔徑。與檢測(例如以檢測模式)相比,泛射(例如以泛射模式)需要更高的電流,使得允許更高比例之子射束通過射束整形陣列262。
在一實施例中,該方法包含用光照明樣品208之一部分。舉例而言,在一實施例中,投射系統60用光照明樣品208。在一實施例中,執行泛射(用電子)及用光照明兩者以便增加對比度以檢測某些缺陷。
在一實施例中,該方法用於準備樣品208以進行電壓對比度量測。在一實施例中,該方法用於準備樣品208進行電壓對比度量測並執行電壓對比量測(亦即,藉由檢測程序)。在2021年4月22日提出申請之EP申請案21171331.8中揭示及描述用於此類樣品照明及/或此類電壓對比度量測的合適設備及相關聯方法,該揭示內容至少就能夠實現及相關照明樣品、樣品的電壓對比度量測或兩者的特徵而言以引用的方式併入本文中。
對可控制以某一方式操縱電子射束的組件或組件或元件之系統的引用包括組態控制器或控制系統或控制單元以控制組件以所描述之方式操縱電子射束,以及視情況使用其他控制器或裝置(例如電壓供應及/或電流供應)來控制組件以此方式操縱電子射束。舉例而言,電壓供應可電連接至一或多個組件以在控制器或控制系統或控制單元的控制下向組件(諸如在非限制性清單中控制透鏡陣列250、物鏡陣列241、聚光透鏡231、校正器、準直器元件陣列及掃描偏轉器陣列)施加電位。諸如載物台之可致動組件可為可控的,以使用一或多個控制器、控制系統或控制單元來致動並因此相對於諸如射束路徑的另一組件移動以控制組件的致動。
在本文中所描述之實施例可採取沿著射束或多射束路徑配置成陣列的一系列孔徑陣列或電子光學元件的形式。此類電子光學元件可為靜電的。在一實施例中,所有電子光學元件(例如自子射束形成陣列至樣品之前的子射束路徑中之最後一電子光學元件)可為靜電的及/或可為呈孔徑陣列或板陣列形式。在一些配置中,電子光學元件中之一或多者經製造為微機電系統(MEMS) (亦即,使用MEMS製造技術)。
與上部及下部、上及下、上面及下面的引用應理解為指代衝擊於樣品208上之電子射束或多射束之平行於(通常但非始終豎直)逆流方向及順流方向之方向。因此,對逆流方向及順流方向的引用意指與任何當前重力場無關的關於射束路徑的方向。
根據本揭示內容之實施例的電子設備可為對樣品進行定性評估(例如通過/失敗)的工具、對樣品進行定量量測(例如特徵之大小)的工具或產生樣品之映圖之影像的工具。評估系統之實例係檢測工具(例如,用於識別缺陷)、審查工具(例如,用於分類缺陷)及計量工具,或能夠執行與檢測工具、審查工具或計量工具(例如,計量-檢測工具)相關聯的評估功能性之任一組合的工具。電子光學柱可為評估系統之組件;諸如檢測工具或計量-檢測工具,或電子射束微影工具之一部分。本文中對工具的任何引用旨在涵蓋裝置、設備或系統,該工具包含各種組件,該等組件可搭配或可不搭配,且其甚至可位於單獨的空間中,尤其係例如用於資料處理元件。
術語「子射束」及「小射束」在本文中可互換使用且皆理解為涵蓋藉由分開或分裂父層輻射射束而自父層輻射射束導出的任何輻射射束。術語「操縱器」用於涵蓋影響子射束或小射束路徑的任何元件,諸如透鏡或偏轉器。
對沿著射束路徑或子射束路徑對準的元件的引用被理解為意指各別元件沿著射束路徑或子射束路徑定位。
雖然已結合各種實施例描述本發明,但彼等熟習此項技術者在考慮本說明書及實踐本文所揭示本發明後可明瞭本發明之其他實施例。意欲將本說明書及實例僅視為例示性的,其中本發明之真正範疇及精神係由以下申請專利範圍及條項指示。
提供許多條項:條項1:一種用於一帶電粒子設備之帶電粒子光學裝置,其經組態以朝向一樣品投射一帶電粒子多射束,該帶電粒子光學裝置包含:一控制透鏡陣列(或逆流方向透鏡陣列),其包含複數個控制透鏡(或逆流方向透鏡),該複數個控制透鏡(或逆流方向透鏡)經組態以調整一帶電粒子多射束之各別子射束之一帶電粒子光學參數,用於藉由各別順流方向物鏡(或順流方向透鏡陣列之順流方向透鏡、位於透鏡陣列(或控制透鏡陣列)順流方向之順流方向透鏡陣列(或物鏡陣列))聚焦;一射束整形孔徑陣列,在該控制透鏡陣列(或上射束透鏡陣列)順流方向,包含用於該等各別子射束之複數個孔徑;及一控制器,其經組態以控制該控制透鏡陣列(或逆流方向透鏡陣列)以使得該等控制透鏡(或逆流方向透鏡)選擇性地(a)操縱該等各別子射束使得該等各別子射束由該射束整形孔徑陣列中之該等各別孔徑整形使得每一子射束之帶電粒子之小於一臨限電流通過該射束整形孔徑陣列中之該等各別孔徑,及(b)操縱該等各別子射束使得至少一定比例之該等子射束之至少該臨限電流通過該射束整形孔徑陣列中之該等各別孔徑,期望地該臨限電流為一泛射臨限值。
條項2:如條項1之帶電粒子光學裝置,其包含:一物鏡陣列,其在該控制透鏡陣列之順流方向,包含複數個物鏡,該複數個物鏡經組態以在該等子射束由該射束整形孔徑陣列整形時將各別子射束聚焦在該樣品上(其中該物鏡陣列為該逆流方向透鏡陣列,且該逆流方向透鏡陣列為該控制透鏡陣列)。
條項3:如條項2之帶電粒子光學裝置,其中該射束整形孔徑陣列與該物鏡陣列相關聯。
條項4:如條項2或3之帶電粒子光學裝置,其中該射束整形孔徑陣列在該物鏡陣列之順流方向。
條項5:如條項2至4中任一項之帶電粒子光學裝置,其中該控制透鏡陣列與該物鏡陣列相關聯,較佳地毗鄰該物鏡陣列。
條項6:如條項5之帶電粒子光學裝置,其中該控制透鏡陣列及該物鏡陣列共用一共同電極。
條項7:如條項2至6中任一項之帶電粒子光學裝置,其中該控制器經組態以控制該物鏡陣列之該等物鏡以作為加速透鏡操作。
條項8:如條項2至7中任一項之帶電粒子光學裝置,其中該控制器經組態以控制該物鏡陣列之該等物鏡以作為減速透鏡操作。
條項9:任一前述條項之帶電粒子光學裝置,其中該控制器經組態以控制該等控制透鏡以將該等各別子射束聚焦至在該控制透鏡陣列之順流方向的各別中間焦點。
條項10:如條項9之帶電粒子光學裝置,其中該等中間焦點在該控制透鏡陣列與該樣品之間。
條項11:如任一前述條項之帶電粒子光學裝置,其中該控制器經組態以控制該等控制透鏡聚焦該等各別子射束以減少該等子射束在該射束整形孔徑陣列處的一剖面,例如以使得該等個別射束之該剖面小於該射束整形孔徑陣列之該各別射束整形孔徑的該剖面。
條項12:如任一前述條項之帶電粒子光學裝置,其包含:一偵測器陣列,其包含複數個偵測器元件,該複數個偵測器元件經組態以偵測自該樣品發射之信號粒子。
條項13:如條項12之帶電粒子光學裝置,其中該偵測器元件與該帶電粒子多射束之各別子射束相關聯。
條項14:如條項13之帶電粒子光學裝置,其中該偵測器陣列之至少一部分位於該控制透鏡陣列與該樣品之間。
條項15:如條項13或14之帶電粒子光學裝置,其中該偵測器陣列之至少一部分位於該射束整形孔徑陣列與該樣品之間。
條項16:如條項12至15中任一項之帶電粒子光學裝置,其中該偵測器陣列之至少一部分在該控制透鏡陣列之逆流方向。
條項17:如任一前述條項之帶電粒子光學裝置,其中該控制器經組態使得在該等控制透鏡選擇性地操縱該等各別子射束,使得該等子射束中之每一者之至少該臨限電流通過該射束整形孔徑陣列之該等各別孔徑時,該等子射束中之每一者之大體上全部通過該射束整形孔徑陣列之該等各別孔徑。
條項18:如任一前述條項之帶電粒子光學裝置,其中該射束整形孔徑陣列之該等孔徑在尺寸上小於該控制透鏡陣列之該等各別孔徑。
條項19:如任一前述條項之帶電粒子光學裝置,其中在該等子射束由該射束整形孔徑陣列之該等各別孔徑整形使得每一子射束之帶電粒子之小於該臨限電流通過該射束整形孔徑陣列中之該等各別孔徑時,該臨限電流為該等子射束之一電流的三倍。
條項20:如任一前述條項之帶電粒子光學裝置,其包含一子射束形成陣列,其經組態以將一帶電粒子射束分裂成包含該等子射束之該帶電粒子多射束。
條項21:如條項20之帶電粒子光學裝置,其中該子射束形成陣列與該控制透鏡陣列相關聯。
條項22:如條項21之帶電粒子光學裝置,其中該子射束形成陣列在該控制透鏡陣列之逆流方向。
條項23:如條項21之帶電粒子光學裝置,其中該子射束形成陣列提供該控制透鏡陣列之一最逆流方向電極。
條項24:如任一前述條項之帶電粒子光學裝置,其中該等帶電粒子係電子。
條項25:一種帶電粒子設備,其包含:一帶電粒子源,其經組態以發射一帶電粒子射束;及如條項1至19中任一項之帶電粒子光學裝置,其中該帶電粒子光學裝置包含一子射束形成陣列,該子射束形成陣列經組態以將該帶電粒子射束劃分成包含該等子射束之一帶電粒子多射束。
條項26:如條項25之帶電粒子設備,其中該子射束形成陣列與該控制透鏡陣列相關聯。
條項27:如條項26之帶電粒子設備,其中該子射束形成陣列在該控制透鏡陣列之逆流方向。
條項28:如條項26之帶電粒子設備,其中該子射束形成陣列提供該控制透鏡陣列之一最逆流方向電極。
條項29:如條項25至28中任一項之帶電粒子設備,其經組態使得該樣本上帶電粒子之一電流在至少一定比例之該等子射束之至少該臨限電流通過該射束整形陣列之該等各別孔徑時比在該等子射束由該射束整形陣列之該等各別孔徑整形使得每一子射束之導電粒子之小於該臨限電流通過該射束整形陣列之該等各別孔徑時大。
條項30:如條項25至29中任一項之帶電粒子設備,其中該控制器經組態以控制該帶電粒子設備進行操作以在該等子射束由該射束整形孔整形時使用該多射束偵測由該樣品發射的信號粒子使得每一子射束之帶電粒子之小於該臨限電流通過該射束整形孔徑陣列之該等各別孔徑。
條項31:如條項25至30中任一項之帶電粒子設備,其中該控制器經組態以在至少一定比例之該等子射束之至少該臨限電流通過該射束整形孔徑陣列之該等各別孔徑時控制該帶電粒子設備以對該樣品之一表面執行泛射。
條項32:一種用於朝向一樣品投射一帶電粒子多射束之方法,該方法包含:使用包含用於該等各別子射束之複數個控制透鏡之一控制透鏡陣列來操縱一帶電粒子多射束之各別子射束;控制該控制透鏡陣列以操縱該等子射束,使得該等子射束由一射束整形孔徑陣列中之各別孔徑整形,使得每一子射束之帶電粒子之小於一臨限電流通過該射束整形孔徑陣列中之該等各別孔徑,該射束整形孔徑陣列在該控制透鏡陣列之順流方向,包含用於該等各別子射束之複數個孔徑;及控制該控制透鏡陣列以操縱該等子射束使得至少一定比例之該等子射束之至少該臨限電流通過該射束整形孔徑陣列中之該等各別孔徑。
條項33:如條項32之方法,其包含:用光照明該樣品之一部分。
條項34:如條項32或33之方法,其中該方法用於準備該樣品以進行電壓對比度量測。
上述描述意欲為說明性,而非限制性。因此,對熟習此項技術者將顯而易見,可如所描述進行修改,而不會脫離下文所闡明之申請專利範圍及本文中所闡明至條項之範疇。
10:主腔室 20:裝載鎖定腔室 30:設備前端模組(EFEM) 30a:第一裝載埠 30b:第二裝載埠 40:電子設備 41:電子光學裝置 50:控制器 60:投射總成 61:光源 62:光射束 63:光學系統 64:圓柱形透鏡 65:反射表面 66:反射表面 91:電子至光子轉換器陣列 92:螢光條 93:開口 95:偏轉器陣列 96:磁性偏轉器 97:靜電偏轉器 98:光纖 100:電子射束檢測設備 201:電子源 202:初級電子射束 207:樣品架 208:樣品 209:電動載物台 211:子射束 212:子射束 213:子射束 220:子射束路徑 221:探測點 222:探測點 223:探測點 230:投射設備 231:聚光透鏡 240:偵測器 241:物鏡陣列 242:電極 243:電極 245:孔徑陣列 246:孔徑陣列 250:控制透鏡陣列 252:射束形成陣列 253:電極 254:電極 255:電極 262:射束整形陣列 265:大型掃描偏轉器 270:大型準直器 280:信號處理系統 404:基板 405:偵測器元件 405A:內部偵測部分 405B:外部偵測部分 406:射束孔徑 407:邏輯層 408:佈線層 409:基板穿孔 d:直徑 P:節距
自結合附圖進行的對例示性實施例的描述,本揭示內容之上述及其他態樣將變得較顯而易見。
1為說明例示性帶電粒子射束檢測設備的示意圖。
2為說明作為 1之例示性帶電粒子射束檢測設備之一部分的例示性多射束帶電粒子設備的示意圖。
3為包含大型準直器及大型掃描偏轉器的例示性帶電粒子設備的示意圖。
4為根據實施例之例示性多射束帶電粒子設備的示意圖。
5 4之多射束帶電粒子設備之一部分的示意圖。
6為根據實施例之例示性多射束帶電粒子設備的示意圖。
7為根據實施例之帶電粒子設備之物鏡陣列的示意性剖面圖。
8 7之物鏡陣列之修改方案的仰視圖。
9為併入於 7之物鏡陣列中之偵測器的放大示意性剖面圖。
10為偵測器之偵測器元件之仰視圖。
11為泛射樣品之 3之例示性帶電粒子設備的示意圖。
12為根據實施例之帶電粒子光學裝置之控制透鏡陣列及物鏡陣列的示意性剖面圖。
示意圖及視圖繪示下文所描述之組件。然而,圖中所描繪之組件並非按比例繪製。
40:電子設備
41:電子光學裝置
201:電子源
208:樣品
241:物鏡陣列
250:控制透鏡陣列
252:射束形成陣列
262:射束整形陣列
265:大型掃描偏轉器
270:大型準直器

Claims (15)

  1. 一種用於一帶電粒子設備之帶電粒子光學裝置,其經組態以朝向一樣品投射一帶電粒子多射束,該帶電粒子光學裝置包含: 一控制透鏡陣列,其包含複數個控制透鏡,其經組態以調整一帶電粒子多射束之各別子射束之一帶電粒子光學參數,用於由各別順流方向物鏡聚焦; 一射束整形孔徑陣列,在該控制透鏡陣列之順流方向,其包含用於該等各別子射束之複數個孔徑;及 一控制器,其經組態以控制該控制透鏡陣列以使得該等控制透鏡選擇性地(a)操縱該等各別子射束使得該等各別子射束由該射束整形孔徑陣列中之該等各別孔徑整形使得每一子射束之帶電粒子之小於一臨限電流通過該射束整形孔徑陣列中之該等各別孔徑,及(b)操縱該等各別子射束使得至少一定比例之該等子射束之至少該臨限電流通過該射束整形孔徑陣列中之該等各別孔徑。
  2. 如請求項1之帶電粒子光學裝置,其包含: 一物鏡陣列,在該控制透鏡陣列之順流方向,包含複數個物鏡,該複數個物鏡經組態以在該射束整形孔徑陣列對該等子射束進行整形時將各別子射束聚焦在該樣品上。
  3. 如請求項2之帶電粒子光學裝置,其中該射束整形孔徑陣列與該物鏡陣列相關聯。
  4. 如請求項2或3之帶電粒子光學裝置,其中該射束整形孔徑陣列在該物鏡陣列之順流方向。
  5. 如請求項2或3之帶電粒子光學裝置,其中該控制透鏡陣列與該物鏡陣列相關聯。
  6. 如請求項1至3中任一項之帶電粒子光學裝置,其中該控制器經組態以控制該等控制透鏡以將該等各別子射束聚焦至在該控制透鏡陣列之順流方向的各別中間焦點。
  7. 如請求項6之帶電粒子光學裝置,其中該等中間焦點在該控制透鏡陣列與該樣品之間。
  8. 如請求項1至3中任一項之帶電粒子光學裝置,其中該控制器經組態以控制該等控制透鏡聚焦該等各別子射束以減少該等子射束在該射束整形孔徑陣列處的一剖面,以使得該等個別射束之該剖面小於該射束整形孔徑陣列之該各別射束整形孔徑的該剖面。
  9. 如請求項1至3中任一項之帶電粒子光學裝置,其包含: 一偵測器陣列,其包含複數個偵測器元件,該複數個偵測器元件經組態以偵測自該樣品發射之信號粒子。
  10. 如請求項9之帶電粒子光學裝置,其中該偵測器元件與該帶電粒子多射束之各別子射束相關聯。
  11. 如請求項10之帶電粒子光學裝置,其中該偵測器陣列之至少一部分位於該控制透鏡陣列與該樣品之間。
  12. 如請求項1至3中任一項之帶電粒子光學裝置,其中該控制器經組態使得在該等控制透鏡選擇性地操縱該等各別子射束,使得該等子射束中之每一者之至少該臨限電流通過該射束整形孔徑陣列之該等各別孔徑時,該等子射束中之每一者之大體上全部通過該射束整形孔徑陣列之該等各別孔徑。
  13. 如請求項1至3中任一項之帶電粒子光學裝置,其中該射束整形孔徑陣列之該等孔徑在尺寸上小於該控制透鏡陣列之該等各別孔徑。
  14. 如請求項1至3中任一項之帶電粒子光學裝置,其包含一子射束形成陣列,其經組態以將一帶電粒子射束分裂成包含該等子射束之該帶電粒子多射束。
  15. 如請求項1至3中任一項之帶電粒子光學裝置,其中該臨限電流係一泛射臨限值。
TW111125240A 2021-07-07 2022-07-06 帶電粒子光學裝置、帶電粒子設備及方法 TWI824604B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21184294.3 2021-07-07
EP21184294.3A EP4117012A1 (en) 2021-07-07 2021-07-07 Charged particle-optical device, charged particle apparatus and method

Publications (2)

Publication Number Publication Date
TW202309965A true TW202309965A (zh) 2023-03-01
TWI824604B TWI824604B (zh) 2023-12-01

Family

ID=76829472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111125240A TWI824604B (zh) 2021-07-07 2022-07-06 帶電粒子光學裝置、帶電粒子設備及方法

Country Status (5)

Country Link
EP (1) EP4117012A1 (zh)
CN (1) CN117836892A (zh)
IL (1) IL309681A (zh)
TW (1) TWI824604B (zh)
WO (1) WO2023280552A1 (zh)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295040A (ja) * 1989-05-10 1990-12-05 Hitachi Ltd 集束イオンビーム装置
JP2004220832A (ja) * 2003-01-10 2004-08-05 Keyence Corp 電子顕微鏡、電子顕微鏡の対物レンズ絞り判別方法、電子顕微鏡の対物レンズ絞り判別プログラムおよびコンピュータで読み取り可能な記録媒体
JP4484868B2 (ja) 2003-03-10 2010-06-16 マッパー・リソグラフィー・アイピー・ビー.ブイ. 複数の小ビームを発生させるための装置
TWI497557B (zh) 2009-04-29 2015-08-21 Mapper Lithography Ip Bv 包含靜電偏轉器的帶電粒子光學系統
NL1036912C2 (en) 2009-04-29 2010-11-01 Mapper Lithography Ip Bv Charged particle optical system comprising an electrostatic deflector.
US8362425B2 (en) * 2011-03-23 2013-01-29 Kla-Tencor Corporation Multiple-beam system for high-speed electron-beam inspection
NL2007604C2 (en) 2011-10-14 2013-05-01 Mapper Lithography Ip Bv Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
NL2006868C2 (en) 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
JP2014107401A (ja) * 2012-11-27 2014-06-09 Canon Inc 描画装置、それを用いた物品の製造方法
JP2015211175A (ja) * 2014-04-28 2015-11-24 キヤノン株式会社 リソグラフィ装置、および物品の製造方法
CN111108582A (zh) * 2017-08-08 2020-05-05 Asml荷兰有限公司 带电粒子阻挡元件、包括这样的元件的曝光装置以及使用这样的曝光装置的方法
US10504687B2 (en) 2018-02-20 2019-12-10 Technische Universiteit Delft Signal separator for a multi-beam charged particle inspection apparatus
US10395887B1 (en) 2018-02-20 2019-08-27 Technische Universiteit Delft Apparatus and method for inspecting a surface of a sample, using a multi-beam charged particle column
CN112055886A (zh) * 2018-02-27 2020-12-08 卡尔蔡司MultiSEM有限责任公司 带电粒子多束系统及方法
US10748739B2 (en) 2018-10-12 2020-08-18 Kla-Tencor Corporation Deflection array apparatus for multi-electron beam system
US10978270B2 (en) 2018-12-19 2021-04-13 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, interchangeable multi-aperture arrangement for a charged particle beam device, and method for operating a charged particle beam device
EP3716313A1 (en) * 2019-03-28 2020-09-30 ASML Netherlands B.V. Aperture array with integrated current measurement
IL292290A (en) * 2019-10-18 2022-06-01 Asml Netherlands Bv Systems and methods for stress contrast defect detection
EP4088301A1 (en) * 2020-01-06 2022-11-16 ASML Netherlands B.V. Charged particle assessment tool, inspection method

Also Published As

Publication number Publication date
TWI824604B (zh) 2023-12-01
CN117836892A (zh) 2024-04-05
EP4117012A1 (en) 2023-01-11
WO2023280552A1 (en) 2023-01-12
IL309681A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
EP3852127A1 (en) Charged particle assessment tool, inspection method
TW202226313A (zh) 物鏡陣列總成、電子光學系統、電子光學系統陣列、聚焦方法;物鏡配置
CN115151998A (zh) 带电粒子评估工具、检查方法
TWI815231B (zh) 帶電粒子工具、校正方法、檢測方法
TW202307899A (zh) 帶電粒子評估系統及方法
TW202217905A (zh) 帶電粒子評估工具及檢測方法
KR20230021128A (ko) 하전 입자 다중 빔 칼럼, 하전 입자 다중 빔 칼럼 어레이, 검사 방법
TW202338342A (zh) 帶電粒子評估工具及檢測方法
TWI824604B (zh) 帶電粒子光學裝置、帶電粒子設備及方法
TWI827124B (zh) 帶電粒子設備及方法
US20240136147A1 (en) Charged particle-optical device, charged particle apparatus and method
TWI824518B (zh) 帶電粒子光學裝置及偵測自樣本發射之帶電粒子的方法
US11984295B2 (en) Charged particle assessment tool, inspection method
TWI813948B (zh) 帶電粒子評估工具及檢測方法
EP4117014A1 (en) Charged particle apparatus and method
EP3975222A1 (en) Charged particle assessment tool, inspection method
TW202328812A (zh) 帶電粒子裝置及方法
TW202410108A (zh) 帶電粒子光學設備
TW202316470A (zh) 帶電粒子評估系統及在帶電粒子評估系統中對準樣品之方法
TW202312215A (zh) 評估系統、評估方法
TW202303658A (zh) 補償電極變形之影響的方法、評估系統
TW202318466A (zh) 帶電粒子裝置、偵測器、及方法
CN117813669A (zh) 带电粒子装置及方法
TW202329181A (zh) 帶電粒子評估系統及方法
TW202312211A (zh) 帶電粒子裝置及方法