TW202305887A - 承載器及其製造方法 - Google Patents

承載器及其製造方法 Download PDF

Info

Publication number
TW202305887A
TW202305887A TW111122968A TW111122968A TW202305887A TW 202305887 A TW202305887 A TW 202305887A TW 111122968 A TW111122968 A TW 111122968A TW 111122968 A TW111122968 A TW 111122968A TW 202305887 A TW202305887 A TW 202305887A
Authority
TW
Taiwan
Prior art keywords
emissivity
film
main surface
film thickness
wafer
Prior art date
Application number
TW111122968A
Other languages
English (en)
Other versions
TWI810980B (zh
Inventor
菅野晃
遠藤典昭
田部井貴浩
井上昌利
Original Assignee
日商闊斯泰股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022071844A external-priority patent/JP2023004877A/ja
Application filed by 日商闊斯泰股份有限公司 filed Critical 日商闊斯泰股份有限公司
Publication of TW202305887A publication Critical patent/TW202305887A/zh
Application granted granted Critical
Publication of TWI810980B publication Critical patent/TWI810980B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45593Recirculation of reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)

Abstract

本發明係關於一種承載器,其特徵在具有包含碳材料之基材,並具有載置矽晶圓之一主面及與上述一主面對向之另一主面,且上述基材之整面由包含碳化矽之薄膜被覆,上述一主面之放射率之不均為3%以內,且一主面與和上述一主面對向之另一主面之平均放射率之比為1:1~1:0.8。

Description

承載器及其製造方法
本發明係關於一種承載器及其製造方法,例如係關於一種於磊晶成膜裝置中保持晶圓之承載器及其製造方法。
於半導體製造用裝置之一之磊晶成膜裝置中,作為保持矽晶圓之構件之承載器使用由碳化矽(SiC)覆蓋碳材料(稱為碳基材)而成之碳複合材料。上述承載器根據其形狀有薄餅型、滾筒型、單片型等,根據裝置或處理方法可使用複數種。 於製造上述承載器之情形時,任一類型均係藉由將碳基材設置於特定之塗覆爐,以CVD法等使碳化矽(SiC)於碳基材之表面成膜而獲得包含碳複合材料之承載器。
且說,藉由CVD法於碳基材之表面使碳化矽(SiC)之薄膜成膜時,於支持碳基材之治具與碳基材之接觸部位不會附著碳化矽膜。 對於此種課題,專利文獻1中,記載有於第1次成膜處理之後,將碳基材自爐取出一次,改變碳基材與治具接觸之位置而進行第2次以後之成膜處理。藉此能夠獲得整面被碳化矽(SiC)覆蓋之碳複合材料。
如上所述錯開接觸位置之複數次成膜處理係用以消除治具之接觸痕跡之有效方法,但由於將碳複合材料自爐取出一次而導致碳複合材料暴露於爐外部氣體中。因此,有存在碳化矽膜表面受到污染之虞之課題。於碳化矽膜表面受到污染之情形時,新的碳化矽膜會積層於該污染層上,若將該碳複合材料用作承載器,則會成為磊晶步驟中污染矽晶圓之原因。
因此,專利文獻1所記載之發明中,於最初進行碳化矽成膜之後,為了消除支持痕跡,將碳複合材料取出一次而進行支持位置之變更,藉由進行碳複合材料表面之純化處理(鹵氣之吹送)而減輕表面之污染,於爐內再次進行碳化矽成膜。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2008-174841號公報
[發明所欲解決之問題]
然而,專利文獻1所揭示之方法中,由於將碳基材自爐取出一次,故而污染之可能性並未消失。又,由於必須空出時間進行複數次成膜處理,故而存在步驟數及成本增加而不理想之課題。
進而,保持碳基材之治具所接觸之部位之碳化矽之膜厚相較其他部分薄,於2次成膜之情形時,成為約一半左右。因此,於磊晶成膜步驟中,有因碳化矽膜之消耗而導致作為基材之碳露出之虞。 又,碳化矽膜之厚度之不均勻性亦成為對矽晶圓之磊晶成膜步驟中產生膜厚不均之要因。於碳化矽之膜厚之不均較大之情形時,存在因導熱性不同而難以獲得均勻之磊晶膜之課題。
又,若被覆碳基材之碳化矽膜不均勻,則使用承載器之溫度區域之放射率不均。若該放射率之不均較大,則承載器產生溫度不均,結果存導致晶圓溫度之不均,進而導致磊晶膜之膜厚不均之課題。
本發明係鑒於上述情形而完成者,其目的在於提供一種污染被抑制之承載器及其製造方法,該承載器包含由碳化矽(SiC)之薄膜覆蓋包含碳材料之基材之表面而成之碳複合材料,能夠提高形成於上述基材之碳化矽膜之膜厚之均勻性,抑制導熱性之不均。 [解決問題之技術手段]
為了解決上述課題而完成之本發明之承載器之特徵在於具有包含碳材料之基材,並具有載置矽晶圓之一主面及與上述一主面對向之另一主面,且上述基材之整面由包含碳化矽之薄膜被覆,上述一主面之放射率之不均為3%以內,且一主面與和上述一主面對向之另一主面之平均放射率之比為1:1~1:0.8。 再者,較理想為,與上述一主面對向之另一主面之放射率之不均為3%以內。 又,較理想為,形成於上述另一主面之薄膜之膜厚相對於形成於上述一主面之薄膜之膜厚的比率為0.7以上1.2以下,上述一主面中,中心部與外緣部之膜厚差為形成於上述一主面之薄膜之膜厚之平均值的40%以下,且上述一主面之外緣部之最大膜厚與最小膜厚之膜厚差為形成於上述一主面之薄膜之膜厚之平均值的40%以下。 又,較理想為,形成於上述基材之整面之包含碳化矽之薄膜之膜厚至少為60 μm。
根據此種構成,形成於基材表面之薄膜之均勻性提高,一主面之導熱均勻性良好。其結果,於使用該承載器對矽晶圓進行之磊晶成膜步驟中,能夠獲得均勻之磊晶膜。
又,為了解決上述課題而完成的本發明之承載器之製造方法之特徵在於,其係上述承載器之製造方法,於腔室內一面使包含碳材料之基材沿對該基材支持之位置移動一面支持該基材,以原料氣體之供給方向相對於上述基材之上述一主面平行之方式供給該原料氣體,於上述基材之整面形成包含碳化矽之薄膜。 根據此種方法,能夠獲得污染被抑制之上述承載器。 [發明之效果]
根據本發明,能夠提供一種污染被抑制之承載器及其製造方法,該承載器包含由碳化矽(SiC)之薄膜覆蓋包含碳材料之基材之表面而成之碳複合材料,能夠提高形成於上述基材之碳化矽膜之膜厚之均勻性,抑制導熱性之不均。
以下,基於圖1至圖4對本發明之承載器及其製造方法之一實施方式進行說明。圖係模式圖或概念圖,各部位之厚度與寬度之關係、部位間之大小之比率等並未準確地圖示。
如圖1所示,承載器1具有包含碳材料之圓板狀之碳基材2。該碳基材2之整面由包含碳化矽之特定厚度(例如60 μm以上)之薄膜3被覆。 即,該薄膜3包含:薄膜3F,其被覆承載器1之作為晶圓載置面之一主面F1,且包含碳化矽;薄膜3B,其被覆與一主面F1對向之背面即另一主面F2,且包含碳化矽;及薄膜3S,其被覆碳基材2之外周面,且包含碳化矽。
又,該承載器1係於其一主面F1形成有載置半導體基板之一凹形狀之鍃孔部4之所謂單片型之承載器。 上述鍃孔部4於俯視下形成為圓形,於中央形成有圓柱狀之凹部4a。又,該承載器1具有相對於通過其中心部O之旋轉軸L之圓對稱性。此時,若將鍃孔部4之最深部(中心部O)之深度設為To,則平均深度Td成為To/2。
而且,上述承載器1之厚度T與上述平均深度Td之比(T/Td)較佳為6≦T/Td≦30。上述承載器1之厚度T與上述深度To之比(T/To)較佳為3≦T/To≦13。 如此,以承載器1之厚度T與上述平均深度Td之比(T/Td)較佳為6≦T/Td≦30之方式形成鍃孔部4,故能夠獲得抑制翹曲之效果。
此處,於上述承載器1之厚度T與上述平均深度Td之比(T/Td)未達6之情形時,因鍃孔相對於承載器1之厚度過深而有可能導致晶圓之外周成膜不良,故不佳。又,於上述承載器1之厚度T與上述平均深度Td之比(T/Td)超出30之情形時,承載器厚壁化,無法忽視碳基材2之剛性之影響,難以利用薄膜控制翹曲量,故不佳。
如上所述,使用可用作半導體用承載器之碳材料作為碳基材2,使用碳化矽作為薄膜3。薄膜3形成於碳基材2之整面,具有防止自碳基材2產生灰塵、雜質向外側擴散、或保護碳基材2之整面並且抑制碳基材2之翹曲之作用。
此處,圖2所示之承載器1之形成於另一主面F2之薄膜3B之膜厚t2之平均相對於形成於主面F1之薄膜3F之膜厚t1之平均的比率較佳為形成於0.7~1.2之間。 若上述比率小於0.7,則於使用該承載器之磊晶成膜步驟中,會產生導熱性之差異,難以獲得均勻之磊晶膜。 又,若上述比率大於1.2,則除了因薄膜3之膜厚不均而產生之導熱性之差異外,還易產生承載器之翹曲,從而磊晶膜變得不均勻。
又,較佳為於承載器1之主面F1,中心部O與外緣部F1a之膜厚差d1形成為形成於主面F1之薄膜3F之膜厚t1之平均的40%以下。 又,較佳為於承載器1之主面F1,將外緣部F1a之最大膜厚與最小膜厚之膜厚差d2形成為形成於主面F1之薄膜3F之膜厚t1之平均的40%以下。 若上述膜厚差d1或d2為膜厚t1之平均之40%以下,則主面F1之導熱均勻性良好,於使用該承載器進行之磊晶成膜步驟中,能夠獲得均勻之磊晶膜。 另一方面,若上述膜厚差大於膜厚t1之平均之40%,則存在易產生不均,主面F1之導熱變得不均勻,難以獲得均勻之磊晶膜之情形。
又,承載器1形成為在磊晶成膜步驟之溫度範圍(900~1300℃),晶圓載置面(主面F1)之放射率之不均為3%以內,且上述晶圓載置面與其背面(另一主面F2)之平均放射率之比為1:1~1:0.8。 又,較理想為形成為於上述晶圓載置面之背面(另一主面F2),同一面內之放射率之不均亦為3%以內。 藉由設為此種承載器1之放射率,能夠抑制承載器導熱性之不均,不會產生溫度不均,故可使載置之晶圓之溫度均勻,防止磊晶膜之膜厚不均。
如上所述之承載器1例如可藉由使用如圖3所示之CVD裝置5而製造。 圖3所示之CVD裝置5具有:腔室10,其形成處理空間;氣體流入口11,其設置於腔室10側面以便將載氣(氫氣)供給至腔室10內;及氣體流出口12,其設置於與流入口11對向之相反側之腔室10側面。
又,於腔室10內具備:支持部20,其用以支持承載器1之碳基材2之下表面側;及柱狀之防護構件13,其於碳基材2之周圍配置有複數個,以能夠滑動接觸之方式支持碳基材2之側部周面(外周)。 支持部20具有複數個支持腳20a~20d,其等配置成使以能夠藉由馬達21而定速旋轉之方式設置之滾筒22沿著碳基材2之圓周方向旋轉。再者,圖3中,支持腳20c被支持腳20a遮掩而未圖示。各支持腳20a~20d之滾筒22構成為抵接於碳基材2之背側面之周緣部,藉由各滾筒22朝一方向旋轉而使碳基材2受到支持並且以中心部O為中心旋轉。再者,各支持腳20a~20d之滾筒22之旋轉動作(旋轉開始、停止、旋轉方向、轉速)以同步之方式藉由未圖示之控制部控制。 又,如圖3所示,於腔室10之上下設置有加熱器部15,構成為能夠將爐內升溫至特定溫度。
於使用該CVD裝置5製造承載器1之情形時,將預先形成有圓形之鍃孔部之包含碳材料之碳基材2配置於腔室10內之支持腳20a~20d上。 其次,藉由未圖示之控制部使支持腳20a~20d之滾筒22以特定之轉速開始旋轉。藉此碳基材2以中心部O為中心以特定速度(例如0.1 rpm)旋轉。
又,驅動加熱器部15而使腔室10內升溫至例如500℃,自氣體流出口12對腔室10內進行抽吸使其為真空狀態。 其次,自氣體流入口11將載氣(H 2)以特定之流量導入至腔室10內。其後,使腔室10內升溫至例如1300℃,將原料氣體(SiCl 4、C 3H 8)與載氣一起導入特定時間。導入開始時之腔室10內之原料氣體濃度例如設為15%~20%。
此處,上述原料氣體藉由載氣而沿碳基材2之上下表面流動,自氣體流出口12排出。 又,碳基材2藉由設置成支持下表面側周緣部之被旋轉驅動之複數個滾筒22而以中心部O為中心旋轉,故碳基材2之下表面側周緣部之支持位置不會成為相同部位(並不固定而變化),從而形成膜之膜厚之均勻性提高。
以形成膜成為特定厚度(例如60 μm以上)之方式將原料氣體供給至腔室10內特定時間(例如14小時)。 繼而,於該原料氣體供給過程之最終階段(例如結束前5~60分鐘之階段),將原料氣體之濃度階梯性地稀釋至通常濃度之1/2~1/4。 藉此,原料氣體成為較通常稀薄之原料氣體,成膜速率亦較通常降低,於晶粒大小一致之狀態下成膜。其結果,面內之成膜量容易變得均勻,能夠使同一面內之放射率更接近固定。具體而言,晶圓載置面(及其背面)之放射率之不均被調整為3%以內,且上述晶圓載置面與其背面之平均放射率之比被調整為1:1~1:0.8。 若經過預先設定之原料氣體之供給時間,則停止原料氣體之供給,進而經過特定時間後(例如1小時後)停止滾筒22之旋轉。
藉由該等處理而於碳基材2上形成包含碳化矽之薄膜3,製造出本發明之承載器1。該薄膜3於碳基材2暴露於原料氣體之期間,腔室10內支持碳基材2之位置始終變化,故形成為較高之膜厚之均勻性。即,於所獲得之承載器1中,形成於其另一主面F2之薄膜3B之膜厚t2之平均相對於形成於其主面F1之薄膜3F之膜厚t1之平均的比率較佳為形成於0.7~1.2之間。又,於承載器1之主面F1,中心部O與外緣部F1a之膜厚差d1、及外緣部F1a之最大膜厚與最小膜厚之膜厚差d2較佳為形成為形成於主面F1之薄膜3F之膜厚t1之平均的40%以下。
如上根據本發明之實施方式,於承載器1,藉由將形成於碳基材2上之薄膜3之膜厚均勻性形成得較高,而使晶圓載置面之放射率之不均為3%以內,且使上述晶圓載置面與其背面之平均放射率之比為1:1~1:0.8。 又,較佳為將承載器1之形成於另一主面F2之薄膜3B之膜厚t2之平均相對於形成於其主面F1之薄膜3F之膜厚t1之平均的比率形成於0.7~1.2之間,於承載器1之主面F1,中心部O與外緣部F1a之膜厚差d1或外緣部F1a之最大膜厚與最小膜厚之膜厚差d2形成為形成於主面F1之薄膜3F之膜厚t1之平均的40%以下。 藉此,形成於碳基材2之表面之薄膜3之均勻性提高,承載器1不會產生溫度不均,主面F1之導熱均勻性良好。 其結果,於使用該承載器對矽晶圓進行之磊晶成膜步驟中,能夠獲得均勻之磊晶膜。 又,於包含碳材料之碳基材2上藉由CVD形成包含碳化矽之薄膜時,藉由不使對碳基材2支持之位置固定而能夠對碳基材2整體形成均勻之薄膜。又,藉此無需如先前般於薄膜形成之中途自腔室取出碳基材2,從而能夠形成污染被抑制之單一層之薄膜。
再者,上述實施方式中,作為抑制晶圓載置面(及背面)之同一面內之放射率不均之方法,採用於原料氣體供給過程之最終階段對原料氣體進行稀釋者,但並不限定於該例。 又,上述實施方式中,以形成有鍃孔部之承載器為例進行了說明,但本發明並不限定於該形態,亦能夠應用於不具有鍃孔部之承載器。 又,於具有鍃孔部之情形時,並不限於如圖所示之圓柱形狀之鍃孔部,例如,亦能夠將本發明應用於具有彎曲成凹狀之鍃孔部之承載器。 [實施例]
基於實施例,對本發明之承載器及其製造方法作進一步說明。 [實驗1] 實驗1中,準備複數個使用各向同性石墨作為承載器之基材之材料且形成有鍃孔部之碳基材。使用圖3所示之CVD裝置,藉由複數個膜厚形成條件而於基材表面形成碳化矽膜。 於上述CVD裝置中,將碳基材配置於腔室內,於抽真空後,使腔室內升溫至500℃且將載氣(H 2)導入至腔室內。其次,使腔室內升溫至1300℃,以不固定碳基材之支持位置之方式使該基材以0.1 rpm之轉速旋轉,沿著碳基材之正面及背面供給原料氣體(SiCl 4、C 3H 8)。經過特定時間(14小時)後,停止原料氣體之供給,於1小時後停止碳基材之旋轉,於基材表面形成厚度70 μm之碳化矽之薄膜。
此處,於上述原料氣體之供給過程(14小時)中,於最終階段(結束前0.2小時)將原料氣體之濃度稀釋而稀薄化,以抑制所形成之承載器之晶圓載置面及其背面之放射率之不均。 再者,設定放射率之不均作為實施例1~4及比較例1~3之條件,藉由原料氣體濃度而調整放射率之不均。再者,晶圓載置面及其背面之放射率之測定係於碳基材之晶圓載置面之中心及自上述中心朝外周側位於上述載置面之半徑50%之同心圓上按120°間隔之3處共計4點,藉由賽默飛世爾製造之FTIR(傅立葉變換紅外線分光法)、及使用積分球之方法進行。平均放射率係上述4點之平均值,對上述4點藉由(最大值-最小值)÷平均值而算出放射率不均。再者,對於晶圓載置面之背面,亦於與晶圓載置面相同之測定位置進行測定及算出。
實施例1中,碳基材之晶圓載置面之放射率不均為1%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:1。 實施例2中,碳基材之晶圓載置面之放射率不均為2%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:0.9。 實施例3中,碳基材之晶圓載置面之放射率不均為3%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:0.8。 實施例4中,碳基材之晶圓載置面之放射率不均為1%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.8。 實施例5中,碳基材之晶圓載置面之放射率不均為2%,晶圓載置面之背面之放射率不均為4%,晶圓載置面與背面之平均放射率之比為1:0.8。
比較例1中,碳基材之晶圓載置面之放射率不均為4%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.9。 比較例2中,碳基材之晶圓載置面之放射率不均為3%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.7。
使用實施例1至5、比較例1、2中所製造之承載器進行對矽晶圓形成磊晶膜之處理。 將實驗1之結果示於表1。表1所示之各條件之評估係根據形成於矽晶圓之磊晶膜之均勻性進行。將磊晶膜之膜厚之面內分佈為±5%以下者設為○,超出±5%~7%者設為△,超出±7%者設為×。
[表1]
膜厚70 μm 實施例1 實施例2 實施例3 實施例4 實施例5 比較例1 比較例2
正面之放射率不均(%) 1 2 3 1 2 4 3
背面之放射率不均(%) 1 1 1 3 4 3 3
正面及背面之放射率之比 1:1 1:0.9 1:0.8 1:0.8 1:0.8 1:0.9 1:0.7
評估 × ×
根據以上實驗1之結果確認,於基材表面形成有厚度70 μm之碳化矽之薄膜之情形時,藉由將晶圓載置面(正面)之放射率之不均設為3%以內,且將晶圓載置面與其背面之平均放射率之比設為1:1~1:0.8,而使形成於矽晶圓之磊晶膜之均勻性良好。
[實驗2] 實驗2中,將基材表面之碳化矽薄膜之厚度變更為30 μm,其他條件與實驗1相同,進行評估。
實施例6中,碳基材之晶圓載置面之放射率不均為1%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:1。 實施例7中,碳基材之晶圓載置面之放射率不均為2%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:0.9。 實施例8中,碳基材之晶圓載置面之放射率不均為3%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:0.8。 實施例9中,碳基材之晶圓載置面之放射率不均為1%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.8。 實施例10中,碳基材之晶圓載置面之放射率不均為2%,晶圓載置面之背面之放射率不均為4%,晶圓載置面與背面之平均放射率之比為1:0.8。
比較例3中,碳基材之晶圓載置面之放射率不均為4%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.9。 比較例4中,碳基材之晶圓載置面之放射率不均為3%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.7。
使用實施例6至10、比較例3、4中所製造之承載器進行對矽晶圓形成磊晶膜之處理。 將實驗2之結果示於表2。表2所示之各條件之評估係根據形成於矽晶圓之磊晶膜之均勻性進行。將磊晶膜之膜厚之面內分佈為±5%以下者設為○,將超出±5%~7%者設為△,將超出±7%者設為×。
[表2]
膜厚30 μm 實施例6 實施例7 實施例8 實施例9 實施例10 比較例3 比較例4
正面之放射率不均(%) 1 2 3 1 2 4 3
背面之放射率 不均(%) 1 1 1 3 4 3 3
正面及背面之放射率之比 1:1 1:0.9 1:0.8 1:0.8 1:0.8 1:0.9 1:0.7
評估 × ×
根據表2所示之實驗2之結果確認,於基材表面形成有厚度30 μm之碳化矽之薄膜之情形時,藉由將晶圓載置面(正面)之放射率之不均設為3%以內,且將晶圓載置面與其背面之平均放射率之比設為1:1~1:0.8,而使形成於矽晶圓之磊晶膜之均勻性良好。
[實驗3] 實驗3中,將基材表面之碳化矽薄膜之厚度變更為60 μm,其他條件與實驗1相同,進行評估。
實施例11中,碳基材之晶圓載置面之放射率不均為1%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:1。 實施例12中,碳基材之晶圓載置面之放射率不均為2%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:0.9。 實施例13中,碳基材之晶圓載置面之放射率不均為3%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:0.8。 實施例14中,碳基材之晶圓載置面之放射率不均為1%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.8。 實施例15中,碳基材之晶圓載置面之放射率不均為2%,晶圓載置面之背面之放射率不均為4%,晶圓載置面與背面之平均放射率之比為1:0.8。
比較例5中,碳基材之晶圓載置面之放射率不均為4%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.9。 比較例6中,碳基材之晶圓載置面之放射率不均為3%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.7。
使用實施例11至15、比較例5、6中所製造之承載器進行對矽晶圓形成磊晶膜之處理。 將實驗3之結果示於表3。表3所示之各條件之評估係根據形成於矽晶圓之磊晶膜之均勻性進行。將磊晶膜之膜厚之面內分佈為±5%以下者設為○,將超出±5%~7%者設為△,將超出±7%者設為×。
[表3]
膜厚60 μm 實施例11 實施例12 實施例13 實施例14 實施例15 比較例5 比較例6
正面之放射率不均(%) 1 2 3 1 2 4 3
背面之放射率不均(%) 1 1 1 3 4 3 3
正面及背面之放射率之比 1:1 1:0.9 1:0.8 1:0.8 1:0.8 1:0.9 1:0.7
評估 × ×
根據表3所示之實驗3之結果確認,於基材表面形成有厚度60 μm之碳化矽之薄膜之情形時,藉由將晶圓載置面(正面)之放射率之不均設為3%以內,且將晶圓載置面與其背面之平均放射率之比設為1:1~1:0.8,而使形成於矽晶圓之磊晶膜之均勻性良好。
[實驗4] 實驗4中,將基材表面之碳化矽薄膜之厚度變更為140 μm,其他條件與實驗1相同,進行評估。
實施例16中,碳基材之晶圓載置面之放射率不均為1%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:1。 實施例17中,碳基材之晶圓載置面之放射率不均為2%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:0.9。 實施例18中,碳基材之晶圓載置面之放射率不均為3%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:0.8。 實施例19中,碳基材之晶圓載置面之放射率不均為1%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.8。 實施例20中,碳基材之晶圓載置面之放射率不均為2%,晶圓載置面之背面之放射率不均為4%,晶圓載置面與背面之平均放射率之比為1:0.8。
比較例7中,碳基材之晶圓載置面之放射率不均為4%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.9。 比較例8中,碳基材之晶圓載置面之放射率不均為3%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.7。
使用實施例16至20、比較例7、8中所製造之承載器進行對矽晶圓形成磊晶膜之處理。 將實驗4之結果示於表4。表4所示之各條件之評估係根據形成於矽晶圓之磊晶膜之均勻性進行。將磊晶膜之膜厚之面內分佈為±5%以下者設為○,將超出±5%~7%設為△,將超出±7%者設為×。
[表4]
膜厚140 μm 實施例16 實施例17 實施例18 實施例19 實施例20 比較例7 比較例8
正面之放射率不均(%) 1 2 3 1 2 4 3
背面之放射率不均(%) 1 1 1 3 4 3 3
正面及背面之放射率之比 1:1 1:0.9 1:0.8 1:0.8 1:0.8 1:0.9 1:0.7
評估 × ×
根據表4所示之實驗4之結果確認,於基材表面形成有厚度140 μm之碳化矽之薄膜之情形時,藉由將晶圓載置面(正面)之放射率之不均設為3%以內,且將晶圓載置面與其背面之平均放射率之比設為1:1~1:0.8,而使形成於矽晶圓之磊晶膜之均勻性良好。
[實驗5] 實驗5中,將基材表面之碳化矽薄膜之厚度變更為200 μm,其他條件與實驗1相同,進行評估。
實施例21中,碳基材之晶圓載置面之放射率不均為1%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:1。 實施例22中,碳基材之晶圓載置面之放射率不均為2%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:0.9。 實施例23中,碳基材之晶圓載置面之放射率不均為3%,晶圓載置面之背面之放射率不均為1%,晶圓載置面與背面之平均放射率之比為1:0.8。 實施例24中,碳基材之晶圓載置面之放射率不均為1%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.8。 實施例25中,碳基材之晶圓載置面之放射率不均為2%,晶圓載置面之背面之放射率不均為4%,晶圓載置面與背面之平均放射率之比為1:0.8。
比較例9中,碳基材之晶圓載置面之放射率不均為4%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.9。 比較例10中,碳基材之晶圓載置面之放射率不均為3%,晶圓載置面之背面之放射率不均為3%,晶圓載置面與背面之平均放射率之比為1:0.7。
使用實施例21至25、比較例9、10中所製造之承載器進行對矽晶圓形成磊晶膜之處理。 將實驗5之結果示於表5。表5所示之各條件之評估係根據形成於矽晶圓之磊晶膜之均勻性進行。將磊晶膜之膜厚之面內分佈為±5%以下者設為○,將超出±5%~7%者設為△,將超出±7%者設為×。
[表5]
膜厚200 μm 實施例21 實施例22 實施例23 實施例24 實施例25 比較例9 比較例10
正面之放射率不均(%) 1 2 3 1 2 4 3
背面之放射率不均(%) 1 1 1 3 4 3 3
正面及背面之放射率之比 1:1 1:0.9 1:0.8 1:0.8 1:0.8 1:0.9 1:0.7
評估 × ×
根據表5所示之實驗5之結果確認,於基材表面形成有厚度200 μm之碳化矽之薄膜之情形時,藉由將晶圓載置面(正面)之放射率之不均設為3%以內,且將晶圓載置面與其背面之平均放射率之比設為1:1~1:0.8,而使形成於矽晶圓之磊晶膜之均勻性良好。
根據以上實驗1~5之結果確認,形成於基材表面之碳化矽之薄膜厚度為任一條件之情形時,均藉由將晶圓載置面(正面)之放射率之不均設為3%以內,且將晶圓載置面與其背面之平均放射率之比設為1:1~1:0.8,而使形成於矽晶圓之磊晶膜之均勻性良好。 又,確認到更佳為藉由將承載器背面之放射率之不均亦設為3%以內,而使形成於矽晶圓之磊晶膜之均勻性變得更良好。
[實驗6] 實驗6中,對形成於碳基材表面之碳化矽膜之較佳之膜厚進行了研究。於實施例26~33中,膜厚係藉由原料氣體之供給時間而調整。進而,該實驗6中,於原料氣體之供給步驟之最終階段,將原料氣體稀釋,調整成使所獲得之承載器之晶圓載置面及背面之放射率之不均皆為3%以內,且晶圓載置面與其背面之平均放射率之比為1:1~1:0.8之範圍。
繼而,使用所獲得之承載器,反覆進行磊晶成膜處理與清洗處理,驗證可否達成特定之壽命時間(連續運轉4000小時)。 實施例29中,主面(晶圓載置面)之碳化矽膜之膜厚為61 μm。又,上述膜厚於實施例30中為66 μm,於實施例31中為70 μm,於實施例32中為80 μm,於實施例33中為100 μm。 又,上述膜厚於實施例26中為42 μm,於實施例27中為55 μm,於實施例28中為58 μm。 將實驗6之評估示於表6。
[表6]
   實施例26 實施例27 實施例28 實施例29 實施例30 實施例31 實施例32 實施例33
膜厚(μm) 42 55 58 61 66 70 80 100
評估 × × ×
如表6所示,對於碳化矽膜之膜厚低於60 μm之承載器,無法獲得必要之壽命。由此確認,碳化矽膜較佳為60 μm以上。
[實驗7] 實驗7中,準備使用各向同性石墨作為承載器之基材之材料且形成有鍃孔部之碳基材。使用圖3所示之CVD裝置,藉由複數個膜厚形成條件而於基材表面形成碳化矽膜。 其次,使用根據各條件所形成之承載器,進行對矽晶圓形成磊晶膜之處理。
於承載器之製造中,使用圖3所示之CVD裝置於承載器之基材之表面形成碳化矽膜時,藉由對處理時間進行增減而調整膜厚。進而,該實驗7中,於原料氣體之供給步驟之最終階段,將原料氣體稀釋,調整成使所獲得之承載器之晶圓載置面及背面之放射率之不均皆為3%以內,且晶圓載置面與其背面之平均放射率之比為1:1~1:0.8之範圍。 於承載器形成後,求出形成於其另一主面(非晶圓載置面)之碳化矽膜之膜厚之平均相對於形成於其主面(晶圓載置面)之碳化矽膜之膜厚之平均的比率。再者,形成於其主面(晶圓載置面)之碳化矽膜之膜厚及形成於其另一主面(非晶圓載置面)之碳化矽之膜厚之平均值係使用光學顯微鏡測定與放射率測定部位相同位置之剖面,算出其等之平均。
如表7所示,上述比率於實施例36中為0.7,於實施例37中為0.8,於實施例38中為0.9,於實施例39中為1.0,於實施例40中為1.1,於實施例41中為1.2。 又,上述比率於實施例34中為0.5,於實施例35中為0.6,於實施例42中為1.3,於實施例43中為1.4。
再者,於實施例34~43中,於承載器之主面(晶圓載置面),將中心與外緣部之膜厚差相對於形成於主面之薄膜之膜厚之平均的比例(%)均設為30%。進而,於承載器之主面(晶圓載置面),對於外緣部之最大膜厚與最小膜厚之膜厚差相對於形成於主面之薄膜之膜厚之平均的比例(%),亦均設為30%。 將實驗7之結果示於表7。表7所示之各條件之評估係根據形成於矽晶圓之磊晶膜之均勻性進行。將磊晶膜之膜厚之面內分佈為±5%以下者設為○,將超出±5%~7%者設為△,將超出±7%者設為×。
[表7]
   膜厚比 評估
實施例34 0.5
實施例35 0.6
實施例36 0.7
實施例37 0.8
實施例38 0.9
實施例39 1.0
實施例40 1.1
實施例41 1.2
實施例42 1.3
實施例43 1.4
根據實驗7之結果確認,若形成於承載器之另一主面(非晶圓載置面)之碳化矽膜之膜厚之平均相對於形成於承載器之主面(晶圓載置面)之碳化矽膜之膜厚之平均的比率為0.7~1.2之範圍,則磊晶膜之膜厚均勻性良好。
[實驗8] 實驗8中,與實驗7同樣地使用圖3所示之CVD裝置,藉由複數個膜厚形成條件而於基材表面形成碳化矽膜。 其次,使用根據各條件所形成之承載器,進行對矽晶圓形成磊晶膜之處理。
於承載器之製造中,使用圖3所示之CVD裝置於承載器之基材之表面形成碳化矽膜時,藉由對處理時間進行增減而調整膜厚。繼而,於原料氣體之供給步驟之最終階段,將原料氣體稀釋,調整成使所獲得之承載器之晶圓載置面及背面之放射率之不均皆為3%以內,且晶圓載置面與其背面之平均放射率之比為1:1~1:0.8之範圍。 於薄膜形成結束後,求出自CVD裝置取出之承載器之主面(晶圓載置面)中,中心與外緣部之膜厚差相對於形成於主面之薄膜之膜厚之平均的比例(%)。
上述比例於實施例44中為0%,於實施例45中為10%,於實施例46中為20%,於實施例47中為30%,於實施例48中為40%。 又,上述比例於實施例49中為50%,於實施例50中為60%。
再者,實施例44~50中,將形成於承載器之另一主面(非晶圓載置面)之碳化矽膜之膜厚之平均相對於形成於承載器之主面(晶圓載置面)之碳化矽膜之膜厚之平均的比率均設為1.0。進而,於承載器之主面(晶圓載置面),關於外緣部之最大膜厚與最小膜厚之膜厚差相對於形成於主面之薄膜之膜厚之平均的比例(%),均設為30%。 將實驗8之結果示於表8。與實驗7同樣地,表8所示之各條件之評估係根據形成於矽晶圓之磊晶膜之均勻性進行。將磊晶膜之膜厚之面內分佈為±5%以下者設為○,將超出±5%~7%者設為△,將超出±7%者設為×。
[表8]
   比例(%) 評估
實施例44 0
實施例45 10
實施例46 20
實施例47 30
實施例48 40
實施例49 50
實施例50 60
根據實驗8之結果確認,若於承載器之主面(晶圓載置面),中心與外緣部之膜厚差為形成於主面之薄膜之膜厚之平均之0%~40%之範圍,則磊晶膜之膜厚均勻性良好。
[實驗9] 實驗9中,與實驗7同樣地使用圖3所示之CVD裝置,藉由複數個膜厚形成條件而於基材表面形成碳化矽膜。 其次,使用根據各條件所形成之承載器,進行對矽晶圓形成磊晶膜之處理。
於承載器之製造中,使用圖3所示之CVD裝置於承載器之基材之表面形成碳化矽膜時,藉由對處理時間進行增減而調整膜厚。繼而,於原料氣體之供給步驟之最終階段,將原料氣體稀釋,調整成使所獲得之承載器之晶圓載置面及背面之放射率之不均皆為3%以內,且晶圓載置面與其背面之平均放射率之比為1:1~1:0.8之範圍。 於薄膜形成結束後,求出於自CVD裝置取出之承載器之主面(晶圓載置面),外緣部之最大膜厚與最小膜厚之膜厚差相對於形成於主面之薄膜之膜厚之平均的比例(%)。
上述比例於實施例51中為0%,於實施例52中為10%,於實施例53中為20%,於實施例54中為30%,於實施例55中為40%。 又,上述比例於實施例56中為50%,於實施例57中為60%。
再者,實施例51~57中,將形成於承載器之另一主面(非晶圓載置面)之碳化矽膜之膜厚之平均相對於形成於承載器之主面(晶圓載置面)之碳化矽膜之膜厚之平均的比率均設為1.0。進而,於承載器之主面(晶圓載置面),關於中心與外緣部之膜厚差相對於形成於主面之薄膜之膜厚之平均的比例(%),均設為30%。 將實驗9之結果示於表9。與實驗7、8同樣地,表9所示之各條件之評估係根據形成於矽晶圓之磊晶膜之均勻性進行。將磊晶膜之膜厚之面內分佈為±5%以下者設為○,將超出±5%~7%者設為△,將超出±7%者設為×。
[表9]
   比例(%) 評估
實施例51 0
實施例52 10
實施例53 20
實施例54 30
實施例55 40
實施例56 50
實施例57 60
根據實驗9之結果確認,若於承載器之主面(晶圓載置面),外緣部之最大膜厚與最小膜厚之膜厚差為形成於主面之薄膜之膜厚之平均之0%~40%之範圍,則磊晶膜之膜厚均勻性良好。
本申請案係基於2021年6月24日提出申請之日本專利申請2021-105175及2022年4月25日提出申請之日本專利申請2022-071844者,其內容係作為參照而併入本文。
1:承載器 2:碳基材 3:薄膜 3B:薄膜 3F:薄膜 3S:薄膜 4:鍃孔部 4a:凹部 5:CVD裝置 10:腔室 11:氣體流入口 12:氣體流出口 13:防護構件 15:加熱器部 20:支持部 20a~20d:支持腳 21:馬達 22:滾筒 F1:主面 F1a:外緣部 F2:另一主面 L:旋轉軸 O:中心部 t1:膜厚 t2:膜厚 T:厚度 Td:平均深度 To:最深部之深度
圖1係本發明之承載器之剖視圖。 圖2係將圖1之承載器之一部分放大後之剖視圖。 圖3係模式性表示製造圖1之承載器時使用之CVD裝置之剖視圖。 圖4係圖3之CVD裝置之俯視圖。
3B:薄膜
3F:薄膜
3S:薄膜
F1a:外緣部
t1:膜厚
t2:膜厚

Claims (5)

  1. 一種承載器,其特徵在於具有包含碳材料之基材,並具有載置矽晶圓之一主面及與上述一主面對向之另一主面,且 上述基材之整面由包含碳化矽之薄膜被覆, 上述一主面之放射率之不均為3%以內,且一主面與和上述一主面對向之另一主面之平均放射率之比為1:1~1:0.8。
  2. 如請求項1之承載器,其中與上述一主面對向之另一主面之放射率之不均為3%以內。
  3. 如請求項1或2之承載器,其中形成於上述另一主面之薄膜之膜厚相對於形成於上述一主面之薄膜之膜厚的比率為0.7以上1.2以下,上述一主面中,中心部與外緣部之膜厚差為形成於上述一主面之薄膜之膜厚之平均值的40%以下,且上述一主面之外緣部之最大膜厚與最小膜厚之膜厚差為形成於上述一主面之薄膜之膜厚之平均值的40%以下。
  4. 如請求項1至3中任一項之承載器,其中形成於上述基材之整面之包含碳化矽之薄膜之膜厚至少為60 μm。
  5. 一種如上述請求項1至4中任一項之承載器之製造方法,其特徵在於具備如下步驟: 於腔室內一面使包含碳材料之基材於對該基材支持之位置移動,一面支持該基材, 以原料氣體之供給方向相對於上述基材之上述一主面平行之方式供給原料氣體,於上述基材之整面形成包含碳化矽之薄膜。
TW111122968A 2021-06-24 2022-06-21 承載器及其製造方法 TWI810980B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-105175 2021-06-24
JP2021105175 2021-06-24
JP2022071844A JP2023004877A (ja) 2021-06-24 2022-04-25 サセプタ及びその製造方法
JP2022-071844 2022-04-25

Publications (2)

Publication Number Publication Date
TW202305887A true TW202305887A (zh) 2023-02-01
TWI810980B TWI810980B (zh) 2023-08-01

Family

ID=82258515

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111122968A TWI810980B (zh) 2021-06-24 2022-06-21 承載器及其製造方法

Country Status (4)

Country Link
US (1) US20220411959A1 (zh)
EP (1) EP4112771A1 (zh)
CN (1) CN115522183A (zh)
TW (1) TWI810980B (zh)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134663A (ja) * 1986-11-25 1988-06-07 Tokai Carbon Co Ltd カ−ボン基材面への被膜形成方法
US5098198A (en) * 1990-04-19 1992-03-24 Applied Materials, Inc. Wafer heating and monitor module and method of operation
US9612215B2 (en) * 2004-07-22 2017-04-04 Toyo Tanso Co., Ltd. Susceptor
JP4880624B2 (ja) 2008-01-28 2012-02-22 東洋炭素株式会社 気相成長用サセプター及びその製造方法
JP5394092B2 (ja) * 2009-02-10 2014-01-22 東洋炭素株式会社 Cvd装置
JP2011225949A (ja) * 2010-04-21 2011-11-10 Ibiden Co Ltd 炭素部品および炭素部品の製造方法
KR102239607B1 (ko) * 2013-02-06 2021-04-13 도요탄소 가부시키가이샤 탄화규소-탄화탄탈 복합재 및 서셉터
ITCO20130041A1 (it) * 2013-09-27 2015-03-28 Lpe Spa Suscettore con elemento di supporto
JP6219238B2 (ja) * 2014-06-24 2017-10-25 東洋炭素株式会社 サセプタ及びその製造方法
WO2016088671A1 (ja) * 2014-12-02 2016-06-09 昭和電工株式会社 ウェハ支持台、化学気相成長装置、エピタキシャルウェハおよびその製造方法
JP2018095506A (ja) * 2016-12-13 2018-06-21 イビデン株式会社 Si半導体製造装置用サセプタおよびSi半導体製造装置用サセプタの製造方法
CN111201208B (zh) * 2017-10-05 2023-05-23 阔斯泰公司 氧化铝质烧结体及其制造方法
JP7506013B2 (ja) 2019-12-26 2024-06-25 株式会社Dnpファインケミカル ハロゲン化フタロシアニン色材、色材液、着色硬化性組成物、カラーフィルタ、及び表示装置
JP7152730B2 (ja) 2020-10-28 2022-10-13 大成建設株式会社 吹付厚管理装置およびトンネル施工方法

Also Published As

Publication number Publication date
TWI810980B (zh) 2023-08-01
US20220411959A1 (en) 2022-12-29
EP4112771A1 (en) 2023-01-04
CN115522183A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
JP4592849B2 (ja) 半導体製造装置
TWI686502B (zh) 用於磊晶生長裝置的腔室部件(二)
US7648579B2 (en) Substrate support system for reduced autodoping and backside deposition
US20160068996A1 (en) Susceptor and pre-heat ring for thermal processing of substrates
TWI404125B (zh) 製造經磊晶塗覆之矽晶圓的方法
TWI613751B (zh) 在反應器裝置中用於支撐晶圓之基座組件
TWI625821B (zh) 用於更均勻的層厚度的基板支撐環
JPWO2005111266A1 (ja) 気相成長装置用サセプタ
KR101516164B1 (ko) 에피텍셜 성장용 서셉터
JP2003197532A (ja) エピタキシャル成長方法及びエピタキシャル成長用サセプター
US10513797B2 (en) Manufacturing method of epitaxial silicon wafer
TW201031773A (en) Method for producing epitaxially coated silicon wafers
JP6459801B2 (ja) エピタキシャルシリコンウェーハの製造方法
JP2010016183A (ja) 気相成長装置、エピタキシャルウェーハの製造方法
JP2024501860A (ja) 半導体ウェハ反応装置における予熱リングのためのシステムおよび方法
JP2011165964A (ja) 半導体装置の製造方法
TW201929050A (zh) 磊晶成長裝置及使用此裝置的半導體磊晶晶圓的製造方法
TWI810980B (zh) 承載器及其製造方法
JP7470026B2 (ja) サセプタ及びその製造方法
JP2023004877A (ja) サセプタ及びその製造方法
TW202129832A (zh) 用於均勻沉積之具有側壁隆起的基座及處理結晶基材之方法
EP3305940A1 (en) Susceptor
KR101238842B1 (ko) 반도체 제조용 서셉터 및 이를 포함한 에피택셜 성장 장치
JP7371510B2 (ja) 成膜方法および基板の製造方法
JPH03246931A (ja) サセプタ