TW202303887A - 成膜方法及基板處理裝置 - Google Patents

成膜方法及基板處理裝置 Download PDF

Info

Publication number
TW202303887A
TW202303887A TW111119616A TW111119616A TW202303887A TW 202303887 A TW202303887 A TW 202303887A TW 111119616 A TW111119616 A TW 111119616A TW 111119616 A TW111119616 A TW 111119616A TW 202303887 A TW202303887 A TW 202303887A
Authority
TW
Taiwan
Prior art keywords
substrate
film
oxide semiconductor
aforementioned
semiconductor film
Prior art date
Application number
TW111119616A
Other languages
English (en)
Inventor
石橋翔太
北田亨
長坂恵一
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW202303887A publication Critical patent/TW202303887A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

[課題]提供抑制缺氧的成膜方法及基板處理裝置。 [解決手段]成膜方法,具有將基板冷卻至200K以下的極低溫狀態的工程;將氧化物半導體膜成膜於冷卻後的前述基板的工程。

Description

成膜方法及基板處理裝置
本發明係有關於成膜方法及基板處理裝置。
專利文獻1揭示包含閘極電極、閘極介電體層、含有銦鎵鋅氧化物(IGZO)的氧化物半導體層、源極電極、汲極電極、背通道保護層、及蝕刻停止層的薄膜電晶體。 [先前技術文獻] [專利文獻]
[專利文獻1]特表2016-519429號公報
[發明所欲解決的問題]
此外,作為氧化物半導體使用IGZO膜的薄膜電晶體(TFT;Thin Film Transistor),因IGZO膜中的缺氧的影響,臨界電壓會向負側偏移。又,藉由成膜後的後處理進行退火處理,能夠使臨界電壓向正側偏移。但是,即便是退火處理後的TFT,在閘極電壓0V時TFT為通導狀態。因此,使用IGZO膜的TFT,在閘極電壓0V時會產生洩漏電流。或使用IGZO膜的TFT,需要使TFT成為截止狀態的閘極電壓。
針對上述課題,在一側面中,目的為提供抑制缺氧的成膜方法及基板處理裝置。 [解決問題的手段]
為了解決上述課題,根據一態樣,提供成膜方法,具有將基板冷卻至200K以下的極低溫狀態的工程;將氧化物半導體膜成膜於冷卻後的前述基板的工程。 [發明的效果]
根據一側面,能夠提供抑制缺氧的成膜方法及基板處理裝置。
以下,參照圖式說明關於用以實施本揭示的形態。此外,在本說明書及圖式中,關於實質上相同的構造,藉由附加相同符號來省略重複的說明。此外,為了容易理解,圖式中的各部的縮尺有與實際不同的情形。
在平行、直角、正交、水平、垂直、上下、左右等方向,容許不損及實施形態的效果的程度的偏差。角部的形狀不限於直角,以弓狀帶圓角也可以。在平行、直角、正交、水平、垂直包含略平行、略直角、略正交、略水平、略垂直也可以。
<半導體製造裝置1> 圖1為本實施形態的半導體製造裝置(基板處理裝置)之一例即半導體製造裝置1的概略剖面圖。半導體製造裝置1對基板W施予複數處理(蝕刻、成膜、灰化等所期望的處理)。半導體製造裝置1具備處理部2、搬出入部3、控制部4。基板W沒有特別限定,但例如是半導體晶圓(以下單稱為晶圓)。
搬出入部3對處理部2搬出入將晶圓作為一例的基板。處理部2,具備對晶圓施予所期望的真空處理的複數(本實施形態中為10個)的製程模組PM1~PM10。對複數製程模組PM1~PM10,藉由第1搬送裝置11將晶圓進行序列搬送(依序搬送)。
第1搬送裝置11具備複數搬送模組TM1~TM5。搬送模組TM1~TM5具有分別保持在真空的平面形狀為六角狀的容器30a、30b、30c、30d及30e。又,搬送模組TM1~TM5具有分別設於容器30a、30b、30c、30d及30e的多關節構造的搬送機構31a、31b、31c、31d及31e。
在搬送模組TM1~TM5的搬送機構31a、31b、31c、31d及31e之間,分別設置作為搬送緩衝器的收授部41、42、43及44。搬送模組TM1~TM5的容器30a、30b、30c、30d及30e連通構成一個搬送室12。
此外,搬送室12在圖中Y方向延伸。製程模組PM1~PM10經由能開關的閘閥G在搬送室12的兩側分別連接5個。製程模組PM1~PM10的閘閥G,在搬送模組TM1~TM5存取至製程模組PM1~PM10時開啟,進行所期望的處理時關閉。
搬出入部3連接至處理部2的一端側。搬出入部3具有大氣搬送室21、3個裝載端口22、對準器模組23、2個裝載鎖定模組LLM1及LLM2、第2搬送裝置24。在大氣搬送室21連接裝載端口22、對準器模組23、裝載鎖定模組LLM1及LLM2。又,第2搬送裝置24設於大氣搬送室21內。
大氣搬送室21形成將圖中X方向設為長邊方向的長方體狀。3個裝載端口22設於大氣搬送室21的處理部2與相反側的長邊壁部。裝載端口22具有載置台25與搬送口26。載置台25載置收容複數晶圓的基板收容容器即FOUP20。載置台25上的FOUP20,經由搬送口26以密閉於大氣搬送室21的狀態連接。對準器模組23連接至大氣搬送室21的一短邊壁部。在對準器模組23進行晶圓的對準。
2個裝載鎖定模組LLM1及LLM2,為用來使晶圓能夠在大氣壓的大氣搬送室21與真空氛圍的搬送室12之間進行搬送者,在與大氣壓及搬送室12同程度的真空之間成為壓力可變。2個裝載鎖定模組LLM1及LLM2分別具有2個搬送口。一搬送口在大氣搬送室21的處理部2側的長邊壁部經由閘閥G2連接。另一搬送口經由閘閥G1連接至處理部2的搬送室12。
裝載鎖定模組LLM1在將晶圓從搬出入部3搬送至處理部2時使用。裝載鎖定模組LLM2在將晶圓從處理部2搬送至搬出入部3時使用。此外,在裝載鎖定模組LLM1及LLM2,進行除氣處理等的處理也可以。
大氣搬送室21內的第2搬送裝置24具有多關節構造,進行對裝載端口22上的FOUP20、對準器模組23、裝載鎖定模組LLM1及LLM2的晶圓的搬送。具體上,第2搬送裝置24從裝載端口22的FOUP20取出未處理的晶圓,並向對準器模組23搬送,從對準器模組23向裝載鎖定模組LLM1搬送晶圓。又,第2搬送裝置24,收取從處理部2搬送至裝載鎖定模組LLM2的處理後的晶圓,並向裝載端口22的FOUP20搬送。圖1中,雖示出收取第2搬送裝置24的晶圓的拾取器為1個之例,但拾取器是2個也可以。
此外,以上述第1搬送裝置11與第2搬送裝置24構成半導體製造裝置1的搬送部。上述處理部2,在搬送室12的一側,從裝載鎖定模組LLM1側依序配置製程模組PM1、PM3、PM5、PM7及PM9。又,處理部2,在搬送室12的另一側,從裝載鎖定模組LLM2側依序配置製程模組PM2、PM4、PM6、PM8及PM10。第1搬送裝置11中,從裝載鎖定模組LLM1及LLM2側依序配置搬送模組TM1、TM2、TM3、TM4及TM5。
搬送模組TM1的搬送機構31a,能夠在裝載鎖定模組LLM1及LLM2、製程模組PM1及PM2、和收授部41進行存取。搬送模組TM2的搬送機構31b,能夠在製程模組PM1、PM2、PM3及PM4、和收授部41及42進行存取。
搬送模組TM3的搬送機構31c,能夠在製程模組PM3、PM4、PM5及PM6、和收授部42及43進行存取。搬送模組TM4的搬送機構31d,能夠在製程模組PM5、PM6、PM7及PM8、和收授部43及44進行存取。搬送模組TM5的搬送機構31e,能夠在製程模組PM7、PM8、PM9及PM10、和收授部44進行存取。
第2搬送裝置24及第1搬送裝置11的搬送模組TM1~TM5如圖1所示那樣構成。因此,如圖2所示,從FOUP20取出的晶圓,在處理部2中沿著略U形的經路P在一方向進行序列搬送並在各製程模組PM1~PM10進行處理,返回FOUP20。亦即,晶圓以製程模組PM1、PM3、PM5、PM7、PM9、PM10、PM8、PM6、PM4、PM2的順序進行序列搬送,進行所期望的處理。
半導體製造裝置1,例如,能夠用於MRAM (Magnetoresistive Random Access Memory)的層積膜(MTJ (Magnetoresistive Tunnel Junction)膜)的製造。MTJ膜的製造中,存在前洗淨處理、成膜處理、氧化處理、加熱處理、冷卻處理等複數所期望的處理,將該等所期望的處理分別在製程模組PM1~PM10進行。製程模組PM1~PM10的1個以上為使晶圓待機的待機模組也可以。
控制部4控制半導體製造裝置1的各構成部。控制部4例如控制搬送模組TM1~TM5(搬送機構31a~31e)、第2搬送裝置24、製程模組PM1~PM10、裝載鎖定模組LLM1及LLM2、搬送室12、閘閥G、G1及G2。控制部4例如是電腦。
<基板處理裝置5> 接著,說明關於用於製程模組PM1~PM10的任一者的基板處理裝置5。圖3為本實施形態的半導體製造裝置的基板處理裝置之一例即基板處理裝置5的概略剖面圖。其中,基板處理裝置5為將基板W冷卻至200K以下的極低溫狀態的裝置。
基板處理裝置5在處理容器50的內部具備載置基板W的載置台60。又,基板處理裝置5具備冷凍熱媒體80。再來,基板處理裝置5具備支持載置台60的外筒85。
載置台60具備載置基板W的上方的靜電吸盤65、下方的板62。靜電吸盤65具有埋設於介電質膜67內的吸盤電極66。從直流電源72對吸盤電極66施予預定的電位。板62由熱傳導性高的銅(Cu)形成。
載置台60藉由具備靜電吸盤65,將基板W藉由靜電吸盤65吸附,能夠在載置台60的上面固定基板W。此外,載置台60,除了靜電吸盤65與板62的層積體以外,是由一個板形成全體的形態也可以、是藉由燒結等使全體一體成形的形態也可以。
又,在載置台60,形成將靜電吸盤65與板62上下貫通的貫通孔63。貫通孔63,連通至在載置台60的下方的間隙GAP。供應至間隙GAP的冷媒,經由貫通孔63供應至載置台60(靜電吸盤)的上面與基板W的下面之間。冷媒,經由貫通孔63供應至載置台60(靜電吸盤)的上面與基板W的下面之間,能夠將冷媒及冷凍熱媒體80具有的冷熱,有效率地傳達至基板W。
此外,圖3所示之例中,流通冷媒供應流路81的冷媒經由貫通孔63供應至基板W的下面。又,經由貫通孔63排出的冷媒在冷媒排出流路82流通並排出。關於冷媒的供應及排出,不限於圖3所示之例,是其他冷媒的供應及排出形態也可以。例如,對貫通孔63設置與冷媒供應流路81及冷媒排出流路82不同的獨立的冷媒流路,經由該獨立的冷媒流路,進行經由貫通孔63的冷媒的供應或排出也可以。
在構成載置台60的板62的下面,形成向冷凍熱媒體80側突出的凸部62a。圖示例的凸部62a,為包圍載置台60的中心軸CL的圓環狀凸部。另一方面,在與冷凍熱媒體80的上面,亦即載置台60具有的與凸部62a對向的面,形成凸部62a游隙嵌合的凹部87。圖示例的凹部87,具有包圍載置台60的中心軸CL的圓環狀。
載置台60藉由外筒85支持。外筒85,配設成包覆冷凍熱媒體80的上部的外周面。外筒85的上部進入處理容器50的內部,在處理容器50的內部支持載置台60。外筒85具有內徑比冷凍熱媒體80的外徑還大一點的圓筒。  外筒85直接支持載置台60。外筒85例如藉由不銹鋼等金屬形成。
基板處理裝置5在外筒85的外側具備略圓筒狀的伸縮體51。伸縮體51為在上下方向伸縮自如的金屬製蛇腹構造體。伸縮體51包圍外筒85,使減壓自如的處理容器50的內部空間與處理容器50的外部空間分離。
冷凍熱媒體(也稱為冷鏈。)80固定在冷凍機(圖未示)之上。冷凍熱媒體80及冷凍機構成將載置台60冷卻至200K以下的極低溫狀態的冷凍裝置。冷凍機保持冷凍熱媒體80,將冷凍熱媒體80的上面冷卻至極低溫。於冷凍機,從冷卻能力的觀點來看,利用GM(Gifford-McMahon)循環的形態較佳。冷凍熱媒體80的上部收容於處理容器50的內部。冷凍熱媒體80由熱傳導性高的銅(Cu)形成。冷凍熱媒體80具有略圓柱狀。冷凍熱媒體80配置成其中心一致於載置台60的中心軸CL。
冷凍熱媒體80,在內部具有對冷凍熱媒體80與載置台60之間的間隙GAP供應冷媒(冷卻氣體)的冷媒供應流路81、及將因來自載置台60的傳熱而升溫的冷媒排出的冷媒排出流路82。冷媒供應流路81及冷媒排出流路82分別連接至冷媒供應裝置71。
從冷媒供應裝置71供應的冷媒,在冷媒供應流路81流通,供應至間隙GAP。另一方面,從間隙GAP排出的冷媒,在冷媒排出流路82流通,排出至冷媒供應裝置71。此外,冷媒供應流路與冷媒排出流路由相同流路形成也可以。作為為了冷卻載置台60而供應至間隙GAP的冷媒,適用具有高熱傳導性的氦(He)氣。
冷媒供應裝置71連接至控制部4。冷媒供應裝置71將設定的溫度的冷媒供應至冷媒供應流路81。又,冷媒供應裝置71,回收從冷媒排出流路82返回的冷媒,將冷媒調整成設定的溫度從冷媒供應流路81供應。
載置台60在靜電吸盤65具備溫度感測器64。溫度感測器64連接至溫度變換器73。溫度變換器73,將來自溫度感測器的信號變換成溫度信號,輸出至控制部4。控制部4藉由溫度感測器64測定載置台60的溫度。此外,溫度感測器64為測定載置台60的溫度的測定部之一例。
<基板處理裝置6> 接著,說明關於用於製程模組PM1~PM10的任一者的基板處理裝置6。圖4為本實施形態的半導體製造裝置的基板處理裝置之一例即基板處理裝置6的概略剖面圖。其中,基板處理裝置6,為在將基板W冷卻至200K以下的極低溫狀態的狀態下,在基板W將銦鎵鋅氧化物(IGZO)的氧化物半導體膜成膜的裝置。
基板處理裝置6,例如,為形成超高真空且極低溫的氛圍,在執行處理氣體所致的基板處理處理容器50的內部,對被處理體即半導體晶圓等的基板W形成氧化物半導體膜等的PVD(Physical Vaper Deposition)裝置。其中,超高真空表示例如10-5Pa以下的壓力氛圍,極低溫表示200K以下的溫度氛圍。
基板處理裝置6,與基板處理裝置5(圖3參照)一樣,具有處理容器50、在處理容器50的內部載置基板W的載置台60、冷凍裝置(冷凍熱媒體80及冷凍機)。
在處理容器50的內部,於載置台60的上方固定複數靶材支架91。接著,在各靶材支架91的下面,安裝異種的靶材T。
又,處理容器50,藉由使真空泵等的排氣裝置(圖未示)作動,將其內部減壓至超高真空。再來,對處理容器50,經由連通至處理氣體供應裝置的氣體供應管(都未圖示),供應濺鍍成膜所需的處理氣體(例如氬(Ar)、氪(Kr)、氖(Ne)等稀有氣體及氮(N 2)氣體)。
對靶材支架91,施加來自電漿產生用電源(圖未示)的交流電壓或直流電壓。從電漿產生用電源對靶材支架91及靶材T施加交流電壓後,在處理容器50的內部會產生電漿,於處理容器50的內部的稀有氣體等會被離子化,藉由離子化的稀有氣體元素等將靶材T進行濺鍍。被濺鍍的靶材T的原子或分子,沉積在對向於靶材T保持於載置台60的基板W的表面。
此外,基板處理裝置6具有使載置台60旋轉的旋轉裝置(圖未示)、使載置台60升降的第一升降裝置(圖未示)、使冷凍裝置(冷凍熱媒體80及冷凍機)升降的第二升降裝置(圖未示)也可以。
<成膜方法> 接著,使用圖5說明關於本實施形態的成膜方法。圖5為表示本實施形態的成膜方法的一例的流程圖。其中,說明形成薄膜電晶體(TFT;Thin Film Transistor)時的氧化物半導體膜的成膜方法。
步驟S101中,準備形成閘極電極及閘極介電質膜的基板W。首先,在用於半導體製造裝置1的製程模組PM1~PM10的任一者的閘極電極成膜裝置,在基板W形成閘極電極。接著,在用於半導體製造裝置1的製程模組PM1~PM10的任一者的閘極電極成膜裝置,在閘極電極之上形成閘極介電質膜。形成閘極電極及閘極介電質膜的基板W,藉由搬送模組TM1~TM5的任一者,搬送至圖3所示的基板處理裝置5(第1腔室),載置於載置台60。
步驟S102中,將基板W冷卻。其中,使用冷凍裝置(冷凍熱媒體80及冷凍機),將載置於載置台60的基板W冷卻至200K以下的極低溫狀態。
步驟S102中冷卻至極低溫狀態的基板W,藉由搬送模組TM1~TM5的任一者,搬送至用於半導體製造裝置1的製程模組PM1~PM10的任一者的成膜裝置(第2腔室)。
步驟S103中,在冷卻至200K以下的極低溫狀態的基板W將包含銦鎵鋅氧化物(IGZO)的氧化物半導體膜成膜。成膜裝置例如是PVD裝置。以搬送的成膜裝置將氧化物半導體膜成膜。
之後,形成氧化物半導體膜的基板W,藉由搬送模組TM1~TM5的任一者,搬送至半導體製造裝置1的製程模組PM1~PM10的任一者,在氧化物半導體膜之上形成源極電極、汲極電極等,在基板W形成TFT。又,基板W,搬送至半導體製造裝置1的製程模組PM1~PM10的任一者、或半導體製造裝置1外的退火裝置,施予後退火處理。藉此,將在步驟S103中成膜的非結晶的氧化物半導體膜進行退火處理。
接著,使用圖6說明關於本實施形態的其他成膜方法。圖6為表示本實施形態的成膜方法的其他一例的流程圖。其中,說明形成TFT時的氧化物半導體膜的成膜方法。
步驟S201中,準備形成閘極電極及閘極介電質膜的基板W。首先,在用於半導體製造裝置1的製程模組PM1~PM10的任一者的閘極電極成膜裝置中,在基板W形成閘極電極。接著,在用於半導體製造裝置1的製程模組PM1~PM10的任一者的閘極電極成膜裝置中,在閘極電極之上形成閘極介電質膜。形成閘極電極及閘極介電質膜的基板W,藉由搬送模組TM1~TM5的任一者,搬送至圖4所示的基板處理裝置6(第2腔室),載置於載置台60。
步驟S202中,將基板W冷卻至200K以下的極低溫狀態,同時將包含銦鎵鋅氧化物(IGZO)的氧化物半導體膜成膜於基板W。其中,使用冷凍裝置(冷凍熱媒體80及冷凍機),將載置於載置台60的基板W冷卻至200K以下的極低溫狀態,並將靶材T進行濺鍍,在保持於載置台60的基板W的表面將氧化物半導體膜成膜。
之後,形成氧化物半導體膜的基板W,藉由搬送模組TM1~TM5的任一者,搬送至半導體製造裝置1的製程模組PM1~PM10的任一者,在氧化物半導體膜之上形成源極電極、汲極電極等,在基板W形成TFT。又,基板W,搬送至半導體製造裝置1的製程模組PM1~PM10的任一者、或半導體製造裝置1外的退火裝置,施予後退火處理。藉此,將在步驟S202中成膜的非結晶的氧化物半導體膜進行退火處理。
此外,在圖5所示的流程中,雖說明將步驟S102中的基板W的冷卻、與步驟S103中的氧化物半導體膜的成膜在不同腔室進行者,但不限於此。例如,使用基板處理裝置6(圖4參照),將步驟S102中的基板W的冷卻、與步驟S103中的氧化物半導體膜的成膜在相同腔室進行也可以。
例如,步驟S102中,使用第二升降裝置(圖未示)使冷凍裝置(冷凍熱媒體80及冷凍機)上升,將板62與冷凍熱媒體80以能導熱的方式連接,將載置在載置台60的基板W冷卻。
接著,在步驟S103中使用第二升降裝置(圖未示)使冷凍裝置(冷凍熱媒體80及冷凍機)下降,解除板62與冷凍熱媒體80的連接,使用旋轉裝置(圖未示)使載置台60旋轉同時進行濺鍍,在基板W將氧化物半導體膜成膜也可以。
<TFT> 接著,使用圖7說明關於具有氧化物半導體膜340的TFT300之一例。圖7為表示一實施形態的TFT300的一例的圖。圖7(a)示出TFT300的平面圖,圖7(a)示出TFT300的剖面圖。
TFT300具有基板310、閘極電極320、閘極介電質膜330、氧化物半導體膜340、閘極電極350、汲極電極360、源極電極370、及絕緣膜380。
基板310,例如,將矽基板氮化形成。
閘極電極320為形成於基板310上的導電膜。閘極電極320例如以TiN形成。
閘極介電質膜330為在閘極電極320之上形成的介電質膜。閘極介電質膜330例如層積SiCN、AlO形成。
氧化物半導體膜340為形成於閘極介電質膜330之上的氧化物半導體膜。氧化物半導體膜340以銦鎵鋅氧化物(IGZO)形成。此外,本實施形態的TFT300,如圖5及圖6的流程圖所示,在極低溫狀態將氧化物半導體膜340成膜。
閘極電極350,以與閘極電極320連接的方式形成。汲極電極360及源極電極370形成於氧化物半導體膜340之上。又,汲極電極360及源極電極370,以在汲極電極360與源極電極370之間形成通道390的方式分離形成。此外,閘極電極350、汲極電極360及源極電極370例如以TiN、W形成。
絕緣膜380為在氧化物半導體膜340之上形成的絕緣膜。絕緣膜380例如以SiO形成。此外,閘極電極350、汲極電極360及源極電極370,以上端從絕緣膜380的上面露出的方式形成。
<TFT的I-V特性> 接著,利用圖8及圖9說明關於TFT300的I-V特性。
首先,利用圖8說明關於以參考例的成膜方法將氧化物半導體膜340成膜的TFT300的I-V特性。圖8為表示以參考例的成膜方法將氧化物半導體膜340成膜的TFT300的I-V特性的圖形之一例。横軸表示閘極電壓Vg,縱軸表示汲極電流Id。
又,圖8所示的參考例的TFT300中,以常溫(室溫)將氧化物半導體膜340成膜。又,圖8所示的參考例的TFT300中,形成TFT300後,將基板W施予退火處理。退火處理前的參考例的TFT300的I-V特性以虛線表示,退火處理後的參考例的TFT300的I-V特性以實線表示。
退火處理前的TFT300的I-V特性(虛線),因氧化物半導體膜340的缺氧的影響,臨界電壓會偏移至負側。相對於此,退火處理後的TFT300的I-V特性(實線)中,能夠使臨界電壓相較於退火處理前偏移至正側。但是,在退火處理後的TFT300中,也會產生閘極電壓Vg為0V時的汲極電流Id,TFT300為通導狀態。
因此,參考例的TFT300中,閘極電壓Vg為0V時產生洩漏電流。或者參考例的TFT300中,需要將用以使TFT300成為截止狀態的偏移電壓施加至閘極電壓Vg。
其次,關於以本實施形態的成膜方法將氧化物半導體膜340成膜的TFT300的I-V特性,與參考例進行對比,並使用圖9說明。圖9為表示以本實施形態的成膜方法將氧化物半導體膜340成膜的TFT300與以參考例的成膜方法將氧化物半導體膜340成膜的TFT300的I-V特性的圖形之一例。横軸表示閘極電壓Vg,縱軸表示汲極電流Id。
又,圖9所示的本實施形態的TFT300中,以100K的極低溫狀態將氧化物半導體膜340成膜,在形成TFT300後將基板W施予退火處理。又,圖9所示的參考例的TFT300中,以常溫(室溫)將氧化物半導體膜340成膜,在形成TFT300後將基板W施予退火處理。退火處理後的參考例的TFT300的I-V特性以虛線表示,退火處理後的本實施形態的TFT300的I-V特性以實線表示。
本實施形態的成膜方法中,以200K以下的極低溫狀態將氧化物半導體膜340成膜。藉此,對基板W以濺鍍將氧化物半導體膜340成膜時,能夠抑制氧原子(O)從氧化物半導體膜340脫出,降低氧化物半導體膜340的缺氧。因此,如圖9所示,退火處理後的本實施形態的TFT300(實線參照),與退火處理後的參考例的TFT300(虛線參照)相比,能夠使臨界電壓向正側偏移。
又,退火處理後的本實施形態的TFT300,能夠防止閘極電壓Vg為0V時洩漏電流(汲極電流Id)的產生。亦即,本實施形態的TFT300能夠成為常截止的TFT。又,本實施形態的TFT300中,能夠不需要偏移電壓的施加。
此外,將氧化物半導體膜340成膜時的溫度為200K以下的極低溫狀態較佳。藉此,能夠抑制氧化物半導體膜340的缺氧。又,將氧化物半導體膜340成膜時的溫度為100K以上150K以下更佳。藉此,能夠更加抑制氧化物半導體膜340的缺氧。
以上,雖藉由上述實施形態說明成膜方法及基板處理裝置,但本發明的成膜方法及基板處理裝置並不限於上述實施形態,在本發明的範圍內能夠進行各種變更及改良。上述複數實施形態記載的事項,在不矛盾的範圍內也能夠組合。
1:半導體製造裝置(基板處理裝置) 4:控制部 5:基板處理裝置 6:基板處理裝置 50:處理容器(腔室) 60:載置台 80:冷凍熱媒體 91:靶材支架 310:基板 320:閘極電極 330:閘極介電質膜 340:氧化物半導體膜 350:閘極電極 360:汲極電極 370:源極電極 380:絕緣膜 390:通道 T:靶材 W:基板 PM1~PM10:製程模組
[圖1]本實施形態的半導體製造裝置之一例的概略剖面圖。 [圖2]表示本實施形態的半導體製造裝置的晶圓的搬送經路之一例的概略剖面圖。 [圖3]本實施形態的半導體製造裝置的基板處理裝置之一例的概略剖面圖。 [圖4]本實施形態的半導體製造裝置的基板處理裝置之一例的概略剖面圖。 [圖5]表示有本實施形態的成膜方法之一例的流程圖。 [圖6]表示有本實施形態的成膜方法之其他一例的流程圖。 [圖7]表示一實施形態的TFT之一例的圖。 [圖8]表示以參考例的成膜方法將氧化物半導體膜成膜的TFT的I-V特性的圖形之一例。 [圖9]表示以本實施形態的成膜方法將氧化物半導體膜成膜的TFT與以參考例的成膜方法將氧化物半導體膜成膜的TFT的I-V特性的圖形之一例。

Claims (7)

  1. 一種成膜方法,具有:將基板冷卻至200K以下的極低溫狀態的工程; 將氧化物半導體膜成膜於冷卻後的前述基板的工程。
  2. 如請求項1記載的成膜方法,其中,將前述基板冷卻至前述極低溫狀態的工程, 在冷卻前述基板的第1腔室進行處理; 將前述氧化物半導體膜成膜於前述基板的工程, 在將前述氧化物半導體膜成膜於前述基板的第2腔室進行處理。
  3. 如請求項1記載的成膜方法,其中,將前述基板冷卻至前述極低溫狀態的工程及將前述氧化物半導體膜成膜於前述基板的工程, 在同一腔室進行處理。
  4. 如請求項1至請求項3中任1項記載的成膜方法,其中,將前述基板冷卻至前述極低溫狀態的工程, 冷卻具有閘極膜、及前述閘極膜之上的閘極介電質膜的前述基板; 將前述氧化物半導體膜成膜於前述基板的工程, 將前述氧化物半導體膜成膜於前述閘極介電質膜之上。
  5. 如請求項1至請求項4中任1項記載的成膜方法,其中,前述氧化物半導體膜為銦鎵鋅氧化物膜。
  6. 一種基板處理裝置,具備:將基板冷卻至200K以下的極低溫狀態的第1腔室; 將前述氧化物半導體膜成膜於前述基板的第2腔室;以及 控制部; 前述控制部,執行: 在前述第1腔室將前述基板冷卻至200K以下的極低溫狀態的工程; 在前述第2腔室將氧化物半導體膜成膜於冷卻後的前述基板的工程。
  7. 一種基板處理裝置,具備:載置基板的載置台; 冷卻前述載置台的冷凍裝置;以及 保持進行濺鍍的靶材的靶材支架; 控制部; 前述控制部,執行: 將前述基板冷卻至200K以下的極低溫狀態,同時將氧化物半導體膜成膜於前述基板。
TW111119616A 2021-06-09 2022-05-26 成膜方法及基板處理裝置 TW202303887A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021096878A JP2022188660A (ja) 2021-06-09 2021-06-09 成膜方法及び基板処理装置
JP2021-096878 2021-06-09

Publications (1)

Publication Number Publication Date
TW202303887A true TW202303887A (zh) 2023-01-16

Family

ID=84426052

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111119616A TW202303887A (zh) 2021-06-09 2022-05-26 成膜方法及基板處理裝置

Country Status (4)

Country Link
JP (1) JP2022188660A (zh)
KR (1) KR20240004832A (zh)
TW (1) TW202303887A (zh)
WO (1) WO2022259960A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074622A (ja) * 2010-09-29 2012-04-12 Bridgestone Corp アモルファス酸化物半導体の成膜方法および薄膜トランジスタ
JP2016082135A (ja) * 2014-10-20 2016-05-16 株式会社Joled 薄膜トランジスタ基板の製造方法
CN109642307B (zh) * 2016-09-12 2020-04-10 株式会社爱发科 带透明导电膜的基板的制造方法、带透明导电膜的基板的制造装置及带透明导电膜的基板

Also Published As

Publication number Publication date
KR20240004832A (ko) 2024-01-11
WO2022259960A1 (ja) 2022-12-15
JP2022188660A (ja) 2022-12-21

Similar Documents

Publication Publication Date Title
KR102496112B1 (ko) 산화물 반도체막의 성막 방법, 반도체 장치 및 반도체 장치의 제작 방법
JP6421229B2 (ja) 半導体装置の作製方法
TW202209685A (zh) 半導體裝置
JP7224139B2 (ja) ステージ装置および処理装置
TW202303887A (zh) 成膜方法及基板處理裝置
TW202109714A (zh) 平台裝置及處理裝置
US11640918B2 (en) Stage device, power supply mechanism, and processing apparatus
JP2004128383A (ja) 基板処理装置
KR20120132394A (ko) 산화물 반도체막의 성막 방법, 반도체 장치 및 반도체 장치의 제작 방법