TW202303328A - 低壓差穩壓器電路、輸入/輸出裝置以及操作低壓差穩壓器的方法 - Google Patents

低壓差穩壓器電路、輸入/輸出裝置以及操作低壓差穩壓器的方法 Download PDF

Info

Publication number
TW202303328A
TW202303328A TW111113110A TW111113110A TW202303328A TW 202303328 A TW202303328 A TW 202303328A TW 111113110 A TW111113110 A TW 111113110A TW 111113110 A TW111113110 A TW 111113110A TW 202303328 A TW202303328 A TW 202303328A
Authority
TW
Taiwan
Prior art keywords
voltage
circuit
output
switches
current paths
Prior art date
Application number
TW111113110A
Other languages
English (en)
Other versions
TWI812147B (zh
Inventor
陳煥能
劉燕霖
許家維
吳若瑜
胡長芬
李紹宇
陳柏廷
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202303328A publication Critical patent/TW202303328A/zh
Application granted granted Critical
Publication of TWI812147B publication Critical patent/TWI812147B/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/59Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load
    • G05F1/595Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load semiconductor devices connected in series
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit

Abstract

一種電路包括:分壓器電路,分壓器電路用以根據輸出電壓產生反饋電壓;運算放大器,運算放大器用以根據反饋電壓及參考電壓輸出驅動信號;及電路,傳輸閘電路包括多個電流路徑。電流路徑由驅動信號控制且並聯連接於分壓器電路與電源參考節點之間。

Description

低壓差穩壓器電路、輸入輸出裝置以及操作低壓差穩壓器的方法
無。
調壓器可用以獨立於負載阻抗、輸入電壓變化或溫度變化來提供供電電壓。舉例而言,低壓差(low dropout,LDO)調壓器為如下類型的調壓器:提供小的輸入至輸出差分電壓以在LDO調節器之輸入電壓與輸出電壓之間的小差異情況下維持調節。在電子裝置的各種應用中,LDO調節器用以提供穩定電源。
無。
以下揭示內容提供用於實施所提供標的物之不同特徵的許多不同例示性實施例或實例。下文描述元件及配置之特定簡化實例以解釋本案的一實施例。當然,這些元件及配置僅為實例且並非意欲為限制性的。舉例而言,在以下描述中,第一特徵於第二特徵上方或上的形成可包括第一及第二特徵直接接觸地形成的實施例,且亦可包括額外特徵可形成於第一特徵與第二特徵之間使得第一特徵及第二特徵可不直接接觸的實施例。此外,本案的一實施例在各種實例中可重複參考數字及/或字母。此重複係出於簡單及清楚之目的,且本身並不指明所論述之各種實施例及/或組態之間的關係。
用於本說明書中之術語通常具有其在此項技術中且在使用每一術語所在之特定情形下的一般含義。實例在此說明書中之使用,包括本文中所論述之任何術語之實例的使用僅為說明性的,且絕不限制本案的一實施例或任何所例示術語的範疇及含義。同樣,本案的一實施例不限於本說明書中給出的各種實施例。
儘管術語「第一」、「第二」等本文中可用以描述各種組件,但這些組件不應受這些術語限制。這些術語用以區分一個組件與另一組件。舉例而言,第一組件可被稱為第二組件,且類似地,第二組件可被稱為第一組件而不偏離實施例的範疇。如本文中所使用,術語「及/或」包括相關聯之所列出項目中的任一者及一或多者的所有組合。
另外,空間相對術語,諸如「……下面」、「下方」、「下部」、「……上方」、「上部」及類似者本文中可出於易於描述而使用以描述如諸圖中圖示的一個元素或特徵與另一(些)元素或特徵之關係。空間相對術語意欲涵蓋裝置之使用或操作中除了諸圖中描繪之定向外的不同定向。設備可以其他方式定向(旋轉90度或處於其他定向),且本文中使用之空間相對描述詞可同樣經因此解譯。
在此文獻中,術語「耦接」亦可被稱為「電耦接」,且術語「連接」可被稱為「電連接」。「耦接」及「連接」亦可用以指示兩個或兩個以上組件彼此協作或互動。
本案之各種實施例將在特定情形下,即低壓差穩壓器(low dropout regulator,LDO)情況下關於實施例進行描述。術語「壓差」指為了恰當調節所要求之輸入電壓與輸出電壓之間的最小差。整合式LDO穩壓器廣泛地用於積體電路(integrated circuit,IC)應用中。LDO穩壓器歸因於負載電流之瞬變依據效能量度來評定,該些效能量度包括壓差電壓、穩定電流、負載調節、接線調節、最大電流、速度(變化負載之存在的回應性),及輸出電壓變化(例如,下沖或上沖)。然而,本案的一實施例中之概念亦可應用於其他電路或半導體結構。
第1圖為根據本案之一些實施例的圖示積體電路(integrated circuit,IC)中例示性輸入/輸出(「I/O」)裝置100之圖。如第1圖中所繪示,I/O裝置100與積體電路中之核心裝置110通信。I/O裝置100可包括位準移位器電路120及130、高電壓側邏輯電路140、低電壓側邏輯電路150、後驅動器電路160及用於對輸出信號PAD進行輸出的襯墊170。
在一些實施例中,核心裝置110可為形成於晶粒上以提供高速度數位電路的裝置,且通常更快速地操作且使用較低電壓。舉例而言,核心裝置110用以接收內部核心供電電壓CVDD,該內部核心供電電壓CVDD可低於I/O裝置100的I/O電壓。核心裝置110中之電路具有較高密度,且可能更易受靜電放電(electrostatic discharge,ESD)損害。
I/O裝置100用以在核心裝置110與具有大電容的元件連接件之間傳送信號,該些元件連件接相較於積體電路晶粒中核心裝置110內發生的發信通常需要較大驅動功率及電壓。因此,I/O裝置100相較於內部核心供電電壓CVDD可以較高電壓傳送信號。舉例而言,在一些實施例中,核心裝置110之邏輯電路內的核心供電電壓CVDD可為大約0.85 V、0.9 V、1.0 V、1.05 V及類似者,而I/O裝置100可處於較高電壓電力域,諸如1.5 V、1.8 V、2.5 V、3.3 V等。舉例而言,在一些實施例中,針對位準移位器電路120及130且低電壓側邏輯電路150的供電電壓VDDPST1為約1.2 V,且針對高電壓側邏輯電路140及後驅動器電路160的可為I/O裝置100之I/O電壓VDDIO的供電電壓VDDPST2為約1.8 V。高電壓側邏輯電路140的較低供電電壓VDDPST3為約0.6 V。
舉例而言,在一些實施例中,I/O電壓VDDIO可為1.8 V,且包括驅動不足(under-drive,UD)及驅動過度(over-drive,OD)變化,諸如1.8V UD 1.2V、1.8V UD 1.5V。在其他實施例中,I/O電壓VDDIO為2.5 V I/O,且包括驅動不足(under-drive,UD)及驅動過度(over-drive,OD)變化,諸如2.5V UD 1.8V,2.5V、OD 3.3V。在其他實施例中,I/O電壓VDDIO為針對廣泛I/O或廣泛I/O 2由JEDEC指定的1.2V±5%。本案的一實施例中陳述之核心電壓CVDD、I/O電壓VDDIO及供電電壓VDDPST1、VDDPST2及VDDPST3為例示性的,且其他電壓預期為在本案的一實施例之範疇內。
對於多協定IO介面,位準移位器電路120及130分別用以使接收自核心裝置110的第一電壓範圍,諸如核心電壓範圍內的位準移位信號Sa及Sb移位至第二電壓範圍,諸如較大I/O電壓範圍內的對應信號Sc及Sd。位準移位器電路120及130分別經由高電壓側邏輯電路140及低電壓側邏輯電路150分別連接至後驅動器電路160,該後驅動器電路160可包括PMOS電晶體162及NMOS電晶體164。在一些實施例中,高電壓側邏輯電路140及低電壓側邏輯電路150形成解碼電路以產生對應切換信號PSIG及NSIG,從而回應於經位準移位的信號Sc及Sd驅動後驅動器電路160中的PMOS電晶體162及NMOS電晶體164。
如第1圖之實施例中所繪示,高電壓側邏輯電路140及低電壓側邏輯電路150可具有不同供電電壓位準。舉例而言,低電壓側邏輯電路150之電源可為供電電壓VDDPST1,且低電壓側邏輯電路150的低參考電壓可為系統接地。高電壓側邏輯電路140之電源可為另一供電電壓VDDPST2,且高電壓側邏輯電路140的低參考電壓可為又一供電電壓VDDPST3。在一些實施例中,高電壓側邏輯電路140及低電壓側邏輯電路150可包括緩衝器或反相器電路以回應於來自位準移位器電路120及130的位準移位信號Sc及Sd產生對應切換信號PSIG及NSIG。因此,回應於接收自高電壓側邏輯電路140及低電壓側邏輯電路150的切換信號PSIG及NSIG,後驅動器電路160可輸出恰當I/O信號(例如,輸出信號PAD)至襯墊170。
特別而言,在第1圖之實施例中,後驅動器電路160耦接於具有供電電壓VDDPST2 (例如,約1.8 V)的電源接線與可等於約0 V的系統接地之間。在一些實施例中,後驅動器電路160亦可用以接收低於供電電壓VDDPST2的一或多個中間位準電壓,諸如供電電壓VDDPST1 (例如,約1.2 V)及VDDPST3 (例如,約0.6 V)。後驅動器電路160可遞送大量電流以經由連接至後驅動器電路160的襯墊170驅動輸出負載。舉例而言,後驅動器電路160可驅動PC板中的輸出負載。
在一些實施例中,後驅動器電路160包括一或多個串列耦接的p型電晶體,及以級聯反相器組態耦接的一或多個串列耦接的n型電晶體。如第1圖中所繪示,PMOS電晶體162之閘極自高電壓側邏輯電路140接收切換信號PSIG,且NMOS電晶體164的閘極自低電壓側邏輯電路150接收驅動信號NSIG。因此,後驅動器電路160可基於所接收之切換信號PSIG及NSIG來產生輸出信號PAD至襯墊170。在一些實施例中,輸出信號PAD可大致在0 V與供電電壓VDDPST2之間擺動,且提供I/O裝置100與另一外部電路或裝置之間的通信。
在一些實施例中,為了實施用於高階處理節點中高電壓應用的I/O裝置100,諸如低壓差穩壓器(LDO穩壓器)的線性穩壓器可用於I/O裝置100以供應諸如供電電壓VDDPST1及VDDPST3的中間電壓,且因此監視電壓位準以提供穩定的供電。LDO穩壓器用以根據供電電壓VDDPST2輸出穩定電壓為供電電壓VDDPST1及VDDPST3,且能夠以輸入與輸出之間的低電位差操作,此情形將在下文更詳細地論述。
第2圖為根據本案之一些實施例的圖示用於提供第1圖之I/O裝置100之中間電壓之例示性LDO電路200的圖。LDO電路200用以根據供電電壓VDDPST2輸出供電電壓VDDPST1,且藉由調整LDO電路200之壓差電壓由變化之負荷電流I LOAD而保持供電電壓VDDPST1穩定,該負荷電流I LOAD為I/O裝置100之等效平均電流。如第2圖中所繪示,LDO電路200可為n通道MOS (NMOS) LDO。在NMOS架構的狀況下,LDO電路200包括用於產生參考電壓V REF的參考電壓供應電路202、運算放大器210、分壓器電路220,及具有多個支腳242、244及246的可切換傳輸閘(pass gate)電路230。可切換傳輸閘電路230可經由支腳242、244及246提供多個電流路徑。支腳242、244及246分別包括NMOS電晶體T1、T2、T3,及開關SW1、SW2及SW3。開關SW1、SW2及SW3分別串列耦接至對應NMOS電晶體T1、T2、T3以形成電流路徑,該些電流路徑可藉由接通或關斷開關SW1、SW2及SW3來分離地啟用或停用。流過經啟用電流路徑的電流受由運算放大器210輸出之閘極信號V PASS控制。如第2圖中所繪示,支腳242、244及246的電流路徑並聯連接於分壓器電路220與電源參考節點,諸如系統接地之間。
為了調節所要輸出電壓為供電電壓VDDPST1,運算放大器210、分壓器電路220及可切換傳輸閘電路230形成反饋迴路以控制可切換傳輸閘電路230的總汲極至源極電阻(R DS)。隨著輸入電壓(例如,供電電壓VDDPST2)逼近所要輸出電壓(例如,供電電壓VDDPST1),運算放大器210用以藉由調整閘極信號V PASS以減低汲極至源極電阻(R DS)以增大閘極至源極電壓(V GS)從而維持調節。當運算放大器210之輸出以供電電壓飽和時,汲極至源極電阻(R DS)隨著閘極至源極電壓(V GS)達到最大值而處於最小值。
此外,可切換傳輸閘電路230內的開關SW1、SW2及SW3可分離地接通或關斷以移位可切換傳輸閘電路230的驅動能力。特別而言,當不同數目個開關SW1、SW2及SW3接通時,對應的一或多個NMOS電晶體T1、T2及T3並行耦接於接地與LDO電路200的輸出節點之間。因此,運算放大器210可輸出閘極信號V PASS以驅動並行耦接的NMOS電晶體T1、T2及T3以調整總汲極至源極電阻(R DS)且保持供電電壓VDDPST1為穩定的。藉由調整用以提供不同電流路徑的NMOS電晶體T1、T2及T3的數目,驅動能力可因此經切換,從而在不以閘極信號V PASS的廣泛電壓範圍操作情況下達成調節。此外,可切換傳輸閘電路230避免LDO電路200中的電位洩漏路徑,此情形允許LDO電路200中洩漏電流及電力損耗的減小。
在第2圖之實施例中,運算放大器210具有第一輸入端212、第二輸入端214及單端輸出端216。第一輸入端212耦接至參考電壓供應電路202,從而使得第一輸入端212能夠接收參考電壓V REF。第二輸入端214經由反饋電阻器R1耦接至接收供電電壓VDDPST2的輸入節點,且經由另一反饋電阻器R2耦接至LDO電路200的輸出節點。
串列耦接之反饋電阻器R1及R2形成分壓器電路220且用以按比例縮放輸出電壓(例如,供電電壓VDDPST1)以在反饋迴路中提供反饋電壓V FB至運算放大器210的第二輸入端214(例如,負輸入端)。因此,分壓器電路220根據輸出電壓產生反饋電壓V FB。運算放大器210比較反饋電壓V FB與接收自運算放大器210之第一輸入端212(例如,正輸入端)的參考電壓V REF,且放大反饋電壓V FB與參考電壓V REF之間偵測到的誤差。因此,根據反饋電壓V FB及參考電壓V REF,運算放大器210可輸出閘極信號VPASS作為驅動信號。由反饋迴路,當供電電壓VDDPST1偏離所要值時,運算放大器210用以驅動可切換傳輸閘電路230以將供電電壓VDDPST1帶回至正確值。
運算放大器210之輸出端216耦接至可切換傳輸閘電路230。特別而言,可切換傳輸閘電路230包括耦接至運算放大器210之輸出端216的控制電極232。可切換傳輸閘電路230包括連接至系統接地之第一電極234及連接至LDO電路200之輸出節點的第二電極236。在第2圖之實施例中,可切換傳輸閘電路230包括NMOS電晶體T1、T2及T3,使得控制電極232耦接至NMOS電晶體T1、T2及T3的閘極端,且第一電極234及第二電極236耦接至NMOS電晶體T1、T2及T3的源極端子及汲極端。應理解,用於第2圖中之n型MOS電晶體僅為例示性的,且在其他實例中,p型MOS電晶體或另一類型之電晶體可用作可切換傳輸閘電路230中的通過電晶體,該些通過電晶體亦稱為電源電晶體。
因此,存在於第二輸入端214處之反饋電壓V FB為LDO電路200輸出之供電電壓VDDPST1的一小部分。該小部分基於反饋電阻器R1及R2的電阻值之比率來判定。藉由比較反饋電壓V FB與參考電壓V REF,運算放大器210用以輸出閘極信號V PASS以驅動可切換傳輸閘電路230至適當操作點,該適當操作點確保輸出節點處之供電電壓VDDPST1係處於正確電壓。當操作電流或其他條件改變時,運算放大器210經由閘極信號V PASS調變可切換傳輸閘電路230以維持正確電壓。
此外,回應於操作電流或其他條件的改變,可切換傳輸閘電路230可用以藉由啟用或停用耦接至NMOS電晶體T1、T2及T3的對應一或多個開關SW1、SW2及SW3選擇並提供一或多個電流路徑以調整可切換傳輸閘電路230的驅動能力。因此,當操作電流或其他條件改變時,自運算放大器210輸出之閘極信號V PASS可經控制於預定所要範圍內。類似地,可切換傳輸閘電路230中電源電晶體(例如,NMOS電晶體T1、T2及T3)的過度驅動電壓亦控制於所要範圍內。過度驅動電壓界定為超過電源電晶體之臨限電壓(V TH)情況下電源電晶體的閘極源極電壓。臨限電壓V TH界定為閘極與源極之間被要求以接通電源電晶體從而允許對應電源電晶體提供電流路徑的最小電壓。舉例而言,在一些實施例中,電源電晶體的最佳化操作點可提供0.2 V的過度驅動電壓,其中過度驅動電壓的範圍係在0.1 V至0.3 V之間。
換言之,可切換傳輸閘電路230經組態而以不同模式操作,且不同電流路徑中之開關SW1至SW3根據所選擇之操作模式分離地接通或關斷。當以不同模式操作時,LDO電路200在最大切換速度下可提供不同驅動能力。
如第2圖中所繪示,LDO電路200包括輔助軌條,從而提供運算放大器210的偏壓電壓(V BIAS)及偏壓電流I BIAS。在一些實施例中,輔助軌條可充當運算放大器210的正供電軌條,該軌條允許運算放大器210之輸出端216上擺至偏壓電壓V BIAS。此組態使得LDO電路200能夠維持高閘極源極電壓V GS,且因此在低輸出電壓下達成低壓差。
此外,LDO電路200可進一步包括電耦接於輸出節點與系統接地之間的外部大輸出電容器C LOAD。輸出電容器C LOAD之等效串列電阻(R ESR)可抑制LDO電路200之輸出電壓(例如,供電電壓VDDPST1)的下沖及上沖。雖然描繪於第2圖中之LDO電路200為作為電流儲集器工作的NMOS LDO,但在一些其他實施例中,亦有可能應用p型通道MOS (PMOS)架構以實施作為電流源工作的PMOS LDO。
第3圖為根據本案之一些實施例的圖示使用PMOS架構之另一例示性LDO電路200之圖。如第3圖中所繪示,在PMOS架構的狀況下,LDO電路200亦包括運算放大器210、分壓器電路220,及具有多個支腳342、344及346的可切換傳輸閘電路330。支腳342、344及346分別包括PMOS電晶體T4、T5、T6,及開關SW4、SW5及SW6。開關SW4、SW5及SW6分別串列耦接至PMOS電晶體T4、T5、T6,且用以接通或關斷以啟用對應電流路徑。如第3中所繪示,支腳342、344及346的電流路徑並聯連接於分壓器電路220與電源參考節點,諸如接收輸入之供電電壓VDDPST2的電源接線之間。類似於第2圖之實施例,為了調節所要供電電壓VDDPST1,運算放大器210、分壓器電路220及可切換傳輸閘電路330形成反饋迴路,該反饋迴路用以控制可切換傳輸閘電路330的汲極至源極電阻R DS。隨著供電電壓VDDPST2逼近所要輸出電壓供電電壓VDDPST1,運算放大器210用以驅動閘極至源極電壓V GS更負且減低汲極至源極電阻R DS以維持調節。
類似於第2圖之實施例,可切換傳輸閘電路330的開關SW4、SW5及SW6可分離地接通或關斷以移位驅動能力。當不同數目個開關SW4、SW5及SW6接通時,對應的一或多個PMOS電晶體T4、T5及T6耦接於接收供電電壓VDDPST2之電源接線與LDO電路200的輸出節點之間。因此,運算放大器210用以由閘極信號V PASS驅動可切換傳輸閘電路330中的並行耦接之PMOS電晶體T4、T5及T6。
在第3圖之實施例中,反饋電阻器R1及R2亦串列耦接以形成分壓器電路220且用以按比例縮放輸出供電電壓VDDPST1以在反饋迴路中提供反饋電壓V FB至運算放大器210的輸入端212 (例如,正輸入端)。因此,運算放大器210比較反饋電壓V FB與接收自運算放大器210之輸入端214(例如,負輸入端)的參考電壓V REF,且放大反饋電壓V FB與參考電壓V REF之間偵測到的誤差。經由反饋迴路,當輸出供電電壓VDDPST1偏離所要值時,運算放大器210用以驅動可切換傳輸閘電路330以將供電電壓VDDPST1帶回至正確值。
運算放大器210之輸出端216耦接至可切換傳輸閘電路330。特別而言,可切換傳輸閘電路330包括耦接至運算放大器210之輸出端216的控制電極332。可切換傳輸閘電路330包括連接至接收輸入供電電壓VDDPST2之電源接線的第一電極334及連接至LDO電路200之輸出節點的第二電極336。在第3圖之實施例中,控制電極332耦接至PMOS電晶體T4、T5及T6的閘極端,且第一電極334及第二電極336耦接至PMOS電晶體T4、T5及T6的源極端子(經由開關SW4、SW5及SW6)及汲極端。
類似於第2圖之實施例,存在於運算放大器210之輸入端212處的反饋電壓V FB為LDO電路200之輸出供電電壓VDDPST1的小部分,且基於反饋電阻器R1及R2之電阻值之比率來判定。運算放大器210用以根據反饋電壓V FB及參考電壓V REF藉由提供閘極信號V PASS至PMOS電晶體T4、T5及T6之閘極端來驅動可切換傳輸閘電路330。因此,可切換傳輸閘電路330以適當操作點操作,該操作點確保輸出節點處之輸出供電電壓VDDPST1係正確電壓。當操作電流或其他條件改變時,運算放大器210調變可切換傳輸閘電路330以因此調整壓差電壓。
如第3圖中所繪示,可切換傳輸閘電路330可用以經由PMOS電晶體T4、T5及T6經由支腳342、344及346提供不同電流路徑。藉由啟用或停用一或多個對應開關SW4、SW5及SW6,LDO電路200能夠回應於操作電流或其他條件的改變來調整可切換傳輸閘電路330的驅動能力。因此,運算放大器210之閘極信號V PASS及電源電晶體T4、T5及T6的關聯過度驅動電壓可被控制於所要範圍內。
如第3圖中所繪示,在一些實施例中,來自對應輸出啟用(OE)銷的一或多個OE信號OE1至OEn可用於移位驅動能力。舉例而言,當一或多個OE銷經啟用時,LDO電路200之移位位準可根據接收自OE銷的輸出啟用信號OE1至OEn來判定。在一些實施例中,OE銷可由使用者基於驅動因數查找表來設定。
特別而言,LDO電路200可進一步包括二進位至溫度計碼解碼器310,該解碼器310用以自對應OE銷接收輸出啟用信號OE1至OEn且將二進位碼轉換為控制信號CS1至CSn從而控制開關SW4至SW6,以選擇經接通以提供電流路徑的開關SW4至SW6之數目。因此,回應於輸出啟用信號OE1至OEn,開關SW4至SW6可經動態地控制。在一些實施例中,二進位至溫度計碼解碼器310可包括邏輯電路以針對二進位至溫度計轉換執行某些邏輯運算,諸如及(AND)、或(OR)、互斥或(XOR)、反及(NAND)、反或(NOR)、加(ADD)及減(SUB)運算以判定LDO電路200的移位位準。因此,二進位至溫度計碼解碼器310可根據接收自輸出啟用銷的輸出啟用信號OE1至OEn判定模式中的一者為所選擇模式。基於所選擇模式,二進位至溫度計碼解碼器310輸出各別控制信號CS1至CSn至開關SW4至SW6以選擇性地接通或關斷開關SW4至SW6。
參看第4圖。第4圖為根據本案之一些實施例的圖示另一例示性LDO電路200之圖。如第4圖中所繪示,第4圖中之LDO電路200進一步包括用於產生控制信號CS1至CSn的多個遲滯比較器410,其中每一遲滯比較器410耦接至一個對應開關SW4至SW6以調整可切換傳輸閘電路330的驅動能力。遲滯比較器410之第一輸入端412用以接收預定最佳化通過電壓信號V PASS_OPT(例如,0.5V)。遲滯比較器410之第二輸入端414連接至運算放大器210之輸出端216以接收閘極信號V PASS。因此,遲滯比較器410用以藉由比較反饋閘極信號V PASS與最佳化通過電壓信號V PASS_OPT經由輸出端416分別產生並輸出控制信號CS1至CSn以分離地接通或關斷電流路徑中的開關SW4至SW6。如第4圖中所繪示,第4圖中的遲滯比較器410、運算放大器210及可切換傳輸閘電路330可形成類比自動化迴路,從而達成背景校準。藉由使用遲滯比較器410,閘極信號V PASS可控制於對應於最佳化通過電壓信號V PASS_OPT的電壓範圍內。
第5A圖及第5B圖為根據本案之一些實施例的圖示有且無遲滯比較器410情況下LDO電路200中之電壓及電流信號之例示性波形圖500a及500b。如波形圖500a中所描繪,由LDO電路200輸出之電壓VDDPST1在初始化階段升高,且接著在穩定狀態下保持於穩定位準,在穩定狀態下,反饋電壓V FB等於參考電壓V REF。此外,回應於變化之負荷電流I LOAD,運算放大器210輸出且因此調整閘極信號V PASS以驅動第4圖中之可切換傳輸閘電路330的電源電晶體且將電壓VDDPST1穩定保持於所要位準。如第5A圖中所繪示,具有遲滯比較器410之LDO電路200能夠提供針對閘極信號V PASS的最佳化範圍(例如,0.5 V±0.1 V)及針對過度驅動電壓的最佳化範圍(例如,0.2 V±0.1 V)。另一方面,如第5B圖中所繪示,無遲滯比較器410之LDO電路200在操作期間針對閘極信號V PASS可具有更廣泛且因此較非所要的範圍(例如,0.34 V至0.73 V)。
參看第6圖。第6圖為根據本案之一些實施例的圖示另一例示性LDO電路200之圖。如第6圖中所繪示,第6圖中之LDO電路200進一步包括捺跳偵測器電路610及用於輸出控制信號CS1至CSn的模式選擇電路620。在一些實施例中,所選擇模式根據捺跳速率來判定。捺跳速率為每單位時間或時脈週期內捺跳,亦即電路單元之邏輯值0與邏輯值1之間的轉變的數目。由模式選擇電路620接收到之時脈信號(例如,具有3 MHz至24 MHz之頻率的參考時脈信號)CLK可用於對捺跳速率進行計數。捺跳速率可表達為百分數或每秒百萬個轉變(million transitions per second,MTPS)的計數,此情形反映輸出相對於給定輸入或時脈輸入改變的頻率。舉例而言,100%的捺跳速率意謂輸出在每一時脈循環內平均捺跳一次的平均值。
在一些實施例中,捺跳偵測器電路610用以藉由監視第1圖之I/O裝置100中的一或多個元件來偵測捺跳,且偵測輸出自邏輯值0捺跳至邏輯值1及/或自邏輯值1捺跳至邏輯值0的次數。舉例而言,第1圖中I/O裝置100的高電壓側邏輯電路140及低電壓側邏輯電路150可包括一或多個反相器。捺跳偵測器電路610可監視反相器中之一或多者以偵測經監視輸出自高捺跳至低及/或自低捺跳至高的次數。捺跳偵測器電路610因此基於偵測到的次數產生捺跳輸出信號TO。
因此,模式選擇電路620可根據捺跳輸出信號TO及時脈信號CLK計算捺跳速率,且輸出對應的控制信號CS1至CSn。因此,可切換傳輸閘電路330可以不同模式操作以基於捺跳速率提供不同卻動能力。舉例而言,在不同模式中,可切換傳輸閘電路330內的不同開關集合基於捺跳速率來因此啟用以設定LDO電路200之驅動能力。
第7圖為根據本案之一些實施例的圖示例示靜電放電(Electrostatic Discharge,ESD)保護電路700之圖。靜電放電可引起嚴重問題,且潛在地破壞半導體裝置中的積體電路。特別而言,極高的電壓歸因於靜電電荷之堆積可在積體電路附近產生。當靜電電荷放電時,高電流產生於積體電路之封裝節點處,從而引起ESD損害。ESD瞬變的持續時間可為短的,且為大約數奈秒。因此,習知電路斷路器不可足夠快地反應以提供足夠保護。
如第7圖中所繪示,ESD感測電路710與輸入/輸出I/O電路介接,且電耦接於VDD襯墊702與VSS襯墊704之間。在一些實施例中,ESD感測電路710可包括電源鉗位電路,且可用以偵測ESD過壓條件。當VDD襯墊702與VSS襯墊704之間的ESD過壓條件被偵測到時,電源鉗位電路可將VDD襯墊702與VSS襯墊704之間的電壓鉗位於最大電壓以下。回應於ESD過壓條件,ESD感測電路710使得靜電放電信號ESD能夠輸出至ESD控制電路720,該ESD控制電路720耦接至ESD感測電路710。舉例而言,在一些實施例中,當ESD震擊(zap)發生時,ESD感測電路710內之串列RC電路可使靜電放電信號ESD充電且使得靜電放電信號ESD能夠至ESD控制電路720。
此外,ESD控制電路720亦自開關控制銷接收用於在正常操作下控制可切換傳輸閘電路330的開關選擇信號SS1至SSn。如第3圖、第4圖及第6圖之實施例中所描述,開關選擇信號SS1至SSn可由二進位至溫度計碼解碼器、遲滯比較器或模式選擇電路620來獲得以在正常操作下基於所選擇模式及所判定驅動能力選擇性地接通或關斷開關SW4至SW6。
ESD控制電路720可包括一或多個邏輯電路,該一或多個邏輯電路用以根據靜電放電信號ESD及開關選擇信號SS1至SSn輸出控制信號CS1至CSn。當靜電放電信號ESD停用時,ESD保護電路700以正常模式操作。控制信號CS1至CSn根據接收自開關控制銷的開關選擇信號SS1至SSn來輸出。當靜電放電信號ESD為啟用信號時,ESD保護電路700以ESD震擊模式操作,且用以輸出控制信號CS1至CSn以關斷開關SW4至SW6。
舉例而言,邏輯電路可包括或(OR)閘,該OR閘針對充當電流源電路之可切換傳輸閘電路330,諸如第3圖中之LDO電路200執行邏輯OR運算。在一些其他實施例中,邏輯電路可包括反或(NOR)閘,該NOR閘針對充當儲集器電流電路之可切換傳輸閘電路330,諸如第2圖之實施例中之LDO電路200執行邏輯NOR運算。因此,在ESD震擊期間,ESD保護電路700經啟動以斷開電流路徑以保護系統免受損害影響。
參看第8圖。第8圖圖示根據本案之一些實施例的可應用至LDO電路200之例示性佈局800的俯視圖。在一些實施例中,佈局800可應用至LDO電路200,其中該LDO電路200的輸出端連接至外部襯墊、凸塊或對於晶片外電路可存取的印刷電路板(printed circuit board,PCB)。如第8圖中所繪示,第一電源鉗位電路810連接於以下兩者之間:銷802,其連接至接收I/O電壓VDDIO之電力軌條;及銷804,其連接至接收低參考電壓VSS之電力軌條。第二電源鉗位電路820連接於以下兩者之間:LDO電路200的輸出銷806,該LDO電路200充當電流源從而提供由LDO電路200輸出的中間電壓(例如,VDDPST1);及銷804。在一些實施例中,電源鉗位電路820可為高/中間電壓電源鉗位。一或多個PMOS開關830連接於輸出銷806與接收I/O電壓VDDIO的銷802之間。
此外,第三電源鉗位電路840連接於充當儲集器電流之LDO電路200的另一輸出銷808與銷804之間。在一些實施例中,電源鉗位電路840可為低/中間電壓電源鉗位。一或多個NMOS開關850連接於用於提供由LDO電路200輸出之中間電壓(例如,VDDPST1)的輸出銷808與銷804之間。
在一些實施例中,P+拾取環可包圍NMOS開關850的汲極及源極區。類似地,N+拾取環可包圍PMOS開關830的汲極及源極區。在一些實施例中,N+或P+拾取環的寬度可係在0 um至5 um內。每一NMOS或PMOS電晶體的垂直邊緣空間可係在0 um與10 um之間。在一些實施例中,每一電晶體級之深寬比大於或等於3:1。
因此,佈局800中之PMOS開關830及NMOS開關850可形成2級傳輸閘結構,該傳輸閘結構在氧化物定義(oxide definition,OD)層中具有分離的OD結構。在至少一個實例中,術語「氧化物定義(oxide definition,OD)」指電晶體的主動區,亦即,在電晶體的閘極下方形成源極、汲極及通道的區域。在一些實例中,OD結構係在絕緣區,諸如淺溝槽隔離(shallow trench isolation STI)、場氧化物(field oxide,FOX)區域或其他合適電絕緣結構之間。電源鉗位電路810、820及840可用以將電壓鉗位於其兩個端子之間以在電源至電源ESD事件期間保護PMOS開關830及NMOS開關850。
參看第9圖。第9圖圖示根據本案之一些實施例的可應用至LDO電路200之另一例示性佈局900的俯視圖。在一些實施例中,第9圖中之佈局900應用至LDO電路200,其中LDO電路200的輸出端連接至晶片上內部電路。如第9圖中所繪示,第一電源鉗位電路910連接於以下兩者之間:銷902,其連接至接收供電電壓VDDPST2之電力軌條;及銷904,其連接至接收低參考電壓VSS之電力軌條。第一二極體保護電路920連接於以下兩者之間:LDO電路200的輸出銷906,該LDO電路200充當電流源從而提供由LDO電路200輸出的中間電壓(例如,VDDPST1);及銷902。一或多個PMOS開關830連接於輸出銷906與銷902之間。
此外,第二二極體保護電路940連接於充當儲集器電流之LDO電路200的另一輸出銷908與銷904之間。一或多個NMOS開關950連接於用於提供由LDO電路200輸出之中間電壓(例如,VDDPST1)的輸出銷908與銷904之間。
因此,二極體保護電路920用以在輸出銷906與銷902之間的電壓超出預定安全值時保護PMOS開關930免受過量電壓或電流影響。二極體保護電路940用以在輸出銷908與銷904之間的電壓超出安全值時保護NMOS開關950免受過量電壓或電流影響。
第10圖為根據本案之一些實施例的用於LDO電路200中之NMOS或PMOS電晶體的例示性佈局1000。如第10圖中所繪示,佈局1000包括四個指叉(finger)1002、1004、1006及1008作為NMOS或PMOS佈局中的單元以達成更好的電子遷移(electron-migration,EM)性質。如第10圖中所繪示,佈局1000包括:主動區1010,該主動區1010包括源極區1012及汲極區1014;及主動閘極條帶1020,該主動閘極條帶1020由多晶矽或諸如金屬、金屬合金或金屬矽化物的其他導體材料形成。
此外,一或多個多重切割可經執行,如由框1032、1034及1036所描繪以分離主動閘極條帶1020,從而形成四個指叉1002、1004、1006及1008的分離閘極1022、1024、1026及1028。通孔1041至1048經置放以分別連接指叉1002、1004、1006及1008的源極區1012至主動區1010上方之金屬層中的第一導電特徵1052,且通孔1061至1068經置放以分別將指叉1002、1004、1006及1008的汲極區1014連接至金屬層中的第二導電特徵1054。請注意,第10圖中描繪之通孔的數目為例示性的,且並不意謂限制本案的一實施例。在一些實施例中,最大數目個通孔可經置放以達成更好電子遷移(electron-migration,EM)性質。
在一些實施例中,為了調整不同輸出電流,NMOS或PMOS中閘極的不同數目個指叉可因此連接至接地電壓VSS或正的供電電壓VDD。換言之,佈局可包括一或多個所使用的MOS指叉,及一或多個未使用的MOS指叉。舉例而言,在一些實施例中,為了提供小的電流,如所使用之MOS指叉的僅閘極連接至控制電路以接收用於控制MOS接通或關斷的信號,且其他閘極連接至接地電壓VSS或正的供電電壓VDD以保持未使用的MOS指叉關斷。
第11圖為根據本案之一些實施例的用於操作低壓差穩壓器之方法1100的例示性流程圖。應理解,額外操作可在第11圖中描繪之方法1100之前、期間及/或之後執行,且一些其他操作本文中僅予以簡潔描述。方法1100可針對圖示於第2圖至第4圖及第6圖中任一者中的LDO電路200執行,但本案的一實施例不限於此。
在操作1110中,分壓器電路(例如,第2圖中的分壓器電路)根據低壓差穩壓器的輸出電壓(例如,第2圖中的供電電壓VDDPST1)產生反饋電壓(例如,第2圖中的反饋電壓V FB)。
在操作1120中,LDO電路200控制開關(例如,第2圖中之開關SW1至SW3)以啟用傳輸閘電路(例如,第2圖中的傳輸閘電路230)中的一或多個電流路徑。在一些實施例中,LDO電路200可根據分別接收自輸出啟用銷的輸出啟用信號(例如,第3圖中之OE信號OE1至OEn)選擇複數個模式中的一者為操作模式,且根據所選擇的操作模式接通或關斷電流路徑中的開關,以啟用與所選擇模式相關聯的一或多個電流路徑。在一些實施例中,低壓差穩壓器可根據基於時脈信號計算的捺跳速率接通或關斷電流路徑中的開關。在一些實施例中,低壓差穩壓器可回應於靜電放電事件關斷電流路徑中的開關。
在操作1130中,根據反饋電壓及參考電壓(例如,第2圖中之參考電壓V REF),運算放大器(例如,第2圖中之運算放大器210)輸出驅動信號(例如,第2圖中的閘極信號V PASS)。在一些實施例中,運算放大器用以比較反饋電壓與參考電壓以輸出驅動信號。
在操作1140中,運算放大器由驅動信號驅動一或多個經啟用電流路徑中的一或多個電晶體(例如,第2圖中的電晶體T1、T2及T3)以調整流過傳輸閘電路的電流。
在一些實施例中,低壓差穩壓器中之一或多個遲滯比較器(第4圖中之遲滯比較器410)比較驅動信號與第三參考電壓(例如,最佳化通過電壓信號V PASS _OPT)以分離地接通或關斷電流路徑中的開關。因此,驅動信號可在對應於第三參考電壓的電壓範圍內調節。
由上述操作,一種用於操作一低壓差穩壓器的方法可因此執行以調節低壓差穩壓器的輸出電壓,且藉由選擇恰當操作模式且啟用與操作模式相關聯的一或多個電流路徑來調整低壓差穩壓器的驅動能力,以使操作點最佳化且將低壓差穩壓器中的過度驅動電壓保持於所要範圍內。此外,如上文所描述,所提議之低壓差穩壓器的電力損失經減小,此係因為所提議之低壓差穩壓器經達成而無引起洩漏電流的洩漏路徑。在一些實施例中,所提議低壓差穩壓器可藉由在ESD事件期間停用低壓差穩壓器內的開關而進一步提供ESD保護功能。
在一些實施例中,揭示一種電路,電路包括:分壓器電路,分壓器電路用以根據輸出電壓產生反饋電壓;運算放大器,運算放大器用以根據反饋電壓、參考電壓輸出驅動信號;及包括多個電流路徑的傳輸閘電路。電流路徑由驅動信號控制且並聯連接於分壓器電路與電源參考節點之間。
在一些實施例中,揭示一種用於操作低壓差穩壓器的方法。方法包括:根據低壓差穩壓器的輸出電壓產生反饋電壓;控制複數個開關以啟用傳輸閘電路中的一或多個電流路徑;根據反饋電壓及參考電壓輸出驅動信號;及由驅動信號驅動一或多個經啟用電流路徑中的一或多個電晶體以調整流過傳輸閘電路的電流。
在一些實施例中,揭示一種輸入/輸出裝置,輸入/輸出裝置包括:一或多個電壓位準移位器,一或多個電壓位準移位器用以將第電壓範圍內的一或多個第信號移位至第二電壓範圍內的一或多個對應第二信號;一或多個邏輯電路,一或多個邏輯電路耦接至一或多個電壓位準移位器且用以根據一或多個第二信號輸出一或多個切換信號;及低壓差穩壓器,低壓差穩壓器用以調節提供至一或多個邏輯電路或一或多個電壓位準移位器的供電電壓。低壓差穩壓器包括並聯連接的電流路徑。
前述內容概述若干實施例之特徵,使得熟習此項技術者可更好地理解本案的一實施例之態樣。熟習此項技術者應瞭解,其可易於使用本案的一實施例作為用於設計或修改用於實施本文中引入之實施例之相同目的及/或達成相同優勢之其他製程及結構的基礎。熟習此項技術者亦應認識到,此類等效構造並不偏離本案的一實施例之精神及範疇,且此類等效構造可在本文中進行各種改變、取代及替代而不偏離本案的一實施例的精神及範疇。
100:例示性輸入/輸出(「I/O」)裝置 110:核心裝置 120:位準移位器電路 130:位準移位器電路 140:高電壓側邏輯電路 150:低電壓側邏輯電路 160:後驅動器電路 162:PMOS電晶體 164:NMOS電晶體 170:襯墊 200:例示性低壓差(LDO)電路 202:參考電壓供應電路 210:運算放大器 212:第一輸入端 214:第二輸入端 216:單端輸出端 220:分壓器電路 230:可切換傳輸閘電路 232:控制電極 234:第一電極 236:第二電極 242:支腳 244:支腳 246:支腳 310:二進位至溫度計碼解碼器 330:可切換傳輸閘電路 332:控制電極 334:第一電極 336:第二電極 342:支腳 344:支腳 346:支腳 410:遲滯比較器 412:第一輸入端 414:第二輸入端 416:輸出端 500a:例示性波形圖 500b:例示性波形圖 610:捺跳偵測器電路 620:模式選擇電路 700:例示靜電放電(ESD)保護電路 702:VDD襯墊 704:VSS襯墊 710:例示靜電放電(ESD)感測電路 720:靜電放電(ESD)控制電路 800:例示性佈局 802:銷 804:銷 806:輸出銷 808:輸出銷 810:第一電源鉗位電路 820:第二電源鉗位電路 830:PMOS開關 840:第三電源鉗位電路 850:NMOS開關 900:另一例示性佈局 902:銷 904:銷 906:輸出銷 908:輸出銷 910:第一電源鉗位電路 920:第一二極體保護電路 930:PMOS開關 940:第二二極體保護電路 950:NMOS開關 1000:例示性佈局 1002:指叉 1004:指叉 1006:指叉 1008:指叉 1010:主動區 1012:源極區 1014:汲極區 1020:主動閘極條帶 1022:分離閘極 1024:分離閘極 1026:分離閘極 1028:分離閘極 1032:框 1034:框 1036:框 1041~1048:通孔 1052:第一導電特徵 1054:第二導電特徵 1061~1068:通孔 1100:用於操作低壓差穩壓器之方法 1110:操作 1120:操作 1130:操作 1140:操作 CVDD:內部核心供電電壓 C LOAD:外部大輸出電容器 CLK:時脈信號 CS1~CSn:控制信號 ESD:靜電放電信號 I LOAD:負荷電流 I BIAS:偏壓電流 NSIG:切換信號 OE1~OEn:輸出啟用(OE)信號 PAD:輸出信號 PSIG:切換信號 R1:反饋電阻器 R2:反饋電阻器 R DS:汲極至源極電阻 R ESR:等效串列電阻 SW1:開關 SW2:開關 SW3:開關 SW4:開關 SW5:開關 SW6:開關 Sa:位準移位信號 Sb:位準移位信號 Sc:信號 Sd:信號 SS1~SSn:開關選擇信號 T1:NMOS電晶體 T2:NMOS電晶體 T3:NMOS電晶體 T4:PMOS電晶體 T5:PMOS電晶體 T6:PMOS電晶體 TO:捺跳輸出信號 VDDIO:輸入/輸出(I/O)電壓 VDDPST1:供電電壓 VDDPST2:供電電壓 VDDPST3:較低供電電壓 V REF:參考電壓 V PASS:閘極信號 V GS:閘極至源極電壓 V REF:參考電壓 V FB:反饋電壓 V TH:臨限電壓 V BIAS:偏壓電壓 V GS:高閘極源極電壓 V PASS_OPT:預定最佳化通過電壓信號 VSS:接地電壓 VDD:供電電壓
本案的一實施例之態樣在與隨附圖式一起研讀時自以下詳細描述內容來最佳地理解。應注意,根據行業中之標準慣例,各種特徵未按比例繪製。實際上,各種特徵之尺寸可為了論述清楚經任意地增大或減小。 第1圖為根據本案之一些實施例的圖示例示性輸入/輸出(input/output,I/O)裝置之圖。 第2圖為根據本案之一些實施例的圖示例示性低壓差(LDO)電路之圖。 第3圖為根據本案之一些實施例的圖示例示性LDO電路之圖。 第4圖為根據本案之一些實施例的圖示例示性LDO電路之圖。 第5A圖及第5B圖為根據本案之一些實施例的圖示LDO電路中之電壓及電流信號之例示性波形圖。 第6圖為根據本案之一些實施例的圖示例示性LDO電路之圖。 第7圖為根據本案之一些實施例的圖示例示靜電放電(Electrostatic Discharge,ESD)保護電路之圖。 第8圖圖示根據本案之一些實施例的應用至LDO電路之例示性佈局的俯視圖。 第9圖圖示根據本案之一些實施例的應用至LDO電路之例示性佈局的俯視圖。 第10圖為根據本案之一些實施例的用於LDO電路中之NMOS或PMOS電晶體的例示性佈局。 第11圖為根據本案之一些實施例的用於操作低壓差穩壓器之方法的例示性流程圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
100:例示性輸入/輸出(「I/O」)裝置
110:核心裝置
120:位準移位器電路
130:位準移位器電路
140:高電壓側邏輯電路
150:低電壓側邏輯電路
160:後驅動器電路
162:PMOS電晶體
164:NMOS電晶體
170:襯墊
CVDD:內部核心供電電壓
NSIG:切換信號
PAD:輸出信號
PSIG:切換信號
Sa:位準移位信號
Sb:位準移位信號
Sc:信號
Sd:信號
VDDPST1:供電電壓
VDDPST2:供電電壓
VDDPST3:較低供電電壓

Claims (20)

  1. 一種電路,包含: 一分壓器電路,該分壓器電路用以根據一輸出電壓產生一反饋電壓; 一運算放大器,該運算放大器用以根據該反饋電壓及一參考電壓輸出一驅動信號;及 一傳輸閘電路,該傳輸閘電路包含複數個電流路徑,該些電流路徑由該驅動信號控制且並聯連接於該分壓器電路與一電源參考節點之間。
  2. 如請求項1所述之電路,其中該些電流路徑分別包含串列連接的複數個電晶體及複數個開關,該些電晶體之閘極端連接至該運算放大器的一輸出端以接收該驅動信號。
  3. 如請求項2所述之電路,其中該傳輸閘電路經組態而以複數個模式操作,該些電流路徑中之該些開關根據一所選擇模式分離地接通或關斷。
  4. 如請求項3所述之電路,進一步包含: 一邏輯電路,該邏輯電路用以根據分別接收自複數個輸出啟用銷的複數個啟用信號來判定該些模式中的一者為該所選擇模式。
  5. 如請求項3所述之電路,進一步包含: 一遲滯比較器,該遲滯比較器連接至該運算放大器且用以比較該驅動信號與一第三參考電壓以分離地接通或關斷該些電流路徑中的該些開關。
  6. 如請求項5所述之電路,其中該驅動信號係在對應於該第三參考電壓的一電壓範圍內。
  7. 如請求項3所述之電路,其中該所選擇模式根據基於一時脈信號計算的一捺跳速率判定。
  8. 一種用於操作一低壓差穩壓器的方法,包含以下步驟: 根據該低壓差穩壓器的一輸出電壓產生一反饋電壓; 控制複數個開關以啟用一傳輸閘電路中的一或多個電流路徑; 根據該反饋電壓及一參考電壓輸出一驅動信號;及 由該驅動信號驅動一或多個經啟用電流路徑中的一或多個電晶體以調整流過該傳輸閘電路的一電流。
  9. 如請求項8所述的方法,進一步包含以下步驟: 由一運算放大器比較該反饋電壓與該參考電壓以輸出該驅動信號。
  10. 如請求項8所述的方法,進一步包含以下步驟: 根據選自複數個模式的一操作模式接通或關斷該些開關,該選擇該操作模式的步驟係根據分別接收自複數個輸出啟用銷的該些啟用信號進行。
  11. 如請求項8所述的方法,進一步包含以下步驟: 由一或多個遲滯比較器比較該驅動信號與一第三參考電壓以分離地接通或關斷該些開關。
  12. 如請求項11所述的方法,進一步包含以下步驟: 將該驅動信號調節於對應於該第三參考電壓的一電壓範圍內。
  13. 如請求項8所述的方法,進一步包含以下步驟: 根據基於一時脈信號計算之一捺跳速率接通或關斷該些開關。
  14. 如請求項8所述的方法,進一步包含以下步驟: 回應於一靜電放電事件關斷該些開關。
  15. 一種輸入/輸出裝置,包含: 一或多個電壓位準移位器,該一或多個電壓位準移位器用以將一第一電壓範圍內的一或多個第一信號移位至一第二電壓範圍內的一或多個第二信號; 一或多個邏輯電路,該一或多個邏輯電路耦接至該一或多個電壓位準移位器且用以根據該一或多個第二信號輸出一或多個切換信號;及 一低壓差穩壓器,該低壓差穩壓器用以調節提供至該一或多個邏輯電路或該一或多個電壓位準移位器的一供電電壓,該低壓差穩壓器包含並聯連接的複數個電流路徑。
  16. 如請求項15所述之輸入/輸出裝置,進一步包含: 一後驅動器電路,該後驅動器電路耦接至該一或多個邏輯電路且用以回應於該一或多個切換信號來輸出一或多個輸出信號。
  17. 如請求項16所述之輸入/輸出裝置,其中該後驅動器電路的一高供電電壓大於該一或多個電壓位準移位器之一高供電電壓。
  18. 如請求項15所述之輸入/輸出裝置,其中該低壓差穩壓器包含: 一分壓器電路,該分壓器電路用以根據該供電電壓產生一反饋電壓; 一運算放大器,該運算放大器用以根據該反饋電壓及一參考電壓輸出一驅動信號;及 一傳輸閘電路,該傳輸閘電路包含該些電流路徑,其中該些電流路徑分別包含串列連接的電晶體及開關,該些電晶體包括連接至該運算放大器之一輸出端的閘極端以接收該驅動信號,且該些電流路徑中之該些開關用以分離地接通或關斷。
  19. 如請求項18所述之輸入/輸出裝置,其中該傳輸閘電路經組態而以複數個模式操作,該些電流路徑中之該些開關根據一所選擇模式分離地接通或關斷。
  20. 如請求項15所述之輸入/輸出裝置,其中該一或多個邏輯電路包含具有不同的高供電電壓及不同的低供電電壓的一第一邏輯電路及一第二邏輯電路。
TW111113110A 2021-07-09 2022-04-06 低壓差穩壓器電路、輸入/輸出裝置以及操作低壓差穩壓器的方法 TWI812147B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163220331P 2021-07-09 2021-07-09
US63/220,331 2021-07-09
US17/650,668 US11966241B2 (en) 2021-07-09 2022-02-11 Low dropout regulator circuits, input/output device, and methods for operating a low dropout regulator
US17/650,668 2022-02-11

Publications (2)

Publication Number Publication Date
TW202303328A true TW202303328A (zh) 2023-01-16
TWI812147B TWI812147B (zh) 2023-08-11

Family

ID=83759396

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111113110A TWI812147B (zh) 2021-07-09 2022-04-06 低壓差穩壓器電路、輸入/輸出裝置以及操作低壓差穩壓器的方法

Country Status (3)

Country Link
US (1) US11966241B2 (zh)
CN (1) CN115268542B (zh)
TW (1) TWI812147B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460994A (zh) * 2020-11-09 2022-05-10 扬智科技股份有限公司 电压调整器
KR20220130400A (ko) * 2021-03-18 2022-09-27 삼성전자주식회사 저전압 강하 레귤레이터 및 이를 포함하는 전력관리 집적회로
KR20220168257A (ko) * 2021-06-16 2022-12-23 삼성전자주식회사 전압 레귤레이터 및 이를 포함하는 반도체 메모리 장치
CN116225197B (zh) * 2023-05-08 2023-08-29 核芯互联科技(青岛)有限公司 电压模式驱动方法及电路

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639222A (ja) 1986-06-30 1988-01-14 Toshiba Corp トランスフアゲ−ト回路
KR100370233B1 (ko) * 1999-05-19 2003-01-29 삼성전자 주식회사 입력버퍼 회로
US7061217B2 (en) * 2004-01-28 2006-06-13 Texas Instruments Deutschland, Gmbh Integrated power switching circuit
TWI318344B (en) * 2006-05-10 2009-12-11 Realtek Semiconductor Corp Substrate biasing apparatus
DE102008012392B4 (de) * 2008-03-04 2013-07-18 Texas Instruments Deutschland Gmbh Technik zur Verbesserung des Spannungsabfalls in Reglern mit geringem Spannungsabfall durch Einstellen der Aussteuerung
US7982525B2 (en) * 2009-02-20 2011-07-19 Conexant Systems, Inc. Systems and methods for driving high power stages using lower voltage processes
US8598854B2 (en) 2009-10-20 2013-12-03 Taiwan Semiconductor Manufacturing Company, Ltd. LDO regulators for integrated applications
US8866341B2 (en) * 2011-01-10 2014-10-21 Infineon Technologies Ag Voltage regulator
US8400193B2 (en) * 2011-03-21 2013-03-19 Nxp B.V. Backdrive protection circuit
US8536844B1 (en) 2012-03-15 2013-09-17 Texas Instruments Incorporated Self-calibrating, stable LDO regulator
US9134743B2 (en) * 2012-04-30 2015-09-15 Infineon Technologies Austria Ag Low-dropout voltage regulator
US9323263B2 (en) * 2012-09-25 2016-04-26 Intel Corporation Low dropout regulator with hysteretic control
US9250696B2 (en) * 2012-10-24 2016-02-02 Stmicroelectronics International N.V. Apparatus for reference voltage generating circuit
US9170590B2 (en) 2012-10-31 2015-10-27 Qualcomm Incorporated Method and apparatus for load adaptive LDO bias and compensation
TWI506394B (zh) 2013-03-21 2015-11-01 Silicon Motion Inc 低壓差穩壓裝置及使用在低壓差穩壓裝置的方法
US9841777B2 (en) * 2013-05-29 2017-12-12 Nxp Usa, Inc. Voltage regulator, application-specific integrated circuit and method for providing a load with a regulated voltage
US9459642B2 (en) * 2013-07-15 2016-10-04 Taiwan Semiconductor Manufacturing Company, Ltd. Low dropout regulator and related method
CN103941798B (zh) 2014-04-30 2015-12-02 杭州士兰微电子股份有限公司 低压差线性稳压器
CN105446403A (zh) 2014-08-14 2016-03-30 登丰微电子股份有限公司 低压差线性稳压器
US9780647B2 (en) * 2014-11-26 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. Input-output circuits
US9625926B1 (en) * 2015-11-18 2017-04-18 Qualcomm Incorporated Multiple input regulator circuit
CN107102665A (zh) 2016-02-22 2017-08-29 联发科技(新加坡)私人有限公司 低压差线性稳压器
KR102543063B1 (ko) * 2017-11-28 2023-06-14 삼성전자주식회사 외장 커패시터를 사용하지 않는 전압 레귤레이터 및 이를 포함하는 반도체 장치
DE102019113401A1 (de) 2018-06-01 2019-12-05 Taiwan Semiconductor Manufacturing Co., Ltd. Rram-schaltung und verfahren
CN209659177U (zh) 2018-11-23 2019-11-19 杭州士兰微电子股份有限公司 同步整流开关变换器
US11251691B2 (en) * 2019-09-23 2022-02-15 Stmicroelectronics Asia Pacific Pte Ltd Floating power supply for a driver circuit configured to drive a high-side switching transistor
US11402860B2 (en) * 2020-02-18 2022-08-02 Silicon Laboratories Inc. Voltage regulator having minimal fluctuation in multiple operating modes
US11029716B1 (en) * 2020-02-18 2021-06-08 Silicon Laboratories Inc. Providing low power charge pump for integrated circuit
JP6886544B1 (ja) * 2020-04-20 2021-06-16 ウィンボンド エレクトロニクス コーポレーション 発振回路
US11658572B2 (en) * 2020-06-11 2023-05-23 Intel Corporation Power field effect transistor topology and bootstrap circuit for inverting buck-boost DC-DC converter
KR20220168257A (ko) * 2021-06-16 2022-12-23 삼성전자주식회사 전압 레귤레이터 및 이를 포함하는 반도체 메모리 장치
EP4174859A1 (en) * 2021-10-26 2023-05-03 STMicroelectronics S.r.l. Voltage regulator circuit and corresponding memory device
CN114442717B (zh) * 2022-01-21 2023-04-07 星宸科技股份有限公司 具有双向电流调整的低压差稳压器

Also Published As

Publication number Publication date
US11966241B2 (en) 2024-04-23
CN115268542A (zh) 2022-11-01
TWI812147B (zh) 2023-08-11
CN115268542B (zh) 2024-01-30
US20230009027A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
TWI812147B (zh) 低壓差穩壓器電路、輸入/輸出裝置以及操作低壓差穩壓器的方法
US7541787B2 (en) Transistor drive circuit, constant voltage circuit, and method thereof using a plurality of error amplifying circuits to effectively drive a power transistor
US6593795B2 (en) Level adjustment circuit and data output circuit thereof
EP1833152A1 (en) Adjustable transistor body bias circuitry
US6700363B2 (en) Reference voltage generator
US7492215B2 (en) Power managing apparatus
US7683696B1 (en) Open-drain output buffer for single-voltage-supply CMOS
US20100315157A1 (en) Semiconductor device
US10186958B2 (en) Input-output circuits
JP2014171197A (ja) 半導体装置及び無線通信装置
KR19990044240A (ko) 공유 중간 노드를 내장한 출력버퍼
JP2006135560A (ja) レベルシフト回路およびこれを含む半導体集積回路装置
CN113541606A (zh) 振荡电路以及半导体集成电路
US7218169B2 (en) Reference compensation circuit
US6784720B2 (en) Current switching circuit
US10622976B2 (en) Schmitt trigger circuit
US20130342259A1 (en) Semiconductor integrated circuit and switching device
KR20050041592A (ko) 온도 보상이 가능한 내부전압 발생장치
US7808275B1 (en) Input buffer with adaptive trip point
US8816726B1 (en) Differential signaling driver
US6118311A (en) Output circuit capable of suppressing bounce effect
US20060145749A1 (en) Bias circuit having reduced power-up delay
US9287874B2 (en) Level-shifting device
US11271551B2 (en) Level shifter
US11750098B2 (en) Voltage conversion circuit having self-adaptive mechanism