TW202300264A - 熔接結構體 - Google Patents
熔接結構體 Download PDFInfo
- Publication number
- TW202300264A TW202300264A TW111122227A TW111122227A TW202300264A TW 202300264 A TW202300264 A TW 202300264A TW 111122227 A TW111122227 A TW 111122227A TW 111122227 A TW111122227 A TW 111122227A TW 202300264 A TW202300264 A TW 202300264A
- Authority
- TW
- Taiwan
- Prior art keywords
- welded
- less
- joined
- joint
- joining member
- Prior art date
Links
- 238000003466 welding Methods 0.000 claims abstract description 96
- 229910052751 metal Inorganic materials 0.000 claims abstract description 85
- 239000002184 metal Substances 0.000 claims abstract description 85
- 238000005304 joining Methods 0.000 claims abstract description 82
- 239000000203 mixture Substances 0.000 claims abstract description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 31
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 18
- 150000002910 rare earth metals Chemical class 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910001566 austenite Inorganic materials 0.000 abstract description 2
- 229910000831 Steel Inorganic materials 0.000 description 44
- 239000010959 steel Substances 0.000 description 44
- 239000000463 material Substances 0.000 description 41
- 230000000052 comparative effect Effects 0.000 description 38
- 239000012071 phase Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 19
- 238000012360 testing method Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 238000010276 construction Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 210000001503 joint Anatomy 0.000 description 8
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 239000010953 base metal Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000009430 construction management Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 241000270708 Testudinidae Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/3073—Fe as the principal constituent with Mn as next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/02—Seam welding; Backing means; Inserts
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Arc Welding In General (AREA)
- Heat Treatment Of Articles (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
一種熔接結構體,包括將接合構件的端面對接於板厚50 mm以上的被接合構件的表面並將接合構件與被接合構件接合的T形接頭,另外,該T形接頭的熔接金屬具有規定的熔接金屬組成、以及沃斯田鐵相以面積%計而為80%以上的熔接金屬組織。
Description
本發明是有關於一種例如大型貨櫃船或散裝貨船等的使用厚鋼板進行熔接施工而成的熔接鋼結構物(以下,亦稱為熔接結構體)。本發明尤其是有關於一種可使自厚鋼板的母材或熔接接頭部產生的脆性龜裂的傳播於達到結構物的大規模破壞之前停止的、脆性龜裂傳播停止特性優異的熔接結構體。
貨櫃船或散裝貨船為了提高裝載能力或提高裝卸效率等,例如與油輪等不同,具有增大船上部的開口部的結構。因此,於貨櫃船或散裝貨船中,尤其需要使船體外板高強度化或厚壁化。
另外,近年來,貨櫃船大型化,正在建造6,000 TEU~24,000 TEU之類的大型船。再者,TEU(Twenty feet Equivalent Unit,二十英尺貨櫃當量)表示換算成長度為20英尺的貨櫃的個數,表示貨櫃船的裝載能力的指標。伴隨此種船的大型化,船體外板有使用板厚:50 mm以上、屈服強度:390 N/mm
2級以上的厚鋼板的傾向。
關於成為船體外板的鋼板,近年來,就縮短施工期間的觀點而言,例如大多藉由電熱氣體電弧熔接等大入熱量熔接來進行對接熔接。此種大入熱量熔接容易導致熔接熱影響部的韌性大幅降低,成為自熔接接頭部產生脆性龜裂的原因之一。
另一方面,於船體結構中,先前就安全性的觀點而言,認為需要即便於萬一產生了脆性破壞的情況下,亦使脆性龜裂的傳播於達到大規模破壞之前停止,防止船體分離。
承接此種想法,於非專利文獻1中,報告有與板厚小於50 mm的造船用鋼板的熔接部的脆性龜裂傳播行為相關的實驗性研究結果。
於非專利文獻1中,對在熔接部強制性地產生的脆性龜裂的傳播路徑及傳播行為,實驗性地進行了調查。此處記載有如下結果:若熔接部的破壞韌性於某程度上得到確保,則因熔接殘留應力的影響而脆性龜裂大多會自熔接部向母材側逃散。其中,亦確認到多例脆性龜裂沿著熔接部傳播的例子。該情況暗示出,不能斷言為沒有脆性破壞沿著熔接部直進傳播的可能性。
但是,存在將與非專利文獻1中應用的熔接同等的熔接應用於板厚小於50 mm的鋼板來建造的船舶沒有任何問題地航行等許多實際成果,除此以外,就韌性良好的鋼板母材(造船E級鋼等)充分保持有使脆性龜裂停止的能力的認識而言,造船用鋼材的熔接部的脆性龜裂傳播停止特性於船級規則等中未被特別要求。
另外,於近年來的超過6,000 TEU的大型貨櫃船中,有時使用的鋼板的板厚超過50 mm。該情況下,除了由板厚增大導致的破壞韌性的降低以外,亦因採用熔接入熱量更大的大入熱量熔接,而熔接部的破壞韌性有進一步降低的傾向。於此種對板厚超過50 mm的鋼板實施大入熱量熔接而得的厚壁的大入熱量熔接接頭中,自熔接部產生的脆性龜裂有可能不向母材側逃散而直進,且即便於骨材等鋼板母材部亦不會停止。例如於非專利文獻2中示出有該方面。因此,確保應用有板厚50 mm以上的厚壁高強度鋼板的船體結構的安全性成為大問題。另外,於非專利文獻2中,亦指出有,為了使已產生的脆性龜裂的傳播停止,而需要具有特別的脆性龜裂傳播停止特性的厚鋼板。
針對此種問題,例如,於專利文獻1中,記載有一種熔接結構體,其較佳為於作為板厚50 mm以上的船殼外板的熔接結構體中,以與對接熔接部交叉的方式配置骨材,並藉由填角熔接進行接合而成。於專利文獻1所記載的技術中,藉由設為將具有規定的顯微組織的鋼板作為增強材料並進行填角熔接而成的結構,即便於對接熔接接頭部產生脆性龜裂,亦可藉由作為增強材料的骨材使脆性破壞停止,可防止如熔接結構體破壞般的致命性的損傷。然而,於專利文獻1所記載的技術中,為了將增強材料設為形成了所期望的組織的鋼板而需要複雜的步驟。結果,存在生產性降低、難以穩定地確保具有所期望的組織的鋼板的問題。
另外,於專利文獻2中,記載有一種熔接結構體,其包括將接合構件填角熔接於被接合構件而成的填角熔接接頭。於專利文獻2所記載的熔接結構體中,在填角熔接接頭剖面的接合構件與被接合構件的對接面殘存未熔敷部,對該未熔敷部的寬度以與被接合構件的脆性龜裂傳播停止性能Kca滿足特別的關係式的方式進行調整。藉此,即便將被接合構件(凸緣(flange))設為板厚:50 mm以上的厚物材,亦可使接合構件中產生的脆性龜裂的傳播於填角熔接部的對接面停止,從而阻止脆性龜裂向被接合構件的傳播。然而,於專利文獻2所記載的技術中,接合構件的脆性龜裂傳播停止特性等不充分,因此不可謂是足以使被接合構件中產生的脆性龜裂於接合構件中停止傳播的充分的技術。
另外,於專利文獻3~專利文獻5中,記載有一種熔接結構體,其是使接合構件的端面對接於被接合構件的表面,並藉由填角熔接將接合構件與被接合構件接合而成。於專利文獻3~專利文獻5所記載的技術中,製成於使接合構件的端面與被接合構件的表面對接後的面包括未熔敷部、且熔接腳長度或熔敷寬度的至少一者為16 mm以下的填角熔接接頭,之後製成填角熔接金屬的韌性於與被接合構件的板厚的關係中具有特別的關係的填角熔接接頭,或者進而製成將接合構件設為脆性龜裂傳播停止性能優異的鋼板,或製成將對接熔接接頭的熔接金屬設為高韌性的熔接結構體,藉此可利用填角熔接部、或者利用接合構件的母材、或者利用接合構件、被接合構件的熔接部阻止自被接合構件熔接部產生的脆性龜裂傳播。
然而,於專利文獻3~專利文獻5所記載的各技術中,需要將熔接腳長度(或熔敷寬度)限制為16 mm以下,因此,就確保填角熔接部的強度的觀點而言,可應用於接合構件(腹板(web))及被接合構件(凸緣)的板厚最大為80 mm。
針對此種問題,例如,於專利文獻6中,記載有一種熔接結構體,其包括將接合構件的端面對接於板厚50 mm以上的被接合構件的表面、且將接合構件與被接合構件接合的填角熔接接頭。關於專利文獻6所記載的熔接結構體,填角熔接接頭的熔接腳長度及熔敷寬度超過16 mm,於填角熔接接頭的將接合構件的端面與被接合構件的表面對接後的面,具有於填角熔接接頭的剖面中為該接合構件的板厚tw的95%以上的未熔敷部,進而設為具有如下韌性、即熔接腳長度及熔敷寬度中小的一者的值L與被接合構件的板厚tf的關係滿足規定關係的韌性的填角熔接金屬,藉此即便將接合構件的板厚設為65 mm~120 mm,亦可利用填角熔接金屬阻止被接合構件中產生的脆性龜裂傳播。
另外,於專利文獻7中,記載有一種熔接結構體,其於腹板與凸緣的對接部分包括加倍構件。專利文獻7所記載的熔接結構體是設為如下熔接結構體:將腹板對接且填角熔接於加倍構件,於該對接面殘存未熔敷部,進而將加倍構件重合且填角熔接於凸緣,於該重合面殘存未熔敷部。於專利文獻7所記載的技術中,若於加倍構件中使用沃斯田鐵(austenite)鋼板,則可利用加倍構件阻止長的大的脆性龜裂的傳播。
[現有技術文獻]
[專利文獻]
專利文獻1:日本專利特開2004-232052號公報
專利文獻2:日本專利特開2007-326147號公報
專利文獻3:日本專利第5395985號
專利文獻4:日本專利第5365761號
專利文獻5:日本專利第5408396號
專利文獻6:日本專利第6744274號
專利文獻7:日本專利第6615215號
[非專利文獻]
非專利文獻1:日本造船研究協會第147研究部會:「與船身用高張力鋼板大入熱量熔接接頭的脆性破壞強度評價相關的研究」,第87號(1978年2月),p. 35~53,日本造船研究協會
非專利文獻2:山口欣彌等:「超大型貨櫃船的開發-新的高強度極厚鋼板的實際應用-」,日本船舶海洋工學會誌,第3號(2005),p. 70~76,2005年11月
[發明所欲解決之課題]
但是,於專利文獻6所記載的技術中,為了限制熔接腳長度或熔敷寬度,必須於熔接時進行嚴格的施工管理,存在熔接施工的生產性降低或施工費用增大的問題。此外,於要求未熔敷部小的部分熔透熔接的結構中,存在無法確保充分的脆性龜裂傳播停止性能的問題。另外,於專利文獻7所記載的技術中,存在因加倍構件加工/熔接而施工成本增加的問題、或於在加倍構件中使用昂貴的沃斯田鐵鋼板的情況下材料費高漲的問題。
本發明的目的在於解決如所述般的現有技術的問題,並提供一種於不需要於熔接時進行嚴格的施工管理的情況下,便可於達到大規模破壞之前對在板厚:50 mm以上的被接合構件(凸緣)中產生的脆性龜裂向接合構件(腹板)的傳播進行阻止的、脆性龜裂傳播停止性能優異的熔接結構體。再者,本發明中設為對象的熔接結構體為具有T形接頭的熔接結構體,所述T形接頭是使接合構件的端面對接於被接合構件的表面、並藉由填角熔接或部分熔透熔接將該些熔接接合而成。
[解決課題之手段]
本發明者等人為了達成所述目的,而對影響T形接頭的脆性龜裂傳播停止韌性的各種主要原因進行了努力研究。結果,想到了若將T形接頭的熔接金屬組織設為主要包含沃斯田鐵相的組織,則可使熔接金屬為高韌性,例如,即便於熔接金屬的熔接腳長度或熔敷寬度為16 mm以上的情況下、或於接合時應用部分熔透熔接的情況下,亦可製成脆性龜裂傳播停止性能優異的T形接頭。而且,獲得了如下見解:藉此,於不特別考慮接合構件(腹板)中使用的厚鋼板的脆性龜裂傳播停止性能的情況下,亦可利用T形接頭的熔接金屬阻止被接合構件(凸緣)中產生的脆性龜裂向接合構件(腹板)的傳播。
本發明是對所述見解進一步進行研究而完成者。
即,本發明的主旨如下。
[1]一種熔接結構體,包括使接合構件的端面對接於板厚50 mm以上的被接合構件的表面並將所述接合構件與所述被接合構件接合的T形接頭,所述熔接結構體中,
所述T形接頭的熔接腳長度及熔敷寬度中長的一者的值即L為16 mm以上,
所述T形接頭的熔接金屬具有
以質量%計而為C:0.10%~0.70%、Si:0.10%~1.00%、Mn:15.00%~28.00%、P:0.030%以下、S:0.015%以下、Ni:1.00%~5.00%、Cr:0.50%~4.00%、Mo:2.00%以下、N:0.150%以下及O:0.050%以下、且剩餘部分為Fe及不可避免的雜質的熔接金屬組成、以及
沃斯田鐵相以面積%計而為80%以上的熔接金屬組織。
[2]如[1]所述的熔接結構體,其中所述熔接金屬組成進而以質量%計而含有(a)以及(b)中的至少一者,
(a)選自V:0.10%以下、Ti:0.10%以下及Nb:0.10%以下中的一種或兩種以上
(b)選自Cu:1.00%以下、Al:0.10%以下、Ca:0.010%以下及稀土金屬(rare earth metal,REM):0.020%以下中的一種或兩種以上。
[3]如[1]所述的熔接結構體,其中於所述T形接頭的使所述接合構件的端面與所述被接合構件的表面對接後的面存在未熔敷部,且所述未熔敷部的寬度相對於所述接合構件的板厚的比率即未熔敷比率Y為30%以上。
[4]如[2]所述的熔接結構體,其中於所述T形接頭的使所述接合構件的端面與所述被接合構件的表面對接後的面存在未熔敷部,且所述未熔敷部的寬度相對於所述接合構件的板厚的比率即未熔敷比率Y為30%以上。
[5]如[1]所述的熔接結構體,其中所述被接合構件具有與所述接合構件交叉的方式的對接熔接接頭部。
[6]如[2]所述的熔接結構體,其中所述被接合構件具有與所述接合構件交叉的方式的對接熔接接頭部。
[7]如[3]所述的熔接結構體,其中所述被接合構件具有與所述接合構件交叉的方式的對接熔接接頭部。
[8]如[4]所述的熔接結構體,其中所述被接合構件具有與所述接合構件交叉的方式的對接熔接接頭部。
[9]如[5]所述的熔接結構體,其中所述接合構件具有對接熔接接頭部,且以該接合構件的對接熔接接頭部與所述被熔接構件的對接熔接接頭部交叉的方式配設所述接合構件而成。
[10]如[6]所述的熔接結構體,其中所述接合構件具有對接熔接接頭部,且以該接合構件的對接熔接接頭部與所述被熔接構件的對接熔接接頭部交叉的方式配設所述接合構件而成。
[11]如[7]所述的熔接結構體,其中所述接合構件具有對接熔接接頭部,且以該接合構件的對接熔接接頭部與所述被熔接構件的對接熔接接頭部交叉的方式配設所述接合構件而成。
[12]如[8]所述的熔接結構體,其中所述接合構件具有對接熔接接頭部,且以該接合構件的對接熔接接頭部與所述被熔接構件的對接熔接接頭部交叉的方式配設所述接合構件而成。
[13]如[1]至[12]中任一項所述的熔接結構體,其中所述接合構件的板厚為50 mm以上。
[14]如[1]至[12]中任一項所述的熔接結構體,其中所述接合構件與所述被接合構件之間的間隙為10 mm以下。
[15]如[13]所述的熔接結構體,其中所述接合構件與所述被接合構件之間的間隙為10 mm以下。
[發明的效果]
根據本發明,能夠於達到大規模破壞之前對自板厚50 mm以上的厚壁的被接合構件產生的脆性龜裂向接合構件的傳播進行阻止。根據本發明,尤其是可避免大型的貨櫃船或散裝貨船等的船體分離等大規模的脆性破壞,於提高船體結構的安全性的方面帶來大的效果,於產業上發揮顯著的效果。另外,根據本發明,亦有如下效果:於不使用特殊鋼材、且亦不損害安全性的情況下,僅藉由在熔接施工時進行熔接材料的選定或熔接條件的調整,便可製造脆性龜裂傳播停止性能優異的熔接結構體。
依照本發明的一實施形態的熔接結構體為包括T形接頭的熔接結構體,所述T形接頭使接合構件1的端面對接於被接合構件2的表面並將接合構件1與被熔接構件2接合。依照本發明的一實施形態的熔接結構體例如能夠應用於將船舶的船體外板設為被接合構件且將隔離壁設為接合構件的船體結構中、或者將甲板設為被接合構件且將艙口設為接合構件的船體結構中。再者,所述T形接頭具有接合構件1、被接合構件2、以及熔接金屬5。
再者,所使用的被接合構件2是將板厚50 mm以上、較佳為60 mm以上且120 mm以下的厚鋼板設為原材料。另外,接合構件1較佳為將板厚較佳為50 mm以上、更佳為60 mm以上且120 mm以下的厚鋼板設為原材料。再者,接合構件1及被接合構件2中使用的厚鋼板的鋼種並無特別限定,例如,可適宜地使用屈服強度:350 N/mm
2(MPa)~490 N/mm
2(MPa)的厚鋼板。
再者,依照本發明的一實施形態的熔接結構體中包括的T形接頭具有熔接金屬5,且將熔接腳長度3及熔敷寬度13中的長的一者的值即L設為16 mm以上。另外,於依照本發明的一實施形態的熔接結構體中,亦可使成為結構不連續部的未熔敷部4(未熔敷部的寬度16)存在於接合構件1與被接合構件2的對接面。另外,於存在未熔敷部4的情況下,較佳為將未熔敷部的寬度16相對於接合構件1的板厚的比率即未熔敷比率Y(=B/tw×100、B:未熔敷部的寬度(mm)、tw:接合構件的板厚(mm))設為30%以上。藉由存在未熔敷部4,而被接合構件2中傳播來的脆性龜裂容易於對接面停止。未熔敷比率Y的上限並無特別限定,就確保規定的強度的觀點等而言,未熔敷比率Y較佳為98%以下。再者,熔接腳長度3、熔敷寬度13及未熔敷部的寬度16是於T形接頭的接頭剖面(為後述的圖1的(a)~圖1的(d)所示的接頭剖面,該接頭剖面是與將接合構件1的板厚方向設為x軸、將被接合構件2的板厚方向設為y軸時的xy平面平行的面)中進行測定。
藉由接頭剖面將該狀態示於圖1的(a)~圖1的(d)中。圖1的(a)示出了將接合構件1相對於被接合構件2直立地加以接合的情況,但並不限定於此。例如,如圖1的(b)所示,亦可將接合構件1相對於被接合構件2傾斜角度θ地加以接合。另外,如圖1的(c)所示,亦可於接合構件1與被接合構件2之間設置間隙14,進而如圖1的(d)所示,亦可於間隙14插入間隔件15。另外,就削減熔接時的工時的觀點而言,間隙14較佳為設為10 mm以下。
脆性龜裂極少產生於缺陷少的鋼板母材部,大多產生於熔接部。於圖2的(a)、圖2的(b)或圖3的(a)、圖3的(b)所示般的T形接頭中,脆性龜裂是自對接熔接接頭部11產生。為了阻止已產生的脆性龜裂向接合構件1傳播,較佳為存在結構的不連續部。作為結構的不連續部,例如如所述般,較佳為使未熔敷部4存在於T形接頭的被接合構件2與接合構件1的對接面。於依照本發明的一實施形態的熔接結構體中,為了將T形接頭的熔接金屬設為韌性優異者,未必需要存在結構的不連續部。其中,藉由存在結構的不連續部,更容易阻止脆性龜裂的傳播。
圖2的(a)、圖2的(b)所示的熔接結構體為如下熔接結構體,所述熔接結構體是將被接合構件2設為利用對接熔接接頭11進行接合而成的鋼板並將接合構件1以與該對接熔接接頭的熔接部11交叉的方式進行熔接而成。另外,圖3的(a)、圖3的(b)所示的熔接結構體為如下熔接結構體,所述熔接結構體是將接合構件1設為利用對接熔接接頭12進行接合而成的鋼板且將被接合構件2設為利用對接熔接接頭11進行接合而成的鋼板並以接合構件1的對接熔接接頭12與被接合構件2的對接熔接接頭11交叉的方式進行熔接而成。
於圖2的(a)、圖2的(b)及圖3的(a)、圖3的(b)中,將接合構件1與對接熔接接頭11以正交的方式配置,但並不限定於此。當然亦可傾斜地交叉。另外,熔接接頭的製造方法無需特別限定,可應用任意的常用的製造方法。例如,亦可將被接合構件用鋼板彼此、接合構件用鋼板彼此對接熔接,獲得具有對接熔接接頭的接合構件及被結構構件。然後,將所獲得的接合構件及被接合構件熔接來製造T形接頭。另外,亦可將對接熔接前的一組接合構件用鋼板臨時熔接於被接合構件,繼而將接合構件用鋼板彼此對接熔接,獲得具有對接熔接接頭的接合構件。然後,將所獲得的接合構件正式熔接於被接合構件來製造T形接頭。
於依照本發明的一實施形態的熔接結構體中,T形接頭的熔接腳長度3及熔敷寬度13中長的一者的值即L是設為16 mm以上。於L小於16 mm、即熔接腳長度3及熔敷寬度13均小於16 mm的情況下,有利於確保脆性龜裂傳播停止性能。但是,於如構件板厚超過80 mm般的情況下,難以確保熔接部的強度。另外,即便構件板厚為80 mm以下,藉由施工時進行修改等,難以確保熔接部的強度的危險性亦變高。再者,L的上限並無特別限定,就施工效率等觀點而言,L較佳為設為30 mm以下。
另外,於依照本發明的一實施形態的熔接結構體中,將T形接頭的熔接金屬的組織(以下,亦稱為熔接金屬組織)設為沃斯田鐵相以面積%(面積率)計而為80%以上的組織。沃斯田鐵相的上限並無特別限定,以面積%計可為100%。沃斯田鐵相以外的相(以下,亦稱為剩餘部分相)以面積%計而為0%~20%,作為剩餘部分相,例如可例示鐵氧體相等。
藉由將熔接金屬組織設為沃斯田鐵相以面積%計而為80%以上的組織,熔接金屬的韌性提高。藉此,即便於L為16 mm以上的情況下,亦可利用T形接頭的熔接金屬使被接合構件中產生的脆性龜裂的傳播停止,從而阻止脆性龜裂向接合構件的傳播。再者,就確保熔接結構體的強度的觀點而言,具有所述組織的熔接金屬較佳為具有以維氏(Vickers)硬度計而為170 HV~260 HV(以屈服強度計為390 MPa以上,以拉伸強度計為490 MPa以上)的硬度(強度)特性。
另外,T形接頭的熔接金屬具有以質量%計而為C:0.10%~0.70%、Si:0.10%~1.00%、Mn:15.00%~28.00%、P:0.030%以下、S:0.015%以下、Ni:1.00%~5.00%、Cr:0.50%~4.00%、Mo:2.00%以下、N:0.150%以下及O:0.050%以下、且剩餘部分包含Fe及不可避免的雜質的熔接金屬組成。
如上所述,藉由將熔接金屬組織設為所述沃斯田鐵相以面積%計而為80%以上的組織,熔接金屬的韌性提高。藉此,即便於L為16 mm以上的情況下,亦可利用T形接頭的熔接金屬使被接合構件中產生的脆性龜裂的傳播停止,從而阻止脆性龜裂向接合構件的傳播。
接下來,對所述熔接金屬組成的限定理由進行說明。以下,熔接金屬組成中的質量%僅用%來記載。
C:0.10%~0.70%
C為使沃斯田鐵穩定化的元素。另外,C為具有藉由固溶強化而使熔接金屬的強度上升的作用的元素。為了獲得此種效果,C需要含有0.10%以上。然而,若C含量超過0.70%,則熔接時容易產生高溫裂紋。因此,將C含量設為0.10%~0.70%。再者,C含量較佳為0.20%~0.60%。
Si:0.10%~1.00%
Si藉由抑制碳化物的析出而使C固溶於沃斯田鐵,使沃斯田鐵穩定化。為了獲得此種效果,Si需要含有0.10%以上。然而,若Si含量超過1.00%,則Si於凝固時偏析,於凝固單元界面生成液相。藉此,使耐高溫裂紋性降低。進而韌性降低。因此,將Si含量設為0.10%~1.00%。再者,Si含量較佳為0.20%~0.90%。
Mn:15.00%~28.00%
Mn為廉價地使沃斯田鐵相穩定化的元素。因此,Mn需要含有15.00%以上。於Mn含量小於15.00%時,沃斯田鐵的穩定度不足。藉此,於熔接金屬中生成硬質的麻田散鐵(martensite)相,韌性降低。另一方面,若Mn含量超過28.00%,則於凝固時產生過度的Mn偏析,誘發高溫裂紋。因此,將Mn含量設為15.00%~28.00%。再者,Mn含量較佳為17.00%~26.00%。
P:0.030%以下
P為於晶體界面偏析並誘發高溫裂紋的元素。因此,較佳為儘量降低P,但若為0.030%以下,則可允許。因此,將P含量設為0.030%以下。再者,過度降低P會導致精練成本的高漲。因此,較佳為將P含量調整為0.002%以上。
S:0.015%以下
S為於晶體界面偏析並誘發高溫裂紋的元素。因此,較佳為儘量降低S,但若為0.015%以下,則可允許。因此,將S含量設為0.015%以下。再者,過度降低S會導致精練成本的高漲。因此,較佳為將S含量調整為0.001%以上。
Ni:1.00%~5.00%
Ni為使沃斯田鐵晶界強化的元素,藉由抑制晶界的脆化來抑制高溫裂紋的產生。為了獲得此種效果,Ni需要含有1.00%以上。另外,Ni亦具有使沃斯田鐵相穩定化的效果。然而,Ni為昂貴的元素,含有超過5.00%時,於經濟上不利。因此,將Ni含量設為1.00%~5.00%。
Cr:0.50%~4.00%
Cr具有提高熔接金屬的強度的效果。於Cr含量小於0.50%時,無法確保所述效果。另一方面,若Cr含量超過4.00%,則熔接金屬的韌性及耐高溫裂紋性降低。因此,將Cr含量設為0.50%~4.00%。再者,Cr含量較佳為0.70%~3.00%。
Mo:2.00%以下
Mo為使沃斯田鐵晶界強化的元素,藉由抑制晶界的脆化來抑制高溫裂紋的產生。另外,Mo亦具有藉由使熔接金屬硬化來提高耐磨耗性的作用。為了獲得此種效果,較佳為將Mo含量設為0.10%以上。另一方面,若Mo含量超過2.00%,則晶粒內過度硬化,晶界相對變弱,產生高溫裂紋。因此,將Mo含量設為2.00%以下。再者,Mo含量更佳為0.20%~1.90%。
N:0.150%以下
N為不可避免地混入的元素。其中,N與C同樣,有效地助於提高熔接金屬的強度。另外,N亦為使沃斯田鐵相穩定化並穩定地提高極低溫韌性的元素。此種效果於N含有0.003%以上時變得明顯,因此N含量較佳為0.003%以上。然而,若N含量超過0.150%,則形成氮化物,低溫韌性降低。因此,將N含量設為0.150%以下。再者,N含量較佳為0.003%~0.120%。
O:0.050%以下
O(氧)為不可避免地混入的元素。其中,O於熔接金屬中形成Al系氧化物或Si系氧化物,有助於抑制凝固組織的粗大化。此種效果於O含有0.003%以上時變得明顯,因此O含量較佳為0.003%以上。但是,若O含量超過0.050%,則氧化物的粗大化變得明顯。因此,將O(氧)含量設為0.050%以下。再者,O含量較佳為0.003%~0.040%。
所述成分為熔接金屬組成的基本成分,但除了含有所述基本成分以外,亦可進而任意地含有(a)以及(b)中的至少一者作為選擇成分,
(a)選自V:0.10%以下、Ti:0.10%以下及Nb:0.10%以下中的一種或兩種以上
(b)選自Cu:1.00%以下、Al:0.10%以下、Ca:0.010%以下及REM:0.020%以下中的一種或兩種以上。
(a)選自V:0.10%以下、Ti:0.10%以下及Nb:0.10%以下中的一種或兩種以上
V、Ti及Nb均為碳化物形成元素,為使微細的碳化物於晶粒內析出而有助於增加熔接金屬的強度的元素,可任意地含有一種或兩種以上。
V:0.10%以下
V為碳化物形成元素,使微細的碳化物於晶粒內析出而有助於提高熔接金屬的強度。為了獲得此種效果,V較佳為含有0.001%以上。然而,若V含量超過0.10%,則過剩的碳化物成為產生破壞的起點,因此低溫韌性降低。因此,於含有V的情況下,V含量較佳為0.10%以下。再者,V含量更佳為0.002%~0.050%。
Ti:0.10%以下
另外,Ti亦與V同樣,為碳化物形成元素,使微細的碳化物析出而有助於提高熔接金屬的強度。為了獲得此種效果,Ti較佳為含有0.001%以上。然而,若Ti含量超過0.10%,則過剩的碳化物成為產生破壞的起點,因此低溫韌性降低。因此,於含有Ti的情況下,Ti含量較佳為0.10%以下。再者,Ti含量更佳為0.002%~0.050%。
Nb:0.10%以下
另外,Nb亦與V及Ti同樣,為碳化物形成元素,使微細的碳化物析出而有助於提高熔接金屬的強度。為了獲得此種效果,Nb較佳為含有0.001%以上。然而,若Nb含量超過0.10%,則過剩的碳化物成為產生破壞的起點,因此低溫韌性降低。因此,於含有Nb的情況下,Nb含量較佳為0.10%以下。再者,Nb含量更佳為0.002%~0.090%。
(b)選自Cu:1.00%以下、Al:0.10%以下、Ca:0.010%以下及REM:0.020%以下中的一種或兩種以上
Cu為有助於沃斯田鐵穩定化的元素。Al為作為脫氧劑發揮作用的元素。另外,Ca及REM為有助於抑制高溫裂紋的元素。Cu、Al、Ca及REM可任意地含有一種或兩種以上。
Cu:1.00%以下
Cu為使沃斯田鐵相穩定化的元素。為了獲得此種效果,Cu較佳為含有0.01%以上。然而,若Cu含量超過1.00%,則於晶界生成低熔點的液相,因此產生高溫裂紋。因此,於含有Cu的情況下,Cu含量較佳為1.00%以下。再者,Cu含量更佳為0.02%~0.80%。
Al:0.10%以下
Al作為脫氧劑發揮作用。另外,Al具有提高熔融金屬的黏性、穩定地保持焊珠形狀、減少飛濺的產生的重要作用。進而,Al減小固液共存溫度範圍而有助於抑制熔接金屬的高溫裂紋產生。此種效果於Al含有0.001%以上時變得明顯,因此Al含量較佳為0.001%以上。然而,若Al含量超過0.10%,則熔融金屬的黏性過度變高,相反,飛濺增加、或焊珠不擴展而熔合不良等缺陷增加。因此,於含有Al的情況下,Al含量較佳為0.10%以下。再者,Al含量更佳為0.002%~0.090%。
Ca:0.010%以下
Ca為有助於抑制高溫裂紋的元素。另外,Ca藉由在熔融金屬中與S結合並形成高熔點的硫化物CaS,從而抑制高溫裂紋。此種效果於Ca含有0.001%以上時變得明顯。另一方面,若Ca含量超過0.010%,則熔接時電弧產生紊亂,難以進行穩定的熔接。因此,於含有Ca的情況下,Ca含量較佳為0.010%以下。再者,Ca含量更佳為0.002%~0.008%。
REM:0.020%以下
REM亦與Ca同樣,為有助於抑制高溫裂紋的元素。另外,REM為強力的脫氧劑,於熔接金屬中以REM氧化物的形態存在。REM氧化物藉由成為凝固時的成核位點,從而使熔接金屬的凝固形態變化,有助於抑制高溫裂紋。此種效果於REM含有0.001%以上時變得明顯。然而,若REM含量超過0.020%,則電弧的穩定性降低。因此,於含有REM的情況下,REM含量較佳為0.020%以下。再者,REM含量更佳為0.002%~0.016%。
所述成分以外的剩餘部分為Fe及不可避免的雜質。再者,作為不可避免的雜質,可例示Bi、Sn、Sb等,若以合計計為0.2%以下,則可允許。
另外,具有所述熔接金屬組成以及所述熔接金屬組織的T形接頭的熔接金屬例如可對熔接材料及熔接條件進行調整並進行多層堆疊熔接來形成。
作為熔接方法,適宜的是常用的氣體金屬電弧熔接法。
使用的實心焊線(solid wire)較佳為設為具有如下焊線組成的焊線,以可形成具有所述熔接金屬組成以及所述熔接金屬組織的T形接頭的熔接金屬,所述焊線組成中,
以質量%計而為C:0.10%~0.70%、Si:0.10%~1.00%、Mn:15.00%~28.00%、P:0.030%以下、S:0.015%以下、Ni:1.00%~5.00%、Cr:0.50%~4.00%、Mo:2.00%以下、N:0.150%以下及O:0.050%以下,且
任意地含有(a)以及(b)中的至少一者,
(a)選自V:0.10%以下、Ti:0.10%以下及Nb:0.10%以下中的一種或兩種以上
(b)選自Cu:1.00%以下、Al:0.10%以下、Ca:0.010%以下及REM:0.020%以下中的一種或兩種以上
並且剩餘部分包含Fe及不可避免的雜質。
而且,較佳為使用具有所述焊線組成的焊線,於遮護氣體中進行氣體金屬電弧熔接,形成多層堆疊熔接金屬。再者,熔接條件較佳為設為如下條件,所述條件同時滿足為向下姿勢且電流:150 A~450 A(直流反接(direct current electrode positive,DCEP))、電壓:20 V~40 V、熔接速度:15 cm/min~60 cm/min、道次間溫度:100℃~200℃、及遮護氣體:80體積%Ar-20體積%CO
2。再者,為了調整熔接金屬的強度,較佳為將1道次的熔接入熱量調整為1.0 kJ/mm~3.0 kJ/mm的範圍。
另外,於熔接中,亦可在如圖5所示般的接合構件1賦予具有規定角度(40°)的坡口。
以下,進一步基於實施例,進而說明本發明。
[實施例]
使用表2所示的板厚tw的屈服強度:355 N/mm
2(MPa)~460 N/mm
2(MPa)級厚鋼板作為接合構件1,且使用表2所示的板厚tf的屈服強度:355 N/mm
2(MPa)~460 N/mm
2(MPa)級厚鋼板作為被接合構件2。使接合構件1的端面對接於被接合構件2的表面,將該些熔接,製作成為圖4的(a)、圖4的(b)及圖4的(c)所示的形狀的實際結構尺寸的大型熔接接頭9。再者,將被接合構件設為厚鋼板(僅母材,將表2中的種類表述為「母材」)(圖4的(a))或具有對接熔接接頭的厚鋼板(將表2中的種類表述為「接頭」)(圖4的(b)及圖4的(c)),將接合構件設為厚鋼板(僅母材,將表2中的種類表述為「母材」)(圖4的(a)及圖4的(b))或具有對接熔接接頭的厚鋼板(將表2中的種類表述為「接頭」)(圖4的(c))。再者,對接熔接接頭是藉由表2所示的熔接入熱量的1道次大入熱量電熱氣體電弧熔接(SEGARC及雙電極SEGARC)或多層堆疊二氧化碳熔接(多層CO
2)來製作。
另外,以成為表1所示的熔接金屬組成、以及表2所示的熔接金屬組織、硬度以及L的方式,藉由氣體金屬電弧熔接(Gas Metal Arc Welding,GMAW),使熔接材料、以及熔接入熱量及遮護氣體等熔接條件發生變化來進行接合構件1與被接合構件2的熔接,從而製作T形接頭。熔接材料是以成為所期望的熔接金屬組成的方式進行了調整的直徑:1.2 mm的實心焊線。再者,熔接條件是設為如下條件:為向下姿勢且電流:150 A~450 A(DCEP)、電壓:20 V~40 V、熔接速度:15 cm/min~60 cm/min、道次間溫度:100℃~200℃、遮護氣體:80體積%Ar~20體積%CO
2。另外,為了確保規定範圍的熔接金屬硬度,調整為1道次熔接入熱量:1.0 kJ/mm~3.0 kJ/mm的範圍。
再者,於一部分熔接接頭(T形接頭)中,在接合構件1與被接合構件2之間設有間隙14。另外,於一部分熔接接頭(T形接頭)中,在接合構件1設置如圖5所示般的坡口來進行熔接。
自所獲得的T形接頭的熔接金屬中採集試驗片。使用所採集的試驗片,進行依照常規方法的化學分析法,測定熔接金屬組成。將結果示於表2中。
另外,使用所採集的試驗片,依照常規方法,藉由基於電子背向散射繞射(Electron Backscattering Diffraction,EBSD)法的相分析鑑定沃斯田鐵相及鐵氧體相,算出熔接金屬組織中的各相的面積率。將結果示於表2中。
另外,使用所採集的試驗片,依據日本工業標準(Japanese Industrial Standards,JIS)Z 2244-1(2020)測定熔接金屬硬度。將結果示於表2中。
繼而,使用所獲得的大型熔接接頭9,製作圖4的(a)~圖4的(c)所示的超大型結構模型試驗體,實施脆性龜裂傳播停止試驗。超大型結構模型試驗體是藉由臨時熔接8將與被接合構件2相同的板厚的鋼板熔接於大型熔接接頭9的被接合構件2的下方而成。另外,於被接合構件2設有機械缺口7。
再者,於圖4的(b)所示的超大型結構模型試驗體中,以與接合構件1正交的方式製作被接合構件2的對接熔接接頭部11。另外,於圖4的(c)所示的超大型結構模型試驗體中,使被接合構件2的對接熔接接頭部11與接合構件1的對接熔接接頭部12交叉。而且,將機械缺口7的前端加工成對接熔接接頭部11的BOND(接合)部、或熔接金屬WM。
另外,脆性龜裂傳播停止試驗中,對機械缺口7施加打擊而使脆性龜裂產生,並調查已傳播的脆性龜裂是否藉由熔接金屬(WM)而停止。所有的試驗均是於應力243 N/mm
2~283 N/mm
2、溫度:-10℃的條件下實施。應力243 N/mm
2是與應用於船體的屈服強度355 N/mm
2級鋼板的最大允許應力相當的值,應力257 N/mm
2是與應用於船體的屈服強度390 N/mm
2級鋼板的最大允許應力相當的值,應力283 N/mm
2是與應用於船體的屈服強度460 N/mm
2級鋼板的最大允許應力相當的值,試驗應力是根據接合構件的屈服強度而以相當於最大允許應力的方式設定。溫度-10℃為船舶的設計溫度。
將所獲得的結果示於表3中。
[表1]
表1 | |||||||||||||
試驗體 No. | 熔接金屬組成(質量%) | 備註 | |||||||||||
C | Si | Mn | P | S | Ni | Cr | Mo | N | O | 其他 | |||
1 | 0.46 | 0.55 | 17.95 | 0.010 | 0.009 | 1.60 | 1.12 | 1.60 | 0.006 | 0.009 | - | 本發明例 | |
2 | 0.23 | 0.50 | 5.46 | 0.012 | 0.007 | 0.46 | 0.22 | 0.50 | 0.120 | 0.009 | - | 比較例 | |
3 | 0.44 | 0.49 | 19.26 | 0.008 | 0.009 | 1.85 | 1.58 | 1.66 | 0.020 | 0.025 | - | 本發明例 | |
4 | 0.15 | 0.44 | 2.56 | 0.013 | 0.003 | 0.52 | 0.10 | 0.77 | 0.032 | 0.015 | - | 比較例 | |
5 | 0.48 | 0.50 | 18.45 | 0.008 | 0.005 | 2.23 | 1.34 | 1.86 | 0.090 | 0.004 | Cu:0.11、Al:0.04 | 本發明例 | |
6 | 0.52 | 0.54 | 18.10 | 0.010 | 0.008 | 1.63 | 1.24 | 1.78 | 0.077 | 0.013 | - | 本發明例 | |
7 | 0.05 | 0.33 | 1.38 | 0.004 | 0.003 | 0.40 | 0.05 | 1.93 | 0.011 | 0.012 | - | 比較例 | |
8 | 0.51 | 0.48 | 20.15 | 0.007 | 0.004 | 1.76 | 1.09 | 1.64 | 0.008 | 0.007 | V:0.02、Ti:0.03 | 本發明例 | |
9 | 0.53 | 0.55 | 20.52 | 0.010 | 0.003 | 1.88 | 1.42 | 1.85 | 0.051 | 0.021 | - | 本發明例 | |
10 | 0.49 | 0.52 | 19.35 | 0.007 | 0.002 | 1.83 | 1.17 | 1.25 | 0.020 | 0.008 | - | 本發明例 | |
11 | 0.46 | 0.50 | 18.67 | 0.009 | 0.004 | 2.35 | 1.43 | 0.88 | 0.045 | 0.014 | - | 本發明例 | |
12 | 0.45 | 0.49 | 18.66 | 0.009 | 0.007 | 1.76 | 1.12 | 1.88 | 0.043 | 0.015 | Ca:0.001 | 本發明例 | |
13 | 0.17 | 0.30 | 1.56 | 0.008 | 0.005 | 1.55 | 0.94 | 1.54 | 0.009 | 0.030 | - | 比較例 | |
14 | 0.53 | 0.49 | 22.35 | 0.006 | 0.005 | 1.76 | 1.25 | 0.54 | 0.025 | 0.009 | REM:0.008 | 本發明例 | |
15 | 0.58 | 0.46 | 21.86 | 0.005 | 0.004 | 1.66 | 1.15 | 0.62 | 0.055 | 0.011 | - | 本發明例 | |
16 | 0.25 | 0.45 | 2.25 | 0.009 | 0.005 | 4.53 | 0.12 | 0.55 | 0.100 | 0.008 | - | 比較例 | |
17 | 0.62 | 0.58 | 19.77 | 0.008 | 0.007 | 1.96 | 1.05 | 0.74 | 0.008 | 0.007 | - | 本發明例 | |
18 | 0.08 | 0.55 | 1.33 | 0.007 | 0.002 | 1.83 | 3.52 | 1.02 | 0.010 | 0.015 | - | 比較例 | |
19 | 0.56 | 0.52 | 19.12 | 0.006 | 0.007 | 1.85 | 1.37 | 1.05 | 0.085 | 0.007 | - | 本發明例 | |
20 | 0.52 | 0.44 | 18.26 | 0.012 | 0.009 | 1.85 | 1.58 | 1.66 | 0.095 | 0.019 | - | 本發明例 | |
21 | 0.13 | 0.35 | 5.53 | 0.010 | 0.003 | 0.84 | 0.25 | 1.22 | 0.041 | 0.021 | - | 比較例 | |
22 | 0.50 | 0.50 | 18.34 | 0.010 | 0.008 | 1.95 | 1.35 | 1.87 | 0.060 | 0.016 | - | 本發明例 | |
23 | 0.33 | 0.37 | 6.85 | 0.006 | 0.003 | 4.45 | 0.20 | 1.53 | 0.088 | 0.014 | - | 比較例 | |
24 | 0.55 | 0.55 | 23.68 | 0.005 | 0.004 | 2.01 | 1.35 | 1.87 | 0.009 | 0.011 | Nb:0.02 | 本發明例 | |
25 | 0.53 | 0.49 | 21.05 | 0.004 | 0.002 | 1.84 | 1.26 | 1.60 | 0.062 | 0.009 | - | 本發明例 | |
26 | 0.10 | 0.36 | 6.21 | 0.011 | 0.009 | 1.15 | 1.55 | 1.04 | 0.007 | 0.008 | - | 比較例 | |
27 | 0.50 | 0.45 | 24.20 | 0.010 | 0.008 | 2.55 | 1.12 | 1.78 | 0.033 | 0.013 | - | 本發明例 | |
28 | 0.55 | 0.56 | 21.00 | 0.004 | 0.004 | 3.05 | 1.10 | 1.88 | 0.008 | 0.010 | - | 本發明例 |
[表2]
*)Y(%)=(B/tw)×100
**)熔接部的坡口的有無:將坡口的形狀示於圖5中
***)γ:沃斯田鐵相、α:鐵氧體相
****)L:熔接腳長度及熔接寬度中任一長的一者
表2 | |||||||||||
試驗體 No. | 被接合構件 | 接合構件 | 備註 | ||||||||
種類 | 板厚tf (mm) | 熔接方法 | 熔接入熱量 (kJ/cm) | 龜裂 傳播部 | 種類 | 板厚tw (mm) | 屈服強度 (N/mm 2) | 熔接方法 | 熔接入熱量 (kJ/cm) | ||
1 | 接頭 | 60 | SEGARC | 430 | BOND | 接頭 | 60 | 370 | SEGARC | 430 | 本發明例 |
2 | 接頭 | 60 | SEGARC | 430 | BOND | 母材 | 60 | 475 | - | - | 比較例 |
3 | 接頭 | 60 | SEGARC | 430 | BOND | 母材 | 75 | 362 | - | - | 本發明例 |
4 | 接頭 | 60 | SEGARC | 430 | BOND | 母材 | 75 | 370 | - | - | 比較例 |
5 | 接頭 | 70 | SEGARC | 430 | BOND | 接頭 | 70 | 465 | SEGARC | 430 | 本發明例 |
6 | 接頭 | 70 | SEGARC | 430 | BOND | 母材 | 75 | 473 | - | - | 本發明例 |
7 | 接頭 | 70 | SEGARC | 430 | BOND | 母材 | 75 | 395 | - | - | 比較例 |
8 | 接頭 | 70 | SEGARC | 430 | BOND | 母材 | 75 | 414 | - | - | 本發明例 |
9 | 接頭 | 70 | SEGARC | 430 | BOND | 母材 | 90 | 365 | - | - | 本發明例 |
10 | 接頭 | 70 | SEGARC | 430 | BOND | 母材 | 90 | 365 | - | - | 本發明例 |
11 | 接頭 | 75 | SEGARC | 430 | BOND | 母材 | 75 | 400 | - | - | 本發明例 |
12 | 接頭 | 75 | SEGARC | 430 | BOND | 接頭 | 80 | 420 | 雙電極 SEGARC | 570 | 本發明例 |
13 | 接頭 | 75 | SEGARC | 430 | BOND | 母材 | 80 | 417 | - | - | 比較例 |
14 | 接頭 | 75 | 雙電極 SEGARC | 570 | BOND | 母材 | 90 | 405 | - | - | 本發明例 |
15 | 接頭 | 75 | 雙電極 SEGARC | 570 | BOND | 母材 | 90 | 382 | - | - | 本發明例 |
16 | 接頭 | 75 | 雙電極 SEGARC | 570 | BOND | 母材 | 100 | 369 | - | - | 比較例 |
17 | 接頭 | 80 | 雙電極 SEGARC | 570 | BOND | 母材 | 80 | 420 | - | - | 本發明例 |
18 | 接頭 | 80 | 雙電極 SEGARC | 570 | BOND | 母材 | 80 | 420 | - | - | 比較例 |
19 | 接頭 | 80 | 雙電極 SEGARC | 570 | BOND | 母材 | 85 | 411 | - | - | 本發明例 |
20 | 接頭 | 90 | 多層CO 2 | 40 | WM | 母材 | 90 | 417 | - | - | 本發明例 |
21 | 接頭 | 90 | 多層CO 2 | 40 | WM | 母材 | 90 | 417 | - | - | 比較例 |
22 | 接頭 | 90 | 多層CO 2 | 40 | WM | 母材 | 90 | 405 | - | - | 本發明例 |
23 | 接頭 | 100 | 多層CO 2 | 40 | WM | 母材 | 100 | 403 | - | - | 比較例 |
24 | 接頭 | 100 | 多層CO 2 | 40 | WM | 母材 | 100 | 395 | - | - | 本發明例 |
25 | 接頭 | 120 | 多層CO 2 | 40 | WM | 母材 | 120 | 421 | - | - | 本發明例 |
26 | 接頭 | 120 | 多層CO 2 | 40 | WM | 母材 | 120 | 415 | - | - | 比較例 |
27 | 接頭 | 70 | SEGARC | 430 | BOND | 母材 | 70 | 385 | - | - | 本發明例 |
28 | 母材 | 100 | - | - | BM | 母材 | 100 | 385 | - | - | 本發明例 |
表2(續) | |||||||||
試驗體 No. | 熔接金屬 | 備註 | |||||||
熔接方法 | 坡口 賦予** | 間隙 (mm) | L(mm) **** | 未熔敷部的 寬度B(mm) | 未熔敷比率 Y(%)* | 熔接金屬組織 (面積%)*** | 熔接金屬 硬度HV | ||
1 | GMAW | - | - | 16 | 58 | 96.7 | γ:97.1、α:2.9 | 220 | 本發明例 |
2 | GMAW | - | - | 16 | 59 | 98.3 | γ : 7.7 、 α : 92.3 | 180 | 比較例 |
3 | GMAW | 有 | - | 16 | 25 | 33.3 | γ:95.4、α:4.6 | 215 | 本發明例 |
4 | GMAW | - | - | 16 | 73 | 97.3 | γ : 1.0 、 α : 99.0 | 222 | 比較例 |
5 | GMAW | - | - | 16 | 68 | 97.1 | γ:99.5、α:0.5 | 203 | 本發明例 |
6 | GMAW | - | 10 | 24 | 74 | 98.7 | γ:97.1、α:2.9 | 205 | 本發明例 |
7 | GMAW | - | - | 16 | 74 | 98.7 | γ : 1.5 、 α : 98.5 | 195 | 比較例 |
8 | GMAW | 有 | - | 16 | 25 | 33.3 | γ:96.2、α:3.8 | 199 | 本發明例 |
9 | GMAW | - | - | 19 | 88 | 97.8 | γ:98.8、α:1.2 | 224 | 本發明例 |
10 | GMAW | - | 10 | 27 | 88 | 97.8 | γ:96.9、α:3.1 | 237 | 本發明例 |
11 | GMAW | - | - | 16 | 74 | 98.7 | γ:99.0、α:1.0 | 219 | 本發明例 |
12 | GMAW | - | - | 18 | 78 | 97.5 | γ:98.7、α:1.3 | 200 | 本發明例 |
13 | GMAW | - | - | 19 | 79 | 98.8 | γ : 4.5 、 α : 95.5 | 203 | 比較例 |
14 | GMAW | - | - | 19 | 88 | 97.8 | γ:99.5、α:0.5 | 206 | 本發明例 |
15 | GMAW | - | - | 21 | 88 | 97.8 | γ:98.3、α:1.7 | 201 | 本發明例 |
16 | GMAW | - | - | 25 | 98 | 98.0 | γ : 9.0 、 α : 91.0 | 219 | 比較例 |
17 | GMAW | - | - | 19 | 78 | 97.5 | γ:99.7、α:0.3 | 235 | 本發明例 |
18 | GMAW | - | - | 19 | 78 | 97.5 | γ : 1.3 、 α : 98.7 | 200 | 比較例 |
19 | GMAW | - | - | 19 | 83 | 97.6 | γ:97.6、α:2.4 | 198 | 本發明例 |
20 | GMAW | - | - | 20 | 89 | 98.9 | γ:99.1、α:0.9 | 202 | 本發明例 |
21 | GMAW | - | - | 20 | 88 | 97.8 | γ : 2.5 、 α : 97.5 | 200 | 比較例 |
22 | GMAW | - | - | 20 | 89 | 98.9 | γ:98.5、α:1.5 | 211 | 本發明例 |
23 | GMAW | - | - | 20 | 98 | 98.0 | γ : 0.5 、 α : 99.5 | 217 | 比較例 |
24 | GMAW | - | - | 20 | 97 | 97.0 | γ:98.1、α:1.9 | 219 | 本發明例 |
25 | GMAW | - | - | 24 | 118 | 98.3 | γ:99.2、α:0.8 | 225 | 本發明例 |
26 | GMAW | - | - | 24 | 118 | 98.3 | γ : 1.8 、 α : 98.2 | 231 | 比較例 |
27 | GMAW | 有 | - | 16 | 16 | 22.9 | γ:99.3、α:0.7 | 200 | 本發明例 |
28 | GMAW | - | - | 19 | 97 | 97.0 | γ:99.7、α:0.3 | 203 | 本發明例 |
[表3]
表3 | ||||
試驗體 No. | 脆性龜裂傳播停止試驗 | 備註 | ||
試驗應力 (N/mm 2) | 傳播/停止 | 停止位置 | ||
1 | 243 | 停止 | WM | 本發明例 |
2 | 283 | 傳播 | - | 比較例 |
3 | 243 | 停止 | WM | 本發明例 |
4 | 243 | 傳播 | - | 比較例 |
5 | 283 | 停止 | WM | 本發明例 |
6 | 283 | 停止 | WM | 本發明例 |
7 | 257 | 傳播 | - | 比較例 |
8 | 257 | 停止 | WM | 本發明例 |
9 | 243 | 停止 | WM | 本發明例 |
10 | 243 | 停止 | WM | 本發明例 |
11 | 257 | 停止 | WM | 本發明例 |
12 | 257 | 停止 | WM | 本發明例 |
13 | 257 | 傳播 | - | 比較例 |
14 | 257 | 停止 | WM | 本發明例 |
15 | 243 | 停止 | WM | 本發明例 |
16 | 243 | 傳播 | - | 比較例 |
17 | 257 | 停止 | WM | 本發明例 |
18 | 257 | 傳播 | - | 比較例 |
19 | 257 | 停止 | WM | 本發明例 |
20 | 257 | 停止 | WM | 本發明例 |
21 | 257 | 傳播 | - | 比較例 |
22 | 257 | 停止 | WM | 本發明例 |
23 | 257 | 傳播 | - | 比較例 |
24 | 257 | 停止 | WM | 本發明例 |
25 | 257 | 停止 | WM | 本發明例 |
26 | 257 | 傳播 | - | 比較例 |
27 | 243 | 停止 | WM | 本發明例 |
28 | 243 | 停止 | WM | 本發明例 |
發明例均是脆性龜裂於在被接合構件2中傳播後,突入熔接金屬5後停止。另一方面,於比較例中,脆性龜裂均沒有於熔接金屬5停止,而是傳播到接合構件1。於比較例中,無法利用熔接金屬5阻止脆性龜裂的傳播。
1:接合構件
2:被接合構件
3:熔接腳長度
4:未熔敷部
5:熔接金屬
7:機械缺口
8:臨時熔接
9:大型熔接接頭
11:被接合構件的對接熔接接頭
12:接合構件的對接熔接接頭
13:熔敷寬度
14:間隙
15:間隔件
16:未熔敷部的寬度
θ:角度
圖1的(a)~圖1的(d)是示意性地表示T形接頭的接頭剖面的一例的說明圖。
圖2的(a)、圖2的(b)是示意性地表示T形接頭的另一例的說明圖;(a)為外觀圖,(b)為剖面圖。
圖3的(a)、圖3的(b)是示意性地表示T形接頭的另一例的說明圖;(a)為外觀圖,(b)為剖面圖。
圖4的(a)~圖4的(c)是示意性地表示超大型結構模型試驗體的形狀的說明圖。
圖5是表示T形接頭的坡口形狀的一例的說明圖。
1:接合構件
2:被接合構件
3:熔接腳長度
4:未熔敷部
5:熔接金屬
13:熔敷寬度
14:間隙
15:間隔件
16:未熔敷部的寬度
θ:角度
Claims (15)
- 一種熔接結構體,包括使接合構件的端面對接於板厚50 mm以上的被接合構件的表面並將所述接合構件與所述被接合構件接合的T形接頭,所述熔接結構體中, 所述T形接頭的熔接腳長度及熔敷寬度中長的一者的值即L為16 mm以上, 所述T形接頭的熔接金屬具有 以質量%計而為C:0.10%~0.70%、Si:0.10%~1.00%、Mn:15.00%~28.00%、P:0.030%以下、S:0.015%以下、Ni:1.00%~5.00%、Cr:0.50%~4.00%、Mo:2.00%以下、N:0.150%以下及O:0.050%以下、且剩餘部分為Fe及不可避免的雜質的熔接金屬組成、以及 沃斯田鐵相以面積%計而為80%以上的熔接金屬組織。
- 如請求項1所述的熔接結構體,其中所述熔接金屬組成進而以質量%計而含有(a)以及(b)中的至少一者, (a)選自V:0.10%以下、Ti:0.10%以下及Nb:0.10%以下中的一種或兩種以上 (b)選自Cu:1.00%以下、Al:0.10%以下、Ca:0.010%以下及稀土金屬:0.020%以下中的一種或兩種以上。
- 如請求項1所述的熔接結構體,其中於所述T形接頭的使所述接合構件的端面與所述被接合構件的表面對接後的面存在未熔敷部,且所述未熔敷部的寬度相對於所述接合構件的板厚的比率即未熔敷比率Y為30%以上。
- 如請求項2所述的熔接結構體,其中於所述T形接頭的使所述接合構件的端面與所述被接合構件的表面對接後的面存在未熔敷部,且所述未熔敷部的寬度相對於所述接合構件的板厚的比率即未熔敷比率Y為30%以上。
- 如請求項1所述的熔接結構體,其中所述被接合構件具有與所述接合構件交叉的方式的對接熔接接頭部。
- 如請求項2所述的熔接結構體,其中所述被接合構件具有與所述接合構件交叉的方式的對接熔接接頭部。
- 如請求項3所述的熔接結構體,其中所述被接合構件具有與所述接合構件交叉的方式的對接熔接接頭部。
- 如請求項4所述的熔接結構體,其中所述被接合構件具有與所述接合構件交叉的方式的對接熔接接頭部。
- 如請求項5所述的熔接結構體,其中所述接合構件具有對接熔接接頭部,且以所述接合構件的對接熔接接頭部與所述被熔接構件的對接熔接接頭部交叉的方式配設所述接合構件而成。
- 如請求項6所述的熔接結構體,其中所述接合構件具有對接熔接接頭部,且以所述接合構件的對接熔接接頭部與所述被熔接構件的對接熔接接頭部交叉的方式配設所述接合構件而成。
- 如請求項7所述的熔接結構體,其中所述接合構件具有對接熔接接頭部,且以所述接合構件的對接熔接接頭部與所述被熔接構件的對接熔接接頭部交叉的方式配設所述接合構件而成。
- 如請求項8所述的熔接結構體,其中所述接合構件具有對接熔接接頭部,且以所述接合構件的對接熔接接頭部與所述被熔接構件的對接熔接接頭部交叉的方式配設所述接合構件而成。
- 如請求項1至請求項12中任一項所述的熔接結構體,其中所述接合構件的板厚為50 mm以上。
- 如請求項1至請求項12中任一項所述的熔接結構體,其中所述接合構件與所述被接合構件之間的間隙為10 mm以下。
- 如請求項13所述的熔接結構體,其中所述接合構件與所述被接合構件之間的間隙為10 mm以下。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-099092 | 2021-06-15 | ||
JP2021099092 | 2021-06-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202300264A true TW202300264A (zh) | 2023-01-01 |
TWI823427B TWI823427B (zh) | 2023-11-21 |
Family
ID=84526506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111122227A TWI823427B (zh) | 2021-06-15 | 2022-06-15 | 熔接結構體 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7195503B1 (zh) |
KR (1) | KR20230158578A (zh) |
CN (1) | CN117241907A (zh) |
TW (1) | TWI823427B (zh) |
WO (1) | WO2022265011A1 (zh) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4074524B2 (ja) | 2003-01-31 | 2008-04-09 | 新日本製鐵株式会社 | 耐脆性破壊に優れた溶接構造体 |
JP5144053B2 (ja) | 2006-05-12 | 2013-02-13 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
BR112014005504A2 (pt) | 2011-09-13 | 2017-03-21 | Japan Marine United Corp | estrutura soldada |
CN103796786B (zh) | 2011-09-13 | 2015-04-22 | 杰富意钢铁株式会社 | 焊接结构体 |
CN104271301B (zh) | 2012-05-10 | 2015-10-14 | 杰富意钢铁株式会社 | 焊接构造体 |
US20160271739A1 (en) * | 2013-12-06 | 2016-09-22 | Posco | High strength welding joint having excellent impact toughness at very low temperature, and flux-cored arc welding wire therefor |
CN107405713B (zh) | 2015-03-12 | 2019-11-05 | 杰富意钢铁株式会社 | 焊接构造体 |
JP6615215B2 (ja) | 2016-06-16 | 2019-12-04 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れる溶接構造体 |
US20190226048A1 (en) * | 2016-09-30 | 2019-07-25 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Steel parts, production method therefor, and steel sheet for steel parts |
TW202022137A (zh) * | 2018-12-11 | 2020-06-16 | 日商日本製鐵股份有限公司 | 成形性、韌性及熔接性優異的高強度鋼板、以及其製造方法 |
KR102520119B1 (ko) * | 2018-12-28 | 2023-04-10 | 닛테츠 스테인레스 가부시키가이샤 | 용접 구조물 및 그 제조 방법 |
-
2022
- 2022-06-14 WO PCT/JP2022/023799 patent/WO2022265011A1/ja active Application Filing
- 2022-06-14 JP JP2022560432A patent/JP7195503B1/ja active Active
- 2022-06-14 KR KR1020237035722A patent/KR20230158578A/ko unknown
- 2022-06-14 CN CN202280032210.1A patent/CN117241907A/zh active Pending
- 2022-06-15 TW TW111122227A patent/TWI823427B/zh active
Also Published As
Publication number | Publication date |
---|---|
TWI823427B (zh) | 2023-11-21 |
WO2022265011A1 (ja) | 2022-12-22 |
CN117241907A (zh) | 2023-12-15 |
JPWO2022265011A1 (zh) | 2022-12-22 |
KR20230158578A (ko) | 2023-11-20 |
JP7195503B1 (ja) | 2022-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108698174B (zh) | 药芯焊丝、焊接接头的制造方法和焊接接头 | |
JP4528089B2 (ja) | 耐脆性破壊発生特性を有する船体用大入熱突合せ溶接継手 | |
TWI808791B (zh) | 熔接結構體 | |
JP6744274B2 (ja) | 溶接構造体 | |
JP2008212992A (ja) | 耐脆性破壊亀裂伝播停止特性に優れたt型溶接継手構造 | |
JP7143937B2 (ja) | 自動車用足回り部品 | |
JP5395985B2 (ja) | 溶接構造体 | |
JP6615215B2 (ja) | 脆性亀裂伝播停止特性に優れる溶接構造体 | |
JP4074524B2 (ja) | 耐脆性破壊に優れた溶接構造体 | |
WO2012008056A1 (ja) | 耐脆性き裂伝播性を有する溶接構造体 | |
WO2020196875A1 (ja) | 自動車用足回り部品 | |
WO2017098692A1 (ja) | 立向き狭開先ガスシールドアーク溶接方法 | |
TWI823427B (zh) | 熔接結構體 | |
JP2014004607A (ja) | 多層アーク溶接継手 | |
JP6829111B2 (ja) | Tig溶接用溶加材 | |
JP6251463B1 (ja) | 脆性亀裂伝播停止特性に優れる溶接構造体 | |
WO2012008055A1 (ja) | 耐脆性き裂伝播性に優れた溶接継手及び溶接構造体 | |
JP7508013B1 (ja) | 溶接継手およびその製造方法 | |
JP7508014B1 (ja) | 溶接継手およびその製造方法 | |
JP2022502264A (ja) | 亜鉛めっき鋼板の重ね溶接方法 | |
JP2010162570A (ja) | 耐脆性き裂伝播性を有する溶接構造体 | |
JP2005271033A (ja) | 高強度鋼板のスポット溶接方法 |