TW202248167A - 化學強化用玻璃板、強化玻璃板的製造方法及玻璃板 - Google Patents

化學強化用玻璃板、強化玻璃板的製造方法及玻璃板 Download PDF

Info

Publication number
TW202248167A
TW202248167A TW111109666A TW111109666A TW202248167A TW 202248167 A TW202248167 A TW 202248167A TW 111109666 A TW111109666 A TW 111109666A TW 111109666 A TW111109666 A TW 111109666A TW 202248167 A TW202248167 A TW 202248167A
Authority
TW
Taiwan
Prior art keywords
glass plate
glass
chemical strengthening
horizontal plane
height
Prior art date
Application number
TW111109666A
Other languages
English (en)
Inventor
伊藤茂嘉
小杉匡司
Original Assignee
日商日本電氣硝子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電氣硝子股份有限公司 filed Critical 日商日本電氣硝子股份有限公司
Publication of TW202248167A publication Critical patent/TW202248167A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

於厚度為0.1 mm以下的化學強化用玻璃板12中,整體呈翹曲的形狀或包括局部地翹曲的部位,在以其中一個主表面12a朝上的狀態將該玻璃板12載置於水平面上的情況下,將該玻璃板12中的距水平面的高度最高的位置設為第一峰位置D1,且將該玻璃板12的沿著周緣的寬度10 mm的部位設為周緣部12e時,第一峰位置D1存在於該玻璃板12的較周緣部12e靠內側的部位。

Description

化學強化用玻璃板、強化玻璃板的製造方法及玻璃板
本揭示是有關於一種化學強化用玻璃板(能夠進行離子交換的玻璃板)、及用於由該玻璃板製造強化玻璃板的方法、以及玻璃板。
近年來,於智慧型手機或平板個人電腦(personal computer,PC)等可攜式電子元件中,正在推進畫面的大型化。然而,若使畫面大型化,則元件整體變大,可攜性變差。因此,為了兼顧大畫面與良好的可攜性,提出了一種能夠折疊的可折疊元件(foldable device)。
此種可折疊元件中使用的蓋玻璃需要使板厚較先前薄,以便能夠彎折,例如採用如專利文獻1中揭示的超薄型的強化玻璃板。該強化玻璃板由作為其基礎的超薄型化學強化用玻璃板(作為一例,厚度為0.1 mm以下)製造。 [現有技術文獻] [專利文獻]
專利文獻1:日本專利特開2018-188360號公報
[發明所欲解決之課題]
此外,如上所述的化學強化用玻璃板於成為強化玻璃板之前,會經過用於清洗其表面的清洗步驟、用於切出製品尺寸的切出步驟等各種製造步驟。此時,由於薄的板厚,玻璃板的撓曲變大。玻璃板的撓曲與板厚的平方成反比,因此若厚度成為0.1 mm以下、進而厚度成為0.05 mm以下、進而厚度成為0.04 mm以下,則撓曲變得明顯,於處理或搬送方面容易產生困難。此處,作為製造目的的強化玻璃板的厚度越薄,則於作為其基礎的化學強化用玻璃板的成形步驟中,存在於玻璃帶的寬度方向端部的玻璃積存部與寬度方向中央部的有效部(包含之後成為製品的部分的部位)的板厚差越大。因此,若欲製造於有效部的整個寬度上具有均勻的板厚的超薄型玻璃板,則當進行其溫度分佈等成形條件的調整時,於有效部的寬度方向兩端附近容易產生波狀的不連續的翹曲,難以製造均勻且翹曲少的平坦的玻璃板。而且,由於成形時或成形後的玻璃板中存在的翹曲,存在玻璃板於製造步驟內容易破損的問題。
列舉此種超薄型化學強化用玻璃板破損的態樣的例子。例如,供於可折疊元件用的蓋玻璃的化學強化用玻璃板例如較佳藉由溢流下拉(overflow down draw)法成形。該情況下,玻璃板連續成形,因此於熔解、成形、緩冷步驟後,於玻璃帶的寬度方向兩端部存在板厚較大的玻璃積存部。包含該玻璃積存部的非有效部(不形成製品而被廢棄的部位)於之後藉由金剛石劃線(diamond scribe)或雷射劃線(laser scribe)等切斷方法,以留下板厚比較均勻的所述有效部的方式被切斷去除。然而,如上所述,若於有效部的寬度方向兩端附近存在翹曲,則當將非有效部切斷去除時,有未均勻地形成劃線而於有效部引起未意圖的破損的情況。
作為超薄型化學強化用玻璃板破損的態樣的另一例,有如下情況:當一邊吸附自玻璃帶切出的玻璃板、或者載置於劃線台等平滑的板上,然後切斷為所需的尺寸時,以因翹曲而局部未吸附之處(浮起之處)為起點產生破損。作為又一態樣的例子,有如下情況:當對化學強化用玻璃板於搬送的同時進行清洗時,由於與玻璃板的撓曲共同附加的翹曲,玻璃板會卡掛於清洗用刷或搬送輥,玻璃板的端面下垂進入相鄰的搬送輥相互之間存在的間隙中而發生破損。
鑒於上述情況,應解決的技術課題是於包含超薄型化學強化用玻璃板的玻璃板中,盡可能地避免起因於翹曲的製造步驟中的破損。 [解決課題之手段]
發明者進行了努力研究,結果獲得了下述(A)、(B)的見解。 (A)於厚度為0.1 mm以下般的超薄型化學強化用玻璃板中,防止翹曲的發生本身極其困難。 (B)雖然無法防止翹曲的發生本身,但若將玻璃板載置於水平面上時玻璃板所含的翹曲中距水平面的高度最高的翹曲(最向上方突出的翹曲)的存在位置設為玻璃板的自周緣向內側離開的位置,則能夠盡可能地避免製造步驟中的玻璃板的破損。
基於所述見解,用於解決所述課題的玻璃板是包含翹曲在內的厚度為0.1 mm以下的化學強化用玻璃板,其特徵在於,於下述(1)~(8)的規定下,第一峰位置存在於該玻璃板的較周緣部靠內側的部位。 (1)將該玻璃板的厚度設為t[mm]。 (2)在採取以其中一個主表面朝上的狀態將所述玻璃板載置於水平面上的第一載置形態的情況下,將所述玻璃板中的距水平面的高度最高的位置設為第一峰位置。 (3)將第一峰位置處的所述玻璃板距水平面的高度設為W 1MAX[mm]。 (4)在採取以位於其中一個主表面的背側的另一個主表面朝上的狀態將所述玻璃板載置於水平面上的第二載置形態的情況下,將所述玻璃板中的距水平面的高度最高的位置設為第二峰位置。 (5)將第二峰位置處的所述玻璃板距水平面的高度設為W 2MAX[mm]。 (6)將該玻璃板的沿著周緣的寬度10 mm的部位設為周緣部。 (7)在採取第一載置形態的情況下,將周緣部內距水平面的高度最高的位置處的高度設為W 1OUT[mm]。 (8)在採取第二載置形態的情況下,將周緣部內距水平面的高度最高的位置處的高度設為W 2OUT[mm]。
於本玻璃板中,第一峰位置存在於玻璃板的較周緣部靠內側的部位。第一峰位置是第一載置形態下相當於玻璃板所含的翹曲中、距水平面的高度最高的翹曲(最向上方突出的翹曲)的頂部的位置。因此,在第一峰位置存在於較周緣部靠內側的部位的情況下,距水平面的高度最高的翹曲的存在位置是玻璃板的自周緣向內側離開的位置。藉此,根據本玻璃板,能夠盡可能地避免製造步驟中的玻璃板的破損。再者,作為本發明的另一形態,例如,可將玻璃板的沿著周緣的寬度20 mm的部位設定為周緣部,亦可將寬度30 mm的部位設定為周緣部。在如此般變更周緣部的寬度的情況下,玻璃板的周緣部的寬度例如較佳為10 mm~50 mm的範圍內。
於所述玻璃板中,較佳為滿足t 2/W 1OUT>0.005的關係。另外,較佳為滿足W 1OUT≦0.20 mm的關係。進而,較佳為滿足W 1OUT/t<5的關係。
發明者進行了努力研究,結果獲得了下述(C)的見解。 (C)關於第一載置形態下存在於周緣部內的翹曲,距水平面的高度(向上方突出的尺寸)越高,則製造步驟中越容易產生玻璃板的破損。即,W 1OUT的值越大,則越容易產生玻璃板的破損。 另外,加之玻璃板的厚度越薄則製造步驟中於玻璃板的周緣部撓曲越容易變大,玻璃板更容易破損。再者,撓曲的大小與玻璃板的厚度的平方成反比。根據以上所述,W 1OUT的值越小、以及若t的值或t 2的值越小時W 1OUT的值越小,則於避免玻璃板的破損上越有利。而且,若設為滿足上述關係,則可更佳地避免玻璃板的破損。
於所述玻璃板中,較佳為滿足W 1MAX/t<15的關係。
為了避免破損,厚度越薄的玻璃板,W 1MAX的值(第一載置形態下相當於距水平面的高度最高的翹曲的頂部的高度)小的情況越有利。而且,若設為滿足上述關係,則能夠更佳地避免玻璃板的破損。另外,若滿足上述關係,則於由該玻璃板製造強化玻璃板的後續步驟中,在供於將該玻璃板切斷成積層或單體形式下的小片、周緣部的端面的研磨加工或化學處理等後續處理步驟等各種步驟的情況下亦較佳。藉由減小化學強化用玻璃板的整體翹曲,亦有利於防止由該玻璃板製造的強化玻璃板中發生超過容許範圍的翹曲或凹凸等變形。
於所述玻璃板中,其中一個主表面及另一個主表面可為鍛造面。即,可為於成形後未實施表面及背面的研磨處理(例如,使厚度減少的減薄(slimming)處理等化學研磨處理)的玻璃板。再者,亦有使用如氫氟酸般的玻璃腐蝕性化學藥品,藉由化學方法對較厚(例如,超過0.1 mm~0.4 mm)的玻璃板進行減薄(使板厚減少)而獲得超薄型化學強化用玻璃板的方法。該情況下,於減薄步驟中難以達成均勻的板厚減少,難以獲得所得的玻璃板的板厚的均勻性,因此所得的玻璃板的板厚的偏差變大,或者誘發翹曲。此種板厚的偏差或翹曲的發生會於以後的強化步驟中進一步擴大翹曲,誘發表面的凹凸。因此,直接成形超薄型化學強化用玻璃板的情況於獲得更平坦的玻璃板方面極佳。
於所述玻璃板中,該玻璃板的厚度可為0.05 mm以下。另外,該玻璃板整體亦可具有實質上均勻的厚度。即便是此種厚度極薄的玻璃板,亦能夠盡可能地避免製造步驟中玻璃板的破損。
於所述玻璃板中,較佳為第二峰位置存在於該玻璃板的較周緣部靠內側的部位。
如上所述,若不僅第一峰位置存在於玻璃板的較周緣部靠內側的部位,而且第二峰位置亦存在於內側的部位,則於避免製造步驟中玻璃板的破損的方面變得更有利。該情況下,例如,當利用搬送輥搬送玻璃板時,於防止發生在相鄰的搬送輥相互之間垂下的周緣部卡掛於搬送輥般的事態方面變得更有利。
於所述玻璃板中,較佳為滿足t 2/W 2OUT>0.005的關係。另外,較佳為滿足W 2OUT≦0.20 mm的關係。進而,較佳為滿足W 2OUT/t<5的關係。此外,較佳為滿足W 2MAX/t<15的關係。
若滿足該些關係,則如上所述,基於與說明較佳為滿足t 2/W 1OUT>0.005、W 1OUT≦0.20 mm、W 1OUT/t<5及W 1MAX/t<15的各關係這一主旨時相同的理由,能夠進而較佳地避免玻璃板的破損。
於所述玻璃板中,可為:該玻璃板為矽酸鋁玻璃,作為玻璃組成,以質量%計含有SiO 2:50%~80%、Al 2O 3:5%~25%、B 2O 3:0%~15%、Na 2O:1%~20%、K 2O:0%~10%。
於所述玻璃板中,可為:該玻璃板為矽酸鋁玻璃,作為玻璃組成,以質量%計含有60%~80%的SiO 2、8%~20%的Al 2O 3、0%~5%的B 2O 3、4%~16%的Na 2O、0.01%~10%的K 2O。
於所述玻璃板中,該玻璃板可呈矩形,該玻璃板的尺寸可為150 mm×150 mm~1100 mm×1300 mm。
關於所述玻璃板所帶來的效果(能夠盡可能地避免破損的效果),是不僅於成形後的切斷步驟、清洗步驟、或者於該些步驟中搬送玻璃板的情況下,而且於為了獲得可折疊元件用的蓋玻璃而於化學強化之前切出所需尺寸的步驟、進行成膜的步驟、或者針對所述玻璃板以積層或單體的形態對周緣部的端面進行研磨或進行化學處理的後處理步驟等中亦可獲得的效果。
本發明的化學強化用玻璃板可包括在周緣部中特別是角部附近不包含翹曲的峰的態樣。具體而言,本發明的另一形態的化學強化用玻璃板是厚度為0.1 mm以下的化學強化用玻璃板,且較佳為:整體呈翹曲的形狀或包括局部地翹曲的部位,在採取以其中一個主表面朝上的狀態將所述玻璃板載置於水平面上的第一載置形態的情況下,將所述玻璃板中的距所述水平面的高度最高的位置設為第一峰位置,所述第一峰位置存在於所述玻璃板的距角部為半徑10 mm的區域外的部位。
於該結構中,較佳為:在採取以位於所述其中一個主表面的背側的另一個主表面朝上的狀態將所述玻璃板載置於所述水平面上的第二載置形態的情況下,將所述玻璃板中的距所述水平面的高度最高的位置設為第二峰位置,所述第二峰位置存在於所述玻璃板的距角部為半徑10 mm的區域外的部位。
另外,本發明的強化玻璃板的製造方法包括:準備步驟,準備所述化學強化用玻璃板;切出步驟,自玻璃板切出製品尺寸玻璃板;以及強化步驟,藉由對製品尺寸玻璃板進行化學強化而獲得強化玻璃板。根據此種強化玻璃板的製造方法,容易防止所製造的強化玻璃板中產生超過容許範圍的翹曲。
進而,本發明亦能夠適用於所述化學強化用途以外的玻璃板。即,化學強化用玻璃板以外的玻璃板的特徵在於:厚度為0.1 mm以下,整體呈翹曲的形狀或包括局部地翹曲的部位,在採取以其中一個主表面朝上的狀態將所述玻璃板載置於水平面上的第一載置形態的情況下,將所述玻璃板中的距所述水平面的高度最高的位置設為第一峰位置,且將所述玻璃板的沿著周緣的寬度10 mm的部位設為周緣部時,所述第一峰位置存在於所述玻璃板的較所述周緣部靠內側的部位。
該玻璃板亦可為:在採取以位於所述其中一個主表面的背側的另一個主表面朝上的狀態將所述玻璃板載置於所述水平面上的第二載置形態的情況下,將所述玻璃板中的距所述水平面的高度最高的位置設為第二峰位置時,所述第二峰位置存在於所述玻璃板的較所述周緣部靠內側的部位。
再者,該些化學強化用玻璃板以外的玻璃板的其他結構或特性與已經說明的化學強化用玻璃板的結構或特性相同。因此,此處的玻璃板亦可用作化學強化用玻璃板。 [發明的效果]
根據本揭示的包含化學強化用玻璃板的玻璃板,能夠盡可能地避免起因於翹曲的製造步驟中的破損。
以下,關於實施形態的化學強化用玻璃板及強化玻璃板的製造方法,參照附圖進行說明。
強化玻璃板的製造方法包括:準備步驟,準備化學強化用玻璃板;切出步驟,自所準備的玻璃板切出製品尺寸玻璃板;以及強化步驟,藉由對切出的製品尺寸玻璃板進行化學強化而獲得強化玻璃板。
[準備步驟] 本實施形態的化學強化用玻璃板例如藉由溢流下拉法、流孔下拉(slot down draw)法、再拉(redraw)法等下拉法或浮法等公知的伴隨有板拉伸的成形方法製造。若為溢流下拉法,則有如下優點:所成形的玻璃帶的表背兩面於成形過程中不與成形體的任何部位接觸地成形,因此成為非常平滑的、且藉由適當的溫度控制而具有非常平坦的表面性狀的鍛造面。特別是於超薄型強化玻璃板中,於彎折時若玻璃表面存在損傷,則會成為破壞起點,因此,溢流下拉法作為非接觸且不易附加損傷的成形方法而言最佳。於本實施形態中,藉由溢出下拉法而成形玻璃帶,藉由自該玻璃帶的切出,獲得規定尺寸的矩形形狀的玻璃板。準備步驟包括圖1及圖2所示的成形步驟P1、緩冷步驟P2、冷卻步驟P3及省略圖示的切斷步驟。
於準備步驟中,首先,使用圖1及圖2所示的製造裝置1執行成形步驟P1~冷卻步驟P3,藉此獲得作為化學強化用玻璃板的基礎的帶狀玻璃膜2。
成形步驟P1於成形區ZN1中執行。於成形步驟P1中,藉由溢流下拉法用的成形體3自熔融玻璃4連續地成形出玻璃帶5。成形體3被收容於成形爐6內,於成形爐6中設置有用於對成形體3進行加熱的省略圖示的加熱裝置(例如板式加熱器(panel heater))等。
成形體3具有:槽3a,用於使熔融玻璃4流入;一對側面部3b、3b,用於使自槽3a向兩側溢出的熔融玻璃4分別流下;以及下端部3c,用於使沿著各側面部3b流下的熔融玻璃4融合(合流)。利用該成形體3,由在下端部3c融合的熔融玻璃4成形出玻璃帶5。
玻璃帶5具有存在於其寬度方向(於圖1中為左右方向,於圖2中為垂直於紙面的方向)的中央的有效部5a、以及將有效部5a夾在中間並分別存在於寬度方向的兩端的非有效部5b。有效部5a是包含之後成為製品的部分的部位,非有效部5b是不形成製品而之後被廢棄的部位。於構成玻璃帶5的寬度方向端部的非有效部5b中相當於玻璃帶5的寬度方向端緣(邊緣)的部位,形成有較其他部位厚的玻璃積存部(亦稱為耳部)。
對於成形後不久的玻璃帶5,使用配置於成形體3的正下方的邊緣輥7(冷卻輥)來抑制寬度方向上的收縮。
邊緣輥7於厚度方向上夾著玻璃帶5而配置有一對。一對邊緣輥7、7各自具有沿玻璃帶5的寬度方向延伸的軸7a、以及經由軸7a相互連結的第一輥7b及第二輥7c。兩個輥7b、7c由耐熱材料(例如,鉑或鉑合金)構成,且均與玻璃帶5的非有效部5b接觸。利用所述一對邊緣輥7、7的第一輥7b、第一輥7b彼此及第二輥7c、第二輥7c彼此於厚度方向上夾著玻璃帶5,藉此於抑制玻璃帶5的寬度方向上的收縮的同時將玻璃帶5送往下方。
緩冷步驟P2於緩冷區ZN2中執行。於緩冷步驟P2中,將自成形區ZN1下降的玻璃帶5於向下方引導的同時緩冷至應變點以下的溫度。於緩冷步驟P2的執行中,使用緩冷爐8、以及配置成上下多層(於圖示例子中為上下5層)的退火輥9。
緩冷爐8配置於成形爐6的下方。於緩冷爐8中設置有用於調節該緩冷爐8內的環境溫度的省略圖示的加熱裝置(例如板式加熱器)等。例如,在化學強化用玻璃板的材質的情況下,較佳為設置能夠於低於軟化點(例如860℃)的溫度至應變點(例如560℃)之間的區域中以該溫度區域沿玻璃板的寬度方向賦予溫度梯度來進行溫度調整的加熱裝置、或保溫構件等。而且,於緩冷步驟P2中,特別是於玻璃帶5的溫度較高的緩冷步驟P2的初期中越靠近寬度方向端部(靠近玻璃積存部)的部位,使緩冷的速度相對地越快,並且越靠近寬度方向中央部的部位,使緩冷的速度相對地越慢。具體而言,例如於中央部1℃/秒~10℃/秒、於端部3℃/秒~20℃/秒的降溫速度下執行緩冷步驟P2。藉此,關於藉由之後執行的切斷步驟而得的玻璃板(參照圖3及圖4),可抑制該玻璃板的周緣部的翹曲。
於上下多層的各層中,退火輥9於厚度方向上夾著玻璃帶5而配置有一對。一對退火輥9、9各自具有沿玻璃帶5的寬度方向延伸的軸9a、以及經由軸9a相互連結的第一輥9b及第二輥9c。兩個輥9b、9c作為一例而由陶瓷構成,且均能夠與玻璃帶5的非有效部5b接觸。利用所述一對退火輥9、9的第一輥9b、第一輥9b彼此及第二輥9c、第二輥9c彼此將玻璃帶5向下方引導。
此處,第一輥9b、9b彼此及第二輥9c、9c彼此不會自表面及背面兩側夾入玻璃帶5,而是簡單地限制玻璃帶5的沿厚度方向的擺動。即,於第一輥9b與玻璃帶5之間及第二輥9c與玻璃帶5之間形成有間隙。
再者,作為用於抑制藉由切斷步驟而得的玻璃板的周緣部的翹曲的其他方法,亦有於緩冷爐8中,利用退火輥9自表面及背面兩側夾入玻璃帶5的非有效部5b並使作用於玻璃帶5的寬度方向上的張力變化的方法。例如,若使作用於玻璃帶5的寬度方向上的張力增加,則能夠抑制玻璃帶5的特別是有效部5a的寬度方向兩端的翹曲。其結果,可抑制玻璃板的周緣部的翹曲。
冷卻步驟P3於冷卻區ZN3中執行。於冷卻步驟P3中,對於通過緩冷區ZN2之後的玻璃帶5,於利用支撐輥10向下方牽引的同時進行冷卻。支撐輥10配置於緩冷爐8的下方所配置的冷卻室11中。
支撐輥10於厚度方向上夾著玻璃帶5而配置有一對。一對支撐輥10、10各自具有沿玻璃帶5的寬度方向延伸的軸10a、以及經由軸10a相互連結的第一輥10b及第二輥10c。兩個輥10b、10c作為一例而由橡膠構成,且均與玻璃帶5的非有效部5b接觸。利用所述一對支撐輥10、10的第一輥10b、第一輥10b彼此及第二輥10c、第二輥10c彼此於厚度方向上夾著玻璃帶5進行牽引,藉此決定玻璃帶5的搬送速度V1(板拉伸速度)。獲得伴隨搬送而通過冷卻區ZN3之後的玻璃帶5作為帶狀玻璃膜2。
冷卻步驟P3完成後,接著執行切斷步驟。
於切斷步驟中,執行用於自帶狀玻璃膜2切出玻璃膜原板的第一切斷、以及用於自玻璃膜原板切出化學強化用玻璃板的第二切斷。
於第一切斷中,藉由對帶狀玻璃膜2每隔規定的長度重覆進行切斷(沿寬度方向切斷),自帶狀玻璃膜2連續地切出玻璃膜原板。再者,於切出的各玻璃膜原板中包含有效部5a、以及將有效部5a夾在中間而分別存在於兩側的非有效部5b。於第二切斷中,藉由自各玻璃膜原板將非有效部5b分斷、去除,切出有效部5a作為化學強化用玻璃板。第一切斷及第二切斷可藉由公知的手法執行,因此省略詳細的說明。
再者,於本實施形態中,帶狀玻璃膜2的非有效部5b是於玻璃膜原板的切出後被分斷、去除。然而,並不限定於此,作為另一方法,亦可首先將帶狀玻璃膜2的非有效部5b連續地分斷、去除,然後對去除非有效部5b後的帶狀玻璃膜2每隔規定的長度重覆進行切斷(沿寬度方向切斷),藉此自帶狀玻璃膜2連續地切出化學強化用玻璃板。
另外,亦可採用將帶狀玻璃膜2的非有效部連續地分斷、去除後,將帶狀玻璃膜2介隔帶狀緩衝材(樹脂製的帶狀保護片等)連續地捲繞成卷狀的方法。該情況下,只要於之後的步驟中自卷逐次以所需長度的量捲出帶狀玻璃膜2,並對捲出的帶狀玻璃膜2執行用於切出化學強化用玻璃板的切斷即可。因此,可獲得提高化學強化用玻璃板的採集效率、即削減成本的效果。再者,在採用該方法的情況下,後述的研磨、熱處理、蝕刻等端面的處理只要於自帶狀玻璃膜2切出後實施即可。
執行第一切斷及第二切斷後,切斷步驟完成,隨之準備步驟完成。再者,於本實施形態中,利用溢流下拉法獲得了化學強化用玻璃板,但除此之外,亦可利用流孔下拉法、浮法、再拉法等獲得化學強化用玻璃板。
此處,較佳為對切出的化學強化用玻璃板的端面藉由研磨、熱處理、蝕刻等實施用於進行倒角或提高強度的處理。另一方面,對化學強化用玻璃板的表面及背面,於成形後未實施研磨處理等(例如,使厚度減少的減薄處理等化學研磨處理)。藉此,化學強化用玻璃板的表面及背面成為鍛造面。
如上所述般完成準備步驟後,準備如圖3及圖4所示的化學強化用玻璃板12(以下,簡單表述為玻璃板12)。圖3所示的玻璃板12與圖4所示的玻璃板12為相同的玻璃板。圖3示出了採取第一載置形態的情況,所述第一載置形態是以玻璃板12的表面及背面中的其中一個主表面12a朝上的狀態將玻璃板12載置於水平面上。另一方面,圖4示出了採取第二載置形態的情況,所述第二載置形態是以位於其中一個主表面12a的背側的另一個主表面12b朝上的狀態將玻璃板12載置於水平面上。再者,本實施形態中的所謂水平面是指省略圖示的劃線台所包括的水平的支撐面。
再者,於本實施形態中,例示其中一個主表面12a是玻璃板12的表面及背面中的適於實施成膜處理等且應保證表面性狀的保證面,另一個主表面12b是不要求與其中一個主表面12a相同程度的表面性狀的非保證面的情況。作為保證面、非保證面的決定方法,例如,於玻璃板12的表面及背面中,於至所述準備步驟完成為止的時刻,與搬送輥等接觸的次數相對少之側的其中一個主表面12a被設為保證面,次數相對多之側的另一個主表面12b被設為非保證面。該情況下,於其中一個主表面12a與另一個主表面12b的比較中,作為保證面的其中一個主表面12a的損傷等缺陷或污染變少。
雖然並不限定玻璃板12的種類,但本實施形態的玻璃板12為矽酸鋁玻璃。作為玻璃組成的一例,玻璃板12以質量%計含有SiO 2:50%~80%、Al 2O 3:5%~25%、B 2O 3:0%~15%、Na 2O:1%~20%、K 2O:0%~10%。
作為本實施形態的玻璃板12的玻璃組成,更佳為以質量%計含有60%~80%的SiO 2、8%~18%的Al 2O 3、0%~5%的B 2O 3、0.01%~10%的Li 2O、4%~16%的Na 2O、0.01%~10%的K 2O。
再者,藉由增加Al 2O 3的含量,作為化學強化用玻璃的離子交換性能大幅提高,但若該些的含量過高,則失透性變差。即,液相溫度變得過高或液相黏度變得過低,無法藉由溢流下拉法進行成形。
Na 2O為離子交換成分,並且具有降低玻璃的高溫黏度以提高熔融性或成形性、降低裂紋的發生率、或者降低應變點的效果。另外,亦為改善失透性的成分。但是,若Na 2O的含量變多則熱膨脹係數變得過大,玻璃的耐熱衝擊性降低,或者難以與周邊材料的熱膨脹係數匹配。另外,若過多,則反而有失透性變差的傾向。
B 2O 3具有使玻璃的液相溫度、高溫黏度及密度降低的效果。但是,若B 2O 3的含量變高,則有因離子交換而於表面產生燒痕之虞。另外,有應變點過度降低的情況,於離子交換中容易進行應力緩和,有無法獲得所需的壓縮應力之虞。
本實施形態中的玻璃板12的種類並不限定於化學強化用玻璃,亦可適用於低鹼玻璃基板等其他的超薄型玻璃板。於超薄型玻璃板中,無論材質如何,於切斷、清洗、包裝、化學強化等處理步驟內均同樣會引起因翹曲而產生破損的問題,因此重要的是進行其形狀管理。
本實施形態中的玻璃板12理想的是於30℃~380℃下具有70×10 -7/℃~100×10 -7/℃的熱膨脹係數。為了抑制成形後、或化學強化時的翹曲,宜減小熱膨脹係數,但在熱膨脹係數與周邊材料不適合的情況下,有產生玻璃基板剝落等問題之虞。例如,在用於可折疊用蓋玻璃的情況下,在周邊具有金屬或黏接劑等有機物,因此若與該些的熱膨脹係數不匹配,則於使用有機物的黏接劑進行黏接時玻璃基板會剝落。以容易適合於周邊材料的熱膨脹係數為目的,於本發明中,為了提高玻璃的熱膨脹係數,只要增加鹼金屬氧化物成分或鹼土金屬氧化物成分的含量、或者降低SiO 2或Al 2O 3的含量即可,另外,為了使熱膨脹係數降低,只要減少鹼金屬氧化物成分或鹼土金屬氧化物成分的含量、或者增加SiO 2或Al 2O 3的含量即可。
本實施形態的玻璃板12更佳為理想的是於30℃~380℃下具有75×10 -7/℃~92×10 -7/℃的熱膨脹係數。若熱膨脹比較小,則對化學強化用玻璃板進行強化的高溫步驟內的熱變形少,因此可抑制與化學強化步驟中保持玻璃的夾具等的接觸、或高溫的硝酸鉀等強化液的部分殘存所引起的強化後局部翹曲的增加。
玻璃板12的形狀並無特別限定,但於本實施形態中呈矩形。作為玻璃板12的尺寸的一例,為150 mm×150 mm~1100 mm×1300 mm。本實施形態中的玻璃板12具有長邊12x及短邊12y,長邊12x的長度為400 mm或500 mm,短邊12y的長度為300 mm或400 mm。再者,於本玻璃板12中,長邊12x的延伸方向與所述成形步驟P1~冷卻步驟P3中的板拉伸方向(玻璃帶5的長度方向)一致。另外,在如上所述般將去除了非有效部5b後的帶狀玻璃膜2暫時捲繞成卷狀後,實施自卷捲出的帶狀玻璃膜2的切斷而獲得玻璃板12的情況下,玻璃板12的長邊12x的延伸方向亦與板拉伸方向一致。
再者,在所成形的玻璃帶5(帶狀玻璃膜2)的寬度充分大的情況下,亦可以玻璃板12的短邊12y的延伸方向與板拉伸方向一致的方式自帶狀玻璃膜2採集玻璃板12。
玻璃板12的厚度為0.1 mm以下,較佳為0.01 mm以上且0.095 mm以下,更佳為0.02 mm以上且0.085 mm以下,進而較佳為0.025 mm以上且0.075 mm以下。為了進一步薄板化,玻璃板12的厚度亦能夠設為0.065 mm以下、0.055 mm以下、0.05 mm以下。另一方面,玻璃板12的厚度的下限較佳為0.025 mm以上,更佳為0.03 mm以上。若使玻璃板12過薄,則玻璃板12的撓曲變得過大,因此難以確保強度。另外,若過度減薄玻璃板12,則成形時玻璃板12的端部的玻璃積存部的厚度與形成製品的玻璃板12的中央部的厚度之差變大,使成形後的玻璃板12的板厚分佈變佳的情況、或抑制翹曲的情況更加困難。
特別是若玻璃板12變薄,則溢出成形時產生的帶狀玻璃膜2的寬度方向兩端部的非有效部5b與寬度方向中央部的有效部5a的板厚差變得更顯著,因此於玻璃板12的周緣部附近、特別是角部附近容易引起翹曲。而且,由於翹曲的去除變得困難而有效部減少,因此例如於360℃以上等的高溫下的化學強化處理中發生翹曲形狀的劣化、處理步驟內的破損,使作為化學強化用玻璃的製品採集的效率大幅降低。另外,作為化學強化用玻璃板12而供於化學強化步驟時的玻璃形狀的維持變得非常困難,引起玻璃變形的進一步增大。
於本實施形態中,玻璃板12整體具有實質上均勻的厚度。此處所提及的所謂「實質上均勻的厚度」是指玻璃板12的厚度的偏差為±20%以下。再者,玻璃板12的厚度的偏差較佳為±10%以下,更佳為±5%以下。
於玻璃板12中包含翹曲,因翹曲而於其中一個主表面12a及另一個主表面12b形成有凹凸。因此,在採取第一載置形態及第二載置形態中的任一者的情況下,於玻璃板12均存在自所述水平面浮起的部位。此處,於第一載置形態及第二載置形態的各者下,如圖3及圖4所示般取XY座標。即,將玻璃板12的四個角中的一個角作為原點S,沿長邊12x的延伸方向取X軸[mm],並且沿短邊12y的延伸方向取Y軸[mm]。因此,若考慮到本實施形態中已述的長邊12x及短邊12y的長度(400 mm×300 mm、或500 mm×400 mm),則兩個圖中所示的A點、B點、C點各自的座標為A(400,0)、B(400,300)、C(0,300)、或A(500,0)、B(500,400)、C(0,400)。
進而,對玻璃板12如下述(1)~(8)般設置規定。 (1)將玻璃板12的厚度設為t[mm]。 (2)在採取第一載置形態(圖3)的情況下,將玻璃板12中的距水平面的高度最高的位置設為第一峰位置D1。 (3)將第一峰位置D1處的玻璃板12的距水平面的高度設為W 1MAX[mm]。 (4)在採取第二載置形態(圖4)的情況下,將玻璃板12中的距水平面的高度最高的位置設為第二峰位置D2。 (5)將第二峰位置D2處的玻璃板12距水平面的高度設為W 2MAX[mm]。 (6)將玻璃板12的沿著周緣(邊緣)的寬度10 mm的部位(圖3及圖4所示的具有寬度L1且附有交叉影線的部分)設為周緣部12e。 (7)在採取第一載置形態(圖3)的情況下,將周緣部12e內距水平面的高度最高的位置D3(以下,表述為第一周緣峰位置D3)處的高度設為W 1OUT[mm]。 (8)在採取第二載置形態(圖4)的情況下,將周緣部12e內距水平面的高度最高的位置D4(以下,表述為第二周緣峰位置D4)處的高度設為W 2OUT[mm]。
於本實施形態中,作為測量裝置,使用阿波羅精密(Apollo Precision)公司製造的製品名:1313SK型玻璃基板翹曲測定機,測量以所述第一峰位置D1、第二峰位置D2為首的、水平載置玻璃板12的狀態下的玻璃板12上表面的各位置的高度。再者,圖3及圖4所示的第一峰位置D1、第二峰位置D2、第一周緣峰位置D3及第二周緣峰位置D4僅示出了該些位置的一例。
此處,藉由所述測量裝置進行高度測量的多個測量位置散佈於XY座標上。換言之,並不是針對玻璃板12上的所有位置測量高度。因此,所謂第一峰位置D1或第二峰位置D2僅是指於進行了測量的位置中高度最高的位置。即,於高度真正最高的位置(玻璃板12上的所有位置中最向上方突出的位置)與第一峰位置D1或第二峰位置D2之間存在位置偏差的可能性高。因此,高度真正最高的位置處的高度與所述W 1MAX的值或W 2MAX的值之間存在值的偏差的可能性高。因此,需要將相鄰測量位置的間隔縮小至可忽略該值的偏差的程度。而且,相鄰測量位置的間隔於X軸方向及Y軸方向的各方向上較佳設為100 mm以下,更佳設為50 mm以下,更佳設為30 mm以下,進而較佳設為20 mm以下,最佳設為10 mm以下、5 mm以下。但是,就縮短測量所需要的時間的觀點而言,亦可於能夠獲得必要的精度的範圍內盡可能地擴大相鄰測量位置的間隔。
於所述(1)~(8)的規定下,於本玻璃板12中,如圖3所示,第一峰位置D1存在於玻璃板12的較周緣部12e靠內側的部位(即俯視時較周緣部12e靠近中央的區域)。即,若將第一峰位置D1的座標設為D1(X 1,Y 1),則在長邊12x為400 mm、短邊12y為300 mm的情況下,滿足10<X 1<390,且滿足10<Y 1<290。另外,在長邊12x為500 mm、短邊12y為400 mm的情況下,滿足10<X 1<490,且滿足10<Y 1<390。再者,較佳為當將玻璃板12的沿著周緣的寬度50 mm的部位(圖3及圖4所示的具有寬度L2且附加了影線的部位)設為第二周緣部12f時,第一峰位置D1宜存在於玻璃板12的較第二周緣部12f靠內側的部位。即,在長邊12x為400 mm、短邊12y為300 mm的情況下,較佳為滿足50<X 1<350,且滿足50<Y 1<250。另外,在長邊12x為500 mm、短邊12y為400 mm的情況下,較佳為滿足50<X 1<450,且滿足50<Y 1<350。若如此,則高度最高的翹曲的頂部存在於玻璃板的更內側,因此當於後續步驟中為了將所述玻璃板用於尺寸更小的例如可折疊用元件,而使用金剛石劃線、彎曲應力或雷射等將所述玻璃板切斷成單片小基板時,不易引起於作為切斷起點的端面附近發生的破損、或因雷射焦點異常引起的切斷失誤等不良。
另外,於本玻璃板12中,較佳為滿足t 2/W 1OUT>0.005、W 1OUT≦0.20 mm(較佳為W 1OUT≦0.10 mm)、W 1OUT/t<5、W 1MAX/t<15的各關係。
進而,於本玻璃板12中,如圖4所示,第二峰位置D2存在於玻璃板12的較周緣部12e靠內側的部位。即,若將第二峰位置D2的座標設為D2(X 2,Y 2),則在長邊12x為400 mm、短邊12y為300 mm的情況下,滿足10<X 2<390,且滿足10<Y 2<290。另外,在長邊12x為500 mm、短邊12y為400 mm的情況下,滿足10<X 2<490,且滿足10<Y 2<390。再者,較佳為第二峰位置D2宜存在於玻璃板12的較第二周緣部12f靠內側的部位。即,在長邊12x為400 mm、短邊12y為300 mm的情況下,較佳為滿足50<X 2<350,且滿足50<Y 2<250。另外,在長邊12x為500 mm、短邊12y為400 mm的情況下,較佳為滿足50<X 2<450,且滿足50<Y 2<350。
此外,於本玻璃板12中,較佳為滿足t 2/W 2OUT>0.005、W 2OUT≦0.20 mm(較佳為W 2OUT≦0.10 mm)、W 2OUT/t<5、W 2MAX/t<15的各關係。
根據本玻璃板12,於成為強化玻璃板之前該玻璃板12所經過的製造步驟中,能夠盡可能地避免起因於翹曲的破損。
[切出步驟] 對準備步驟中準備的玻璃板12執行切出步驟。切出步驟可藉由公知的手法執行,因此省略詳細的說明。切出步驟完成後,可獲得製品尺寸玻璃板(例如,尺寸適合於智慧型手機或平板PC的畫面的玻璃板)。再者,有自一片玻璃板12切出一片製品尺寸玻璃板的情況,亦有切出多片製品尺寸玻璃板的情況。
[強化步驟] 於強化步驟中,藉由對切出步驟中所得的製品尺寸玻璃板進行化學強化,獲得於表面側及背面側分別形成有壓縮應力層(作用有壓縮應力的層)的強化玻璃板。化學強化的具體態樣為公知的,因此省略詳細的說明。藉由以上所述,強化步驟完成,製造出強化玻璃板。 [實施例1]
作為第一實施例,分別準備具有下述的[表1]~[表4]所示的各參數的化學強化用玻璃板(實施例1~實施例18、比較例1~比較例4),並推斷出於成為強化玻璃板之前所經過的製造步驟中因翹曲而於玻璃板中產生破損的比例(破損率)。作為製造步驟,具體而言,執行自玻璃膜原板切出化學強化用玻璃板的切出步驟、切出後的清洗步驟及外觀檢查步驟。再者,實施例中的化學強化用玻璃板為如下的玻璃板:以莫耳%計包含61.6%的SiO 2、18.0%的Al 2O 3、0.5%的B 2O 3、3.0%的MgO、14.5%的Na 2O、2.0%的K 2O、0.4%的SnO 2,應變點為564℃,於30℃~380℃下具有91×10 -7/℃的熱膨脹係數,且藉由溢流下拉法而成形。而且,實施例中的化學強化用玻璃板分別對緩冷時的熱歷程、自玻璃膜原板的切出位置等進行了調整。
[表1]~[表4]所示的各參數全部是與所述實施形態中所說明的參數相同的指標。另外,[表1]~[表4]中的所謂「第一表面」示出了以保證面(其中一個主表面)朝上的狀態將玻璃板載置於水平面上的情況(採取第一載置形態的情況)。另一方面,所謂「第二表面」示出了以非保證面(另一個主表面)朝上的狀態將玻璃板載置於水平面上的情況(採取第二載置形態的情況)。進而,於「最大值為內側」的項目中,所謂「○」是指第一峰位置(第二峰位置)存在於玻璃板的較周緣部靠內側的部位,所謂「×」是指第一峰位置(第二峰位置)存在於玻璃板的周緣部內。此處,關於玻璃板(長邊×短邊:400 mm×300 mm)的距水平面的高度,是於所述XY座標上以5 mm為刻度各自設定的、與Y軸平行的直線和與X軸平行的直線相交的各座標處進行測量。於該第一實施例中,對將玻璃板的周緣部的寬度設為10 mm的情況進行考察。因此,在滿足第一峰位置的X座標為10 mm以下或390 mm以上的任一者的條件、與第一峰位置的Y座標為10 mm以下或290 mm以上的任一者的條件中的至少一者的情況下,關於第一峰位置的「最大值為內側」的項目為「×」,在任何條件均不滿足的情況下,關於第一峰位置的「最大值為內側」的項目為「○」。同樣地,在滿足第二峰位置的X座標為10 mm以下或390 mm以上的任一者的條件、與第二峰位置的Y座標為10 mm以下或290 mm以上的任一者的條件中的至少一者的情況下,關於第二峰位置的「最大值為內側」的項目為「×」,在任何條件均不滿足的情況下,關於第二峰位置的「最大值為內側」的項目為「○」。
關於用於推斷破損率的具體的手法,列舉實施例1為例進行說明。首先,準備在與實施例1的玻璃板相同的條件下製造的多片化學強化用玻璃板。然後,針對各玻璃板,藉由外觀檢查步驟掌握於所述製造步驟中清洗步驟完成的時刻有無破損,藉由算出多片玻璃板中破損的玻璃板的片數的比例來推斷破損率。藉由相同的手法,針對實施例2~實施例18、比較例1~比較例4亦推斷出破損率。再者,關於在與各實施例、各比較例相同的條件下製造的化學強化用玻璃板的片數,設為200片~500片(片數根據各實施例、各比較例而不同)。
[表1]
   實施例1 實施例2 實施例3 實施例4 實施例5
玻璃尺寸 長邊X(mm) 400 400 400 400 400
短邊Y(mm) 300 300 300 300 300
板厚t(mm) 0.10 0.07 0.05 0.05 0.05
第一表面高度 最大位置 X 1(mm) 55 185 105 255 105
Y 1(mm) 255 145 255 255 105
最大值 W 1MAX(mm) 0.182 0.144 0.198 0.193 0.179
最大值為內側
周緣部最大值W 1OUT(mm) 0.081 0.093 0.065 0.092 0.144
第一表面 t 2/W 1OUT 0.123 0.053 0.038 0.027 0.017
W 1OUT/t 1.8 1.3 1.3 1.8 2.9
W 1MAX/t 0.8 2.1 4.0 3.9 3.6
第二表面高度 最大位置 X 2(mm) 55 165 105 255 305
Y 2(mm) 205 145 205 255 55
最大值 W 2MAX(mm) 0.119 0.111 0.096 0.200 0.169
最大值為內側
周緣部最大值W 2OUT(mm) 0.079 0.088 0.065 0.119 0.060
第二表面 t 2/W 2OUT 0.127 0.056 0.038 0.021 0.042
W 2OUT/t 0.8 1.3 1.3 2.4 1.2
W 2MAX/t 1.2 1.6 1.9 4.0 3.4
破損率      (%) 0.0 0.0 0.0 0.0 0.0
根據[表1]所示的破損率可知,於第一峰位置存在於玻璃板的較周緣部靠內側的部位的實施例1~實施例5中,未產生玻璃板的破損。此處,圖5示出了在實施例5中採取第一載置形態的情況下、包含第一峰位置的Y=105處的翹曲分佈(保證面中的凹凸分佈)。再者,於圖5中,選取了於X=5、55、105、155、205、255、305、355、395處測量而得的高度來示出。
[表2]
   實施例6 實施例7 實施例8 實施例9 比較例1 比較例2
玻璃尺寸 長邊X(mm) 400 400 400 400 400 400
短邊Y(mm) 300 300 300 300 300 300
板厚t(mm) 0.04 0.04 0.04 0.04 0.04 0.04
第一表面高度 最大位置 X 1(mm) 105 155 105 155 105 105
Y 1(mm) 55 255 205 205 5 295
最大值 W 1MAX(mm) 0.177 0.241 0.144 0.215 0.225 0.208
最大值為內側 × ×
周緣部最大值W 1OUT(mm) 0.043 0.117 0.093 0.178 0.225 0.208
第一表面 t 2/W 1OUT 0.037 0.014 0.017 0.009 0.007 0.008
W 1OUT/t 1.1 2.9 2.3 4.5 5.6 5.2
W 1MAX/t 4.4 6.0 3.6 5.4 5.6 5.2
第二表面高度 最大位置 X 2(mm) 205 255 255 205 205 105
Y 2(mm) 205 155 5 255 5 295
最大值 W 2MAX(mm) 0.154 0.152 0.175 0.118 0.347 0.187
最大值為內側 × × ×
周緣部最大值W 2OUT(mm) 0.107 0.064 0.175 0.053 0.347 0.187
第二表面 t 2/W 2OUT 0.015 0.025 0.009 0.030 0.005 0.009
W 2OUT/t 2.7 1.6 4.4 1.3 8.7 4.7
W 2MAX/t 3.9 3.8 4.4 3.0 8.7 4.7
破損率      (%) 0.0 0.0 0.8 1.5 11.8 12.0
根據[表2]所示的破損率可知,於第一峰位置存在於玻璃板的較周緣部靠內側的部位的實施例6~實施例9中,於實施例6及實施例7中完全未產生玻璃板的破損。另外,可知即便於產生了破損的實施例8及實施例9中,與第一峰位置存在於玻璃板的周緣部內的比較例1及比較例2相比,亦大幅抑制了玻璃板的破損率。
[表3]
   實施例10 實施例11 實施例12 實施例13 比較例3
玻璃尺寸 長邊X(mm) 400 400 400 400 400
短邊Y(mm) 300 300 300 300 300
板厚t(mm) 0.035 0.035 0.035 0.035 0.035
第一表面高度 最大位置 X 1(mm) 205 305 155 205 255
Y 1(mm) 205 205 205 205 295
最大值 W 1MAX(mm) 0.205 0.273 0.319 0.332 0.156
最大值為內側 ×
周緣部最大值W 1OUT(mm) 0.076 0.170 0.179 0.175 0.156
第一表面 t 2/W 1OUT 0.016 0.007 0.007 0.007 0.008
W 1OUT/t 2.2 4.9 5.1 5.0 4.5
W 1MAX/t 5.9 7.8 9.1 9.5 4.5
第二表面高度 最大位置 X 2(mm) 205 255 255 105 205
Y 2(mm) 205 205 55 155 295
最大值 W 2MAX(mm) 0.225 0.286 0.218 0.274 0.283
最大值為內側 ×
周緣部最大值W 2OUT(mm) 0.155 0.074 0.128 0.152 0.283
第二表面 t 2/W 2OUT 0.008 0.017 0.010 0.008 0.004
W 2OUT/t 4.4 2.1 3.7 4.3 8.1
W 2MAX/t 6.4 8.2 6.2 7.8 8.1
破損率      (%) 0.0 0.0 0.0 0.0 3.0
根據[表3]所示的破損率可知,於第一峰位置存在於玻璃板的較周緣部靠內側的部位的實施例10~實施例13中,完全未產生玻璃板的破損。與此相對,可知於第一峰位置存在於玻璃板的周緣部內的比較例3中,儘管與實施例10~實施例13的板厚相同,但產生了玻璃板的破損。
[表4]
   實施例14 實施例15 實施例16 實施例17 實施例18 比較例4
玻璃尺寸 長邊X(mm) 400 400 400 400 400 400
短邊Y(mm) 300 300 300 300 300 300
板厚t(mm) 0.03 0.03 0.03 0.03 0.03 0.03
第一表面高度 最大位置 X 1(mm) 105 55 155 155 105 205
Y 1(mm) 55 205 205 255 255 295
最大值 W 1MAX(mm) 0.220 0.309 0.216 0.321 0.315 0.464
最大值為內側 ×
周緣部最大值W 1OUT(mm) 0.079 0.146 0.161 0.094 0.111 0.464
第一表面 t 2/W 1OUT 0.011 0.006 0.006 0.010 0.008 0.002
W 1OUT/t 2.6 4.9 5.4 3.1 3.7 15.5
W 1MAX/t 7.3 10.3 7.2 10.7 10.5 15.5
第二表面高度 最大位置 X 2(mm) 155 205 305 105 5 55
Y 2(mm) 255 55 205 55 295 295
最大值 W 2MAX(mm) 0.241 0.331 0.186 0.406 0.479 0.316
最大值為內側 × ×
周緣部最大值W 2OUT(mm) 0.127 0.052 0.098 0.233 0.479 0.316
第二表面 t 2/W 2OUT 0.007 0.017 0.009 0.004 0.002 0.003
W 2OUT/t 4.2 1.7 3.3 7.8 16.0 10.5
W 2MAX/t 8.0 11.0 6.2 13.5 16.0 10.5
破損率      (%) 0.8 1.5 1.0 2.0 2.5 31.8
根據[表4]所示的破損率可知,在板厚為0.03 mm而非常薄的情況下,難以完全抑制步驟上的破損,但於第一峰位置存在於玻璃板的較周緣部靠內側的部位的實施例14~實施例18中,與第一峰位置存在於玻璃板的周緣部內的比較例4相比,大幅抑制了玻璃板的破損率。
此處,於實施例14及實施例15中,除了滿足第一峰位置存在於玻璃板的較周緣部靠內側的部位的條件之外,亦滿足以下列舉的各關係、即W 1OUT≦0.20 mm、t 2/W 1OUT>0.005、W 1OUT/t<5、W 1MAX/t<15、W 2OUT≦0.20 mm、t 2/W 2OUT>0.005、W 2OUT/t<5、W 2MAX/t<15的各關係的全部。另一方面,於實施例16中,僅不滿足以上所列舉的各關係中的W 1OUT/t<5的關係。於實施例17中,不滿足W 2OUT≦0.20 mm、t 2/W 2OUT>0.005、W 2OUT/t<5這三個關係。於實施例18中,不滿足W 2OUT≦0.20 mm、t 2/W 2OUT>0.005、W 2OUT/t<5、W 2MAX/t<15這四個關係。再者,於實施例18中,第二峰位置存在於玻璃板的周緣部內。根據該些情況可知,於厚度薄板化至0.03 mm的玻璃板中,於滿足以上所列舉的各關係中的更多關係的玻璃板中有破損率降低的傾向。
下述的[表5]示出了在實施例14中採取第一載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖6示出了該情況下的翹曲分佈(保證面中的凹凸分佈)。再者,於[表5]及之後列出的[表6]~[表16]、以及圖6及之後參照的圖8~圖18中,選取了於一部分座標處測量而得的高度來示出。詳細而言,選取了於分別由X=5、55、105、155、205、255、305、355、395表示的與Y軸平行的9條直線、和分別由Y=5、55、105、155、205、255、295表示的與X軸平行的7條直線相交的各座標處測量而得的高度來示出。進而,圖7示出了包含第一峰位置的Y=55處的翹曲分佈(保證面中的凹凸分佈)。關於圖7,亦選取了於X=5、55、105、155、205、255、305、355、395處測量而得的高度來示出。於該情況下,高度的平均值為45 μm(0.045 mm)。另外,高度的標準偏差為0.050。
[表5]
實施例14 第一表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 16 12 38 0 17 19 11
X=55 11 30 26 130 85 43 52
X=105 25 W 1MAX220 43 15 22 137 0
X=155 W 1OUT79 188 25 15 61 16 37
X=205 10 63 39 42 82 44 17
X=255 26 9 24 2 113 12 47
X=305 10 46 22 173 178 1 32
X=355 21 150 17 11 67 5 44
X=395 7 28 17 12 35 7 32
下述的[表6]示出了在實施例14中採取第二載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖8示出了該情況下的翹曲分佈(非保證面中的凹凸分佈)。於該情況下,高度的平均值為69 μm(0.069 mm)。另外,高度的標準偏差為0.058。
[表6]
實施例14 第二表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 67 14 25 41 17 55 6
X=55 32 150 54 46 19 217 28
X=105 50 40 19 159 57 170 108
X=155 58 140 38 130 109 W 2MAX241 55
X=205 93 4 27 21 10 106 116
X=255 W 2OUT127 194 38 212 176 127 46
X=305 90 51 30 3 57 38 93
X=355 51 61 27 66 0 60 29
X=395 55 48 28 26 31 15 52
下述的[表7]示出了在實施例15中採取第一載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖9示出了該情況下的翹曲分佈(保證面中的凹凸分佈)。於該情況下,高度的平均值為63 μm(0.063 mm)。另外,高度的標準偏差為0.055。
[表7]
實施例15 第一表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 63 11 23 25 6 20 40
X=55 82 23 147 70 W 1MAX309 82 16
X=105 89 32 82 91 133 72 106
X=155 55 51 6 88 12 7 82
X=205 94 27 112 44 1 12 W 1OUT146
X=255 78 73 19 110 156 16 135
X=305 91 47 19 0 143 190 80
X=355 31 37 37 84 7 22 58
X=395 111 16 16 40 21 36 57
下述的[表8]示出了在實施例15中採取第二載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖10示出了該情況下的翹曲分佈(非保證面中的凹凸分佈)。於該情況下,高度的平均值為64 μm(0.064 mm)。另外,高度的標準偏差為0.083。
[表8]
實施例15 第二表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 29 21 15 16 20 28 10
X=55 31 238 30 5 165 15 W 2OUT52
X=105 0 290 18 107 57 54 7
X=155 27 299 17 16 72 135 19
X=205 49 W 2MAX331 37 120 4 5 10
X=255 23 242 11 31 208 128 18
X=305 8 155 20 31 0 101 8
X=355 6 24 179 45 231 29 37
X=395 3 32 24 18 9 37 14
下述的[表9]示出了在實施例16中採取第一載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖11示出了該情況下的翹曲分佈(保證面中的凹凸分佈)。於該情況下,高度的平均值為46 μm(0.046 mm)。另外,高度的標準偏差為0.048。
[表9]
實施例16 第一表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 87 14 12 12 11 30 19
X=55 105 164 19 64 69 30 25
X=105 58 30 31 18 31 22 36
X=155 57 10 87 158 W 1MAX216 81 18
X=205 27 29 11 8 19 11 58
X=255 W 1OUT161 25 9 2 11 19 17
X=305 103 12 131 85 111 29 6
X=355 5 17 37 51 13 85 26
X=395 149 15 13 0 5 29 25
下述的[表10]示出了在實施例16中採取第二載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖12示出了該情況下的翹曲分佈(非保證面中的凹凸分佈)。於該情況下,高度的平均值為48 μm(0.048 mm)。另外,高度的標準偏差為0.037。
[表10]
實施例16 第二表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 54 39 20 23 22 14 30
X=55 0 43 61 149 103 49 38
X=105 72 87 37 41 17 22 17
X=155 6 45 25 35 73 53 35
X=205 W 2OUT98 103 134 59 73 72 13
X=255 26 47 29 41 21 11 28
X=305 10 36 59 96 W 2MAX186 69 11
X=355 72 133 23 37 101 31 22
X=395 66 27 23 19 13 28 19
下述的[表11]示出了在實施例17中採取第一載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖13示出了該情況下的翹曲分佈(保證面中的凹凸分佈)。於該情況下,高度的平均值為84 μm(0.084 mm)。另外,高度的標準偏差為0.076。
[表11]
實施例17 第一表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 54 30 23 50 28 65 68
X=55 57 82 100 137 163 219 37
X=105 W 1OUT94 2 119 92 25 191 90
X=155 53 16 33 127 9 W 1MAX321 39
X=205 72 137 190 227 76 298 85
X=255 63 102 7 51 14 319 19
X=305 49 7 177 143 164 115 36
X=355 52 56 24 25 150 134 39
X=395 29 39 33 9 7 45 0
下述的[表12]示出了在實施例17中採取第二載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖14示出了該情況下的翹曲分佈(非保證面中的凹凸分佈)。於該情況下,高度的平均值為90 μm(0.09 mm)。另外,高度的標準偏差為0.098。
[表12]
實施例17 第二表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 20 57 13 32 31 17 W 2OUT233
X=55 41 314 33 122 238 73 97
X=105 23 W 2MAX406 29 67 160 0 58
X=155 81 359 169 254 182 58 90
X=205 28 245 31 12 335 1 51
X=255 39 115 56 71 287 30 71
X=305 9 45 30 13 210 37 44
X=355 23 103 33 62 189 21 25
X=395 10 47 33 35 43 12 19
下述的[表13]示出了在實施例18中採取第一載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖15示出了該情況下的翹曲分佈(保證面中的凹凸分佈)。於該情況下,高度的平均值為70 μm(0.07 mm)。另外,高度的標準偏差為0.078。
[表13]
實施例18 第一表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 43 14 18 27 34 36 8
X=55 18 65 12 49 115 53 22
X=105 65 71 36 233 8 W 1MAX315 15
X=155 34 28 118 254 147 289 30
X=205 49 72 3 238 79 84 0
X=255 27 21 18 162 14 135 37
X=305 23 30 92 165 19 276 23
X=355 15 34 172 29 134 11 W 1OUT111
X=395 67 20 17 17 14 29 16
下述的[表14]示出了在實施例18中採取第二載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖16示出了該情況下的翹曲分佈(非保證面中的凹凸分佈)。如該圖所示,於該情況下,第二峰位置D2與第二周緣峰位置D4一致(W 2MAX的值與W 2OUT的值為相同的值)。於該情況下,高度的平均值為72 μm(0.072 mm)。另外,高度的標準偏差為0.094。
[表14]
實施例18 第二表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 3 15 15 0 7 59 W 2MAX479
X=55 39 19 45 46 31 5 322
X=105 6 69 208 162 49 15 191
X=155 15 29 69 5 61 277 259
X=205 12 17 3 73 87 29 171
X=255 15 193 73 14 18 48 247
X=305 6 0 6 8 86 15 144
X=355 0 30 162 10 38 28 187
X=395 20 31 38 22 40 11 178
下述的[表15]示出了在比較例4中採取第一載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖17示出了該情況下的翹曲分佈(保證面中的凹凸分佈)。如該圖所示,於該情況下,第一峰位置D1與第一周緣峰位置D3一致(W 1MAX的值與W 1OUT的值為相同的值)。於該情況下,高度的平均值為101 μm(0.101 mm)。另外,高度的標準偏差為0.128。
[表15]
比較例4 第一表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 10 31 28 31 52 16 309
X=55 31 52 143 50 212 35 337
X=105 14 99 8 16 9 6 456
X=155 20 58 200 251 112 25 425
X=205 8 58 17 17 90 5 W 1MAX464
X=255 4 30 51 179 176 42 379
X=305 25 74 17 36 0 9 428
X=355 126 19 12 80 21 203 277
X=395 22 33 9 20 1 109 290
下述的[表16]示出了在比較例4中採取第二載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖18示出了該情況下的翹曲分佈(非保證面中的凹凸分佈)。如該圖所示,於該情況下,第二峰位置D2與第二周緣峰位置D4一致(W 2MAX的值與W 2OUT的值為相同的值)。於該情況下,高度的平均值為73 μm(0.073 mm)。另外,高度的標準偏差為0.077。
[表16]
比較例4 第二表面 Y座標
Υ=5 Y=55 Υ=105 Υ=155 Υ=205 Υ=255 Υ=295
X座標 X=5 90 38 24 22 11 33 135
X=55 7 56 11 0 6 19 W 2MAX316
X=105 69 21 21 80 217 122 71
X=155 116 14 1 12 30 47 202
X=205 88 16 217 259 248 252 22
X=255 33 34 45 15 3 158 146
X=305 74 8 108 53 22 161 18
X=355 41 27 100 30 207 69 169
X=395 59 15 16 7 12 21 50
如以上所示可知,於實施例14~實施例18中,即便於高度的平均值或高度的標準偏差相對大的實施例17及實施例18中,亦可抑制玻璃板的破損(亦參照所述[表4])。即,即便為具有因翹曲而距水平面的高度變高的部分的玻璃板、或因翹曲而保證面及非保證面的凹凸變化大的玻璃板,亦可抑制破損。推測可獲得此種結果的原因在於:於各實施例中,第一峰位置存在於玻璃板的較周緣部靠內側的部位。
接著,作為第二實施例,準備具有下述的[表17]所示的各參數的另一化學強化用玻璃板(實施例19),並推斷出於成為強化玻璃板之前所經過的製造步驟中因翹曲而於玻璃板中產生破損的比例(破損率)。作為製造步驟,具體而言,執行自玻璃膜原板切出化學強化用玻璃板的切出步驟、切出後的清洗步驟及外觀檢查步驟。再者,第二實施例中的化學強化用玻璃板為如下的玻璃板:以莫耳%計包含66.1%的SiO 2、14.0%的Al 2O 3、2.5%的B 2O 3、3.0%的MgO、13.4%的Na 2O、0.6%的K 2O,應變點為551℃,於30℃~380℃下具有79×10 -7/℃的熱膨脹係數,且藉由溢流下拉法而成形。
關於第二實施例的玻璃板(長邊×短邊:500 mm×400 mm)的距水平面的高度,是於所述XY座標上以5 mm為刻度各自設定的、與Y軸平行的直線和與X軸平行的直線相交的各座標處進行測量。於該第二實施例中,對將玻璃板的周緣部的寬度設為50 mm的情況進行考察。因此,在滿足第一峰位置的X座標為50 mm以下或450 mm以上的任一者的條件、與第一峰位置的Y座標為50 mm以下或350 mm以上的任一者的條件中的至少一者的情況下,關於第一峰位置的「最大值為內側」的項目為「×」,在任何條件均不滿足的情況下,關於第一峰位置的「最大值為內側」的項目為「○」。同樣地,在滿足第二峰位置的X座標為50 mm以下或450 mm以上的任一者的條件、與第二峰位置的Y座標為50 mm以下或350 mm以上的任一者的條件中的至少一者的情況下,關於第二峰位置的「最大值為內側」的項目為「×」,在任何條件均不滿足的情況下,關於第二峰位置的「最大值為內側」的項目為「○」。
[表17]
   實施例19
玻璃尺寸 長邊X(mm) 500
短邊Y(mm) 400
板厚t(mm) 0.035
第一表面高度 最大位置 X 1(mm) 365
Y 1(mm) 265
面內最大值 W 1MAX(mm) 0.318
最大值為內側
周緣部最大值W 1OUT(mm) 0.154
第一表面 t 2/W 1OUT 0.008
W 1OUT/t 4.4
W 1MAX/t 9.1
第二表面高度 最大位置 X 2(mm) 365
Y 2(mm) 265
最大值 W 2MAX(mm) 0.377
最大值為內側
周緣部最大值W 2OUT(mm) 0.158
第二表面 t 2/W 2OUT 0.008
W 2OUT/t 4.5
W 2MAX/t 10.8
破損率      (%) 0.0
根據[表17]所示的破損率可知,於第一峰位置存在於玻璃板的較周緣部(寬度50 mm)靠內側的部位的實施例19中,完全未產生玻璃板的破損。
下述的[表18]示出了在實施例19中採取第一載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖19示出了該情況下的翹曲分佈(非保證面中的凹凸分佈)。詳細而言,選取了於分別由X=15、65、115、165、215、265、315、365、415、465、485表示的與Y軸平行的11條直線、和分別由Y=15、65、115、165、215、265、315、365、385表示的與X軸平行的9條直線相交的各座標處測量而得的高度來示出。於該情況下,高度的平均值為51 μm(0.051 mm)。另外,高度的標準偏差為0.062。
[表18]
實施例19 第一表面 Y座標
Y=15 Y=65 Y=115 Υ=165 Υ=215 Y=265 Y=315 Υ=365 Υ=385
X座標 X=15 21 90 9 36 34 39 78 86 9
X=65 11 108 71 47 39 35 55 35 16
X=115 15 31 26 33 21 25 12 92 W 1OUT154
X=165 28 35 9 30 23 24 27 31 26
X=215 22 17 24 13 25 20 83 40 45
X=265 39 20 37 18 11 24 23 28 15
X=315 61 24 61 215 44 286 43 165 30
X=365 43 18 67 280 33 W 1MAX318 7 0 86
X=415 32 33 45 222 11 278 21 46 21
X=465 30 28 38 30 52 49 55 18 24
X=485 28 30 30 22 17 17 24 34 22
下述的[表19]示出了在實施例19中採取第二載置形態的情況下於該表所示的各座標處測量而得的玻璃板距水平面的高度[μm]。另外,圖20示出了該情況下的翹曲分佈(非保證面中的凹凸分佈)。於該情況下,高度的平均值為67 μm(0.067 mm)。另外,高度的標準偏差為0.077。
[表19]
實施例19 第二表面 Y座標
Y=15 Y=65 Y=115 Υ=165 Υ=215 Y=265 Y=315 Υ=365 Υ=385
X座標 X=15 2 17 68 18 22 105 33 33 36
X=65 23 19 135 22 37 62 71 23 54
X=115 27 35 34 37 28 36 46 34 39
X=165 33 130 49 54 50 53 55 26 66
X=215 81 25 20 19 47 29 28 21 20
X=265 26 20 33 63 61 138 53 132 98
X=315 33 235 14 9 35 281 22 11 25
X=365 W 2OUT158 266 275 318 55 W 2MAX377 175 221 136
X=415 36 29 20 201 24 300 35 193 84
X=465 29 38 28 10 22 26 27 25 29
X=485 26 19 28 22 45 23 49 19 33
1:製造裝置 2:帶狀玻璃膜 3:成形體 3a:槽 3b:側面部 3c:下端部 4:熔融玻璃 5:玻璃帶 5a:有效部 5b:非有效部 6:成形爐 7:邊緣輥 7a、9a、10a:軸 7b、9b、10b:輥 7c、9c、10c:輥 8:緩冷爐 9:退火輥 10:支撐輥 11:冷卻室 12:玻璃板 12a:其中一個主表面 12b:另一個主表面 12e:周緣部 12f:第二周緣部 12x:長邊 12y:短邊 A、B、C:點 D1:第一峰位置 D2:第二峰位置 D3:第一周緣峰位置 D4:第二周緣峰位置 L1、L2:寬度 P1:成形步驟 P2:緩冷步驟 P3:冷卻步驟 S:原點 t:厚度 V1:搬送速度 W 1MAX:高度 X、Y:軸 X 1、Y 1、X 2、Y 2:座標 ZN1:成形區 ZN2:緩冷區 ZN3:冷卻區
圖1是表示強化玻璃板的製造方法中的準備步驟的剖面圖。 圖2是表示強化玻璃板的製造方法中的準備步驟的剖面圖。 圖3是表示化學強化用玻璃板的平面圖。 圖4是表示化學強化用玻璃板的平面圖。 圖5是表示在實施例5中採取第一載置形態時Y=105處的翹曲分佈的圖。 圖6是表示在實施例14中採取第一載置形態時的翹曲分佈的圖。 圖7是表示在實施例14中採取第一載置形態時Y=55處的翹曲分佈的圖。 圖8是表示在實施例14中採取第二載置形態時的翹曲分佈的圖。 圖9是表示在實施例15中採取第一載置形態時的翹曲分佈的圖。 圖10是表示在實施例15中採取第二載置形態時的翹曲分佈的圖。 圖11是表示在實施例16中採取第一載置形態時的翹曲分佈的圖。 圖12是表示在實施例16中採取第二載置形態時的翹曲分佈的圖。 圖13是表示在實施例17中採取第一載置形態時的翹曲分佈的圖。 圖14是表示在實施例17中採取第二載置形態時的翹曲分佈的圖。 圖15是表示在實施例18中採取第一載置形態時的翹曲分佈的圖。 圖16是表示在實施例18中採取第二載置形態時的翹曲分佈的圖。 圖17是表示在比較例4中採取第一載置形態時的翹曲分佈的圖。 圖18是表示在比較例4中採取第二載置形態時的翹曲分佈的圖。 圖19是表示在實施例19中採取第一載置形態時的翹曲分佈的圖。 圖20是表示在實施例19中採取第二載置形態時的翹曲分佈的圖。
12:玻璃板
12a:其中一個主表面
12e:周緣部
12f:第二周緣部
12x:長邊
12y:短邊
A、B、C:點
D1:第一峰位置
D3:第一周緣峰位置
L1、L2:寬度
S:原點
X、Y:軸
X1、Y1:座標

Claims (19)

  1. 一種化學強化用玻璃板,厚度為0.1 mm以下,所述化學強化用玻璃板的特徵在於, 整體呈翹曲的形狀或包括局部地翹曲的部位, 將所述玻璃板的厚度設為t[mm], 在採取以其中一個主表面朝上的狀態將所述玻璃板載置於水平面上的第一載置形態的情況下,將所述玻璃板中的距所述水平面的高度最高的位置設為第一峰位置,且 將所述玻璃板的沿著周緣的寬度10 mm的部位設為周緣部時, 所述第一峰位置存在於所述玻璃板的較所述周緣部靠內側的部位。
  2. 如請求項1所述的化學強化用玻璃板,其中,在採取所述第一載置形態的情況下,將所述周緣部內距所述水平面的高度最高的位置處的高度設為W 1OUT[mm]時, 滿足t 2/W 1OUT>0.005的關係。
  3. 如請求項1或請求項2所述的化學強化用玻璃板,其中,在採取所述第一載置形態的情況下,將所述周緣部內距所述水平面的高度最高的位置處的高度設為W 1OUT[mm], 滿足W 1OUT≦0.20 mm的關係。
  4. 如請求項1至請求項3中任一項所述的化學強化用玻璃板,其中,在採取所述第一載置形態的情況下,將所述周緣部內距所述水平面的高度最高的位置處的高度設為W 1OUT[mm], 滿足W 1OUT/t<5的關係。
  5. 如請求項1至請求項4中任一項所述的化學強化用玻璃板,其中,在將所述第一峰位置處的所述玻璃板距所述水平面的高度設為W 1MAX[mm]的情況下, 滿足W 1MAX/t<15的關係。
  6. 如請求項1至請求項5中任一項所述的化學強化用玻璃板,其中,所述其中一個主表面及位於所述其中一個主表面的背側的另一個主表面為鍛造面。
  7. 如請求項1至請求項6中任一項所述的化學強化用玻璃板,其中,所述玻璃板的厚度為0.05 mm以下。
  8. 如請求項1至請求項7中任一項所述的化學強化用玻璃板,其中,所述玻璃板整體具有實質上均勻的厚度。
  9. 如請求項1至請求項8中任一項所述的化學強化用玻璃板,其中,在採取以位於所述其中一個主表面的背側的另一個主表面朝上的狀態將所述玻璃板載置於所述水平面上的第二載置形態的情況下,將所述玻璃板中的距所述水平面的高度最高的位置設為第二峰位置時, 所述第二峰位置存在於所述玻璃板的較所述周緣部靠內側的部位。
  10. 如請求項9所述的化學強化用玻璃板,其中,在採取所述第二載置形態的情況下,將所述周緣部內距所述水平面的高度最高的位置處的高度設為W 2OUT[mm]時, 滿足t 2/W 2OUT>0.005的關係。
  11. 如請求項9或請求項10所述的化學強化用玻璃板,其中,在採取所述第二載置形態的情況下,將所述周緣部內距所述水平面的高度最高的位置處的高度設為W 2OUT[mm]時, 滿足W 2OUT≦0.20 mm的關係。
  12. 如請求項9至請求項11中任一項所述的化學強化用玻璃板,其中,在採取所述第二載置形態的情況下,將所述周緣部內距所述水平面的高度最高的位置處的高度設為W 2OUT[mm]時, 滿足W 2OUT/t<5的關係。
  13. 如請求項9至請求項12中任一項所述的化學強化用玻璃板,其中,當將所述第二峰位置處的所述玻璃板距所述水平面的高度設為W 2MAX[mm]時, 滿足W 2MAX/t<15的關係。
  14. 如請求項1至請求項13中任一項所述的化學強化用玻璃板,其中,所述玻璃板為矽酸鋁玻璃, 作為玻璃組成,以質量%計含有SiO 2:50%~80%、Al 2O 3:5%~25%、B 2O 3:0%~15%、Na 2O:1%~20%、K 2O:0%~10%。
  15. 如請求項14所述的化學強化用玻璃板,其中,所述玻璃板為矽酸鋁玻璃,作為玻璃組成,以質量%計含有60%~80%的SiO 2、8%~20%的Al 2O 3、0%~5%的B 2O 3、4%~16%的Na 2O、0.01%~10%的K 2O。
  16. 如請求項1至請求項15中任一項所述的化學強化用玻璃板,其中,所述玻璃板呈矩形, 所述玻璃板的長度為150 mm~1100 mm,寬度為150 mm~1300 mm。
  17. 一種強化玻璃板的製造方法,包括:準備步驟,準備如請求項1至請求項16中任一項所述的化學強化用玻璃板;切出步驟,自所述玻璃板切出製品尺寸玻璃板;以及強化步驟,藉由對所述製品尺寸玻璃板進行化學強化而獲得強化玻璃板。
  18. 一種玻璃板,厚度為0.1 mm以下,所述玻璃板的特徵在於, 整體呈翹曲的形狀或包括局部地翹曲的部位, 在採取以其中一個主表面朝上的狀態將所述玻璃板載置於水平面上的第一載置形態的情況下,將所述玻璃板中的距所述水平面的高度最高的位置設為第一峰位置,且 將所述玻璃板的沿著周緣的寬度10 mm的部位設為周緣部時, 所述第一峰位置存在於所述玻璃板的較所述周緣部靠內側的部位。
  19. 如請求項18所述的玻璃板,其中,在採取以位於所述其中一個主表面的背側的另一個主表面朝上的狀態將所述玻璃板載置於所述水平面上的第二載置形態的情況下,將所述玻璃板中的距所述水平面的高度最高的位置設為第二峰位置時, 所述第二峰位置存在於所述玻璃板的較所述周緣部靠內側的部位。
TW111109666A 2021-03-23 2022-03-16 化學強化用玻璃板、強化玻璃板的製造方法及玻璃板 TW202248167A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021048561 2021-03-23
JP2021-048561 2021-03-23

Publications (1)

Publication Number Publication Date
TW202248167A true TW202248167A (zh) 2022-12-16

Family

ID=83394903

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111109666A TW202248167A (zh) 2021-03-23 2022-03-16 化學強化用玻璃板、強化玻璃板的製造方法及玻璃板

Country Status (7)

Country Link
US (1) US20240228371A9 (zh)
EP (1) EP4317092A1 (zh)
JP (1) JPWO2022202300A1 (zh)
KR (1) KR20230159690A (zh)
CN (1) CN116745246A (zh)
TW (1) TW202248167A (zh)
WO (1) WO2022202300A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999340B2 (ja) * 2012-10-05 2016-09-28 日本電気硝子株式会社 タッチパネル用ガラスフィルム積層体、及びタッチパネル、並びにタッチパネル用ガラスフィルム積層体の製造方法
WO2016037343A1 (en) * 2014-09-12 2016-03-17 Schott Glass Technologies (Suzhou) Co. Ltd. Ultrathin chemically toughened glass article and method for producing such a glass article
DE102017101808A1 (de) * 2016-02-04 2017-08-10 Schott Ag Verfahren zur Dickenkontrolle eines Substrates
CN206541281U (zh) * 2016-10-12 2017-10-03 肖特玻璃科技(苏州)有限公司 一种电子器件结构及其使用的超薄玻璃板

Also Published As

Publication number Publication date
US20240228371A9 (en) 2024-07-11
EP4317092A1 (en) 2024-02-07
CN116745246A (zh) 2023-09-12
US20240132399A1 (en) 2024-04-25
KR20230159690A (ko) 2023-11-21
JPWO2022202300A1 (zh) 2022-09-29
WO2022202300A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
TWI394731B (zh) 強化板玻璃及其製造方法
JP6315305B2 (ja) ガラス積層体及びこれを用いた光学結像部材
TWI520917B (zh) Glass substrate manufacturing method and glass substrate
US8697241B2 (en) Glass film laminate
JP5582446B2 (ja) フィルム状ガラスの製造方法及び製造装置
JP5428287B2 (ja) ガラス板の製造方法及び製造設備
KR20160086855A (ko) 유리 필름 적층체 및 액정 패널의 제조 방법
TW202248167A (zh) 化學強化用玻璃板、強化玻璃板的製造方法及玻璃板
JP6379678B2 (ja) ガラス基板の製造方法
WO2021124892A1 (ja) ガラス物品の製造方法及びガラス物品
WO2020130075A1 (ja) ガラス物品の製造方法及びその製造装置
WO2023171217A1 (ja) ガラス基板
CN114644446B (zh) 浮法玻璃制造装置、浮法玻璃制造方法以及浮法玻璃
WO2022107547A1 (ja) ディスプレイ用ガラス基板
WO2016068069A1 (ja) ガラス基板の熱処理方法およびガラス基板の製造方法
JP2016011235A (ja) ガラス基板の製造方法
JP2015094794A (ja) 保護ガラス基板付きガラス積層体及びその製造方法
JP2016011237A (ja) ガラス基板の製造方法
JP2016011231A (ja) ガラス基板の製造方法