TW202237793A - 研磨墊及研磨加工物之製造方法 - Google Patents

研磨墊及研磨加工物之製造方法 Download PDF

Info

Publication number
TW202237793A
TW202237793A TW110111117A TW110111117A TW202237793A TW 202237793 A TW202237793 A TW 202237793A TW 110111117 A TW110111117 A TW 110111117A TW 110111117 A TW110111117 A TW 110111117A TW 202237793 A TW202237793 A TW 202237793A
Authority
TW
Taiwan
Prior art keywords
storage modulus
polishing pad
polishing
polyurethane sheet
under
Prior art date
Application number
TW110111117A
Other languages
English (en)
Inventor
立野哲平
松岡立馬
栗原浩
山口早月
高見沢大和
Original Assignee
日商富士紡控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商富士紡控股股份有限公司 filed Critical 日商富士紡控股股份有限公司
Priority to TW110111117A priority Critical patent/TW202237793A/zh
Publication of TW202237793A publication Critical patent/TW202237793A/zh

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

本發明之研磨墊具備聚胺基甲酸酯片材作為研磨層,且該聚胺基甲酸酯片材之儲存模數E' B40相對於儲存模數E' T40之比(E' B40/E' T40)為0.60~1.60,上述儲存模數E' T40係於頻率1.6 Hz之拉伸模式條件下進行之動態黏彈性測定下的40℃下之儲存模數,上述儲存模數E' B40係於頻率1.6 Hz之彎曲模式條件下進行之動態黏彈性測定下的40℃下之儲存模數。

Description

研磨墊及研磨加工物之製造方法
本發明係關於一種研磨墊及研磨加工物之製造方法。
於半導體元件、電子零件等材料,特別是Si基板(矽晶圓)、硬碟用基板、玻璃或LCD(liquid crystal display,液晶顯示器)用基板等薄型基板(被研磨物)之表面(加工面),使用研磨漿料並藉由研磨墊進行化學機械研磨加工。
已知作為此種研磨加工所使用之研磨墊,例如使用具備30℃~90℃下之E'之比為約1~3.6之研磨層的研磨墊以減少凹陷(專利文獻1),又,使用具備聚合物材料作為研磨層之研磨墊以兼具平坦化性能與低缺陷性能率,上述聚合物材料具有0.1體積%之孔隙率,且於40℃及1 rad/sec之條件下KEL能量損耗係數為385~750 l/Pa,於40℃及1 rad/sec之條件下彈性模數E'為100~400 MPa(專利文獻2)。 先前技術文獻 專利文獻
專利文獻1:日本專利特表2004-507076號公報 專利文獻2:日本專利特開2005-136400號公報
[發明所欲解決之問題]
然而,可知於使用上述專利文獻1及2所記載之研磨墊之情形時,可謂所得之被研磨物之表面品質不高,例如會產生劃痕等。
本發明係鑒於上述問題而完成者,其目的在於提供一種可減少劃痕之產生之研磨墊及研磨加工物之製造方法。 [解決問題之技術手段]
本發明人為了解決上述問題進行了努力研究,結果發現,藉由使用於在拉伸模式及彎曲模式下進行動態黏彈性測定之情形時所得之儲存模數之值處於特定範圍內的聚胺基甲酸酯片材作為研磨層,可解決上述問題,從而完成了本發明。
即,本發明如下所述。 [1] 一種研磨墊,其具備聚胺基甲酸酯片材作為研磨層,且 該聚胺基甲酸酯片材之儲存模數E' B40相對於儲存模數E' T40之比(E' B40/E' T40)為0.60~1.60,上述儲存模數E' T40係於頻率1.6 Hz之拉伸模式條件下進行之動態黏彈性測定下的40℃下之儲存模數,上述儲存模數E' B40係於頻率1.6 Hz之彎曲模式條件下進行之動態黏彈性測定下的40℃下之儲存模數。 [2] 如[1]所記載之研磨墊,其中上述儲存模數E' B40為1.50×10 8~4.50×10 8Pa。 [3] 如[1]或[2]所記載之研磨墊,其中上述儲存模數E' T40為1.50×10 8~4.50×10 8Pa。 [4] 如[1]至[3]中任一項所記載之研磨墊,其中上述聚胺基甲酸酯片材之儲存模數E' B30相對於儲存模數E' B50之比(E' B30/E' B50)為1.00~2.60,上述儲存模數E' B50係於頻率1.6 Hz之彎曲模式條件下進行之動態黏彈性測定下的50℃下之儲存模數,上述儲存模數E' B30係於頻率1.6 Hz之彎曲模式條件下進行之動態黏彈性測定下的30℃下之儲存模數。 [5] 如[1]至[4]中任一項所記載之研磨墊,其中上述聚胺基甲酸酯片材包含聚胺基甲酸酯樹脂及分散於該聚胺基甲酸酯樹脂中之中空微粒子。 [6] 如[5]所記載之研磨墊,其中上述中空微粒子之平均粒徑為30 μm以下。 [7] 一種研磨加工物之製造方法,其具有於研磨漿料之存在下,使用如[1]至[6]中任一項所記載之研磨墊,對被研磨物進行研磨之研磨步驟。 [發明之效果]
根據本發明,可提供一種能夠減少劃痕之產生之研磨墊及研磨加工物之製造方法。
以下,對本發明之實施方式(以下,稱為「本實施方式」)詳細地進行說明,但本發明並不限定於此,可於不脫離其主旨之範圍內進行各種變化。
[研磨墊] 本實施方式之研磨墊具備聚胺基甲酸酯片材作為研磨層,且該聚胺基甲酸酯片材之儲存模數E' B40相對於儲存模數E' T40之比(E' B40/E' T40)為0.60~1.60,上述儲存模數E' T40係於頻率1.6 Hz之拉伸模式條件下進行之動態黏彈性測定下的40℃下之儲存模數,上述儲存模數E' B40係於頻率1.6 Hz之彎曲模式條件下進行之動態黏彈性測定下的40℃下之儲存模數。
儲存模數E'係表示於測定條件下作為測定對象之物質所顯示之彈性成分的指標。於利用研磨墊對被研磨物進行研磨之前,進行調整研磨面之平坦性及表面粗糙度之修整處理。修整處理中,施加使修整器壓抵於研磨墊的垂直方向之力(研磨壓力)、及使修整器相對於研磨墊摩擦的水平方向之力(旋轉方向之力)。又,被研磨物與研磨墊接觸之研磨步驟中,施加使研磨墊壓抵於被研磨物的垂直方向之力(研磨壓力)、及使研磨墊相對於被研磨物摩擦的水平方向之力(旋轉方向之力)。此時,施加該等2種力之研磨墊於某種程度上追隨修整器及被研磨物,藉此可獲得表面品質優異之研磨加工物。因此,於本實施方式中,藉由規定於在拉伸模式及彎曲模式下進行動態黏彈性測定之情形時所得之儲存模數E'之比,抑制劃痕之產生。再者,雖然拉伸模式及彎曲模式下之動態黏彈性測定之結果可能大致一致,但是於研磨墊上至少表現出不同之行為。
就如上所述之觀點而言,於本實施方式中,以儲存模數E' B40相對於儲存模數E' T40之比(E' B40/E' T40)為指標,上述儲存模數E' T40係於頻率1.6 Hz之拉伸模式條件下進行之動態黏彈性測定下的40℃下之儲存模數,上述儲存模數E' B40係於頻率1.6 Hz之彎曲模式條件下進行之動態黏彈性測定下的40℃下之儲存模數。比(E' B40/E' T40)為0.60~1.60,較佳為0.70~1.40,更佳為0.75~1.20,進而較佳為0.80~1.00。藉由使比(E' B40/E' T40)處於上述範圍內,特別是比(E' B40/E' T40)為0.60以上,受到垂直方向及水平方向之力,研磨墊可更有效地追隨修整器,研磨面之狀態得到改善,劃痕之產生得到抑制。其原因雖無特別限制,但認為如下:藉由響應水平方向之力之拉伸儲存模數、及響應垂直方向之力而追隨被研磨物表面之彎曲儲存模數處於上述範圍內,受到垂直方向及水平方向之力,研磨墊容易更有效地追隨修整器。但是,抑制劃痕之產生之原因不限定於上述原因。
又,E' B40較佳為1.50×10 8~4.50×10 8Pa,更佳為1.75×10 8~4.10×10 8Pa,進而較佳為2.00×10 8~3.70×10 8Pa。藉由使E' B40處於上述範圍內,呈現如下趨勢:受到垂直方向之力,研磨墊更有效地追隨修整器,研磨面之狀態得到改善,劃痕之產生進一步得到抑制。
E' T40較佳為1.50×10 8~4.50×10 8Pa,更佳為2.00×10 8~4.20×10 8Pa,進而較佳為2.30×10 8~3.90×10 8Pa。藉由使E' T40處於上述範圍內,呈現如下趨勢:受到水平方向之力,研磨墊更有效地追隨修整器,研磨面之狀態得到改善,劃痕之產生進一步得到抑制。
研磨步驟中之研磨墊之溫度多為大致40℃左右,故本實施方式中,規定40℃下之彎曲模式與拉伸模式之儲存模數之比率。又,於此種情況下,可進而規定彎曲模式之儲存模數之趨勢。具體而言,於頻率1.6 Hz之彎曲模式條件下進行之動態黏彈性測定中之30℃下之儲存模數E' B30相對於50℃下之儲存模數E' B50的比(E' B30/E' B50)較佳為1.00~2.60,更佳為1.20~2.30,進而較佳為1.30~2.00。藉由使比(E' B30/E' B50)處於上述範圍內,30~50℃下之儲存模數之變化率較小,且於40℃附近,彎曲模式與拉伸模式之儲存模數之比(E' B40/E' T40)容易滿足特定範圍。因此,研磨步驟中呈現如下趨勢:受到垂直方向及水平方向之力,研磨墊更有效地追隨修整器,研磨面之狀態得到改善,劃痕之產生進一步得到抑制。
再者,E' B30較佳為2.50×10 8~5.50×10 8Pa,更佳為2.60×10 8~5.00×10 8Pa,進而較佳為2.70×10 8~4.50×10 8Pa。又,E' B50較佳為1.00×10 8~3.50×10 8Pa,更佳為1.25×10 8~3.20×10 8Pa,進而較佳為1.50×10 8~2.90×10 8Pa。藉由E' B30及/或E' B50處於上述範圍內,呈現劃痕之產生進一步得到抑制之趨勢。
本實施方式之動態黏彈性測定可根據彎曲模式及拉伸模式之常規方法進行,關於其他條件,並無特別限制,可藉由實施例中所記載之條件進行測定。
(聚胺基甲酸酯片材) 作為具有上述特性之研磨層,使用聚胺基甲酸酯片材。作為構成聚胺基甲酸酯片材之聚胺基甲酸酯樹脂,並無特別限制,例如可例舉:聚酯系聚胺基甲酸酯樹脂、聚醚系聚胺基甲酸酯樹脂及聚碳酸酯系聚胺基甲酸酯樹脂。作為此種聚胺基甲酸酯樹脂,並無特別限定,只要為胺基甲酸酯預聚物與硬化劑之反應物即可,可應用各種公知者。該等可單獨使用1種,亦可組合2種以上使用。
(胺基甲酸酯預聚物) 作為胺基甲酸酯預聚物,並無特別限制,可適當使用多異氰酸酯化合物與多元醇化合物之反應物、或市售之胺基甲酸酯預聚物。
作為多異氰酸酯化合物,並無特別限制,只要為分子內含有2個以上之異氰酸基之化合物即可,例如可例舉:間苯二異氰酸酯、對苯二異氰酸酯、2,6-甲苯二異氰酸酯、2,4-甲苯二異氰酸酯、萘-1,4-二異氰酸酯、二苯基甲烷-4,4'-二異氰酸酯、4,4'-亞甲基-雙(環己基異氰酸酯)、3,3'-二甲氧基-4,4'-聯苯二異氰酸酯、3,3'-二甲基二苯基甲烷-4,4'-二異氰酸酯、苯二甲基-1,4-二異氰酸酯、4,4'-二苯基丙烷二異氰酸酯、三亞甲基二異氰酸酯、六亞甲基二異氰酸酯、1,2-亞丙基二異氰酸酯、1,2-亞丁基二異氰酸酯、1,2-環己烷二異氰酸酯、1,4-環己烷二異氰酸酯、對苯二異硫氰酸酯、苯二甲基-1,4-二異硫氰酸酯、次乙基二異硫氰酸酯等。
其中,較佳為2,6-甲苯二異氰酸酯、2,4-甲苯二異氰酸酯、二苯基甲烷-4,4'-二異氰酸酯,更佳為2,6-甲苯二異氰酸酯、2,4-甲苯二異氰酸酯。多異氰酸酯化合物可單獨使用1種,亦可併用2種以上。
作為多元醇化合物,並無特別限制,只要為分子內含有2個以上之羥基之化合物即可,例如可例舉:乙二醇、二乙二醇、丁二醇等二醇化合物;三醇化合物等;聚丙二醇、聚(氧四亞甲基)二醇等聚醚多元醇化合物;乙二醇與己二酸之反應物或丁二醇與己二酸之反應物等聚酯多元醇化合物;聚碳酸酯多元醇化合物、聚己內酯多元醇化合物;加成有環氧乙烷之3官能性丙二醇等。
其中,較佳為聚(氧四亞甲基)二醇、聚丙二醇、二乙二醇,更佳為聚(氧四亞甲基)二醇。多元醇化合物可單獨使用1種,亦可併用2種以上。
多元醇化合物亦可併用聚(氧四亞甲基)二醇、聚丙二醇等高分子系多元醇與二乙二醇等低分子系多元醇。高分子系多元醇之數量平均分子量較佳為300~2000,更佳為400~1750,進而較佳為500~1500。又,高分子系多元醇可包含數量平均分子量不同之2種以上。
胺基甲酸酯預聚物之NCO當量較佳為300~700,更佳為350~600,進而較佳為400~500。再者,「NCO當量」係藉由下式求出,表示每個NCO基之胺基甲酸酯預聚物之分子量的數值:「(多異氰酸酯化合物之質量份+多元醇化合物之質量份)/[(多異氰酸酯化合物每分子之官能基數×多異氰酸酯化合物之質量份/多異氰酸酯化合物之分子量)-(多元醇化合物每分子之官能基數×多元醇化合物之質量份/多元醇化合物之分子量)]」。
(硬化劑) 作為硬化劑,並無特別限定,例如可例舉多胺化合物及多元醇化合物。硬化劑可單獨使用1種,亦可併用2種以上。
作為多胺化合物,並無特別限制,例如可例舉:乙二胺、丙二胺、六亞甲基二胺、異佛爾酮二胺、二環己基甲烷-4,4'-二胺、3,3'-二氯-4,4'-二胺基二苯基甲烷(MOCA)、4-甲基-2,6-雙(甲硫基)-1,3-苯二胺、2-甲基-4,6-雙(甲硫基)-1,3-苯二胺、2,2-雙(3-胺基-4-羥基苯基)丙烷、2,2-雙[3-(異丙基胺基)-4-羥基苯基]丙烷、2,2-雙[3-(1-甲基丙基胺基)-4-羥基苯基]丙烷、2,2-雙[3-(1-甲基戊基胺基)-4-羥基苯基]丙烷、2,2-雙(3,5-二胺基-4-羥基苯基)丙烷、2,6-二胺基-4-甲基苯酚、三甲基伸乙基雙-4-胺基苯甲酸酯及聚氧化四亞甲基-二-對胺基苯甲酸酯等。
作為多元醇化合物,並無特別限制,例如可例舉:乙二醇、丙二醇、二乙二醇、1,3-丙二醇、四乙二醇、三乙二醇、二丙二醇、1,4-丁二醇、1,3-丁二醇、2,3-丁二醇、1,2-丁二醇、3-甲基-1,2-丁二醇、1,2-戊二醇、1,4-戊二醇、2,4-戊二醇、2,3-二甲基1,3-丙二醇、四亞甲基二醇、3-甲基-4,3-戊二醇、3-甲基-4,5-戊二醇、2,2,4-三甲基-1,3-戊二醇、1,6-己二醇、1,5-己二醇、1,4-己二醇、2,5-己二醇、1,4-環己烷二甲醇、新戊二醇、甘油、三羥甲基丙烷、三羥甲基乙烷、三羥甲基甲烷、聚(氧四亞甲基)二醇、聚乙二醇及聚丙二醇等。
再者,多胺化合物可含有羥基,作為此種胺系化合物,例如可例舉:2-羥乙基乙二胺、2-羥乙基丙二胺、二-2-羥乙基乙二胺、二-2-羥乙基丙二胺、2-羥丙基乙二胺、二-2-羥丙基乙二胺等。
其中,作為多胺化合物,較佳為二胺化合物,更佳為3,3'-二氯-4,4'-二胺基二苯基甲烷(MOCA)。作為MOCA之市售品,例如可例舉PANDEX E(DIC公司製)、IHARACUAMINE MT(組合化學公司製)等。硬化劑可單獨使用1種,亦可併用2種以上。
相對於胺基甲酸酯預聚物100質量份,硬化劑之添加量較佳為10~60質量份,更佳為20~50質量份,進而較佳為20~40質量份。
可藉由胺基甲酸酯預聚物之分子量(聚合度)、或胺基甲酸酯預聚物與硬化劑之組合,來調整彎曲模式及拉伸模式之儲存模數。就此種觀點而言,作為一例,可以R值作為指標,R值係硬化劑中存在之活性氫基(胺基及羥基)相對於作為胺基甲酸酯預聚物之含異氰酸基化合物之末端存在之異氰酸基的當量比。R值較佳為0.70~1.30,更佳為0.75~1.20,進而較佳為0.80~1.10,進而更佳為0.80~1.00,尤佳為0.85~0.95。
(氣泡) 又,聚胺基甲酸酯片材較佳為含有氣泡之發泡聚胺基甲酸酯片材。又,發泡聚胺基甲酸酯片材之氣泡根據其形態可分類為複數個氣泡獨立地存在之獨立氣泡、及複數個氣泡藉由連通孔連接之連續氣泡。其中,本實施方式之聚胺基甲酸酯片材較佳為含有獨立氣泡,更佳為包含聚胺基甲酸酯樹脂及分散於該聚胺基甲酸酯樹脂中之中空微粒子之聚胺基甲酸酯片材。藉由使用中空微粒子,呈現容易調整彎曲模式及拉伸模式之儲存模數之趨勢。
含有獨立氣泡之聚胺基甲酸酯片材可藉由使用具有外殼且內部為中空狀之中空微粒子而製作。中空微粒子可使用市售者,亦可使用藉由常規方法合成所得者。
作為中空微粒子之外殼之材質,並無特別限制,例如可例舉:聚乙烯醇、聚乙烯吡咯啶酮、聚(甲基)丙烯酸、聚丙烯醯胺、聚乙二醇、聚羥基醚丙烯酸酯(polyhydroxyether acrylite)、順丁烯二酸共聚物、聚環氧乙烷、聚胺基甲酸酯、聚(甲基)丙烯腈、聚偏二氯乙烯、聚氯乙烯及有機矽酮系樹脂、以及將構成該等樹脂之單體組合2種以上而成之共聚物。又,作為市售品之中空微粒子,例如可例舉Expancel系列(AkzoNobel公司製之商品名)、Matsumoto Microsphere(松本油脂股份有限公司製之商品名)等,但並不限定於以上。
聚胺基甲酸酯片材中之中空微粒子之形狀並無特別限定,例如可為球狀及大致球狀。中空微粒子之平均粒徑較佳為30 μm以下,更佳為25 μm以下,進而較佳為20 μm以下,進而更佳為15 μm以下,尤佳為10 μm以下。又,中空微粒子之平均粒徑較佳為1 μm以上,更佳為2 μm以上,進而較佳為4 μm以上。藉由使用此種中空微粒子,亦可調整彎曲模式及拉伸模式之儲存模數。再者,平均粒徑可藉由雷射繞射式粒度分佈測定裝置(例如Spectris股份有限公司製,Mastersizer 2000)等測定。藉由中空微粒子之平均粒徑處於上述範圍內,可減小由中空微粒子形成之氣泡之大小對儲存模數造成之影響,可將彎曲儲存模數及拉伸儲存模數調整至所需範圍。再者,本實施方式中,平均粒徑意指體積基準之中值徑。
又,中空微粒子包含已膨脹狀態之已膨脹型及未膨脹狀態之未膨脹型,較佳為未膨脹型。藉由使用未膨脹型中空微粒子,聚胺基甲酸酯片材中形成之直徑較小之氣泡成為分散之狀態,可將彎曲儲存模數及拉伸儲存模數調整至所需範圍。
關於中空微粒子之添加量,以相對於胺基甲酸酯預聚物100質量份較佳為0.1~10質量份、更佳為1~5質量份、進而較佳為1~4質量份之方式添加。藉由將中空微粒子之添加量調整至上述範圍,亦可調整彎曲模式及拉伸模式之儲存模數。
(其他成分) 又,除上述成分外,於不損害本發明之效果之範圍內,可將先前使用之發泡劑與中空微粒子併用,亦可於下述混合步驟中對各成分吹入非反應性氣體。作為該發泡劑,可例舉水、及以碳數為5或6之烴作為主成分之發泡劑。作為該烴,例如可例舉:正戊烷、正己烷等鏈狀烴;及環戊烷、環己烷等脂環式烴。又,除上述各成分外,亦可添加公知之泡沫穩定劑、阻燃劑、著色劑、塑化劑等。
(聚胺基甲酸酯片材之製造方法) 聚胺基甲酸酯片材之製造方法並無特別限制,例如可例舉具有以下步驟之方法:於中空微粒子之存在下使胺基甲酸酯預聚物與硬化劑反應而獲得聚胺基甲酸酯樹脂塊之反應步驟;及自所得之聚胺基甲酸酯樹脂塊切出片材之成形步驟。以下,對各步驟進行詳細說明。
(反應步驟) 反應步驟中,將胺基甲酸酯預聚物及硬化劑供給至混合機內並攪拌、混合,進行反應。又,於使用中空微粒子之情形時,藉由混合胺基甲酸酯預聚物、硬化劑及中空微粒子,可獲得含有中空微粒子之聚胺基甲酸酯樹脂塊。混合各成分之順序並無特別限制,但較佳為先混合胺基甲酸酯預聚物與中空微粒子,其次將硬化劑供給至混合機內。
本實施方式中,就調整彎曲模式及拉伸模式之儲存模數之觀點而言,較理想為減小聚胺基甲酸酯片材內之氣泡直徑、使用中空微粒子之情形時之中空微粒子之粒徑。因此,於胺基甲酸酯預聚物與硬化劑之反應中,較佳為於中空微粒子未膨脹之條件下進行混合。
作為此種方法,例如可例舉以下方法:於相對不加熱之條件下,於第1槽中混合中空微粒子與胺基甲酸酯預聚物,另外於第2液槽中混合硬化劑,其次,將第1槽之中空微粒子及胺基甲酸酯預聚物、以及第2槽之硬化劑添加至混合器中進行混合。
關於相對不加熱之條件,更具體而言,第1液槽之溫度較佳為30~80℃,更佳為35~70℃,進而較佳為40~65℃。藉此,可抑制中空微粒子膨脹。
其次,將以如上方式製備之混合液流入至預熱至30~100℃之模框內,於100~150℃左右加熱10分鐘~5小時左右而使其硬化,藉此成形為聚胺基甲酸酯樹脂塊。此時,胺基甲酸酯預聚物與硬化劑發生反應,於氣泡及/或中空微粒子分散於聚胺基甲酸酯樹脂中之狀態下,該混合液硬化。藉此,形成含有多個大致球狀之氣泡之聚胺基甲酸酯樹脂塊。
(成形步驟) 其後,將所得之聚胺基甲酸酯樹脂塊切割為片狀而形成聚胺基甲酸酯片材。藉由切片,於片材表面設置開孔。此時,為了形成耐磨耗性優異且不易堵塞之研磨層表面之開孔,可於30~150℃下熟化1小時~24小時左右。
對於具有以如上方式獲得之聚胺基甲酸酯片材之研磨層,其後,於研磨層之與研磨面相反之側之面貼附雙面膠帶,切割為特定形狀、較佳為圓板狀,從而完成為本實施方式之研磨墊。雙面膠帶並無特別限制,可自本技術領域中公知之雙面膠帶中任意選擇而使用。
又,本實施方式之研磨墊可為僅包含研磨層之單層構造,亦可包含於研磨層之與研磨面相反之側之面貼合有其他層(底層、支持層)的複層。其他層之特性並無特別限定,若於研磨層之相反側之面貼合較研磨層更軟之層,則研磨平坦性進一步提昇。另一方面,若於研磨層之相反側之面貼合較研磨層更硬之層,則研磨速率進一步提昇。
於具有複層構造之情形時,只要視需要加壓,並使用雙面膠帶或接著劑等將複數個層彼此接著、固定即可。此時使用之雙面膠帶或接著劑並無特別限制,可自本技術領域中公知之雙面膠帶或接著劑中任意選擇而使用。
進而,本實施方式之研磨墊可視需要對研磨層之正面及/或背面實施研削處理,或對正面實施槽加工、壓紋加工或孔加工(打孔加工),亦可將基材及/或黏著層與研磨層貼合,還可具備光透過部。研削處理之方法並無特別限制,可藉由公知之方法進行研削。具體而言,可例舉利用砂紙進行之研削。槽加工及壓紋加工之形狀並無特別限制,例如可例舉格子形、同心圓形、放射形等形狀。
[研磨加工物之製造方法] 本實施方式之研磨加工物之製造方法具有於研磨漿料之存在下,使用上述研磨墊對被研磨物進行研磨而獲得研磨加工物之研磨步驟。研磨步驟可為一次研磨(粗研磨),亦可為精研磨,還可兼有該等兩種研磨。其中,本實施方式之研磨墊較佳為用於化學機械研磨。以下,以化學機械研磨為例對本實施方式之研磨加工物之製造方法進行說明,但本實施方式之研磨加工物之製造方法不限定於以下製造方法。
該製造方法中,一面供給研磨漿料,並且藉由保持壓盤將被研磨物按壓於研磨墊側,一面使保持壓盤與研磨用壓盤相對旋轉,藉此用研磨墊藉由化學機械研磨(CMP)對被研磨物之加工面進行研磨加工。保持壓盤與研磨用壓盤可以互不相同之轉速於相同方向上旋轉,亦可於不同方向上旋轉。又,被研磨物可於研磨加工中一面於框部之內側移動(自轉)一面進行研磨加工。
根據被研磨物或研磨條件等,研磨漿料可含有水、以過氧化氫為代表之氧化劑等化學成分、添加劑、研磨粒(研磨粒子;例如SiC、SiO 2、Al 2O 3、CeO 2)等。
又,作為被研磨物,並無特別限定,例如可例舉:半導體元件、電子零件等材料,特別是Si基板(矽晶圓)、硬碟用基板、玻璃或LCD(液晶顯示器)用基板等薄型基板(被研磨物)。其中,本實施方式之研磨加工物之製造方法適宜用作形成有氧化層、銅等金屬層之半導體元件等之製造方法。 [實施例]
以下,使用實施例及比較例更具體地說明本發明。但是,本發明不受以下實施例任何限定。
[實施例1] 於使2,4-甲苯二異氰酸酯、聚(氧四亞甲基)二醇(數量平均分子量1000)、聚(氧四亞甲基)二醇(數量平均分子量650)及二乙二醇反應而得之NCO當量455之胺基甲酸酯預聚物100份中,添加混合殼部分包含丙烯腈-偏二氯乙烯共聚物且殼內包含異丁烷氣體之未膨脹之中空微粒子2.7份(平均粒徑8.5 μm),而獲得胺基甲酸酯預聚物混合液。將所得之胺基甲酸酯預聚物混合液加入第1液槽,於60℃下保溫。又,與第1液槽分開,將作為硬化劑之3,3'-二氯-4,4'-二胺基二苯基甲烷(亞甲基雙-鄰氯苯胺)(MOCA)25.8份加入第2液槽,於120℃下混合,進而進行減壓消泡而獲得硬化劑熔融液。再者,設定為上述操作溫度以抑制中空微粒子膨脹。
其次,自具備2個注入口之混合機之各注入口注入第1液槽、第2液槽各者之液體,攪拌混合而獲得混合液。再者,此時,調整混合比率,使表示硬化劑中存在之胺基及羥基相對於胺基甲酸酯預聚物中之末端存在之異氰酸基之當量比的R值為0.90。
將所得之混合液澆鑄於預熱至80℃之模框內,於80℃下進行30分鐘一次硬化。將形成之塊狀成形物自模框抽出,藉由烘箱於120℃下進行4小時二次硬化,獲得胺基甲酸酯樹脂塊。將所得之胺基甲酸酯樹脂塊放冷至25℃後,再次藉由烘箱於120℃下加熱5小時,然後實施切片處理而獲得發泡聚胺基甲酸酯片材。於所得之聚胺基甲酸酯片材之背面貼附雙面膠帶,用作研磨墊。
[比較例1] 作為比較例1,準備NITTA HAAS公司製造之研磨墊(製品名:IC1000)。
[實施例2] 於使2,4-甲苯二異氰酸酯、聚(氧四亞甲基)二醇(數量平均分子量1000)、聚(氧四亞甲基)二醇(數量平均分子量650)及二乙二醇反應而得之NCO當量420之胺基甲酸酯預聚物100份中,添加混合殼部分包含丙烯腈-偏二氯乙烯共聚物且殼內包含異丁烷氣體之未膨脹之中空微粒子2.5份(平均粒徑8.5 μm),而獲得胺基甲酸酯預聚物混合液。將所得之胺基甲酸酯預聚物混合液加入第1液槽,於60℃下保溫。又,與第1液槽分開,將作為硬化劑之3,3'-二氯-4,4'-二胺基二苯基甲烷(亞甲基雙-鄰氯苯胺)(MOCA)28.3份加入第2液槽,於120℃下混合,進而進行減壓消泡而獲得硬化劑熔融液。再者,設定為上述操作溫度以抑制中空微粒子膨脹。除上述操作以外,以與實施例1相同之方式製作實施例2之研磨墊。
[實施例3] 於使2,4-甲苯二異氰酸酯、聚(氧四亞甲基)二醇(數量平均分子量1000)、聚(氧四亞甲基)二醇(數量平均分子量650)及二乙二醇反應而得之NCO當量420之胺基甲酸酯預聚物100份中,添加混合殼部分包含丙烯腈-偏二氯乙烯共聚物且殼內包含異丁烷氣體之未膨脹之中空微粒子4.9份(平均粒徑5.3 μm),而獲得胺基甲酸酯預聚物混合液。將所得之胺基甲酸酯預聚物混合液加入第1液槽,於60℃下保溫。又,與第1液槽分開,將作為硬化劑之3,3'-二氯-4,4'-二胺基二苯基甲烷(亞甲基雙-鄰氯苯胺)(MOCA)27.8份加入第2液槽,於120℃下混合,進而進行減壓消泡而獲得硬化劑熔融液。再者,設定為上述操作溫度以抑制中空微粒子膨脹。除上述操作以外,以與實施例1相同之方式製作實施例3之研磨墊。
[實施例4] 於使2,4-甲苯二異氰酸酯、聚(氧四亞甲基)二醇(數量平均分子量650)及二乙二醇反應而得之NCO當量420之胺基甲酸酯預聚物100份中,添加混合殼部分包含丙烯腈-偏二氯乙烯共聚物且殼內包含異丁烷氣體之未膨脹之中空微粒子2.8份(平均粒徑6.9 μm),而獲得胺基甲酸酯預聚物混合液。將所得之胺基甲酸酯預聚物混合液加入第1液槽,於60℃下保溫。又,與第1液槽分開,將作為硬化劑之3,3'-二氯-4,4'-二胺基二苯基甲烷(亞甲基雙-鄰氯苯胺)(MOCA)28.1份加入第2液槽,於120℃下混合,進而進行減壓消泡而獲得硬化劑熔融液。再者,設定為上述操作溫度以抑制中空微粒子膨脹。除上述操作以外,以與實施例1相同之方式製作實施例4之研磨墊。
[實施例5] 於使2,4-甲苯二異氰酸酯、聚(氧四亞甲基)二醇(數量平均分子量650)及二乙二醇反應而得之NCO當量440之胺基甲酸酯預聚物100份中,添加混合殼部分包含丙烯腈-偏二氯乙烯共聚物且殼內包含異丁烷氣體之未膨脹之中空微粒子2.9份(平均粒徑6.9 μm),而獲得胺基甲酸酯預聚物混合液。將所得之胺基甲酸酯預聚物混合液加入第1液槽,於60℃下保溫。又,與第1液槽分開,將作為硬化劑之3,3'-二氯-4,4'-二胺基二苯基甲烷(亞甲基雙-鄰氯苯胺)(MOCA)26.7份加入第2液槽,於120℃下混合,進而進行減壓消泡而獲得硬化劑熔融液。再者,設定為上述操作溫度以抑制中空微粒子膨脹。除上述操作以外,以與實施例1相同之方式製作實施例5之研磨墊。
[實施例6] 於使2,4-甲苯二異氰酸酯、聚丙二醇(數量平均分子量100)及二乙二醇反應而得之NCO當量500之胺基甲酸酯預聚物100份中,添加混合殼部分包含丙烯腈-偏二氯乙烯共聚物且殼內包含異丁烷氣體之未膨脹之中空微粒子2.5份(平均粒徑20 μm),而獲得胺基甲酸酯預聚物混合液。將所得之胺基甲酸酯預聚物混合液加入第1液槽,於60℃下保溫。又,與第1液槽分開,將作為硬化劑之3,3'-二氯-4,4'-二胺基二苯基甲烷(亞甲基雙-鄰氯苯胺)(MOCA)23.1份加入第2液槽,於120℃下混合,進而進行減壓消泡而獲得硬化劑熔融液。再者,設定為上述操作溫度以抑制中空微粒子膨脹。除上述操作以外,以與實施例1相同之方式製作實施例6之研磨墊。
[動態黏彈性測定] (拉伸模式) 基於下述條件,進行聚胺基甲酸酯片材之動態黏彈性測定。使用於溫度23℃(±2℃)、相對濕度50%(±5%)之恆溫恆濕槽中保持聚胺基甲酸酯片材40小時之乾燥狀態之聚胺基甲酸酯片材作為樣品,於通常之大氣環境下(乾燥狀態)進行拉伸模式之動態黏彈性測定。拉伸模式之測定條件如下所示。 (測定條件) 測定裝置:RSA3(TA Instruments公司製) 樣品:縱4 cm×橫0.5 cm×厚0.125 cm 試驗長度:1 cm 樣品之預處理:於溫度23℃、相對濕度50%下保持40小時 試驗模式:拉伸 頻率:1.6 Hz(10 rad/sec) 溫度範圍:25~60℃ 升溫速度:1.5℃/min 應變範圍:0.10% 初始負載:148 g 測定間隔:2 point/℃
(彎曲模式) 又,使用相同之樣品,進行彎曲模式之動態黏彈性測定。彎曲模式之測定條件如下所示。 (測定條件) 測定裝置:RSA3(TA Instruments公司製) 樣品:縱5 cm×橫0.5 cm×厚0.125 cm 試驗長度:- 樣品之預處理:於溫度23℃、相對濕度50%下保持40小時 試驗模式:彎曲 頻率:1.6 Hz(10 rad/sec) 溫度範圍:25~60℃ 升溫速度:1.5℃/min 應變範圍:0.10% 初始負載:- 測定間隔:2 point/℃
圖1及圖2中示出實施例1及比較例1之拉伸模式及彎曲模式之儲存模數之圖。
[表面品質確認試驗] 經由含有丙烯酸系接著劑之雙面膠帶將研磨墊設置於研磨裝置之特定位置,於下述條件下對Cu膜基板實施研磨加工。 (研磨條件) 研磨機:F-REX300(荏原製作所公司製) 研磨盤:A188(3M公司製) 轉速:(壓盤)70 rpm,(頂環)71 rpm 研磨壓力:3.5 psi 研磨劑溫度:20℃ 研磨劑噴出量:200 ml/min 研磨劑:PLANERLITE7000(Fujimi Corporation公司製) 被研磨物:Cu膜基板 研磨時間:60秒 墊斷裂:35 N 10分鐘 調節:Ex-situ,35 N,4次掃描
對第11片至第51片上述研磨加工後之被研磨物,利用eDR5210(KLA-Tencor公司製)之ReviewSEM藉由目測而確認被研磨面之大於155 nm之點狀研磨損傷(微小劃痕),獲得平均值。基於劃痕之確認結果,評價表面品質。
[表1]
   實施例1 比較例1 實施例2 實施例3 實施例4 實施例5 實施例6
彎曲模式 儲存模數[Pa] E' B 30 2.93E+08 2.43E+08 4.17E+08 4.13E+08 3.53E+08 4.26E+08 2.63E+08
E' B 40 2.23E+08 1.53E+08 3.32E+08 3.39E+08 2.73E+08 3.2E+08 1.61E+08
E' B 50 1.72E+08 9.00E+07 2.63E+08 2.71E+08 2.12E+08 2.33E+08 1.02E+08
拉伸模式 儲存模數[Pa] E' T 40 2.54E+08 2.92E+08 3.81E+08 3.82E+08 3.15E+08 3.35E+08 1.66E+08
比(E' B30/E' B50) 1.70 2.70 1.58 1.52 1.67 1.83 2.57
比(E' B40/E' T40) 0.88 0.52 0.87 0.89 0.87 0.96 0.97
劃痕評價 4 9 5 3 4 3 3
[產業上之可利用性]
本發明之研磨墊用於研磨光學材料、半導體元件、硬碟用基板等,特別適宜用於研磨半導體晶圓上形成有氧化物層、銅等金屬層等之元件,具有產業上之可利用性。
圖1係表示實施例1中之動態黏彈性測定之結果之圖。 圖2係表示比較例1中之動態黏彈性測定之結果之圖。

Claims (7)

  1. 一種研磨墊,其具備聚胺基甲酸酯片材作為研磨層,且 該聚胺基甲酸酯片材之儲存模數E' B40相對於儲存模數E' T40之比(E' B40/E' T40)為0.60~1.60,上述儲存模數E' T40係於頻率1.6 Hz之拉伸模式條件下進行之動態黏彈性測定下的40℃下之儲存模數,上述儲存模數E' B40係於頻率1.6 Hz之彎曲模式條件下進行之動態黏彈性測定下的40℃下之儲存模數。
  2. 如請求項1之研磨墊,其中上述儲存模數E' B40為1.50×10 8~4.50×10 8Pa。
  3. 如請求項1或2之研磨墊,其中上述儲存模數E' T40為1.50×10 8~4.50×10 8Pa。
  4. 如請求項1至3中任一項之研磨墊,其中上述聚胺基甲酸酯片材之儲存模數E' B30相對於儲存模數E' B50之比(E' B30/E' B50)為1.00~2.60,上述儲存模數E' B50係於頻率1.6 Hz之彎曲模式條件下進行之動態黏彈性測定下的50℃下之儲存模數,上述儲存模數E' B30係於頻率1.6 Hz之彎曲模式條件下進行之動態黏彈性測定下的30℃下之儲存模數。
  5. 如請求項1至4中任一項之研磨墊,其中上述聚胺基甲酸酯片材包含聚胺基甲酸酯樹脂及分散於該聚胺基甲酸酯樹脂中之中空微粒子。
  6. 如請求項5之研磨墊,其中上述中空微粒子之平均粒徑為30 μm以下。
  7. 一種研磨加工物之製造方法,其具有於研磨漿料之存在下,使用如請求項1至6中任一項之研磨墊,對被研磨物進行研磨之研磨步驟。
TW110111117A 2021-03-26 2021-03-26 研磨墊及研磨加工物之製造方法 TW202237793A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110111117A TW202237793A (zh) 2021-03-26 2021-03-26 研磨墊及研磨加工物之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110111117A TW202237793A (zh) 2021-03-26 2021-03-26 研磨墊及研磨加工物之製造方法

Publications (1)

Publication Number Publication Date
TW202237793A true TW202237793A (zh) 2022-10-01

Family

ID=85460535

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110111117A TW202237793A (zh) 2021-03-26 2021-03-26 研磨墊及研磨加工物之製造方法

Country Status (1)

Country Link
TW (1) TW202237793A (zh)

Similar Documents

Publication Publication Date Title
TWI621506B (zh) 硏磨墊及其製造方法
JP5008927B2 (ja) 研磨パッド
TW200534357A (en) Polishing pad and method for manufacture of semiconductor device using the same
TWI767882B (zh) 研磨墊及其製造方法
TWI488712B (zh) Polishing pad and manufacturing method thereof
TWI806994B (zh) 研磨墊及其製造方法
WO2008026451A1 (en) Polishing pad
JP4786347B2 (ja) 研磨パッド
JP2017132012A (ja) 研磨パッドの製造方法
JP7438658B2 (ja) 研磨パッド及び研磨加工物の製造方法
CN112512747B (zh) 研磨垫及研磨加工物的制造方法
TW202304650A (zh) 研磨墊及研磨墊的製造方法
TW202237793A (zh) 研磨墊及研磨加工物之製造方法
CN111212705B (zh) 研磨垫及其制造方法
US20240149389A1 (en) Polishing pad and method for producing polished product
TWI828892B (zh) 研磨墊及研磨加工物之製造方法
JP7384608B2 (ja) 研磨パッド及び研磨加工物の製造方法
JP2023157918A (ja) 研磨パッド及び研磨加工物の製造方法
JP2024028398A (ja) 研磨パッド及び研磨加工物の製造方法
TW202402452A (zh) 研磨墊及研磨加工物之製造方法
TW202103849A (zh) 研磨墊