TW202236095A - 記憶體的控制方法 - Google Patents

記憶體的控制方法 Download PDF

Info

Publication number
TW202236095A
TW202236095A TW111120837A TW111120837A TW202236095A TW 202236095 A TW202236095 A TW 202236095A TW 111120837 A TW111120837 A TW 111120837A TW 111120837 A TW111120837 A TW 111120837A TW 202236095 A TW202236095 A TW 202236095A
Authority
TW
Taiwan
Prior art keywords
data
aforementioned
latch group
data latch
management information
Prior art date
Application number
TW111120837A
Other languages
English (en)
Other versions
TWI841977B (zh
Inventor
櫻田健次
武田奈穂美
白川政信
高田万里江
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202236095A publication Critical patent/TW202236095A/zh
Application granted granted Critical
Publication of TWI841977B publication Critical patent/TWI841977B/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5671Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge trapping in an insulator
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
    • G06F12/0246Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • G11C16/3459Circuits or methods to verify correct programming of nonvolatile memory cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7202Allocation control and policies
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/564Miscellaneous aspects
    • G11C2211/5642Multilevel memory with buffers, latches, registers at input or output
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)
  • Memory System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

實施形態,提供一種即使在不具有足夠存儲管理資訊的RAM區域之記憶體控制器中仍能以較小潛時(latency)讀出管理資訊之記憶體系統及記憶體控制器。 實施形態之記憶體系統,具有:非揮發性的記憶體單元陣列(110);及控制器(200),控制資料的讀出及寫入;及資料閂鎖群XDL,被用於在控制器(200)與記憶體單元陣列(110)之間做資料的輸出入;及資料閂鎖群ADL,其保持著的資料,當資料藉由控制器(200)而從記憶體單元陣列(110)被讀出時,會被維持;控制器(200),當執行從記憶體單元陣列(110)的資料的讀出處理時或執行前,將用於資料的讀出之管理資訊MI存儲於資料閂鎖群ADL。

Description

記憶體的控制方法
本發明之實施形態有關記憶體的控制方法。 [關連申請案] 本申請案以日本發明專利申請案2020-96428號(申請日:2020年6月2日)為基礎申請案,並享受優先權。本申請案參照該基礎申請案,因而包含基礎申請案的所有內容。
非揮發性記憶體中,於資料的讀出等時所使用之管理資訊,被存儲於非揮發性記憶體的一部分的存儲區域,而被複製至記憶體控制器的管理的RAM區域而被使用。管理資訊被存儲於RAM區域,故記憶體控制器能夠高速地讀出管理資訊而使用。 若管理資訊的資料尺寸變大,則必需有大資料尺寸的RAM區域,但有時無法在記憶體控制器設置足夠尺寸的RAM區域。
實施形態,提供一種即使在不具有足夠存儲管理資訊的RAM區域之記憶體控制器中仍能以較小潛時(latency)讀出管理資訊之記憶體系統及記憶體控制器。 實施形態之記憶體系統,具有:非揮發性的記憶體,具有記憶區域;及控制器,以前述分頁單位控制前述資料的讀出及寫入;及第1資料閂鎖群,被用於在前述控制器與前述記憶體之間做前述資料的輸出入;及第2資料閂鎖群,其保持著的資料,當前述資料藉由前述控制器而從前述記憶體被讀出時,會被維持;前述控制器,當執行從前述記憶體的前述資料的讀出處理時或執行前,將用於前述資料的讀出之管理資訊存儲於前述第2資料閂鎖群。
以下參照圖面說明實施形態。 (第1實施形態) 說明第1實施形態之記憶體系統。以下,作為半導體記憶裝置舉出具備NAND型快閃記憶體的記憶體系統為例而說明。 1.構成 [記憶體系統的全體構成] 首先,利用圖1說明本實施形態之記憶體系統的大致的全體構成。 圖1為有關本實施形態之用來說明記憶體系統的構成的方塊圖。如圖示般,記憶體系統1具備NAND型快閃記憶體100與記憶體控制器(以下亦簡稱控制器)200。NAND型快閃記憶體100與控制器200,例如為形成於1片基板上的半導體裝置,該半導體裝置例如被使用於SD卡這類的記憶卡、或SSD(固態硬碟)等。 非揮發性記憶體亦即NAND型快閃記憶體100具備複數個記憶體單元,非揮發地記憶資料。控制器200,藉由NAND匯流排而連接至NAND型快閃記憶體100,藉由主機匯流排而連接至主機機器300。又,控制器200係一記憶體控制器,控制NAND型快閃記憶體100,此外回應從主機機器300接收到的要求而存取NAND型快閃記憶體100。主機機器300例如為數位相機或個人電腦等,主機匯流排例如為遵照SD介面的匯流排。NAND匯流排,為進行遵照NAND介面之訊號的收發訊的匯流排。 透過NAND介面(I/F)電路250,各種訊號在NAND型快閃記憶體100與控制器200間被收發訊。晶片賦能訊號CEn、指令閂鎖賦能訊號CLE、位址閂鎖賦能訊號ALE、寫入賦能訊號WEn、及讀取賦能訊號REn,從控制器200被供給到NAND型快閃記憶體100。就緒/忙碌訊號RBn,從NAND型快閃記憶體100被供給到控制器200。輸出入訊號I/O,從控制器200到NAND型快閃記憶體100間被收發訊。 晶片賦能訊號CEn,為用來將NAND型快閃記憶體100設為賦能(enable)的訊號,在low位準被落實(asserted)。指令閂鎖賦能訊號CLE及位址閂鎖賦能訊號ALE,為對NAND型快閃記憶體100通知輸出入訊號I/O分別是指令及位址的訊號。寫入賦能訊號WEn,在low位準被落實,為對NAND型快閃記憶體100通知將輸出入訊號I/O寫入NAND型快閃記憶體100的訊號。讀取賦能訊號REn,亦在low位準被落實,為用來讓來自NAND型快閃記憶體100的讀出資料輸出至輸出入訊號I/O的訊號。就緒/忙碌訊號/RBn,為示意NAND型快閃記憶體100是就緒狀態(能夠接收來自控制器200的命令的狀態)、還是忙碌狀態(無法接收來自控制器200的命令的狀態)之訊號,low位準表示忙碌狀態。輸出入訊號I/O例如為8位元的訊號。又,輸出入訊號I/O為在NAND型快閃記憶體100與控制器200之間被收發訊的資料的實體,為指令、位址、寫入資料、及讀出資料等。 [控制器的構成] 接下來說明控制器200的構成的詳細。如圖1所示,控制器200係一電路,具備主機介面(I/F)電路210、內建記憶體亦即隨機存取記憶體(以下稱RAM)220、具有中央處理裝置(CPU)之處理器230、緩衝記憶體240、NAND介面電路250、及ECC(Error Checking and Correcting;錯誤檢查和訂正)電路260。 主機介面電路210,透過主機匯流排與主機機器300連接,將從主機機器300接收到的要求及資料分別轉送至處理器230及緩衝記憶體240。此外,回應處理器230的指令,將緩衝記憶體240內的資料轉送給主機機器300。 RAM220,例如為DRAM或SRAM等的半導體記憶體,被使用作為處理器230的作業區域。又,RAM220保持用來管理NAND型快閃記憶體100的韌體、或管理資訊MI。管理資訊MI,為後述的查找表(LUT)、位移表格資訊(TBL)等。位移表格資訊TBL,包含位移資訊。位移資訊,為當控制器200執行資料的讀出處理時,用來將資料的讀出位準位移的資訊。 處理器230,控制控制器200全體的動作。例如處理器230,當從主機機器300接收到資料要求時,回應其而對NAND介面電路250發出讀出指令。當接收到來自主機機器300的資料寫入要求及資料刪除要求時,處理器230亦將和接收到的要求相對應的指令同樣地對NAND介面電路250發出。此外,處理器230,執行用來管理NAND型快閃記憶體100的各式各樣的處理,如耗損平均(wear leveling)等。 緩衝記憶體240,暫時性地保持寫入資料或讀出資料。 NAND介面電路250,透過NAND匯流排與NAND型快閃記憶體100連接,掌管與NAND型快閃記憶體100的通訊。又,NAND介面電路250基於從處理器230接收到的指令,將包含指令、資料等的種種訊號發送給NAND型快閃記憶體100,此外從NAND型快閃記憶體100接收各種訊號及資料。 NAND介面電路250,基於從處理器230接收到的指令,將晶片賦能訊號CEn、指令閂鎖賦能訊號CLE、位址閂鎖賦能訊號ALE、寫入賦能訊號WEn、及讀取賦能訊號REn輸出給NAND型快閃記憶體100。此外,於資料的寫入時,NAND介面電路250將藉由處理器230而被發出的寫入指令、及緩衝記憶體240內的寫入資料轉送給NAND型快閃記憶體100作為輸出入訊號I/O。又,於資料的讀出時,NAND介面電路250將藉由處理器230而被發出的讀出指令轉送給NAND型快閃記憶體100作為輸出入訊號I/O,又接收從NAND型快閃記憶體100被讀出的資料作為輸出入訊號I/O,而將其轉送給緩衝記憶體240。 ECC電路260,進行有關NAND型快閃記憶體100中記憶的資料之錯誤檢測及錯誤訂正處理。亦即,ECC電路260於資料的寫入時生成錯誤訂正符號,將其賦予至寫入資料,於資料的讀出時一面做錯誤訂正一面將資料解碼。 [NAND型快閃記憶體的構成] 接下來說明NAND型快閃記憶體100的構成。如圖1所示,NAND型快閃記憶體100具備記憶體單元陣列110、列解碼器120、驅動器電路130、行解碼器140、位址暫存器150、指令暫存器160、及定序器170。 記憶體單元陣列110,具備包含和列及行建立對應的複數個非揮發性的記憶體單元之複數個區塊BLK。圖1中作為一例圖示有4個區塊BLK0~BLK3。又,記憶體單元陣列110非揮發地記憶從控制器200被給予的資料。 列解碼器120,基於位址暫存器150內的區塊位址BA而選擇區塊BLK0~BLK3的其中一者,又選擇已選擇的區塊BLK中的字元線WL。 驅動器電路130,基於位址暫存器150內的分頁位址PA,對於被選擇的區塊BLK,透過列解碼器120供給電壓。 行解碼器140,包含複數個資料閂鎖電路及複數個感測放大器。各感測放大器,於資料的讀出時感測從記憶體單元陣列110被讀出的資料,而進行必要的演算。又,行解碼器140透過後述的資料閂鎖電路XDL將此資料DAT輸出至控制器200。行解碼器140,於資料的寫入時,於資料閂鎖電路XDL接受從控制器200接收到的寫入資料DAT後,執行對於記憶體單元陣列110的寫入動作。 位址暫存器150,保持從控制器200接收到的位址ADD。此位址ADD中,包含前述的區塊位址BA與分頁位址PA。指令暫存器160,保持從控制器200接收到的指令CMD。 定序器170,基於指令暫存器160中保持的指令CMD,控制NAND型快閃記憶體100全體的動作。 接著,利用圖2說明上述區塊BLK的構成。圖2為有關本實施形態之用來說明記憶體單元陣列的構成的電路圖。如圖示般,1個區塊BLK例如包含4個串單元SU(SU0~ SU3)。此外,各個串單元SU包含複數個NAND串6。 NAND串6的各者,例如包含8個記憶體單元電晶體MT (MT0~MT7)及2個選擇電晶體ST1、ST2。各記憶體單元電晶體MT,具備控制閘極與電荷蓄積層,非揮發地保持資料。又,複數個(例如8個)記憶體單元電晶體MT,在選擇電晶體ST1的源極與選擇電晶體ST2的汲極之間被串聯連接。 串單元SU0~SU3的各者中的選擇電晶體ST1的閘極,各自連接至選擇閘極線SGD0~SGD3。相對於此,串單元SU0~SU3的各者中的選擇電晶體ST2的閘極,例如共通連接至選擇閘極線SGS。當然,串單元SU0~SU3的各者中的選擇電晶體ST2的閘極,亦可依每一串單元而連接至相異的選擇閘極線SGS0~SGS3。此外,位於同一區塊BLK內的記憶體單元電晶體MT0~MT7的控制閘極各自共通連接至字元線WL0~WL7。 此外,於記憶體單元陣列110內位於同一列的複數個NAND串6的選擇電晶體ST1的汲極,共通連接至位元線BL (BL0~BL(K-1),惟K為2以上的自然數)。亦即,位元線BL在複數個區塊BLK間共通地連接複數個NAND串6。又,複數個選擇電晶體ST2的源極,共通地連接至源極線SL。 也就是說,各串單元SU包含複數個連接至彼此相異的複數個位元線BL,且連接至同一選擇閘極線SGD的複數個NAND串6。此外,各區塊BLK包含複數個將各字元線WL設為共通的複數個串單元SU。又,記憶體單元陣列110為各位元線BL被共通地連接之複數個區塊BLK的集合體。 圖3為1個區塊的一部分區域的截面圖。如圖示般,在p型井區域10上形成有複數個NAND串6。亦即,在p型井區域10上,依序層積有作用成為選擇閘極線SGS的例如4層的配線層11、作用成為字元線WL0~WL7的8層的配線層12、及作用成為選擇閘極線SGD的例如4層的配線層13。在被層積的配線層間,形成有未圖示的絕緣膜。 又,形成有複數個貫通該些配線層13、12、11而到達p型井區域10之柱狀的導電體14。在各導電體14的側面,依序形成有閘極絕緣膜15、電荷蓄積層(絕緣膜或導電膜)16、及區塊絕緣膜17,藉由它們來形成複數個記憶體單元電晶體MT、以及選擇電晶體ST1及ST2。各導電體14,作用成為NAND串6的電流路徑,而成為供各電晶體的通道形成之區域。又,各導電體14的上端連接至作用成為位元線BL的金屬配線層18。 在p型井區域10的表面區域內,形成有n +型雜質擴散層19。在n +型雜質擴散層19上形成接點插栓20,接點插栓20連接至作用成為源極線SL的金屬配線層21。又,在p型井區域10的表面區域內,形成有p +型雜質擴散層22。在p +型雜質擴散層22上形成接點插栓23,接點插栓23連接至作用成為井配線CPWELL的金屬配線層24。井配線CPWELL,為用來透過p型井區域10對導電體14施加電位的配線。 以上的構成,朝穿入記載圖3的紙面的方向排列有複數,藉由朝穿入方向並排的複數個NAND串6的集合而形成串單元SU。 本例中,1個記憶體單元電晶體MT例如可保持3位元資料。亦即,NAND型快閃記憶體100,為所謂的TLC (Triple Level Cell;三級單元)方式的半導體記憶裝置。將此3位元資料,從下位位元開始分別稱呼為下位(Lower)位元、中位(Middle)位元、及上位(Upper)位元。又,將連接至一個串單元中的同一字元線WL的複數個記憶體單元電晶體MT所保持的下位位元的集合稱呼為下位分頁、中位位元的集合稱呼為中位分頁、上位位元的集合稱呼為上位分頁。連接至一個串中的一個字元線之複數個記憶體單元電晶體MT,構成保持下位、中位及上位位元的一個分頁單元。也就是說,各分頁單元中,被分配有3分頁。故,當為具有4個串單元SU且各串單元SU包含8條字元線WL之區塊BLK的情形下,各區塊BLK會具有96分頁份的容量。或者換句話說,所謂“分頁”,亦能夠定義成藉由連接至一個串單元中的同一字元線WL的複數個記憶體單元電晶體MT而形成之記憶體空間的一部分。資料的寫入是以分頁單元單位進行,資料的讀出是依每一此分頁而進行(將此讀出方法稱為page-by-page reading)。 此外,資料的刪除能夠以區塊BLK單位、或比區塊BLK還小的單位進行。有關刪除方法,例如記載於名為“NONVOLATILE SEMICONDUCTOR MEMORY DEVICE” 之2011年9月18日申請的美國專利申請案13/235,389號。此外,記載於名為“NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE”之2010年1月27日申請的美國專利申請案12/694,690號。又,記載於名為“NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND DATA ERASE METHOD THEREOF”之2012年5月30日申請的美國專利申請案13/483,610號。該些專利申請案,其全體藉由參照而被援用於本案說明書中。 又,針對記憶體單元陣列110的構成亦可為其他構成。亦即,針對記憶體單元陣列110的構成,例如記載於名為“THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY” 之2009年3月19日申請的美國專利申請案12/407,403號。此外,記載於名為“THREE DIMENSIONAL STACKED NONVOLATILE SEMICONDUCTOR MEMORY”之2009年3月18日申請的美國專利申請案12/406,524號、名為“NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE AND METHOD OF MANUFACTURING THE SAME” 之201年3月25日申請的美國專利申請案12/679,991號、及名為“SEMICONDUCTOR MEMORY AND METHOD FOR MANUFACTURING THE SAME” 之2009年3月23日申請的美國專利申請案12/532,030號。該些專利申請案,其全體藉由參照而被援用於本案說明書中。 如後述般,記憶體單元陣列110的一部分的存儲區域(後述的管理資訊存儲區域MIA)中,存儲後述的管理資訊MI。 [行解碼器的構成] 接著,利用圖4說明行解碼器140的構成。圖4為有關第1實施形態之行解碼器140與串單元SU0的電路圖。 如圖示般,行解碼器140具備各自依每一位元線BL而設置之複數個感測單元SAU(SAU0~SAU(K-1))。 複數個感測單元SAU的各者,具備感測放大器SA、演算部OP、以及4個資料閂鎖電路(以下亦簡稱資料閂鎖)ADL、BDL、CDL及XDL。各感測放大器SA,又包含資料閂鎖SDL。 各感測放大器SA,感測被讀出至相對應的位元線BL的資料,此外根據寫入資料而對位元線BL施加電壓。亦即,感測放大器SA為直接地控制位元線BL的模組。又,在感測放大器SA,於讀出時例如藉由定序器170而被給予閃控(strobe)訊號STB。感測放大器SA,在其內部包含節點SEN及資料閂鎖SDL(圖4中未圖示)。節點SEN,其電位會因為連接至選擇字元線WL的記憶體單元電晶體MT成為啟動狀態或關閉狀態而變動。又,根據閃控訊號STB被落實的時間點之節點SEN的電位,來確定記憶體單元電晶體MT為已啟動或已關閉,其結果作為“0”或“1”資料而被保持於內部的資料閂鎖(資料閂鎖SDL)。又,被保持於內部的資料閂鎖SDL的資料,更被複製至資料閂鎖ADL、BDL、CDL、及XDL的其中一者。 資料閂鎖ADL、BDL、及CDL,暫時性地保持寫入資料。亦即,資料閂鎖ADL、BDL、CDL,被用於控制器200所做的往NAND型快閃記憶體100之資料的寫入。演算部OP,針對感測放大器SA,以及資料閂鎖ADL、BDL、CDL、及XDL中保持的資料,進行邏輯非(NOT)演算、邏輯或(OR)演算、邏輯與(AND)演算、互斥或(XOR)演算、反互斥或(XNOR)演算等種種邏輯演算。例如演算部OP,進行針對從感測放大器SA內部的複數個資料閂鎖SDL複製的資料之演算,藉此生成分頁資料。 該些感測放大器SA、資料閂鎖ADL、BDL、CDL、及演算部OP,彼此藉由匯流排而連接以便可將資料收發訊。而此匯流排更連接至資料閂鎖XDL。 行解碼器140中的資料的輸出入,透過複數個資料閂鎖XDL而進行。亦即,從控制器200接收到的資料,透過複數個資料閂鎖XDL而被轉送至複數個資料閂鎖ADL、BDL、及CDL,或複數個感測放大器SA。此外,複數個資料閂鎖ADL、BDL、及CDL,或複數個感測放大器SA的資料,透過複數個資料閂鎖XDL被發送給控制器200。又,複數個資料閂鎖XDL作用成為NAND型快閃記憶體100的快取記憶體。是故,即使複數個資料閂鎖ADL、BDL、及CDL為使用中,只要複數個資料閂鎖XDL空出,NAND型快閃記憶體100便能成為就緒狀態。 資料的讀出及寫入,以分頁單位進行。行解碼器140,具有各自存儲1分頁份的資料之複數個資料閂鎖ADL、BDL、CDL、XDL、SDL。 以下,如圖4所示,將存儲1分頁份的資料之複數個資料閂鎖XDL稱為資料閂鎖群XDL,將存儲1分頁份的資料之複數個資料閂鎖ADL稱為資料閂鎖群ADL,將存儲1分頁份的資料之複數個資料閂鎖BDL稱為資料閂鎖群BDL,將存儲1分頁份的資料之複數個資料閂鎖CDL稱為資料閂鎖群CDL,將存儲1分頁份的資料之複數個資料閂鎖SDL稱為資料閂鎖群SDL。亦即,行解碼器140具有各自存儲1分頁份的資料之資料閂鎖群XDL、資料閂鎖群ADL、資料閂鎖群BDL、資料閂鎖群CDL及資料閂鎖群SDL。 故,資料閂鎖群XDL,構成在控制器200與NAND型快閃記憶體100之間用於資料的輸出入之複數個資料閂鎖電路。此外,各資料閂鎖群ADL、BDL、CDL,是於資料藉由控制器200被寫入到NAND型快閃記憶體100時使用,於資料的讀出時不使用。各資料閂鎖群ADL、BDL、CDL中,被保持的資料是於控制器200從NAND型快閃記憶體100讀出資料時被維持。 [記憶體單元電晶體的保持資料與閾值電壓] 利用圖5說明記憶體單元電晶體MT的保持資料、閾值電壓、及各資料的讀出位準(亦即讀出電壓)。圖5為示意各記憶體單元電晶體MT的可取得資料、閾值電壓分布、及讀出時使用的電壓的圖。 如前述般,記憶體單元電晶體MT根據閾值電壓能夠呈8個狀態。將此8個狀態從閾值電壓低者依序稱為“Er”狀態、“A”狀態、“B”狀態、“C”狀態、・・・“G”狀態。 “Er”狀態的記憶體單元電晶體MT的閾值電壓,為未滿電壓VA,相當於資料的刪除狀態。“A”狀態的記憶體單元電晶體MT的閾值電壓,為電壓VA以上且未滿電壓VB (>VA)。“B”狀態的記憶體單元電晶體MT的閾值電壓,為電壓VB以上且未滿電壓VC(>VB)。“C”狀態的記憶體單元電晶體MT的閾值電壓,為電壓VC以上且未滿電壓VD (>VC)。“D”狀態的記憶體單元電晶體MT的閾值電壓,為電壓VD以上且未滿電壓VE(>VD)。“E”狀態的記憶體單元電晶體MT的閾值電壓,為電壓VE以上且未滿電壓VF (>VE)。“F”狀態的記憶體單元電晶體MT的閾值電壓,為電壓VF以上且未滿電壓VG(>VF)。“G”狀態的記憶體單元電晶體MT的閾值電壓,為電壓VG以上且未滿電壓VREAD。這樣分布的8個狀態當中,“G”狀態為閾值電壓最高的狀態。另,電壓VREAD,為讀出動作時施加於非選擇字元線WL的電壓,為和保持資料無關而令記憶體單元電晶體MT啟動的電壓。電壓VA~VG,亦可總稱為電壓VCGRV。 此外,上述閾值電壓分布,是藉由寫入由前述的下位位元、中位位元、及上位位元所組成的3位元(3分頁)資料而實現。亦即,上述從“Er”狀態至“G”狀態,與下位位元、中位位元、及上位位元之關係如下。 “Er”狀態 :“111”(依“上位/中位/下位”的順序表記) “A”狀態 :“110” “B”狀態 :“100” “C”狀態 :“000” “D”狀態 :“010” “E”狀態 :“011” “F”狀態 :“001” “G”狀態 :“101” 像這樣,閾值電壓分布中在和相鄰2者的狀態相對應之資料間,僅3位元當中的1位元會變化。 是故,當讀出下位位元時,只要使用相當於下位位元的值(“0”或“1”)變化的交界之電壓即可,中位位元及上位位元亦同樣使用像這樣相當於交界之電壓。 亦即,如圖5所示,下位分頁讀出,係使用區別“Er”狀態與“A”狀態之電壓VA、及區別“D”狀態與“E”狀態之電壓VE來作為讀出位準。將使用了電壓VA及VE之讀出動作,分別稱為讀出動作AR及ER。 讀出動作AR,係判定記憶體單元電晶體MT的閾值電壓是否未滿電壓VA。也就是說,藉由讀出動作AR,來辨明刪除狀態的記憶體單元電晶體MT。讀出動作ER,係判定記憶體單元電晶體MT的閾值電壓是否未滿電壓VE。 中位分頁讀出,係使用區別“A”狀態與“B”狀態之電壓VB、區別“C”狀態與“D”狀態之電壓VD、及“E”狀態與“F”狀態之間的電壓VF來作為讀出位準。將使用了電壓VB、VD、及VF之讀出動作,分別稱為讀出動作BR、DR、及FR。 讀出動作BR,係判定記憶體單元電晶體MT的閾值電壓是否未滿電壓VB。讀出動作DR,係判定記憶體單元電晶體MT的閾值電壓是否未滿電壓VD。讀出動作FR,係判定記憶體單元電晶體MT的閾值電壓是否未滿電壓VF。 又,上位分頁讀出,係使用區別“B”狀態與“C”狀態之電壓VC、及區別“F”狀態與“G”狀態之電壓VG來作為讀出位準。將使用了電壓VC及VG之讀出動作,分別稱為讀出動作CR及GR。 讀出動作CR,係判定記憶體單元電晶體MT的閾值電壓是否未滿電壓VC。讀出動作GR,係判定記憶體單元電晶體MT的閾值電壓是否未滿電壓VG。也就是說,藉由讀出動作GR,來辨明“G”狀態的記憶體單元電晶體MT。 [管理資訊] 記憶體系統1中,會使用管理資訊MI。管理資訊MI,為後述的位移表格資訊TBL、歷史資料HD、查找表LUT等。管理資訊MI,被記憶於NAND型快閃記憶體100。管理資訊MI,於電源啟動時,從NAND型快閃記憶體100被複製至控制器200的RAM220而被使用。如後述般,管理資訊MI的一部分(本實施形態中為位移資訊),被存儲於NAND型快閃記憶體100中的至少1個資料閂鎖群。 此外,管理資訊MI,在每一記憶體單元電晶體MT寫入1位元的資料之寫入模式(以下稱SLC模式)下,被寫入至記憶體單元陣列110的規定的存儲區域(以下稱管理資訊存儲區域)MIA。如上述般,本實施形態中,從主機被寫入的使用者資料,係每一記憶體單元電晶體MT為3位元的資料,但管理資訊MI係每一記憶體單元電晶體MT為1位元的資料,於SLC模式下被寫入至記憶體單元陣列110的管理資訊存儲區域MIA。 像以上這樣,NAND型快閃記憶體100,具有非揮發性的記憶體亦即記憶體單元陣列110。記憶體單元陣列110,具有複數個實體區塊,複數個實體區塊的各者具有可以分頁單位存取的記憶區域。 又,控制器200,對於記憶體單元陣列110的複數個實體區塊以分頁單位進行資料的讀出控制,而以分頁單元單位進行資料的寫入控制。 2.動作 接下來,說明記憶體系統的寫入動作及讀出動作。 如上述般,控制器200,根據來自主機機器300的要求,遵照規定的序列(sequence)對NAND型快閃記憶體100輸出各種訊號及資料,藉此進行從NAND型快閃記憶體100之資料讀出及對NAND型快閃記憶體100之資料寫入。 [資料寫入時的動作] 圖6為示意資料的寫入時的指令序列的圖。圖7及圖8為用來說明伴隨資料的寫入時的指令序列的執行之5個資料閂鎖群中的資料的存儲狀況的變化的圖。圖7及圖8,對每一資料閂鎖群示意和被寫入的資料數K相應之資料的存儲狀況。故,圖7及圖8的各帶狀的框的橫向寬度,示意和資料數K相應之長度。K,對應於對NAND型快閃記憶體100之資料的一次的讀出動作及一次的寫入動作中的資料量。於後述的圖10等中同樣地,各帶狀的框的橫向寬度,示意和資料數K相應之長度。 這裡,資料的寫入,係下位位元、中位位元、及上位位元這3分頁份的資料被寫入至資料閂鎖群ADL、BDL及CDL之後,藉由定序器170而執行用於對記憶體單元陣列110之資料寫入的編寫(program)動作。 各指令,藉由8位元的輸出入訊號I/O而從控制器200被供給到NAND型快閃記憶體100。編寫動作,依每一分頁單元進行。這裡,依下位位元、中位位元、上位位元的順序,用於寫入之指令序列的指令等從控制器200被輸出給NAND型快閃記憶體100。各指令序列中,控制器200,以最初的2個指令循環輸出2個指令,再以5個位址循環輸出5個位址,以其後的複數個循環輸出複數個資料,以其後的1循環輸出1個指令。控制器200,依圖6的指令序列SQ1、SQ2、SQ3的順序將指令、位址及資料輸出給NAND型快閃記憶體100。 如指令序列SQ1所示,控制器200,首先將進行對下位位元的預約寫入之指令“c11”輸出至輸出入訊號I/O。當指令“c11”被輸出至輸出入訊號I/O時,如圖7的LS1所示般,在各資料閂鎖群尚未存儲任何資料。圖7中,斜線示意尚未存儲任何資料的狀態、或是資料為不確定的狀態。 延續指令“c11”,控制器200將指令“c21”輸出至輸出入訊號I/O。藉由指令“c21”,資料閂鎖群XDL的所有的資料閂鎖XDL被重置(reset)。這裡,所謂重置,係資料閂鎖群XDL的各資料閂鎖XDL的值成為「1」。藉由指令“c21”,如圖7的LS2所示般,資料閂鎖群XDL的資料被重置。如圖7中以空白所示般,所有的資料閂鎖XDL的資料成為呈「1」的狀態。 控制器200,延續指令“c21”,將5個位址輸出至輸出入訊號I/O。最初的2個位址“CAL1”及“CAL2”為行位址,其餘的3個位址“RAL1”、“RAL2”及“RAL3”為列位址。 延續5個位址,控制器200將複數個資料“DL0”、“DL1”、・・・、“DL(K-1)”輸出至輸出入訊號I/O。如上述般,K示意資料數。輸出入訊號I/O的各資料,被存儲於和指定的位址相對應之行解碼器140的感測單元SAU的資料閂鎖XDL。 圖7的LS3,以密集斜線示意複數個從資料“DL0”至“DL(K-1)”為止的資料往資料閂鎖群XDL的途中的存儲狀態。圖7的LS4,示意複數個從資料“DL0”至“DL(K-1)”的所有的資料已被存儲於資料閂鎖群XDL的狀態。 控制器200,延續複數個資料,將指令“c22”輸出至輸出入訊號I/O。指令“c22”,為令資料閂鎖群XDL的資料複製至另一資料閂鎖群的指令。 藉由指令“c11”與指令“c22”的組合,資料閂鎖群XDL的資料會被複製到資料閂鎖群ADL。定序器170,基於指令“c11”與“c22”,進行將資料閂鎖群XDL的資料複製到資料閂鎖群ADL的處理。 圖6的指令序列SQ1中,長的白色箭頭的時間點示意從資料閂鎖群XDL往資料閂鎖群ADL之資料複製的開始時間點,短的箭頭的時間點示意從資料閂鎖群XDL往資料閂鎖群ADL之資料複製的完成時間點。在從資料閂鎖群XDL往資料閂鎖群ADL之資料複製的期間,就緒/忙碌訊號RBn成為low。圖7的LS5,示意資料閂鎖群XDL的所有的資料已被複製至資料閂鎖群ADL的狀態。 藉由以上,圖6中的下位位元的預約寫入指令序列SQ1結束,接下來執行中位位元的預約寫入指令序列SQ2。 指令序列SQ2中,如同指令序列SQ1般,延續2個指令”c12”與指令“c21”而將5個位址輸出至輸出入訊號I/O。延續5個位址而指令“c22”被輸出至輸出入訊號I/O。 藉由指令“c12”與指令“c22”的組合,資料閂鎖群XDL的資料會被複製到資料閂鎖群BDL。定序器170,基於指令“c12”與“c22”,進行將資料閂鎖群XDL的資料複製轉送到資料閂鎖群BDL的處理。 圖6的指令序列SQ2中,長的白色箭頭的時間點示意從資料閂鎖群XDL往資料閂鎖群BDL之資料複製轉送的開始時間點,短的箭頭的時間點示意從資料閂鎖群XDL往資料閂鎖群BDL之資料複製轉送的完成時間點。在從資料閂鎖群XDL往資料閂鎖群BDL之資料複製的期間,就緒/忙碌訊號RBn成為low。 指令序列SQ2之後,執行用於上位位元的預約寫入、及下位/中位/上位位元的寫入執行之指令序列SQ3。 指令序列SQ3中,如同指令序列SQ1般,延續2個指令”c13”與指令“c21”而將5個位址輸出至輸出入訊號I/O。延續5個位址而指令“c23”被輸出至輸出入訊號I/O。指令“c23”,為令資料閂鎖群XDL的資料複製到另一資料閂鎖群,其後執行寫入動作的指令。 藉由指令“c13”與指令“c23”的組合,資料閂鎖群XDL的資料會被複製到資料閂鎖群CDL。定序器170,基於指令“c13”與“c23”,進行將資料閂鎖群XDL的資料複製轉送到資料閂鎖群CDL的處理。 圖6的指令序列SQ3中,長的白色箭頭的時間點示意從資料閂鎖群XDL往資料閂鎖群CDL之資料複製轉送的開始時間點,短的箭頭ts的時間點示意從資料閂鎖群XDL往資料閂鎖群CDL之資料複製轉送的完成時間點。在從資料閂鎖群XDL往資料閂鎖群CDL之資料複製的期間,就緒/忙碌訊號RBn成為low。 另,圖6中,指令“c12”及“c13”分別為進行對於中位位元及上位位元的預約寫入的指令。位址“CAM1”與“CAM2”為中位位元的行位址,位址“CAU1”與“CAU2”為上位位元的行位址。位址“RAM1”、“RAM2”及“RAM3”為中位位元的列位址,位址“RAU1”、“RAU2”及“RAU3”為上位位元的列位址。資料“DM0”、“DM1”、・・・、“DM(K-1)”為中位位元的資料,資料“DU0”、“DU1”、・・・、“DU(K-1)”為上位位元的資料。 圖7的LS6,示意藉由指令序列SQ2中的指令c21,而所有的資料閂鎖XDL被重置的狀態。圖8的LS7,以密集斜線示意複數個從資料“DM0”至“DM(K-1)”為止的資料往資料閂鎖群XDL的途中的存儲狀態。圖8的LS8,示意複數個從資料“DM0”至“DM(K-1)”的所有的資料已被存儲於相對應之資料閂鎖群XDL的狀態。 一旦指令序列SQ2中的指令“c22”被輸出,則資料閂鎖群XDL的資料被複製到資料閂鎖群BDL。定序器170,基於指令“c12”與“c22”,進行將資料閂鎖群XDL的資料複製到資料閂鎖群BDL的處理。 指令序列SQ3中,延續資料的預約寫入的指令“c13”及資料閂鎖群XDL的重置的指令“c21”,一旦資料“DU0”、“DU1”、・・・、“DU(K-1)”的輸出結束,則指令“c23”被輸出給NAND型快閃記憶體100。 一旦指令序列SQ3中的指令“c23”被輸出,則資料閂鎖群XDL的資料被複製轉送到資料閂鎖群CDL。定序器170,基於指令“c13”與“c23”,進行了將資料閂鎖群XDL的資料複製轉送到資料閂鎖群CDL的處理之後,以分頁單元單位開始資料的寫入,亦即編寫(program)動作。定序器170,做了所有的資料閂鎖XDL的重置之後,開始編寫動作。亦即,其後,實施使用了3個資料閂鎖ADL/BDL/CDL的3分頁份的資料之對記憶體單元陣列110的寫入處理。 圖8的LS9,示意編寫動作開始前一刻的資料閂鎖群ADL、BDL、CDL中存儲有寫入資料的狀態。圖8的LS9中,以密集橫線示意複數個從資料“DU0”至“DU(K-1)”的所有的資料已被存儲於相對應之資料閂鎖群CDL的狀態。 圖8的LS10,示意編寫動作後,各資料閂鎖群成為「1」的狀態。圖6中,編寫動作於時間點ts開始,於時間點te結束。 從資料閂鎖群XDL往資料閂鎖群CDL之資料複製開始到編寫動作結束為止,就緒/忙碌訊號RBn成為low。 [資料讀出時的動作] 首先,說明基於事先設定好的閾值電壓之資料讀出(以下亦稱正常讀取)時的基本的動作。 1)正常讀取的基本的動作 圖9為示意資料的讀出時的基本的指令序列的圖。圖10為用來說明伴隨指令序列的執行之5個資料閂鎖中的資料的存儲狀況的變化的圖。 如指令序列SQ4所示,控制器200,將進行下位、中位及上位位元的其中一者的預約讀出之指令“c11”、“c12”或是“c13”輸出至輸出入訊號I/O。 圖9中,示意延續指令“c13”,控制器200將指令“c31”輸出至輸出入訊號I/O。控制器200,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。 延續5個位址,控制器200將指令“c32”輸出至輸出入訊號I/O。指令“c32”,為指示執行資料讀出的指令。故,定序器170執行往指定的位址之資料讀出。各資料的讀出結果,首先被存儲於各感測放大器SA。 當指令“c32”被輸出至輸出入訊號I/O時,如圖10的LS11所示般,在各資料閂鎖群尚未存儲任何資料。其後,定序器170讀出資料,如圖10的LS12中密集斜線所示般,資料被存儲於資料閂鎖群SDL。 NAND型快閃記憶體100,接收指令“c32”之後執行讀出動作,因此就緒/忙碌訊號RBn成為low(以白色長箭頭示意)。 所有的資料已被存儲於資料閂鎖群SDL之後,所有的資料被複製至資料閂鎖群XDL。一旦所有的資料被複製至資料閂鎖群XDL,則就緒/忙碌訊號RBn成為high(以白色短箭頭示意)。圖10的LS13,示意資料閂鎖群SDL的資料已被複製至資料閂鎖群XDL的狀態。 其後,控制器200從NAND型快閃記憶體100的資料閂鎖群XDL讀出資料。 依以上方式,控制器200能夠從NAND型快閃記憶體100讀出資料。 2)位移讀取的基本的動作 於資料讀出時,可能因種種因素而記憶體單元電晶體MT的閾值電壓變動,而在按照上述的和事先設定好的閾值電壓相對應之讀出位準的資料讀出亦即正常讀取下無法正確地讀出資料。這樣的情形下,控制器200會變更讀出位準而進行資料的讀出動作。亦即,對讀出位準設定一使和正常讀取下的閾值電壓(例如上述的電壓VB)相對應之讀出位準位移恰好某值(以下亦稱位移量)而成之電壓(例如電壓VBs),而控制器200進行資料的讀出動作。以下,將這樣的讀出動作稱為位移讀取(shift read)。 因此,控制器200的RAM220中,存儲著用來決定位移量的複數個(此處為3個)位移表格,作為位移表格資訊TBL。各位移表格,為管理資訊MI的一部分。管理資訊MI,被存儲於NAND型快閃記憶體100的記憶體單元陣列110的管理資訊存儲區域MIA,當記憶體系統1的電源啟動時,一般而言會被轉送至RAM220,藉由處理器230而被參照而被使用。 圖11為示意位移表格資訊TBL的1個表格亦即下位分頁用的位移表格TBL1的例子的圖。圖12為示意位移表格資訊TBL中的中位分頁的位移表格TBL2的例子的圖。圖13為示意位移表格資訊TBL中的上位分頁的位移表格TBL3的例子的圖。各位移表格中,設定著和複數個索引編號相對應之複數個位移量。 又,控制器200,例如基於指定每一區塊BLK的位移量之資料(以下稱歷史資料),而決定位移量。歷史資料HD,例如為表格資料,包含每一區塊BLK的索引編號。控制器200,當進行某一區塊BLK的資料讀出時,從歷史資料HD讀出針對對象區塊BLK設定的索引編號,參照位移表格資訊TBL,使用和該讀出的索引編號相對應之位移量資料,而進行對於該區塊BLK的位移讀取。 歷史資料HD,可為區塊BLK單位,亦可為各區塊BLK內的下位/中位/上位位元單位,亦可為各區塊BLK內的字元線WL單位。處理器230,能夠從讀出對象位址辨明讀出對象區塊BLK等。 例如,處理器230從歷史資料HD讀出對於被辨明的區塊BLK設定之索引編號。處理器230,參照相對應之位移表格TBL,獲得和讀出的索引編號相對應之位移量資料,對事先設定好的讀出位準加計該位移量資料,而算出讀出位準(讀出電壓)。其結果,處理器230能夠使用算出的讀出位準而讀出來自該區塊BLK的資料。 這裡,如圖11至圖13所示,位移表格資訊TBL包含對每一分頁設定之3個位移表格。圖11的下位分頁用的位移表格TBL1中,設定著讀出動作AR與ER時的複數個(此處為5個)位準的位移量。圖12的中位分頁用的位移表格TBL2中,設定著讀出動作BR、DR與FR時的複數個(此處為5個)位準的位移量。圖13的上位分頁用的位移表格TBL3中,設定著讀出動作CR與GR時的複數個(此處為5個)位準的位移量。 各位移表格具有複數個索引編號,而具有每一索引編號的位移量。這裡,隨著索引編號增加,各讀出動作中的位移量亦增加。 如上述般,位移量例如被設定於以區塊單位設置之位移表格資訊TBL,位移表格資訊TBL的各位移表格從管理資訊存儲區域MIA被轉送至RAM220。 位移讀取,係當無法藉由使用和事先設定好的各狀態相對應之閾值電壓所對應的讀出位準之資料讀出(正常讀取)而做資料讀出時進行。故,當無法藉由正常讀取做資料讀出時,於再讀出中進行位移讀取,當成功做資料讀出時,歷史資料HD的索引編號會被更新。其結果,歷史資料HD中,會存儲辨明前次(最新)的資料讀出時的位移量資料之索引編號,當能夠以正常讀取做資料讀出時,歷史資料HD中的索引編號例如被設定成「0」。 圖14為示意當有來自主機的讀出要求時,控制器200與NAND型快閃記憶體100的資料的讀出的處理的流程的例子的流程圖。圖14示意每一分頁的資料的讀出處理。控制器200,根據來自主機機器300的資料的讀出要求,使用RAM220中的查找表LUT(圖1),辨明讀出對象位址(亦即實體位址)(步驟(以下簡稱S)1)。 來自主機機器300的讀出要求,是藉由邏輯位址來指定讀出資料的位址。控制器200,在查找表LUT保持邏輯位址與NAND型快閃記憶體100的實體位址之對應關係資訊,作為表格資訊。S1中,控制器200一旦接收讀出要求,則參照該查找表LUT,辨明和讀出要求中包含的邏輯位址相對應之實體位址。 一旦實體位址被辨明,則控制器200參照上述的歷史資料HD算出讀出位準(S2)。歷史資料HD,習知是被存儲於RAM220,但本實施形態中是被存儲於資料讀出時未被使用之資料閂鎖群。如上述般,歷史資料HD存儲著前次的讀出時的位移量的索引編號。位移讀取時,係對和正常讀取時使用的事先設定好的各狀態相對應之讀出電壓加計該記錄著的索引編號的位移量的電壓,而算出該被加計而成的電壓值作為讀出位準。 另,若電源關閉,則查找表LUT、位移表格資訊TBL及歷史資料HD會被記憶於NAND型快閃記憶體100的記憶體單元陣列110的管理資訊存儲區域MIA亦即被更新,其後一旦電源啟動,則會從NAND型快閃記憶體100被讀出而被存儲於RAM220或資料閂鎖群。 控制器200,基於辨明的實體位址、與S2中算出的讀出位準,而對NAND型快閃記憶體100發出讀出指令(S3)。 NAND型快閃記憶體100,一旦接收來自控制器200的讀出指令,則基於讀出指令進行資料的讀出(S4)。當歷史資料HD中未存儲著前次的讀出時的索引編號時(亦即索引編號為0時),執行正常讀取。當歷史資料HD中存儲著前次的讀出時的索引編號時,執行使用和索引編號相對應之位移量的位移讀取。 讀出的結果,藉由控制器200而被取得。控制器200,判定是否成功做資料的讀出,亦即即使有錯誤也能夠藉由ECC電路260做錯誤訂正(S5)。 當成功做資料的讀出時(S5:YES),控制器200將讀出的資料(亦即訂正處理後的資料)送返給主機機器300(S6)。 當無法做資料的讀出時(亦即無法做錯誤訂正時)(S5:NO),控制器200執行再讀出處理(S7)。再讀出處理中,將各位移表格的索引編號遞增(increment)而一面變更位移量一面進行再讀出。另,亦可設計成取代變更位移量之再讀出,而藉由Vth追蹤來判定讀出電壓而進行再讀出。Vth追蹤,為基於當使讀出電壓變化時變為啟動的記憶體單元數(啟動單元數)的變化,來決定可正確地讀出資料之讀出電壓(所謂的谷位置電壓)的處理。 位移讀取於再讀出處理(S7)中進行,於再讀出處理(S7)之後判定錯誤訂正是否成功(S8)。當錯誤訂正不成功,亦即無法做資料的讀出時(S8:NO),控制器200將示意無法做讀出之讀取狀態錯誤送返給主機機器300(S10)。 當位移讀取於再讀出處理(S7)中進行,而錯誤訂正成功亦即成功做資料的讀出時,控制器200更新歷史資料HD(S9),將讀出的資料(亦即訂正處理後的資料)送返給主機機器300(S6)。 像以上這樣,資料是一面使用歷史資料HD與位移表格資訊TBL一面從NAND型快閃記憶體100被讀出。 3)懸置讀取時的基本的動作 於編寫動作的途中,若從主機機器300接受讀出要求,則控制器200具有使NAND型快閃記憶體100的編寫動作暫且中斷(以下亦稱「懸置」(suspend)),而執行讀出動作,於讀出動作執行後,控制器200令編寫動作重啟(以下亦稱「續行」(resume))之機能。 NAND型快閃記憶體100,於編寫動作中一旦接受讀出指令,則將這樣的編寫動作暫且懸置,而執行資料的讀出,其後進行編寫動作的續行。這樣的動作,為用來加速對於讀出要求之回應的動作,稱為懸置讀取。 控制器200,包含保持懸置了編寫動作時的懸置資訊之規定的暫存器(未圖示)。控制器200,基於該暫存器保持的懸置資訊,而續行編寫動作。 圖15為示意懸置讀取時的指令序列的圖。 於NAND型快閃記憶體100的編寫動作中,一旦從主機機器300接收讀出要求,則如指令序列SQ5所示,控制器200的處理器230輸出令NAND型快閃記憶體100中斷編寫動作之指令“c41”,而將懸置資訊存儲於規定的暫存器(未圖示)。中斷了編寫動作後,控制器200令定序器170執行讀出動作。 具體而言,指令“c41”被輸出後,圖9所示之指令及位址從控制器200被供給至NAND型快閃記憶體100,被讀出的資料從NAND型快閃記憶體100被供給至控制器200。一旦資料的讀出結束,則控制器200輸出續行編寫動作之指令“c42”,定序器170根據指令“c42”重啟編寫動作。 圖16為用來說明懸置讀取時的5個資料閂鎖中的資料的存儲狀態的變化的圖。圖16的LS21示意編寫動作中的各資料閂鎖的狀態,資料閂鎖群ADL、BDL及CDL中存儲著寫入資料,資料閂鎖群SDL中存儲著驗證(verify)用資料。圖16的LS22示意編寫動作中斷而讀出動作開始前一刻的各資料閂鎖的狀態。 讀出動作中,如圖9及圖10所示般,使用資料閂鎖群SDL、XDL。圖16的LS23示意定序器170讀出所有資料,如密集點圖樣所示般存儲於資料閂鎖群SDL的狀態。LS24示意資料閂鎖群SDL的資料已被複製至資料閂鎖群XDL的狀態。故,控制器200能夠從資料閂鎖群XDL讀出資料。 懸置讀取時,3個資料閂鎖群ADL、BDL及CDL的資料不會被變更,故當編寫動作續行時,定序器170能夠直接使用資料閂鎖群ADL、BDL及CDL的資料而重啟編寫動作。當編寫動作重啟時,資料閂鎖群SDL、ADL、BDL、CDL及XDL的狀態成為和LS21相同狀態。 4)管理資訊的存儲區域與穩定狀態 控制器200,使用管理資訊MI執行對於NAND型快閃記憶體100的資料的寫入動作及資料的讀出動作。管理資訊MI,例如為當進行對於NAND型快閃記憶體100的讀出動作時等藉由控制器200而被使用的資訊,例如為查找表LUT、位移表格資訊TBL、歷史資料HD等的資料。 一般而言,管理資訊MI,當記憶體系統1的電源從關閉變為啟動時,會從NAND型快閃記憶體100的記憶體單元陣列110中的管理資訊存儲區域MIA被讀出,而被複製至控制器200的RAM220,藉由處理器230而被使用。但,當無法在控制器200設置大資料尺寸的RAM220的情形下,若因區塊數增加等而管理資訊MI的資料尺寸變大,則會發生無法在RAM220存儲所有的管理資訊MI之情形。 此外,存儲管理資訊MI的RAM220,於追蹤(tracking)處理、巡查(patrol)處理等中亦會為了暫時性地存儲大量的資料而被使用,因此RAM220中必須有足夠的空白區域。藉由追蹤處理、巡查處理等而被更新的位移資訊,亦會被記憶於記憶體單元陣列110中的管理資訊存儲區域MIA。 又,即使記憶體單元電晶體MT中記憶的資料的位元數增加,管理資訊MI的資料尺寸也會變大。 但,NAND型快閃記憶體100依其用途,一口氣寫入資料之後,幾乎都是資料的讀出。例如,當在資料中心等使用NAND型快閃記憶體100時,一口氣寫入資料之後,資料的讀出的發生頻率會比資料的寫入的發生頻率還多。 鑑此,本實施形態中,設計成將管理資訊MI的一部分存儲於資料的讀出時未被使用的資料閂鎖群,藉此,即使無法在控制器200設置大尺寸的RAM220,控制器200仍能以較小的潛時(latency)讀出管理資訊MI。亦即,控制器200於執行從NAND型快閃記憶體100的資料的讀出處理時或執行之前,將用於資料的讀出之管理資訊MI存儲於由複數個資料閂鎖電路所組成的資料閂鎖群的1個。 另,本實施形態中,存儲於資料的讀出時未被使用的資料閂鎖群之管理資訊MI的一部分的資料量,為1分頁中可容納的資料量,而被存儲於資料閂鎖群ADL。 以下,將管理資訊MI的一部分被存儲於資料閂鎖群ADL的狀態稱為資料閂鎖群的穩定狀態。 另,以下例子中,說明位移讀取時使用的歷史資料HD,係作為管理資訊MI的一部分而被存儲於資料閂鎖群ADL的情形下。亦即,圖4中以雙點鏈線示意之資料閂鎖群ADL中,存儲著歷史資料HD。 當歷史資料HD被存儲於資料閂鎖群ADL時,此處示意對每一區塊BLK使用的位移量資料之索引編號,會作為位移資訊而被存儲於資料閂鎖群ADL。 因此,控制器200中,會生成存儲著和讀出對象位址的區塊BLK相對應之資料閂鎖群ADL的行位址的對應表格CT,而被存儲於RAM220。處理器230,藉由參照該對應表格CT,能夠從資料閂鎖群ADL取得和讀出資料的區塊BLK相對應之位移資訊(此處為索引編號)而執行位移讀取。 本實施形態中,同樣是管理資訊的查找表LUT及位移表格資訊TBL,於圖1中如虛線所示般係被存儲於RAM220,但當進行資料的讀出時,控制器200從資料閂鎖群ADL當中讀出歷史資料HD中的對象位址的索引編號。控制器200,能夠參照位移表格資訊TBL,使用由讀出的索引編號而被決定的位移量資料來進行位移讀取。 另,亦可設計成當管理資訊MI亦即歷史資料HD被存儲於資料閂鎖群ADL時,也一併被存儲於資料閂鎖群XDL。 說明將管理資訊MI從記憶體單元陣列110中的管理資訊存儲區域MIA存儲於資料閂鎖群ADL的手續。 首先,說明管理資訊MI被轉送而被設定於資料閂鎖群ADL之穩定狀態與該穩定狀態化的處理的手續。穩定狀態化的處理,是在根據來自主機機器300的要求而藉由控制器200執行資料的讀出處理之前進行。圖17至圖19為用來說明管理資訊MI被存儲於資料閂鎖群ADL為止前的管理資訊MI的存儲狀態的變化的圖。圖17至圖19,示意記憶體單元陣列110、與5個資料閂鎖中的管理資訊MI的存儲狀態。 說明管理資訊MI的第1存儲手續。圖17的SS1,示意初期狀態(或資料的寫入後或是資料的刪除後)中,管理資訊MI被存儲於記憶體單元陣列110的管理資訊存儲區域MIA。處理器230,應對來自主機機器300的資料的讀出要求,而從管理資訊存儲區域MIA在SLC模式下執行管理資訊MI的讀出,藉此,將管理資訊MI(此處為歷史資料HD)如SS2中以虛線示意般存儲於資料閂鎖群SDL,又被複製至資料閂鎖群XDL。其後,如SS3中以虛線示意般,處理器230將該管理資訊MI從資料閂鎖群XDL複製至資料閂鎖群ADL。SS3示意穩定狀態,而管理資訊MI亦被存儲於資料閂鎖群XDL。 像以上這樣,控制器200執行根據來自外部的主機機器300的要求之讀出處理前,將管理資訊MI從規定的存儲區域亦即管理資訊存儲區域MIA讀出,而存儲於資料閂鎖群ADL。 接下來,說明管理資訊MI的第2存儲手續。如同圖17的SS1,從圖18的SS11的狀態,如圖18中以虛線示意般,處理器230,應對來自主機機器300的資料的讀出要求,而從管理資訊存儲區域MIA在SLC模式下執行管理資訊MI的讀出,藉此,將管理資訊MI如SS12中以虛線示意般存儲於資料閂鎖群SDL。其後,如SS12中以虛線示意般,處理器230將管理資訊MI從資料閂鎖群SDL複製至資料閂鎖群ADL。SS12示意管理資訊MI的第2穩定狀態。 說明管理資訊MI的第3存儲手續。從圖18的SS12的狀態,如SS13所示,處理器230將管理資訊MI從資料閂鎖群ADL複製至資料閂鎖群XDL。SS13示意管理資訊MI的第3穩定狀態。 說明管理資訊MI的第4存儲手續。如同圖17的SS1,從圖19的SS21的狀態,如圖19中以虛線示意般,處理器230,應對來自主機機器300的資料的讀出要求,而從管理資訊存儲區域MIA在SLC模式下執行管理資訊MI的讀出,藉此,將管理資訊MI如SS22中以虛線示意般存儲於資料閂鎖群SDL。其後,如SS22中以虛線示意般,處理器230將管理資訊MI從資料閂鎖群SDL複製至2個資料閂鎖群ADL與XDL雙方。SS22示意管理資訊MI的第4穩定狀態,而管理資訊MI亦被存儲於資料閂鎖群XDL。 圖20為示意第1存儲手續的指令序列SQ11的圖。處理器230,一旦成為初期狀態(或資料的寫入後或是資料的刪除後),則在SLC模式下輸出用來執行從管理資訊存儲區域MIA讀出管理資訊MI之指令“c51”。延續指令“c51”,處理器230將指令“c31”輸出至輸出入訊號I/O。控制器200,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。延續5個位址,控制器200將指令“c32”輸出至輸出入訊號I/O。 指令“c32”為指示執行資料的讀出之指令,因此定序器170執行往指定的位址之資料讀出。資料的讀出結果,首先被存儲於複數個感測放大器SA之後,被複製到資料閂鎖群XDL。 處理器230,輸出令資料閂鎖群XDL的資料複製至資料閂鎖群ADL之指令“c52”至輸出入訊號I/O。其結果,管理資訊MI會在圖17的SS3所示穩定狀態下被存儲於複數個感測單元SAU。 圖21為示意第2存儲手續及第3存儲手續的指令序列SQ12的圖。處理器230,一旦成為初期狀態(或資料的寫入後或是資料的刪除後),則在SLC模式下輸出用來執行從管理資訊存儲區域MIA讀出管理資訊MI之指令“c51”。延續指令“c51”,處理器230將指令“c53”與“c31”輸出至輸出入訊號I/O。指令“c53”,為指示被讀出的被存儲於資料閂鎖群SDL的管理資訊MI往資料閂鎖群ADL而非往資料閂鎖群XDL之複製的指令。控制器200,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。延續5個位址,控制器200將指令“c32”輸出至輸出入訊號I/O。 指令“c32”為執行從指定的位址的資料讀出之指令,因此定序器170執行指定的位址之資料讀出,將被讀出的資料存儲於資料閂鎖群ADL。 依以上方式,管理資訊MI會在圖18的SS12所示穩定狀態下被存儲於複數個感測單元SAU。 又,其後,如圖21中以虛線示意般,處理器230將令複數個感測放大器SA的資料閂鎖群ADL的資料複製至資料閂鎖群XDL之指令“c54”輸出至輸出入訊號I/O,藉此,能夠在圖18的SS13所示穩定狀態下將管理資訊MI存儲於複數個感測單元SAU。 圖22為示意第4存儲手續的指令序列SQ13的圖。處理器230,一旦成為初期狀態(或資料的寫入後或是資料的刪除後),則在SLC模式下輸出用來執行從管理資訊存儲區域MIA讀出管理資訊MI之指令“c51”。延續指令“c51”,處理器230將指令“c55”與“c31”輸出至輸出入訊號I/O。指令“c55”,為指示被讀出的被存儲於資料閂鎖群SDL的管理資訊MI往資料閂鎖群XDL及資料閂鎖群ADL之複製的指令。控制器200,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。延續5個位址,控制器200將指令“c32”輸出至輸出入訊號I/O。 指令“c32”為執行從指定的位址的資料讀出之指令,因此定序器170執行往指定的位址之資料讀出,將被讀出的資料存儲於資料閂鎖群ADL與XDL。 依以上方式,管理資訊MI會在圖19的SS22所示穩定狀態下被存儲於複數個感測單元SAU。 接下來,說明上述的穩定狀態中的資料的讀出動作。資料的讀出動作中,首先,進行管理資訊MI中包含的位移量資料的讀出處理。 5)位移量資料的讀出與設定 圖23為用來說明當管理資訊MI亦即位移資訊(此處為索引編號)從資料閂鎖群XDL被讀出的情形的圖。圖24為示意資料的讀出手續的指令序列SQ14的圖。遵照指令序列,進行從資料閂鎖群ADL的索引編號的讀出,使用和被讀出的索引編號相對應之位移量,進行資料的讀出。這裡,說明穩定狀態下,如SS31所示,在資料閂鎖群XDL亦事先存儲著管理資訊MI亦即位移資訊的情形。 處理器230,輸出暫存器讀取指令亦即指令“c56”。延續指令“c56”,控制器200將5個位址輸出至輸出入訊號I/O。這裡,僅行位址被指定,故3個列位址被忽視。延續位址,控制器200將指令“c57”輸出至輸出入訊號I/O。 定序器170,執行指定的行位址的資料閂鎖群XDL之資料讀出,而輸出被讀出的資料“info0”。資料“info0”為有關讀出資料的和位移量資料相對應之索引編號。故,如圖23的SS32所示,控制器200能夠從資料閂鎖群XDL取得索引編號。 處理器230,使用取得的資料“info0”進行資料的讀出。處理器230,能夠參照位移表格資訊TBL,基於取得的資料“info0”而取得位移量資料。像以上這樣,控制器200於讀出處理執行前,事先將管理資訊MI從資料閂鎖群ADL複製到資料閂鎖群XDL。然後,位移量資料從資料閂鎖群XDL取得。 如圖24所示,處理器230,將用來對NAND型快閃記憶體100設定後續執行的讀出所使用的位移量之位移量設定指令“c41”輸出至輸出入訊號I/O,並且延續位移量設定指令“c41”而將位移量資料輸出至輸出入訊號I/O。圖24中,下位分頁用的位移量資料“Shift A”與“Shift E”與“00” 被輸出。第3個資料被忽視。若為中位分頁用的位移量資料,則3個位移量資料被輸出,若為上位分頁用的位移量資料,則2個位移量資料與“00” 被輸出。其結果,位移量資料被設定於NAND型快閃記憶體100。 圖25為用來說明當資料從記憶體單元陣列110被讀出的情形的圖。 如圖24所示,控制器200,將進行和讀出資料相對應之下位、中位及上位位元的其中一者的預約讀出之指令“c11”、“c12”或是“c13”輸出至輸出入訊號I/O。圖24中,延續指令“c11”,控制器200將指令“c31”輸出至輸出入訊號I/O,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。 一旦控制器200將指令“c32”輸出至輸出入訊號I/O,則定序器170執行使用了設定好的位移量之位移讀取。資料的讀出結果,首先被存儲於資料閂鎖群SDL,再如圖25的SS33所示,被存儲於資料閂鎖群XDL。其結果,控制器200能夠從資料閂鎖群XDL取得使用者資料。圖24中,長的白色箭頭的時間點示意就緒/忙碌訊號RBn為low,短的箭頭的時間點示意就緒/忙碌訊號RBn為high。 其後,控制器200如單點鏈線所示,將指令“c54”輸出至輸出入訊號I/O,如圖25的SS34所示般,資料閂鎖群ADL的所有資料被複製至資料閂鎖群XDL。 6)讀出處理的全體的流程 接下來,說明有關本實施形態之記憶體系統1中的資料的讀出處理的流程。 圖26為示意控制器200與NAND型快閃記憶體100的資料的讀出的處理的流程的例子的流程圖。圖26中,和圖14相同的處理標註相同步驟編號而簡化說明。圖26示意每一分頁的資料的讀出處理。控制器200,一旦接受來自主機機器300的讀出要求,則使用RAM220中的查找表LUT,辨明讀出對象位址(亦即實體位址)(S1)。 一旦辨明實體位址,則控制器200參照上述的對應表格CT,輸出令登錄著歷史資料HD中的對象位址的位移資訊亦即歷史值(此處為索引編號)的行位址的資料閂鎖群XDL的資料輸出之指令(S11)。根據該指令,NAND型快閃記憶體100執行將指定的行位址的資料閂鎖群XDL的資料(亦即索引編號)送返給控制器200之處理(S12)。S11與S12之處理如圖24所示。 控制器200,基於辨明的實體位址、與和取得的索引編號相對應之位移量資料,將讀出指令輸出至NAND型快閃記憶體100(S3)。 NAND型快閃記憶體100,一旦接收來自控制器200的讀出指令,則基於讀出指令執行資料的讀出(S4)。當歷史資料HD中未存儲著前次的讀出時的索引編號時,亦即索引編號為0時,執行正常讀取。當歷史資料HD中存儲著前次的讀出時的索引編號時,執行使用和該索引編號相對應之位移量的位移讀取。 資料的讀出是以分頁單位進行,故資料的讀出的結果如圖25的SS33所示,1分頁份的資料會被存儲於資料閂鎖群XDL。 讀出的結果,藉由控制器200而被取得。控制器200,判定是否成功做資料的讀出,亦即即使有錯誤也能夠藉由ECC電路260做錯誤訂正(S5)。 當成功做資料的讀出時(S5:YES),控制器200將讀出的資料送返給主機機器300(S6)。 另,藉由資料的讀出,資料閂鎖群XDL的管理資訊MI會被刪除,故當成功做資料的讀出時(S5:YES),控制器200又為了設為穩定狀態,而如圖26中以虛線示意般,將令資料閂鎖群ADL的資料複製至資料閂鎖群XDL之指令輸出至輸出入訊號I/O(S13)。其結果,如圖25的SS34所示,定序器170將資料閂鎖群ADL的資料複製至資料閂鎖群XDL(S14)。 當無法做資料的讀出時(S5:NO),控制器200執行如上述般的再讀出處理(S7)。 S7中,上述的再讀出處理是一面做位移讀取等一面進行,控制器200判定錯誤訂正是否成功,亦即是否成功做資料的讀出(S8)。當錯誤訂正成功,亦即成功做資料的讀出時(S8:YES),控制器200將錯誤訂正處理後的資料的資料送返給主機機器300(S6)。 又,當錯誤訂正成功,亦即成功做資料的讀出時(S8:YES),控制器200為了將資料閂鎖群ADL,XDL設為穩定狀態,而如圖26中以虛線示意般,將令資料閂鎖群ADL的資料複製至資料閂鎖群XDL之指令“c54”輸出至輸出入訊號I/O(S15)。其結果,定序器170將資料閂鎖群ADL的資料複製至資料閂鎖群XDL(S16)。 又,S15之後,控制器200輸出用來將和成功做再讀出時的位移量資料相對應之索引編號予以覆寫更新至和對象位址相對應之行位址的指令(S17)。其結果,定序器170以成功做再讀出時的位移量資料的索引編號來更新資料閂鎖群XDL中的指定的行位址的資料(S18)。 又,S17之後,控制器200輸出將資料閂鎖群XDL的資料複製至資料閂鎖群ADL的指令(S19)。其結果,定序器170將資料閂鎖群XDL的資料複製至資料閂鎖群ADL (S20)。 像以上這樣,控制器200於S5及S8中,當錯誤訂正成功的情形下(S5,S8:YES),能夠將錯誤訂正後的使用者資料送返給主機機器300(S6)。 此外,控制器200於S8中,當錯誤訂正成功的情形下(S8:YES),進行資料閂鎖群ADL的更新,而將資料閂鎖群ADL及XDL設為穩定狀態,而且還執行將更新後的位移資訊(此處為位移量資料的索引編號)寫入至記憶體單元陣列110的管理資訊存儲區域MIA之處理。 亦即,控制器200當管理資訊MI藉由再讀出處理而被更新的情形下,將更新後的管理資訊MI記憶於NAND型快閃記憶體100。圖27為示意將更新後的位移資訊往管理資訊存儲區域MIA寫入的處理的流程的例子的流程圖。 控制器200,判定更新後的位移資訊往記憶體單元陣列110的管理資訊存儲區域MIA之寫入是否有必要,換言之判定S8中錯誤訂正是否成功(S21)。控制器200,當判定更新後的位移資訊往記憶體單元陣列110的管理資訊存儲區域MIA之寫入不必要時(S21:NO),不做任何事。 當判定更新後的位移資訊往記憶體單元陣列110的管理資訊存儲區域MIA之寫入有必要時(S21:YES),控制器200在SLC模式下將更新後的位移資訊(此處為和位移量資料相對應之索引編號)寫入至記憶體單元陣列110的管理資訊存儲區域MIA(S22)。亦即,更新後的位移資訊被存儲於非揮發性記憶體亦即記憶體單元陣列110。 故,控制器200當於S5中成功做錯誤訂正時,不會將更新後的位移資訊寫入至非揮發性記憶體亦即記憶體單元陣列110,但當於S8中成功做錯誤訂正時,則會將更新後的位移資訊寫入至非揮發性記憶體亦即記憶體單元陣列110。 回到圖26,如果當錯誤訂正不成功,亦即無法做資料的讀出時(S8:NO),控制器200將示意無法做讀出之讀取狀態錯誤送返給主機機器300(S10)。 圖28與圖29為用來說明圖26的資料的讀出處理、與圖27的更新後的管理資訊的往非揮發性記憶體的寫入處理中,記憶體單元陣列與5個資料閂鎖群中的資料的存儲狀況的變化的圖。 圖28的SS41,示意藉由圖26的S14及S16而資料閂鎖群ADL的資料已被複製至資料閂鎖群XDL的狀態。 圖28的SS42,示意藉由圖26的S18而資料閂鎖群XDL中的指定的行位址的資料藉由成功做再讀出時的位移量資料的索引編號而已被更新的狀態。 圖29的SS43,示意藉由圖26的S20而資料閂鎖群XDL的資料已被複製至資料閂鎖群ADL的狀態。 圖29的SS44,示意藉由圖27的S21而更新後的位移量資料的索引編號被存儲於非揮發性記憶體亦即記憶體單元陣列110中的另一位址的狀態。 圖30為示意圖28的SS42中,用於資料閂鎖群XDL中的被指定的行位址的資料的更新處理的指令序列的圖。 指令“c61”,為用來指定資料閂鎖群XDL中的欲更新的行位址而做資料更新之指令。延續指令“c61”,藉由2個行位址來指定行位址。由於僅將資料寫入至指定的行位址的複數個資料閂鎖XDL,因此列位址被忽視。其後的資料“info”為更新資料。資料“info”被輸出,在白色箭頭示意的時間點處理結束。藉由指令“c52”,如圖29的S43所示,資料閂鎖群XDL的資料被複製到資料閂鎖群ADL。 圖31為示意圖29的SS44中,用於管理資訊MI往記憶體單元陣列110的寫入的指令序列的圖。 指定SLC模式之指令“c51”,係指定寫入模式為SLC之指令。延續指令“c61”,指定行位址與列位址。指令“c61”,為更新資料閂鎖群XDL中的和指定的行位址相對應之的指令。一旦指令“c23”被輸出,則定序器170將資料閂鎖群XDL的資料寫入至藉由位址而指定的管理資訊存儲區域MIA。其結果,如圖29的S44所示,更新後的位移資訊被記憶於記憶體單元陣列110。 依以上方式,進行位移量資料的更新。 接下來,說明本實施形態中的懸置讀取時的動作。 圖32為示意懸置讀取時的控制器200的輸出入訊號I/O的變化的指令序列的圖。圖33為用來說明伴隨指令序列的執行之複數個資料閂鎖群中的資料的存儲狀況的變化的圖。 如指令序列SQ17所示,當進行懸置讀取時,控制器200輸出規定的指令“c41”,來懸置編寫亦即資料的寫入。圖33中,LS31示意編寫中於複數個資料閂鎖群中,在資料閂鎖群ADL,BDL及CDL存儲著用於寫入的資料,在資料閂鎖群SDL存儲著驗證電壓資料。LS32示意懸置時的編寫中的複數個資料閂鎖群的狀態。LS32中,在資料閂鎖群SDL及XDL未存儲著有效的資料。亦即,在此之前正在進行編寫亦即資料的寫入,故管理資訊MI未被存儲於任一資料閂鎖群。故,當進行懸置讀取時,必須取得用於資料的讀出的管理資訊MI。圖32中,長的白色箭頭的時間點示意就緒/忙碌訊號RBn為low,短的箭頭的時間點示意就緒/忙碌訊號RBn為high。 因此,控制器200接下來輸出用來在SLC模式下執行管理資訊MI的讀出之指令“c51”及“c31”。控制器200,延續指令,將5個位址、與延續位址之指令“c32”輸出至輸出入訊號I/O。藉由指令“c32”,管理資訊MI已被存儲於資料閂鎖群SDL之後,被存儲於資料閂鎖群XDL。 圖33的LS33,示意在SLC模式下被讀出的管理資訊MI已被存儲於資料閂鎖群SDL的狀態,LS34示意管理資訊MI已被存儲於資料閂鎖群XDL的狀態。 又,藉由指令“c32”,執行資料閂鎖群XDL中的指定的行位址之資料讀出。定序器170,執行指定的行位址之資料讀出,而輸出被讀出的資料“info0”。 處理器230,使用取得的資料“info0”進行資料的讀出。圖33的LS35,示意管理資訊MI中指定的行位址的位移量資料的索引編號從相對應之資料閂鎖群XDL被讀出的狀態。 處理器230,將設定位移量的位移量設定指令“c41”輸出至輸出入訊號I/O,並且延續位移量設定指令“c41”將基於索引編號而選擇的位移量資料輸出至輸出入訊號I/O。 其後,處理器230將進行下位、中位及上位位元的其中一者的預約讀出之指令“c11”、“c12”或是“c13”及“c31”輸出至輸出入訊號I/O,其後輸出位址及指令“c32”。其結果,處理器230能夠進行資料的讀出。圖33的LS36,示意處理器230正在執行資料的讀出時的狀態。 於懸置讀取的最後,處理器230輸出編寫續行指令“c42”。 故,即使於懸置讀取時,仍能將管理資訊MI亦即位移資訊從記憶體單元陣列110的管理資訊存儲區域MIA讀出,而執行位移讀取。 另,於懸置讀取時,當有再讀出所造成之位移資訊的變更時,進行該有變更的位移資訊(此處為索引編號)的往管理資訊存儲區域MIA之寫入。 像以上這樣,設計成將管理資訊MI的一部分存儲於讀出時不使用的資料閂鎖群ADL,故當控制器200的RAM的容量有限制的情形下,即使管理資訊MI增加,仍能高速地利用管理資訊。 如上述般,若記憶體單元電晶體MT的記憶容量增加,例如1個記憶體單元電晶體MT中能夠記憶的位元數若從3位元增加至4位元,則位移量資料亦增加,而會發生無法存儲於控制器200的RAM220之情形。 NAND型快閃記憶體100依其用途,也可能一但寫入資料之後,幾乎都是資料的讀出。於資料的讀出時或讀出前,用於資料的寫入之資料閂鎖群ADL、BDL等不會被使用。 在這樣的情形下,按照上述的實施形態,即使管理資訊MI亦即位移資訊的歷史資料HD的資料量增加,藉由將歷史資料HD存儲於資料閂鎖群ADL,仍可不使用控制器200的RAM220。 另,上述的實施形態中,管理資訊亦即位移量資料的歷史資料HD是存儲於資料閂鎖群ADL,但亦可設計成存儲於其他的資料閂鎖例如資料閂鎖群BDL或CDL。 再者,上述的實施形態中,作為被存儲於資料閂鎖群ADL等的管理資訊MI,舉出位移讀取時使用的位移資訊為例子,但亦可設計成將位移資訊以外的管理資訊MI存儲於資料閂鎖群ADL等。 像以上這樣,按照上述的實施形態,能夠提供一種即使在不具有足夠存儲管理資訊的RAM區域之記憶體控制器中仍能以較小潛時(latency)讀出管理資訊之記憶體系統及記憶體控制器。 此外,設計成將管理資訊的一部分存儲於資料的讀出時未被使用的資料閂鎖群,故記憶體控制器200只要尚有來自主機機器300的讀出要求,都能以較小的潛時讀出管理資訊MI。 (第2實施形態) 第1實施形態中,位移資訊等的管理資訊MI,可存儲於NAND型快閃記憶體100的1個資料閂鎖群ADL亦即1分頁份內,但第2實施形態中,但必要的管理資訊MI超過1分頁份的情形下,還會使用資料閂鎖群ADL以外的資料閂鎖群BDL等,而管理資訊MI被存儲於2以上的資料閂鎖群。 第2實施形態之記憶體系統的構成,和第1實施形態之記憶體系統的構成相同,故第2實施形態之記憶體系統中,針對和第1實施形態之記憶體系統的構成相同的構成要素使用相同符號而省略說明,僅針對和第1實施形態之記憶體系統的構成相異的構成說明之。 圖34為有關本實施形態之示意於電源關閉時等的管理資訊存儲區域MIA與複數個資料閂鎖群的資料存儲狀態的圖。 圖34示意電源關閉時、資料的寫入(編寫)後、或資料的刪除後的管理資訊存儲區域MIA與複數個資料閂鎖群的資料存儲狀態。在資料閂鎖群ADL、BDL、CDL的各者,存儲相對應之實體區塊的管理資訊。 具體而言,此處,記憶體單元陣列110具有3000個的區塊BLK。區塊0~999為止的管理資訊MI亦即資料的位移資訊,被存儲於管理資訊存儲區域MIA的第1存儲區域MIA0。區塊1000~1999為止的資料的位移資訊,被存儲於管理資訊存儲區域MIA的第2存儲區域MIA1。區塊2000~ 2999為止的資料的位移資訊,被存儲於管理資訊存儲區域MIA的第3存儲區域MIA2。 此外,本實施形態中,在各感測單元SAU,具備資料閂鎖ADL、BDL、CDL及XDL。 圖35為有關本實施形態之示意穩定狀態下的記憶體單元陣列110、與複數個資料閂鎖群中的管理資訊MI的存儲狀態。 電源啟動時、資料的寫入(編寫)後、或資料的刪除後,控制器200將第1實施形態中說明的各種指令往NAND型快閃記憶體100輸出,藉此將複數個資料閂鎖群設為存儲有管理資訊MI的一部分之穩定狀態。 穩定狀態中,被存儲於第1存儲區域MIA0的管理資訊MI被複製到資料閂鎖群ADL,被存儲於第2存儲區域MIA1的管理資訊MI被複製到資料閂鎖群BDL,被存儲於第3存儲區域MIA2的管理資訊MI被複製到資料閂鎖群CDL。 當複數個資料閂鎖群成為穩定狀態,藉此便能因應資料的讀出。 然後,當判明讀出資料的對象位址時,管理資訊MI從存儲著有關該對象位址的區塊BLK的管理資訊MI的複本之資料閂鎖群被複製到資料閂鎖群XDL。 例如,當接受區塊BLK0~999內的資料的讀出要求時,控制器200將資料閂鎖群ADL的存儲區域的資料存儲於資料閂鎖群XDL,而能夠使用針對藉由資料閂鎖群XDL中的對象位址而被指定的區塊BLK之位移資訊,進行資料的讀出。 簡單說明將複數個資料閂鎖群設為穩定狀態之處理。 圖36為用來說明當讀出管理資訊MI而往資料閂鎖群XDL存儲的情形下的資料的轉送的圖。管理資訊存儲區域MIA的管理資訊MI,如SS41所示,在SLC模式下被讀出,經由資料閂鎖群SDL被存儲於資料閂鎖群XDL。 圖37為示意於SLC模式下將被讀出的管理資訊MI從資料閂鎖群XDL複製到資料閂鎖群ADL至CDL的其中一者,而將複數個資料閂鎖群穩定狀態化的方法的圖。SS42示意於SLC模式下被讀出的管理資訊MI從資料閂鎖群XDL被複製到資料閂鎖群ADL的情形。亦即,管理資訊MI從SS41的狀態成為SS42的狀態。S43示意於SLC模式下被讀出的管理資訊MI從資料閂鎖群XDL被複製到資料閂鎖群BDL的情形。亦即,管理資訊MI從SS41的狀態成為SS43的狀態。S44示意於SLC模式下被讀出的管理資訊MI從資料閂鎖群XDL被複製到資料閂鎖群CDL的情形。亦即,管理資訊MI從SS41的狀態成為SS44的狀態。 圖38為示意將被存儲於資料閂鎖群ADL、BDL及CDL的管理資訊MI複製至資料閂鎖群XDL,而將複數個資料閂鎖群穩定狀態化的另一方法的圖。SS45示意管理資訊MI從資料閂鎖群ADL被複製到資料閂鎖群XDL的情形。SS46示意管理資訊MI從資料閂鎖群BDL被複製到資料閂鎖群XDL的情形。SS47示意管理資訊MI從資料閂鎖群CDL被複製到資料閂鎖群XDL的情形。 圖37中,管理資訊MI是存儲於資料閂鎖群XDL再被複製至資料閂鎖群ADL、BDL及CDL的其中一者,但管理資訊MI亦可設計成經資料閂鎖群SDL而直接複製至資料閂鎖群ADL、BDL及CDL的其中一者。 圖39為示意管理資訊MI經由資料閂鎖群SDL而轉送至資料閂鎖群ADL、BDL及CDL的其中一者的情形的圖。SS48示意管理資訊MI從資料閂鎖群SDL直接被複製到資料閂鎖群ADL的情形。SS49示意管理資訊MI從資料閂鎖群SDL直接被複製到資料閂鎖群BDL的情形。SS50示意管理資訊MI從資料閂鎖群SDL直接被複製到資料閂鎖群CDL的情形。 另,亦可設計成從圖39所示資料閂鎖群ADL、BDL及CDL的其中一者被複製到資料閂鎖群XDL,而如圖38所示將管理資訊MI存儲於資料閂鎖群XDL。 圖40為有關本實施形態之示意將複數個資料閂鎖群穩定狀態化的指令序列SQ18的圖。圖41為用來說明管理資訊MI被存儲於複數個資料閂鎖群為止前的管理資訊MI的存儲狀態的變化的圖。 如圖40所示,處理器230輸出用來在SLC模式下從管理資訊存儲區域MIA執行管理資訊MI的讀出之指令“c51”。延續指令“c51”,處理器230將指令“c53”與指令“c31”輸出至輸出入訊號I/O。控制器200,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。5個位址當中的3個列位址,示意資料“info0”的位址。延續5個位址,控制器200將指令“c32”輸出至輸出入訊號I/O。藉由以上,如圖41的SS51所示,第1存儲區域MIA0的管理資訊MI被轉送至資料閂鎖群ADL。 其後,為了將第2存儲區域MIA1的管理資訊MI轉送至資料閂鎖群BDL,處理器230輸出用來在SLC模式下執行從管理資訊存儲區域MIA讀出管理資訊MI之指令“c51”、及延續指令“c51”而將指令“c71”與指令“c31”輸出至輸出入訊號I/O。指令“c71”,為將管理資訊MI的轉送目標指定成資料閂鎖群BDL而非資料閂鎖群XDL之指令。於指令“c71”之前輸出指令“c51”,藉此,管理資訊MI的轉送目標會成為資料閂鎖群BDL。控制器200,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。5個位址當中的3個列位址,示意資料“info1”的位址。延續5個位址,控制器200將指令“c32”輸出至輸出入訊號I/O。藉由以上,如圖41的SS52所示,第2存儲區域MIA1的管理資訊MI被轉送至資料閂鎖群BDL。 其後,用來將第3存儲區域MIA2的管理資訊MI轉送至資料閂鎖群CDL之指令與資料被輸出至輸出入訊號I/O。處理器230輸出用來在SLC模式下執行從管理資訊存儲區域MIA讀出管理資訊MI之指令“c51”、及延續指令“c51”而將指令“c72”與指令“c31”輸出至輸出入訊號I/O。指令“c72”,為將管理資訊MI的轉送目標設為資料閂鎖群CDL而非資料閂鎖群XDL之指令。於指令“c72”之前輸出指令“c51”,藉此,管理資訊MI的轉送目標會成為資料閂鎖群CDL。控制器200,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。5個位址當中的3個列位址,示意資料“info1”的位址。延續5個位址,控制器200將指令“c32”輸出至輸出入訊號I/O。藉由以上,如圖41的SS53所示,第3存儲區域MIA2的管理資訊MI被轉送至資料閂鎖群CDL。 圖42為有關本實施形態之示意將複數個資料閂鎖群穩定狀態化的另一指令序列SQ19的圖。圖43為用來說明管理資訊MI被存儲於複數個資料閂鎖群為止前的管理資訊MI的存儲狀態的變化的圖。 如圖42所示,處理器230輸出用來在SLC模式下從管理資訊存儲區域MIA執行管理資訊MI的讀出之指令“c51”。延續指令“c51”,處理器230將指令“c53”與指令“c31”輸出至輸出入訊號I/O。控制器200,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。5個位址當中的3個列位址,示意資料“info0”的位址。延續5個位址,控制器200將指令“c32”輸出至輸出入訊號I/O。藉由以上,如圖43的SS54所示,第1存儲區域MIA0的管理資訊MI經由資料閂鎖群SDL被轉送至資料閂鎖群ADL。 另,圖43中,資料閂鎖群ADL的資料被複製至資料閂鎖群XDL。因此,管理資訊MI轉送給資料閂鎖群ADL之後,令資料閂鎖群ADL的資料複製至資料閂鎖群XDL之指令“c54”會被輸出至輸出入訊號I/O。 其後,為了將第2存儲區域MIA1的管理資訊MI轉送至資料閂鎖群BDL,處理器230輸出用來在SLC模式下執行從管理資訊存儲區域MIA讀出管理資訊MI之指令“c51”、及延續指令“c51”而將指令“c71”與指令“c31”輸出至輸出入訊號I/O。控制器200,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。5個位址當中的3個列位址,示意資料“info1”的位址。延續5個位址,控制器200將指令“c32”輸出至輸出入訊號I/O。藉由以上,如圖43的SS55所示,第2存儲區域MIA1的管理資訊MI被轉送至資料閂鎖群BDL。 其後,用來將第3存儲區域MIA2的管理資訊MI轉送至資料閂鎖群CDL之指令與資料被輸出至輸出入訊號I/O。處理器230輸出用來在SLC模式下執行從管理資訊存儲區域MIA讀出管理資訊MI之指令“c51”、及延續指令“c51”而將指令“c72”與指令“c31”輸出至輸出入訊號I/O。控制器200,延續指令“c31”,將5個位址輸出至輸出入訊號I/O。5個位址當中的3個列位址,示意資料“info2”的位址。延續5個位址,控制器200將指令“c32”輸出至輸出入訊號I/O。藉由以上,如圖43的SS56所示,第3存儲區域MIA2的管理資訊MI被轉送至資料閂鎖群CDL。 接下來,說明從複數個資料閂鎖群的穩定狀態取得用於資料讀出之管理資訊的序列。這裡,作為例子,說明被選擇的區塊BLK隸屬於區塊1000~區塊BLK1999,而讀出針對該被選擇的區塊BLK之管理資訊MI的情形。 圖44為示意用來從穩定狀態讀出管理資訊MI的指令序列的圖。圖45為用來說明管理資訊MI的讀出處理中,記憶體單元陣列與5個資料閂鎖群中的資料的存儲狀況的變化的圖。 如圖44所示,指令序列SQ20中,最初,將資料閂鎖群BDL的資料複製到資料閂鎖群XDL之指令“c73”被輸出,再如圖45的SS57至SS58所示,資料從資料閂鎖群BDL被複製至資料閂鎖群XDL。 其後,控制器200輸出指令“c56”與5個位址,將指令“c57”輸出至輸出入訊號I/O。定序器170,執行指定的行位址的資料閂鎖群XDL之資料讀出,如圖45的SS59所示,能夠輸出被讀出的資料“info”。 其後,控制器200使用被讀出的資料(位移資訊)執行資料的讀出序列,藉此便能進行資料的讀出。 接下來,說明管理資訊MI的更新及對於管理資訊MI的記憶體單元陣列110的寫入處理。 圖46為示意穩定狀態中的管理資訊MI的更新處理的指令序列的圖。圖47為用來說明管理資訊MI的更新處理中,記憶體單元陣列與5個資料閂鎖群中的資料的存儲狀況的變化的圖。這裡,說明資料閂鎖群BDL的管理資訊MI的更新。 更新處理的指令序列SQ21中,最初,指令“c73”被輸出,再如圖47的SS61至SS62所示,資料從資料閂鎖群BDL被複製至資料閂鎖群XDL。 其後,控制器200將更新資料閂鎖群XDL中的指定的行位址的資料之指令“c61”與5個位址輸出至輸出入訊號I/O,則如圖47的SS63所示,資料閂鎖群XDL的資料的一部分會被更新。 控制器200,於圖46所示指令序列SQ21之後,執行如圖31所示之指令,藉此,更新資料會被記憶於記憶體單元陣列110。 圖48為用來說明更新資料往記憶體單元陣列110的寫入中的資料的存儲狀況的變化的圖。如圖48所示,記憶體單元陣列與5個資料閂鎖群中的資料,會從SS64變化成SS65的狀態。 接下來,說明當將3分頁份的管理資訊MI存儲於資料閂鎖群ADL、BDL、CDL的情形下,資料的讀出動作。 一旦判明來自主機機器300的讀出要求是對於哪一區塊BLK,則控制器200將有關讀出要求的區塊BLK的管理資訊MI轉送至資料閂鎖群XDL,從資料閂鎖群XDL取得管理資訊MI,再使用取得的管理資訊MI來輸出讀出指令。 圖49為用來說明選擇當進行資料的讀出時使用的管理資訊MI亦即位移資訊的圖。圖50為示意當進行資料的讀出時的5個資料閂鎖群的狀態的圖。 穩定狀態下,讀出資料的位移量資料不存在於資料閂鎖群XDL,故接受來自主機機器300的讀出要求後,管理資訊MI會從存儲著有關讀出資料的管理資訊MI(例如位移資訊)的資料閂鎖群被複製至資料閂鎖群XDL的存儲區域。 例如,判定了進行區塊BLK0~999中的區塊BLKn的第m個字元線WLm的資料讀出之後,控制器200將存儲著和區塊BLK0~999中的區塊BLKn相對應之管理資訊MI的資料閂鎖群ADL的資料複製至資料閂鎖群XDL,而讀出資料閂鎖群XDL的資料區域中的和區塊BLKn的字元線WLm相對應之位移資訊。使用讀出的位移資訊,控制器200便能做資料的讀出。 如圖50所示,當進行資料的讀出時,資料閂鎖群XDL被使用於讀出資料的存儲。區塊BLKn的字元線WLm的使用者資料,於被轉送至資料閂鎖群SDL之後,被複製至資料閂鎖群XDL的資料區域,控制器200便能從資料閂鎖群XDL的資料區域讀出資料。 另,管理資訊MI的往資料閂鎖群XDL之轉送,亦可設計成並非接受來自主機機器300的讀出要求才進行,而是事先將管理資訊MI從資料閂鎖群ADL、BDL、CDL的其中一者轉送至資料閂鎖群XDL。 在該情形下,會將資料閂鎖群ADL、BDL、CDL的3者當中的1者的資料複製到資料閂鎖群XDL,故讀出資料的位移資訊會有3分之1的機率存在於資料閂鎖群XDL。 圖51為示意控制器200與NAND型快閃記憶體100的資料的讀出的處理的流程的例子的流程圖。圖51中,和圖14及圖26相同的處理標註相同步驟編號而簡化說明。 控制器200,辨明有關來自主機機器300的讀出要求的對象位址之後(S1),鑑別登錄著對象位址的歷史值亦即位移資訊之資料閂鎖群,而輸出將該鑑別出的資料閂鎖群的資料複製到資料閂鎖群XDL之指令(S21)。 如果和有關讀出指令的對象位址相關的歷史值已被存儲於資料閂鎖群XDL時,此處理被跳過。但,當和有關讀出指令的對象位址相關的歷史值尚未被存儲於資料閂鎖群XDL時,S21的處理會被執行。S21的執行的結果,在NAND型快閃記憶體100內,資料會從登錄著對象位址的歷史值亦即位移資訊的複數個資料閂鎖群被複製至資料閂鎖群XDL(S22)。 於S21的執行後或是S21的跳過後,控制器200輸出令登錄著歷史資料HD中的對象位址的位移資訊亦即歷史值(此處為索引編號)的行位址的資料閂鎖群XDL的資料輸出之指令(S11)。根據該指令,NAND型快閃記憶體100執行將指定的行位址的資料閂鎖群XDL的資料(亦即索引編號)送返給控制器200之處理(S12)。 控制器200,基於辨明的實體位址、與和取得的索引編號相對應之位移量資料,將讀出指令輸出至NAND型快閃記憶體100(S3)。NAND型快閃記憶體100,一旦接收來自控制器200的讀出指令,則基於讀出指令執行資料的讀出(S4)。 讀出的結果,藉由控制器200而被取得。控制器200,判定是否成功做資料的讀出,亦即即使有錯誤也能夠藉由ECC電路260做錯誤訂正(S5)。 當成功做資料的讀出時(S5:YES),控制器200將讀出的資料送返給主機機器300(S6)。 當無法做資料的讀出時(S5:NO),控制器200執行如上述的再讀出處理(S7)。 S7中,上述的再讀出處理是一面做位移讀取等一面進行,控制器200判定錯誤訂正是否成功,亦即是否成功做資料的讀出(S8)。當錯誤訂正成功,亦即成功做資料的讀出時(S8:YES),控制器200將錯誤訂正處理後的資料的資料送返給主機機器300(S6)。 又,再讀出處理(S7)之後,當錯誤訂正成功,亦即成功做資料的讀出時(S8:YES),控制器200將令登錄著對象位址的歷史值亦即位移資訊的資料閂鎖群的資料複製至資料閂鎖群XDL之指令輸出至輸出入訊號I/O(S25)。其結果,定序器170會將登錄著對象位址的歷史值亦即位移資訊的資料閂鎖群的資料複製至資料閂鎖群XDL(S26)。 又,S25之後,控制器200輸出用來將和成功做再讀出時的位移量資料相對應之索引編號予以覆寫更新至和對象位址相對應之行位址的指令(S17)。其結果,定序器170以成功做再讀出時的位移量資料的索引編號來更新資料閂鎖群XDL中的指定的行位址的資料(S18)。 又,S17之後,控制器200輸出將更新後的資料閂鎖群XDL的資料複製至登錄著對象位址的歷史值亦即位移資訊的資料閂鎖群之指令(S27)。其結果,定序器170會從資料閂鎖群XDL複製登錄著對象位址的歷史值亦即位移量的資料閂鎖群的資料(S28)。 [巡查處理] 此外,NAND型快閃記憶體100中,為了因應隨著時間經過而記憶的資料的劣化,會執行巡查(patrolling)處理,即讀出記憶的資料,而檢查亦即驗證(verify)讀出的資料的記憶狀態。巡查處理的結果,會進行讀出位準的更新,亦即位移資訊的更新。亦即,控制器200當對於記憶體單元陣列110執行了驗證資料的記憶狀態之巡查處理時,作為巡查處理的結果會將更新後的管理資訊—此處為位移資訊—記憶於記憶體單元陣列110。 圖52為示意巡查處理的流程的例子的流程圖。巡查處理,是以規定的周期,在規定的條件下執行。這裡,巡查處理,是對區塊BLK的每一規定的對象區域(以下稱巡查對象區域)執行。控制器200,選擇巡查處理的對象的區塊BLK,選擇該區塊BLK內的巡查對象區域,執行巡查處理。 控制器200,首先設定巡查處理的對象區塊BLKi的巡查對象區域的索引j(S31)。 控制器200,設定索引j的巡查對象區域的對象位址addr(S32),執行對象位址addr讀出時的規定的處理(S33)。S32與S33會被反覆,以使S33對於對象區塊BLK內的所有對象區塊執行規定的處理。 一旦S31中設定的對於巡查對象區域之讀出處理結束,則將區塊i的巡查對象區域的索引j遞增1。 控制器200,對於各區塊BLK內的複數個巡查對象區域,一個一個在規定的時間點執行巡查處理。 圖53為示意巡查處理中對於對象位址的讀出時的規定的處理的流程的例子的流程圖。 控制器200,以和區塊i的刪除次數相對應之表格的索引編號的位移量來讀出對象位址的資料,亦即做位移讀取(S35)。 控制器200,判定ECC所做的錯誤訂正是否成功(S36)。當錯誤訂正成功時(S36:YES),不做任何處理。當錯誤訂正未成功時(S36:NO),判定上述表格的索引編號是否未滿最後的編號(S37)。 當上述表格的索引編號未滿最後的編號時(S37:YES),控制器200將該分頁的索引編號遞增(S38),處理回到S35,而反覆S35與S36的處理。 當上述表格的索引編號不是未滿最後的編號時(S37:NO),控制器200執行追蹤處理等的其他處理(S39)。 圖54至圖57為用來說明當進行了巡查處理時之記憶體單元陣列110及複數個資料閂鎖群的狀態的變化的圖。 圖54為示意閒置狀態下的管理資訊存儲區域MIA與複數個資料閂鎖群的資料的存儲狀態的圖。閒置狀態下,不進行寫入或讀出。 圖55及圖56為用來說明當巡查處理被執行時,5個資料閂鎖群中的資料的存儲狀況的變化的圖。 為了對於區塊BLK0~BLK999的資料執行巡查處理,控制器200會將資料閂鎖群ADL的存儲區域的資料複製至資料閂鎖群XDL的存儲區域。然後,如圖55的SS61所示,使用資料閂鎖群XDL的位移資訊,執行資料的記憶狀態的檢查亦即驗證。如圖55的SS62所示,會進行資料的讀出,因此資料閂鎖群XDL的存儲區域的資料被使用於讀出。 控制器200,若檢查結束,當從檢查結果判斷出必須做位移資訊的更新的情形下,如圖55的SS63所示,將資料閂鎖群ADL的資料複製至資料閂鎖群XDL。 控制器200,變更資料閂鎖群XDL中的位移資訊(例如索引編號)。圖56的SS64示意資料閂鎖群XDL中的一部分的資料被覆寫的狀態。控制器200,如圖56的SS65所示,將資料閂鎖群XDL的資料複製至資料閂鎖群ADL。 藉由反覆上述的處理,而執行對於區塊BLK0~ BLK999的資料的巡查處理,則如SS66所示,資料閂鎖群XDL中的資料會被複製至資料閂鎖群ADL。 圖57為示意有關區塊BLK0~BLK999的資料的管理資訊存儲區域MIA與複數個資料閂鎖群的資料的存儲狀態的圖。從SS66的狀態,控制器200進行管理資訊MI往記憶體單元陣列110的管理資訊存儲區域MIA之寫入。圖57示意例如進行針對區塊BLK0~BLK999的資料的4分之1的位移資訊的更新的狀態。 另,上述例子中,更新資料是被存儲於資料閂鎖群XDL之後,再被複製至資料閂鎖群ADL,但亦可設計成將更新資料暫時地存儲於RAM220,而從RAM220轉送給資料閂鎖群ADL。 圖58為用來說明示意正在將更新資料存儲於RAM220的途中的狀態的記憶體系統的構成的方塊圖。圖59為用來說明示意將更新資料存儲完成於RAM220,而將更新資料轉送至資料閂鎖群ADL的狀態的記憶體系統的構成的方塊圖。 如圖58所示,更新資料被存儲於RAM220中的一部分區域。被存儲於RAM220的更新資料,如圖59所示,從控制器200被轉送至NAND型快閃記憶體100的資料閂鎖群ADL。 像以上這樣,按照本實施形態,亦能獲得和第1實施形態同樣的效果,並且能夠提供一種能夠以較小的潛時讀出更多的管理資訊MI之記憶體系統及記憶體控制器。 特別是,當將更新資料暫時地存儲於RAM220,再轉送至資料閂鎖群ADL的情形下,即使途中發生編寫動作,也不需令RAM220的資料迴避到記憶體單元陣列110,於編寫動作結束後能夠重啟更新資料往資料閂鎖群ADL之轉送。 (第3實施形態) 第1及第2實施形態中,記憶體系統具有1個NAND型快閃記憶體100,但第3實施形態中,記憶體系統具有2個NAND型快閃記憶體100,且在各NAND型快閃記憶體100的複數個資料閂鎖群存儲著2個記憶體單元陣列110中的2個管理資訊MI。 第3實施形態之記憶體系統的構成,和第1實施形態之記憶體系統的構成相同,故第3實施形態之記憶體系統中,針對和第1實施形態之記憶體系統的構成相同的構成要素使用相同符號而省略說明,僅針對和第1實施形態之記憶體系統的構成相異的構成說明之。 圖60~圖62為用來說明2個NAND型快閃記憶體100的2個管理資訊MI的存儲狀態的變化的圖。將2個NAND型快閃記憶體100的一方訂為晶片C0,另一方訂為晶片C1。亦即,各晶片C0、C1具有作為非揮發性的記憶體之記憶體單元陣列110,其具有複數個實體區塊,複數個實體區塊的各者具有可以分頁單位存取的記憶區域。本實施形態之記憶體系統1A,包含1個控制器200、與2個晶片C0、C1。控制器200,對於晶片C0及C1各記憶體以分頁單位控制資料的讀出及寫入。控制器200,可形成於2個晶片C0、C1的其中一者的基板上,亦可形成於另一晶片上。 圖60為示意2個NAND型快閃記憶體100的2個管理資訊MI的存儲狀態的圖。圖61為示意當晶片C0為編寫中時,2個NAND型快閃記憶體100的2個管理資訊MI的存儲狀態的圖。各晶片C0、C1,具有複數個資料閂鎖群SDL、ADL、BDL、CDL、XDL。 在晶片C0的記憶體單元陣列110的管理資訊存儲區域MIAC0,存儲著晶片C0與晶片C1雙方的管理資訊MI。同樣地,在晶片C1的記憶體單元陣列110的管理資訊存儲區域MIAC1,也存儲著晶片C0與晶片C1雙方的管理資訊MI。 如圖60的SS71所示,晶片C0中,晶片C0的管理資訊MI被存儲於資料閂鎖群ADL、及資料閂鎖群BDL的一半,晶片C1的管理資訊MI被存儲於資料閂鎖群BDL的一半、及資料閂鎖群CDL。 同樣地,如圖60的SS72所示,晶片C1中亦是,晶片C0的管理資訊MI被存儲於資料閂鎖群ADL、及資料閂鎖群BDL的一半,晶片C1的管理資訊MI被存儲於資料閂鎖群BDL的一半、及資料閂鎖群CDL。 亦即,控制器200於執行從晶片C0及C1的各記憶體單元陣列110的資料的讀出處理時或執行前,會執行穩定狀態化處理,亦即將用於資料讀出之管理資訊MI(例如歷史資料HD)存儲於晶片C0及C1雙方的資料閂鎖群ADL、BDL、CDL。 這樣的構成中,當一方的晶片C0中正在進行資料的寫入時亦即正在執行編寫時,控制器200可能會接受對於該晶片C0的資料的讀出要求。 這樣的情形下,如圖61的SS73所示,晶片C0的資料閂鎖群ADL、BDL、CDL會被使用於資料的寫入,但如SS74所示,晶片C1的資料閂鎖群ADL、BDL、CDL的資料不會被使用於資料的寫入,而是維持存儲著晶片C0與晶片C1的管理資訊MI的狀態。 故,當對於晶片C0正在執行資料的寫入時,若執行對於晶片C0的資料的讀出時,如圖62的SS76所示,會將被存儲於晶片C1的資料閂鎖群ADL、及BDL的一部分之管理資訊MI—此處為位移資訊—基於和讀出位址相對應之行位址而複製至資料閂鎖群XDL,而能夠從資料閂鎖群XDL讀出。圖62的SS76中,在資料閂鎖群ADL已存儲著和讀出位址相對應之位移資訊,故資料閂鎖群ADL的資料會被複製至資料閂鎖群XDL。 亦即,控制器200在對於晶片C0記憶體單元陣列110執行資料的寫入處理的途中當執行從晶片C0記憶體單元陣列110的資料的讀出處理時,會從晶片C1的資料閂鎖群ADL、BDL讀出管理資訊MI,使用該讀出的管理資訊MI來執行晶片C0的資料的讀出處理。 故,2個晶片將彼此的管理資訊MI彼此存儲於複數個資料閂鎖群,藉此,控制器200在圖32所示般的懸置讀取處理時,不需執行用來將管理資訊MI從記憶體單元陣列110中的管理資訊存儲區域MIA讀出之指令序列,而能夠從另一方的晶片的複數個資料閂鎖群取得管理資訊MI—此處為位移資訊—而使用該位移資訊來進行資料的讀出。亦即,設計成將管理資訊在晶片間分散存儲,故於寫入的懸置中,不必以SLC模式進行管理資訊MI的讀出。 圖63為示意資料的讀出手續的指令序列SQ31的圖。當進行對於晶片C0的編寫動作,而晶片C0的資料閂鎖群中未存儲著管理資訊MI的情形下,控制器200將選擇晶片C1之指令“c74”輸出至輸出入訊號I/O,而選擇晶片C1。當讀出資料用的位移資訊位於晶片C1的資料閂鎖群ADL時,將指令“c54”輸出至輸出入訊號I/O,而進行將資料閂鎖群ADL的所有資料複製至資料閂鎖群XDL。 其後,將暫存器讀取指令亦即指令“c56”輸出至輸出入訊號I/O,指定晶片C1的資料閂鎖群XDL中的被指定的行位址的起始,而讀出位移資訊。 將該讀出的位移資訊輸出至NAND型快閃記憶體100之後,資料的讀出指令被輸出,而進行資料的讀出。 像以上這樣,按照本實施形態,能夠獲得和第1實施形態同樣的效果。又,本實施形態的情形下,在對於某一晶片的編寫動作中,當有對於該晶片的讀出要求時,不必從該晶片的記憶體單元陣列110中的管理資訊存儲區域MIA讀出管理資訊MI,故能夠把潛時減小從管理資訊存儲區域MIA讀出管理資訊MI之時間份。 (第4實施形態) 本實施形態,有關控制器晶片與記憶體晶片被貼合,而晶片被層積而構成之記憶體系統。 第4實施形態之記憶體系統的構成,包含和第1實施形態之記憶體系統的構成相同的構成要素,故第4實施形態之記憶體系統中,針對和第1實施形態之記憶體系統的構成相同的構成要素使用相同符號而省略說明,僅針對和第1實施形態之記憶體系統的構成相異的構成說明之。 當在1片基板上,形成了NAND型快閃記憶體100的電路與控制器200的電路的情形下,控制器200的電路是基於記憶體單元陣列110的製造製程而被製造,因此可能無法增大RAM220的區域的尺寸。 鑑此,本實施形態中,將搭載控制器200的晶片與搭載記憶體單元陣列110的晶片彼此訂為不同晶片。 圖64為有關本實施形態之用來說明記憶體系統1B的構成的組立圖。另,此處,搭載著記憶體單元陣列110的晶片為1片,而被層積於搭載控制器200的晶片,但亦可將搭載著記憶體單元陣列110的晶片做成複數片,而層積於搭載控制器200的晶片。 記憶體系統1B,構成為具有搭載著控制器等的第1晶片400、及搭載著記憶體單元陣列110等的第2晶片401,第1晶片400與第2晶片401被貼合而構成。 第1晶片400,為搭載著包含處理器230、RAM420、各種介面電路等之控制器200,及複數個感測單元SAU的晶片,該些電路作為藉由CMOS形成製程而被製造之半導體積體電路而形成於第1晶片400上。亦即,第1晶片400,係與第2晶片401貼合,而具有對於複數個實體區塊以分頁單位控制資料的讀出及寫入之控制器200、及RAM420。如後述般,RAM420,具有一RAM區域,其在執行從第2晶片401的記憶體單元陣列110的資料的讀出處理時或執行前,可存儲用於資料的讀出之管理資訊MI(例如歷史資料HD)。 另一方面,第2晶片401,係搭載著NAND型快閃記憶體的核心部分亦即記憶體單元陣列110的晶片,藉由用來製造記憶體單元陣列110之製程而被製造。亦即,第2晶片401為一半導體晶片,具有非揮發性的記憶體單元陣列110,其具有複數個實體區塊,複數個實體區塊的各者具有可以分頁單位存取的記憶區域。具有記憶體單元陣列110的第2晶片401,被搭載於第1晶片400上而被貼合。 如圖64所示,在第1晶片400,具有形成有控制器200等的各種電路之周邊電路區域(PERI)、及形成有複數個感測單元SAU及演算電路YLOG之SA/YLOG區域、及形成有RAM220之RAM區域。又,在第1晶片400,形成有用來與第2晶片401電性連接的複數個焊墊。複數個焊墊,包含複數個位元線BL用的焊墊PD1、及複數個字元線WL用的焊墊PD2、及控制訊號等用的焊墊PD3。 在第2晶片401,具有形成有記憶體單元陣列110之單元陣列區域(Cell)。又,在第2晶片401,也形成有用來與第1晶片400電性連接的複數個焊墊。複數個焊墊,包含複數個位元線BL用的焊墊PD1a、及複數個字元線WL用的焊墊PD2a、及控制訊號等用的焊墊PD3a。第1晶片400的複數個焊墊與第2晶片401的複數個焊墊,例如藉由球型凸塊而電性連接。 以第1晶片400的複數個焊墊與第2晶片401的複數個焊墊透過球型凸塊而被連接之方式將2片晶片貼合,藉此製造記憶體系統1A。又,被貼合的2片晶片,被搭載於另一基板上而被打線接合,藉由樹脂而封裝。 習知,控制器200亦和NAND型快閃記憶體100形成於同一基板上,因此RAM220用的RAM區域無法劃設太寬,但按照本實施形態之構成,能夠在和第2晶片401不同的第1晶片400將RAM220用的RAM區域增寬,故即使管理資訊MI的資料量變多,仍能存儲於RAM220。 被存儲於RAM220的管理資訊MI會藉由巡查處理等而被更新,因此管理資訊MI會以規定的周期或是在規定的時間點執行往記憶體單元陣列110的管理資訊存儲區域MIA記憶之處理。 圖65為示意第1晶片400所做的第2晶片401的資料的讀出的處理的流程的例子的流程圖。圖65中,和圖14、圖26及圖36相同的處理標註相同步驟編號而簡化說明。 第1晶片400的控制器200,辨明了和來自主機機器300的讀出要求有關的對象位址後(S1),輸出令對象位址的管理資訊MI(例如位移資訊)從登錄著對象位址的位移資訊的CMOS晶片亦即第1晶片400輸出之指示指令(S41)。亦即,用來將讀出對象位址的位移資訊資料從登錄著對象位址的歷史值亦即位移資訊的RAM220讀出之指令會被輸出。RAM220,將指定的位址的管理資訊(位移資訊)輸出至控制器200(S32)。 其後,進行資料的讀出,於再讀出後(S7),當錯誤訂正成功時(S8:YES),輸出第1晶片400上的管理資訊MI的更新指令(S43)。第1晶片400內的RAM220中,藉由指令而被指定的位址的管理資訊(位移資訊)被更新(S44)。 像以上這樣,按照本第4實施形態,係區分搭載著控制器200的晶片、及搭載著記憶體單元陣列110的晶片,故可將RAM區域劃設較大,故能夠確保存儲充分的量的管理資訊MI之記憶區域。 雖已說明了本發明的幾個實施形態,但該些實施形態僅是提出作為示例,並非意圖限定發明之範圍。該些新穎的實施形態,可以其他各式各樣的形態來實施,在不脫離發明要旨之範圍內,可進行種種省略、置換、變更。該些實施形態或其變形,均包含於發明之範圍或要旨中,且包含於申請專利範圍所記載之發明及其均等範圍內。
1,1A:記憶體系統 6:串 10:p型井區域 11,12,13:配線層 14:導電體 15:閘極絕緣膜 17:區塊絕緣膜 18:金屬配線層 19:n +型雜質擴散層 20:接點插栓 21:金屬配線層 22:p +型雜質擴散層 23:接點插栓 24:金屬配線層 100:NAND型快閃記憶體 110:記憶體單元陣列 120:列解碼器 130:驅動器電路 140:行解碼器 150:位址暫存器 160:指令暫存器 170:定序器 200:記憶體控制器 210:主機介面電路 230:處理器 240:緩衝記憶體 250:NAND介面電路 260:ECC電路 300:主機機器 400,401:晶片
[圖1]有關第1實施形態之用來說明記憶體系統的構成的方塊圖。 [圖2]有關第1實施形態之用來說明記憶體單元陣列的構成的電路圖。 [圖3]有關第1實施形態之1個區塊的一部分區域的截面圖。 [圖4]有關第1實施形態之行解碼器與串單元的電路圖。 [圖5]有關第1實施形態之示意各記憶體單元電晶體的可取得資料、閾值電壓分布、及讀出時使用的電壓的圖。 [圖6]有關第1實施形態之示意資料的寫入時的指令序列的圖。 [圖7]有關第1實施形態之用來說明伴隨資料的寫入時的指令序列的執行之5個資料閂鎖中的資料的存儲狀況的變化的圖。 [圖8]有關第1實施形態之用來說明伴隨資料的寫入時的指令序列的執行之5個資料閂鎖中的資料的存儲狀況的變化的圖。 [圖9]有關第1實施形態之示意資料的讀出時的基本的指令序列的圖。 [圖10]有關第1實施形態之用來說明伴隨指令序列的執行之5個資料閂鎖中的資料的存儲狀況的變化的圖。 [圖11]有關第1實施形態之示意位移表格資訊的1個表格亦即下位分頁用的位移表格的例子的圖。 [圖12]有關第1實施形態之示意位移表格資訊的中位分頁的位移表格的例子的圖。 [圖13]有關第1實施形態之示意位移表格資訊中的上位分頁的位移表格的例子的圖。 [圖14]有關第1實施形態之示意當有來自主機的讀出要求時,控制器與NAND型快閃記憶體的資料的讀出的處理的流程的例子的流程圖。 [圖15]有關第1實施形態之示意懸置讀取時的指令序列的圖。 [圖16]有關第1實施形態之用來說明懸置讀取時的5個資料閂鎖中的資料的存儲狀態的變化的圖。 [圖17]有關第1實施形態之用來說明管理資訊被存儲於資料閂鎖群為止前的管理資訊的存儲狀態的變化的圖。 [圖18]有關第1實施形態之用來說明管理資訊被存儲於資料閂鎖群為止前的管理資訊的存儲狀態的變化的圖。 [圖19]有關第1實施形態之用來說明管理資訊被存儲於資料閂鎖群為止前的管理資訊的存儲狀態的變化的圖。 [圖20]有關第1實施形態之示意第1存儲手續的指令序列的圖。 [圖21]有關第1實施形態之示意第2存儲手續及第3存儲手續的指令序列的圖。 [圖22]有關第1實施形態之示意第4存儲手續的指令序列的圖。 [圖23]有關第1實施形態之用來說明當管理資訊亦即位移資訊從資料閂鎖群被讀出的情形的圖。 [圖24]有關第1實施形態之示意資料的讀出手續的指令序列的圖。 [圖25]有關第1實施形態之用來說明當資料從記憶體單元陣列被讀出的情形的圖。 [圖26]有關第1實施形態之示意控制器與NAND型快閃記憶體的資料的讀出的處理的流程的例子的流程圖。 [圖27]有關第1實施形態之示意將更新後的位移資訊往管理資訊存儲區域寫入的處理的流程的例子的流程圖。 [圖28]有關第1實施形態之用來說明圖26的資料的讀出處理、與圖27的更新後的管理資訊的往非揮發性記憶體的寫入處理中,記憶體單元陣列與5個資料閂鎖群中的資料的存儲狀況的變化的圖。 [圖29]有關第1實施形態之用來說明圖26的資料的讀出處理、與圖27的更新後的管理資訊的往非揮發性記憶體的寫入處理中,記憶體單元陣列與5個資料閂鎖群中的資料的存儲狀況的變化的圖。 [圖30]有關第1實施形態之示意圖28的SS42中,用於資料閂鎖群中的被指定的行位址的資料的更新處理的指令序列的圖。 [圖31]有關第1實施形態之示意圖29的SS44中,用於管理資訊往記憶體單元陣列的寫入的指令序列的圖。 [圖32]有關第1實施形態之示意懸置讀取時的控制器的輸出入訊號的變化的指令序列的圖。 [圖33]有關第1實施形態之用來說明伴隨指令序列的執行之複數個資料閂鎖群中的資料的存儲狀況的變化的圖。 [圖34]有關第2實施形態之示意於電源關閉時等的管理資訊存儲區域MIA與複數個資料閂鎖群的資料存儲狀態的圖。 [圖35]有關第2實施形態之示意穩定狀態下的記憶體單元陣列、與複數個資料閂鎖群中的管理資訊的存儲狀態。 [圖36]有關第2實施形態之用來說明當讀出管理資訊而往資料閂鎖群存儲的情形下的資料的轉送的圖。 [圖37]有關第2實施形態之示意於SLC模式下將被讀出的管理資訊從資料閂鎖群XDL複製到資料閂鎖群ADL至CDL的其中一者,而將複數個資料閂鎖群穩定狀態化的方法的圖。 [圖38]有關第2實施形態之示意將被存儲於資料閂鎖群ADL、BDL及CDL的管理資訊轉送至資料閂鎖群XDL,而將複數個資料閂鎖群穩定狀態化的另一方法的圖。 [圖39]有關第2實施形態之示意管理資訊經由資料閂鎖群SDL而轉送至資料閂鎖群ADL、BDL及CDL的其中一者的情形的圖。 [圖40]有關第2實施形態之示意將複數個資料閂鎖群穩定狀態化的指令序列的圖。 [圖41]有關第2實施形態之用來說明管理資訊被存儲於複數個資料閂鎖群為止前的管理資訊的存儲狀態的變化的圖。 [圖42]有關第2實施形態之示意將複數個資料閂鎖群穩定狀態化的另一指令序列的圖。 [圖43]有關第2實施形態之用來說明管理資訊被存儲於複數個資料閂鎖群為止前的管理資訊的存儲狀態的變化的圖。 [圖44]有關第2實施形態之示意用來從穩定狀態讀出管理資訊的指令序列的圖。 [圖45]有關第2實施形態之用來說明管理資訊的讀出處理中,記憶體單元陣列與5個資料閂鎖群中的資料的存儲狀況的變化的圖。 [圖46]有關第2實施形態之示意穩定狀態中的管理資訊MI的更新處理的指令序列的圖。 [圖47]有關第2實施形態之用來說明管理資訊的更新處理中,記憶體單元陣列與5個資料閂鎖群中的資料的存儲狀況的變化的圖。 [圖48]有關第2實施形態之用來說明更新資料往記憶體單元陣列的寫入中的資料的存儲狀況的變化的圖。 [圖49]有關第2實施形態之用來說明選擇當進行資料的讀出時使用的管理資訊MI亦即位移資訊的圖。 [圖50]有關第2實施形態之示意當進行資料的讀出時的6個資料閂鎖群的狀態的圖。 [圖51]有關第2實施形態之示意控制器與NAND型快閃記憶體的資料的讀出的處理的流程的例子的流程圖。 [圖52]有關第2實施形態之示意巡查處理的流程的例子的流程圖。 [圖53]有關第2實施形態之示意巡查處理中對於對象位址的讀出時的規定的處理的流程的例子的流程圖。 [圖54]有關第2實施形態之示意閒置狀態下的管理資訊存儲區域與複數個資料閂鎖群的資料的存儲狀態的圖。 [圖55]有關第2實施形態之用來說明當巡查處理被執行時,5個資料閂鎖群中的資料的存儲狀況的變化的圖。 [圖56]有關第2實施形態之用來說明當巡查處理被執行時,5個資料閂鎖群中的資料的存儲狀況的變化的圖。 [圖57]有關第2實施形態之示意有關區塊BLK0~ BLK999的資料的管理資訊存儲區域與複數個資料閂鎖群的資料的存儲狀態的圖。 [圖58]有關第2實施形態之用來說明示意正在將更新資料存儲於RAM的途中的狀態的記憶體系統的構成的方塊圖。 [圖59]有關第2實施形態之用來說明示意將更新資料存儲完成於RAM,而將更新資料轉送至資料閂鎖群的狀態的記憶體系統的構成的方塊圖。 [圖60]有關第3實施形態之示意2個NAND型快閃記憶體的2個管理資訊的存儲狀態的圖。 [圖61]有關第3實施形態之示意2個NAND型快閃記憶體的2個管理資訊的存儲狀態的圖。 [圖62]有關第3實施形態之示意2個NAND型快閃記憶體的2個管理資訊的存儲狀態的圖。 [圖63]有關第3實施形態之示意資料的讀出手續的指令序列的圖。 [圖64]有關第4實施形態之用來說明記憶體系統的構成的組立圖。 [圖65]有關第4實施形態之示意第1晶片所做的第2晶片的資料的讀出的處理的流程的例子的流程圖。
6:串
BL0:位元線
BL1:位元線
BL(K-1):位元線
BLK:區塊
SGD0~SGD3:閘極線
SU0~SU3:串單元
SGS:閘極線
SL:源極線
MT0~MT7:記憶體單元電晶體
ST1,ST2:電晶體
WL0~WL7:字元線

Claims (12)

  1. 一種控制方法,係對於具有非揮發地記憶資料之記憶體單元陣列的記憶體的前述資料的讀出之控制方法,其中, 前述資料,包含:第1資料;及於前述第1資料的前述讀出中被使用的資訊亦即第2資料; 前述記憶體,具有: 第1的資料閂鎖群,被用於來自前述記憶體單元陣列的前述第1資料的前述讀出;及 第2的資料閂鎖群,可與前述第1的資料閂鎖群之間轉送資料; 當執行從前述記憶體單元陣列的前述第1資料的前述讀出時或執行前,將前述記憶體單元陣列中記憶著的前述第2資料存儲於前述第2的資料閂鎖群,而透過前述第1的資料閂鎖群取得已存儲的前述第2資料。
  2. 如請求項1記載之控制方法,其中,於前述讀出的執行前,將前述第2資料從前述第2的資料閂鎖群複製到前述第1的資料閂鎖群。
  3. 如請求項1記載之控制方法,其中, 控制對於前述記憶體單元陣列的第3資料的寫入, 當將前述第3資料寫入到前述記憶體單元陣列時,使用前述第2的資料閂鎖群。
  4. 如請求項1記載之控制方法,其中,將前述第2資料存儲到前述記憶體單元陣列的規定的存儲區域, 於前述讀出的執行前,將前述第2資料從前述規定的存儲區域讀出,存儲於前述第2的資料閂鎖群。
  5. 如請求項1記載之控制方法,其中,當前述第2資料被更新了的情形下,令更新後的前述第2資料記憶於前述記憶體單元陣列。
  6. 如請求項1記載之控制方法,其中,前述第2的資料閂鎖群有複數個。
  7. 如請求項6記載之控制方法,其中,前述記憶體單元陣列具有複數個實體區塊, 前述複數個第2的資料閂鎖群的各者,存儲有關從相對應之實體區塊讀出資料之前述第2資料。
  8. 如請求項7記載之控制方法,其中,前述複數個實體區塊的各者,具有可以分頁單位存取的記憶區域。
  9. 如請求項1記載之控制方法,其中,前述第2資料,包含當執行前述讀出時,將用於前述第1資料的讀出的電壓的位準予以位移用之資訊。
  10. 如請求項9記載之控制方法,其中,對於前述記憶體單元陣列執行驗證前述第1資料的記憶狀態之巡查(patrolling)處理,作為前述巡查處理的結果會將更新後的有關前述電壓的位準的位移之資訊記憶於前述記憶體單元陣列。
  11. 一種控制方法,係對於具有非揮發地記憶第1資料的第1的記憶體單元陣列之第1記憶體及具有非揮發地記憶第2資料的第2的記憶體單元陣列之第2記憶體的資料的讀出之控制方法,其中, 前述第1資料,包含:第3資料;及於前述第3資料的讀出中被使用的資訊亦即第4資料; 前述第2資料,包含:第5資料;及於前述第5資料的讀出中被使用的資訊亦即第6資料; 前述第1記憶體,具有: 第1的資料閂鎖群,被用於來自前述第1記憶體單元陣列的前述第3資料的前述讀出;及 第3的資料閂鎖群,可與前述第1的資料閂鎖群之間轉送資料; 前述第2記憶體,具有: 第2的資料閂鎖群,被用於來自前述第2記憶體單元陣列的前述第5資料的前述讀出;及 第4的資料閂鎖群,可與前述第2的資料閂鎖群之間轉送資料; 當執行從前述第1的記憶體單元陣列的前述第3資料的前述讀出時或執行前,將前述第1的記憶體單元陣列中記憶著的前述第4資料存儲於前述第3的資料閂鎖群,而透過前述第1的資料閂鎖群取得已存儲的前述第4資料, 當執行從前述第2的記憶體單元陣列的前述第5資料的前述讀出時或執行前,將前述第2的記憶體單元陣列中記憶著的前述第6資料存儲於前述第4的資料閂鎖群,而透過前述第2的資料閂鎖群取得已存儲的前述第6資料。
  12. 如請求項11記載之控制方法,其中, 前述第2資料,更包含於前述第3資料的前述讀出中被使用的資訊亦即第7資料; 當在對於前述第1的記憶體陣列單元執行寫入的途中,執行從前述第1的記憶體陣列單元的前述第3資料的前述讀出時,將前述第2的記憶體陣列單元中記憶著的前述第7資料透過前述第4的資料閂鎖群及前述第2的資料閂鎖群而讀出,使用前述第7資料執行前述第3資料的前述讀出。
TW111120837A 2020-06-02 2020-12-22 記憶體的控制方法 TWI841977B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-096428 2020-06-02
JP2020096428A JP2021190150A (ja) 2020-06-02 2020-06-02 メモリシステム及びメモリコントローラ

Publications (2)

Publication Number Publication Date
TW202236095A true TW202236095A (zh) 2022-09-16
TWI841977B TWI841977B (zh) 2024-05-11

Family

ID=

Also Published As

Publication number Publication date
US20210375372A1 (en) 2021-12-02
CN113764018A (zh) 2021-12-07
US11869601B2 (en) 2024-01-09
JP2021190150A (ja) 2021-12-13
TWI770734B (zh) 2022-07-11
US11545223B2 (en) 2023-01-03
TW202147118A (zh) 2021-12-16
US20230088099A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US11862263B2 (en) Storage device and method of operating the same
TWI770734B (zh) 記憶體系統及記憶體控制器
US10324788B2 (en) Memory system
US10007465B2 (en) Remapping in a memory device
JP5142685B2 (ja) メモリシステム
TWI388982B (zh) 包含具有電荷累積層及控制閘極之記憶胞的半導體記憶裝置及記憶系統
JP2012084127A (ja) 半導体装置
JP2004086991A (ja) 不揮発性記憶装置
JP2008257773A (ja) 不揮発性半導体記憶装置、不揮発性半導体記憶装置の制御方法、不揮発性半導体記憶システム、及びメモリカード
US20170269996A1 (en) Memory system and control method
JP2020077443A (ja) メモリシステム
JP2019040470A (ja) メモリシステム
US20230280943A1 (en) Memory system managing number of read operations using two counters
KR20220060572A (ko) 비휘발성 메모리 장치, 그것을 제어하는 제어기, 그것을 갖는 저장 장치, 및 그것의 리드 방법
JP2019139824A (ja) メモリシステム
TW202040577A (zh) 半導體記憶裝置及記憶體系統
US20210365382A1 (en) Memory system, memory controller, and operation method thereof
TWI758888B (zh) 記憶體系統
TWI841977B (zh) 記憶體的控制方法
JP2019057074A (ja) メモリシステム
US11544204B2 (en) Memory system, memory controller and method for operating memory controller
US11307807B2 (en) Memory system, memory controller, and method for operating memory system for determining read biases for read retry operation
CN116798490A (zh) 存储器系统